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DETECTION CIRCUIT, RECEIVER, COMMUNICATIONS DEVICE AND
METHOD OF DETECTING

TECHNICAL FIELD OF THE DISCLOSURE

The present disclosure relates to detection circuits for performing a turbo detection
process to recover a frame of data symbols from a received signal, the data symbols of the
frame having been affected, during the process of transmission, by a Markov process with the
effect that the data symbols of the frame in the received signal are dependent on one or more
preceding data symbols which can be represented as a trellis having a plurality of trellis
states. In some examples the detection circuit forms part of a receiver and operates in co-
operation with another detection circuit to perform the turbo detection process.

Embodiments of the present disclosure may provide therefore receivers configured to
recover the frame of data symbols using a turbo decoder and methods for decoding turbo
encoded data. In one example the data symbols are bits.

BACKGROUND OF THE DISCLOSURE

Over the past two decades, wireless communication has been revolutionized by
channel codes that benefit from iterative decoding algorithms. For example, the Long Term
Evolution (LTE) [1] and WiMAX [2] cellular telephony standards employ turbo codes [3],
which comprise a concatenation of two convolutional codes. Conventionally, the Logarithmic
Bahl-Cocke-Jelinek-Raviv (Log-BCJR) algorithm [4] is employed for the iterative decoding
of the Markov chains that are imposed upon the encoded bits by these convolutional codes.
Meanwhile, the WiFi standard for Wireless Local Area Networks (WLANSs) [5] has adopted
Low Density Parity Check (LDPC) codes [6], which may operate on the basis of the min-sum
algorithm [7]. Owing to their strong error correction capability, these sophisticated channel
codes have facilitated reliable communication at transmission throughputs that closely
approach the capacity of the wireless channel. However, the achievable transmission
throughput is limited by the processing throughput of the iterative decoding algorithm, if real-
time operation is required. Furthermore, the iterative decoding algorithm’s processing latency
imposes a limit upon the end-to-end latency. This is particularly relevant, since multi-gigabit
transmission throughputs and ultra-low end-to-end latencies can be expected to be targets for
next-generation wireless communication standards [8]. Therefore, there is a demand for
iterative decoding algorithms having improved processing throughputs and lower processing
latencies. Owing to the inherent parallelism of the min-sum algorithm, it may be operated in

a fully-parallel manner, facilitating LDPC decodets having processing throughputs of up to
1
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16.2 Gbit/s [9]. By contrast, the processing throughput of state-of-the-art turbo decoders [10]
is limited to 2.15 Gbit/s. This may be attributed to the inherently serial nature of the Log-
BCJR algorithm, which is imposed by the data dependencies of its forward and backward
recursions [4]. More specifically, the turbo-encoded bits generated by each of typically two
convolutional encoders must be processed serially, spread over numerous consecutive time
periods, which are clock cycles in a practical integrated circuit implementation. Furthermore,
the Log-BCJIR algorithm is typically applied to the two convolutional codes alternately, until
a sufficient number of decoding iterations have been performed. As a result, thousands of
time periods are required to complete the iterative decoding process of the state-of-the-art
turbo decoder.

Accordingly, providing an alternative to the Log-BCIR decoder, which has fewer data

dependencies and which enables fully parallel processing represents a technical problem.

SUMMARY OF THE DISCLOSURE

According to a first example embodiment of the present technique there is provided a
detection circuit for performing a turbo detection process to recover a frame of data symbols
or bits from a received signal comprising fixed point data representing one or more soft
decision values for each data symbol of the frame. The data symbols or bits of the frame
have been affected, during transmission, by a Markov process with the effect that the data
symbols of the frame in the received signal are dependent on one or more preceding data
symbols which can be represented as a trellis having a plurality of trellis states. The
detection circuit comprises a plurality of processing elements. Each of the processing
elements is associated with one of the trellis stages representing the dependency of the data
symbols of the frame according to the Markov process and each of the processing elements is
configured to receive one or more soft decision values corresponding to one or more data
symbols associated with the trellis stage. Each of one or more of the processing elements is
configured, in one clock cycle, to receive fixed point data representing a priori forward state
metrics from a first neighboring processing element, to receive fixed point data representing a
priori backward state metrics from a second neighboring processing element, and to receive
fixed point data representing a priori soft decision values for the one or more data symbols
being detected for the trellis stage. The processing element combines the a priori forward
state metrics, the a priori backward state metrics and the a priori soft decision values relating
to the one or more data symbols to determine fixed point extrinsic forward state metrics,

fixed point extrinsic backward metrics and extrinsic soft decision values corresponding to the
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one or more data symbols for the trellis stage associated with the processing element, and
communicates the extrinsic forward state metrics to the second neighboring processing
element, which becomes the a priori forward state metrics for a next clock cycle,
communicates the extrinsic backward state metrics to the first neighboring processing
element, which becomes the a priori backward state metrics for the next clock cycle, and
provides the extrinsic soft decision values, which becomes the a priori soft decision values
relating to the data symbol for the next clock cycle. In one example the extrinsic soft
decision values are provided to a second detection circuit for processing as part of the turbo
detection process. In other example the extrinsic soft decision values are provided for storing
in memory so that the detection circuit can use these for a subsequent iteration of the turbo
detection process. For one or more of a plurality of consecutive clock cycles of the turbo
detection process, the processing elements of the detection circuit are configured to operate

simultaneously.

Embodiments of the present technique can provide a receiver for detecting and
recovering a frame of data symbols or bits from a received signal. The data symbols of the
frame as present in the received signals have during the process of transmission been affected
by a Markov process to the effect that data symbols of the frame in the received signal are
dependent on one or more preceding data symbols which can be represented as a trellis
having a plurality of trellis states.

As will be appreciated by those skilled in the art this description of the frame of data
symbols as represented by the received signal could be manifested as transmitting the frame
of data symbols through a channel which suffers from inter-symbol interference. Therefore a
received symbol of the frame may be detected or represented within the received signal as a
combination of a received symbols and one or more preceding symbols so that the channel
introduces inter-symbol interference and therefore introduces some memory corresponding to
a Markov process. In other embodiments the data symbols may be encoded with a turbo code
with the effect that the data symbols in the received signal are represented by one or more
different encoded data symbols which may be systematic data symbols representing the
original data symbols as input to the turbo encoder or parity data symbols which are produced
by the turbo encoder. Furthermore, in accordance with turbo encoding, the encoder may be
provided with a plurality of convolutional encoders each of which may output a plurality data

symbols for each input data symbol.
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In some examples, for each of a plurality of clock cycles of the turbo detection
process, the detection circuit may be configured to co-operate with at least one other
detection circuit to process, for each of the processing elements representing the trellis stages,
the a priori information for the one or more data symbols being detected for the trellis stage
associated with the processing element, and to exchange the extrinsic soft decision values
corresponding to the one or more data symbols generated by the processing element with the
at least one other processing element. In some example the processing elements of each of
the detection circuit and the at least one other detection circuit may operate in each clock
cycle and after each clock cycle the first detection circuit and the at least one other detection

circuit exchange the extrinsic soft decision values to the other.

According to the present technique a receiver comprises a demodulator for detecting
and demodulating a received signal to recover an estimate of a frame of data symbols
represented as soft decision values, a soft decision value representing the probability of each
of the data symbols of the frame adopting each of its possible values. For the example of a
turbo encoded frame of data symbols or bits the demodulator generates for each encoded data
symbol or bit a soft decision value. The receiver further comprises a first detection processor
configured to receive the soft decision values representing the frame of data symbols and a
second detection processor which is configured to cooperate with the first detection processor
to perform a turbo detection process to generate an estimate of the frame of data symbols.
The first detection processor comprises a plurality of processing elements, each of the
processing elements being associated with one of the trellis stages representing the
dependency of the data symbols of the frame according to the Markov process. Each of the
processing elements is configured to receive the soft decision value corresponding to one or
more data symbols associated with the trellis stage and each of the plurality of processing
elements is configured to receive data representing a priori forward state metrics from one
neighbouring processing element, to receive data representing a priori backward state metrics
from another neighbouring processing element and to receive data representing a priori
information for the data symbols being detected for the trellis stage associated with the
processing element from the second detection processor and from the demodulator. Each
processing element is configured to combine the a priori forward state metrics, the a priori
backward state metrics and the @ priori information relating to the data symbols to produce
extrinsic forward metrics, and extrinsic backward metrics and extrinsic data information and

to communicate the extrinsic forward state metrics to the second neighbouring processing
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element which becomes the a priori forward state metrics for a next iteration, to
communicate the extrinsic backward state metrics to the first neighbouring processing
element which becomes the a priori backward state metrics for the next iteration and to
communicate the extrinsic data information to the second detection processor for which
becomes the a priori information for a next iteration of the turbo detection process. The first
detection processor and the second detection processor are configured to exchange for each
of the processing elements representing the trellis stages, the a priori information for the data
symbol being detected for the trellis stage associated with the processing element and the
corresponding extrinsic data information generated by the processing element for each of a
plurality of iterations of the turbo detection process. In each clock cycle, processing
elements from both decoders are being activated. This is in contrast to conventional decoders,
where one decoder remains inactive whenever the other is activated.

Embodiments of the present technique can provide an improved turbo detection
processor which modifies conventional algorithms such as the Log-BCIR also known as Log-
MAP algorithm so that processing elements which are associated with each of the trellis
stages describing a Markov process to which the data symbols have been subjected during the
process of transmission, with the effect that each of the processing elements can operate
autonomously and therefore in parallel thereby providing an improvement in the processing
rate of the turbo detection processor and reducing a latency in recovering a data frame from a
received signal. The improved turbo detector as mentioned above can be applied to decode a
turbo encoded data frame or used as a turbo equaliser where a received data frame has
suffered inter-symbol interference during transmission or other applications such as turbo
synchronisation and Low Density Parity Check (LDPC) decoding. ~The present technique
can therefore facilitate turbo decoders with similar processing throughputs and latencies as
fully parallel LDPC decoders. Furthermore, this solution would bring similar benefits to the
recovery of Markov chains of data in other applications that are typically decoded using the
Log-BCJR algorithm, such as equalisation, synchronisation, channel estimation and source
decoding.

In order to achieve the fully parallel processing architecture for the turbo detector the
present technique removes the data dependencies which are associated with a conventional
turbo detector such as the Log-BCIR or Log-MAP algorithm by not requiring that a previous
stage in the turbo decoder completes before executing operations of the turbo decoder for a
current iteration. That is to say, a conventional turbo decoder would require that all stages in

the forward direction ripple through in a serial manner to calculate the forward state metrics
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and correspondingly ripple through in the backward direction to generate the backward state
metrics. Accordingly, the detection processor according to the present technique does not
wait for the turbo detector to ripple forward the state metrics in the forward or backward
directions but accepts a current value of the forward or backward state metrics at the output
of the neighbouring processing elements and a priori information relating to the data symbol
from another detection processor in the form that they currently are. This represents
something of an approximation with respect to the Log-BCJR algorithm and accordingly the
inventor has found that a greater number of iterations is required for the turbo detector
according to the present technique to achieve the same decoding performance compared to
the Log-BCJR algorithm. However, as will be explained in the following paragraphs, the
inventor has discovered that an equivalent performance can be produced albeit with a greater
number of iterations but with a faster detection process because the number of clock cycles in
order to produce an equivalent performance of turbo detection/decoding is smaller than that
produced by the conventional Log-BCJR algorithm.

For the example in which the receiver in accordance with the present technique is
arranged to detect data symbols of a frame which have been encoded with a turbo encoder
then the receiver may further include an interleaver which is configured between the first and
second detection processors to convey a priori information relating to the data symbol
between the first detector and the second detection processor whereby the processing
elements of the first detection processor receive and transmit extrinsic information relating to
the data symbol and receive a priori information relating to the data symbol from different
processing elements of the second detection processor in accordance with an interleaving
pattern.  Accordingly, for the example where interleaving has been applied to a second
convolutional encoder forming the turbo encoding process in accordance with odd-even
interleaving, then the data information relating to the data symbol is communicated between
processing elements of the first and the second detection processors which are odd-indexed or
even-indexed depending on the interleaving applied by the turbo encoder. Accordingly,
where odd-even interleaving has been applied the odd-indexed processing elements in the
first detection processor and the even-indexed processing elements in the second detection
processor may be executed alternatively between each clock cyele with the even-indexed
processing elements in the first detection processor and the odd-indexed processing elements
in the second detection processor, thereby providing a 50% saving on processing.

According to the present technique the processing elements may include a by-pass

circuit which allows for selected processing elements to be switched off to reflect a shorter
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frame length and corresponding intetleaver pattern. Accordingly, a corresponding saving in
energy consumption can be achieved. The by-pass circuit may comprise a multiplexer, which
is configured to select either an output from a current trellis stage or a previous trellis stage to
by-pass the processing element. In some examples the interleaver is hardwired according to a
predetermined interlever pattern and by-passes allow a sub-set of the interleaver pattern to be
selected. In some examples the interleaver may be configurable to accommodate different
interleaver patterns, which may be set in accordance with a particular turbo encoder. In
another example the interleaver is re-configurable to route extrinsic information to different
processing elements, which can therefore configure the turbo decoder in accordance with a
particular turbo encoder. In one example the interleaver is implemented as a Benes-network,
which can be configured as desired.

The processing elements may also include one or more registers which are used to
store the a priori forward state metrics or a priori backward state metrics or a priori
information relating to the data symbol between time periods or clock cycles.

Various further aspects and features of the present disclosure are defined in the
appended claims and include a communications device, a method of communicating using a

communications device.

BRIEF DESCRIPTION OF DRAWINGS

Embodiments of the present disclosure will now be described by way of example only
with reference to the accompanying drawings wherein like parts are provided with
corresponding reference numerals and in which:

Figure 1 is a schematic diagram of a mobile communications system operating in
accordance with the LTE standard;

Figure 2 is a schematic block diagram of an example transmitter for the LTE system
shown in Figure 1;

Figure 3 is a schematic block diagram of an example receiver for the LTE system
shown in Figure 1;

Figure 4 is a schematic block diagram of a simplified turbo encoder for an LTE
standard or a WiMAX standard;

Figures 5 is a schematic block diagram showing a more detailed example of an LTE
turbo encoder;

Figure 6 is an illustration of state and state transitions representing encoding using a

convolutional encoder forming part of the turbo encoder of Figure 5;
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Figure 7 is a schematic block diagram of an example turbo decoder according to a
Log-BCJR algorithm;

Figure 8 is a schematic block diagram of a fully-parallel turbo decoder according to
an example embodiment of the present technique;

Figure 9 is a schematic block diagram showing a more detailed implementation of a
processing element forming part of the fully-parallel turbo decoder of Figure 8;

Figure 10 is a schematic functional block layout of a fully-parallel turbo decoder
according to an example embodiment of the present technique;

Figure 11 is a schematic functional block layout of a fully-parallel turbo decoder
according to a further example embodiment of the present technique;

Figure 12 is a schematic functional block layout of a fully-parallel turbo decoder
according to a further example embodiment of the present technique;

Figure 13 is a schematic block layout of processing elements forming part of the
fully-parallel turbo decoder of Figure 8, which are responsible for terminating a frame of data
being decoded;

Figure 14 presents a table 1, showing a performance comparison between a Fully-
Parallel Turbo Decoder according to an embodiment of the present technique with an
equivalent Log-BCIR Turbo Decoder and a State-of-the-Art Turbo Decoder [10], in which
the abbreviation TtotP is used to mean “times that of the proposed fully-parallel turbo
decoder”;

Figure 15 presents a table 2, showing an indication of numbers of calculations
required for a Fully-parallel Turbo Decoder according to the present technique with an
equivalent Log-BCJR Turbo Decoder, and in curly brackets number of calculations in the
critical path length;

Figure 16a, 16b and 16¢ provide graphical plots of bit error rate with respect to signal
to noise ratio representing the error correction performance of an LTE turbo decoder when
decoding frames comprising (a) N=4800, (b) N=480 and (c) N=48 bits; and

Figures 17a, 17b and 17c graphical plots of bit error rate with respect to signal to
noise ratio representing the error cotrection performance of a WiMAX turbo decoder when
using the exact max” operatot, Figure 17b the WiMAX turbo decoder when using the
approximate max” operator; and Figure 17c¢ the LTE turbo decoder when using the

approximate max" operator.
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DESCRIPTION OF EXAMPLE EMBODIMENTS
Example Communications System

Figure 1 provides a schematic diagram of a conventional mobile telecommunications
system 100, where the system includes mobile communications devices 101, infrastructure
equipment 102 and a core network 103. The infrastructure equipment may also be referred to
as a base station, network element, enhanced Node B (eNodeB) or a coordinating entity for
example, and provides a wireless access interface to the one or more communications devices
within a coverage area or cell. The one or more mobile communications devices may
communicate data via the transmission and reception of signals representing data using the
wireless access interface. The network entity 102 is communicatively linked to the core
network 103 where the core network may be connected to one or more other communications
systems or networks which have a similar structure to that formed from communications
devices 101 and infrastructure equipment 102. The core network may also provide
functionality including authentication, mobility management, charging and so on for the
communications devices served by the network entity. The mobile communications devices
of Figure 1 may also be referred to as communications terminals, user equipment (UE),
terminal devices and so forth, and are configured to communicate with one or more other
communications devices served by the same or a different coverage area via the network
entity. These communications may be performed by transmitting and receiving signals
representing data using the wireless access interface over the two way communications links
represented by lines 104 to 109, where 104, 106 and 108 represent downlink communications
from the network entity to the communications devices and 105, 107 and 109 represent the
uplink communications from the communications devices to the network entity. The
communications system 100 may operate in accordance with any known protocol, for
instance in some examples the system 100 may operate in accordance with the 3GPP Long
Term Evolution (LTE) standard where the network entity and communications devices are
commonly referred to as eNodeB and UEs, respectively.

As will be appreciated from the operation explained above at the physical layer the
UEs and the eNodeBs are configured to transmit and receive signals representing data. As
such a typical transmitter/receiver chain is shown in Figures 2 and 3.

Figure 2 provides a schematic block diagram illustrating components which make up
a transmitter which may form part of the e-NodeB 101 or a communications device 104 of
the physical layer transmission via the wireless access interface of the LTE system as

illustrated in Figure 1. In Figure 2, data is received via an input 201 at a data formatter 204
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and formed into frames or sub frames for transmission. Frames of data are then encoded with
an error cotrection code by an error correction encoder 206 and fed to a symbol former 208
which forms the error correction encoded bits into groups of bits for mapping on to symbols
for modulation. The data symbols are then interleaved by a symbol interleaver 210 and fed to
an OFDM modulator 212 which modulates the subcarriers of an OFDM symbol with the data
symbols which have been received from the interleaver 210. The OFDM symbols are then
converted to an RF frequency and transmitted by a transmitter 214 via an antenna 216.

Correspondingly, a receiver operating to receive data transmitted via the physical
layer for either the communications device 104 or an eNodeB 101 via an LTE wireless access
interface includes a receiver antenna 301, which detects the radio frequency signal
transmitted via the wireless access interface to a radio frequency receiver 302. Figure 3
represents a simplified version of a receiver and several blocks will make up an OFDM
demodulator/equaliser 304 which converts the time domain OFDM symbol into the
frequency domain and demodulates the subcarriers of the OFDM symbol to recover the data
symbols and performs deinterleaving etc.  However an output of the OFDM
demodulator/equaliser 304 is to feed the encoded soft decision values representing the data
bits to a turbo decoder 306. The turbo decoder performs a turbo decoding algorithm to detect
and recover an estimate of the transmitted data bits which are output as a stream of data bits
on an output 308 corresponding to the input 201.

It will be appreciated that Figures 2 and 3 have been drawn in order to illustrate an
example embodiment of the present technique in which a fully parallel turbo decoder
performs detection of the data bits encoded by the error correction encoder 206. However, it
will be appreciated that the generalisation of the turbo detection process in accordance with
the embodiments of the present invention can be provided to other parts of the receiver chain,
notably for some systems which suffer from Inter-Symbol-Interference as a turbo equaliser
and so the term detector is used generally to refer to both equalisation, demodulation and
error correction decoding in which fully parallel turbo decoding algorithm in accordance with
the present technique can be applied. As mentioned above, other applications of the fully
parallel turbo algorithm include recovery of Markov chains of data in other applications that
are typically decoded using the Log-BCJR algorithm, such as equalisation, synchronisation,
channel estimation, LDPC decoding and source decoding.

For the example of LTE as mentioned above, an example embodiment of an error
correction encoder 206 shown in Figure 2 is shown in Figure 4. Figure 4 provides an

example representation illustrating a simplified turbo encoder, which encodes a message
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frame b} = [bfk]:ﬂcomprising N number of bits, each having a binary value by ;€ {0, 1}.
This message frame is provided to an upper convolutional encoder 401, and a lower

convolutional encoder 403, as shown in Figure 4. The upper convolutional encoder 401

performs a convolutional encoding process such as the examples provided below to generate

: . N :
two N-bit encoded frames, namely a parity frame by = [b;1 k] fet and a systematic frame

N . . .
3= [b5] ot Meanwhile, the message frame b} is interleaved, by an internal turbo
encoding interleaver 404, in order to obtain the N-bit interleaved message frame b} =

[b{,k]::1 which, as shown in Figure 4 is provided to a lower convolutional encoder 403,

which also applies a convolutional encoder to generate two more N-bit encoded frames,
namely a parity frame bl = [bé’k]llll:l and a systematic frame b} = [bé,k]:ﬂ. Here, the
superscripts ‘0’ and ‘I’ indicate relevance to the upper and lower convolutional encoders 401,
403, respectively. However, in the following, these superscripts are only used when
necessary to explicitly distinguish between the two convolutional encoders 401, 403 of the
turbo encoder and are omitted when the discussion applies equally to both. Note that the
turbo encoder represents the N-bits of the message frame b} using four encoded frames,
comprising a total of 4N-bits and resulting in a turbo coding rate of R=N/(4N) = 1/4.

As explained above with reference to Figure 2, following turbo encoding, the encoded
frames may be modulated onto a wireless channel and transmitted to a receiver, such as the
example provided in Figure 3.

LTE turbo encoder

A more specific example of a turbo encoder is provided in Figure 5. Figure 5
provides an example of a turbo encoder, which corresponds to an example which has been
proposed for the LTE standard [1]. For the example shown in Figure 5 the turbo encoder is a
1/3 rate code in which data bits received from a data formatter 204 as shown in Figure 2 are
fed to an upper convolutional encoding processor 401. As can be seen in Figure 5 the
received N-bits of the message frame b} = [bﬁk]z—_—jl are also fed to a lower convolutional
encoding processor 403 via a turbo code internal interleaver 404. In accordance with a
known arrangement the N-bits of the message frame bj = [b{‘k]z | are fed to memory

elements 406 which are connected to other memory elements 406 to form a shift register type
arrangement. An output of the memory elements 406 is used to form an input to XOR units

408, which form at their output a bit from a logical XOR of their inputs, which forms either
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an encoded output bit or a bit which is fed back as an input to one of the memory clements
406. A switch in the upper convolutional encoder 410 switches the input bits between an

input 412 and an output of the upper convolutional encoder 414 to form respectively, on a

N .
first output 416, a systematic frame bz = [b§1 k]k:l, and on a third output 426, three message

N+3

termination bits [bf ] N1’

A second output 418 of the upper convolutional encoder 401
provides a parity frame b} = [bgk]lkvj In Figure 5 the three message termination bits

N+3 . . .
[b“ ] are used to terminate the upper convolutional encoder 401 in a known state,
Likdg=N+1

which is not shown in Figure 4 for simplicity.

In the lower convolutional encoder 403 a switch 420 switches between the received
bits from the internal interleaver 404 and corresponds to the switch 410 for the upper
convolutional encoder. In a similar manner to the upper convolutional encoder, output

channels 422, 424 of the lower convolutional encoder provide respectively a parity frame

N+3 C . N+3
b} = [bé,k]k and three message termination bits [b{,k]

.. The systematic data bits of
=1 k=N+1

. N .
the lower convolutional encoder by = [blg'k]k—l are not output from the lower convolutional

encoder because these are already present on the first output 416. Accordingly, with the first
output 416 providing the input bits as a systematic code the second and fourth outputs 418,
422 providing respective parity bits, the turbo encoder provides a 1/3 rate code. As with the

upper convolutional encoder, three message termination bits [bi‘k]z;r;ﬂ are used to
terminate the lower convolutional encoder 403 in a known state, which is not shown in Figure
4 for simplicity.

In summary, the LTE turbo encoder [1] of Figure 5 employs twelve additional
termination bits to force each convolutional encoder into the final state Sy,; = 0. More
specifically, the upper convolutional encoder 401 generates the three message termination
bits biyy1, DNz, bines as well as the three parity termination bits frame b3 y11, b3 n+2s
by nss. The lower convolutional encoder 403 operates in a similar manner, generating
corresponding sets of three message termination bits bl1,1v+1: b11,N+2, bi‘N_I_g as well as the
three parity termination bits b%,N+1J blz'NJrz, b‘%‘N+3. In contrast to the systematic frame bg
that is produced by the upper convolutional encoder, that of the lower convolutional encoder
b}, is not output by the LTE turbo encoder. Owing to this, the LTE turbo encoder uses a total
of (3N + 12) bits to represent the N bits of the message frame b}, giving a coding rate of R =
N/(BN +12).

12



10

15

20

25

30

The example of the turbo encoder presented in Figure 5 provides upper and lower
convolutional encoders 401, 403, which each have three memory elements 406. As will
be known by those acquainted with convolutional encoders, the binary content of the
memory elements 406 can be interpreted as a state, so that the convolutional encoding
process can be synthesised as transitions through a trellis comprising the possible states
of the convolutional encoder. As such, a convolutional encoder or a turbo encoder can be
described as a Markov process and therefore represented as a trellis diagram. An example of
state transition diagram for a convolutional encoder is shown in Figure 6. The state
transition diagram of Figure 6 represents one stage of a trellis having A = 8 states and K =2
transitions per state, and can therefore provide an example corresponding to the upper and
lower convolutional encoders 401, 403, which operate in the same manner. For the upper
convolutional encoder 401 begins from an initial state of S, = 0 and successively transitions
into each subsequent state S, € {0, 1,2,..., M — 1} by considering the corresponding
message bit by . Since there are two possible values for the message bit by € {0,1} there
are K = 2 possible values for the state S, that can be reached by transitioning from the

previous state S;— 1 . In Figure 6 for example, a previous state of §;—1 = 0 implies that the

subsequent state is selected from S, € {0, 4}. This example can also be expressed using the
notation ¢(0, 0) = 1 and ¢(0, 4) = 1, where ¢(S; _;,S;) = 1 indicates that it is possible for the
convolutional encoder to transition from S, _ ; into S, whereas ¢(S,_;, S ) = 0 indicates that
this transition is impossible. Of the K = 2 options, the value for the state S, is selected such
that b, (S,_,,S;) = by . For example, S;_; = 0 and b , = 0 gives §; = 0, while S, ;=0
and b, = 1 gives §; = 4 in Figure 6. In turn, binary values are sclected for the
corresponding bit in the parity frame b, and the systematic frame b;, according to b, , = b,
(Si_1, Sy and by, = by (S, S ). In the example of Figure 6, 5;_; = 0and S, = 0 gives
b, ;= 0and b, , = 0, while S| = 0 and.S, =4 gives b, , = 1 and by , = 1.
Turbo Encoder Internal Bit Interleaver

As explained above, turbo encoders typically include an internal bit interleaver 404,
which interleaves the data bits from the order in which they are encoded between the upper
and the lower convolutional encoders 401, 403. For example, the LTE turbo encoder shown
in Figure 5, employs an odd-even interleaver [14] that supports various frame lengths N in the
range 40 to 6144 bits.
Example WiMAX Turbo Encoder
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Like the example of an LTE turbo encoder, a turbo encoder which operates in
accordance with the WiMAX standard [2] employs an odd-even interleaver, supporting
various frame lengths N in the range 24 to 2400 bits. However, in contrast to the LTE turbo
encoder, the WiMAX turbo encoder is duobinary [2]. More specifically, the upper WiMAX
convolutional encoder encodes two N-bit message frames at once by and b}. In fesponse, a
turbo encoder which operates in accordance with the WiMAX standards produces four N-bit
encoded frames, namely two parity frames b3 and b}, as well as two systematic frames by
and bg. Meanwhile, the message frames b} and b} are interleaved, in order to obtain two N-
bit interleaved message frames b} and bh. These two N-bit interleaved message frames b}
and b}, are encoded by a lower convolutional encoder 403, in order to generate two parity
frames b and bl. As for the example of the LTE turbo encoder however, the lower
encoder’s N-bit systematic frames bk and bk are not output by a WiMAX turbo encoder.
Therefore, a WIMAX turbo encoder represents the 2N bits of the message frames b} and b}
using six encoded frames, comprising a total of 6N bits and resulting in a coding rate of R
=(2N)/(6N) = 1/3. In a WiMAX turbo encoder, the upper and lower convolutional encoders
401, 403 operate on the basis of a state transition diagram having K = 4 transitions from each
of M = 8 states, in correspondence to the four possible combinations of the two message bits.
Rather than employing termination bits, WiMAX employs tail-biting to ensure that Sy = S,
which may require Sy and S, to have non-zero values.

Turbo Decoder Using Log BCJR-Algorithm

The section above has described a turbo encoder as shown in Figure 2 with reference
to Figures 4, 5 and 6. Embodiments of the present technique can provide a fully-parallel
turbo decoder, which has an improved rate of decoding, a smaller memory requirements and
a reduced number of arithmetic calculations to implement in comparison to conventional
algorithms. In order better appreciate the improvement provided by the present technique
with respect to conventional turbo decoders or detectors, a conventional turbo decoder which
operates in accordance with the conventional log BCJR algorithm will first be described,
which is configured to decode a turbo encoded frame of data bits which has been turbo
encoded in accordance with an example of turbo encoder as explained above with reference
to Figures 4, 5 and 6 according to the LTE standard.

Following their transmission over a wireless channel, the four encoded frames by, by,
b, and b}, generated by the turbo encoder as illustrated in Figure 4, may be demodulated and

provided to the turbo decoder of Figure 7. However, owing to the effect of noise in the
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wireless channel, the demodulator will be uncertain of the bit values in these encoded frames.
Therefore, instead of providing frames comprising N hard-valued bits, the demodulator

provides four frames each comprising N soft-valued a priori Logarithmic Likelihood Ratios

(LLRs) by* = [E;;]N v’ by* = [pu2 v by = [Elz’f;c]::l , and b}* = [bé?{]:ﬂ Here, an

k= 3.k ] Je=1
LLR pertaining to bit b ,, is defined by

s Prbsl) 1
b]‘k ln Pr(bj'k=0)’ ( )

where the superscripts ‘a’, ‘¢’ or ‘p’ may be appended to indicate an a priori, extrinsic
ot a posteriori LLR, respectively.

The Log-BCJR algorithm generally forms a decoding or detection process which
performs a forward recursion process and a backward recursion process through a trellis
representing the connection of each of the states of a Markov process, such as a convolutional
encoder. For the turbo encoded data, a decoder which performs a Log-BCIR decoding
process comprises a upper decoder and a lower decoder. Each of the upper and lower
decoders each perform a forward recursion process and a backward recursion process and
generate for each iteration extrinsic LLRs which are fed to other of the upper and lower
decoders.

Figure 7 provides a schematic block diagram illustrating an example implementation
of a simplified turbo decoder for the Log-BCIR algorithm, which corresponds to the
simplified turbo encoder of Figure 4. The Log-BCIR turbo decoder is operated iteratively,
where each of the I iterations comprises the operation of all processing elements or
algorithmic blocks shown. During the forward and backward recursions of the Log-BCJR
algorithm, the k™ pair of algorithmic blocks in the upper and lower rows perform

calculations relating to one stage of the trellis according to Equations (2) — (6) [4]:

Pe(Sre1,Se) = | ?zl[bj(sk—lrsk) : Bﬁk]] + In[Pr{Si|Sk-1}] (2)
@ (Sk) = Max"(s, ,jesp_p,50=13 7k Si—1: ) + Tpe—1(Sk-1)] (3)
Bre—1(Sk-1) = max" (s, je(sp_r,50=13 Pk k-1, i) + Br(Si)] (4)
8 (Si—1,51) = Fie(Sk=1,S%) + Tpem1(Sre—1) + Br(Si) (5)
_ﬁk =

[max*{(sk—lzsk)lbj(sk—l’slc)=1}[gk(Sk_l'Sk)]] - [max*{(Sk—pSk)ij(Sk—1,Sk)=0}[Sk(Sk‘1’Sk)]] - Elik (6
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The term In[Pr{S)|Sk_1}] in equation (2) has been included to increase the generality
of the Log-BCJR algorithm, so as to illustrate that the present technique can be applied to
applications beyond channel decoding. This term facilitates the exploitation any additional a
priori knowledge that the receiver has for the probability Pr{S;|Si_1} of entering the state Sy
given that the previous state Sy_1 has been entered. This could source from knowledge of the
channel characteristics and from information received over the channel, for coded
demodulation or turbo equalization. When used for source decoding, this could source from
knowledge of the source probability distribution. Similarly, this additional term provides for
numerous other applications, including turbo synchronization and turbo channel estimation.
In applications such as turbo decoding where no additional a priori knowledge is available,
then this term can be omitted or set to a constant value and so in the following discussion can
be ignored.

As shown in Figure 7, a first set of 2N processing elements or algorithmic blocks 601
are devoted to performing a first part of the turbo decoding algorithm on the turbo encoded
data produced by an upper convolutional encoder 401. A first row of N processing elements
610 of the upper decoder 601 are devoted to performing a forward recursion process through
a trellis of possible states, whereas a second row of N processing elements 612 are devoted to
performing backward recursion through the trellis stages according to the Log-BCJR
algorithm. Each processing element corresponds to one of the N stages in the trellis, which
comprises a set of transitions between a set of previous states and a set of next states. A
second set of 2N processing elements or algorithmic blocks 602 are devoted to performing a
second part of the turbo decoding algorithm on the turbo encoded data produced by the lower
convolutional encoder 403. As for the upper decoder 601, the lower decoder includes a first
row of N processing elements 620 of the lower decoder 602, which are devoted to performing
a forward recursion process through a trellis of possible states, whereas a second row of N
processing elements 622 are devoted to performing backward recursion through the trellis
states according to the Log-BCJIR algorithm.

The k™ processing element 610, of the N processing elements 610 of the upper
decoder 601 which are devoted to performing the forward recursion part of the Log-BCIR

a from the demodulator

algorithm 610, is arranged to receive the KM LLR values E‘Z"'a E;"k,

k9
which were estimated for the frames of encoded bits b}, b}, generated by the upper encoder
401. Correspondingly, the k" processing element 620 of the N processing elements 620 of

the lower decoder 602, which are devoted to performing the forward recursion part of the

16



10

15

20

25

30

Log-BCJR algorithm, is arranged to receive the * LLR values pk3, pi5, from the

demodulator which were estimated for the frames of encoded bits b}, b}, generated by the
lower encoder 402.

The k™ processing element 610, 620, which each in turn are arranged to perform the
forward recursion, in the upper detection processor 601 and the lower detection processor
602, one after the other serially employs equation (2) (without the term In[Pr{Sy|Sy-1}] for the

present example) to combine the L = 3 a priori LLRs b3 E'zak’ and p3 ,, in order to obtain an

a priori metric ¥, (Sg_1,Sx) for each transition in the state transition diagram (as illustrated
for example in Figure 6). Following this calculation, each of the K processing elements 610,
620 performing the forward recursion, combines these a priori transition metrics with the a
priori forward state metrics of @y, (Sx—1) according to equation (3), in order to obtain the
extrinsic forward state metrics of @,(Sy). These extrinsic state metrics are then passed to the
k+1™ processing element 610, 620, to be employed as a priori state metrics in the next time
period. However as will be appreciated by those familiar with the Log-BCJR algorithm the
upper and lower decoders of the turbo decoder work alternately, so that when one is active
the other is idle.

The 4™ processing element 612, 622, which are performing the backward recursion, in
the upper turbo decoder 601 and the lower turbo decoder 602 employs equation (4) to
combine the a priori metric 7;(Sg—1,Sx) for each transition with the a priori backward state
metrics B, (S;). This produces an extrinsic backward state metric Br-1(Si—1), which may be
passed to the k-1" processing element, to be employed as a priori state metrics in the next
time period. Furthermore, the K™ processing element 612, 622, which are performing the
backward recursion, in the upper turbo decoder 601 and the lower turbo decoder 602 employs
equation (5) to obtain an a posteriori metric 8y (Sk—1,5;) for each transition in the state
transition diagram (as for example illustrated in Figure 5). Finally, the k™ processing element
612, 622, which are performing the backward recursion, in the upper turbo decoder 401 and
the lower turbo decoder employs equation (6) to generate an extrinsic message LLR Eﬁk for
the &' bit. These LLR values are swapped between the upper and lower decoders 601, 602.

The upper decoder 601 and the lower decoder 602 exchange extrinsic LLRs for each
of the data bits of the frame, which become an estimate of the systematic bits of the encoded
data frame. More specifically, an interleaver 604 performs deinterleaving of the LLR values

of data bits passed between an upper decoder 601 and the lower decoder 602, to reverse the
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interleaving of the data bits which are used by the upper convolutional encoder 401 and the
lower convolutional encoder 402 of a turbo encoder.

The interleaver 604 exchanges extrinsic information with the other decoder 601, 602,
which uses it as a priori information. More specifically, as shown in Figure 7 the KD
algorithmic block 612 which is performing the backward recursion in the upper decoder 601

provides as an output an extrinsic estimate of the LLR value for the message data bit pi¢ to

the interleaver 604, which after interleaving forms the a priori LLR value Ei*,‘{ as input to the
K™ processing element 620, which is performing the forward recursion in the lower decoder
602.

For a first decoding iteration of the Log-BCJR turbo decoder, zero-values are
employed for the @ priori message LLRs. The simplified example decoder of Figure 7 can be
applied to the example turbo encoders for the LTE standard and the WiMAX standard, using
the Log-BCIR algorithm of (2) — (6) decoder having L = 3 and L =2 a priori LLRs for the
LTE encoder, as well as the blocks of the WiMAX turbo code having L = 6 and L = 4.
Depending on whether termination or tailbiting is employed, values for @, and By can be
selected for the Log-BCJR turbo decoder.

Disadvantages of Conventional Turbo Decoders

As will be appreciated in the explanation of the turbo decoder according to a
conventional arrangement of the Log-BCJR decoding process above, each of the respective
detection processors must wait until the forward recursion has been completed and the
backward recursion has been completed before outputting the extrinsic LLR information to
corresponding processing elements in the other of the upper and lower detection processor,
via the interleaver 604. Furthermore, a Log-BCIR turbo decoder is operated iteratively,
where each of the I iterations comprises the operation of all processing elements or
algorithmic blocks shown in Figure 7. As such, T = 4N consecutive time periods are required
to complete each decoding iteration, so that the 4N algorithmic blocks are operated
sequentially, in the order indicated by the bold arrows 630 of Figure 7. These arrows 630
indicate the data dependencies of the Log-BCJR algorithm, which impose the forward and
backward recursions shown in Figure 7. Therefore, as explained below, when implementing
the LTE or WiMAX turbo decoders, the number of time periods required by the Log-BCJR
algorithm is 2N Times that of the Proposed (TtotP) fully-parallel turbo decoder embodying
the present technique, which requires T = 1 or T = 2 time periods as discussed below.

Fully Parallel Turbo Decoder
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In contrast to the Log-BCJR algorithm, a detector which operates in accordance with
an embodiment of the present technique is conﬁgured to remove as far as possible data
dependencies, thereby facilitating fully-parallel turbo decoding. More specifically, the
proposed fully-parallel algorithm can process all turbo-encoded bits in both components of
the turbo code at the same time. This process is repeated iteratively, until a sufficient number
of decoding iterations have been performed. Owing to this, the iterative decoding process can
be completed using just tens of time periods, which is significantly lower than the number
required by the state-of-the-art turbo decoder of [10]. Note that a number of fully-parallel
turbo decoders have been previously proposed, although these suffer from significant
disadvantages that are not manifested in detectors/decoders embodying the present technique.
In [11], the min-sum algorithm is employed to perform turbo decoding. However, this
approach only works for a very limited set of turbo code designs, which does not include
those employed by any standards, such as LTE and WiMAX. A fully-parallel turbo decoder
implementation that represents the soft information using analogue currents was proposed in
[12], however it only supports very short message lengths N. Similarly, [13] proposes a fully-
parallel turbo decoder algorithm that operates on the basis of stochastic bit sequences.
However, this algorithm requires significantly more time periods than the Log-BCJR
algorithm, therefore having a significantly lower processing throughput.

Other proposals have been made to improve a rate of performing turbo detection. For
example, CN 102611464 [17], CN 102723958 [18], WO 2011/082509 [19] and a published
article entitled “A 122Mb/s Turbo decoder using a mid-range GPU” by Xianjun J., et al [20]
there are disclosed tutbo decoders with improved processing performance and reduced
complexity. The article entitled “A 122Mb/s Turbo decoder using a mid-range GPU” by
Xianjun J., et al [20] discloses using a plurality of processing elements referred to as sub-
decoder, each processing element being assigned to one bit of a code block. As such there is
an improvement in the parallel processing which is possible. However in contract with
embodiments of the present technique the decoder referred to in the above mentioned article
does not operate the decoders at the same time.

Embodiments of the present technique can provide a fully parallel arrangement of
processing to perform a turbo decoding process which is based on the Log-BCJR turbo
decoding algorithm but simplified in order to allow all of the processing elements to operate
in parallel. Figure 8 provides an example but simplified arrangement of a fully parallel
decoding technique. In Figure 8, the respective upper and lower turbo decoding parts 701,
702 correspond to the upper and lower turbo decoding parts of the Log-BCJR algorithm 601,
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602, but are replaced with N parallel processing elements or algorithmic blocks 706, 708.
Thus the upper decoder 701 is comprised of N processing elements 706 whereas the lower
decoder 702 is comprised of N processing elements 708.

As shown in Figure 8 and in correspondence with the operation of the Log-BCJR
algorithm, the demodulator in the receiver of Figure 3, provides the a priori LLRs to the
turbo decoder’s 2N processing elements 708, 706 (algorithmic blocks), which as shown in
Iigure 8 are arranged in two rows. More specifically, following their transmission over a
wireless channel, the four encoded frames b}, bY, b, and b}, are demodulated and provided

to the turbo decoder of Figure 8. The demodulator provides four frames each comprising N

soft-valued « priori Logarithmic Likelihood Ratios (LLRs) by? = [E;:;]]’Z_l, by? =
_ _ N - _ N \
[b;ﬁ]::l’ b}éa - [b%,e;‘f]k:l , and p}? = [bé?{ ]k=1 to the fully-parallel turbo decoder’s 2N

processing elements or algorithmic blocks, with the a priori parity LLR E;‘; and the a priori
systematic LLR E;‘; being provided to the k™ algorithmic block 706 in the upper decoder 701
shown in Figure 8. Furthermore, the interleaver 704 provides the K™ algorithmic block in the
upper decoder 701 with the a priori message LLR Eiﬁ’ as will be detailed below. Meanwhile,
the k™ algorithmic block in the lower decoder 702 is correspondingly provided with the a
priori LLR values Ef]‘c, Elz'f;cand Eé‘;‘{ In addition to this, the ™ algorithmic block 706, 708 in
each of the upper and lower decoders 701, 702 is also provided with a vector of a priori

forward state metrics @x_1 = [@x—1(Sk-1)15, 1= and a vector of a priori backward state
metrics fi = [Ek(Sk)]Z:), as will be detailed below. Unlike a conventional turbo decoder

operating in accordance with the BCJR algorithm described above with reference to Figure 7,

each of the processing elements 706, 708 of the upper and lower decoders 701, 702 operates

in an identical manner to receive the soft decision a priori LLR values of py? = [532]: ’
i :1

Tua _ [rualV i by = [pk )

b3® = [b;;]kzl for a processing element 706 of the upper decoder 701, or b,* = [bZ;]kﬂ ,and

N
k=

By = [543

more data symbols associated with the trellis stage and to receive a priori forward state

. for a processing element 708 in the lower decoder 702, corresponding to one or

metrics @,_, from one neighbouring processing element, to receive a priori backward
statement metrics B from a second neighbouring processing element and to receive a priori
LLR value p2, for the data symbol being detected for the trellis stage associated with the K

processing element from the second detection processor. Each processing element performs
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calculations associated with one trellis stage, comprising a set of transitions between a set of
previous states and a set of next states. Each processing element is configured to combine the

a priori forward state metrics @—; = [@—1(Sk-1)18, =0, the a priori backward state metrics
B = B (Sk)]sM,:o and the a priori LLR value p2, relating to the data symbol, according to

the following equations (7) to (10).

81 (Sie—1,S10) = [Zh=a[BySim1, Si) = b ]| + In[Pr{SelSi—13] + @p—1(Se-1) + Br(Sk) (7

e (Sk) = [maX*{Sk_l|c(5k_1,5k)=1}[gk(Sk——lfsk)]] — B (Sk) (8)
Bre-1(Sk—1) = [max"(s,jccs,_us0=1310% (S-1, S]] = @pe—1Sie—1) €))
he, =

J.k

I:max*[(Sk_l,Sk)|bj(5k-—1,5k):1}[gk(sk—ly Sk)]] - [max*{(Sk—q,sk)]bj(sk—l:sk)zo}[gk (Sk*'ll Sk)]] - B]a)k(] 0)

Each processing element 706, 708 therefore produces the extrinsic forward state

metrics @ = [@(SIY T, and  the  extrinsic  backward  state  metrics
Bi_1= [ﬁk_l(sk_l)]i—l_ 0 and one or more extrinsic LLR values Bf;k in accordance with the
-1 =

above equations (7) to (10). The processing element 706, 708 then communicates the
extrinsic forward state metric @, to the second neighbouring processing element which
becomes the a priori forward state metrics for a next iteration, the extrinsic backwards state
metrics By_, to the first neighbouring processing element which becomes the a priori
backward state metric for the next iteration and communicates the one or more extrinsic LLR
values b, for the data information to the other detection processor which become a priori
LLR values for a next iteration of the turbo detection process.

As will be appreciated therefore, each of the upper and lower turbo decoders 701, 702
uses equation (7) to (10) to combine the L = 3 a priori LLR values Eik, ES‘ and Egk, as well as
the a priori forward state metrics @_4, the a priori backward state metrics B This produces
an a posteriori transition metric & (Si_1,S) for each of the possible transitions in the state
transition diagram of the k" stage, namely for each pair of previous state S,_, and next state
S, for which ¢(S,_,S,) = 1. These a posteriori transition metrics are then combined by (8),

(9) and (10), in order to produce the vector of extrinsic forward state metrics @y_q =

[@-1(Sk—1)1872_, and the vector of extrinsic backward state metrics Bx = [B(S0] and

M-1
-1 S1=0

the extrinsic message LLR b¢ ,, respectively. These equations employ the Jacobian logarithm,

which is defined for two operands as
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max*(3;,3,) = max(3;,8,) + In(1 + e~1G:=%)) (11)
and may be extended to more operands by exploiting its associativity property.
Alternatively, the exact max® operator of (I11) may be optionally and advantageously

replaced with one of the following approximations [4]:

max*(6,,8,) =~ max(3y,5,) (12)
max*(8;,8,) =~ A max(8,,6,) + B (13)
max*(3,,3,) ~ A(8y,8,) - max(8y,5,) + B(61,62) (14)

in order to reduce the complexity of the proposed fully-parallel turbo decoder, at
the cost of slightly degrading its error correction performance. Note that A and B are
constants in equation (12), whereas A(84,8,) and B(84,5;) are simple functions of (3;,5,) in
equation (14).

The proposed fully-parallel turbo decoder is operated iteratively, where each of the /
iterations comprises the operation of all processing elements or algorithmic blocks shown in
Figure 8. The turbo decoder may be considered to be fully-parallel, since each iteration is
completed within just T = 1 time period, by operating all 2N of the algorithmic blocks
simultancously. In general, the extrinsic information produced by each algorithmic block in
Figure 7 is exchanged with those provided by the connected algorithmic blocks, to be used as
a priori information in the next decoding iteration. More specifically, the k™ algorithmic
block 706, 708 in each of the upper and lower decoders 701, 702 passes the extrinsic
message LLR b$, through the interleaver 704, to be used as an a priori LLR by the
connected block or processing element 706, 708 in the other of the upper and lower decoders
701, 702 during the next decoding iteration. Meanwhile, this processing element or
algorithmic block 706, 708 in the other of the upper and the lower decoder 701, 702 provides
an extrinsic message LLR which is used as the a priori message LLR b?  during the next
decoding iteration. This exchange of the extrinsic LLR message information between the
upper and lower decoders 701, 702, which becomes the a priori message LLR b2, for the
iteration in the other of the upper and lower decoders 701, 702, via the intetleaver 704
corresponds substantially to the operation of the conventional Log-BCJR turbo decoder as
explained above with reference to Figure 7. However as explained below, to achieve a fully
parallel turbo decoder, the Kt processing element or algorithmic block 706, 708 in each of the

upper and lower decoders provides the vectors of extrinsic forward state metrics @; =
[@,(Sp))¥Zy and extrinsic backward state metrics Brio1= [Ek_l(s,c_i)]f:l_o for the
1=

neighbouring algorithmic blocks to employ in the next decoding iteration.
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As will be appreciated from the above explanation, embodiments of the present
technique can provide a fully parallel implementation for a turbo detector or decoder. To this
end, data dependencies, which are present in the Log-BCJR algorithm (illustrated by the bold
arrows 630 in Figure 7) are reduced by substituting equation (2) into (5). As a result each of
the processing elements or algorithmic blocks 706, 708 is arranged to determine the state
transition metric 8 (Sp_1,Sk) for each of the possible transitions in the state transition
diagram of the K™ stage, namely for each pair of previous state Sx_q and next state S, for
which ¢(S,_;, S,) = 1 by combining the a priori forward state metrics and the a priori
backward state metrics, which were provided as inputs for the present iteration to form the
extrinsic forward state metrics and backward state metrics respectively. Furthermore using
the identity max”(3; — 83,8, — 85 ) = max*(8;,8;) — 83, (8) and (9) can be derived by
rearranging (5) and substituting it into (3) and (4), respectively.

According to the above explanation, each of the processing elements considers one
trellis stage as exemplified in Figure 6 and is arranged to receive both a priori forward and
backward state metrics in a clock cycle or time period and output the extrinsic forward and
backward state metrics. These are provided to the neighbouring processing elements to be
used in the next clock cycle or time period. In a single clock cycle in some examples, a
plurality of the processing elements from at least two of the decoders can operate in parallel.
Furthermore the a priori / extrinsic forward state metrics, the a priori / extrinsic backward
state metrics, the a priori message LLRs and the extrinsic message information are
represented using a fixed point representation.

Following the completion of the final decoding iteration, an a posteriori LLR
pertaining to the k™ message bit b, may be obtained as by = bi% + bl and may also be
combined with systematic information E;,‘j An estimation of the message bit b, may then be

obtained as the result of the binary test Ef . =0

A schematic block diagram illustrating one implementation of a processing element
706, 708 shown in Figure 8 is provided in Figure 9. Figure 9 effectively forms the
calculations for the k™ trellis stage according to equations (7), (8), (9) and (10). The
annotations of Figure 9 indicate the data path widths for the example of the LTE turbo code,
which employs sixteen transitions between eight states. As shown in Figure 9 processing
element 706 is comprised of four sub processing elements 901, 902, 904, 906 which
respectively perform the calculations according to equations (7), (8), (9) and (10). A first

sub-processing element 901 receives an a priori LLR for each of the L message, systematic
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or parity bits considered by the trellis stage on a first input 908 which are received by a
summation unit 910. The summation unit 910 effectively combines the a priori LLR
message values to form an a priori transition metric for each of the sixteen transitions
(Si—1,S). The outputs of the summation unit 910 are received on a first input 912 of an
adder 914. The adder receives on a second input 916 an a priori forward state metric
@, (Sk_y) for each of the eight previous states (Sx_,) from the k-1 processing element and
on a second input 918 an a priori backward state metric B (S,) for each of the eight next
states (Sy) from the k™ processing element. At an output 920 of the adder 914, an a posteriori
state transition metric 8y (Sx_1, Si) is formed for each of the sixteen transitions in the K stage
of the trellis, according to equation (7). The a posteriori state transition metrics 81 (Sk—1,Si)
are fed to the second sub-processing element 902 and the third sub-processing element 904 to
respectively perform equations (8) and (9) to calculate an extrinsic forward state metric
@y (Sy) for each of the eight next states (S) of the k™ stage in the trellis, as well as to calculate
an extrinsic backward state metric Bj,_1(Sx_1) for each of the eight previous states (Sx_,). The
sixteen a posteriori transition metrics &y (Sy—1,S,) which are received from the output of the
adder 914 on channel 920 are fed to a max™ calculation unit 922 within the second sub-
processing element 902, which generates an a posteriori output for each of the eight next
states (Sy), which is fed on a first input 924 to a subtracting unit 926. On a second input 928
of the subtracting unit 926 the a priori backward state metric By (Sy) for each of the eight next
states (Si) is fed and the subtraction unit 926 generates at an output 930, an extrinsic forward
state metric @,(S) for each of the eight next states (S;) of the trellis stage, according to
equation (8). The third sub-processing element 904 reccives the sixteen a posteriori transition
metrics 8, (Si—1,S¢) by an input 920 at a max” calculation unit 940 which generates an a
posteriori output for each of the eight previous states (Sk-1), which are fed to a first input 942
of a subtracting unit 944. A second input 946 of the subtracting unit 944 receives the cight
forward state metrics @,_4(S_1) for the eight previous states. The subtracting unit 944 forms
at an output 946, an extrinsic backward state metric Bie—1(S-1) for each of the eight previous
states (Sy_;), according to equation (9). The fourth sub-processing element 906 processes
according to equation (10) and can generate an extrinsic LLR for each of the L number of
message, systematic or parity bits considered by the trellis stage. In some applications
however, LLRs are only required for the message bits, for the sake of iterative exchange with
the one or more other detector circuits. For example, there is one extrinsic message LLR for

an LTE decoder and two LLRs for a WiMAX decoder. The fourth sub-processing element
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906 includes a max* calculation unit block 950, which receives the set of sixteen a posteriori
transition metrics &, (Sx—1,S,) and selects the subset of eight corresponding to transitions implying
a bit value of bj(Sk_1, Sx) = 1. A second max” calculation unit block 952 selects the subset of a
posteriori transition metrics 8y (Sy—;,Sy) for the transitions corresponding to a bit value of
b;(Sk-1,Sx) = 0. An output of the respective first and second max® calculation units blocks
950 and 952 can be generated for each of the L number of message, systematic or parity bits
and fed to first and second inputs 954, 956 of a subtraction unit 958. The subtraction unit 958
can receive on a third input 960 the L number of @ priori LLRs. The subtraction unit 958 can
form at an output 962, an extrinsic LLR Eﬁkfor each of the L number of message, systematic
or parity bits.

As will be appreciated from the explanation provided above, one of the functions of
removing the data dependency is that the forward state metric @, (S;) for the K™ stage is
calculated immediately from the backward state metric f (Sy,) for the K™ stage combined with
the max* value of the transition branch. Similarly, the backward state metric Bj_1(S_4) for
the k™ stage is calculated from the forward state metric @ (Sy—,) for the KD stage received
from the second neighbouring processing element combined with a max” value of the
transition branch metrics. Accordingly, a processing element does not have to wait until all
the other processing elements have finished the forward or backward recursion in order to
calculate the extrinsic LLR message values for the k™ stage by combining the calculated
forward and backward state metrics with the transition state metrics determined from the
received a priori LLR message values. It is this combination of features which allows the
processing element to form part of a parallel processing turbo decoder in which the data
dependencies have been reduced, so at each iteration each of the processing elements
operates in parallel and the processing elements for the upper and lower decoders operate
contemporaneously in the same clock cycle.

More Detailed Example Embodiment

A detailed implementation of the fully-parallel turbo decoder according to
embodiment of the present technique is provided in Figure 10. Figure 10 presents the fully
parallel turbo decoder shown in Figure 8 but including a more detailed implementation for
the example where the k™ trellis stage and processing element processes one a priori message

LLR b2, one a priori parity LLR b3, and one a priori systematic LLR b3 .. However, parts
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also appearing in Figure 8 have the same numerical references and for brevity only the
differences with respect to Figure 8 will be described.

According to the present technique, each of the processing elements of the detection
circuit may includes a control unit, and for each of the processing elements, a selectable
bypass circuit, which is provided for the processing element and configurable under control
of the control unit, to bypass the processing element to disable the processing elements. The
bypass circuit may be implemented as a controllable multiplexer and a register for storing
forward or backward state metrics for feeding to a neighbouring processing element. As such
the processing elements can be selectively enabled/disabled in order to make a power saving

when these are not required.

As explained above, the turbo encoder typically includes an interleaver, which
interleavers the data symbols encoded by the first convolutional encoder in accordance with
an intetleaving pattern before being encoded by second convolutional encoder. As such, the
controller can control the selectable bypass circuits to disable selected processing elements of
the upper detection circuit and the lower detection processor in accordance with the
interleaving pattern used by the interleaver. The interleaver may be therefore configurable to
de-interleave the extrinsic soft decision values exchanged between the first detection circuit
and the second detection circuit in accordance with the interleaving pattern. The controller
may therefore disable the processing elements of the upper detection circuit and the
processing elements of the lower detection circuit alternately between clock cycles and in

accordance with the interleaving pattern.

As shown in Figure 10, each of the a priori parity and systematic LLRs E;‘,k and E?,,k
are received respectively in a register 1001, 1002 and held throughout the iterative decoding
process for feeding into the processing element 706, 708 for the upper decoder 701 and the
lower decoder 702. The " processing element in each decoder employs storage registers
1006, 1012 and 1014 for storing the a priori forward state metrics @4, a priori backward
state metrics B and a priori message LLR Bik between successive clock cycles,
respectively. The extrinsic forward state metrics @, and the extrinsic backward state metrics
B4 are provided to multiplexers 1004 and 1010, respectively. The multiplexers 1004, 1010
can be configured to provide the extrinsic forward state metrics o, to the r1™m processing
element and the extrinsic backward state metrics fB_; to the k1" processing element.
Alternatively, the multiplexers 1004, 1010 can be configured to by-pass the KM processing

element. This allows for selected processing elements to be switched off to reflect a shorter
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frame length and corresponding interleaver pattern. Accordingly, a corresponding saving in
energy consumption can be achieved. As for the example shown in Figure 8, extrinsic
message LLR Eik is output from the k™ processing element in the upper or lower decoder
701, 702 and fed through the interleaver 704 to form an a priori message LLR for the other
decoder to use in the next clock cycle. Accordingly, a register 1014 stores the input a priori
message LLR Eik between successive clock cycles. A determination of the a posteriori

message LLR BY, is formed by an adder 1016 which combines the a priori message LLR

b2, the extrinsic message LLR bf and optionally the a priori systematic LLR b3 . The
turbo decoder may be controlled by a control unit 1040, which provides control signals for
the multiplexers 1004 and 1010, as well as a global reset to zero signal for the registers 1006,
1012 and 1014, which is required as explained below. The control unit 1040 may also be used
to reconfigure the interleaver 704, which may be implemented as a Bene$ network or with
multiplexers. Alternatively, the interleaver may be hardwired and the by-pass circuits

described above may be controlled to select particular sub-sets of the interleaver.

Initialisation State

At the start of the first decoding iteration, no extrinsic information is available. In this
case, the k™ algorithmic block in each row employs zero values for the a priori LLR value
Efk the a priori forward state metrics @—,, and the a priori backward state metrics B,.. This
may be implemented using a global reset to zero signal for the registers 1006, 1012 and 1014.
As an exception to this however, the first algorithmic block in the each row employs a, = [0,
—oo, ..., —oo] throughout all decoding iterations, since the convolutional encoders
always begin from an initial state of S, = 0. Similarly, the last algorithmic block from the
each row employs By= [0, 0, 0, . . ., 0] throughout all decoding iterations, since the final state
of the convolutional encoder Sy, is not known in advance to the receiver, when termination is
not employed. The operation of the first and last algorithmic blocks when termination or tail-
biting is employed is discussed below.
Odd-Even Turbo Decoder

As mentioned above some turbo encoders, such as for example encoders operating in
accordance with the LTE and WiMAX turbo codes employ an odd-even interleaver [14].
More explicitly, the LTE interleaver 704 only connects algorithmic blocks from the upper
decoder 701 having an odd index k to algorithmic blocks from the lower decoder 702 that

also have an odd index k. Similarly, algorithmic blocks having even indices & in the upper
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decoder 701 are only connected to algorithmic blocks having even indices & in the lower
decoder 702. Owing to this, the 2N algorithmic blocks of Figure 8 and Figure 10 can be
grouped into two sets, where all algorithmic blocks within a particular set arc independent,
having no connections to each other. The first set comprises all algorithmic blocks or
processing elements from the upper decoder having an odd index £, as well as all blocks from
the lower decoder having an even index &, which are depicted with light shading in Figure 8
and 10. The second set is complementary to the first, comprising the algorithmic blocks
having dark shading in Figures 8 and 10. In this way, an iterative exchange of extrinsic
information between 2/ algorithmic blocks can be instead thought of as an iterative exchange
of extrinsic information between the two sets of algorithmic blocks. For the example shown
in Figure 10 the interleaver 704 has employed an odd-even interleaving pattern such as that
performed by an LTE turbo encoder or WiMAX turbo encoder.

More generally, for examples in which the interleaver design prevents grouping into
sets of independent algorithmic blocks, all algorithmic blocks are operated in every time
period, corresponding to T = 1 time period per decoding iteration. However, in the case of an
odd-even interleaver, the simultaneous operation of both sets of independent algorithmic
blocks is analogous to juggling two balls, which are simultaneously thrown between two
hands, but remain independent of each other. In the present fully-parallel turbo decoder, this
corresponds to two independent iterative decoding processes, which have no influence on
each other. Therefore, one of these independent iterative decoding processes can be
considered to be redundant and may be discarded. This can be achieved by operating the
algorithmic blocks of only one set in each time period, with consecutive time periods
alternating between the two sets. With this approach, each decoding iteration can be
considered to comprise T = 2 consecutive time periods. Although this is double the number
required by the T = 1 approach described above, this T = 2 approach requires half as many
decoding iterations in order to achieve the same error correction performance. Therefore, the
T = 2 approach maintains the same processing throughput and latency as the T = 1 approach,
but achieves a 50% reduction in complexity per message frame.

Therefore in Figures 8 and 10, two sets of processing elements (algorithmic blocks)
are grouped as shown with a lighter shading and a darker shading. As shown in Figure 10
each of the processing elements has either a darker shade or a lighter shade depending on
whether they are odd or even. In accordance with the present technique where the interleaver
704 performs odd and even interleaving then odd bits in the upper or lower decoder are

interleaved to odd bits in the other of the upper and lower decoders.
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Furthermore, while one set of algorithmic blocks is being used in a particular time
period to decode a particular message frame, the other set of blocks can be used to decode a
different message frame, as shown in Figure 11 and discussed below. In this way, the two
sets of algorithmic blocks may be operated concurrently, alternating between the concurrent
decoding of two different message frames and facilitating a 100% increase in the overall
processing throughput. As discussed below, Figure 12 shows an alternative arrangement, in
which half as many processing elements are employed to decode a single message frame.
Here, in successive time periods, each processing element alternates between the role of an
algorithmic block in the upper decoder and in the lower decoder.

Figure 11 provides an embodiment of the present technique in which a fully-parallel
turbo decoder includes two independent iterative decoding processes, which have no
influence on each other. Figure 11 corresponds to the example embodiment shown in Figure
10 for turbo decoding in accordance with data turbo encoded by an LTE encoder and
corresponds to Figure 8 and so only differences will be described. In Figure 11, the turbo
decoder of Figure 10 is shown to include for each processing element 706, 708 two sets of
registers 1001.1, 1001.2, 1002.1, 1002.2, which operate under the control of a control unit
1040. Fach of the sets stores two a prior LLRs for respective soft decision values for
different turbo encoded data frames. The odd-indexed (lighter shaded) processing elements
706 for the upper decoder 701 and the even-indexed (lighter shaded) processing elements 708

. ‘s rua Lua
for the lower decoder 702 receive soft decision values by'kisodad> Pakikisoda and

E}z’,alq I is even> f_);'f}cl 4 is even Tespectively from a first set of register elements 1001.1, 1002.1 in

one time period from a first frame of turbo encoded data. The even-indexed (darker shaded)

processing elements 706 for the upper decoder 701 and the odd-indexed (darker shaded)

o
. . « u,a
processing elements 708 for the lower decoder 702 receive soft decision values b,y is even

ua 1a 71'a . . e .
3,k|k is even and bZ,k| Kis odd > bS'le is odq Tespectively from a second set of register elements

1001.2, 1002.2 from the second frame of turbo encoded data in the same time period. In the
next time period, the even-indexed (darker shaded) processing elements 706 for the upper
decoder 701 and the odd-indexed (darker shaded) processing clements 708 for the lower

: sl rua 7-u,a 7la
decoder 702 receive soft decision values bjlisevens P3kikiseven and by 11k is oda>

l_):lj:jd kis oaa Tespectively from the first set of register elements 1001.1, 1002.1 from the first

frame of turbo encoded data, and the odd-indexed (lighter shaded) processing elements 706
for the upper decoder 701 and the even-indexed (lighter shaded) processing elements 708 for
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!
1',a

— 7 —q! .
. \ .. u',a u',a
the lower decoder 702 receive soft decision values by i is oaa » D3 /i is oda A4 P2k is even »

Bg}fikis even espectively from the second set of register elements 1001.2, 1002.2 from the

second frame of turbo encoded data. Accordingly, both the first and the second frames of
turbo encoded data can be decoded contemporaneously. Accordingly, the adders 1016 will

alternate between providing a posteriori LLRs pertaining to the first frame Ei .. and to the
second frame Ef' ;{, in successive time periods.

Another embodiment is shown in Figure 12. The embodiment shown in Figure 12
utilises the odd-even interleaving to the effect of halving the number of processing elements
706 which are used to perform the turbo decoding process. This corresponds to the example
embodiment shown in Figure 10 for turbo decoding in accordance with data turbo encoded by
an LTE encoder and so corresponds to Figure 8 and so only differences will be described.

In Figure 12, the turbo decoder of Figure 10 is modified to include only half the
number of processing elements 706. Each of the processing elements is provided with two
sets of registers 1201.1, 1201.2, 1202.1, 1202.2. Each of the sets stores two a priori LLRs
for respective soft decision values by, by and b33 by’ for the upper and lower turbo
encoded data of the frame.

The arrangement of the processing elements 706 shown in Figure 12 is configured to
perform a turbo decoding process according to the present technique on a single frame of data
symbols under the control of a control unit 1040. By taking advantage of the 50% reduction
in processing, which can be achieved with an odd-even interleaver, in alternating cycles, the
processing elements perform the turbo decoding process according to the present technique
by alternating between the soft decision values by, byx for the upper convolutional encoded

data fed from the registers 1201.1, 1202.1 fed via the multiplexers 1204, 1206, and the soft

decision values E;’f’,‘c, E;a;c for the lower convolutional encoded data fed from the registers

1201.2, 1202.2 fed via the multiplexers 1204, 1206. Furthermore the alternating cycles
process the odd and even data symbols. The interleaver 704 feeds the odd and then even
extrinsic data symbol values b, from the processing elements 706 via a de-multiplexer 1218
and the interleaver 704 to be stored in registers 1212, 1214 and fed via a multiplexer 1216 to
the processing elements as the a priori data information b3, for the next cycle.

In clock cycles having odd indices, the multiplexers 1204, 1206 and 1216 of each
processing element having an odd index k are configured to read from the registers 1201.1,

1202.1 and 1214. These registers provide the a priori LLRs E%Ijlk is oddr D2kl is oaa and
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“;l’;l v is odd> Which pertain to the upper decoder. The demultiplexer 1218 is configured to
provide the extrinsic LLR by'g ki is oad> Which is passed to the interleaver 704 and the adder

1016, which generates the a posteriori LLR Bi Kklk is odd- The register 1212 is written with the

a priori LLR Ei’j‘cl ¢ is odg Provided by the interleaver 704, ready to be used in the next clock
cycle. Meanwhile, the multiplexers 1204, 1206 and 1216 of each processing element having
an even index k are configured to read from the registers 1201.2, 1202.2 and 1212 in clock

cycles having odd indices. These registers provide the a priori LLRs b1 K|k is even’

b2 and by2 which pertain to the lower decoder. The demultiplexer 1218 is

2,k|k is even 3,k|k is even®

configured to provide the extrinsic LLR b1 Klk is even> which is passed to the interleaver 704.
The register 1214 is written with the a priori LLR b |k is even provided by the interleaver

704, ready to be used in the next clock cycle.
In clock cycles having even indices, the multiplexers 1204, 1206 and 1216 of each
processing element having an even index £ are configured to read from the registers 1201.1,

1202.1 and 1214. These registers provide the a priori LLRS BY'5y is evens Pakjicis even a0d
by ik is even> Which pertain to the upper decoder. The demultiplexer 1218 is configured to

provide the extrinsic LLR b}’ "kllc is even> Which is passed to the interleaver 704 and the adder

1016, which generates the a posteriori LLR EE Kk is even' The register 1212 is written with the

a priori LLR Ei’ii «is even Provided by the interleaver 704, ready to be used in the next clock

cycle. Meanwhile, the multiplexers 1204, 1206 and 1216 of each processing element having
an odd index % are configured to read from the registers 1201.2, 1202.2 and 1212 in clock

cycles having even indices. These registers provide the a priori LLRs b1 K|k is odd” bz k|k is odd
and b3 ik is odd> Which pertain to the lower decoder. The demultiplexer 1218 is configured to
provide the extrinsic LLR b1 klk is odd> which is passed to the interleaver 704. The register

1214 is written with the a priori LLR bl.'kl ¢ is oaq Provided by the interleaver 704, ready to be

used in the next clock cycle.

As will be appreciated therefore the example embodiment shown in Figure 12 can
perform a turbo decoding process on a data frame which has been turbo encoded using an
internal odd-even interleaver, with the effect that a 50% reduction in processing hardware can
be achieved.

Termination of Turbo Decoder
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As mentioned above, in some examples a data frame is terminated using one or more
additional bits or symbols, so that the decoder can know the state in which the frame
terminates. For the example of the LTE turbo encoder, twelve termination bits are used to
force each of its convolutional encoders into the final state, for which Sy,; = 0. In the

ua

M 3 H N _ul T 4 T 2
receiver, the demodulator provides the corresponding LLRs by'% .1, byniz s Pines > Panss

rua 7u,a : : : -1 7la 7la
o by'ny, and by'y, 5 to the upper row, while the lower row is provided with byyyy , by

,BY%43 > Dyye1 » Pysz and By 5. As shown in Figure 13, these LLRs can be provided to
three additional algorithmic blocks, which are positioned at the end of each row in the
proposed fully- parallel turbo decoder.

Figure 13 provides a schematic block diagram which shows processing elements
involved in the termination bits for the frame where the turbo encoded frame terminates in
known states. As shown in Figure 13, an output of the turbo decoders internal interleaver 704
exchanges data bits with the upper turbo decoder 701 and the lower turbo decoder 702 as
explained with reference to Figure 8. However, as shown in Figure 13, three termination
processing elements are shown for the upper turbo decoder 701 as processing element 710,
712, 714. The lower turbo decoder 702 comprises three termination units 720, 722, 724
which processes the termination bits for the frame as explained as follows.

The three additional algorithmic blocks at the end of each row do not need to be
operated iteratively, within the iterative decoding process. Instead, they can be operated just
once, before the iterative decoding process begins, using a backwards recursion. More

specifically, the algorithmic blocks with the index £ = N + 3 may employ Equations (2) and
(4) in order to process the L = 2 LLRs EiNH and b3 3. Here, the state metrics ﬁ— v+3 = [0,

—o0, —o, . . ., —oo] should be employed since a final state of S, ; = 0 is guaranteed. The

resultant state metrics ,67 v o canthen be provided to the algorithmic block having the index &
= N -+ 2. In turn, this uses the same process in order to obtain ] ~+1, which is then provided

the block where k= N + 1 in order to obtain ﬁ_ v in the same way. The resultant values of ﬁ'—N

may then be employed throughout the iterative decoding process, without any need to operate

the three additional algorithmic blocks again. Note that there is no penalty associated with
adopting this approach, since Equations (2) and (4) reveal that the values of ﬁ’—N are
independent of all values that are updated as the iterative decoding process proceeds.

Note that since the LTE turbo encoder does not output the systematic frame by’

produced by the lower convolutional encoder, the k™ algorithmic block in the lower row uses
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2) to consider only the L = 2 a priori LLRs b2 and b3 . By contrast the algorithmic block
1k 2,k

u,a u,a

in the upper row having the index & €[, N'] considers the L = 3 a priori LLRs EL’k . by
and by'y. This is shown in Figure 10 for the algorithmic blocks having the index & = N.
WiMAX Turbo Decoder

As for the example of a turbo decoder which is configured to decode turbo encoded
data in accordance with the LTE turbo code, a turbo decoder configured in accordance with
an embodiment of the present technique to decode a data frame encoded with a WiMAX
turbo code also employs an odd-even interleaver [14], allowing it to benefit from a 50%
reduction in the computational complexity of the fully-parallel turbo decoder, as shown in
Figure 10. Furthermore, the concurrent decoding of two message frames is supported,
facilitating a 100% increase in overall processing throughput, as shown in Figure 11.
Alternatively, a 50% reduction in hardware can be achieved using the approach of Figure 12.
A fully-parallel turbo decoder embodying the present technique applies the equations (7) to
(10), which are adapted to support duo-binary nature of the WiMAX turbo code. Here, the
algorithmic blocks in the upper row consider L = 6 a priori LLRs, while those in the lower
row consider I = 4 LLRs, since the systematic frames by and b produced by the lower
convolutional code are not output. More specifically, the K™ algorithmic block in the upper
decoder 701 is provided with six a priori LLRs by} , by » by » by »bey and by , using
these to generate two extrinsic LLRs b;’; and by%. By contrast, by . by . by and by, . are
provided to the k™M algorithmic block in the lower row, which generates two extrinsic LLRs
Elli and E;i in response. Tail-biting can be achieved by employing &, = [0,0,0,...,0] and

,i)’_ v =10,0,0,...,0]in the first iteration. In all subsequent iterations, the most- recently

obtained values of @ y and #, can be employed for &, and B » respectively.
Comparison of Fully Parallel Turbo Decoder with Log-BCJR Decoder

The following paragraphs provide an analysis comparing an embodiment of the
present technique, which provides a fully-parallel turbo decoder with a conventional turbo
decoder employing the Log-BCJR turbo decoder, as well as with another known turbo
decoding algorithm disclosed in [10]. For each of these turbo decoders the number of time
periods required per decoding iteration is identified, the memory requirements analysed and
the computational complexity per decoding iteration, the time period duration and the number
of decoding iterations required to achieve a particular error correction performance,

respectively identified in order to illustrate some advantages of the present technique.
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Furthermore, these characteristics are combined in order to quantify the overall throughput,
latency and computational complexity of these turbo decoders, when employed for both LTE
and WiMAX turbo decoding. The comparisons are summarized in Table 1, which is
provided in Figure 14, which provides various characteristics of the Log-BCJR algorithm and
the state-of-the-art algorithm of [10], relative to those of a fully parallel turbo decoder
embodying the present technique, when implementing the LTE and WiMAX turbo decoders
using the approximate max* operator of equation (12). These utilise an abbreviation TtotP,
which is used to mean “times that of the proposed fully-parallel turbo decoder”.

As explained above, embodiments of the present technique can provide a fully
parallel turbo decoder, which derived from the Log-BCJR algorithm. However, as explained
the data dependencies within each iteration have been removed, allowing the forward and
backward state metrics to be only generated in respect of one iteration per stage, before being
used by a neighbouring processing element to generate the state metrics for a subsequent
iteration. ‘

Although the simplified Log-BCJR turbo decoder described above with reference to
Figure 7 requires 7 = 4N time periods to complete each decoding iteration, several
techniques have been proposed for significantly reducing this. For example, the Non-Sliding
Window (NSW) technique [10] may be employed to decompose the algorithmic blocks of
Figure 7 into 64 windows, each comprising an equal number of consecutive blocks. Here, the
data dependencies between adjacent windows are eliminated by initializing each window’s
recursions using results provided by the adjacent windows in the previous decoding iteration,
rather than in the current one. Furthermore, within each window, the NSW technique
performs the forward and backward recursions simultaneously, only performing Equations
(5) and (6) once these recursions have crossed over. Additionally, a Radix-4 transform [10]
allows the number of algorithmic blocks employed in a Log-BCIR turbo decoder of Figure 7
to be halved, along with the number of time periods required to process them. Here, each
algorithmic block corresponds to the merger of two state transition diagrams into one,
effectively doubling the number of a priori LLRs L considered by each algorithmic block. By
combining the NSW technique and the Radix-4 transform, the state-of-the-art LTE turbo
decoder [10] can complete each decoding iteration using just 7' = N./32 time periods, provided

that the frame length satisfies N € [2048, 6114]. Note however that this number is N./64

TtotP fully-parallel turbo decoder for the above example, which requires only 7 = 2 time

periods per decoding iteration. When employing the maximum LTE frame length of N =
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6144 bits, the number of time periods per decoding iteration required by the state-of-the-art
LTE turbo decoder is nearly two orders-of-magnitude above the number required by the
proposed fully-parallel algorithm.

As described above, the state-of-the-art LTE turbo decoding algorithm of [10]
employs the Radix-4 transform to double the number of a priori LLRs considered by each
algorithmic block, resulting in L = 6 for the blocks in the upper row and L = 4 for those in
the lower row. Owing to this, this state-of-the-art algorithm can also be employed for
WiMAX turbo decoding, since this naturally requires algorithmic blocks that consider L = 6
and L = 4 g priori LLRs, as explained above. Note however that in this application, the
turbo decoder does not benefit from halving the number of algorithmic blocks required, as is
achieved when applying the Radix-4 transform to an LTE turbo decoder. On the other hand,
the WiMAX turbo decoder can benefit from the NSW technique of the state-of-the-art
algorithm, provided that N € [1440, 2440], resulting in 7= N/16 time periods per decoding
iteration. As shown in the Table above, this number is N./32 TtotP of the fully-parallel turbo
decoder.

Memory Requirements

As explained above, example embodiments of the present technique can provide a
fully-parallel turbo decoder as for the examples of Figures 8 and 9, in which the outputs
produced by each algorithmic block in any particular time period are used by the connected
blocks in the next time period. Owing to this, embodiments of the present technique have
reduced memory capacity requirements compared to conventional turbo decoders for storing
variables between consecutive time periods. More specifically, besides registers used for
temporary storage between two consecutive clock cycles, memory is only required for storing
the a priori LLRs provided by the demodulator, which are required throughout the iterative
decoding process. In the case of the LTE turbo decoder, memory is required for storing the
3N + 12 a priori LLRs that are provided by the demodulator, while 6N a priori LLRs need
to be stored in the WiMAX turbo decoder.

By contrast, the Log-BCJR turbo decoder algorithm of Figure 7 has significantly
higher memory requirements compared to an equivalent fully-parallel turbo decoder
embodying the present technique of Figures 8, 9, 10, 11, 12 and 13. Both the fully-parallel
turbo decoder of the present technique and the Log- BCIR turbo decoder algorithm require
memory for storing the a priori LLRs provided by the demodulator. Furthermore, memory is
required for storing the M x K x N a priori transition metrics that are produced by Equation

(2) during the forward recursion, so that they can be used by (4) and (5) during the backward
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recursion. Likewise, memory is required for storing the M XN extrinsic state metrics that are
produced by Equation (3) during the forward recursion, so that they can be used by equation
(5) during the backward recursion. Finally, in the case of the LTE turbo decoder, memory is
required for storing the N extrinsic LLRs that are produced by equation (6), while 2N
extrinsic LLRs need to be stored in the WiMAX turbo decoder. Note that the additional
memory required by the Log-BCJR turbo decoder algorithm can be reused by both the upper
and lower decoder of Figure 7, since they are not operated concurrently. As shown in the
above Table, the amount of memory required by the Log-BCJR algorithm is 9.33 and 8
TtotP, when implementing the LTE and WiMAX turbo decoders, respectively.

Tt should also be noted that the state-of-the-art LTE turbo decoder [10] employs the
Radix-4 transform, which halves the number of extrinsic state metrics that must be stored.
Furthermore, the state-of-the-art LTE turbo decoder uses a re-computation technique [10] to
further reduce the memory requirements. Rather than storing the a priori transition metrics
during the forward recursion, so that they can be reused during the backward recursion, the
re-computation technique simply recalculates these metrics during the backwards recursion.
In addition to this, the state-of-the-art LTE turbo decoder stores only 1/6 of the extrinsic state
metrics during the forward recursion and recalculates the other 5/6 of these metrics during
the backward recursion. Owing to its employment of these techniques, the amount of memory
required by the state-of-the-art LTE turbo decoder is 1.67 TtotP. However, as will be
explained shortly, storing the sum of the a priori parity LLRs b5?, and the a priori systematic
LLRs b3}?, is beneficial to the algorithmic blocks in the upper row of the proposed fully-
parallel algorithm, when employed for LTE turbo decoding. This renders the amount of
memory required by the state-of-the-art LTE turbo decoder equal to 1.25 TtotP, as shown in
the Table 1 of Figure 14.

Likewise, when the state-of-the-art algorithm is applied to WiMAX turbo decoding,
the required memory is also 1.67 TtotP, as shown in Table 1 of Figure 14. Note that this ratio
is maintained even though the WiMAX turbo decoder does not benefit from the Radix-4
transform, which halves the number of algorithmic blocks that are required, as well as the
number of extrinsic state metrics that must be stored. This is because in addition to requiring
twice as much storage for extrinsic state metrics, the WiMAX turbo code also requires twice
as much storage for LLRs, since it is duo-binary.

Computational Complexity
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The number of additions, subtractions and max* operations that are employed within
each processing element of a turbo decoder embodying the present technique and the Log-
BCIR algorithms are quantified in Table 2 provided in Figure 15, for both the LTE and
WiMAX turbo decoder.

A number of techniques have been employed to minimize the number of operations
that are listed in the Table 2 of Figure 15. For example, the a priori metrics 7y (Sg—1,Sx) of
some particular transitions are equal to each other, allowing them to be computed once and
then reused. Furthermore, some a priori metrics ¥, (Sx_1,Sx) are zero-valued and so there is
no need to add them into the corresponding &8 (Si_1,Sk), ax(Sy) or ] w—10S,—p calculations.
Finally, when computing the extrinsic LLR bf, in the WiIMAX turbo decoder, the results of
some max® operations can be reused to compute the extrinsic LLR I;;,c. Note that the
algorithmic blocks in the upper row of the LTE and WiMAX turbo decoders consider a
higher number of a priori LLRs L than those of the lower row, resulting in a slightly higher
complexity. Therefore, the Table 2 presents the average of the number of operations that are
employed by the algorithmic blocks in the upper and lower rows, resulting in some non-
integer values.

For both the LTE and WiMAX turbo decoders, a fully-parallel turbo decoder
embodying the present technique requires fewer additions and subtractions than the Log-
BCJR algorithm, as well as an equal number of max”operations. When the approximation of
(12) is employed, max* operations can be considered to have a similar computational
complexity to additions and subtractions [15]. As shown in the Table 1 of Figure 14, the
computational complexity per decoding iteration C of the Log-BCJR algorithm is therefore
1.1 and 1.25 TtotP, when implementing the LTE and WiMAX turbo decoders, respectively.

Note that the state-of-the-art LTE turbo decoder [10] employs the Radix-4 transform,
as well as the approximation of (12). When employing the Radix-4 transform, the Log-BCJR
LTE turbo decoder has the same complexity per algorithmic block as that presented in the
Table 1 for the Log-BCJR WiMAX turbo decoder. However, it should be noted that the
Radix-4 transform halves the number of algorithmic blocks that are required, as above.
Furthermore, as explained above, the state-of-the-art LTE turbo decoder recalculates the a
priori transition metrics of (2) and 5/6 of the extrinsic state metrics of (3) during the
backward recursion. Therefore, the state-of-the-art LTE turbo decoder has a complexity per

decoding iteration C that is 1.77 TtotP, as shown in the Table 1. When applying the state-of-

37



10

15

20

25

30

the-art algorithm’s recalculation technique to the WiMAX turbo code, its complexity per
decoding iteration C corresponds to 1.58 TtotP, as shown in the Table 1 of Figure 14.
Time period duration

A turbo decoder according to the present technique can be arranged so that each of the
algorithmic blocks in Figures 8 to 13 can be completed within a single time period. However,
the amount of time D that is required for each time or clock cycle period depends on the
computational requirements of the algorithmic blocks. More specifically, the required
duration D depends on the critical path through the data dependencies that are imposed by the
computational requirements of the algorithmic blocks. For example, in the proposed fully-
parallel algorithm, Equations (8), (9) and (10) are independent of each other, but they all
depend upon (7). As a result, the computation of (7) must be completed first, but then (8), (9)
and (10) can be computed in parallel. Of these three equations, it is (10) that requires the
most time for computation, since it is a function of more variables than (8) and (9).
Therefore, the critical path of the algorithmic blocks in the proposed fully-parallel algorithm
depends on the computational requirements of (7) and (10).

Equation (7) is employed to obtain an a posteriori metric g(SkM] ,Sp) for each transition
in the state transition diagram. However, these can all be calculated in parallel, using an
addition of five variables in the case of the algorithmic blocks in the upper turbo decoder 701,
which consider L = 3 a priori LLRs, for example. By contrast, an addition of just four
variables is required in the case of the algorithmic blocks in the lower turbo decoder 702
which L = 2. A summation of v number of variables requires v — 1 additions, some of which
can be performed in parallel. More specifically, the variables can be added together in pairs
and then in a second step, the resultant sums can be added together in pairs. This process can
continue until only a single sum remains, requiring a total of [log,(v)] steps. Accordingly,
Equation (7) contributes three additions to the critical path of the algorithmic blocks in the
upper row of the proposed fully-parallel LTE turbo decoder, as well as two additions for the
blocks in the lower row. The maximum of these two critical path contributions is presented in
the corresponding curly brackets of Table 2, since it imposes the greatest limitation on the
time period duration. A similar analysis can be employed to determine each of the other
critical path contributions that are provided in the curly brackets of Table 2.

As shown in Table 2 of Figure 15 the critical path of the Log-BCIR algorithm is
longer than that of the proposed fully-parallel algorithm, requiring time periods having a

longer duration D and resulting in slower operation. When the approximation of (12) is
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employed, max*operations can be considered to make similar contributions to the critical path
as additions and subtractions. As shown in Table 1, the critical path and hence the required
time period duration D of the Log-BCIR algorithm is therefore 1.13 and 1.22 TtotP, when
implementing the LTE and WiMAX turbo decoders, respectively.

Note however that the state-of-the-art LTE turbo decoder [10] employs the Radix-4
transform, as well as the approximation of (12). When employing the Radix-4 transform, the
Log-BCJR LTE turbo decoder has the same critical path as that presented in Table II for the
Log-BCJR WiMAX turbo decoder. However, the state-of-the-art LTE turbo decoder employs
pipelining [10] to spread the computation of Equations (2) — (6) over several consecutive time
periods. This reduces the critical path to that of Equation (4) alone, namely one addition and
two max’operations. By contrast, the proposed fully-parallel algorithm has a critical path
comprising five additions and three max” operations. Note however that the contribution of
one addition can be eliminated from this total by employing a technique similar to pipelining.
More specifically, the sum of the a priori parity LLRs B;’a, and the a priori systematic LLRs
by® may be computed before iterative decoding commences. The result may be stored and
used throughout the iterative decoding process by the algorithmic blocks in the upper row of
the proposed fully-parallel LTE turbo decoder. This reduces the critical path contribution of
Equation (2) in the upper row to two additions, which is equal to that of the lower row.
Therefore, the critical path and time period duration D of the state-of-the-art LTE turbo
decoder can be considered to be 0.43 TtotP, as shown in Table 1. Similarly, when applying
the state-of-the-art algorithm to WiMAX turbo decoding, the result is the same critical path
of one addition and two max*operations. As shown in Table 1, this critical path is 0.33 TtotP,
which requires five additions and four max*operations.

Error correction performance

A decoding performance of a fully-parallel turbo decoder embodying the present
technique will now be compared to that of a turbo decoder which employs the Log-BCJR
algorithm. Figures 16a, 16b, 16¢ and 17a, 17b and 17¢ provide simulation results providing
plots of Signal to Noise Ratio (SNR) per bit Ep/Ny, where Ey/NgldB] = SNR[dB] — 10
logo(R) in this case for performance of a fully-parallel turbo decoder compared with that of
the Log-BCIR algorithm as will be explained in the following paragraphs.

Figure 16a, 16b and 16¢ provide graphs for error correction performance of an LTE
turbo decoder when using the exact max™ operator of Equation (11) to decode frames

comprising (a) N=4800, (b) N=480 and (c) N=48 bits. For the simulation results for which
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Figures 16a, 16b and 16c were generated, BPSK modulation is employed for transmission
over an uncorrelated narrow band Rayleigh fading channel. The plots are provided for the
case where the number of iterations 7 is in the range 1, 2, 4, 8, 16, 32, 64, 128. Decoding
iterations are performed using the proposed fully parallel algorithm as well as for iterations of
1,2, 4, 8, 16 decoding iterations using the conventional BCJR-algorithm.

Figure 16a, 16b and 16¢ provide a comparison between the fully-parallel turbo
decoder and the BCJR-algorithm. These results show that regardless of the frame length N,
the proposed fully-parallel algorithm can converge to the same error correction performance
as the Log-BCIR algorithm. However, the fully-parallel turbo decoder embodying the
present technique can be seen to converge relatively slowly, requiring significantly more
decoding iterations 7 than the Log-BCJR algorithm. Note that this is not unexpected, since
LDPC decoders employing a parallel scheduling are known to require more decoding
iterations than those employing a serial scheduling [16].

Figures 17a, 17b and 17¢ provide an error correction performance of 17a a WiMAX
turbo decoder when using the exact max* operator of equation (11), Figure 17b the WiMAX
turbo decoder when using the approximate max *operator of equation (12) and Figure 17¢ the
LTE turbo decoder when using the approximate max* operator. The example simulation
results were generated for the transmission of the data symbols over BPSK modulation for
transmission over an uncorrelated narrow band Rayleigh fading channel. The plots of the bit
error rate with respect to signal to noise ratio are provided for the case where the number of
iterations are I = 32 or I = 48 decoding operations using the proposed fully parallel algorithm,
as well as I = 8 decoding iterations using a conventional Log-BCJR algorithm. Frame
lengths of 48, 480, 4800 were employed for the LTE turbo code while frame length N of 24,
240, 2400 for the WiMAX turbo code were used.

The results provided in Figures 16a, 16b and 16¢ suggest that the number of decoding
iterations I required by the Log-BCIR algorithm to achieve a particular BER is consistently
around 1/7 TtotP, for the case of LTE turbo decoding using the exact max” operator of (11).
As shown by the results presented in Figures 17a, 17b and 17c, when employing the
approximate max”™ operator of (12), this number changes to 1/6 TtotP, as shown in Figure

17¢ and Table 1. More specifically, Figure 17¢ shows that regardless of the frame length N

€ {48, 480, 4800}, the Log-BCIR algorithm employing /= 8 decoding iterations achieves the

same bit error rate as the proposed fully-parallel algorithm employing /= 48 iterations. In the
case of the WiMAX turbo code, Figures 17a and Figure 17b reveal that the number of
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decoding iterations 7 required by the Log-BCJR algorithm is 14 TiotP, regardless of the
frame length N and whether the exact or the approximate max” operator is employed. Note
that the error correction performance of the state-of-the-art algorithm of [10] is slightly
degraded by its employment of the NSW technique, although this degradation can be
considered to be insignificant. Therefore as shown in Table 1, the number of decoding
iterations J required by the state-of-the-art algorithm can also be considered to be 1/6 and 1./4
TtotP, for the LTE and WiMAX turbo codes, respectively.
Overall characteristics

The latency D x T x [of a turbo decoder is given by the product of the time period
duration D, the number of time periods per decoding iteration 7" and the required number of
decoding iterations I. Meanwhile, the processing throughput is inversely proportional to the
latency D x T x I For both LTE and WiMAX turbo decoding, Table 1 quantifies the latency
and throughput of the Log-BCJR algorithm and the state-of-the- art algorithm of [10], relative
to those of a fully-parallel turbo encoder embodying the present technique. In the case of an
LTE turbo code employing the longest supported frame length of N' = 6144 bits, the latency
and throughput of the proposed fully-parallel algorithm are more than three orders-of-
magnitude superior to those of the Log-BCIR algorithm. Furthermore, when compared with
the state-of-the-art algorithm of [10], the proposed fully- parallel algorithm has a latency and
throughput that is 6.88 times superior. Note however that the advantage offered by the
proposed fully-parallel algorithm is mitigated if the frame length N is reduced. In the case of
the shortest frame length N =2048 that is supported by the considered parameterisation of the
state-of-the-art algorithm’s NSW technique, the superiority of the proposed fully-parallel
algorithm is reduced to 2.29 times. When applying the state-of-the-art algorithm to the
WIiMAX turbo decoding of frames having lengths in the range N € [1440, 2400], the
superiority of the proposed fully-parallel turbo decoder according to the present technique
ranges from 3.71 times, up to 6.19 times. Compared to the Log-BCJR algorithm for WiMAX
turbo decoding, the fully-parallel turbo decoder according to the present technique is more
than three orders-of-magnitude superior, when employing the maximum frame length of N =
2400.

The state-of-the-art LTE turbo decoder of [10] achieves a processing throughput of
2.15 Gbit/s and a latency of 2.85 ps, when decoding frames comprising N = 6144 bits. This is
achieved using a clock frequency of 450 MHz, which corresponds to a time period duration

of 2.22 ns. The results of Table 1 suggest that the fully-parallel turbo decoder according to

41



10

15

20

25

30

the present technique could achieve a processing throughput of 14.8 Gbit/s and a latency of
0.42ps, using a clock frequency of 194 MHz. Furthermore, it may be assumed that the state-
of-the-art turbo decoder of [10] could maintain a processing throughput of 2.15 Gbit/s when
applied for WiMAX decoding. If so, then this suggests that the proposed fully-parallel
algorithm could achieve a processing throughput of 13.3 Gbit/s and a latency of 0.36 s,
when decoding frames having a length of N = 2400 bits. Note that these multi-gigabit
throughputs are comparable to those that are offered by fully-parallel LDPC decoders [9].

While the fully-parallel turbo decoder according to the present technique offers
significant improvements to processing throughput and latency, this is achieved at the cost of
requiring an increased parallelism and computational complexity. The overall computational
complexity C x I is given as the product of the computational complexity per decoding
iteration C and the required number of decoding iterations . For both LTE and WiMAX
turbo decoding, Table 1 quantifies the overall computational complexity of the Log-BCJR
algorithm and the state-of-the-art algorithm of [10], relative to those of the proposed fully-
parallel algorithm. As shown in Table 1, the computational complexity of the proposed fully-
parallel algorithm can be more than five times higher than that of the Log-BCIR  algorithm.
Compared to the state-of-the-art algorithm of [10] however, the proposed fully-parallel
algorithm has a computational complexity that is about three times higher.

Summary of Advantages

Embodiments of the present technique can provide a fully-parallel turbo decoder
which eliminates or at least reduces data dependencies of known techniques and facilitates a
fully-parallel operation. Owing to its significantly increased parallelism, embodiments of the
present technique can facilitate throughputs and latencies that are up to 6.88 times superior
than those of known techniques, when employed for standardized turbo codes. In these
applications, a turbo decoder according to the present technique can facilitate processing
throughputs of up to 14.8 Gbit/s, as well as latencies as small as 0.42 ps, but of course the
actual throughput and latency will depend on the hardware technology used. However, this is
achieved at the cost of a computational complexity that is about three times higher than that
of the conventional techniques.

As mentioned above, embodiments of the present technique can provide a turbo
decoding or detecting process for recovering or detecting data, which has in general under-
gone a Markov type process. In this regard, embodiments of the present technique can
provide a turbo detector or decoder, which processes soft decision values to generate extrinsic

values, which can become a priori values for another decoder/detector. As will be
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appreciated therefore the turbo detector could operate by exchanging extrinsic information
with another detector or decoder. A fully-parallel turbo detector embodying the present
technique could therefore be used to form an equaliser, a synchronisation detector, a channel
estimator, a multi-user detector, a MIMO detector or a joint source/channel decoder.

Although the present technique has been described with reference to LTE and
WiMAX, it will be appreciated that there are only examples and a turbo decoder according to
the present technique could be used for any form of turbo encoded data and is not limited to
LTE or WiMAX.

According to the above description, embodiments of the present technique can
provide a receiver for detecting and recovering a frame of data symbols from a received
signal, the data symbols of the frame having been effected, during the process of
transmission, by a Markov process with the effect that the data symbols of the frame in the
received signal are dependent one or more preceding data symbols which can be represented
as a trellis having a plurality of trellis stages. The receiver comprises a first detection
processor configured to receive the frame of data symbols represented as a soft decision value
for each data symbol of the frame, and at least one other detection processor which is
configured to co-operate with the first detection processor to perform in combination a turbo
detection process to generate an estimate of the frame of data symbols. The first detection
processor comprises a plurality of processing elements, each of the processing elements being
associated with one of the trellis stages representing the dependency of the data symbols of
the frame according to the Markov process and each of the processing elements is configured
to reccive one or more soft decision values corresponding to one or more data symbols
associated with the trellis stage. Each of the one or more of the processing elements is
configured, in one processing iteration to receive data representing an a priori forward state
metric from a first neighboring processing clement, data representing an a priori backward
state metric from a second neighboring processing element, and data representing a priori
information for the one or more data symbols being detected for the trellis stage associated
with the processing element from the at least one other detection processor. Each processing
clements combines the a priori forward state metric, the a priori backward state metric and
the a priori information relating to the one or more data symbols to determine an extrinsic
forward state metric, an extrinsic backward metric and extrinsic data information
corresponding to the one or more data symbols for the trellis stage associated with the
processing element. Each processing element provides the extrinsic forward state metric to

the second neighboring processing element, the extrinsic backward state metric to the first
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neighboring processing element, which becomes the a priori backward state metric for the
next iteration, and the extrinsic data information to the at least one other detection processor,
which becomes the @ priori information relating to the data symbol for the next iteration. For
each of a plurality of iterations of the turbo detection process, the first detection processor
and the at least one other detection processor are configured to exchange for each of the
processing elements representing the trellis stages the a priori information for the one or
more data symbols being detected for the trellis stage associated with the processing element
and the extrinsic data information corresponding to the one or more data symbols generated
by the processing. As explained above, processing can take place in two or more of the
decoders contemporaneously, so that each of the decoders is generating intermediate results
to be exchanged with the others of the decoders. Furthermore, fixed point representation of

the information exchanged between processing elements can be used.

According to one example embodiment there is provided a detection circuit for
performing a turbo detection process to recover a frame of data symbols or bits from a
received signal comprising data representing one or more soft decision values for each data
symbol of the frame. The data symbols or bits of the frame have been affected, during
transmission, by a Markov process with the effect that the data symbols of the frame in the
received signal are dependent on one or more preceding data symbols which can be
represented as a trellis having a plurality of trellis stages. The detection processor comprises
a plurality of processing elements. Each of the processing elements is associated with one of
the trellis stages representing the dependency of the data symbols of the frame according to
the Markov process and each of the processing elements is configured to receive one or more
soft decision values corresponding to one or more data symbols associated with the trellis
stage. Each of one or more of the processing elements is configured, in one clock cycle, to
receive data representing a priori forward state metrics from a first neighboring processing
element, to receive data representing a priori backward state metrics from a second
ncighboring processing element, and to receive data representing a priori soft decision
values for the one or more data symbols being detected for the trellis stage associated with
the processing element. The processing element combines the @ priori forward state metrics,
the a priori backward state metrics and the a priori soft decision values relating to the one or
more data symbols to determine extrinsic forward state metrics, extrinsic backward metrics
and extrinsic soft decision values corresponding to the one or more data symbols for the

trellis stage associated with the processing element, and communicates the extrinsic forward
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state metrics to the second neighboring processing element, which becomes the a priori
forward state metrics for a next clock cycle, communicates the extrinsic backward state
metrics to the first neighboring processing element, which becomes the a priori backward
state metrics for the next clock cycle, and provides the extrinsic soft decision values, which
becomes the a priori soft decision values relating to the data symbol for the next clock cycle.
For one or more of a plurality of consecutive clock cycles of the turbo detection process, the

processing elements of the detection circuit are configured to operate simultaneously.

For example, for each of a plurality of clock cycles of the turbo detection process, the
detection circuit is configured to process, for each of the processing elements representing the
trellis stages, the a priori information for the one or more data symbols being detected for the
trellis stage associated with the processing element. In some examples, the detection circuit
operates in co-operation with another detection circuit, and to exchange the extrinsic soft
decision values corresponding to the one or more data symbols generated by the processing
element, with the other detection circuit. In some example the extrinsic soft decision values

are exchanged after each clock cycle.
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CLAIMS

1. A detection circuit for performing a turbo detection process to recover a frame
of data symbols from a received signal comprising fixed point data representing one or more
soft decision values for each data symbol of the frame, the data symbols of the frame having
been affected, during the process of transmission, by a Markov process with the effect that
the data symbols of the frame in the received signal are dependent on one or more preceding
data symbols which can be represented as a trellis having a plurality of trellis stages, the

detection circuit comprising

a plurality of processing elements, each of the processing elements being associated
with one of the trellis stages representing the dependency of the data symbols of the frame
according to the Markov process and each of the processing elements is configured to receive
fixed point data representing soft decision values for one or more data symbols associated
with the trellis stage, and each of one or more of the processing elements is configured, in

one clock cycle

to receive fixed point data representing a priori forward state metrics from a first

neighboring processing element,

to receive fixed point data representing a priori backward state metrics from a second

neighboring processing element, and

to receive fixed point data representing a priori soft decision values for the one or

more data symbols being detected for the trellis stage associated with the processing element,

to combine the a priori forward state metrics, the a priori backward state metrics and
the a priori soft decision values relating to the one or more data symbols to determine one or
more fixed point extrinsic forward state metrics, one or more fixed point extrinsic backward
metrics and fixed point extrinsic soft decision values corresponding to the one or more data

symbols for the trellis stage associated with the processing element, and

to communicate the one or more extrinsic forward state metrics to the second
neighboring processing element, which become the a priori forward state metrics for that

processing element in a next clock cycle,

to communicate the one or more extrinsic backward state metrics to the first
neighboring processing element, which become the a priori backward state metrics for that

processing element in the next clock cycle, and
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to provide the one or more extrinsic soft decision values, which become the a priori
soft decision values relating to the data symbols for a next clock cycle, wherein for one or
more of a plurality of consecutive clock cycles of the turbo detection process, the processing

elements of the detection circuit are configured to operate simultaneously.

2. A detection circuit as claimed in Claim 1, wherein each of the one or more
processing elements is configured, in one clock cycle to form for each transition of the
plurality of transitions of the trellis, an a posteriori transition metric (6, (Sk—1,SK), by
combing the a priori forward state metric (@1 (Sk-1)) of the transition’s previous state
(Se_1) received from the first neighbouring processing element, the backward state metric
(B (S)) of the transition’s next state (Si) received from the second neighbouring processing

element and at least one of

a combination of soft decision values for cach of the one or more data symbols

corresponding to the state transition ([%_1[b;(Sk—1, Sk) - bix|]), or
g j=1]25\0K j ke

other soft decision information (In[Pr{S,|S,_1}]) relating to the state transition.

3. A detection circuit as claimed in Claim 2, wherein each of the one or more
processing elements is configured, in one clock cycle to determine for each next state (S,) for
the plurality of next states in the trellis, an extrinsic forward state metric (& (S)) by
combining the a posteriori transition metrics (8, (Sk—1,Sk)) for the connected transitions and

subtracting the backward state metric (5, (S)) for that next state (Si).

4, A detection circuit as claimed in Claim 3, wherein the combining of the a
posteriori transition metrics (8 (Si—1,S;)) for the connected transitions comprises
determining a Jacobian logarithm of each of the a posteriori transition metrics for each of the

transitions that is connected to that next state (S;,) in the trellis which the processing element

represents (max*(s, _ jc(sp_v.50=1}0% (Sk-1,SiK)|)-

5. A detection circuit as claimed in any of Claims 2 to 4, wherein each of the one

or more processing elements is configured, in one clock cycle to determine for each previous
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state (Sy_1) for the plurality of previous states in the trellis, an extrinsic backward state metric
(Br—1(Sk—1)) by combining the a posteriori transition metrics (8 (Si—1, Si)) for the connected

transitions and subtracting the forward state metric (& _; (Sk—4)) for that previous state (Sy—1).

6. A detection circuit as claimed in Claim 5, wherein the combining of the a
posteriori transition metrics (8, (Sx_1,S;)) for the connected transitions comprises
determining a Jacobian logarithm of each of the a posteriori transition metrics for each of the
transitions that is connected to that previous state (S,_,) in the trellis which the processing

element represents (Max” (s, jc(sy.,.51)=1} 0% Sk-1, Si) -

7. A detection circuit as claimed in any of Claims 2 to 6, wherein each of the one
or more processing elements is configured, in one clock cycle, to form for each data symbol
(bjx) of the plurality of data symbols considered by each trellis stage, an extrinsic soft
decision value (bf,) by combining the a posteriori transition metrics (81 (Sk-1,S1)) for the
each of the transitions in the trellis stage and subtracting the a priori soft decision value (bj;)

for that data symbol (b; ).

8. A detection circuit as claimed in Claim 7, wherein the combining of the a

posteriori transition metrics comprises forming a difference between

a Jacobian logarithm of the set of ¢ posteriori transition metrics for the set of the
transitions in the trellis stage where the implied value for that data symbol (b; ) is a binary

one ((Sk-1,Sk)b;(Sg-1,S,) = 1), and

a Jacobian logarithm of the set of a posteriori transition metrics for the set of the

transitions in the trellis stage where the implied value for that data symbol (b; ) is a binary

2e10 ((Sk—1, Sk)1bj(Sk-1,Sk) = 0).

9. A detection circuit as claimed in any of Claims 4, 6 or 8, wherein the Jacobian

logarithm is defined as

max*(3;,8,) = max(8;,3,) + In(1 + e~1G1-81)
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for a pair of a posteriori transition metrics 8y, 8,, wherein the Jacobian logarithm may
be approximated as

max*(8,,8,) ~ max(3,,8,), or

max*(6,,8,) =~ A-max(8;,8,) + B, where A and B are constant values, or

max*(8,6,) ~ A(6,,8,) - max(6,,8,) + B(61,0,), where A and B are simple

functions of the a posteriori transition metrics &y, 5.

10. A detection circuit as claimed in any of Claims 1 to 9, wherein the frame of
data symbols has been encoded during the process of transmission with a turbo encoder
comprising a first convolutional encoder, an interleaver and a second convolutional encoder,
the Markov process which has affected the frame of data symbols during the processing of
transmission being produced by the first convolutional encoder and the second convolutional
encoder, the detection circuit being arranged to perform the turbo detection process in
accordance with the first convolutional code, a second detection circuit being arranged to
perform the turbo detection process in accordance with the second convolutional code, and
for each clock cycle the detection circuit and the second detection circuit performs decoding
processes for the respective first and second convolutional codes, exchanging extrinsic soft
decision values through an interleaver circuit, which becomes the a priori soft decision
values relating to the data symbol for the next clock cycle for the other of the detection circuit

and the second detection circuit.

11. A detection circuit as claimed in any of Claims 1 to 10, comprising

a set of storage registers for each of the processing elements in the detection circuit,
which are used for storing the a priori soft decision values for the one or more data symbols,
the a priori forward state metrics and the a priori backward state metrics that will be

processed by the processing element in the next clock cycle,
a control unit, and

for each of the processing elements, a selectable bypass circuit, which is configurable
under control of the control unit, to bypass the processing element and the associated

registers to disable the processing elements.
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12. A detection circuit as claimed in Claim 11, wherein the transmission process
includes an interleaver that uses an interleaving pattern selected from a set of one or more
supported interleaver patterns for one or more supported frame lengths, wherein the
controller of the detection circuit is configured to control the selectable bypass circuits to
disable selected processing elements of the detection circuit in accordance with the frame

length and interleaving pattern used by the interleaver.

13. A detection circuit as claimed in Claim 10, 11 or 12, wherein the transmission
process includes an interleaver that uses an interleaving pattern selected from a set of one or
more supported interleaver patterns, and the detection circuit includes a corresponding
interleaver circuit which can be reconfigured under control of a control unit, in accordance

with the one or more supported interleaving patterns.

14. A detection circuit as claimed in Claim 10, 11, 12 or 13, wherein the
transmission process includes an interleaver that has interleaved data symbols of the data
frame having odd indices to data symbols of an interleaved frame that also have odd indices,
and data symbols of the data frame having even indices to data symbols of the interleaved

frame that also have even indices, and

the set of storage registers comprises for each of the processing elements in the
detection circuit, one or more storage registers for storing the a priori soft decision values for
the one or more data symbols, the a priori forward state metrics and the « priori backward

state metrics that will be processed by the processing element in the next clock cycle, and

the control unit which is configured in every other clock cycle of the turbo detection
process to enable the processing elements of the detection circuit for processing the data
symbols having odd indices and to disable the other half of the processing elements of the
detection circuit for the data symbols having even indices, and in all other clock cycles of the
turbo detection process to enable the other half of the processing elements for processing the
data symbols having even indices and to disable the first half of the processing elements for

processing the data symbols having odd indices.
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15. A detection circuit as claimed in Claim 10, 11, 12 or 13, wherein the
transmission process includes an interleaver that has interleaved data symbols of each data
frame having odd indices to data symbols of a corresponding interleaved frame that also have
odd indices, and data symbols of each data frame having even indices to data symbols in the
corresponding interleaved frame that also have even indices, and the detection circuit

comprises
a corresponding interleaver circuit, and the set of storage registers includes

two sets of storage registers for each of the processing elements in the detection
circuit, where each set of registers is used for storing the a priori soft decision values for the
one or more data symbols in a different one of the frame or a second frame, as well as for
storing the a priori forward state metrics and the a priori backward state metrics for that
frame, which will be processed by the processing element in the next clock cycle that uses the

processing element for decoding the corresponding frame, and

the control unit is configured in every other clock cycle to load the a priori soft
decision values and store the extrinsic soft decision values for the processing elements having
odd-indices using the corresponding registers for a first of the frames, while loading the a
priori soft decision values and storing the extrinsic soft decision values for the processing
elements having even-indices using the corresponding registers for the second of the frames,
and in all other clock cycles loading the a priori soft decision values and storing the extrinsic
soft decision values for the processing elements having even-indices using the corresponding
registers for the first of the frames, while loading the a priori soft decision values and storing
the extrinsic soft decision values for the processing elements having odd-indices using the
corresponding registers for the second of the frames, thereby simultaneously decoding the

frame and the second frame, both employing the same interleaving pattern.

16. A detection circuit as claimed in Claim 10, 11, 12 or 13, wherein the
transmission process includes an interleaver that has interleaved data symbols of the data
frame having odd indices to data symbols of an interleaved frame that also have odd indices,
and data symbols of the data frame having even indices to data symbols in the interleaved

frame that also have even indices, and the set of one or more storage registers comprises

two sets of storage registers for each of the processing elements in the detection

circuit, where each set of registers is used for storing the a priori soft decision values for the
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one or more data symbols in a different one of two Markov processes, as well as for storing
the « priori forward state metrics and the a priori backward state metrics for that Markov
process, which will be processed by the processing element in the next clock cycle that uses

the processing element for decoding the corresponding Markov process, and

the control unit is configured in every other clock cycle to load the a priori soft
decision values and store the extrinsic soft decision values for the processing elements having
odd-indices using the corresponding registers for the first Markov process, while loading the
a priori soft decision values and storing the extrinsic soft decision values for the processing
elements having even-indices using the corresponding registers for the second Markov
process, and in all other clock cycles loading the a priori soft decision values and storing the
extrinsic soft decision values for the processing elements having even-indices using the
corresponding registers for the first Markov process, while loading the a priori soft decision
values and storing the extrinsic soft decision values for the processing elements having odd-
indices using the corresponding registers for the second Markov, thereby simultaneously

decoding two Markov processes, and the detection circuit comprises

an interleaver circuit which is configured in every other clock cycle to implement the
interleaver pattern which supplies the a priori soft decision values for the first Markov
process to the processing elements having odd-indices, while implementing the interleaver
pattern which supplies the @ priori soft decision values for the second Markov process to the
processing elements having even-indices, and in all other clock cycles implementing the
interleaver pattern which supplies the a priori soft decision values for the first Markov
process to the processing elements having even-indices, while implementing the interleaver
pattern which supplies the a priori soft decision values for the second Markov process to the

processing elements having odd-indices.

17. A receiver comprising
a first detection circuit according to any of claims 1 to 16, and

at least one other detection circuit which is configured to co-operate with the first
detection circuit to perform in combination a turbo detection process to generate an estimate

of the frame of data symbols, and

a clock generating clock cycles according to a predetermined frequency, wherein for

one or more of a plurality of consecutive clock cycles of the turbo detection process, the first
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detection circuit and the at least one other detection circuit are configured in operate

simultaneously.

18. A method for performing a turbo detection process to recover a frame of data
symbols from a received signal comprising fixed point data representing one or more soft
decision values for each data symbol of the frame, the data symbols of the frame having been
affected, during the process of transmission, by a Markov process with the effect that the data
symbols of the frame in the received signal are dependent on one or more preceding data
symbols which can be represented as a trellis having a plurality of trellis stages, the method

comprising

receiving at a detection circuit the frame of data symbols represented as a fixed point

soft decision value for each data symbol of the frame,

performing the turbo detection process to generate an estimate of the frame of data

symbols, the detection circuit including

a plurality of processing elements, each of the processing elements is associated with
one of the trellis stages representing the dependency of the data symbols of the frame
according to the Markov process and each of the processing elements is configured to receive
fixed point data representing soft decision values for one or more data symbols associated
with the trellis stage, and the method comprises for each of one or more of the processing

elements in one clock cycle

receiving fixed point data representing a priori forward state metrics from a first

neighboring processing element,

receiving fixed point data representing an a priori backward state metrics from a

second neighboring processing element, and

receiving fixed point data representing « priori soft decision values for the one or

more data symbols being detected for the trellis stage associated with the processing element,

combining the a priori forward state metrics, the a priori backward state metrics and
the a priori soft decision values relating to the one or more data symbols to determine one or
more fixed point extrinsic forward state metrics, one or more fixed point extrinsic backward
metrics and fixed point extrinsic soft decision values corresponding to the one or more data

symbols for the trellis stage associated with the processing element, and

54



10

15

communicating the one or more extrinsic forward state metrics to the second
neighboring processing element, which become the a priori forward state metric for the

processing element in the next clock cycle,

communicating the one or more extrinsic backward state metrics to the first
neighboring processing element, which become the a priori backward state metrics for that

processing element in the next clock cycle, and

providing the one or more extrinsic soft decision values, which become the a priori
soft decision values relating to the data symbols for the next clock cycle, wherein for one or
more of a plurality of consecutive clock cycles of the turbo detection process, the processing

elements of the detection circuit are configured to operate simultaneously.

19. A mobile communications device configured to operate in accordance with a
Long Term Evolution or WiMAX standard, including a receiver as claimed in any of Claims

1to17.

20. A base station device configured to operate in accordance with a Long Term

Evolution or WiMAX standard, including a receiver as claimed in any of Claims 1 to 17.
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