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ABSTRACT
The ship hull form optimization using the Computational Fluid Dynamics (CFD) method is increas-
ingly employed in the early design of a ship, as an optimal ship hull form can obtain good hydro-
dynamics. However, it is time-consuming due to its many CFD simulations for the optimization. This
paper presents a ship hull form optimization loop using the surrogate model, deep belief network
(DBN), to reduce the wave-making resistance of the Wigley ship. The prediction performance of the
wave-making resistance of the Wigley ship using the DBN method is discussed and compared with
the traditional surrogate models found in this study. The results show that the resistance obtained
using the deep belief network algorithm is superior to that obtained using the typical surrogate
models. Then, a ship hull form optimization framework is built by integrating the Free From Defor-
mation, non-linear programming by quadratic Lagrangian and deep belief network algorithms. The
optimization results show that the deep belief network-based ship hull form optimization loop can
be used to optimize theWigley ship. The study presented in this paper could provide a deep learning
algorithm for the ship design optimization.
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1. Introduction

Wave-making resistance is one of themost important fac-
tors to be considered when a ship is in the early hull
form design stage. This is because an optimal hull form
has low wave-making resistance, which in turn decreases
fuel consumption. With the development of computer
techniques and mathematical algorithms, the Computa-
tional Fluid Dynamics (CFD) method has been exten-
sively adopted to evaluate ship hydrodynamics in seas.
However, this method is very time-consuming owing to
its slow convergence rate. This problem inevitably com-
plicates ship hull form optimization by the CFDmethod.
Therefore, it is necessary for designers to explore a more
efficient surrogatemodel for ship hull form optimization.
The most common surrogate models include kriging
models, Radial Basis Function (RBF) and neural net-
works. To find the mechanics between the ship perfor-
mance indicators and the thickness of ship components,
Deng (2014) employed the Back Propagation (BP) neural
network to approximate the von-mises stress and max-
shear stress for a ship powerboat. Lin et al. (2018) used the
kriging model to optimize the twin-skeg ship and obtain
the optimal hull form with the lowest total resistance. To
reduce the number of CFD-based simulations, Baar et al.
(2015) developed a new multi-fidelity Kriging surrogate
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model to carry out the uncertainty quantification anal-
ysis for a sailing yacht hull. Zhang, Zhang, Tezdogan,
et al. (2018) employed the Elman method to approxi-
mate the total resistance of a DTMB 5512 ship. Ozcanan
and Atahan (2019) used an RBF surrogate model to opti-
mize guardrails, which provided an economic advantage
of 23% compared to the original model. To solve the
auto-berthing control problem, Zhang, Zhu, et al. (2019)
developed a new auto-berthing control law integrating
the adaptive neural network, and then a Cybership 2
ship was selected to discuss the feasibility of the con-
trol scheme in their study. Miao and Wan (2019) also
used the kriging model to predict the total resistance
of S60 ship. Bakhtiari and Ghassemi (2020) used the
feedforward neural networks to calculate the hydrody-
namic coefficients of thrust and torque of the marine
cycloidal propeller. Kim et al. (2020) selected the artifi-
cial neural network to predict the ice resistance of the
ship using different variables. Ye et al. (2020) used the
BP neural network to approximate the total resistance of
a 46,000t oil tanker, and then developed a ship design
optimization method to optimize the bow and stern of
the oil tanker, integrating the RBF interpolation surface
modification method and particle swarm optimization
algorithm. These popular methods are suitable for the
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data forecast and are expected to improve the optimiza-
tion efficiency.However, with the development of the sur-
rogate model, deep learning methods have gained much
attention in recent years. The DBN method is a novel
method that has been extensively applied for the predic-
tion of different data. Yang and Zhong (2016) used the
Deep Belief Network (DBN) method to forecast hospi-
tal outpatients and achieved 96% success. Li et al. (2019)
used the DBN method to predict short-term traffic flow
using supervised learning techniques. Bu et al. (2017)
employed the DBN method for enhancer prediction and
it was found to be effective in increasing the accuracy
of enhancer prediction. Dong et al. (2020) developed a
new forecasting model for the vibration performance of
rolling mills using the DBN algorithm. In their stud-
ies, the DBN algorithm was used to predict the vibra-
tion intensity of the rolling mills according to the rolling
parameters. The results shown that the error between the
DBNmethod and the experimental data was only 3.94%.
Jia et al. (2020) used the DBN algorithm to predict the
bounced landing of the aircraft. Considering the influ-
ence of the airport environment, the prediction accuracy
using the DBNmethod was up to 94.78%. Li, Zhao, et al.
(2020) employed an improved DBN algorithm to pre-
dict the oxygen consumption. Six parameters were set
as the input data, the oxygen consumption was selected
as the output data. Finally, the average percentage error
between the original data and prediction data using the
improved DBN method was only 1.92%. Li, Liang, et al.
(2020) developed a prediction method for the perfor-
mance of the short-term power generation using the
DBN-based PSO method. The grey correlation degree
method was employed to design the sample data firstly.
Then the revised sample data was used to establish the
DBN-based PSO model. After the completion of the
prediction, the results showed that the mean absolute
percentage error between the DBN-based PSO model
and sample data was only 3.45%. As can be seen from
the above literature, the prediction accuracy using the
DBN algorithm is relatively high for different optimiza-
tion fields. It can be deduced that the DBN algorithm is
a good method to predict different kinds of sample data.
However, there have not been any specific ship resistance
prediction and optimization studies that employ a DBN-
based surrogatemodel. Therefore, a comparative analysis
of BP, Elman, RBF and DBN methods is performed to
evaluate their wave-making resistance prediction perfor-
mance. Then, the optimal surrogatemodel is employed to
optimize theWigley ship in terms of resistance reduction,
thereby improving its overall efficiency.

Surface modification is a key part of the shape opti-
mization and design problem. The Free Form Deforma-
tion (FFD) method is a good geometry reconstruction

method for deforming the 3D geometry model. It has
been widely used in the different optimization fields
(Guo et al., 2020; Xu et al., 2019; Yu et al., 2016; Zhang,
Zhang, Yang, et al., 2018). Garg et al. (2017) used the
FFD method to change the hydrofoil surface with 200
control points. Wang et al. (2018) employed the FFD
method to deform the hydrofoil using several control
points moved along the y-direction. Meng et al. (2019)
selected 10 points to change the geometry of an airfoil
aerodynamic. Li, Wang, et al. (2020) used three design
variables to deform the shape of a blendedwing-body
(BWB) underwater glider using the FFD method. Song
et al. (2020) selected the FFD method to change the air-
foil torsion angle and chord length of a propeller, and the
RBF method to regenerate meshes of the original pro-
peller. For the ship hull form optimization, Cheng et al.
(2018) and Wei et al. (2019) applied RBF interpolation
to alter the Series 60 ship and KRISO Container Ship
(KCS) ship. The B-spline function method was selected
by Zhang and Zhang (2015) to deform the hull lines of
a Series 60 ship. Zhang, Chen, et al. (2019) used the full
parametricmethod, implemented onCAESES, tomodify
a drilling ship. Miao and Wan (2019) employed an FFD
technique to deform the bulbous bow and the stern of an
S60 ship. As the good performance of the FFD method
in the ship hull form deformation, this study employed
the FFDmethod to alter the ship hull geometry with two
design variables.

Firstly, the BP, Elman, RBF and DBN algorithms were
employed in this paper to predict the wave-making resis-
tance. Then, the prediction accuracy for different surro-
gatemodels was compared and discussed. Following this,
the ship optimization platform for the Wigley ship was
built, integrating the FFD and DBN and CFD methods.
In the optimization, many uncertainty factors can lead to
significant differences in the optimization results (Hou
et al., 2016). Therefore, the interval number method, as
proposed by Hou et al. (2016), was used in this study
to discuss the uncertainty optimization problem con-
sidering the influence of the ship speeds. In this paper,
Section 2 shows the ship geometry of the Wigley ship
used in this study. Section 3 shows the ship hull formopti-
mization problem, including the objective function and
design variables, constraints and optimization flowchart.
In Section 4, the optimization methods, including the
geometry reconstruction, optimizer and resistance eval-
uation method are shown. At the same time, the verifica-
tion of the XPANmodel method is carried out to predict
the wave-making resistance of the Wigley ship. Section
5 describes the construction of the surrogate models and
the accuracy assessment that is performed to verify the
reliability of the DBN-based resistance predictionmodel.
Then, Section 6 presents the example of the ship hull
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Table 1. Wigley main properties.

Dimensions Value (m)

Lpp 2.00
Breadth 0.20
Draft 0.125

form optimization using the Wigley ship. The optimiza-
tion results for certainty and uncertainty methods are
also compared and discussed in this section. Finally, the
results of this study and suggestions for future work are
shown in Section 7.

2. Ship geometry

A Wigley ship is used as the research objective in this
study. The ship hull form formula can be written as:

y = B
2

[
1 −

(
2x
L

)2
] [

1 −
( z
d

)2]
(1)

Table 1 shows the main properties of the Wigley ship.
Lan (2012) pointed out that the Wigley ship is always
optimized to reduce the wave-making resistance as wave
contours on the free surface are very small. Therefore,
the wave-making resistance of the Wigley ship is set as
optimization objective parameter in this study.

3. Optimization problem

3.1. Objective function

As shown in Section 2, the wave-making resistance RW is
set as the objective function at design speed Fr = 0.35.
The wave-making resistance coefficient CW is used to
express the calculation results of the RW in the following
sections.

3.2. Design variables and constraints

Only the port side of the Wigley ship is used for the
numerical calculation in order to improve the CFD com-
puting efficiency. First of all, a control volume is estab-
lished around the original Wigley ship hull with some
points and connections, as shown in Figure 1. The first

Figure 1. The optimization position for the Wigley ship.

Table 2. The design variables and its movement scope.

Design variables a b

Constraints −0.035 ≤ a ≤ 0.035 −0.035 ≤ b ≤ 0.035

half of the hull is fixed, while the second half of the hull
is set as the optimization region. For the ship hull form
optimization, two design variables are used to change
the second half of the hull geometry. Table 2 shows the
design variables used in this study. Four points can be
moved along the y-axis to deform the ship surface, and
two design variables (a and b) are selected to show the
moved distance for these four points. Considering the
size of the Wigley ship, the movement scope of a and b
ranges from −0.35 to 0.35. The displacement is fixed by
changing the draft of the deformed ship.

3.3. Optimization flowchart

The NLPQL method is selected as the optimization
algorithm to optimize the second half of the Wigley ship
geometry with two design variables. The surrogatemodel
is employed to approximate the wave-making resistance
for different deformed ship hulls. Figure 2 shows the ship
hull form optimization flowchart, the optimization steps
can be summarized as:

(1) Deform the ship hull geometry using the FFD
method by using two design variables.

Figure 2. A ship hull form optimization flowchart.
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(2) Calculate the draft for each new ship hull.
(3) Calculate the CW by using a different surrogate

model.
(4) Change the two design variables using the NLPQL

method, and repeat Steps (1)–(4) until the termina-
tion condition is met.

4. Optimizationmethods

In the construction of a ship optimization method, three
main structures are essential: the optimization method,
the geometry reconstruction and the calculation method
for the ship’s resistance, as shown in Figure 3. Therefore,
the following sections respectively show the geometry
reconstruction method, optimizer and resistance evalu-
ation method.

Figure 3. A ship hull form optimization platform.

4.1. Geometry reconstruction

The geometry reconstruction is the central section to
obtain suitable deformed ship hulls. In this study, the
FFD method is used to deform the geometry of the
Wigley ship, as it has been extensively used in dif-
ferent fields (Chen et al., 2019; Li et al., 2016; Liu,
2019; Miao et al., 2020; Shen et al., 2020; Yang, 2020),
obtaining good results. This method can deform the
ship geometry easily. In order to show the deforma-
tion effect for the original Wigley ship, two examples of
the ship hull form deformation have been made using
the maximum (a = −0.035, b = −0.035) andminimum
(a = 0.035, b = 0.035) boundaries. Figure 4 shows a
comparison of the cross-section and longitudinal section
for original and deformed hulls. According to the figure,
the deformed ship surface is outward expansion for
the design variables: a = −0.035, b = −0.035 in the
Figure 4(a) and inward shrinkage for the design vari-
ables: a = 0.035, b = 0.035 in Figure 4(b). Therefore,
this method is used to change the Wigley ship geometry
in order to obtain the deformed ships for the hull form
optimization in the following sections.

4.2. Optimizer

The NLPQL algorithm is selected as the optimization
method to find the optimal ship which is similar to the
original ship. It is an improved Sequential Quadratic

Figure 4. The hull lines for different design variables for different hulls. (a) The hull lines with the design variables: a = −0.035,
b = −0.035 and original hull and (b) the hull lines with the design variables: a = 0.035, b = 0.035 and original hull
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Figure 5. The mesh on the free surface and ship hull surface.

Figure 6. CW changes with Fr.

Programming method, with an additional linear search-
ing. In this algorithm, the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method is employed to update the
matrix.

4.3. Resistance evaluationmethod

4.3.1. CFDmethod
The potential theory, that is, the Rankine-source method
is selected to calculate the CW of the Wigley ship. All
calculations are performed using the XPAN module on
the SHIPFLOW software. Figure 5 shows the mesh on
the free surface and on the ship hull surface. The total
number of the panels is 1996, and the total number of
the nodes is 2159 for the current computational model.
Figure 6 shows a summary of the CW that was obtained
using XPAN module and FINE/Marine method (Chen,
2016) and the experimental data (Chen, 2016). Accord-
ing to the figure, the wave-making resistance coeffi-
cients obtained by the XPAN module and FINE/Marine
method (Chen, 2016) are found to be inconsistent with
the EFD value (Chen, 2016). While the average devia-
tion of the wave-resistance is reduced by 13.65% using
the XPAN module at Fr = 0.25, 0.267 and 0.316 com-
pared to the results obtained by using the FINE/Marine
model. It can be found that the CW obtained using the

Figure 7. The BP neural network (Han, 2007).

XPANmodulemethod is better than that obtained by the
FINE/Marine method from Chen (2016). Therefore, the
SHIPFLOW software is employed to calculate the CW for
different deformed ships at different speeds in this study.

4.3.2. Surrogatemodels
The surrogate model is a suitable method for improv-
ing the wave-making resistance prediction efficiency for
a Wigley ship compared to the CFD method. In this
study, four surrogate models are employed and discussed
for the wave-making prediction. Therefore, the follow-
ing section shows the four surrogate models used in this
study.

4.3.2.1. BPmethod. The BPmethod is a typical feedfor-
ward network. Figure 7 shows an example of the three
layers BP neural network (Han, 2007). The sigmoid func-
tion is set as the activation function in this algorithm.
The optimal prediction data can be obtained by continu-
ously adjusting the backward propagation errors between
the actual output values ym and desired output values zm
(Han, 2007).

4.3.2.2. Elman method. Different from the BP method,
the Elmanmethod includes four typical neural networks.
Figure 8 presents the structure of the Elmanmethod (Shi,
2006). The input layer is used to transmit the signal of the
initial sample data xn, and the output layer plays the role

Figure 8. The Elman neural network (Shi, 2006).
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Figure 9. The RBF neural network (Feng & Lu, 2010).

of the linearweighting, which is the same as the BPneural
network. The context layer, a special layer in the Elman
algorithm, can memorize the first output data of the hid-
den layer and then return back to hidden layer in order
to improve the performance of processing the dynamic
information (He, 2016).

4.3.2.3. RBF method. The structure of the RBF method
can be found in Figure 9 (Feng & Lu, 2010). The input
layer also carries out the signal transmission for the orig-
inal samples data xn, like the input layer of the BP and
Elman neural networks. The non-linear transformation
is carried out firstly, then the linear transformation is
conducted in this algorithm (He, 2016). Finally, the out-
put layer is used to adjust the linear weights of the RBF
method. For the hidden layer, the Gauss function is set as
activation function.

4.3.2.4. DBN method. The DBN method is a multi-
layer probabilistic generativemodel developed byHinton
et al. (2006), which is constructed by a great number of
Restricted Boltzmann Machines (RBM) models (Feng,
2015). The RBMmodel includes hidden and visible layers
(as shown in Figure 10). The energy of joint configura-
tion between the visible and hidden layers can be defined
as (Shan, 2015):

E(v, h|θ) = −
n∑

i=1

m∑
j=1

viwijhj −
n∑

i=1
civi −

m∑
j=1

djhj (2)

where vi and hj are binary states, wij are connection
weights, ci and dj are biases.

Figure 10. The RBMmodel (Bengio, 2009).

The joint distribution can be expressed as (Zhang,
2016):

P(v, h|θ) = 1
Z(θ)

e−E(v,h|θ) (3)

Z(θ) =
∑
v

∑
h

e−E(v,h|θ) (4)

where Z(θ) is the partition function.
According to Equations (2)–(4), the individual activa-

tion probability of hj given visible layer, or vi given hidden
layer can be obtained by (Wang, 2015):

P(hj = 1|v, θ) = σ (dj +
n∑

i=1
viwij) (5)

P(vi = 1|h, θ) = σ (ci +
m∑
j=1

hjwij) (6)

The DBN algorithm, a new unsupervised learning
model, is different from the other three neural net-
works since it includes two training steps in order to
obtain accurate prediction results.ManyRBMmodels are
included in the first training step. The first RBM model
is trained using the Contrastive Divergence algorithm in
order to obtain the hidden layer parameters (Li, 2014).
Then, the second RBM model is trained using the hid-
den layer parameters of the first RBM model (Li, 2014).
After pre-training all the RBM models using the Con-
trastiveDivergence algorithm in the pre-training step, the
BP neural network is used to adjust the parameters and
improve the prediction accuracy of the DBN model in
fine-tuning step (Li, 2014). After the completion of these
two steps, the training process of the DBN method is
completed.

5. The accuracy evaluation for surrogate
models

5.1. Evaluation criteria

The RMSE and MAE and multiple correlation coeffi-
cient R-square (R2) are used to verify the reliability of the
approximate model. The formula can be written as:

RMSE =
√√√√1

n

n∑
i=1

(Suri − Poti)2 (7)

MAE = 1
n

n∑
i=1

|Suri − Poti| (8)

R2 = 1 −
∑n

i=1 (Poti − Suri)2∑n
i=1 (Poti − Ave)2

(9)
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Figure 11. The twodimension spatial distribution for 100 sample
ships.

where Poti is the i-th CW obtained using potential theory
(XPANmodel),Ave is the average value of Poti, Suri is the
i-th CW obtained using the surrogate model. While the
smaller the RMSE and MAE, the higher is the prediction
accuracy. If the value of R2 is closer to 1, the prediction
accuracy of the surrogate model is higher.

5.2. Data preparing

In order to obtain suitable samples, the Opt LHDmethod
is employed in this study to obtain the sample data in
the ship hull form optimization space. Table 3 shows the
100 sample ships data, as well as the corresponding draft
and the CW . The CW for the sample ships is calculated by
using the potential theory in the Section 4.3.1. Figure 11
shows the sample ships distribution in the fix ship hull
form optimization space. For obtaining the samples in
themulti-dimensional fixed optimization space using the
design of the experiment method, the noise data seems
inevitable (Huang, 2018). In order to obtain suitable sam-
ple data, the median absolute deviation (MAD) method
is employed in this paper to smooth the noisy sample
data. Since the sample data for variable b is not changed,
Figure 12 only shows the results of the revised data using
the MAD method for the variable a and the objective
function CW . The red points in the figure are the original
data obtained using the Opt LHD method that needs to
be revised. The black lines show the revised sample data
using the MADmethod.

5.3. Establishment of the surrogatemodels

The parameters of the surrogate models have a great
influence on the calculation results. For different surro-
gate models, the selection of parameters is very com-
plicated. With the improvement of the mathematical
theory, this problem can be solved using optimization

Figure 12. The filter noise for the sample ships data using the
MAD method. (a) The filter noise for the design variable a and (b)
The filter noise for the objective function CW .

Table 3. Sample ships obtained using Opt LHD method, includ-
ing the corresponding draft and CW.

No. a b Draft
CW calculated by
potential theory

1 −0.02369 0.00389 0.12341 0.0014617
2 0.03217 0.01379 0.12874 0.0013377
3 −0.00318 −0.02227 0.12317 0.0015592
4 0.02086 −0.00601 0.12621 0.0012815
5 −0.0152 −0.01379 0.12284 0.0015683
. . . . . . . . . . . . . . .
96 −0.0046 −0.0152 0.1235 0.0015288
97 0.02227 0.02227 0.12863 0.0011911
98 −0.01732 −0.02086 0.12218 0.0016535
99 −0.01308 0.01308 0.12497 0.0013228
100 −0.01096 −0.00035 0.12411 0.0014359

technology. As the particle swarm optimization (PSO)
algorithm is a good global optimization method using
in the different optimization problems (Moradi et al.,
2020; Song et al., 2021; Yadav & Anubhav, 2020; Zhang
et al., 2021), a PSO algorithm is employed in this study
to find the optimal parameters for different surrogate
models with the k-fold cross-validation method (Zhou
et al., 2017). The optimization step can be summarized
as follows:

(1) Define the variables (parameters of the surrogate
model) and the PSO parameters.

(2) Generate a set of variables randomly using the PSO
algorithm.



754 S. ZHANG ET AL.

Figure 13. The parameters optimization for BP neural network.

(3) The samples data is divided into ten parts, one part
is set as validation set sequentially, the other nine
parts are set as the training set to train the surrogate
model.

(4) Establish the surrogate model using the parameters
obtained by Step (2) and then obtain the prediction
values.

(5) Calculate the RMSE value 10 times using Equation
(7). Then calculate the average RMSE value.

(6) Repeat Step (2) to Step (5) until the termination
condition is satisfied.

(7) Output the optimal parameters for different surro-
gatemodels with theminimumaverage RMSE value.

As the number of neurons in the hidden layer and the
learning rate is very important for the prediction results
of the BP neural network, these two parameters are opti-
mized. Figure 13 shows the optimization iterative process
for the BP neural network parameters.

The number of the hidden layer are always deter-
mined using Equation (10) (Li et al., 2015). For the
current Elman neural network, two variables (a and b)
are selected as the input values, and one variable (wave-
making resistance coefficient) is set as the output value.
Therefore, the number of the hidden layer is from 3 to 12.
Figure 14 shows the averageRMSEvalue changeswith the
hidden layers. According to the figure, the average RMSE
value increased firstly, then decreased. Finally, the aver-
ageRMSEvaluewas the lowestwhen the hidden layerwas
set as 12. Therefore, the hidden layer was selected as 12
to carry out the prediction of the wave-making resistance
of the Wigley ship.

nlayers = √
ninput + noutput + η (10)

where nlayers represent the number of the hidden layer,
ninput is the number of the input variables, noutput is the

Figure 14. The average RMSE value changes with network layers
for Elman neural network.

Figure 15. The average RMSE value changes with spread coeffi-
cient for RBF algorithm.

number of the output variables and η is the parameter
from 1 to 10.

For theRBFneural network, the selection of the spread
coefficient is very important for the calculation results.
Figure 15 shows the averageRMSEvalue changeswith the
spread coefficient. The average RMSE value is the low-
est when the spread coefficient is bigger than 9. With the
increase of the spread coefficient, the prediction accuracy
is increased firstly. When the spread coefficient is upper
to 9, the prediction accuracy tends to stabilize.

For the DBN algorithm, the learning rate and the
momentum are set as the optimization variables. After
the completion of the optimization, the minimum aver-
age RMSE has been obtained. Figure 16 shows the opti-
mization iteration history for the learning rate and the
momentum.
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Figure 16. The parameters optimization for DBN algorithm.

Table 4. A comparison of average RMSE value for the surrogate
model training.

Surrogate model BP method Elman method RBF method DBNmethod

Average RMSE 1.4 e−05 0.981 e−05 0.975 e−05 0.966 e−05

Table 4 summarizes the average RMSE value for the
different surrogate model training. As can be seen from
the table, the BP method has the largest average RMSE
value, while the DBN method shows the lowest average
RMSE value. It can be deduced that the DBN method
has the best prediction accuracy, while the BP method
shows theworst prediction accuracy for thewave-making
resistance of the Wigley ship.

5.4. Accuracy verification for different surrogate
models

To further verify the prediction accuracy for different
neural networks, an Opt LHD algorithm is employed to
design another 20 sample ships, as shown in Figure 17.
Table 5 shows the test samples, as well as the correspond-
ing draft andwave-making resistance coefficientCW . The

Figure 17. Sample ships distribution for the test data.

Table 5. Test samples obtainedusingOpt LHDmethod, including
the corresponding draft and CW.

No. a b Draft

CW calculated
by potential

theory

1 −0.0203 0.0018 0.12352 0.0014767
2 −0.0129 −0.0129 0.12307 0.0015451
3 −0.0055 0.0092 0.1253 0.001307
4 −0.0239 0.0313 0.12552 0.0012526
5 0.0055 0.035 0.1283 0.0012138
. . . . . . . . . . . . . . .
16 0.0018 −0.0055 0.12472 0.0013231
17 0.0166 0.0055 0.12679 0.00125
18 −0.0018 −0.0276 0.12288 0.0016162
19 −0.035 −0.0018 0.12218 0.0015985
20 −0.0166 −0.035 0.12126 0.0017784

neural networks present in Section 5.3 are used in this
section to estimate the prediction results.

Figure 18 shows the prediction results by using the BP,
Elman, RBF and DBN methods, respectively. As shown
in Figure 18, the CW obtained by the DBN method is
much closer to the potential theory results comparing to
the other three neural network algorithms.

For further illustrating the prediction performance
for different methods, the RMSE, MAE and R2 values
are calculated and summarized in Table 6. As can be
seen from the table, BP method has the largest RMSE,
MAE and the smallest R2, while DBN method has the
smallest RMSE, MAE and largest R2 in the prediction
of CW . As the advantage of the context layer added
in the Elman method, the prediction accuracy of the
Elman surrogate model is better than the BP surro-
gate model. In the RBF algorithm, the Gauss function
is used to calculate the weight, achieving better predic-
tion performance comparing to the BP and Elman neural
networks. The RBF and DBN neural networks are two
effective methods for predicting the CW . However, the
DBN method is more accurate than the RBF method in
the wave-making resistance prediction. It concludes that
the DBN surrogate model is a promising new surrogate
model to predict the wave-making resistance for Wigley
ship.

5.5. Accuracy verification for training set size

As the training set size of the surrogate model is one of
the most important part in the neural network predic-
tion. In this section, the DBN method is employed to
verify the prediction results for the different training set
sizes. Another three-set sizes are selected as the training
samples using the Opt LHD method, the sample ships
distribution for the different training sizes are shown in
Figure 19. Following this, the MAD method is used to
smooth the sample data. Figures 20–22 show the results
for different samples.



756 S. ZHANG ET AL.

Figure 18. A comparison of CW among the differentmethods. (a)
A comparison of the CW for potential theory and BPmethod, (b) a
comparison of the CW for potential theory and Elmanmethod, (c)
a comparison of the CW for potential theory and RBF method and
(d) a comparison of the CW for potential theory and DBNmethod.

Table 7 shows the prediction results for the different
training sizes. As can be seen from the table, the aver-
age error calculated for 50 samples is the highest when
compared to those calculated for the other three train-
ing sizes, and the error calculated for 100 samples is the

Table 6. A comparison of RMSE,MAE and R2 for thewave-making
prediction.

Surrogate model BP method Elman method RBF method DBNmethod

RMSE 6.01 e−05 4.3 e−05 4.19 e−05 4.05 e−05

MAE 3.3 e−05 2.87 e−05 2.67 e−05 2.21 e−05

R2 0.839 0.908 0.912 0.918

Figure 19. The sample ships distribution for the different train-
ing sizes. (a) 50 sample ships distribution, (b) 150 sample ships
distribution and (c) 200 sample ships distribution.

lowest. The average error calculated by the 150 samples
is approximately the same as the results calculated for
200 samples. The prediction results indicate that as the
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Figure 20. The filter noise for the 50 sample ships

Figure 21. The filter noise for the 150 sample ships. (a) The filter
noise for the design variable a, (b) the filter noise for the design
variable b and (c) the filter noise for the objective function.

number of samples increases, the improvement in the
prediction accuracy is not obvious. Furthermore, only
the value of R2 calculated for 50 samples is less than 0.9,
and the prediction results calculated for the other three

Figure 22. The filter noise for the 200 sample ships. (a) The filter
noise for the design variable a, (b) the filter noise for the design
variable b and (c) the filter noise for the objective function.

samples are greater than 0.9. The results show that after
three training sizes satisfy the accuracy requirement for
wave-resistance prediction, while the 100 samples show
the best prediction effectiveness.

6. Optimization example

As can be seen from above, the DBN method shows
good resistance prediction performance for a Wigley
ship. Therefore, in this section, the ship design opti-
mization method is established using DBN surrogate
model and FFD and NLPQL methods. The optimiza-
tion work is set up on the Core-i5 CPU computer. All
the CFD simulations are performed using the XPAN
model on the SHIPFLOW software. The NLPQL is uti-
lized to find the optimal solution in a fix ship hull
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Table 7. Prediction results for the different training sizes.

Training sizes RMSE MAE R2 Average error %

50 samples 5.52 e−05 3.64 e−05 0.839 3.95
100 samples 4.05 e−05 2.21 e−05 0.918 2.24
150 samples 4.57 e−05 2.69 e−05 0.901 2.963
200 samples 4.21 e−05 2.64 e−05 0.91 2.958

form optimization space, the initial design variables
for the NLPQL algorithm are set as a = −0.02326,
b = −0.02513, the wave-making resistance coefficient
for the initial ship is 0.0017431.

The iterative calculations and coupling with other
parameters in the ship hull form optimization can lead
to significant errors for the optimization results due to
the influence of the ship speeds (Hou et al., 2016). There-
fore, the uncertainty optimization was also conducted in
this study using the interval number method. The uncer-
tainty level was set as 4% and 5% for the design speed.
The lower boundwas 1.487m/s and the upper boundwas
1.611m/s at 4% numerical uncertainty, while the lower
bound was 1.472m/s and the upper bound was 1.627m/s
at 5% numerical uncertainty, as shown in Table 8. The
objective function was set as the mean CW of the lower
and upper bounds. Table 8 also shows the optimiza-
tion results using the different optimization methods.
To obtain the wave-making resistance of one deformed
ship, 30 s and 4 s were required using the CFD method
and DBN-based method, respectively. Compared with
the CFDmethod, the DBN-based method can effectively
minimize the wave-making resistance computation time
for about 10 times. The percentage of resistance reduc-
tion in Table 8 is the error between the optimal and the
original ships.

According to Table 8, the certainty and uncertainty
optimization methods can both obtain the optimal ship.
The CW of the optimal ship hull decreased 12.73% and
12.55% at the uncertainty level of 4% and 5%, respec-
tively. The optimal ship hull form has the best resistance
reduction at certainty optimization than the other two
uncertainty levels. As the speed perturbation is added in
the ship hull form optimization, the higher parameter
uncertainty level leads lower optimal solution. It can be
deduced that with the increase of the uncertainty level,
the change of the ship speed has a certain impact on
the optimal solution for the Wigley ship. However, the

influence is very small. For the certainty optimization, the
CW of the optimal ship hull form decreased by 12.90%
and 12.60% using the CFD and DBN methods. It can
be found that the optimal solution obtained using the
DBN-based optimization method is almost the same as
its obtained using the CFD-based optimization method.
The optimization results indicate that DBN-based ship
hull form optimization can be applied to optimize the
Wigley ship for reducing wave-making resistance.

Figure 23 shows the ship hull transverse lines for
the original hull and optimal hull obtained by using
the DBN-based optimization method. According to
Figure 23, the optimal hull lines show good smoothness.
The optimal hull form is inward shrinkage to achieve
the reduction of the CW . The draft for the optimal hull
increases about 4.65%. The CW of the optimal ship opti-
mized using the DBN network is 0.00117823, and it opti-
mized using the CFD method is 0.00117075. The devi-
ation between the CFD method and the DBN method
is only 0.638%, which further indicates that the DBN
method is suitable for the wave-making resistance eval-
uation.

Figure 24 summaries the wave contours for original
and optimal hulls. According to Figure 24, for optimal
ship hull, the forward shoulder and sternwaves have been
sharply reduced compared to the original ship, indicating
the reduction of the ship’s wave-making resistance.

Figure 25 summaries CW changes with different
Froude numbers. The CW of the optimal ship hull form
has been reduced from Fr = 0.28 to Fr = 0.36 compar-
ing to the original ship, and it achieves large reduction at
Fr = 0.28. It can be deduced that the current optimiza-
tionmethod can obtain the suitable ship hull form, which

Figure 23. The transverse lines for different ship hull lines.

Table 8. Optimization results using the different methods.

Ship speed

No. Optimization methods Uncertainty level Lower bound Upper bound Resistance reduction %

1 CFD certainty optimization 0 – – 12.90
2 CFD uncertainty optimization 4% 1.487 1.611 12.73
3 CFD uncertainty optimization 5% 1.472 1.627 12.55
4 DBN surrogate model 0 – – 12.60
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Figure 24. Details of the free surface wave contours for different
ship hull form.

Figure 25. CWchanges with different Fr.

achieving the reduction in the CW not only at design
speed but also near the design speed.

7. Conclusion

A comparative analysis of BP, Elman, RBF and DBN neu-
ral networks was carried out in this study to discuss the
prediction performance of the CW firstly. The prediction
results show the DBN method is better than the other
three surrogate models shown in this paper in the pre-
diction of CW . Following this, the DBN-based ship hull
form optimization platform was built for reducing the
CW of the Wigley ship, integrating the FFD and NLPQL
and DBN algorithms. At the same time, the certainty
and uncertainty optimization problems were also carried
out and discussed. The optimization results show that
with the increase of the uncertainty level, the optimiza-
tion results are poor. It can be found that the ship speeds
will influence the results for the CFD uncertainty opti-
mization, while the influence is not very large. Compared

with the traditional CFDoptimizationmethod, theDBN-
based optimization method can also be used to optimize
the Wigley ship for reducing the CW .

The optimization platform presented is the sin-
gle objective optimization problem at design speed
Fr = 0.35 using a local optimal algorithm. Further stud-
ieswill carry out themulti-speed optimization to improve
the ship hydrodynamic performance at different speeds
using a global optimization algorithm.
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