
US 20210176006A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0176006 A1

(43) Pub . Date : Jun . 10 , 2021 Maunder et al .

(54) PARALLEL TURBO DECODING WITH
NON - UNIFORM WINDOW SIZES

(71) Applicant : ACCELERCOMM LIMITED ,
Hampshire (GB)

(72) Inventors : Robert Maunder , Hampshire (GB) ;
Matthew Brejza , Hampshire (GB) ;
Luping Xiang , Hampshire (GB)

(21) Appl . No .: 16 / 475,640

(22) PCT Filed : Feb. 6 , 2018

(86) PCT No .: PCT / GB2018 / 050332

$ 371 (c) (1) ,
(2) Date : Jul . 2 , 2019

(30) Foreign Application Priority Data

Feb. 13 , 2017 (GB) 1702341.7

frame . The data symbols of the frame have been encoded
with a turbo encoder comprising upper and lower convolu
tional encoders which can each be represented by a trellis ,
and an interleaver which interleaves the encoded data

between the upper and lower convolutional encoders . The
turbo decoder circuit comprises a clock , a configurable
network circuitry for interleaving soft decision values , an
upper decoder and a lower decoder . Each of the upper and
lower decoders include processing elements , which are
configured , during a series of consecutive clock cycles ,
iteratively to receive , from the configurable network cir
cuitry , a priori soft decision values pertaining to data sym
bols associated with a window of an integer number of
consecutive trellis stages representing possible paths
between states of the upper or lower convolutional encoder .
The processing elements perform parallel calculations asso
ciated with the window using the a priori soft decision
values in order to generate corresponding extrinsic soft
decision values pertaining to the data symbols . The config
urable network circuitry includes network controller cir
cuitry which controls a configuration of the configurable
network circuitry iteratively , during the consecutive clock
cycles , to provide the a priori soft decision values for the
upper decoder by interleaving the extrinsic soft decision
values provided by the lower decoder , and to provide the a
priori soft decision values for the lower decoder by inter
leaving the extrinsic soft decision values provided by the
upper decoder . The interleaving performed by the configur
able network circuitry controlled by the network controller
is in accordance with a predetermined schedule , which
provides the a priori soft decision values at different cycles
of the one or more consecutive clock cycles to avoid
contention between different a priori soft decision values
being provided to the same processing element of the upper
or the lower decoder during the same clock cycle . Accord
ingly the processing elements can have a window size which
includes a number of stages of the trellis so that the decoder
can be configured with an arbitrary number of processing
elements , making the decoder circuit an arbitrarily parallel
turbo decoder .

Publication Classification

(51) Int . Cl .
H04L 1/00 (2006.01)
HO3M 13/25 (2006.01)
HO3M 13/27 (2006.01)
HO3M 13/29 (2006.01)
HO3M 13/45 (2006.01)

(52) U.S. CI .
CPC H04L 1/0045 (2013.01) ; H04L 1/006

(2013.01) ; H04L 1/0071 (2013.01) ; H03M
13/45 (2013.01) ; HO3M 13/27 (2013.01) ;
HO3M 13/2957 (2013.01) ; HO3M 13/258

(2013.01)

(57) ABSTRACT

A turbo decoder circuit performs a turbo decoding process to
recover a frame of data symbols from a received signal
comprising soft decision values for each data symbol of the

UL

Eh 104 104
103 NB 1101

103

101 104
eNB 102

CORE NETWORK

104

103 NB

104 Y 101
UE

104

Patent Application Publication Jun . 10 , 2021 Sheet 1 of 19 US 2021/0176006 A1

wy

Y ***

?????
104 1

1037 eNB
101

103

Y
101 104

eNB 102
CORE NETWORK

j

104

.

EE

1037 NB
1
1
1 101

UE
104

FIG . 1

Patent Application Publication

204

206

208

210

212

214

216

DATA FORMATTER
ERROR CORRECTION ENCODER

SYMBOL FORMER

SYMBOL INTER LEAVER

OFDM MODULATOR
TRANSMITTER
DULA

FIG . 2

302

304

306

Jun . 10 , 2021 Sheet 2 of 19

301

308

RF RECEIVER

OFDM DEMODULATORI EQUALISER

TURBO DECODER

FIG . 3

US 2021/0176006 A1

Patent Application Publication Jun . 10 , 2021 Sheet 3 of 19 US 2021/0176006 A1

Turbo encoder

b ? * byn 62,2 65.2 64,2 63 baki by Ky

Upper convolutional encoder

641 401
b4,2
64.3

biki

bit biz 613 Diki 404

403

Lower convolution encoder

6211 oby b221 1 632 623 033 62 kl 10K
FIG . 4

Patent Application Publication Jun . 10 , 2021 Sheet 4 of 19 US 2021/0176006 A1

416

b4 = [by K
408 408

410
408 406

2 , k] 1
406 406 418

by = [4K D - 0-0
1 414 408 426

2 . 1b3.k) x1 + 1
Turbo code

Internal
Interleaver

408 408
408 b = lb2x) king

420 406 406 422

H - 6 - Ó
403

408 IK1 + 3 [b3 , k] Kit1 79
424

FIG . 5 ::

Patent Application Publication Jun . 10 , 2021 Sheet 5 of 19 US 2021/0176006 A1

SK1 Sk
1 1

2 2 b1 (SK - 1 , Sk) = 0
bz (Sk - 1 Sk) = 0
b3 (SK - 1 , Sw) = 0

3 3

W.KEwrd b1 (SK - 1 , Sk) = 0
b2 (SK - 1 Sk) = 1
b3 (SK - 1 , Sk) = 0

5 5 bi (Sk - 1 , Sk) = 1
b2 (SK - 1 . Sk) = 0
b3 (SK - 1 , Sk) = 1

6

YAWY

b1 (SK - 1 , Sw) = 1
b2 (SK - 1 , Sw) = 1
b3 (SK - 1 , Sk) = 1 7 7

8 8

FIG . 6

Patent Application Publication Jun . 10 , 2021 Sheet 6 of 19 US 2021/0176006 A1

Log - BCJR turbo decoder
Forward ::: D22 ua 20,3

2,3 3,1 bak 63,3 recursion 52 KI
su
do 02 03 OKMI ??

630
610 610 610

630 630
610

Backward
recursion

601

BO By Bi BK - 1 BKI

630 612 612 612 612

u , a bia que
01,1

mu , a
1,2 14 a 649 bu 1 , K1 biki

604 Interleaver
-la ble bik -1.a

biki 1,1 1,1 012 1,2 ' 1,3 1,3
622 622 622 622 Backward

recursion

?? B2 BKI
630

602 620 620 620 620 Forward
recursion

- 1
03 OK = 1 1 do dz ?? ,

l , a 630 Fl , a 63,2 ba 02,1 baki 2,2 63 , K ! 2,3

FIG . 7

(a)

LLR index k

(b)

LLR index K '

0

0

Wip

Patent Application Publication

counter value c

01 / 2

counter value o

01 / 2

**
TA

Jun . 10 , 2021 Sheet 7 of 19

Legend :

Upper (1)

Upper (2)

Upper (3) and (4)

Upper (3) and (4)

Lower (1)

Lower (2)

Lower (3)

Lower (3)

* n . the

FIG . 8

US 2021/0176006 A1

Patent Application Publication Jun . 10 , 2021 Sheet 8 of 19 US 2021/0176006 A1

Pipelined fully - parallel turbo decoder
-tu , a tu , a tu , a

b2,1 03,1
tu , a t , u , a

62,2
1802 1806

tua
62,3 b2 , K u , a

53.2
1808

63,3 b3 , KI
706 1802 1808

706 -706
do

tu
a . 02 03

0
BO
1801

B ; BO B BKPW ?? ,
1801

1802 1808 706 1802 1806 1808

ritua tua tue u , a tu , a tu , e tu , e
21,1 b1,2 01,2 1,3

-tue
1,3 $ 1 , K ! 61 ,

Interleaver
.

-tle -t , , a
612

tla
61,3 1,2 61,3 61 , K 01 , K1 K !

1808 708 1801 1802 1808 708 1802 1801
708

1,1 BH By BS B3

at ? os akt dk
1806 1808 708 1802 1806 1802

1808
-tla , la

62,1
-- , la
62.2

-tla
63,2 63,1

-1,1 , a
2,3 b2 , K 63,3 b3.KI

FIG . 9

Patent Application Publication Jun . 10 , 2021 Sheet 9 of 19 US 2021/0176006 A1

21.11 to 1.F] B 1.) . 11 ?
11

1001 1006 Upper
BRIL

$ 1.6) 100K 1006Upper ministrin Upper ingrandi
PE 1 PE 2

a1.G] a [1.G]
1028 69 (1.713 69 11.1] birini bf (1.1]

A [1.1 ROMP 1,0)
ZS 1006 Intlyr

ROM
control

1034

12,02
Counter

o { 1 , .X] ROM DIIS pins ZS A [1.71 1032 1026 1030 b (1. In 111] [1.IN 11.1)
af1.G] 1008 Lower Lower

PE 2 1002 PE 1
w

b911F1 1008

FIG . 10

Patent Application Publication Jun . 10 , 2021 Sheet 10 of 19 US 2021/0176006 A1

b? [1.F]
bal.f1 og 11.F] 69 (1.FM b bælt . F1 farge.F] ball . Joilla

B12
211.6

BATU B [1..G] B [1.6) B [1 .] Upper
PE 3

Upper
PE 4

Upper
PEP

Upper
TE

Biyah 1010

1006 Beneš network 1006 1006

Beneš network

bil . to 1.2 1012

Lower Lower
PE 3

Lower
PE4

Lower
TE ???

B [1..6) B [16] B [1..G]

b 1.7 1008 08 / 1.91 % 1008 bl.F) * 1008 b @ [1.71
bill F1

FIG . 10 (Continued)

.

1101

1102

1006. 1008

:

AM1.11 % 01.F] AM 1. VI? to 1.F]

AW 1.115 $ 0W 1.F] AW1..M OLF]
A [1.11 RAM 14311.V . A 1./RAM . JA 1.V]

1104

m1105

PI1F Dk.F

] D D1 [1..F14 P11.11

Patent Application Publication

+

F

max Wmx

W ,
max

1116

1118

1124

$ 11..G]

-B

Jun . 10 , 2021 Sheet 11 of 19

0
? ????

1122

6311.1
$ 11.G Bwd

B | 16]

sub - PE

1120
1178

1114

DW1..G]

ALIMIT

[1.1 BWd

111..8]

Wmax

RAM

X

D [...]

1176

1112

(1,8)

RAM AW1.1]

Fwd 11.11
RAM control

1.1

food
G

CLX]

control [1]

1174

1134

A A

US 2021/0176006 A1

FIG . 11

BIL..GH

a { 1 , .G]

(11.G] 1st fwd

SUD - PE

011.61

aft.G]

1130

1132

1140

Patent Application Publication

1142

- , - , -0) , -60]

AA1138 € 11.414 46911.-]

1150

2nd fwd] b [1.1)

Sub - PE 091111 011
A

1170

A

Jun . 10 , 2021 Sheet 12 of 19

1108

1110
1162

1160

X

011.X

DW1020
AI

1.8

ALLY
ROM

RAM

ROM

[

A [1.71

RAM

ROM

Affi.V 7

contou
C [X]

DW [1.1] AM1..V ") D ' [1.V "]

c11.xjLconirah

max

maxl

D [1..V '] A [1..V DU]

b1n1 101.7)

191111 101101)
fafter]

FIG . 11 (Continued)

US 2021/0176006 A1

1106

1107

1104

Patent Application Publication Jun . 10 , 2021 Sheet 13 of 19 US 2021/0176006 A1

LLR index k ' LLR index k ' (a) (b)
W2 Wie o W.21 , TW27W

t
1
1

1 .

1 3

. counter value c 9/2 counter value c
1

he
1

CA
Even window length Wip
even schedule period C

Odd window length Wip
even schedule period C

LLR index K ? LLR index k ' (c) (d) [W.] W . , / 27 Wie
3

:

1

2 counter value c LC / 21 counter value c LC / 2)
.

.

1
2

3

Even window length Wip
odd schedule period C

Odd window length Wip
odd schedule period

Legend :
1st upper forward Upper backward 2nd upper forward
1st lower forward Lower backward 2nd lower forward

FIG . 12

1301

1301

Patent Application Publication

??? b2K b2x + b3k

b1k b3k ???

1306

1306

1301

0

1301

0

B { 1 }

I

(1) 1-49

Ok - 1 (1)

Xew

ar (1)

1304

1306

FO

Jun . 10 , 2021 Sheet 14 of 19

Bal24 : 0-6

xew

* BK - 1 (2)

dk - 1 (2)

0-8

max

04 (2)

1302

1304

1306

B43F70-6
xeu

BK - 1 (3)

k
Ox - 1 (3)

xeu

ak (3)

1302

US 2021/0176006 A1

FIG . 13

el

fe

Bxd40-6
xew .

BK - 1 (4)

Ok1 (4) -70-6

??? .

ak [4)

1302

1304 1304

1306 1306

Patent Application Publication

HO

B445-70-3

-BK - 1 (5)

Qk - 1 (5) .

0-8

max

ax (5)

1302 1304

1304

1306

BHO) B40 Fod

max

BK - 1 (6)

Q % -1 (6)

01 10-6
max .

ak (6)

1302 1304

1304

Jun . 10 , 2021 Sheet 15 of 19

1306

B4f70-6
max

ak - 1 (7) - 04.17-10-6
xew

1302 1304

1304

1306

Bk8)

max

BK - 1 (8)

Ok - 1 (8)

max ?

0 (8)

1302

US 2021/0176006 A1

(a)

FIG . 13 (Continued)

(b)

bak Ox - 1 (0)

1401
1402

bik bask

0

140

BK (1)

Patent Application Publication

Xew

Ox - 1 (2)

1402

???

Bk (5)

xeu

€ 10,0)

Ex (0,0) EX (0,1) € x { 1,0) Ex { 1,1)

ak - 1 (7) BH (8) Ok - 1 (8)

?

max .

. max

1 : 10

B414)

1406

0.75

Ok - 1 (3)

1402

bik

Jun . 10 , 2021 Sheet 16 of 19

BKO)

xew

max

0x - 1 (4)

10

oblik

Bk (2)

1408

Ex (0,1)

Ok - 1 (5)

1401

1700

1402

1406

TAG

1404

BK (3)

max

1410

QK - 1 (6)

(b)

US 2021/0176006 A1

BK17)

FIG . 14

:

Ok - 1 (3)

1401 1402

BH (2) dk - 1 (4)

max

Patent Application Publication

max

(1,0)

1401
1402 max

BHO) Ok - 7 (5) Bu (?) Ok - 1 (6) Bu (3) ak - 1 (1) Bk (5) Ok - 1 (2)

1401
:
max

max

Jun . 10 , 2021 Sheet 17 of 19

x (1,1)

max

Ak - 7 (8) B (8)

US 2021/0176006 A1

(a)

FIG . 14 (Continued)

100

wwww

Proposed
Benchmarker (forward only) Benchmarker (forward and backward)

Patent Application Publication

10-1

When
H 21

r

words
F -

*** ******

- .

10-21

17 !!! ***
.

11 .:

** ar

BER

******* **

**

DER

Jun . 10 , 2021 Sheet 18 of 19

10-4

Historien

..

10-5

1

V

0.5

1

2.5

3

1.5 Eb / No (in dB) FIG . 15

US 2021/0176006 A1

.

100

Wwwwww

Proposed
Benchmarker (forward only) Benchmarker (forward and backward)

Patent Application Publication

10-1

! *****

i7-01

i nesenian *

KI

BER

10-3

1

tet

mi na batang na lang

Jun . 10 , 2021 Sheet 19 of 19

10-5

bir

10-6

0.5

VVN 1.5

US 2021/0176006 A1

Eb / No (in dB) FIG . 16

US 2021/0176006 A1 Jun . 10 , 2021
1

PARALLEL TURBO DECODING WITH
NON - UNIFORM WINDOW SIZES

TECHNICAL FIELD OF THE DISCLOSURE

ber of decoding iterations have been performed . As a result ,
thousands of time periods are required to complete the
iterative decoding process of the state - of - the - art turbo
decoder .

[0005] Accordingly , providing an alternative to the Log
BCJR decoder , which has fewer data dependencies and
which enables highly parallel processing represents a tech
nical problem .

SUMMARY OF THE DISCLOSURE

[0001] The present disclosure relates to detection circuits
for performing a turbo detection process to recover a frame
of data symbols from a received signal comprising one or
more parity and / or systematic soft decision values for each
data symbol of the frame , the data symbols of the frame
having been encoded with a turbo encoder comprising upper
and lower convolutional encoders which can each be rep
resented by a trellis having a plurality of trellis states .
[0002] Embodiments of the present disclosure may pro
vide therefore receivers configured to recover the frame of
data symbols using a turbo decoder and methods for decod
ing turbo encoded data . In one example the data symbols are
bits .

[0003] The present application claims the Paris conven
tion priority to UK patent application 1702341.7 the con
tents of which are herein incorporated by reference .

BACKGROUND OF THE DISCLOSURE

[0004] Over the past two decades , wireless communica
tion has been revolutionized by channel codes that benefit
from iterative decoding algorithms . For example , the Long
Term Evolution (LTE) [1] and WiMAX [2] cellular tele
phony standards employ turbo codes [3] , which comprise a
concatenation of two convolutional codes . Conventionally ,
the Logarithmic Bahl - Cocke - Jelinek - Raviv (Log - BCJR)
algorithm [4] is employed for the iterative decoding of the
Markov chains that are imposed upon the encoded bits by
these convolutional codes . Meanwhile , the WiFi standard for
Wireless Local Area Networks (WLANs) [5] has adopted
Low Density Parity Check (LDPC) codes [6] , which may
operate on the basis of the min - sum algorithm [7] . Owing to
their strong error correction capability , these sophisticated
channel codes have facilitated reliable communication at
transmission throughputs that closely approach the capacity
of the wireless channel . However , the achievable transmis
sion throughput is limited by the processing throughput of
the iterative decoding algorithm , if real - time operation is
required . Furthermore , the iterative decoding algorithm's
processing latency imposes a limit upon the end - to - end
latency . This is particularly relevant , since multi - gigabit
transmission throughputs and ultra - low end - to - end latencies
can be expected to be targets for next - generation wireless
communication standards [8] . Therefore , there is a demand
for iterative decoding algorithms having improved process
ing throughputs and lower processing latencies . Owing to
the inherent parallelism of the min - sum algorithm , it may be
operated in a fully - parallel manner , facilitating LDPC
decoders having processing throughputs of up to 16.2 Gbit / s
[9] . By contrast , the processing throughput of state - of - the
art turbo decoders [10] is limited to 2.15 Gbit / s . This may be
attributed to the inherently serial nature of the Log - BCJR
algorithm , which is imposed by the data dependencies of its
forward and backward recursions [4] . More specifically , the
turbo - encoded bits generated by each of typically two con
volutional encoders must be processed serially , spread over
numerous consecutive time periods , which are clock cycles
in a practical integrated circuit implementation . Further
more , the Log - BCJR algorithm is typically applied to the
two convolutional codes alternately , until a sufficient num

[0006] According to a first example embodiment of the
present technique there is provided a turbo decoder circuit
for performing a turbo decoding process to recover a frame
of data symbols from a received signal comprising either
parity or parity and systematic soft decision values (LLR
values) for each data symbol of the frame . The data symbols
of the frame may have been encoded with a turbo encoder
using a systematic code or non - systematic code , so that the
received soft decision values for the frame may comprise
soft decision values for systematic and parity symbols for
the example of the systematic code or parity symbols for the
non - systematic code . The turbo decoder circuit recovers
data symbols of the frame , which have been encoded with a
turbo encoder comprising upper and lower convolutional
encoders which can each be represented by a trellis , and an
interleaver which interleaves the encoded data between the
upper and lower convolutional encoders . The turbo decoder
circuit comprises a clock , a configurable network circuitry
for interleaving soft decision values , an upper decoder and
a lower decoder . Each of the upper and lower decoders
include processing elements , which are configured , during a
series of consecutive clock cycles , iteratively to receive ,
from the configurable network circuitry , a priori soft deci
sion values (a priori LLRs) pertaining to data symbols
associated with a window of an integer number of consecu
tive trellis stages representing possible paths between states
of the upper or lower convolutional encoder . The processing
elements perform parallel calculations associated with the
windows using the a priori soft decision values in order to
generate corresponding extrinsic soft decision values per
taining to the data symbols . The configurable network
circuitry includes network controller circuitry which con
trols a configuration of the configurable network circuitry
iteratively , during the consecutive clock cycles , to provide
the a priori soft decision values for the upper decoder by
interleaving the extrinsic soft decision values provided by
the lower decoder , and to provide the a priori soft decision
values for the lower decoder by interleaving the extrinsic
soft decision values provided by the upper decoder . The
interleaving performed by the configurable network cir
cuitry controlled by the network controller is in accordance
with a predetermined schedule , which provides the a priori
soft decision values at different cycles of the one or more
consecutive clock cycles to avoid contention between dif
ferent a priori soft decision value being provided to the same
processing element of the upper or the lower decoder during
the same clock cycle .
[0007] According to example embodiments of the present
technique therefore , each of the processing elements of the
upper decoder and the lower decoder perform calculations
associated with its window of the trellis . This means that

each of the processing elements is performing the calcula
tions associated with the forward and backward recursions
of the turbo decoding for a section of the trellis associated

US 2021/0176006 A1 Jun . 10 , 2021
2

with and corresponding to a section of the data symbols of
the frame . As a result of the arbitrarily parallel processing of
the turbo decoder , the processing elements can divide up the
trellis of the upper decoder without restriction on the map
ping of the window size to the processing elements although
a greater decoding rate can be achieved by sharing the
window sizes of the trellis stages between the available
processing elements as much as possible . This also means
that the size of the frame can vary independently of the
number of processing elements available to perform the
turbo decoding , so that the window sizes formed by parti
tioning the trellis can be configured dynamically . This
arbitrarily parallel nature of the turbo decoding circuit is
achieved at least in part as a result of the predetermined
schedule which configures the configurable network , which
not only interleaves the soft decision values in accordance
with the interleaving performed at the encoder , but also
manages the delivery of the soft decision values to avoid
contention caused by different soft decision values being
delivered to the same processing element in the same clock
cycle .
[0008] Various further aspects and features of the present
disclosure are defined in the appended claims and include a
method of turbo decoding , a communications device , and an
infrastructure equipment of a wireless communications net
work .

[0021] FIG . 12a , 126 , 12c , 12d are schematic representa
tions illustrating graphically a scheduling of backward and
forward recursions performed within a processing element
(referred to as a sub - processing element) to generate a
log - likelihood ratio for a single processing element in each
of the upper and lower decoder of an arbitrarily parallel
turbo decoder including a second forward sub - processing
element , which operates one clock cycle delayed relative to
a first forward sub - processing element ;
[0022] FIG . 13a is a schematic circuit diagram of part of
a processing element shown in FIG . 11 configured to cal
culate the backward state metric vector in the backward
sub - processing element and
[0023] FIG . 13b is a schematic block diagram of part of
the processing element shown in FIG . 11 configured to
calculate the forward state metric vector in the first forward
sub - processing element ;
[0024] FIG . 14a is a schematic circuit diagram of part of
a processing element shown in FIG . 11 configured to cal
culate the bit metric vector in the first forward sub - process
ing element and FIG . 13b is a schematic block diagram of
part of the processing element shown in FIG . 11 configured
to calculate the extrinsic and a posteriori log - likelihood
ratios in the second forward sub - processing element ;
[0025] FIG . 15 is a graphical plot of bit error rate with
respect to signal to noise ratio illustrating the performance of
an arbitrarily parallel turbo decoder for different numbers of
clock cycles using 128 processing elements and a frame
length of 512 symbols according to an embodiment of the
present technique ; and
[0026] FIG . 16 is a graphical plot of bit error rate with
respect to signal to noise ratio illustrating the performance of
an arbitrarily parallel turbo decoder for different numbers of
clock cycles using 128 processing elements and a frame
length of 6144 symbols according to an embodiment of the
present technique .

BRIEF DESCRIPTION OF DRAWINGS

DESCRIPTION OF EXAMPLE EMBODIMENTS

Example Communications System

[0009] Embodiments of the present disclosure will now be
described way of example only with reference to the
accompanying drawings wherein like parts are provided
with corresponding reference numerals and in which :
[0010] FIG . 1 is a schematic diagram of a mobile com
munications system operating in accordance with the LTE
standard ;
[0011] FIG . 2 is a schematic block diagram of an example
transmitter for the LTE system shown in FIG . 1 ;
[0012] FIG . 3 is a schematic block diagram of an example
receiver for the LTE system shown in FIG . 1 ;
[0013] FIG . 4 is a schematic block diagram of a simplified
turbo encoder ;
[0014] FIG . 5 is a schematic block diagram showing a
more detailed example of an LTE turbo encoder ;
[0015] FIG . 6 is an illustration of state and state transitions
representing encoding using a convolutional encoder form
ing part of the turbo encoder of FIG . 5 ;
[0016] FIG . 7 is a schematic block diagram of an example
turbo decoder according to a Log - BCJR algorithm ;
[0017] FIG . 8a is schematic representation illustrating
graphically a scheduling of backward and forward recur
sions for a single processing element in each of the upper
and lower decoder of a Log - BCJR turbo decoder and FIG .
8b is a corresponding diagram for the generation of log
likelihood ratios ;
[0018] FIG . 9 is a schematic block diagram of a fully
parallel turbo decoder ;
[0019] FIG . 10 is a schematic block diagram of an arbi
trarily parallel turbo decoder in accordance with an example
embodiment of the present technique ;
[0020] FIG . 11 is a schematic block diagram of an
example of one of the processing elements of the upper or
the lower decoders according to an embodiment of the
present technique ;

[0027] FIG . 1 provides a schematic diagram of a conven
tional mobile telecommunications system , where the system
includes mobile communications devices 104 , infrastructure
equipment 101 and a core network 102. The infrastructure
equipment may also be referred to as a base station , network
element , enhanced Node B (eNodeB) or a coordinating
entity for example , and provides a wireless access interface
to the one or more communications devices within a cov
erage area or cell . The one or more mobile communications
devices may communicate data via the transmission and
reception of signals representing data using the wireless
access interface . The network entity 101 is communicatively
linked to the core network 102 where the core network may
be connected to one or more other communications systems
or networks which have a similar structure to that formed

from communications devices 104 and infrastructure equip
ment 102. The core network may also provide functionality
including authentication , mobility management , charging
and so on for the communications devices served by the
network entity . The mobile communications devices of FIG .
1 may also be referred to as communications terminals , user
equipment (UE) , terminal devices and so forth , and are
configured to communicate with one or more other commu
nications devices served by the same or a different coverage

US 2021/0176006 A1 Jun . 10 , 2021
3

applies a convolutional encoder to generate two more K , -bit
encoded frames , namely a parity frame bz ' [52,4 1.5 and a
systematic frame b ; ' [b3.11.1 %) although the latter is not
transmitted . Here , the superscripts ‘ u ' and ' l ' indicate rel
evance to the upper and lower convolutional encoders 401 ,
403 , respectively . However , in the following , these super
scripts are only used when necessary to explicitly distin
guish between the two convolutional encoders 401 , 403 of
the turbo encoder and are omitted when the discussion

applies equally to both . Note that the turbo encoder repre
sents the Ky - bits of the message frame b , “ by transmitting
three encoded frames , comprising a total of 3K , -bits and
resulting in a turbo coding rate of R = K / (3K ,) = 1/3 .
[0032] As explained above with reference to FIG . 2 ,
following turbo encoding , the encoded frames may be
modulated onto a wireless channel and transmitted to a
receiver , such as the example provided in FIG . 3 .

LTE Turbo Encoder

Kí

area via the network entity . The communications system
may operate in accordance with any known protocol , for
instance in some examples the system may operate in
accordance with the 3GPP Long Term Evolution (LTE)
standard where the network entity and communications
devices are commonly referred to as eNodeB and UEs ,
respectively .
[0028] As will be appreciated from the operation
explained above , the physical layer of the UEs and the
eNodeBs are configured to transmit and receive signals
representing data . As such a typical transmitter / receiver
chain is shown in FIGS . 2 and 3 .

[0029] FIG . 2 provides a schematic block diagram illus
trating components which make up a transmitter which may
form part of the e - NodeB 101 or a communications device
104 of the physical layer transmission via the wireless
access interface of the LTE system as illustrated in FIG . 1 .
In FIG . 2 , data is received via an input at a data formatter
204 and formed into frames or sub frames for transmission .
Frames of data are then encoded with an error correction
code by an error correction encoder 206 and fed to a symbol
former 208 which forms the error correction encoded bits

into groups of bits for mapping onto symbols for modula
tion . The data symbols are then interleaved by a symbol
interleaver 210 and fed to an OFDM modulator 212 which
modulates the subcarriers of an OFDM symbol with the data
symbols which have been received from the interleaver 210 .
The OFDM symbols are then converted to an RF frequency
and transmitted by a transmitter 214 via an antenna 216 .
[0030] Correspondingly , a receiver operating to receive
data transmitted via the physical layer for either the com
munications device 104 or an eNodeB 101 via an LTE
wireless access interface includes a receiver antenna 301 ,
which detects the radio frequency signal transmitted via the
wireless access interface to a radio frequency receiver 302 .
FIG . 3 represents a simplified version of a receiver and
several blocks will make up an OFDM demodulator / equa
liser 304 which converts the time domain OFDM symbol
into the frequency domain and demodulates the subcarriers
of the OFDM symbol to recover the data symbols and
performs deinterleaving etc. However an output of the
OFDM demodulator / equaliser 304 is to feed the encoded
soft decision values representing the data bits to a turbo
decoder 306. The turbo decoder performs a turbo decoding
algorithm to detect and recover an estimate of the transmit
ted data bits which are output as a stream of data bits on an
output 308 corresponding to the input of the transmitter .
[0031] For the example of LTE as mentioned above , an
example embodiment of an error correction encoder 206
shown in FIG . 2 is shown in FIG . 4. FIG . 4 provides an
example representation illustrating a simplified turbo
encoder , which encodes a message frame b , " = [b1,4 "] } = 1
comprising K , number of bits , each having a binary value
51,4 “ E { 0 , 1 } . This message frame is provided to an upper
convolutional encoder 401 , and a lower convolutional
encoder 403 , as shown in FIG . 4. The upper convolutional
encoder 401 performs a convolutional encoding process
such as the examples provided below to generate two K , -bit
encoded frames , namely a parity frame bz " = [b2,4 "] = 1 and
a systematic frame bzu = [63 , "] = K ?. Meanwhile , the message
frame b , “ is interleaved , by an internal turbo encoding
interleaver 404 , in order to obtain the Ky - bit interleaved
message frame b ; ' = [b1,4 + 1 = 1 K1 which , as shown in FIG . 4 is
provided to a lower convolutional encoder 403 , which also

[0033] A more specific illustration of the LTE turbo
encoder [1] is provided in FIG . 5 , which also illustrates the
termination mechanism . For the example shown in FIG . 5
the turbo encoder is a 1/3 rate code in which data bits received
from a data formatter 204 as shown in FIG . 2 are fed to an
upper convolutional encoding processor 401. As can be seen
in FIG . 5 the received K , -bits of the message frame b u =
[b1.6 "] = 1 are also fed to a lower convolutional encoding
processor 403 via a turbo code internal interleaver 404. In
accordance with a known arrangement the K ; -bits of the
message frame b , " = [b1 , "] = RK are fed to memory elements
406 which are connected to other memory elements 406 to
form a shift register type arrangement . An output of the
memory elements 406 is used to form an input to XOR units
408 , which form at their output a bit from a logical XOR of
their inputs , which forms either an encoded output bit or a
bit which is fed back as an input to one of the memory
elements 406. A switch in the upper convolutional encoder
410 switches the input bits between an input 412 and an
output of the upper convolutional encoder 414 to form
respectively , on a first output 416 , a systematic frame
bzu = [b3,5 "] } = 1 and on a third output 426 , three message
termination bits

Kj + 3
[63 , k Ik = K4 + 1

A second output 416 of the upper convolutional encoder 401
provides a parity frame b_4 = [52,4 ") = 1K1 + 3 . In FIG . 5 the three
message termination bits

Ki

[63 , k] k = K4 + 1 K1 + 3

are used to terminate the upper convolutional encoder 401 in
a known state , which is not shown in FIG . 4 for simplicity . Ki

[0034] In the lower convolutional encoder 403 a switch
420 switches between the received bits from the internal
interleaver 404 and corresponds to the switch 410 for the
upper convolutional encoder . In a similar manner to the
upper convolutional encoder , output channels 422 , 424 of

US 2021/0176006 Al Jun . 10 , 2021
4

the lower convolutional encoder provide respectively a
parity frame bz ' = [b2,4 ? l = 1 * 1 + 3 and three message termination
bits

[b's , K PREKI + 1 " + 3

quent state is selected from St E { 1,5 } . This example can
also be expressed using the notation c (1 , 1) = 1 and c (1,5) = 1 ,
where c (Sk - 1 , Sb = 1 indicates that it is possible for the
convolutional encoder to transition from Sk - 1 into Sky
whereas c (Sk - 1 , Sk) = 0 indicates that this transition is impos
sible . Of the K = 2 options , the value for the state Sk is
selected such that b , (Sx - 1 , Sx) = b1,4 : For example , Sx - 1 = 1 and
b1x = 0 gives Sx = 1 , while Sx - 1 = 1 and 6 = gives Sx = 5 in
FIG . 6. In turn , binary values are selected for the corre
sponding bit in the parity frame b2 and the systematic frame
bz , according to b2,4 = b2 (Sk - 1 , Sk) and b3 , x = b3 (Sk - 1 , Sk) . In
the example of FIG . 6 , Sk - 1 = 1 and Sx = 1 gives b2.x = 0 and
63,450 , while Sk - 1 = 1 and St = 5 gives b2 , x = 1 and 63,6 = 1 .

The systematic data bits of the lower convolutional encoder
b = ' = [b3.1'1x = 1K are not output from the lower convolutional
encoder because these are already present on the first output
416. Accordingly , with the first output 416 providing the
input bits as a systematic code the second and fourth outputs
418 , 422 providing respective parity bits , the turbo encoder
provides a 1 rate code . As with the upper convolutional
encoder , three message termination bits

Examples of LTE Turbo Decoders

[bs , k] 3 , k ? k = K4 + 1 K1 + 3

[0037] Following their transmission over a wireless chan
nel , the three encoded frames b2 " , bz " and bz ' , generated by
the turbo encoder as illustrated in FIG . 4 , may be demodu
lated and provided to the turbo decoder of FIG . 7. However ,
owing to the effect of noise in the wireless channel , the
demodulator will be uncertain of the bit values in these
encoded frames . Therefore , instead of providing frames
comprising K , hard - valued bits , the demodulator provides
three frames each comprising K , soft - valued a priori Loga
rithmic Likelihood Ratios (LLRs) 5,4 , a = [52,44,4] } = 1
53u , a = [53,44,0] ; = 151 , and 521,9 = [52,4-41 = 1 * 7 . Furthermore , a
fourth frame 531,2 = [53.420] = 1 may also be obtained by
interleaving the LLRs of 534.a. Here , an LLR pertaining to
bit bjk is defined by

Ki

bjk = In Pr (bjyk = 1) Prabj , k = 0)

are used to terminate the lower convolutional encoder 403 in
a known state , which is not shown in FIG . 4 for simplicity .
[0035] In summary , the LTE turbo encoder [1] of FIG . 5
employs twelve additional termination bits to force each
convolutional encoder into the final state SK , + 3 = 1 . More
specifically , the upper convolutional encoder 401 generates
the three message termination bits b3 , K , + 1 “ , b3 , K + 2 “ , b3 , K1 + 3 “
as well as the three parity termination bits frame b2 , K ; +1 " ,
b2 , K , + 2 “ , b2 , K , + 3 “ . The lower convolutional encoder 403 operates in a similar manner , generating corresponding sets
of three message termination bits b3,6 ; +1 ' , 13 , K + 2 ' , 53 , K1 + 3 ' as well as the three parity termination bits b2 , k , + 1 " , b2 , K + 2 ' , b2 , K , + 3 ? In contrast to the systematic frame bz " that is
produced by the upper convolutional encoder , that of the
lower convolutional encoder bz ' is not output by the LTE
turbo encoder . Owing to this , the LTE turbo encoder uses a
total of (3K2 + 12) bits to represent the K , bits of the message
frame b , “ , giving a more precise coding rate of R = K / (3K , +
12) .
[0036] The example of the turbo encoder presented in
FIG . 5 provides upper and lower convolutional encoders
401 , 403 , which each have three memory elements 406. As
will be known by those acquainted with convolutional
encoders , the binary content of the memory elements 406
can be interpreted as a state , so that the convolutional
encoding process can be synthesised as transitions through
a trellis comprising the possible states of the convolutional
encoder . As such , a convolutional encoder or a turbo encoder
can be described as a Markov process and therefore repre
sented as a trellis diagram . An example of state transition
diagram for a convolutional encoder is shown in FIG . 6. The
state transition diagram of FIG . 6 represents one stage of a
trellis having M = 8 states and K = 2 transitions per state , and
can therefore provide an example corresponding to the upper
and lower convolutional encoders 401 , 403 , which operate
in the same manner . For the upper convolutional encoder
401 begins from an initial state of So = 1 and successively
transitions into each subsequent state S € { 1 , 2 , ... , M } by
considering the corresponding message bit b Since there
are two possible values for the message bit 61 € { 0,1 } there
are K = 2 possible values for the state Sk that can be reached
by transitioning from the previous state Sk - 1 . In FIG . 6 for
example , a previous state of Sk - 1 = 1 implies that the subse

[0038] where the superscripts ' a ' , ' e ' or ' p ' may be
appended to indicate an a priori , extrinsic or a posteriori
LLR , respectively .
[0039] The Log - BCJR algorithm generally forms a decod
ing or detection process which performs a forward recursion
process and a backward recursion process through a trellis
representing the connection of each of the states of a Markov
process , such as a convolutional encoder . For the turbo
encoded data , a decoder which performs a Log - BCJR
decoding process comprises an upper decoder and a lower
decoder . Each of the upper and lower decoders each perform
a forward recursion process and a backward recursion
process and generate for each iteration extrinsic LLRs which
are fed to other of the upper and lower decoders .
[0040] FIG . 7 provides a schematic block diagram illus
trating an example implementation of a simplified turbo
decoder for the Log - BCJR algorithm , which corresponds to
the simplified turbo encoder of FIG . 4. The Log - BCJR turbo
decoder is operated iteratively , where each of the I iterations
comprises the operation of all processing elements or algo
rithmic blocks shown .

[0041] Embodiments of the present technique can provide
an arbitrary - parallel turbo decoder , which has an improved
rate of decoding in comparison to conventional algorithms .
Furthermore , in contrast to a fully - parallel turbo decoder
such as that disclosed in our co - pending International patent
application PCT / EP2015 / 067527 [26] , an extent to which
parallel processing of the turbo decoding is applied can be
set in accordance with a number of processing elements

1,6

US 2021/0176006 A1 Jun . 10 , 2021
5

1 , ? ?? . 1 , a 3k

(processing element) which are available rather than a
number of stages in a trellis describing the encoder .
[0042] An LTE turbo decoder according to one example
implementation for decoding a frame of data encoded by the
encoder of FIG . 5 comprises an upper decoder and a lower
decoder , together with an upper terminating element (TE)
and a lower terminating element , as well as a CRC unit . The
upper decoder is connected to the lower decoder using an
interleaver , while the lower decoder is connected to the
upper decoder using a deinterleaver . An LTE turbo decoder
typically decodes one frame of bits at a time and typically
supports all L = 188 frame lengths { K1 , K2 , K3 , K , K188 } = { 40 ,
48,56 , K , 6144 } and corresponding interleaver designs of the
LTE standard [1] . In order to initiate the decoding of a frame
having the length K , where IE [1 , L) , the upper decoder is
provided with K , parity LLRs [52,44,4] } = 1ki , and K , system
atic LLRs [b3.ju , a] : = . Meanwhile , the lower decoder is
provided with K , parity LLRs [52,41,4] , = 157 . Likewise , the
upper terminating element is provided with six termination
LLRs

[12.01K + 2 , and [bam] +3 k = Kq + 1 3,6 + k = Kq + 1 ?

while the lower terminating element is provided with six
more termination LLRs

K1 + 3 and [63,00 +3 . = + 1

52,4,4 , 53,4,2 from the demodulator which were estimated
for the frames of encoded bits b? “ , bz “ , generated by the
upper encoder 401. Correspondingly , the kth algorithmic
block 620 of the K , algorithmic blocks 620 of the lower
decoder 602 , which are devoted to performing the forward
recursion part of the Log - BCJR algorithm , is arranged to
receive the kth LLR values 52,420 , from the demodu
lator which were estimated for the frames of encoded bits

bz ' , bz !, generated by the lower encoder 402. Here , the
demodulator may obtain bz ' by interleaving bz “ .
[0045] The kth algorithmic block 610 , 620 , which each in
turn are arranged to perform the forward recursion , in the
upper decoder 601 and the lower decoder 602 , one after the
other to combine the L = 3 a priori LLRs 51,4,52,5 " , and 53 , k " ,
in order to obtain an a priori metric Tz (Sk - 1 , Sk) for each
transition in the state transition diagram (as illustrated for
example in FIG . 6) . Following this calculation , each of the
kth algorithmic blocks 610 , 620 performing the forward
recursion , combines these a priori transition metrics with the
a priori forward state metrics of k - 1 (Sk - 1)) in order to obtain
the extrinsic forward state metrics of?z (Sk) . These extrinsic
state metrics are then passed to the k + 1th algorithmic block
610 , 620 , to be employed as a priori state metrics in the next
time period . However as will be appreciated by those
familiar with the Log - BCJR algorithm the upper and lower
decoders of the turbo decoder work alternately , so that when
one is active the other is idle .
[0046] The kth algorithmic block 612 , 622 , which are
performing the backward recursion , in the upper decoder
601 and the lower decoder 602 to combine the a priori metric
Yz (SK - 1 , Sk) for each transition with the a priori backward
state metrics B : (Sk) . This produces an extrinsic backward
state metric Bx - 1 (Sk - 1) , which may be passed to the k - 1th
algorithmic block , to be employed as a priori state metrics
in the next time period . Furthermore , the kth algorithmic
block 612 , 622 , which are performing the backward recur
sion , in the upper decoder 601 and the lower decoder 602 to
obtain an a posteriori metric Ox (Sk - 1 , Sk) for each transition
in the state transition diagram (as for example illustrated in
FIG . 6) . Finally , the kih algorithmic block 612 , 622 , which
are performing the backward recursion , in the upper decoder
401 and the lower decoder combine the a posteriori metrics
8x (Sk - 1 , Sy) for the transitions in the state transition diagram
to generate an extrinsic message LLR bike for the kth bit .
These LLR values are swapped between the upper and lower
decoders 601 , 602 .
[0047] The upper decoder 601 and the lower decoder 602
exchange extrinsic LLRs for each of the data bits of the
frame , which become an estimate of the systematic bits of
the encoded data frame . More specifically , an interleaver
604 performs interleaving of the LLR values of data bits
passed between an upper decoder 601 and the lower decoder
602 , in accordance with the interleaving of the data bits
which are used by the upper convolutional encoder 401 and
the lower convolutional encoder 402 of a turbo encoder .
Furthermore , the interleaver 604 performs deinterleaving of
the LLR values of data bits passed between a lower decoder
602 and the upper decoder 601 , to reverse the interleaving
of the data bits which are used by the upper convolutional
encoder 401 and the lower convolutional encoder 402 of a
turbo encoder .
[0048] As will be appreciated from the above description ,
turbo decoding for turbo encoded data generally includes
upper and lower decoders , which are operated throughout

2

The terminating elements are not shown in FIG . 7 for
simplicity . An example of a conventional turbo decoder
according to a BCJR algorithm as disclosed in our co
pending International patent application PCT / EP2015 /
067527 [26] is shown in FIG . 7. This will be only briefly
described in the following paragraphs .
[0043] As shown in FIG . 7 , a first set of 2K , algorithmic
blocks 601 are devoted to performing a first part of the turbo
decoding algorithm on the turbo encoded data produced by
an upper convolutional encoder 401. A first row of K ,
algorithmic blocks 610 of the upper decoder 601 are devoted
to performing a forward recursion process through a trellis
of possible states , whereas a second row of K , algorithmic
blocks 612 are devoted to performing backward recursion
through the trellis stages according to the Log - BCJR algo
rithm . Each algorithmic block corresponds to one of the K ,
stages in the trellis , which comprises a set of transitions
between a set of previous states and a set of next states . A
second set of 2K , algorithmic blocks 602 are devoted to
performing a second part of the turbo decoding algorithm on
the turbo encoded data produced by the lower convolutional
encoder 403. As for the upper decoder 601 , the lower
decoder includes a first row of K , algorithmic blocks 620 of
the lower decoder 602 , which are devoted to performing a
forward recursion process through a trellis of possible states ,
whereas a second row of K , algorithmic blocks 622 are
devoted to performing backward recursion through the trel
lis states according to the Log - BCJR algorithm .
[0044] The kth algorithmic block 610 , of the K , algorith
mic blocks 610 of the upper decoder 601 which are devoted
to performing the forward recursion part of the Log - BCJR
algorithm 610 , is arranged to receive the kth LLR values

US 2021/0176006 A1 Jun . 10 , 2021
6

1 , akik

the decoding process . More specifically , the operation of the
upper decoder updates the values of the K , a posteriori LLRs
[61.1 " P] = 151 and the K , extrinsic LLRs [b1.4 . €] = 1K ?. These
updates to the extrinsic LLRs are interleaved and provided
to the lower decoder as the K , a priori LLRs [61,2] = 1K !.
More specifically , b1,01 (k) ue , where the interleaving
action is described by the vector II , in which each of the K ,
elements II (k) E [1 , K ,] is unique . For example , the K = 40 - bit
LTE interleaver may be described by the vector H = [1 , 38 ,
15 , 12 , 29 , 26 , 3 , 40 , 17 , 14 , 31 , 28 , 5 , 2 , 19 , 16 , 33 , 30 , 7 ,
4 , 21 , 18 , 35 , 32 , 9 , 6 , 23 , 20 , 37 , 34 , 11 , 8 , 25 , 22 , 39 , 36 ,
13 , 10 , 27 , 24) , where b1,241,4 = b1,40 % une . Likewise , the opera
tion of the lower decoder updates the values of the K ,
extrinsic LLRs [b1.1] = 1K !, which are deinterleaved and
provided to the upper decoder as the K , a priori LLRs
[61,14,4) = 1 * K. More specifically , b1,11 ' (K) lie , where the
deinterleaving action is described by the vector 11-1 , in
which each of the K , elements II- (k) E [1 , K ,] is unique and
obeys the relationship with the interleaver II - ' (II (k)) = k . For
example , the K = 40 - bit LTE deinterleaver may be described
by the vector II ! = [1 , 14 , 7 , 20 , 13 , 26 , 19 , 32 , 25 , 38 , 31 ,
4 , 37 , 10 , 3 , 16 , 9 , 22 , 15 , 28 , 21 , 34 , 27 , 40 , 33 , 6 , 39 , 12 ,
5 , 18 , 11 , 24 , 17 , 30 , 23 , 36 , 29 , 2 , 35 , 8] , where 51,40

22,4 . Furthermore , the updates to the a posteriori LLRs
are typically provided to a CRC unit . This halts

the decoding process when the LTE CRC is satisfied by the
decoded bits obtained using the hard decisions b1,4.P > 0 . The
decoded bits and the a posteriori LLRs are then output by the
turbo decoder and the decoding of a next frame may

W
k = 1

LTE frame length . The decoding process is completed
according to a periodic schedule , where the period C
depends on the current frame length Kj , according to
C = 2W ,. As the decoding process proceeds , a counter c
repeatedly counts up to C? .
[0051] The processing element having the index PE [1 , P]
operates on the basis of windows comprising k'E [1 , W]
parity , systematic , a priori , extrinsic and a posteriori LLRs .
Here , the notation k'E [1 , W] is used to index an LLR within
the pth window , which may be converted to the index
kE [1 , K ,] within the frame according to k = k ' + (p - 1) W . At
the start of the decoding process , the processing element
having the index p is provided with the W , upper parity
LLRs [b2,64,4] k = " , the W , lower parity LLRs [12.671,2]

and the W , upper systematic LLRs [63,44,4] k ' = 1 " .
Throughout the decoding process , the ph processing element
is continually provided with updates to the W , upper a priori
LLRs [51,24 , "] k = 1 44] x > " , and the W , lower a priori LLRs [b1,4 %
alx = 1 " . In response , this processing element continually
updates the W , upper extrinsic LLRs [51,24 . €] k = 1 ") , the W ,
lower extrinsic LLRs [61,47] < = 1 " , and the W , upper a
posteriori LLRs [b 1.4.P] x = 1 " , as discussed below .
[0052] Each of the processing elements performs the cal
culations for each window according to equations (1) to (4)
below . Note that unlike the upper decoder , the lower decoder
does not benefit from systematic LLRs , which is equivalent
to having b3.1 ° = 0 . This allows the corresponding terms to be
omitted from (1) - (3) in the case of the lower decoder .
Likewise , the lower decoder does not generate a posteriori
LLRs , allowing (4) to be omitted entirely .

u , a a = b , 1,5 9

u ,

a = b1,24
[b 1.14.P] k !

commence .

Adaptation of Turbo Decoding Using Windows of Trellis
Stages (1) max BK - 1 (sk - 1) = [b1 (54-1 , 5x) .VIX + (sk lc (sk - 1 » S *) = 1 }

62 (sk - 1 , Sk) .b2k + b3 (sk - 1 , sk) .6 % .k + Bk (sk)]
(2) ak (SK) = max ({ sk – 1 1c ($ * 1 ***) = 1 } [bi (Sk - 1 , Sk) . bpk +

b2 (Sk - 1 , Sk) .b2k +63 (Sk - 1 , Sk) . 63.k + Qk - 1 (Sk - 1)]
(3)

[0049] In some implementations of the turbo decoder ,
which operate to perform the Log - BCJR algorithm , the
parity , systematic , a priori , extrinsic and a posteriori LLRs
can be grouped together during decoding into chains of
consecutive windows , each comprising an equal number W ,
of LLRs of each type . Furthermore , the turbo decoding
process is typically completed according to a periodic sched
ule , having a period of C , clock cycles . Typically , the value
of W , and C , depends on the current frame length Kz .
However , different turbo decoders adopt different window
ing and different scheduling techniques , discussed in the
following subsections .

bisk =
0.75 , [Qk - 1 (Sk - 1) + Bx (sk) + b2 (Sk - 1 , Sk) .b2k] [{ \ sk – 1 » Sk) | bl (Sk – 1 % $ *) = 1 }

max) . Bix By
max 0.75 , [Qk - 1 (Sk - 1) +

[{ (sk - 1 » Sk) | bl (sk - 1 » Sk) = 0 }

Bx (sk) + b } (SK - 1 , Sk) • 6.x]] + B5 ,
(4)

First Example Windowing max

bik
0.75 [post = 1 * [Qk - 1 (Sk - 1) + Bk (Sk) + b2 (Sk - 1 , sk) . 69 , B)) • 63.4272 [{ (sk - 1 » $) 61 (sk - 1 ***) = 1 }

0.75 [Qk - 1 (Sk - 1) + [{ (sk - 1 » sk) | bi (sk - 1 -5k) = 0 }

sk b2 (Sk - 1 , Sk +

max [0050] In a first example [21] , the LLRs are grouped into
chains of P = 8 consecutive windows , since this is the greatest
common divisor of all L = 188 supported values of the LTE
frame length K? . This ensures that all windows comprise an
equal number W = K / P of LLR of each type , regardless of
the current frame length K / . Accordingly , the design of [21]
employs a chain of P = 8 processing elements , each of which
performs processing for a different one of the windows of
the upper decoder , as well as for the corresponding window
of the lower decoder . Thus each of the windows performs the
processing for the calculations 610 , 612 , 620 , 622 for the
Log - BCJR algorithm . In this way , the LLRs having the
index k c [1 , K ,] are processed by the processing element
having the index p = [k / W ;] . Note that the maximum window
length is given by W , mar = maxx = 1 ? W = Kmaz / P = 768 , where
max = maxy = + K = 6144 is the number of bits in the longest

[0053] Additionally , throughout the decoding process , the
(p - 1) processing element in each decoder periodically
provides the ph processing element with updates to the
upper forward state metric vector ok ? " = [ox " Sk)] , ; = 1 " and the lower forward state metric vector agar (sx)) = 1 $, for
the case where k ' = 0 . However , an exception to this is made
if p = 1 and hence the (p - 1) th processing element does not
exist . In these cases , the pth processing element adopts
a , " = a . ' = [0 , –00 , –00 , -00 , -00 , -00 , -00 , -00] . Likewise , the (p + 1) th processing element in each decoder periodically provides
the pih processing element with updates to the upper back

US 2021/0176006 A1 Jun . 10 , 2021
7

appropriate processing elements , where they are stored in
memory , ready to be used as a priori LLRs , as described
above . Note that the LTE interleaver is specifically designed
to be contention free when P is an integer divisor of Kj ,
which is true for all 188 possible values of K , when P - 8 .
Owing to this , exactly two LLR are delivered to each
processing element in each clock cycle of the second half of
the recursions .

Second Example Windowing

[0056] A second example provided from [22] operates in
a similar manner to that of the first example , but exploits the
observation that different consecutive subsets of the sup
ported LTE frame lengths have different greatest common
divisors of 8 , 16 , 32 and 64. More specifically , depending on
the frame length K? , this design employs 8 , 16 , 32 or 64
windows , each comprising the same number W , of LLRs of
each type , according to

(5)

W =

K1 / 8 ifK , E { 40 , 48 , 56 , K , 504 }
K1 / 16 ifK , € { 512 , 528 , 544 , K , 1008 }
K1 / 32 ifK , € { 1024 , 1058 , 1088 , K , 2016 }
K1 / 64 ifK , E (2048 , 2112 , 2176 , K , 6144 }

ward state metric vector Bk " = IBk ()] sz = 1 " and the lower
backward state metric vector Bx ? = [P " (Sk)] s = ! " , for the case
where k ' = W1.p . However , an exception to this is made if p = P ,
in which case the backward state metric vector is provided
by the corresponding terminating element . As described
below , the pih processing element periodically updates the
upper forward state metric vector Oz " and the lower forward
state metric vector az ? for k = W1 , p , as well as the upper
backward state metric vector Bk " and the lower backward
state metric vector Bk for k ' = 0 , which are provided to the
(p + 1) th and (p - 1) th processing element , respectively .
[0054] The processing elements are operated according to
the schedule shown in FIG . 8. FIG . 8 provides a graphical
representation showing how processing elements schedule
(a) the backward and forward recursions of (1) and (2) , as
well as (b) the generation of the LLRs of (3) and (4) for a
single processing element in the turbo decoder of the first
windowing example . The processing element performs (1)
to (4) for a window of the upper decoder , followed by (1) to
(3) for the corresponding window of the lower decoder .
Here , backward recursions are performed , in which decre
mental LLR indices k ' are processed in successive clock
cycles . Meanwhile , forward recursions are performed , in
which incremental LLR indices k ' are processed in succes
sive clock cycles . During the first C // 2 clock cycles in each
period of C , clock cycles , the processing elements perform
the forward and backward recursions of the upper decoder .
Following this , the forward and backward recursions of the
lower decoder are performed in the final Cd / 2 clock cycles in
each period ofC , clock cycles , as shown in FIG . 8. Note that
the following discussions apply equally to both the upper
and lower decoder and so the superscripts ‘ u ' and ' l ' are
removed from the notation . The backward recursion oper
ates on the basis of (1) , in order to generate the backward
state metric vector Bk - 1 . This is stored in an internal memory
in order to facilitate its use as Bk in the next step of the
recursion , as well as for use in the calculation of the extrinsic
and a posteriori LLR 61,9 and 51.4 . , as discussed below .
Furthermore , the backward state metric vector Bk? - 1 is stored
in an output register in the case where k ' = 1 , in order to
provide ßo to initialise the backward recursion in the neigh
bouring processing element . Likewise , the forward recur
sion operates on the basis of (2) , in order to generate the
forward state metric vector agr . This is stored in an internal
memory in order to facilitate its use as Azt - 1 in the next step
of the recursion , as well as for use in the calculation of the
extrinsic and a posteriori LLR 51 , ke and b1 , k , as discussed
below . Furthermore , the forward state metric vector Ozr is
stored in an output register in the case where k ' = W , in order
to provide aw , to initialise the forward recursion in the
neighbouring processing element .
[0055] As shown in FIG . 8 , two a posteriori LLRs and two
extrinsic LLRs are output by each processing element in
each clock cycle of the second half of the recursions . More
specifically , during each clock cycle of the second half of
each recursion performed for the upper decoder , (4) is used
to generate an a posteriori LLR 51,14 . , which is output by
the processing element and provided to the CRC unit .
Furthermore , during each clock cycle of the second half of
each recursion performed for both the upper and lower
decoders , (3) is used to generate an extrinsic LLR bike ,
which is output by the processing element and provided to
the interleaver or deinterleaver , as appropriate . The inter
leaver and deinterleaver deliver the extrinsic LLRs to the

[0057] This design employs a chain of P = 64 processing
elements , although some of these are deactivated when
decoding the shorter frame lengths . More specifically , the
number of activated processing elements is equal to the
number of windows employed , such that each processing
element can perform processing for a different one of the
windows of the upper decoder , as well as for the corre
sponding window of the lower decoder .
[0058] The processing of each window by a processing
element is completed according to (6) - (9) . Note that unlike
the upper decoder , the lower decoder does not benefit from
systematic LLRs , which is equivalent to having b3,1 " = 0 .
This allows the corresponding terms to be omitted from
(6) - (8) in the case of the lower decoder . Likewise , the lower
decoder does not generate a posteriori LLRs , allowing (9) to
be omitted entirely .

(6) Bk - 1 (Sk - 1) = max { s } lc ($ { – 1 » $ { } = 1 } [bi (sk - 1 , Sk) . birk +
b2 (Sk - 1 , Sk) .62,5 + b3 (Sk - 1 , Sk) .b.k + Bk (sk)] -
max [max / s \ \ c \ sk –1 ***) = 1 } [bi (Sk - 1 , Sk) .bºk +

b2 (Sk - 1 , Sk) .62k + b3 (sk - 1 , Sk) . b.k + Bk (sk)]]
k - 1 = - 1

ak (sk) = max (sk – 1 1c ($ 4–1 ***) = 1 } [b1 (Sk - 1 , sk) . bºok +
b2 (Sk - 1 , Sk) .62k + b3 (Sk - 1 , Sk) .bg.k + Qk - 1 (Sk - 1)] -
max_1 = 1 [max { sk_1 Ic (4–1 » Sken = 1 } [b? ($ k - 1 , Sk) • 60 , k +

b2 (Sk - 1 , Sk) • 62 , k + b3 (sk - 1 , Sk) .63.k + @ k - 1 (Sk - 1)]]

bik (8) =

max 0.75 , [Qk – 1 (Sk - 1) + Bk (Sk) + b2 (Sk - 1 , Sk) . 62.k] [{ (54–1,5) b1 (SK - 1 » s *) = 1 } 16x + 1-323 - 1 , Sk) • 65 x -
0.75 [Qk - 1 (Sk - 1) + [{ (sk - 1 » sk lb 1 (SK - 1 » **) = 1 }

Bx (sk) + b ? (52–13 Sk) • 69.x] + 65,12

max

US 2021/0176006 A1 Jun . 10 , 2021
8

-continued

biki =
max • b & .x]] - 0.12 (sk - 1,5k) | bl (sk - 1 » Sk) = 1 } [Qk - 1 (Sk - 1) + Bk (sk) + b2 (Sk - 1 , Sk) .bºk

0.75 , [Qk - 1 (Sk - 1) + [{ (k - 1 » Sk | b1 (sk — 1 ***) = 0 }
Bk (Sk) + b2 (Sk - 1 , Sk) . 62 , k] , + birk + b? , k

' c'in (10) and (13) represents the clock cycle index , while
the superscript ‘ c - l’in (11) , (12) , (14) and (15) represents
the index of the previous clock cycle . This notation is
included in order to emphasise that the transition metric
vectors of (10) and the bit metric vectors of (13) are
pipelined .

max

Sx - »] + bf.k $
(10) YX (Sk - 1 , Sk) =

0.75 - bi (Sk - 1 , Sk) . bick + b2 (Sk - 1 , Sk) • b2,6 + b3 (Sk - 1 , Sk) • b3 , k
(11) max BK - 1 (Sk - 1) = [(5x - 1 , 5 *) + B : (5 :)] - ist elsk- 1,5k) = 1 }

[Y ! (1 , sk) + Bk (sk)] { sk lc (1,5k = 1 }
max

(12)

[0059] Another difference to the turbo decoder design of
the first example is the computation of the backward and
forward state metric vectors Bk ' - 1 and Age of (6) and (7) ,
respectively . In successive clock cycles of the backward and
forward recursions , these state metrics can grow without
bound , which may cause overflow in fixed point implemen
tations . The modulo normalisation approach of [23] exploits
that observation that the absolute values of the state metrics
in each vector are not important and that instead it is the
differences between these state metrics that are important .
This motivates the normalisation of the state metrics within
each vector during its generation . In order to minimise the
occurrence of overflow , normalisation is achieved by sub
tracting the maximum of the state metrics in each vector , as
shown in (6) and (7) .

Ok (sk) = max (sk – 1 c184–1 * 5 *) = 1 } [Yk (Sk - 1 , Sk) + & k = 1 ($ k - 1)] –
max (sk_1 | C ($ – 1 , 1) = 1 } [y : " (Sk - 1 , 1) + Qk - 1 (Sk - 1)]

(b1k , b2k) max (13) man (sk - 1,5k $ 1 (k – 1 » s *) = b1,6 l [ak - 1 (Sk - 1) + + Bk (sk)]]
52 (sk - 1,3k) = b's -1) +260

(14) max [E ! (1 , b2 , k) + bi xurma
| 62.4 € 10,11 max [(0 , 62.1) + b2 . * • b2k] • 63x]] Bax : 63,1]] Liens

• 35,1]] [ormers Third Example Windowing biki max [er " (1 , 62.k) + b2kb2k] (15)
[62 , k = { 0,1 } max [e- (0 , 62.k) + | 62,6 € (0,1 }

b2b2k]] + bºok + b3 , k • 654
[0060] A third example is what is referred to as a
" shuffled ” turbo decoder [24] which operates in a similar
manner to the turbo decoders of Examples 1 and 2 , but
employs one chain of P processing elements dedicated to
performing the decoding of the upper decoder , as well as a
second chain of P processing elements dedicated to perform
ing the decoding of the lower decoder , where P is an integer
divisor of Kz . Each processing element performs the pro
cessing for a different one of the windows in the correspond
ing decoder , where each window has the length W = K , / P . In
contrast to the turbo decoders of the first and second
examples , the decoding process is completed according to a
periodic schedule , where the period is given by CAW ,
rather than C = 2W ,. More specifically , the backward and
forward recursions of the upper decoder are performed
concurrently with those of the lower decoder . The extrinsic
LLRs generated by one decoder in a particular clock cycle
of the schedule are immediately passed through the inter
leaver or deinterleaver to the other decoder , where they may
be used as a priori LLRs in the next clock cycle of the
schedule .

[0062] Rather than performing all processing for the upper
decoder in the first clock cycle of each period , before
performing the processing for the lower decoder in the
second clock cycle , the FPTD employs an odd - even sched
ule , which is motivated by the odd - even nature of the LTE
interleaver . Furthermore , the FPTD employs a pipelining
technique , in order to maximise the achievable clock fre
quency . More specifically , during the first clock cycle of
each period , the processing elements having odd indices
perform the processing of (10) , (14) and (15) for the
corresponding windows of the upper decoder , as well as the
processing of (11) , (12) and (13) for the corresponding
windows of the lower decoder . Meanwhile , the processing
elements having even indices perform the processing of (10)
and (14) for the corresponding windows of the lower
decoder , as well as the processing of (11) , (12) and (13) for
the corresponding windows of the upper decoder . In the
second clock cycle of each period , the processing elements
having even indices perform the processing of (10) , (14) and
(15) for the corresponding windows of the upper decoder , as
well as the processing of (11) , (12) and (13) for the corre
sponding windows of the lower decoder . Meanwhile , the
processing elements having odd indices perform the pro
cessing of (10) and (14) for the corresponding windows of
the lower decoder , as well as the processing of (11) , (12) and
(13) for the corresponding windows of the upper decoder .
Note that the normalization technique used in the FPTD for
(11) and (12) is different to that of the second example . More
specifically , in order to remove the requirement to determine
the maximum state metric in each vector , the approach of
(11) and (12) is to always subtract the first state metric . Note
also that the FPTD benefits from providing the lower

Fourth Example Fully - Parallel Turbo Decoder

[0061] A fully parallel turbo decoder (FPTD) , such as that
disclosed in our co - pending International patent application
PCT / EP2015 / 067527 operates in a similar manner to the
turbo decoder of first example , but employs K , number of
windows , each having a length of W 1 . Accordingly , the
FPTD employs a chain of P = K , processing elements , each of
which performs processing for a different one of the win
dows of the upper decoder , as well as for the corresponding
window of the lower decoder . The FPTD decoding process
is completed according to a periodic schedule , where the
period is given by C = 2 . The processing of each window is
completed according to (10) - (15) below . Note that (15) may
be omitted entirely in the case of the lower decoder , since it
does not generate a posteriori LLRs . Here , the superscript

US 2021/0176006 A1 Jun . 10 , 2021
9

u , a and the a

u , a

decoder with the systematic LLRs [b3.k ' > 0] = 1K1 , which may
be obtained by interleaving those of the upper decoder
[b3./4.0];=1* ?
[0063] FIG . 9 provides an illustration of an FPTD as
disclosed in PCT / EP2015 / 067527 . In FIG . 9 , the respective
upper and lower turbo decoding parts 701 , 702 correspond
to the upper and lower turbo decoding parts of the Log
BCJR algorithm 601 , 602 , but are replaced with K , parallel
algorithmic blocks 706 , 708. Thus the upper decoder 701 is
comprised of K , algorithmic blocks 706 whereas the lower
decoder 702 is comprised of K , algorithmic blocks 708. As
shown in FIG . 9 and in correspondence with the operation
of the Log - BCJR algorithm , the demodulator in the receiver
of FIG . 3 , provides the a priori LLRs to the turbo decoder's
2K , algorithmic blocks 708 , 706 , which as shown in FIG . 9
are arranged in two rows . More specifically , following their
transmission over a wireless channel , the three encoded
frames bz , bz “ and bz are demodulated and provided to the
turbo decoder of FIG . 9. The demodulator provides three
frames each comprising K , soft - valued a priori Logarithmic
Likelihood Ratios (LLRs) 5,4,4 = [52,4 , "] = 1KL , 534,2 = [
534,0] ; = 1 \ , and 52,4 = [1280 K , while a fourth frame 531,9 = [53.720] ; = K is obtained by interleaving 5 , u , a . These are
provided to the fully - parallel turbo decoder's 2K , algorith
mic blocks , with the a priori parity LLR 52 ,
priori systematic LLR 53.ju , a being provided to the kth
algorithmic block 706 in the upper decoder 701 shown in
FIG . 9. Furthermore , the interleaver 704 provides the kth
algorithmic block in the upper decoder 701 with the a priori
message LLR 51,15 as will be detailed below . Meanwhile ,
the kth algorithmic block in the lower decoder 702 is
correspondingly provided with the a priori LLR values
51,4 * , 52,4 and 53.5-4 . In addition to this , the kt " algorith
mic block 706 , 708 in each of the upper and lower decoders
701 , 702 is also provided with a vector of a priori forward
state metrics Ox - 1 = [@ x - 1 (Sk - ul M = 1 and a vector of a priori
backward state metrics Bx = IB_ (Sk)] si as will be detailed
below . Unlike a conventional turbo decoder operating in
accordance with the Log - BCJR algorithm described above
with reference to FIG . 7 , each of the algorithmic blocks 706 ,
708 of the upper and lower decoders 701 , 702 operates in an
identical manner to receive the soft decision a priori LLR
values of 6,4,2 = [52,44,4] } = 1 and bzu , a = [53,44,4] } = 1
upper decoder 521,9 = [b2,6 b 140K and
631 , a = [b3,1-4] } = 1 for the lower decoder 702 , corresponding
to one or more data symbols associated with the trellis stage
and to receive a priori forward state metrics ?k - 1 from one
neighbouring algorithmic block , to receive a priori back
ward state metrics Bk from a second neighbouring algorith
mic block and to receive a priori LLR value 51 , k " for the data
symbol being detected for the trellis stage associated with
the kth algorithmic block from the second detection proces
sor . Each algorithmic block performs calculations associated
with one trellis stage , comprising a set of transitions between
a set of previous states and a set of next states . Each
algorithmic block is configured to combine the a priori
forward state metrics ?x.1 [Cx - 1 (Sx - 1) syy = 1 the a priori
backward state metrics Bx = [P_ (SR)] sx = 1 and the a priori
LLR value 51 , " relating to the data symbol , according to
equations (10) to (15) .

ing parallel processing for turbo decoding which removes
the dependency between processing elements which allows
each processing element to perform the calculations corre
sponding to each trellis stage in parallel , with increased
throughput . Effectively therefore the window size is one as
explained above . However the FPTD suffers a perceived
disadvantage in that the algorithm and calculations for
performing the turbo decoding using the FPTD require that
each of the symbols in the frame providing an LLR value at
the decoder is represented by a processing element . For the
example of an LTE frame , the number of required processors
would be K188 = 6144 , since this is the longest supported
frame length . This can be perceived as a disadvantage
because only a limited subset of these processors can be
exploited for shorter frame lengths , leading to reduced
hardware utility . Accordingly it would be desirable to find an
arrangement in which turbo decoding can be achieved with
an arbitrary number of processing elements , allowing a
desirable tradeoff between throughput and hardware utility
to be struck . Such an arrangement is referred to in the
following paragraphs as an arbitrarily parallel turbo decoder .
According to embodiments of the present technique there
fore an arbitrary parallel turbo decoder (APTD) is arranged
to perform further decoding using parallel processing using
an arbitrary number of processing elements . To this end each
processing element represents the calculation of the vari
ables used in the processing algorithm for a plurality of LLR
values corresponding to the plurality of the symbols in the
transmitted frame so that the number of processing elements
can be reduced . However in order to provide the arbitrary
parallel turbo decoder , it is necessary to adapt the interleav
ing of the symbols between the upper and lower decoders
because each of the processing elements is performing
calculations for a plurality of frame lengths . As a result , a
configurable network is referred to as a Benes network is
provided which is scheduled in order to provide an optimum
switching of symbols between the upper and lower decoders
which as far as possible prevents conflict or wait cycles in
which one or more of the processing elements is idle . A
better appreciation of embodiments of the present technique
will be described in the following paragraphs . Embodiments
of the present technique can provide a turbo decoder circuit
for performing a turbo decoding process to recover a frame
of data symbols from a received signal comprising either
parity and systematic soft decision values (LLR values) for
each data symbols of the frame , for an example in which the
data symbols of the frame have been encoded with a turbo
encoder using a systematic code or parity soft decision
values for each data symbol of the frame for an example in
which the data symbols of the frame have been encoded with
a turbo encoder using a non - systematic code . The frame
represented by the received signal may therefore have been
encoded with a systematic or non - systematic code . The
turbo decoder circuit recovers data symbols of the frame ,
which have been encoded with a turbo encoder comprising
upper and lower convolutional encoders which can each be
represented by a trellis , and an interleaver which interleaves
the encoded data between the upper and lower convolutional
encoders . The turbo decoder circuit comprises a clock ,
configurable network circuitry configured to interleave soft
decision values , an upper decoder and a lower decoder .

?

Ki Ki for the
701 , or

Ki

M
2

Example Embodiment of an Arbitrarily Parallel
Turbo Decoder

[0064] As explained above , the FPTD as disclosed in
PCT / EP2015 / 067527 provides an arrangement for perform

[0065] The upper decoder comprises a plurality of upper
processing elements associated with the upper convolutional
encoder , each of the processing elements of the upper

US 2021/0176006 A1 Jun . 10 , 2021
10

decoder being configured , during a series of consecutive
clock cycles , iteratively to receive , from the configurable
network circuitry , a priori soft decision values (a priori
LLRs) pertaining to data symbols associated with a window
of an integer number of consecutive trellis stages represent
ing possible paths between states of the upper convolutional
encoder , to perform parallel calculations associated with the
window using the a priori soft decision values in order to
generate corresponding extrinsic soft decision values per
taining to the data symbols . The series of consecutive clock
cycles is a number of clock cycles required to perform the
entire decoding process to recover the data symbols of the
frame for a number of iterations of the turbo decoding
process . The processing elements of the upper decoder then
provide the extrinsic soft decision values to the configurable
network circuitry . At least one of the processing elements of
the upper decoder is configured to perform the calculations
for a window associated with a different number of the trellis
stages to at least one other of the processing elements of the
upper decoder . This is because , for example , the number of
trellis stages corresponding to possible paths between states
of the upper convolutional encoder may not be an integer
factor of the number of processing elements .
[0066] The lower decoder comprises a plurality of lower
processing elements associated with the lower convolutional
encoder , each of the processing elements of the lower
decoder being configured , during the series of the consecu
tive clock cycles , iteratively to receive , from the configur
able network circuitry , a priori soft decision values pertain
ing to data symbols associated with a window of an integer
number of consecutive trellis stages representing possible
paths between states of the lower convolutional encoder , to
perform parallel calculations associated with the window
using the a priori soft decision values in order to generate
corresponding extrinsic soft decision values pertaining to the
data symbols . Each of the processing elements then provide
the extrinsic soft decision values to the configurable network
circuitry . At least one of the processing elements of the
lower decoder is configured to perform the calculations for
a window associated with a different number of the trellis
stages to at least one other of the processing elements of the
lower decoder .

[0067] The configurable network circuitry includes net
work controller circuitry which controls a configuration of
the configurable network circuitry iteratively , during the
consecutive clock cycles , to provide the a priori soft decision
values for the upper decoder by interleaving the extrinsic
soft decision values provided by the lower decoder , and to
provide the a priori soft decision values for the lower
decoder by interleaving the extrinsic soft decision values
provided by the upper decoder . The interleaving performed
by the configurable network circuitry controlled by the
network controller is in accordance with a predetermined
schedule , which provides the a priori soft decision values at
different cycles of the one or more consecutive clock cycles
to avoid contention between different a priori soft decision
values being provided to the same processing element of the
upper or the lower decoder during the same clock cycle .
[0068] According to example embodiments of the present
technique therefore , each of the processing elements of the
upper decoder and the lower decoder perform calculations
associated with its window of the trellis . This means that
each of the processing elements is performing the calcula
tions associated with the forward and backward recursions

of the turbo decoding for a section of the trellis associated
with and corresponding to a section of the data symbols of
the frame . As a result of the arbitrarily parallel processing of
the turbo decoder , the processing elements can divide up the
trellis of the upper decoder without restriction on the map
ping of the window size to the processing elements although
a greater decoding rate can be achieved by sharing the
window sizes of the trellis stages between the available
processing elements as much as possible . This also means
that the size of the frame can vary independently of the
number of processing elements available to perform the
turbo decoding , so that the window sizes formed by parti
tioning the trellis can be configured dynamically .
[0069] Embodiments of the present technique can achieve
this arbitrarily parallel decoding by arranging the configur
able network to provide the a priori soft decision values for
the upper decoder to the lower decoder and from the lower
decoder to the upper decoder in a way which both matches
the interleaving performed at the encoder , but also avoids
contention between different a priori soft decision values
being provided to the same processing element of the upper
or the lower decoder during the same clock cycle , because
the processing element is performing calculations for a
widow comprising more than one stage of the trellis . This is
achieved by the predetermined schedule which arranges for
one or more of the a priori soft decision values from the
upper decoder or the lower decoder in at least one of the
clock cycles to be , for example , delayed by one or more
clock cycles or skipped in that the a priori soft decision value
is not delivered . The processing element which would have
received the a priori soft decision value without delaying or
skipping continues with the forward and backward recursion
of the calculation performed by that processing element
using a previous version of this a priori soft decision value
received in a previous iteration .
[0070] In some example embodiments , in order to com
municate the extrinsic soft decision values from the upper
decoder to become the a priori soft decision values for the
lower decoder and the extrinsic soft decision values from the

lower decoder to become the a priori soft decision values for
the upper decoder , the configurable network circuitry may
include a memory or a plurality of memories which are used
to store the extrinsic soft decision values before communi
cation via the configurable network circuitry or the a priori
soft decision values after communication . The memory can
therefore also combine with the configuration of the con
figurable network circuitry according to the predetermined
schedule to maintain a priori soft decision values which are
not updated (over written) if these are skipped to avoid
contention . Thus a memory location which stores the a priori
soft decision values for an iteration of the turbo decoding
process over one or more clock cycles to perform calcula
tions for the window of the trellis may reuse the same a
priori soft decision value which is maintained at a particular
memory location for that processing element may be re - used
to avoid contention . As for the example of FPTD [26] this
compromise may result in a reduction in accuracy but
overall the processing of the turbo decoder may produce a
faster result of an estimate of the frame of data symbols .
[0071] Each of the processing elements may be perform
ing calculations according to forward and backward sched
uling for an integer number of trellis stages , which output
extrinsic soft decision values which become a priori soft
decision values for the other of the lower or upper decoders .

US 2021/0176006 A1 Jun . 10 , 2021
11

1006 in the upper decoder 1001. The interleaver and deinter
leaver are each formed of a Bene network comprising
S = S (P) = 2 [P / 2] + S ({ P / 2]) + S ([P / 2]) crossbar switches , where
S (1) = 0 and S (2) = 1 [25] . For example , S = 352 when P = 64 .
[0076] The configurable interleaver is formed from two
Beneš networks 1022 , 1024 which are controlled by an
interleaver ROM controller 1026 in combination with two

read only memories 1028 , 1030. The interleaver ROM
controller 1026 is driven by a counter 1032 and a control line
to control the Bene network switching of the soft decision
values produced by the upper and lower sets of processing
elements 1001 , 1002 so that these are made available to each
of the processing elements at a time which can optimise the
decoding of the frame in accordance with the present
decoding technique . Finally , the APTD includes a CRC unit ,
as well as an upper and a lower terminating element , as
shown in FIG . 10 .

[0077] The APTD may be used to decode one frame of bits
at a time , supporting all L = 188 frame lengths { K1 , K2 , K3 ,
K , K188 } = { 40,48,56 , K , 6144 } and corresponding interleaver
designs of the LTE turbo code [1] . In order to initiate the
decoding of a frame , the index 1E [1 , L] of its length K , is
input to the APTD using ?log (L)] = 8 bits , as shown by 1034
in FIG . 10. At the same time , the upper decoder is provided
with K , parity LLRs [b2,44,4] } = 1 K and K , systematic LLRs
[b3.4 , 4] = 1K1 . Meanwhile , the lower decoder is provided with
K ; parity LLRs [b25 : 0) = 1 ?. Likewise , the upper terminating
element is provided with six termination LLRs

[640] (1 + 3 " k = K4 + 1 and [b 3 23,6 ? k = K4 + 1 '

The scheduling of the interleaver is therefore determined
with respect to the calculations and therefore the extrinsic
soft decision values produced and delivered to the other of
the upper and lower decoders , which is scheduled to avoid
any contention at the expense of introducing delay in the
delivery through the interleaver or deleting some of the soft
decision values and the schedule is designed to reduce these
contentions . The design of the predetermined schedule is to
reduce the delay and the deletions . The effect of delay may
be for the processing element to continue calculation of the
forward and backward recursions without the most up to
date / most current extrinsic / a priori soft decision values ,
because the most update version cannot be delivered as a
result of the contention . In some examples the soft decision
values may be delivered earlier than required , but with the
aim of reducing a number of missed opportunities for using
the extrinsic soft decision values . The processing elements
use the a priori soft decision value it had in the previous
iteration , or if it's the first iteration it sets this to zero .
[0072] In some example embodiments the calculations
performed by one or more of the processing elements
according to the window of the trellis may be formed from
different sub - periods comprising one or more of the clock
cycles in which the calculations and processing is performed
according to sub - windows , for example two sub - windows
which comprise the trellis states of the window . In some
examples , the processing of each window is constrained to
a sub - window comprising the either the first half rounding
up of the trellis stages or the last half rounding up of the
trellis stages . Within these sub - periods and sub - windows , a
forward and backward recursion is completed and then the
beginning of a forward and backward recursion is performed
if the number of clock cycles in the sub - period is greater
than the number of trellis stages in the sub - window .
[0073] In some examples , as part of the calculations
performed by the processing elements to perform the turbo
decoding process the extrinsic soft decision values are
generated from one of the forward or backward state metrics
the other being loaded from memory .
[0074] FIG . 10 provides a schematic block diagram of an
arbitrarily parallel turbo decoder (APTD) . As shown in FIG .
10 and in correspondence with the reference numerals
shown in FIGS . 7 and 9 , the APTD employs an upper 1001
and a lower decoder 1002 , each comprising a chain of P
processing elements , where the number P may be chosen
arbitrarily , such as P = 64 . Each of the upper and lower
decoders includes upper processing elements 1006 and
lower processing elements 1008 which respectively perform
calculation of the forward and backward recursions corre
sponding to the upper convolutional encoder and the lower
convolutional decoder . A final element in each of the pro
cessing sets for the upper and lower decoders 1001 , 1002 is
a terminating element 1010 , 1012 .
[0075] As will be explained in the following paragraphs ,
each of the upper and lower processing elements 1006 , 1008
performs calculations to implement the APTD . However in
order to accommodate an arrangement in which each of the
upper and lower processing elements 1006 , 1008 performs
calculations for a plurality of frame lengths , the APTD
includes a configurable interleaver 1020 to connect the
processing elements 1006 in the upper decoder 1001 to the
processing elements 1008 in the lower decoder 1002 , as well
as a deinterleaver to connect each processing element 1008
in the lower decoder 1002 to each of the processing elements

while the lower terminating element is provided with six
more termination LLRs

[bkie] , % + 3 and (bis na heki + l 2 , k_k = K4 + 1

Ki as 9

1 , a = bik ue , where

[0078] The terminating elements are operated only once at
the start of the decoding process . By contrast , the processing
elements of the upper and lower decoders are operated
continually throughout the decoding process . More specifi
cally , the upper decoder continually updates the values of the
K , a posteriori LLRs [b1.4.P] = 151 , and the K , extrinsic LLRs
[b 1,4 .] = L * 1 . These updates to the extrinsic LLRs are con
tinually interleaved by the first Beneg network and provided
to the lower decoder as the K , a priori LLRs [b1,40] = 1
shown in FIG . 10. More specifically , b1,81 (k)
the interleaving action is described by the vector II , in which
each of the K , elements II (k) E [1 , K ,] is unique , as exempli
fied in the above explanation for the K = 40 - bit LTE inter
leaver , which may be described by the vector II = [1 , 38 , 15 ,
12 , 29 , 26 , 3 , 40 , 17 , 14 , 31 , 28 , 5 , 2 , 19 , 16 , 33 , 30 , 7 , 4 ,
21 , 18 , 35 , 32 , 9 , 6 , 23 , 20 , 37 , 34 , 11 , 8 , 25 , 22 , 39 , 36 , 13 ,
10 , 27 , 24] , where b1,24 a = b , At the same time , the
lower decoder continually updates the values of the K ,
extrinsic LLRs [614.2] = 1 K1 , which are deinterleaved by the
second Beneš network and provided to the upper decoder as
the K , a priori LLRs [b144) = * . More specifically , b ,

aloe , where the deinterleaving action is described by
the vector II- ?, in which each of the K , elements II- (k) E
[1 , K ,] is unique and obeys the relationship with the inter

1 , a . u , e
1,40

u , a a_bik

US 2021/0176006 A1 Jun . 10 , 2021
12

leaver II - ' (II (k)) = k . Meanwhile , the updates to the a pos
teriori LLRs [b 1.4.P] k = 1 "] = 1 , are continually provided to the
CRC unit . This halts the decoding process as soon as the
LTE CRC is satisfied by the decoded bits obtained using the
hard decisions bluP > 0 . The decoded bits and the a poste
riori LLRs are then output by the APTD and the decoding of
a next frame may commence .
[0079] During the decoding process , the parity , system
atic , a priori , extrinsic and a posteriori LLRs are grouped
into chains of consecutive windows , each of which is
processed by a consecutive processing element in the cor
responding upper or lower decoder . More specifically , for
short frames having lengths of K s2P , the first (P - K , 2)
processing elements in each decoder are deactivated , while
the remaining K , / 2 consecutive processing elements process
consecutive windows , each comprising two LLRs of each
type . Accordingly , the number of LLRs of each type pro
cessed by the processing element having the index pE [1 , P]
is given by

[0084] where D , is a non - negative integer that may be
separately chosen for each frame length K? , in order to
control the trade off between error correction capability and
the throughput of the APTD . For example , D = 2 may be
chosen for K = 2016 , which is the longest LTE frame length
that does not satisfy mod (K ,, P) = 0 when P = 64 . In successive
clock cycles , the counter 1026 of FIG . 10 repeatedly counts
up to C , where the counter value c is signalled using
X = [log2 (Cmax)] bits , where Cmax = max / = , -C ,. For example ,
Cmax = 96 and hence X = 7 , when P = 64 and D = 2V1 .
[0085] Throughout the APTD decoding process , the index
1 of the current frame length K , and the value of the counter
c are provided to each processing element , as well as to the
interleaver ROM controller 1026 of FIG . 10. The interleaver
ROM controller converts 1 and c into an address , which may
be used to read crossbar switching patterns for the Beneš
networks to use in the current clock cycle . The interleaver
ROM comprises Z = 27 = 1188C , memory addresses , which may
be addressed using Y = flogz (Z)] bits , as shown in FIG . 10 .
For example , Z = 5,952 and hence Y = 13 , when P = 64 and
D = 2V1 . Each memory address in each interleaver ROM
stores S bits , which select switching positions for each of the
S crossbar switches in the corresponding Bene network .
[0086] Each terminating element of FIG . 10 is provided
with the six input LLRs of

(16)
W1 , p = { so ifp < P - K1 / 2

2 otherwise

[0080] Equivalently , the LLRs having the index KE [1 , K]
are processed by the processing element in the correspond
ing decoder having the index p = [k / 21 + P K // 2 . By contrast ,
for longer frames having lengths of K > 2P , the number of
LLRs of each type processed by the processing element
having the index pE [1 , P] is given by

Ki + 3 Ki + 3 [b2,61k = K4 + 1 and [B3,6 K = Kq + 1 :

Here , the superscripts ‘ u ' and ' l ' have been removed from
the notation , since the discussion of this section applies
equally to both the upper and lower terminating element . As
shown in FIG . 10 , each terminating element outputs a
backward state metric vector

(17) Wip S [K // P] ifp s P- mod (K? , P)
[K / P] otherwise

[0081] Accordingly , the LLRs having the index KE [1 , K]
are processed by the processing element in the correspond
ing decoder having the index

Bk , = [Bk , (Sk)] Sk = 1 "

(18)
p =

[k / [K / P]] ifk s kedge
[(k – kedge) / [K / P11 + kedge / [K / P] otherwise

where S = 8 in the LTE turbo code . A fixed - point binary
representation is employed for each backward state metric
Bx , (sk ;) , where a value of Bx , (Sx) = 0 is adopted until the
computations of the terminating element are completed .
More specifically , updated values for Bk , may be obtained
according to (20) .

Bk - 1 (Sk - 1) = (20)

max

[0082] where kedge = [P - mod (K ,, P)] * [K // P] is the index of
the last LLR that belongs to a window having the length
[KG / P] . In this way , all [P - mod (K , P)] * [K , / P] mod (K ,, P) : [K ,
P] = K , LLRs of each type are processed by the P processing
elements in the corresponding decoder . Note that the maxi
mum window length is given by W , max = maxy = 1 “ maxy = 1 PW
p = [Kmax / P] , which occurs when decoding a frame having
the longest LTE frame length of Kmax = maxy = 1 K = 6144 bits .
For example W , = 96 when P = 64 .
[0083] The APTD decoding process is completed accord
ing to a periodic schedule , where the period C , depends on
the current frame length K? , according to

[b2 (Sk - 1 , Sk) . 62k +63 (sk - 1 , Sk) • 63.k + Bk (sk) - Bk (1)] { sk (csk - 1,5k) = 1 } 1 ,

???

-oo may

[0087] This equation is computed using a backward recur
sion , which is initialised using Bk + 3 = [0 , - , - 00 , -00,00 , -00 ,
00 , -00] , where be represented using the most nega
tive value supported by the fixed point number
representation . More specifically , the backward recursion
successively computes Bk + 2 BK , and then finally the output
Bk . Note that the notation b (Sk - 198k) , bz (Sk - 1,5k) , b3 (sk - 19Sk) and c (Sk - 1 , Sp) is illustrated by the example trellis shown in
FIG . 6 , as discussed above .
[0088] FIG . 11 provides a schematic block diagram show
ing parts which form one example implementation of a

2 (19) if Kis2P
ifmod (K? , P) = 0 , Ci = K / P

[K // P] + DI otherwise

US 2021/0176006 A1 Jun . 10 , 2021
13

Wip

k = k ' + ? p = 1 P - Wip "

1.p.

processing element shown in FIG . 10 for the upper decoder
1001 and the lower decoder 1002. As mentioned above , the
processing element may be given the index pE [1 , P] so that
each decoder operates on the basis of windows comprising
Wip parity , systematic , a priori , extrinsic and a posteriori
LLRs . In this section , the notation k'E [1 , W1.p] is used to index an LLR within the pth window , which may be con
verted to the index KE [1 , K] within the frame according to

Furthermore , the superscripts ‘ u ' and ‘ l ’
are removed from the notation , wherever the discussion of
this section applies equally to the processing elements of
both the upper and lower decoder .
[0089] As shown in FIG . 11 , the processing elements
include components which are required to perform the
calculations to implement the APTD . As shown in FIG . 11 ,
the processing elements receive on an upper side the current
LLR values on conductors 1101 , 1102 , which are stored in
RAMs 1104 , 1105. Correspondingly , on the lower side of the
processing element , a priori LLR values are passed from the
Bene network on conductor 1104 and placed in the storage
RAM 1110. The backward state metric values are received
on a conductor 1112 and fed to a multiplexer 1114 which
with a multiplexer 1116 an adder 1118 and a backward
sub - processor element 1120 performs the processing calcu
lations for the backward recursion to output corresponding
backward state metric values from a conductor 1122 via a
multiplexer 1124. Correspondingly , forward state metric
values are received on a conductor 1130 and fed to a
multiplexer 1132 which in combination with a multiplexer
1134 , an adder 1136 and a first forward sub - processing
element 1138 perform the calculation of the forward state
metrics values which are fed to an output conductor 1140 via
a multiplexer 1142. A second forward sub - processing ele
ment 1150 receives partial calculations from the first for
ward sub - processing element 1138 and calculates the extrin
sic LLR output value fed on the output conductor 1106 via
the storage RAM 1108. Input and output controllers 1160 ,
1170 combined with ROMs 1172 , 1162 are used to control
the RAMs 1108 , 1110 to both receive a priori LLR values
from a Benes network on a conductor 1164 , as well as to
output the extrinsic LLR values from the conductor 1106 .
Similarly , RAM controllers for the forward and backward
recursion processes 1174 , 1176 operate with a random
access memory 1178 to feed backward state metric values to
the first forward sub - processing element 1138 .
[0090] As will be appreciated from the circuit diagram
shown in FIG . 11 unlike the upper decoder , the lower
decoder does not benefit from systematic LLRs , which is
equivalent to having b3 , ka = 0 . Likewise , the lower decoder
does not generate a posteriori LLRs b1 " . These differences
allow the RAM for storing b3k " , as well as all circuitry
associated with b3.k " and bike to be omitted from the
processing elements of the lower decoder .
[0091] At the start of the decoding process , the processing
element in each decoder having the index p is provided with
the Win parity LLRs [62.6 " } x = 1Wip . Furthermore , the pth
processing element in the upper decoder is provided with the

Wip W1p systematic LLRs [b3,6 • °] k = 1 at the start of the
decoding process . Throughout the decoding process , the ph
processing element of each decoder is continually provided
with updates to the a priori LLRs in the window [51 , k "]

Wip . In response , this processing element continually
updates the extrinsic LLRs in the window [51 , *] k = 1Wp , as
discussed below . Furthermore , in the case of the pth pro

cessing element in the upper decoder , the a posteriori LLRs
in the window [b1,2 % .P] k = 1 are also updated as the decod
ing process proceeds .
[0092] Additionally , throughout the decoding process , the
(p - 1) th processing element in each decoder periodically
provides the pth processing element with updates to the
forward state metric vector ax = [ak- (Sk)] s : = 1 ° for the case
where k ' = 0 , as shown in FIG . 10. However , an exception to
this is made if the (p - 1) th processing element is deactivated
because K s2P or if p = 1 and hence the (p - 1) processing
element does not exist . In these cases , the ph processing
element adopts do = [0 , -00 , -00 , -00 , -00 , -00 , -00 , -00] using the
multiplexer 1132 shown in FIG . 11. Here , -o may be
represented using the most negative value supported by the
fixed point number representation . Likewise , the (p + 1)
processing element in each decoder periodically provides
the pth processing element with updates to the backward
state metric vector Bk [Bk (sk)] s = 1 " for the case where
k = W as shown in FIG . 10. However , an exception to this
is made if p = P , in which case the backward state metric
vector is provided by the corresponding terminating ele
ment , as shown in FIG . 10 and described above . As
described below , the ph processing element periodically
updates the forward state metric vector Ok , for k = W . and
the backward state metric vector Bki for k = 0 , which are
provided to the (p + 1) th and (p - 1) th processing element ,
respectively .
[0093] During each clock cycle of the decoding process ,
each processing element accepts the above - described inputs ,
reads from RAM , performs processing within backward ,
first forward and second forward sub - processing element ,
writes into RAM and generates the above - described outputs ,
as shown in FIG . 11. Each upper processing element
employs five RAMs , for storing the F - bit parity LLRs
[b26 " Ik = Wp , the F - bit systematic LLRs [63,5 l = Wp , the
G - bit backward state metric vectors [Pkºk 1 Wip , the l - bit a
priori LLRs [b 1,5 " } x = Wlp and the I - bit extrinsic LLRs [b? ,
k®] k = Wp . By contrast , each lower processing element
employs only four RAMs , since the lower decoder does not
benefit from systematic LLRs . Each of these RAMs com
prises Wmax memory addresses , corresponding to the length
of the longest windows supported by the APTD , as described
above . The RAMs may be addressed using V = [log (Wmax)]
bits , as shown in FIG . 11. For example , V = 7 , when P = 64 .
[0094) The RAM storing the a priori LLRs [] , " ip ,
the parity LLRs [62.kºlk = Wp and the systematic LLRs
[b3 , kºlk = ip have two read ports , labelled D , ' and D , " in
FIG . 11. The second port of each of these RAMs is addressed
Az " by the output of the backward RAM controller AbE [1 ,
W1.p] , in order to provide the backward sub - processing
element with the LLRs 61,460 , 62,469 and 63,46 ° , as shown in
FIG . 11. Note that an adder is used to also provide the
backward sub - processing element with the LLR given by
(62.46 " + b34) . Meanwhile , the first port of each RAM is
addressed Aj ' by the output of the forward RAM controller
A’E [1 , W1p) , in order to provide the first forward sub
processing element with the LLRs 51,4 " , 52,4 " , 63,49 and
(12.4 + b3 / 4) . This sub - processing element is also provided
with a backward state metric vector BA by the read port of
the corresponding RAM D ’ , which is also addressed A ” by
the output of the forward RAM controller A * . At the same
time , the write port DW of this RAM is addressed AW by the
output of the backward RAM controller Ab , in order to store
a backward state metric vector Bas that had been generated

k = 1

US 2021/0176006 A1 Jun . 10 , 2021
14

1 5 9 13 17 21 26 31 36 (21)
during the previous clock cycle . More specifically , a multi
plexer 1114 is used to select the backward state metric vector
Bw , provided by the neighbouring processing element or
terminating element when A = W1 , p , or to select that pro
vided by the backward sub - processing element otherwise .

2 6 10 14 18 22 27 32 37

1 5 9 13 17 21 26 31 36
f 1 KAI 3 7 11 15 19 23 28 33 38

4 8 12 16 20 24 29 34 39

3 7 11 15 19 25 30 35 40

4 8 12 16 20 23 28 33 38

[0098] which comprises one column for each of the P = 9
processing elements and one row for each of the C = 6 clock
cycles in each schedule period . Here , the element in the ph
column and the oth row identifies the index KE [1 , K ,] of the
LLRs that are processed by the pth processing element in the
oth clock cycle within each schedule period , as generalized
in FIG . 12. Likewise , the schedules for the backward sub
processing element of the upper decoder , the first forward
sub - processing element of the lower decoder and the back
ward sub - processing element of the lower decoder may be
described by the following three matrices , respectively .

2 6 10 14 18 22 27 32 37 (22)
1 5 9 13 17 21 26 31 36

2 6 10 14 18 22 27 32 37

Kb 4 8 12 16 20 25 30 35 40

[0095] The backward and forward RAM controllers are
driven by 1 and c , which they use to produce the addresses
AbE [1 , W2.p] and AfE [1 , W) , respectively . Here , the
addresses A and Aare generated such that the backward
sub - processing element and the first forward sub - processing
element are operated according to the schedule shown in
FIG . 12. Here , the backward sub - processing element per
forms backward recursions , in which decremental LLR
indices k ' are processed in successive clock cycles . Mean
while , the first forward sub - processing element performs
forward recursions , in which incremental LLR indices k ' are
processed in successive clock cycles . During the first (C , / 2]
clock cycles in each period of C , cycles , these sub - process
ing elements of the upper decoder process the first [W , p / 2]
LLR indices , while the corresponding sub - processing ele
ments of the lower decoder process the last [W , / 2] LLR
indices . Note that (C // 2] may be greater than (W12 / 2] in
cases where D , > 0 is chosen for the sake of improving the
APTD's error correction capability . In these cases , the
beginning of the forward and backward recursions are
repeated after they have been completed a first time , as
shown in FIG . 12. During the last [C // 2] clock cycles in each
period , the backward sub - processing elements and the first
forward sub - processing elements of the lower decoder pro
cess the first (W1 , p / 2] LLR indices , while the corresponding
sub - processing elements of the upper decoder process the
last [1/2] LLR indices . Again , the beginning of the
recursions are repeated after they have been completed a
first time , when D , > 0 .
[0096] FIG . 12 provides a graphical representation show
ing a sequence of processing performed by the first and
second forward sub - processing elements as well as the
backwards sub - processing elements of the processing ele
ments of the upper decoder corresponding to those shown in
FIG . 11. FIG . 12 illustrates a schedule for operating the first
and second forward sub - processing elements , as well as the
backward sub - processing element within a processing ele
ment of the upper decoder , as well as within a processing
element of the lower decoder . Note that as will be described

below , the operation of the second forward sub - processing
element is delayed by one clock cycle relative to that of the
first forward sub - processing element , since they are sepa
rated by a pipeline register in FIG . 11 .

3 7 11 15 19 24 29 34 39

4 8 12 16 20 23 28 33 38

3 7 11 15 19 25 30 35 40

3 7 11 15 19 24 29 34 39 (23)
4 8 12 16 20 25 30 35 40

3 7 11 15 19 24 29 34 39

KA1 1 5 9 13 17 21 26 31 36

2 6 10 14 18 22 27 32 37

1 5 9 13 17 23 28 33 38

2 6 10 14 18 21 26 31 36

4 8 12 16 20 25 30 35 40 (24)
3 7 11 15 19 24 29 34 39

4 8 12 16 20 25 30 35 40

K 2 6 10 14 18 23 28 33 38

1 5 9 13 17 22 27 32 37

2 6 10 14 18 21 26 31 36

1 5 9 13 17 23 28 33 38

[0097] Note that the schedule for the operation of the
sub - processing element may be described by matrices . In the
case where each of the upper and lower decoders employ
P = 9 processing elements to perform the processing for the
shortest LTE frame length of K = 40 bits , we obtain window
lengths of [Wiplo - 1 ! = [4,4,4,4,4,5,5,5,5) , according to (17) .
Supposing that D = 2 is selected in order to strike a trade - off
between error correction capability and throughput , we
obtain a period of C?f40 / 91 + 1 = 7 clock cycles , according to
(19) . In this case , the schedule for the first forward sub
processing element of the upper decoder may be described
by the matrix

[0099] In addition to the LLRs 61,4b " , b2,460 , 63,439 and
(52,404 + b3,4 ") , the backward sub - processing element is pro
vided with the same backward state metric vector do that is
provided by the multiplexer 1114 described above , as shown
in FIG . 11. The backward sub - processing element operates
on the basis of (20) using the schematic of FIG . 13 (a) , in
order to generate the backward state metric vector Bab - 1 .

Bx - 1 (Sx - 1) = max { szkle ($ + 1 » 5x) = 1 } [b (Sx - 1,5x) = b1,59 + b2 (Sx + 1 »
Sk) -b2,6 ° +63 (Sk - 1 , SK) : 63,1 ° + Bx (Sk) -P # (1)] (25)

[0100) Note that unlike the upper decoder , the lower
decoder does not benefit from systematic LLRs , which is
equivalent to having b3.1 " = 0 . This allows the corresponding
term to be omitted from (25) in the case of the lower
decoder .

US 2021/0176006 A1 Jun . 10 , 2021
15

[0101] FIG . 13 (a) shows a schematic representation of
processing circuits which perform calculation of the back
ward state metric vector Bx - 1 = [Px - 1 (Sk - 1)] s = 1M of (20) in the backward sub - processing element . Note that unlike the
upper decoder , the lower decoder does not benefit from
systematic LLRs . This is equivalent to having 63,4-0 , which
allows one of the adders shown in FIG . 13 (a) to be omitted
from the processing elements of the lower decoder . As
shown in FIG . 13 (a) the calculations are implemented using
elements typically formed on integrated circuits such as
adders 1301 , subtracting circuits 1302 , clipping circuits
1304 and maximum output circuits 1306. As will be appre
ciated from the layout of the circuits in accordance with the
understanding of the conventional operation of these cir
cuits , the respective circuits implement the calculations
performed by the backward sub - processing elements shown
in the processing element of FIG . 11 .
(0102] Following its computation by the backward sub
processing element , the backward state metric vector BA - 1
is stored in an internal register in order to facilitate its use as
Bab in the next clock cycle , as shown in FIG . 11. Further
more , the backward state metric vector Bab - ? is stored in an
output register in the case where

ciated from the layout of the circuits in accordance with the
understanding of the conventional operation of these cir
cuits , the respective circuits implement the calculations
performed by the first forward sub - processing elements
shown in the processing element of FIG . 11 .
[0106] Following its computation by the first forward
sub - processing element , the forward state metric vector age
is stored in an internal register in order to facilitate its use as
a $ -1 in the next clock cycle , as shown in FIG . 11. Further
more , the forward state metric vector ag is stored in an
output register in the case where A? = W1 , or A = W1,2 / 2 , in
order to provide aw , and aw1 / 2 to initialise the forward recursion in the neighbouring processing eleement or the
forward recursion in the other half of the window processed
by the same processing element , respectively .
[0107] At the same time , the first forward sub - processing
element performs the calculations of (27) using the sche
matic of FIG . 14a , in order to generate the bit metric vector

Eps = [cas (bl , AS , BADIA 1,4 / € 0,1 }
2,47 € (0,1)

(27)

WI.P max Ab = 1 or Ab = +1 ,
2

[Qk - 1 (5k - 1) + Bk (sk)] +
161 (sk – 1 ») = b1 , k) (Sk - 1,34) . 62 (sk - 1 , Sk) = b2k

b .

[0108] Here , the superscript ‘ c'in (27) represents the clock
cycle index , which is included in order to emphasise the
action of the pipelining in (28) and (29) , as will be discussed
below .

in order to provide B , and Bw ,, / 2 to initialise the backward
recursion in the neighbouring processing element or the
backward recursion in the other half of the window pro
cessed by the same processing element , respectively .
[0103] Similarly , the first forward sub - processing element
of FIG . 11 is provided with the LLRs 1,4 " , 52,4 " , 53,4 and
(52,49 + b3,4) , as well as the backward state metric vector
Bd , as described above . Furthermore , a multiplexer 1132 is
used to provide the first forward sub - processing element
with the forward state metric vector 24-1 , in analogy with
the provision of B4 to the backward sub - processing element ,
but with the additional option of providing the vector
do = [0 , -00 , –00 , -00 , -00 , -00 , -00 , -00] , as described above . The
first forward sub - processing element performs the calcula
tions of (26) using the schematic of FIG . 13 (b) , in order to
generate the forward state metric vector age .

Az (sx) = max (sk - 110 (83-1 sp) = 1 } [b] (Sk - 1992) -61,2 ° +62 (Sk – 1992) • 62,4 + 63 (Sx_1994) -63,3 ° + Qx - 1 (Sx - 1) -Of - 1 (1)] (25)

[0109] FIG . 14 (a) provides a schematic circuit diagram
providing a circuit for the calculation of the bit metric vector
vector

Es = Lar (bar , bar) 1. 25.01.11 0,1 }
2,41 € (0,1 }

[0104] Note that unlike the upper decoder , the lower
decoder does not benefit from systematic LLRs , which is
equivalent to having b31 = 0 . This allows the corresponding
terms to be omitted from (26) in the case of the lower
decoder .

[0105] FIG . 13 (b) shows a schematic representation of
processing circuits which perform the calculation of the
forward state metric vector Qx- [Qx (sk)] s = 1 of (26) in the first forward sub - processing element . Note that unlike the
upper decoder , the lower decoder does not benefit from
systematic LLRs . This is equivalent to having 63,6 " = 0 ,
which allows one of the adders shown in FIG . 13 (b) to be
omitted from the processing elements of the lower decoder .
As shown in FIG . 13 (b) the calculations are implemented
using elements typically formed on integrated circuits such
as adders 1301 , subtracting circuits 1302 , clipping circuits
1304 and maximum output circuits 1306. As will be appre

of (27) in the first forward sub - processing element . Again ,
the circuits shown in FIG . 14a perform conventional func
tions of integrated circuit elements , such as adders 1401 ,
maximum value formers 1402 and multiplexers 1404 .
[0110] As shown in FIG . 11 , pipelining registers are
employed to supply the second forward sub - processing
element with the bit metric vector & ge , as well as the LLRs
b14a and b3,4 " , albeit delayed by one clock cycle relative to
the first forward sub - processing element . The second for
ward sub - processing element operates on the basis of the
schematic shown in FIG . 14 (b) . In the upper decoder , this is
used to generate the a posteriori LLR 61,4 of (29) , which is
output by the processing element and provided to the CRC
unit , as described above In both the upper and lower
decoder , the second forward sub - processing element com
putes the extrinsic LLR of (28) , which is provided to the
write port DW of the corresponding RAM and placed in the
address A ” , which is driven by a pipeline register that
supplies a delayed copy of A as shown in FIG . 11 .

US 2021/0176006 A1 Jun . 10 , 2021
16

brick (28)

0.75 max [sm (1 , 62 , k)] -0.75
b'2,6 € { 0,1 }

max [er ! (0 , 62.k)] + b3.k 6.) +5 62.4 € 0,1 }

(29)
62.5 = 0.75 max [(1 , 62.1)] 62.6 € { 0,1 } 41. -

extrinsic LLRs [61,6 *] k = 1 Wip would behave like an additional
pipeline register . More specifically , the LLR written into this
RAM by the second forward sub - processing element in a
particular clock cycle , would be read and exchanged through
the interleaver or deinterleaver in the next clock cycle . In
this case , the schedules for interleaving and deinterleaving
schedules could be described by the matrices exemplified
above in (30) and (31) for the first forward sub - processing
element , but rotated downwards by two rows , owing to the
pipelining delay . In this example , the schedules for the
provision of the extrinsic LLRs to the interleaver by the
upper decoder and to the deinterleaver by the lower decoder
may be described by the following two matrices , respec
tively .

0.75 max [ET (0 , 62.1)] + bqk + b3.k
b2k 2,5 € (0,1)

3 7 11 15 19 25 30 35 40 (32)
4 8 12 16 20 23 28 33 38

1 5 9 13 17 21 26 31 36

KUT 2 6 10 14 18 22 27 32 37 =

1 5 9 13 17 21 26 31 36

3 7 11 15 19 23 28 33 38

4 8 12 16 20 24 29 34 39

1 5 9 13 17 23 28 33 38 (33)
2 6 10 14 18 21 26 31 36

3 7 11 15 19 24 29 34 39

[0111] Note that unlike the upper decoder , the lower
decoder does not benefit from systematic LLRs , which is
equivalent to having b3.ka = 0 . This allows the corresponding
term to be omitted from (28) in the case of the lower
decoder . Likewise , the lower decoder does not generate a
posteriori LLR , allowing (29) to be omitted entirely . Here ,
the superscript ‘ c - l’in (28) and (29) represents the index of
the previous clock cycle , in order to emphasise that the bit
metric vectors of (27b) have been pipelined .
[0112] FIG . 14b provides a schematic circuit diagram
providing a circuit for the calculation of the extrinsic and a
posteriori LLRs bike and bloof (28) and (29) in the second
forward sub - processing element . Note that unlike the upper
decoder , the lower decoder does not benefit from systematic
LLRs , which is equivalent to having b3 , ka = 0 . Likewise , the
lower decoder does not generate a posteriori LLRs blue
These differences allow three of the adders shown in FIG .
14b to be omitted from the processing elements of the lower
decoder . Again , the circuits shown in FIG . 14b perform
conventional functions of integrated circuit elements , such
as subtractions 1410 , multiplications 1408 and clipping
circuits 1406 .

[0113] Note that the schedule for the second forward
sub - processing element may be described by the same
matrices exemplified above in (21) and (23) for the first
forward sub - processing element , but rotated downwards by
one row , owing to the pipelining delay . In this example , the
schedules for the second forward sub - processing element in
the upper and lower decoder may be described by the
following two matrices , respectively .

17 K ! 4 8 12 16 20 25 30 35 40

3 7 11 15 19 24 29 34 39

1 5 9 13 17 21 26 31 36

| 2 6 10 14 18 22 27 32 37

[0115] As described above the K - 40 - bit LTE interleaver
and deinterleaver may be described by the vectors II = [1 , 38 ,
15 , 12 , 29 , 26 , 3 , 40 , 17 , 14 , 31 , 28 , 5 , 2 , 19 , 16 , 33 , 30 , 7 ,
4 , 21 , 18 , 35 , 32 , 9 , 6 , 23 , 20 , 37 , 34 , 11 , 8 , 25 , 22 , 39 , 36 ,
13 , 10 , 27 , 24] and II - l = [1 , 14 , 7 , 20 , 13 , 26 , 19 , 32 , 25 , 38 ,
31 , 4 , 37 , 10 , 3 , 16 , 9 , 22 , 15 , 28 , 21 , 34 , 27 , 40 , 33 , 6 , 39 ,
12 , 5 , 18 , 11 , 24 , 17 , 30 , 23 , 36 , 29 , 2 , 35 , 8] , respectively .
Therefore , in our example , the schedules for the provision of
the a priori LLRs to the lower decoder by the interleaver and
to the upper decoder by the deinterleaver may be described
by the following two matrices , respectively . 4 8 12 16 20 23 28 33 38 (30)

1 5 9 13 17 21 26 31 36

2 6 10 14 18 22 27 32 37
15 3 31 19 7 9 34 39 24 (34) Kf2 = 1 5 9 13 17 21 26 31 36
12 40 28 16 4 35 20 25 10

3 7 11 15 19 23 28 33 38
1 29 17 5 33 21 11 36

4 8 12 16 20 24 29 34 39
II (KUT) = 38 26 14 2 30 18 23 8 13

3 7 11 15 19 25 30 35 40
1 29 17 5 33 21 11 36

2 6 10 14 18 21 26 31 36 (31) 15 3 31 19 7 35 20 25 10

3 7 11 15 19 24 29 34 39 12 40 28 16 4 32 37 22 27

4 8 12 16 20 25 30 35 40
13 25 37 9 27 12 17 2 (35) Kf2 = 3 7 11 15 19 24 29 34 39 14 26 38 10 22 21 6 11 36

1 5 9 13 17 21 26 31 36
7 19 31 3 15 40 5 30 35

2 6 10 14 18 22 27 32 37
IT - ' (KLT) 20 32 4 16 28 33 18 23 8

1 5 9 13 17 23 28 33 38
7 19 31 3 15 40 5 30 35

1 13 25 37 9 21 6 11 36

14 26 38 10 22 34 39 24 29 [0114] In an approach where the exchange of LLRs
through the interleaver and deinterleaver was scheduled
together with the forward recursions , the RAM storing the

US 2021/0176006 A1 Jun . 10 , 2021
17

[0116] The particular processing element within the lower
and upper decoders that the a priori LLRs are delivered to
may be described by the matrices Pun and P 191 , which may
be obtained by applying (18) to II (KUT) and II- (K , { ") ,
respectively . In our example , we obtain the following matri
ces .

4 1 8 5 2 3 8 9 6 (36)
3 9 7 4 1 8 5 6 3

1 7 5 2 8 6 2 3 9

pun 9 7 4 1 7 5 6 2 4

1 7 5 2 8 6 2 3 9 7
4 1 8 5 2 8 5 6 3

3 9 7 4 18 9 67
1 4 6 9 3 7 3 5 1 (37)
4 7 9 3 6 6 2 39
2 5 8 1 4 9 2 7 8

PIT = 5 8 1 4 7 8 5 6 2

used for the write port DW of the RAM storing the a priori
LLRs [61,4 = 1Wup and the read port D ” of the RAM storing
the extrinsic LLRs [b1.8 1x = 1 W. This allows the exchange
of LLRs through the interleaver and deinterleaver to be
rescheduled , in order to avoid the Bene network contention
that would be caused whenever two or more LLRs were
destined for the same processing element in the same clock
cycle . This rescheduling may still deliver a particular extrin
sic LLR through the interleaver or deinterleaver in the third
clock cycle that immediately follows the two clock cycles in
which it was generated by the first and second forward
sub - processing element . This would potentially allow the
LLR to be used in a fourth clock cycle by the first forward
or the backward sub - processing element in the connected
processing element of the other decoder . However , it may
take several clock cycles for the forward and backward
recursions of that connected processing element to reach this
updated LLR , during which time it would go unused . This
observation reveals that delaying the delivery of some LLRs
through the interleaver or deinterleaver can have no detri
mental impact upon the operation of the APTD . Motivated
by this , the interleaving or deinterleaving of particular LLRs
may be delayed in order to mitigate contention . However , in
order to eliminate contention , it may also be necessary to
disable the interleaving or deinterleaving of extrinsic LLRs
generated by particular processing elements in particular
clock cycles within the schedule period . It is this that
motivates the employment of the D , additional clock cycles
within the schedule period employed for particular frame
lengths K ;. As described above , these additional clock cycles
allow the start of each forward recursion to be repeated after
its completion , granting a second opportunity to interleave
or deinterleave an extrinsic LLR that may have been dis
abled on the first opportunity . By carefully designing the
interleaver schedule , it can be ensured that every extrinsic
LLR is interleaved or deinterleaved at least once per sched
ule period , while minimising the detrimental impact of
delaying their delivery and minimising the number D , of
additional clock cycles employed per schedule period .

2 5 8 1 4 9 2 7 8

1 4 6 9 3 6 2 3 9

4 7 9 3 6 8 9 6 7

[0117] However , these matrices reveal that the approach
where the exchange of LLRs through the interleaver and
deinterleaver are scheduled together with the forward recur
sions leads to a contention problem . More specifically , in the
example matrices Pus and P - provided above , some rows
contain duplicate processing element indices , as highlighted
in bold . However , the Bene networks used to implement the
interleaver and deinterleaver are not capable of delivering
more than one LLR to a processing element at the same time ,
in this way .
[0118] In order to solve this contention problem , we
schedule the interleaving and deinterleaving independently
of the forward and backward recursions . More specifically ,
the forward and backward recursions of FIG . 11 are imple
mented by scheduling the read and write operations of most
RAMs using the forward and backward RAM controllers , as
described above . By contrast , independent scheduling is

[0119] A particular algorithm for designing an interleaving
or deinterleaving schedule is provided below .

KT KA
PIT PA
for col = 1 to P do

for row = 1 to C , do
if K " (row , col) duplicates the value of an element higher up in the same column then

disable K " (row , col) and P , " (row , col) by setting their values to ' - '
end if

end for
end for

for row = 1 to Ci do
for col 1 to P do

if P , " (row , col) duplicates the value of an element further to the right in the same row
then

using an order that wraps from the bottom to the top of the matrix , search the
successive rows for the first one in which the value of P ; " (row , col) is not duplicated
in any columns and in which the element in the column col is set to ' - '
if a suitable row can be identified then

delay K , " (row , col) and P , (row , col) by swapping their values with the ' - ' in
the same column of the identified row

else
return ' unsuccessful

end if
end if

end for

US 2021/0176006 A1 Jun . 10 , 2021
18

-continued

end for
rotate K , " downwards by two rows
return “ successful '

[0120] In order to maximise the throughput of the APTD ,
the algorithm above may be employed with successively
higher values of Di , until it is successful for both the
interleaver and deinterleaver . In our example , the resultant
interleaving and deinterleaving schedules K , 44 and K , " are
given by (38) and (39) , respectively . Here , the corresponding
values of P1 and P are provided in brackets , showing that
all contention has been eliminated .

leaving can be completed without contention . By contrast ,
the APTD supports any number P of processing elements
and employs windows that may have different lengths . The
APTD avoids contention by scheduling the interleaving and
deinterleaving of the extrinsic LLRs independently of their
generation . More specifically , the interleaving or deinter
leaving of some extrinsic LLRs is delayed relative to their
generation , or disabled altogether .

UJT

127) 15 (5) 25 (3) 30 (8) 35 (9) 40 (6)] (38)
8 (9) 11 (8)

1 (1) 5 (7) 9 (5) 17 (8) 21 (6) 26 (2) 31 (3) 36 (9)

KULT 2 (9) 14 (1) 18 (7) 22 (5) 27 (6) 32 (2) 37 (4)
6 (7) 10 (4) 13 (2)

3 (4) 7 (1)
| 4 (3)

19 (2) 23 (8) 28 (5) 33 (6) 38 (3)

16 (4) 20 (1) 24 (8) 29 (9) 34 (6) 39 (7)

8 (8) 9 (6) 13 (9) 23 (7) 28 (3) 33 (5) 38 (1) (39)
4 (5) 6 (7) 10 (9) 17 (3)

7 (5) 15 (1) 19 (4) 24 (9) 29 (2) 34 (7) 39 (8)

KLT = 12 (1) 16 (4) 20 (7) 25 (8) 30 (5) 35 (6) 40 (2)
3 (2) 11 (8) 18 (6)
1 (1) 5 (4) 21 (6) 26 (6) 31 (3) 36 (9)

22 (8) 27 (9) 3216) 37 (7) 2 (4) 14 (3)

[0124] The turbo decoder of Example 2 disables some of
its P = 64 processing elements , when the frame length K , is
shorter than 2048 bits . By contrast , the APTD only disables
some of its P processing elements in each decoder when the
frame length K , is shorter than 2P . In this case , K , / 2 of the
processing elements in each decoder process windows of
length W 1 , p = 2 , while the remaining processing elements are
disabled . When K , is greater than 2P , some of the windows
have a length of W1.5 = [KG / P] , while the remainder have a
length of W1 , p = TK / P) .
[0125] Like the shuffled turbo decoder of Example 3 , the
APTD employs one processing element for each window of
the upper decoder , as well as a separate processing element
for each window of the lower decoder , where all windows
are processed concurrently throughout the decoding process .
However , while the shuffled turbo decoder performs a single
forward recursion and a single backward recursion within
each window , the APTD divides each window into two
sub - windows . The APTD performs a forward and backward
recursion for one sub - window , before performing a forward
and backward recursion for the other sub - window . This is
performed according to an odd - even arrangement , such that
the first sub - window in each window of the upper decoder
is processed concurrently with the second sub - window in
each window of the lower decoder , and vice versa . Note that
in the case where all windows have an even length W , this
arrangement is equivalent to having twice as many windows
and using each processing element to alternate between the
processing of two neighbouring windows within the same
decoder . This is in contrast to the turbo decoders of
Examples 1 , 2 and 4 , which use each processing element to
alternate between the processing of a particular window in
the upper decoder and the corresponding window in the
lower decoder . Note that the approach adopted by the APTD
has the advantage of eliminating the requirement for pro
cessing elements to be able to interleave or deinterleave
extrinsic LLRs back to themselves , allowing a simpler
interleaver and deinterleaver to be employed .

1.pl

???

[0121] As shown in FIG . 10 , the interleaver and deinter
leaver schedules are stored in ROMs . These ROMs are
controlled by output and input ROM controllers , which
convert 1 and c into addresses A ” , which may be used to read
a RAM address from the read port D ” of the corresponding
ROM . Each ROM comprises Z = 2 ; = 1188C , memory
addresses , which may be addressed using Y = flog (2) bits .
Each ROM memory address comprises V = [log2 (Wmax) +1]
bits , which may store a value in the range 1 to Wmax ' . Here ,
W. = W , +1 represents a dummy value that is used to
represent the disabled entries in the interleaver or deinter
leaver schedule , which are indicated using “ -'in (38) and
(39) . Note that the schedule used to read extrinsic LLRs
from one processing element must correspond to the sched
ule used to write a priori LLRs into the processing element
connected through the interleaver or deinterleaver . Note that
in order to maximise the clock frequency of the APTD it
may be beneficial to include pipelining registers within the
Bene networks . In this case , the schedule used to write the
a priori LLR should be rotated downwards by one position
for each pipelining stage .

max

Summary of Advantages

[0122] Embodiments of the present technique as explained
above can provide an APTD , which has the following
advantages :
[0123] Conventional turbo decoders are restricted to
employing a number P of processing element that is an
integer factor of the frame length K ;. This ensures that all
windows have the same length W = K / P and that the inter

[0126] In the special case where the windows of the APTD
have the minimum length of W1 , p = 2 , the odd - even arrange
ment described above becomes equivalent to that of the
FPTD and benefits from the odd - even nature of the LTE

interleaver in the same way . In cases where the window
length W. , is odd , the recursions performed during the first
(C / 2] clock cycles have a length of [W1.p / 2] , while those
performed in the remaining (C / 2] clock cycles have a length
of [W1,2 / 2] , causing a slight overlap between the recursions
performed for the upper and lower decoders . This is in

US 2021/0176006 A1 Jun . 10 , 2021
19

contrast to the recursions of previously proposed turbo
decoders , which do not have overlapping recursions .
[0127] The known turbo decoders of Examples 1 to 3
generate extrinsic LLRs during the second halves of both the
forward and backward recursions . This approach generates
no extrinsic LLRs during the first halves of the recursions
and generates two LLRs during each step of the second
halves . Therefore , this approach requires two interleavers
and two deinterleavers during the second halves and this
hardware goes unused during the first halves of the recur
sions . By contrast , the APTD generates extrinsic LLRs only
during the forward recursion , based on the backward state
metrics that have been most recently generated , either during
the end of the recursion performed during the previous
decoding iteration , or during start of the current recursion .
This allows only a single interleaver and a single deinter
leaver to be used , although this is acheived at the cost of
requiring more decoding iterations in order to achieve the
same BER , as characterized in FIGS . 15 and 16 .
[0128] In contrast to the turbo decoders of Examples 1 to
3 , the APTD may repeat the beginning of a recursion
following its completion . This provides a second opportu
nity to generate the associated extrinsic LLRs , allowing the
interleaving or deinterleaving of one or other of these
regenerated LLRs to be disabled , without eliminating the
interleaving or deinterleaving of these LLRs altogether .
When the window length W1 , p is short , this also allows more
recent backward state metric vectors to be generated , ready
for use to generate extrinsic LLRs during the next iteration .
[0129] Like the FPTD of Example 4 , the APTD employs
pipelining to increase the maximum clock frequency , but at
the cost of requiring more decoding iterations to achieve the
same BER . While the pipeline through each of the upper and
lower decoder of the FPTD has three stages , the APTD
reduces this to two stages , improving the BER . This is
achieved by performing the normalisation and clipping of
the state metrics at the input to each sub - processing element ,
rather than at the output as in the FPTD .

[0131] FIG . 16 provides a graphical plot of Bit Error Ratio
(BER) performance of the proposed APTD “ Proposed ” ,
when employing a total of 2P = 128 processing elements , as
well as maximums of 96 , 192 , 288 , 384 , 480 , 576 , 672 and
768 clock cycles to decode frames having the length
K = 6144 . Note that pipelining is disabled in these results and
that a slight BER degradation may be expected when it is
enabled . These results are compared with a corresponding
version of the turbo decoder of Example 1 “ Benchmarker
(forward only) ” , which calculates extrinsic LLRs on only
the forward recursion , as in the proposed scheme . It employs
8 parallel processors of similar hardware complexity to each
of the proposed processing element , as well as maximums of
1654 , 3282 , 4910 , 6538 , 8166 , 9794 , 11422 , 13050 clock
cycles to decode frames having the same length of K = 6144 .
Results are also provided for a second version of the turbo
decoder of Example 1 “ Benchmarker (forward and back
ward) ” which calculates extrinsic LLRs on both the forward
and backward recursions , at the cost of having 42 % higher
hardware complexity than each of the proposed processing
elements . This scheme employs 8 parallel processors , as
well as maximums of 1654 , 3282 , 4910 , 6538 , 8166 , 9794 ,
11422 , 13050 clock cycles to decode frames having the same
length of K6144 .
[0132] The following paragraphs provide further aspects
and features of the present technique :
[0133] A turbo decoder circuit for performing a turbo
decoding process to recover a frame of data symbols from a
received signal comprising one or more parity and / or sys
tematic soft decision values for each data symbol of the
frame . The data symbols of the frame have been encoded
with a turbo encoder comprising upper and lower convolu
tional encoders which can each be represented by a trellis ,
and an interleaver to interleave the data symbols between the
upper and lower convolutional encoders . The turbo decoder
circuit comprises a clock , configurable network circuitry
which is configured to interleave soft decision values , and
upper decoder and a lower decoder . The upper decoder
comprises a plurality of upper processing elements associ
ated with the upper convolutional encoder , each of the
processing elements of the upper decoder being configured ,
during a series of consecutive clock cycles , iteratively to
receive , from the configurable network circuitry , a priori soft
decision values pertaining to data symbols associated with a
window of an integer number of consecutive trellis stages
representing possible paths between states of the upper
convolutional encoder , to perform parallel calculations asso
ciated with the window using the priori soft decision
values in order to generate corresponding extrinsic soft
decision values pertaining to the data symbols by perform
ing forward and backward recursions for turbo decoding ,
and to provide the extrinsic soft decision values to the
configurable network circuitry , at least one of the processing
elements of the upper decoder being configured to perform
the calculations for a window associated with a different
number of the trellis stages to at least one other of the
processing elements of the upper decoder . The lower
decoder comprises a plurality of lower processing elements
associated with the lower convolutional encoder , each of the
processing elements of the lower decoder being configured ,
during the series of the consecutive clock cycles , iteratively
to receive , from the configurable network circuitry , a priori
soft decision values pertaining to data symbols associated
with a window of an integer number of consecutive trellis

Illustrative Results

[0130] FIG . 15 provides a graphical plot of Bit Error Ratio
(BER) performance of the proposed APTD “ Proposed ” ,
when employing a total of 2P = 128 processing elements , as
well as maximums of 8 , 16 , 24 , 32 , 40 , 48 , 56 and 64 clock
cycles to decode frames having the length K = 512 . Note that
pipelining is disabled in these results and that a slight BER
degradation may be expected when it is enabled . These
results are compared with a corresponding version of the
turbo decoder of Example 1 “ Benchmarker (forward only) ” ,
which calculates extrinsic LLRs on only the forward recur
sion , as in the proposed scheme . It employs 8 parallel
processors of similar hardware complexity to each of the
proposed processing element , as well as maximums of 246 ,
466 , 686 , 909 , 1126 , 1346 , 1566 and 1786 clock cycles to
decode frames having the same length of K = 512 . Results
are also provided for a second version of the turbo decoder
of Example 1 “ Benchmarker (forward and backward) ”
which calculates extrinsic LLRs on both the forward and
backwared recursions , at the cost of having 42 % higher
hardware complexity than each of the proposed processing
elements . This scheme employs 8 parallel processors , as
well as maximums of 246 , 466 , 686 , 909 , 1126 , 1346 , 1566
and 1786 clock cycles to decode frames having the same
length of K = 512

US 2021/0176006 A1 Jun . 10 , 2021
20

stages representing possible paths between states of the
lower convolutional encoder , to perform parallel calcula
tions associated with the window using the a priori soft
decision values in order to generate corresponding extrinsic
soft decision values pertaining to the data symbols by
performing forward and backward recursions for turbo
decoding , and to provide the extrinsic soft decision values to
the configurable network circuitry , at least one of the pro
cessing elements of the lower decoder being configured to
perform the calculations for a window associated with a
different number of the trellis stages to at least one other of
the processing elements of the lower decoder . The config
urable network circuitry includes network controller cir
cuitry which controls a configuration of the configurable
network circuitry iteratively , during the consecutive clock
cycles , to provide the a priori soft decision values for the
upper decoder by interleaving the extrinsic soft decision
values provided by the lower decoder , and to provide the a
priori soft decision values for the lower decoder by inter
leaving the extrinsic soft decision values provided by the
upper decoder , the interleaving performed by the configur
able network circuitry controlled by the network controller
being in accordance with a predetermined schedule , which
provides the a priori soft decision values at different cycles
of the one or more consecutive clock cycles to avoid
contention between different a priori soft decision values
being provided to the same processing element of the upper
or the lower decoder during the same clock cycle .

[0134] A turbo decoder circuit for performing a turbo
decoding process to recover a frame of data symbols from a
received signal comprising soft decision values for each data
symbol of the frame . The data symbols of the frame have
been encoded with a turbo encoder comprising upper and
lower convolutional encoders which can each be represented
by a trellis , and an interleaver to interleave the data symbols
between the upper and lower convolutional encoders . The
turbo decoder circuit comprises a clock , configurable net
work circuitry which is configured to interleave soft decision
values , and upper decoder and a lower decoder . The upper
decoder comprises a plurality of upper processing elements
associated with the upper convolutional encoder , each of the
processing elements of the upper decoder being configured ,
during a series of consecutive clock cycles , iteratively to
receive , from the configurable network circuitry , a priori soft
decision values pertaining to data symbols associated with a
window of an integer number of consecutive trellis stages
representing possible paths between states of the upper
convolutional encoder , to perform parallel calculations to
generate corresponding extrinsic soft decision values per
taining to the data symbols , and to provide the extrinsic soft
decision values to the configurable network circuitry . The
lower decoder comprises a plurality of lower processing
elements associated with the lower convolutional encoder ,
each of the processing elements of the lower decoder being
configured , during the series of the consecutive clock cycles ,
iteratively to receive , from the configurable network cir
cuitry , a priori soft decision values pertaining to data sym
bols associated with a window of an integer number of
consecutive trellis stages representing possible paths
between states of the lower convolutional encoder , to per
form parallel calculations to generate corresponding extrin
sic soft decision values pertaining to the data symbols , and
to provide the extrinsic soft decision values to the config
urable network circuitry . The configurable network circuitry

is configured in accordance with a predetermined schedule
to provide the a priori soft decision values at different cycles
of the one or more consecutive clock cycles to between the
upper and lower decoders to avoid contention between
different a priori soft decision values .
[0135] According to the embodiments recited in the above
paragraphs the calculations performed by the processing
elements according to the forward and the backward recur
sion comprise receiving the forward or backward state
metrics pertaining to a neighbouring trellis stage , combining
the forward or backward state metrics with the a priori ,
parity and systematic soft decision values for the data
symbols and generating the forward or backward state
metrics pertaining to another neighbouring trellis stage ,
wherein the received forward or backward state metrics are
normalized before being combined with the a priori , parity
and systematic soft decision values .
[0136] The following numbered paragraphs provide fur
ther example aspects and features of example embodiments :
Paragraph 1. A turbo decoder circuit for performing a turbo
decoding process to recover a frame of data symbols from a
received signal comprising one or more parity and / or sys
tematic soft decision values for each data symbol of the
frame , the data symbols of the frame having been encoded
with a turbo encoder comprising upper and lower convolu
tional encoders which can each be represented by a trellis ,
and an interleaver to interleave the data symbols between the
upper and lower convolutional encoders , the turbo decoder
circuit comprising
[0137] a clock ,
[0138] configurable network circuitry which is configured
to interleave soft decision values ,
[0139] an upper decoder comprising a plurality of upper
processing elements associated with the upper convolutional
encoder , each of the processing elements of the upper
decoder being configured , during a series of consecutive
clock cycles , iteratively to receive , from the configurable
network circuitry , a priori soft decision values pertaining to
data symbols associated with a window of an integer number
of consecutive trellis stages representing possible paths
between states of the upper convolutional encoder , to per
form parallel calculations associated with the window using
the a priori soft decision values in order to generate corre
sponding extrinsic soft decision values pertaining to the data
symbols , and to provide the extrinsic soft decision values to
the configurable network circuitry , at least one of the pro
cessing elements of the upper decoder being configured to
perform the calculations for a window associated with a
different number of the trellis stages to at least one other of
the processing elements of the upper decoder , and
[0140] a lower decoder comprising a plurality of lower
processing elements associated with the lower convolutional
encoder , each of the processing elements of the lower
decoder being configured , during the series of the consecu
tive clock cycles , iteratively to receive , from the configur
able network circuitry , a priori soft decision values pertain
ing to data symbols associated with a window of an integer
number of consecutive trellis stages representing possible
paths between states of the lower convolutional encoder , to
perform parallel calculations associated with the window
using the a priori soft decision values in order to generate
corresponding extrinsic soft decision values pertaining to the
data symbols , and to provide the extrinsic soft decision
values to the configurable network circuitry , at least one of

US 2021/0176006 A1 Jun . 10 , 2021
21

tions for a window comprising corresponding trellis stages
as the corresponding processing element of the lower
decoder .

Paragraph 8. A turbo decoder according to any of paragraphs
1 to 7 , wherein a processing schedule of the processing
elements and the interleaving is periodic according to the
same number of clock cycles , each iteration representing a
period of the same schedule .
Paragraph 9. A turbo decoder according to paragraph 8 ,
wherein the period is given by a maximum of trellis stages
in any one window in either the upper or lower decoder plus
a non - negative integer required to reduce a requirement for
skipping in accordance with the predetermined schedule to
avoid contention .

the processing elements of the lower decoder being config
ured to perform the calculations for a window associated
with a different number of the trellis stages to at least one
other of the processing elements of the lower decoder ,
[0141] wherein the configurable network circuitry
includes network controller circuitry which controls a con
figuration of the configurable network circuitry iteratively ,
during the consecutive clock cycles , to provide the a priori
soft decision values for the upper decoder by interleaving
the extrinsic soft decision values provided by the lower
decoder , and to provide the a priori soft decision values for
the lower decoder by interleaving the extrinsic soft decision
values provided by the upper decoder , the interleaving
performed by the configurable network circuitry controlled
by the network controller being in accordance with a pre
determined schedule , which provides the a priori soft deci
sion values at different cycles of the one or more consecutive
clock cycles to avoid contention between different a priori
soft decision values being provided to the same processing
element of the upper or the lower decoder during the same
clock cycle .
Paragraph 2. A turbo decoder circuit according to paragraph
1 , wherein the processing elements for each of the upper
decoder and the lower decoder are configured to read the a
priori soft decision values from memory and to write extrin
sic soft decision values to memory after the calculations are
performed , and the configurable network circuitry is con
figured to read the extrinsic soft decision values from
memory and to write a priori soft decision values to memory ,
and the reading of one or more of the extrinsic soft decision
values by the configurable network in accordance with the
predetermined schedule is delayed by one or more clock
cycles relative to the writing of the one or more extrinsic soft
decision values by the processing elements .
Paragraph 3. A turbo decoder circuit according to paragraph
1 or 2 , wherein the processing elements for each of the upper
decoder and the lower decoder are configured to read the a
priori soft decision values from memory and to write extrin
sic soft decision values to memory after the calculations are
performed , and the configurable network circuitry is con
figured to read the extrinsic soft decision values from
memory and to write a priori soft decision values to memory ,
and at least one of the reading of one or more of the extrinsic
soft decision values by the configurable network in accor
dance with the predetermined schedule or the writing of the
one or more extrinsic soft decision values by the processing
elements is skipped .
Paragraph 4. A turbo decoder circuit according to any of
paragraphs 1 , 2 or 3 , wherein the number of processing
elements in the upper decoder or the lower decoder is not an
integer factor of the number of trellis stages .
Paragraph 5. A turbo decoder according to any of paragraphs
1 to 4 , wherein a difference between the minimum and the
maximum number of the trellis stages within each window
processed by the processing elements is one in either of the
upper and lower decoders .
Paragraph 6. A turbo decoder circuit according to any of
paragraphs 1 to 5 wherein each of the windows comprising
the same number of trellis stages which are processed by the
processing elements which are adjacent to each other .
Paragraph 7. A turbo decoder circuit according to any of
paragraphs 1 to 6 , wherein the upper and lower decoder
comprise the same number of processing elements and each
processing element of the upper decoder performs calcula

Paragraph 10. A turbo decoder circuit according to any of
paragraphs 1 to 9 , wherein each of the processing elements
is configured to perform the parallel calculations according
to a periodic schedule , and each period includes a first
sub - period comprising one or more of first clock cycles in
the period , and a second sub - period comprising the remain
ing cycles in the period , during a first sub - period the
processing of each window comprises forward and back
ward recursions within either a first sub - window comprising
a first one or more of the trellis stages in the window , or a
second sub - window comprising the last one or more of the
trellis stages in the window , during a second sub - period ,
each of the processing elements is configured to perform
forward and backward recursions within the other of the first
and second sub - window , which comprises the remaining
trellis stages in the window .
Paragraph 11. A turbo decoder circuit according to para
graph 10 , wherein one of the first and second sub - periods
comprises a half rounding down of the clock cycles in the
period and the other of the first and second sub - period
comprise the remaining half rounding up of the clock cycles
of the period , and during one of the first and second
sub - periods comprising a half - rounding down of the clock
cycles each processing element performs the parallel calcu
lations for the first or the second sub - window comprising a
half rounding down of the trellis stages in the window , and
during the other of the first and second sub - periods com
prising a half - rounding up of the clock cycles the processing
element performs calculations for the first or the second
sub - window comprising a half rounding up of the trellis
stages in the window .
Paragraph 12. A turbo decoder circuit according to para
graph 11 , wherein the processing elements are configured to
perform calculations for a sub - window within a sub - period
associated with a complete forward recursion within the
sub - window and a complete backward recursion within the
sub - window , and after performing the complete forward
recursion and the complete backward recursion any remain
ing clock cycles are used by the processing elements to
perform calculations associated with at least part of a
subsequent forward and a subsequent backward recursion .
Paragraph 13. A turbo decoder circuit according to para
graph 12 , wherein during the first sub - period the processing
elements of the upper decoder are configured to perform
calculations associated with the same one of a first or a
second sub - window , and the processing elements of the
lower decoder are configured to perform calculations asso
ciated with the other of the first or the second sub - window ,
and

US 2021/0176006 A1 Jun . 10 , 2021
22

[0142] during the second sub - period the processing ele
ments of the upper decoder are configured to perform
calculations associated with the first or the second sub
window which was not processed by the processing element
during the first sub - period , and the processing elements of
the lower decoder are configured to perform calculations
associated with the other of the first or the second sub
window which was not processed by the processing element
during the first sub - period .
Paragraph 14. A turbo decoder circuit according to any of
paragraphs 10 to 13 , wherein the forward recursion gener
ates a plurality of forward state metrics corresponding to the
plurality of trellis states according to a schedule which
performs calculations associated with each successive trellis
stage in a forward direction and the backward recursion
generates a plurality of backward state metrics correspond
ing to the plurality of trellis states according to a schedule
which performs calculations associated with each successive
trellis stage in a backward direction , and either the forward
recursion stores the forward state metrics in a memory
according to the schedule for the forward recursion or the
backward recursion stores the backward state metrics in the
memory according to the schedule for the backward recur
sion , and the other of the forward or the backward recursions
loads the stored forward or backward state metrics from the
memory and combines the forward and the backward state
metrics to calculate the extrinsic soft decision values accord
ing to the schedule for the forward or the backward recur
sion .

upper decoder

Paragraph 15. A turbo decoder circuit according to any of
paragraphs 10 to 14 , wherein the calculations performed by
the processing elements according to the forward and the
backward recursion comprise receiving the forward or back
ward state metrics pertaining to a neighbouring trellis stage ,
combining the forward or backward state metrics with the a
priori , parity and systematic soft decision values for the data
symbols and generating the forward or backward state
metrics pertaining to another neighbouring trellis stage ,
wherein the received forward or backward state metrics are
normalized before being combined with the a priori , parity
and systematic soft decision values .
Paragraph 16. A turbo decoder circuit according to para
graph 15 , wherein the processing elements are configured to
generate the extrinsic soft decision values according to a two
step pipeline comprising a first step which combines the
forward and backward state metrics with each other and with

the parity soft decision values to form intermediate vari
ables , and a second step which combines the intermediate
variables with each other , scales the combination of inter
mediate variables and combines the scaled combination of
intermediate variables with the systematic soft decision
values , and the two steps of the pipeline are performed
during the two consecutive clock cycles , and the delay
imposed by the steps of the pipeline are accommodated in
the delay imposed by the predetermined schedule of the
configurable network to avoid contention .

Paragraph 18. A method of turbo decoding to recover a
frame of data symbols from a received signal comprising
one or more parity and / or systematic soft decision values for
each data symbol of the frame , the data symbols of the frame
having been encoded with a turbo encoder comprising upper
and lower convolutional encoders which can each be rep
resented by a trellis , and an interleaver to interleave the
encoded data have been interleaved between the upper and
lower convolutional encoders , the method comprising
[0143] performing a forward and a backward iterative
recursion processes using an upper decoder comprising a
plurality of upper processing elements associated with the
upper convolutional encoder , by
[0144] iteratively receiving at each of the processing ele
ments of the upper decoder , during a series of consecutive
clock cycles , from a configurable network circuitry , a priori
soft decision values pertaining to data symbols associated
with a window of an integer number of consecutive trellis
stages representing possible paths between states of the
upper convolutional encoder ,
[0145] performing parallel calculations by each of the
processing elements associated with the window using the a
priori soft decision values in order to generate corresponding
extrinsic soft decision values pertaining to the data symbols ,
at least one of the processing elements of the
performing the calculations for a window associated with a
different number of the trellis stages to at least one other of
the processing elements of the upper decoder ,
[0146] providing the extrinsic soft decision values to the
configurable network circuitry , and
[0147] performing a forward and a backward iterative
recursion processes using a lower decoder comprising a
plurality of lower processing elements associated with the
lower convolutional encoder , by
[0148] iteratively receiving at each of the processing ele
ments of the lower decoder , during the series of the con
secutive clock cycles , from the configurable network cir
cuitry , a priori soft decision values pertaining to data
symbols associated with a window of an integer number of
consecutive trellis stages representing possible paths
between states of the lower convolutional encoder ,
[0149] performing parallel calculations by each of the
processing elements associated with the window using the a
priori soft decision values in order to generate corresponding
extrinsic soft decision values pertaining to the data symbols ,
at least one of the processing elements of the lower decoder
performing the calculations for a window associated with a
different number of the trellis stages to at least one other of
the processing elements of the lower decoder ,
[0150] providing the extrinsic soft decision values to the
configurable network circuitry ,
[0151] controlling a configuration of the configurable net
work circuitry iteratively , during the consecutive clock
cycles , to provide the a priori soft decision values for the
upper decoder by interleaving the extrinsic soft decision
values provided by the lower decoder , and to provide the a
priori soft decision values for the lower decoder by inter
leaving the extrinsic soft decision values provided by the
upper decoder , the interleaving performed by the configur
able network circuitry controlled by the network controller
being in accordance with a predetermined schedule , which
provides the a priori soft decision values at different cycles
of the one or more consecutive clock cycles to avoid
contention between different a priori soft decision value

Paragraph 17. A turbo decoder circuit according to any of
paragraphs 1 to 16 , wherein the number of data symbols in
the frame is variable , and the number of trellis stages of each
window for calculations performed by the upper and lower
decoders is determined with respect to the frame length and
the number of the processing elements of the upper and
lower decoders .

US 2021/0176006 A1 Jun . 10 , 2021
23

decoder , and to provide the a priori soft decision values for
the lower decoder by interleaving the extrinsic soft decision
values provided by the upper decoder , the interleaving
performed by the configurable network circuitry controlled
by the network controller being in accordance with a pre
determined schedule , which provides the a priori soft deci
sion values at different cycles of the one or more consecutive
clock cycles to avoid contention between different a priori
soft decision value being provided to the same processing
element of the upper or the lower decoder during the same
clock cycle .
Paragraph 20. A receiver according to paragraph 19 , wherein
a number of data symbols in each of the frames varies
dynamically from one from to another .
Paragraph 21. An infrastructure equipment forming part of
a radio access network of a wireless communications net
work , the infrastructure equipment including a receiver
according to paragraph 19 or 20 .
Paragraph 22. A communications device for transmitting or
receiving data with a wireless communications network , the
communications device including a receiver according to
paragraph 19 or 20 .

REFERENCES

being provided to the same processing element of the upper
or the lower decoder during the same clock cycle .
Paragraph 19. A receiver for detecting and recovering frames
of data symbols which have been encoded with a turbo code ,
the receiver including
[0152] detecting circuitry for detecting a received signal
carrying the frames of data symbols , each of the frames of
data symbols comprising one or more parity and / or system
atic soft decision values for each data symbol of the frame ,
the data symbols of each frame having been encoded with a
turbo encoder comprising upper and lower convolutional
encoders which can each be represented by a trellis , and an
interleaver to interleave the encoded data have been inter
leaved between the upper and lower convolutional encoders ,
and
[0153] a turbo decoder circuit for performing a turbo
decoding process to recover each of the frame of data
symbols from the received signal , the turbo decoder circuit
comprising
[0154] a clock ,
[0155] configurable network circuitry which is configured
to interleave soft decision values ,
[0156] an upper decoder comprising a plurality of upper
processing elements associated with the upper convolutional
encoder , each of the processing elements of the upper
decoder being configured , during a series of consecutive
clock cycles , iteratively to receive , from the configurable
network circuitry , a priori soft decision values pertaining to
data symbols associated with a window of an integer number
of consecutive trellis stages representing possible paths
between states of the upper convolutional encoder , to per
form parallel calculations associated with the window using
the a priori soft decision values in order to generate corre
sponding extrinsic soft decision values pertaining to the data
symbols , and to provide the extrinsic soft decision values to
the configurable network circuitry , at least one of the pro
cessing elements of the upper decoder being configured to
perform the calculations for a window associated with a
different number of the trellis stages to at least one other of
the processing elements of the upper decoder , and
[0157] a lower decoder comprising a plurality of lower
processing elements associated with the lower convolutional
encoder , each of the processing elements of the lower
decoder being configured , during the series of the consecu
tive clock cycles , iteratively to receive , from the configur
able network circuitry , a priori soft decision values pertain
ing to data symbols associated with a window of an integer
number of consecutive trellis stages representing possible
paths between states of the lower convolutional encoder , to
perform parallel calculations associated with the window
using the a priori soft decision values in order to generate
corresponding extrinsic soft decision values pertaining to the
data symbols , and to provide the extrinsic soft decision
values to the configurable network circuitry , at least one of
the processing elements of the lower decoder being config
ured to perform the calculations for a window associated
with a different number of the trellis stages to at least one
other of the processing elements of the lower decoder ,
[0158] wherein the configurable network circuitry
includes network controller circuitry which controls a con
figuration of the configurable network circuitry iteratively ,
during the consecutive clock cycles , to provide the a priori
soft decision values for the upper decoder by interleaving
the extrinsic soft decision values provided by the lower

[0159] [1] ETSI TS36.212 v 10.8.0 (2013-06) LTE ;
Evolved Universal Terrestrial Radio Access (E - UTRA) ;
Multiplexing and Channel Coding , V10.2.0 ed . , 2011 .

[0160] [2] IEEE 802.16-2012 Standard for Local and
Metropolitan Area Networks Part 16 : Air Interface for
Broadband Wireless Access Systems , 2012 .

[0161] [3] C. Berrou , A. Glavieux , and P. Thitimajshima ,
“ Near Shannon limit error - correcting coding and decod
ing : Turbo - codes (1) , ” in Proc . IEEE Int . Conf . on Com
munications , vol . 2 , Geneva , Switzerland , May 1993 , pp .
1064-1070 .

[0162] [4] P. Robertson , E. Villebrun , and P. Hoeher , “ A
comparison of optimal and sub - optimal MAP decoding
algorithms operating in the log domain , ” in Proc . IEEE
Int . Conf . on Communications , vol . 2 , Seattle , Wash . ,
USA , June 1995 , pp . 1009-1013 .

[0163] [5] IEEE 802.11n - 2009 Standard for Information
Technology - Telecommunications and Information
Exchange between Systems Local and Metropolitan
Area Networks Specific Requirements Part 11 : Wire
less LAN Medium Access Control (MAC) and Physical
Layer (PHY) , 2009 .

[0164] [6] D. J. C. MacKay and R. M. Neal , “ Near
Shannon limit performance of low density parity check
codes , ” Electron . Lett . , vol . 32 , no . 18 , pp . 457-458 ,
August 1996 .

[0165] [7] M. Fossorier , “ Reduced complexity decoding
of low - density parity check codes based on belief propa
gation , ” IEEE Trans . Commun . , vol . 47 , no . 5 , pp . 673
680 , May 1999 .

[0166] [8] 5G Radio Access . Ericsson White Paper , June
2013 .

[0167] [9] V. A. Chandrasetty and S. M. Aziz , “ FPGA
implementation of a LDPC decoder using a reduced
complexity message passing algorithm , ” Journal of Net
works , vol . 6 , no . 1 , pp . 36-45 , January 2011 .

[0168] [10] T. Ilnseher , F. Kienle , C. Weis , and N. Wehn ,
“ A 2.15 GBit / s turbo code decoder for LTE Advanced
base station applications , ” in Proc . Int . Symp . on Turbo

US 2021/0176006 A1 Jun . 10 , 2021
24

pp . 21-25 .
Codes and Iterative Information Processing , Gothenburg ,
Sweden , August 2012 ,

[0169] [11] L. Fanucci , P. Ciao , and G. Colavolpe , “ VLSI
design of a fully - parallel high - throughput decoder for
turbo gallager codes , ” IEICE Trans . Fundamentals , vol .
E89 - A , no . 7 , pp . 1976-1986 , July 2006 .

[0170] [12] D. Vogrig , A. Gerosa , A. Neviani , A. Graell I
Amat , G. Montorsi , and S. Benedetto , “ A0.35 - um CMOS
analog turbo decoder for the 40 - bit rate 1/3 UMTS
channel code , ” IEEE J. Solid - State Circuits , vol . 40 , no .
3 , pp . 753-762 , 2005 .

[0171] [13] Q. T. Dong , M. Arzel , C. J. Jego , and W. J.
Gross , “ Stochastic decoding of turbo codes . ” IEEE Trans .
Signal Processing , vol . 58 , no . 12 , pp . 6421-6425 ,
December 2010 .

[0172] [14] A. Nimbalker , Y. Blankenship , B. Classon , and
T. K. Blankenship , “ ARP and QPP interleavers for LTE
turbo coding , ” in Proc . IEEE Wireless Commun Network
ing Conf . , Las Vegas , Nev . , USA , March 2008 , pp .
1032-1037 .

[0173] [15] L. Li , R. G. Maunder , B. M. Al - Hashimi , and
L Hanzo , “ A low - complexity turbo decoder architecture
for energy - efficient wireless sensor networks , ” IEEE
Trans . VLSI Syst . , vol . 21 , no . 1 , pp . 14-22 , January 2013 .
[Online] . Available : http://eprints.soton.ac.uk/271820/
[16]

[0174] [16] P. Radosavljevic , A. de Baynast , and J. R.
Cavallaro , “ Optimized message passing schedules for
LDPC decoding , ” in Asilomar Conf . Signals Systems and
Computers , no . 1 , Pacific Grove , Calif . , USA , October
2005 , pp . 591-595 .

[0175] [17] CN 102611464
[0176] [18] CN 102723958
[0177] [19] WO 2011/082509
[0178] [20] “ A 122 Mb / s Turbo decoder using a mid - range
GPU ” by Xianjun J. , et al , published at Wireless Com
munications and Mobile Computing Conference
(IWCMC) , 2013 9th International , pages 1090-1094 , 1-5
Jul . 2013 .

[0179] [21] “ Turbo IP Core User Guide ” , UG - Turbo ,
2015.11.11 Altera .

[0180] [22] L. F. Gonzalez - Perez , L. C. Yllescas - Calde
ron , and R. Parra - Michel , “ Parallel and Configurable
Turbo Decoder Implementation for 3GPP - LTE , ” in 2013
Int . Conf . Reconfigurable Comput . FPGAs , pp . 1-6 ,
IEEE , December 2013 .

[0181] [23] Yufei Wu , B. D. Woerner and T. K. Blanken
ship , “ Data width requirements in SISO decoding with
module normalization , ” in IEEE Transactions on Com
munications , vol . 49 , no . 11 , pp . 1861-1868 , November
2001 .

[0182] [24] J. Zhang and M. P. C. Fossorier , “ Shuffled
iterative decoding , ” IEEE Trans . Commun . , vol . 53 , no . 2 ,
pp . 209-213 , February 2005 .

[0183] [25] C. Chang , “ Arbitrary size Benes networks ” ,
Parallel Processing Letters , vol . 7 , no . 3 , September 1997 .

[0184] [26] PCT / EP2015 / 067527
1. A turbo decoder circuit for performing a turbo decoding

process to recover a frame of data symbols from a received
signal comprising one or more parity and / or systematic soft
decision values for each data symbol of the frame , the data
symbols of the frame having been encoded with a turbo
encoder comprising upper and lower convolutional encoders
which can each be represented by a trellis , and an interleaver

to interleave the data symbols between the upper and lower
convolutional encoders , the turbo decoder circuit compris
ing

a clock ,
configurable network circuitry which is configured to

interleave soft decision values ,
an upper decoder comprising a plurality of upper process

ing elements associated with the upper convolutional
encoder , each of the processing elements of the upper
decoder being configured , during a series of consecu
tive clock cycles , iteratively to receive , from the con
figurable network circuitry , a priori soft decision values
pertaining to data symbols associated with a window of
an integer number of consecutive trellis stages repre
senting possible paths between states of the upper
convolutional encoder , to perform parallel calculations
associated with the window using the a priori soft
decision values in order to generate corresponding
extrinsic soft decision values pertaining to the data
symbols , and to provide the extrinsic soft decision
values to the configurable network circuitry , at least one
of the processing elements of the upper decoder being
configured to perform the calculations for a window
associated with a different number of the trellis stages
to at least one other of the processing elements of the
upper decoder , and

a lower decoder comprising a plurality of lower process
ing elements associated with the lower convolutional
encoder , each of the processing elements of the lower
decoder being configured , during the series of the
consecutive clock cycles , iteratively to receive , from
the configurable network circuitry , a priori soft decision
values pertaining to data symbols associated with a
window of an integer number of consecutive trellis
stages representing possible paths between states of the
lower convolutional encoder , to perform parallel cal
culations associated with the window using the a priori
soft decision values in order to generate corresponding
extrinsic soft decision values pertaining to the data
symbols , and to provide the extrinsic soft decision
values to the configurable network circuitry , at least one
of the processing elements of the lower decoder being
configured to perform the calculations for a window
associated with a different number of the trellis stages
to at least one other of the processing elements of the
lower decoder ,

wherein the configurable network circuitry includes net
work controller circuitry which controls a configuration
of the configurable network circuitry iteratively , during
the consecutive clock cycles , to provide the a priori soft
decision values for the upper decoder by interleaving
the extrinsic soft decision values provided by the lower
decoder , and to provide the a priori soft decision values
for the lower decoder by interleaving the extrinsic soft
decision values provided by the upper decoder , the
interleaving performed by the configurable network
circuitry controlled by the network controller being in
accordance with a predetermined schedule , which pro
vides the a priori soft decision values at different cycles
of the one or more consecutive clock cycles to avoid
contention between different a priori soft decision
values being provided to the same processing element
of the upper or the lower decoder during the same clock
cycle .

US 2021/0176006 A1 Jun . 10 , 2021
25

2. A turbo decoder circuit as claimed in claim 1 , wherein
the processing elements for each of the upper decoder and
the lower decoder are configured to read the a priori soft
decision values from memory and to write extrinsic soft
decision values to memory after the calculations are per
formed , and the configurable network circuitry is configured
to read the extrinsic soft decision values from memory and
to write a priori soft decision values to memory , and the
reading of one or more of the extrinsic soft decision values
by the configurable network in accordance with the prede
termined schedule is delayed by one or more clock cycles
relative to the writing of the one or more extrinsic soft
decision values by the processing elements .

3. A turbo decoder circuit as claimed in claim 1 , wherein
the processing elements for each of the upper decoder and
the lower decoder are configured to read the a priori soft
decision values from memory and to write extrinsic soft
decision values to memory after the calculations are per
formed , and the configurable network circuitry is configured
to read the extrinsic soft decision values from memory and
to write a priori soft decision values to memory , and at least
one of the reading of one or more of the extrinsic soft
decision values by the configurable network in accordance
with the predetermined schedule or the writing of the one or
more extrinsic soft decision values by the processing ele
ments is skipped

4. A turbo decoder circuit as claimed in claim 1 , wherein
the number of processing elements in the upper decoder or
the lower decoder is not an integer factor of the number of
trellis stages .

5. A turbo decoder as claimed in claim 1 , wherein a
difference between the minimum and the maximum number
of the trellis stages within each window processed by the
processing elements is one in either of the upper and lower
decoders .

6. A turbo decoder circuit as claimed in claim 1 , wherein
each of the windows comprising the same number of trellis
stages which are processed by the processing elements
which are adjacent to each other .

7. A turbo decoder circuit as claimed in claim 1 , wherein
the upper and lower decoder comprise the same number of
processing elements and each processing element of the
upper decoder performs calculations for a window compris
ing corresponding trellis stages as the corresponding pro
cessing element of the lower decoder .

8. A turbo decoder as claimed in claim 1 , wherein a
processing schedule of the processing elements and the
interleaving is periodic according to the same number of
clock cycles , each iteration representing a period of the same
schedule .

9. A turbo decoder as claimed in claim 8 , wherein the
period is given by a maximum of trellis stages in any one
window in either the upper or lower decoder plus a non
negative integer required to reduce a requirement for skip
ping in accordance with the predetermined schedule to avoid
contention .

10. A turbo decoder circuit as claimed in claim 1 , wherein
each of the processing elements is configured to perform the
parallel calculations according to a periodic schedule , and
each period includes a first sub - period comprising one or
more of first clock cycles in the period , and a second
sub - period comprising the remaining cycles in the period ,
during a first sub - period the processing of each window
comprises forward and backward recursions within either a

first sub - window comprising a first one or more of the trellis
stages in the window , or a second sub - window comprising
the last one or more of the trellis stages in the window ,
during a second sub - period , each of the processing elements
is configured to perform forward and backward recursions
within the other of the first and second sub - window , which
comprises the remaining trellis stages in the window .

11. A turbo decoder circuit as claimed in claim 10 ,
wherein one of the first and second sub - periods comprises a
half rounding down of the clock cycles in the period and the
other of the first and second sub - period comprise the remain
ing half rounding up of the clock cycles of the period , and
during one of the first and second sub - periods comprising a
half - rounding down of the clock cycles each processing
element performs the parallel calculations for the first or the
second sub - window comprising a half rounding down of the
trellis stages in the window , and during the other of the first
and second sub - periods comprising a half - rounding up of the
clock cycles the processing element performs calculations
for the first or the second sub - window comprising a half
rounding up of the trellis stages in the window .

12. A turbo decoder circuit as claimed in claim 11 ,
wherein the processing elements are configured to perform
calculations for a sub - window within a sub - period associ
ated with a complete forward recursion within the sub
window and a complete backward recursion within the
sub - window , and after performing the complete forward
recursion and the complete backward recursion any remain
ing clock cycles are used by the processing elements to
perform calculations associated with at least part of a
subsequent forward and a subsequent backward recursion .

13. A turbo decoder circuit as claimed in claim 12 ,
wherein during the first sub - period the processing elements
of the upper decoder are configured to perform calculations
associated with the same one of a first or a second sub
window , and the processing elements of the lower decoder
are configured to perform calculations associated with the
other of the first or the second sub - window , and

during the second sub - period the processing elements of
the upper decoder are configured to perform calcula
tions associated with the first or the second sub - window
which was not processed by the processing element
during the first sub - period , and the processing elements
of the lower decoder are configured to perform calcu
lations associated with the other of the first or the
second sub - window which was not processed by the
processing element during the first sub - period .

14. A turbo decoder circuit as claimed in claim 10 ,
wherein the forward recursion generates a plurality of for
ward state metrics corresponding to the plurality of trellis
states according to a schedule which performs calculations
associated with each successive trellis stage in a forward
direction and the backward recursion generates a plurality of
backward state metrics corresponding to the plurality of
trellis states according to a schedule which performs calcu
lations associated with each successive trellis stage in a
backward direction , and either the forward recursion stores
the forward state metrics in a memory according to the
schedule for the forward recursion or the backward recur
sion stores the backward state metrics in the memory
according to the schedule for the backward recursion , and
the other of the forward or the backward recursions loads the
stored forward or backward state metrics from the memory
and combines the forward and the backward state metrics to

US 2021/0176006 A1 Jun . 10 , 2021
26

calculate the extrinsic soft decision values according to the
schedule for the forward or the backward recursion .

15. A turbo decoder circuit as claimed in claim 10 ,
wherein the calculations performed by the processing ele
ments according to the forward and the backward recursion
comprise receiving the forward or backward state metrics
pertaining to a neighbouring trellis stage , combining the
forward or backward state metrics with the a priori , parity
and systematic soft decision values for the data symbols and
generating the forward or backward state metrics pertaining
to another neighbouring trellis stage , wherein the received
forward or backward state metrics are normalized before
being combined with the a priori , parity and systematic soft
decision values .

16. A turbo decoder circuit as claimed in claim 15 ,
wherein the processing elements are configured to generate
the extrinsic soft decision values according to a two step
pipeline comprising a first step which combines the forward
and backward state metrics with each other and with the

parity soft decision values to form intermediate variables ,
and a second step which combines the intermediate variables
with each other , scales the combination of intermediate
variables and combines the scaled combination of interme
diate variables with the systematic soft decision values , and
the two steps of the pipeline are performed during the two
consecutive clock cycles , and the delay imposed by the steps
of the pipeline are accommodated in the delay imposed by
the predetermined schedule of the configurable network to
avoid contention .

17. A turbo decoder circuit as claimed in claim 1 , wherein
the number of data symbols in the frame is variable , and the
number of trellis stages of each window for calculations
performed by the upper and lower decoders is determined
with respect to the frame length and the number of the
processing elements of the upper and lower decoders .

18. A method of turbo decoding to recover a frame of data
symbols from a received signal comprising one or more
parity and / or systematic soft decision values for each data
symbol of the frame , the data symbols of the frame having
been encoded with a turbo encoder comprising upper and
lower convolutional encoders which can each be represented
by a trellis , and an interleaver to interleave the encoded data
have been interleaved between the upper and lower convo
lutional encoders , the method comprising

performing a forward and a backward iterative recursion
processes using an upper decoder comprising a plural
ity of upper processing elements associated with the
upper convolutional encoder , by

iteratively receiving at each of the processing elements of
the upper decoder , during a series of consecutive clock
cycles , from a configurable network circuitry , a priori
soft decision values pertaining to data symbols associ
ated with a window of an integer number of consecu
tive trellis stages representing possible paths between
states of the upper convolutional encoder ,

performing parallel calculations by each of the processing
elements associated with the window using the a priori
soft decision values in order to generate corresponding
extrinsic soft decision values pertaining to the data
symbols , at least one of the processing elements of the
upper decoder performing the calculations for a win
dow associated with a different number of the trellis
stages to at least one other of the processing elements
of the upper decoder ,

providing the extrinsic soft decision values to the config
urable network circuitry , and

performing a forward and a backward iterative recursion
processes using a lower decoder comprising a plurality
of lower processing elements associated with the lower
convolutional encoder , by

iteratively receiving at each of the processing elements of
the lower decoder , during the series of the consecutive
clock cycles , from the configurable network circuitry , a
priori soft decision values pertaining to data symbols
associated with a window of an integer number of
consecutive trellis stages representing possible paths
between states of the lower convolutional encoder ,

performing parallel calculations by each of the processing
elements associated with the window using the a priori
soft decision values in order to generate corresponding
extrinsic soft decision values pertaining to the data
symbols , at least one of the processing elements of the
lower decoder performing the calculations for a win
dow associated with a different number of the trellis
stages to at least one other of the processing elements
of the lower decoder ,

providing the extrinsic soft decision values to the config
urable network circuitry ,

controlling a configuration of the configurable network
circuitry iteratively , during the consecutive clock
cycles , to provide the a priori soft decision values for
the upper decoder by interleaving the extrinsic soft
decision values provided by the lower decoder , and to
provide the a priori soft decision values for the lower
decoder by interleaving the extrinsic soft decision
values provided by the upper decoder , the interleaving
performed by the configurable network circuitry con
trolled by the network controller being in accordance
with a predetermined schedule , which provides the a
priori soft decision values at different cycles of the one
or more consecutive clock cycles to avoid contention
between different a priori soft decision value being
provided to the same processing element of the upper
or the lower decoder during the same clock cycle .

19. A receiver for detecting and recovering frames of data
symbols which have been encoded with a turbo code , the
receiver including

detecting circuitry for detecting a received signal carrying
the frames of data symbols , each of the frames of data
symbols comprising one or more parity and / or system
atic soft decision values for each data symbol of the
frame , the data symbols of each frame having been
encoded with a turbo encoder comprising upper and
lower convolutional encoders which can each be rep
resented by a trellis , and an interleaver to interleave the
encoded data have been interleaved between the upper
and lower convolutional encoders , and

a turbo decoder circuit for performing a turbo decoding
process to recover each of the frame of data symbols
from the received signal , the turbo decoder circuit
comprising

a clock ,
configurable network circuitry which is configured to

interleave soft decision values ,
an upper decoder comprising a plurality of upper process

ing elements associated with the upper convolutional
encoder , each of the processing elements of the upper
decoder being configured , during a series of consecu

US 2021/0176006 A1 Jun . 10 , 2021
27

tive clock cycles , iteratively to receive , from the con
figurable network circuitry , a priori soft decision values
pertaining to data symbols associated with a window of
an integer number of consecutive trellis stages repre
senting possible paths between states of the upper
convolutional encoder , to perform parallel calculations
associated with the window using the a priori soft
decision values in order to generate corresponding
extrinsic soft decision values pertaining to the data
symbols , and to provide the extrinsic soft decision
values to the configurable network circuitry , at least one
of the processing elements of the upper decoder being
configured to perform the calculations for a window
associated with a different number of the trellis stages
to at least one other of the processing elements of the
upper decoder , and

a lower decoder comprising a plurality of lower process
ing elements associated with the lower convolutional
encoder , each of the processing elements of the lower
decoder being configured , during the series of the
consecutive clock cycles , iteratively to receive , from
the configurable network circuitry , a priori soft decision
values pertaining to data symbols associated with a
window of an integer number of consecutive trellis
stages representing possible paths between states of the
lower convolutional encoder , to perform parallel cal
culations associated with the window using the a priori
soft decision values in order to generate corresponding
extrinsic soft decision values pertaining to the data
symbols , and to provide the extrinsic soft decision
values to the configurable network circuitry , at least one
of the processing elements of the lower decoder being
configured to perform the calculations for a window

associated with a different number of the trellis stages
to at least one other of the processing elements of the
lower decoder ,

wherein the configurable network circuitry includes net
work controller circuitry which controls a configuration
of the configurable network circuitry iteratively , during
the consecutive clock cycles , to provide the a priori soft
decision values for the upper decoder by interleaving
the extrinsic soft decision values provided by the lower
decoder , and to provide the a priori soft decision values
for the lower decoder by interleaving the extrinsic soft
decision values provided by the upper decoder , the
interleaving performed by the configurable network
circuitry controlled by the network controller being in
accordance with a predetermined schedule , which pro
vides the a priori soft decision values at different cycles
of the one or more consecutive clock cycles to avoid
contention between different a priori soft decision value
being provided to the same processing element of the
upper or the lower decoder during the same clock cycle .

20. A receiver as claimed in claim 19 , wherein a number
of data symbols in each of the frames varies dynamically
from one from to another .

21. An infrastructure equipment forming part of a radio
access network of a wireless communications network , the
infrastructure equipment including a receiver as claimed in
claim 19 .

22. A communications device for transmitting or receiv
ing data with a wireless communications network , the com
munications device including a receiver according claim
19 .

