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frame . The data symbols of the frame have been encoded 
with a turbo encoder comprising upper and lower convolu 
tional encoders which can each be represented by a trellis , 
and an interleaver which interleaves the encoded data 

between the upper and lower convolutional encoders . The 
turbo decoder circuit comprises a clock , a configurable 
network circuitry for interleaving soft decision values , an 
upper decoder and a lower decoder . Each of the upper and 
lower decoders include processing elements , which are 
configured , during a series of consecutive clock cycles , 
iteratively to receive , from the configurable network cir 
cuitry , a priori soft decision values pertaining to data sym 
bols associated with a window of an integer number of 
consecutive trellis stages representing possible paths 
between states of the upper or lower convolutional encoder . 
The processing elements perform parallel calculations asso 
ciated with the window using the a priori soft decision 
values in order to generate corresponding extrinsic soft 
decision values pertaining to the data symbols . The config 
urable network circuitry includes network controller cir 
cuitry which controls a configuration of the configurable 
network circuitry iteratively , during the consecutive clock 
cycles , to provide the a priori soft decision values for the 
upper decoder by interleaving the extrinsic soft decision 
values provided by the lower decoder , and to provide the a 
priori soft decision values for the lower decoder by inter 
leaving the extrinsic soft decision values provided by the 
upper decoder . The interleaving performed by the configur 
able network circuitry controlled by the network controller 
is in accordance with a predetermined schedule , which 
provides the a priori soft decision values at different cycles 
of the one or more consecutive clock cycles to avoid 
contention between different a priori soft decision values 
being provided to the same processing element of the upper 
or the lower decoder during the same clock cycle . Accord 
ingly the processing elements can have a window size which 
includes a number of stages of the trellis so that the decoder 
can be configured with an arbitrary number of processing 
elements , making the decoder circuit an arbitrarily parallel 
turbo decoder . 
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( 57 ) ABSTRACT 

A turbo decoder circuit performs a turbo decoding process to 
recover a frame of data symbols from a received signal 
comprising soft decision values for each data symbol of the 
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PARALLEL TURBO DECODING WITH 
NON - UNIFORM WINDOW SIZES 

TECHNICAL FIELD OF THE DISCLOSURE 

ber of decoding iterations have been performed . As a result , 
thousands of time periods are required to complete the 
iterative decoding process of the state - of - the - art turbo 
decoder . 

[ 0005 ] Accordingly , providing an alternative to the Log 
BCJR decoder , which has fewer data dependencies and 
which enables highly parallel processing represents a tech 
nical problem . 

SUMMARY OF THE DISCLOSURE 

[ 0001 ] The present disclosure relates to detection circuits 
for performing a turbo detection process to recover a frame 
of data symbols from a received signal comprising one or 
more parity and / or systematic soft decision values for each 
data symbol of the frame , the data symbols of the frame 
having been encoded with a turbo encoder comprising upper 
and lower convolutional encoders which can each be rep 
resented by a trellis having a plurality of trellis states . 
[ 0002 ] Embodiments of the present disclosure may pro 
vide therefore receivers configured to recover the frame of 
data symbols using a turbo decoder and methods for decod 
ing turbo encoded data . In one example the data symbols are 
bits . 

[ 0003 ] The present application claims the Paris conven 
tion priority to UK patent application 1702341.7 the con 
tents of which are herein incorporated by reference . 

BACKGROUND OF THE DISCLOSURE 

[ 0004 ] Over the past two decades , wireless communica 
tion has been revolutionized by channel codes that benefit 
from iterative decoding algorithms . For example , the Long 
Term Evolution ( LTE ) [ 1 ] and WiMAX [ 2 ] cellular tele 
phony standards employ turbo codes [ 3 ] , which comprise a 
concatenation of two convolutional codes . Conventionally , 
the Logarithmic Bahl - Cocke - Jelinek - Raviv ( Log - BCJR ) 
algorithm [ 4 ] is employed for the iterative decoding of the 
Markov chains that are imposed upon the encoded bits by 
these convolutional codes . Meanwhile , the WiFi standard for 
Wireless Local Area Networks ( WLANs ) [ 5 ] has adopted 
Low Density Parity Check ( LDPC ) codes [ 6 ] , which may 
operate on the basis of the min - sum algorithm [ 7 ] . Owing to 
their strong error correction capability , these sophisticated 
channel codes have facilitated reliable communication at 
transmission throughputs that closely approach the capacity 
of the wireless channel . However , the achievable transmis 
sion throughput is limited by the processing throughput of 
the iterative decoding algorithm , if real - time operation is 
required . Furthermore , the iterative decoding algorithm's 
processing latency imposes a limit upon the end - to - end 
latency . This is particularly relevant , since multi - gigabit 
transmission throughputs and ultra - low end - to - end latencies 
can be expected to be targets for next - generation wireless 
communication standards [ 8 ] . Therefore , there is a demand 
for iterative decoding algorithms having improved process 
ing throughputs and lower processing latencies . Owing to 
the inherent parallelism of the min - sum algorithm , it may be 
operated in a fully - parallel manner , facilitating LDPC 
decoders having processing throughputs of up to 16.2 Gbit / s 
[ 9 ] . By contrast , the processing throughput of state - of - the 
art turbo decoders [ 10 ] is limited to 2.15 Gbit / s . This may be 
attributed to the inherently serial nature of the Log - BCJR 
algorithm , which is imposed by the data dependencies of its 
forward and backward recursions [ 4 ] . More specifically , the 
turbo - encoded bits generated by each of typically two con 
volutional encoders must be processed serially , spread over 
numerous consecutive time periods , which are clock cycles 
in a practical integrated circuit implementation . Further 
more , the Log - BCJR algorithm is typically applied to the 
two convolutional codes alternately , until a sufficient num 

[ 0006 ] According to a first example embodiment of the 
present technique there is provided a turbo decoder circuit 
for performing a turbo decoding process to recover a frame 
of data symbols from a received signal comprising either 
parity or parity and systematic soft decision values ( LLR 
values ) for each data symbol of the frame . The data symbols 
of the frame may have been encoded with a turbo encoder 
using a systematic code or non - systematic code , so that the 
received soft decision values for the frame may comprise 
soft decision values for systematic and parity symbols for 
the example of the systematic code or parity symbols for the 
non - systematic code . The turbo decoder circuit recovers 
data symbols of the frame , which have been encoded with a 
turbo encoder comprising upper and lower convolutional 
encoders which can each be represented by a trellis , and an 
interleaver which interleaves the encoded data between the 
upper and lower convolutional encoders . The turbo decoder 
circuit comprises a clock , a configurable network circuitry 
for interleaving soft decision values , an upper decoder and 
a lower decoder . Each of the upper and lower decoders 
include processing elements , which are configured , during a 
series of consecutive clock cycles , iteratively to receive , 
from the configurable network circuitry , a priori soft deci 
sion values ( a priori LLRs ) pertaining to data symbols 
associated with a window of an integer number of consecu 
tive trellis stages representing possible paths between states 
of the upper or lower convolutional encoder . The processing 
elements perform parallel calculations associated with the 
windows using the a priori soft decision values in order to 
generate corresponding extrinsic soft decision values per 
taining to the data symbols . The configurable network 
circuitry includes network controller circuitry which con 
trols a configuration of the configurable network circuitry 
iteratively , during the consecutive clock cycles , to provide 
the a priori soft decision values for the upper decoder by 
interleaving the extrinsic soft decision values provided by 
the lower decoder , and to provide the a priori soft decision 
values for the lower decoder by interleaving the extrinsic 
soft decision values provided by the upper decoder . The 
interleaving performed by the configurable network cir 
cuitry controlled by the network controller is in accordance 
with a predetermined schedule , which provides the a priori 
soft decision values at different cycles of the one or more 
consecutive clock cycles to avoid contention between dif 
ferent a priori soft decision value being provided to the same 
processing element of the upper or the lower decoder during 
the same clock cycle . 
[ 0007 ] According to example embodiments of the present 
technique therefore , each of the processing elements of the 
upper decoder and the lower decoder perform calculations 
associated with its window of the trellis . This means that 

each of the processing elements is performing the calcula 
tions associated with the forward and backward recursions 
of the turbo decoding for a section of the trellis associated 
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with and corresponding to a section of the data symbols of 
the frame . As a result of the arbitrarily parallel processing of 
the turbo decoder , the processing elements can divide up the 
trellis of the upper decoder without restriction on the map 
ping of the window size to the processing elements although 
a greater decoding rate can be achieved by sharing the 
window sizes of the trellis stages between the available 
processing elements as much as possible . This also means 
that the size of the frame can vary independently of the 
number of processing elements available to perform the 
turbo decoding , so that the window sizes formed by parti 
tioning the trellis can be configured dynamically . This 
arbitrarily parallel nature of the turbo decoding circuit is 
achieved at least in part as a result of the predetermined 
schedule which configures the configurable network , which 
not only interleaves the soft decision values in accordance 
with the interleaving performed at the encoder , but also 
manages the delivery of the soft decision values to avoid 
contention caused by different soft decision values being 
delivered to the same processing element in the same clock 
cycle . 
[ 0008 ] Various further aspects and features of the present 
disclosure are defined in the appended claims and include a 
method of turbo decoding , a communications device , and an 
infrastructure equipment of a wireless communications net 
work . 

[ 0021 ] FIG . 12a , 126 , 12c , 12d are schematic representa 
tions illustrating graphically a scheduling of backward and 
forward recursions performed within a processing element 
( referred to as a sub - processing element ) to generate a 
log - likelihood ratio for a single processing element in each 
of the upper and lower decoder of an arbitrarily parallel 
turbo decoder including a second forward sub - processing 
element , which operates one clock cycle delayed relative to 
a first forward sub - processing element ; 
[ 0022 ] FIG . 13a is a schematic circuit diagram of part of 
a processing element shown in FIG . 11 configured to cal 
culate the backward state metric vector in the backward 
sub - processing element and 
[ 0023 ] FIG . 13b is a schematic block diagram of part of 
the processing element shown in FIG . 11 configured to 
calculate the forward state metric vector in the first forward 
sub - processing element ; 
[ 0024 ] FIG . 14a is a schematic circuit diagram of part of 
a processing element shown in FIG . 11 configured to cal 
culate the bit metric vector in the first forward sub - process 
ing element and FIG . 13b is a schematic block diagram of 
part of the processing element shown in FIG . 11 configured 
to calculate the extrinsic and a posteriori log - likelihood 
ratios in the second forward sub - processing element ; 
[ 0025 ] FIG . 15 is a graphical plot of bit error rate with 
respect to signal to noise ratio illustrating the performance of 
an arbitrarily parallel turbo decoder for different numbers of 
clock cycles using 128 processing elements and a frame 
length of 512 symbols according to an embodiment of the 
present technique ; and 
[ 0026 ] FIG . 16 is a graphical plot of bit error rate with 
respect to signal to noise ratio illustrating the performance of 
an arbitrarily parallel turbo decoder for different numbers of 
clock cycles using 128 processing elements and a frame 
length of 6144 symbols according to an embodiment of the 
present technique . 

BRIEF DESCRIPTION OF DRAWINGS 

DESCRIPTION OF EXAMPLE EMBODIMENTS 

Example Communications System 

[ 0009 ] Embodiments of the present disclosure will now be 
described way of example only with reference to the 
accompanying drawings wherein like parts are provided 
with corresponding reference numerals and in which : 
[ 0010 ] FIG . 1 is a schematic diagram of a mobile com 
munications system operating in accordance with the LTE 
standard ; 
[ 0011 ] FIG . 2 is a schematic block diagram of an example 
transmitter for the LTE system shown in FIG . 1 ; 
[ 0012 ] FIG . 3 is a schematic block diagram of an example 
receiver for the LTE system shown in FIG . 1 ; 
[ 0013 ] FIG . 4 is a schematic block diagram of a simplified 
turbo encoder ; 
[ 0014 ] FIG . 5 is a schematic block diagram showing a 
more detailed example of an LTE turbo encoder ; 
[ 0015 ] FIG . 6 is an illustration of state and state transitions 
representing encoding using a convolutional encoder form 
ing part of the turbo encoder of FIG . 5 ; 
[ 0016 ] FIG . 7 is a schematic block diagram of an example 
turbo decoder according to a Log - BCJR algorithm ; 
[ 0017 ] FIG . 8a is schematic representation illustrating 
graphically a scheduling of backward and forward recur 
sions for a single processing element in each of the upper 
and lower decoder of a Log - BCJR turbo decoder and FIG . 
8b is a corresponding diagram for the generation of log 
likelihood ratios ; 
[ 0018 ] FIG . 9 is a schematic block diagram of a fully 
parallel turbo decoder ; 
[ 0019 ] FIG . 10 is a schematic block diagram of an arbi 
trarily parallel turbo decoder in accordance with an example 
embodiment of the present technique ; 
[ 0020 ] FIG . 11 is a schematic block diagram of an 
example of one of the processing elements of the upper or 
the lower decoders according to an embodiment of the 
present technique ; 

[ 0027 ] FIG . 1 provides a schematic diagram of a conven 
tional mobile telecommunications system , where the system 
includes mobile communications devices 104 , infrastructure 
equipment 101 and a core network 102. The infrastructure 
equipment may also be referred to as a base station , network 
element , enhanced Node B ( eNodeB ) or a coordinating 
entity for example , and provides a wireless access interface 
to the one or more communications devices within a cov 
erage area or cell . The one or more mobile communications 
devices may communicate data via the transmission and 
reception of signals representing data using the wireless 
access interface . The network entity 101 is communicatively 
linked to the core network 102 where the core network may 
be connected to one or more other communications systems 
or networks which have a similar structure to that formed 

from communications devices 104 and infrastructure equip 
ment 102. The core network may also provide functionality 
including authentication , mobility management , charging 
and so on for the communications devices served by the 
network entity . The mobile communications devices of FIG . 
1 may also be referred to as communications terminals , user 
equipment ( UE ) , terminal devices and so forth , and are 
configured to communicate with one or more other commu 
nications devices served by the same or a different coverage 
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applies a convolutional encoder to generate two more K , -bit 
encoded frames , namely a parity frame bz ' [ 52,4 1.5 and a 
systematic frame b ; ' [ b3.11.1 % ) although the latter is not 
transmitted . Here , the superscripts ‘ u ' and ' l ' indicate rel 
evance to the upper and lower convolutional encoders 401 , 
403 , respectively . However , in the following , these super 
scripts are only used when necessary to explicitly distin 
guish between the two convolutional encoders 401 , 403 of 
the turbo encoder and are omitted when the discussion 

applies equally to both . Note that the turbo encoder repre 
sents the Ky - bits of the message frame b , “ by transmitting 
three encoded frames , comprising a total of 3K , -bits and 
resulting in a turbo coding rate of R = K / ( 3K , ) = 1/3 . 
[ 0032 ] As explained above with reference to FIG . 2 , 
following turbo encoding , the encoded frames may be 
modulated onto a wireless channel and transmitted to a 
receiver , such as the example provided in FIG . 3 . 

LTE Turbo Encoder 

Kí 

area via the network entity . The communications system 
may operate in accordance with any known protocol , for 
instance in some examples the system may operate in 
accordance with the 3GPP Long Term Evolution ( LTE ) 
standard where the network entity and communications 
devices are commonly referred to as eNodeB and UEs , 
respectively . 
[ 0028 ] As will be appreciated from the operation 
explained above , the physical layer of the UEs and the 
eNodeBs are configured to transmit and receive signals 
representing data . As such a typical transmitter / receiver 
chain is shown in FIGS . 2 and 3 . 

[ 0029 ] FIG . 2 provides a schematic block diagram illus 
trating components which make up a transmitter which may 
form part of the e - NodeB 101 or a communications device 
104 of the physical layer transmission via the wireless 
access interface of the LTE system as illustrated in FIG . 1 . 
In FIG . 2 , data is received via an input at a data formatter 
204 and formed into frames or sub frames for transmission . 
Frames of data are then encoded with an error correction 
code by an error correction encoder 206 and fed to a symbol 
former 208 which forms the error correction encoded bits 

into groups of bits for mapping onto symbols for modula 
tion . The data symbols are then interleaved by a symbol 
interleaver 210 and fed to an OFDM modulator 212 which 
modulates the subcarriers of an OFDM symbol with the data 
symbols which have been received from the interleaver 210 . 
The OFDM symbols are then converted to an RF frequency 
and transmitted by a transmitter 214 via an antenna 216 . 
[ 0030 ] Correspondingly , a receiver operating to receive 
data transmitted via the physical layer for either the com 
munications device 104 or an eNodeB 101 via an LTE 
wireless access interface includes a receiver antenna 301 , 
which detects the radio frequency signal transmitted via the 
wireless access interface to a radio frequency receiver 302 . 
FIG . 3 represents a simplified version of a receiver and 
several blocks will make up an OFDM demodulator / equa 
liser 304 which converts the time domain OFDM symbol 
into the frequency domain and demodulates the subcarriers 
of the OFDM symbol to recover the data symbols and 
performs deinterleaving etc. However an output of the 
OFDM demodulator / equaliser 304 is to feed the encoded 
soft decision values representing the data bits to a turbo 
decoder 306. The turbo decoder performs a turbo decoding 
algorithm to detect and recover an estimate of the transmit 
ted data bits which are output as a stream of data bits on an 
output 308 corresponding to the input of the transmitter . 
[ 0031 ] For the example of LTE as mentioned above , an 
example embodiment of an error correction encoder 206 
shown in FIG . 2 is shown in FIG . 4. FIG . 4 provides an 
example representation illustrating a simplified turbo 
encoder , which encodes a message frame b , " = [ b1,4 " ] } = 1 
comprising K , number of bits , each having a binary value 
51,4 “ E { 0 , 1 } . This message frame is provided to an upper 
convolutional encoder 401 , and a lower convolutional 
encoder 403 , as shown in FIG . 4. The upper convolutional 
encoder 401 performs a convolutional encoding process 
such as the examples provided below to generate two K , -bit 
encoded frames , namely a parity frame bz " = [ b2,4 " ] = 1 and 
a systematic frame bzu = [ 63 , " ] = K ?. Meanwhile , the message 
frame b , “ is interleaved , by an internal turbo encoding 
interleaver 404 , in order to obtain the Ky - bit interleaved 
message frame b ; ' = [ b1,4 + 1 = 1 K1 which , as shown in FIG . 4 is 
provided to a lower convolutional encoder 403 , which also 

[ 0033 ] A more specific illustration of the LTE turbo 
encoder [ 1 ] is provided in FIG . 5 , which also illustrates the 
termination mechanism . For the example shown in FIG . 5 
the turbo encoder is a 1/3 rate code in which data bits received 
from a data formatter 204 as shown in FIG . 2 are fed to an 
upper convolutional encoding processor 401. As can be seen 
in FIG . 5 the received K , -bits of the message frame b u = 
[ b1.6 " ] = 1 are also fed to a lower convolutional encoding 
processor 403 via a turbo code internal interleaver 404. In 
accordance with a known arrangement the K ; -bits of the 
message frame b , " = [ b1 , " ] = RK are fed to memory elements 
406 which are connected to other memory elements 406 to 
form a shift register type arrangement . An output of the 
memory elements 406 is used to form an input to XOR units 
408 , which form at their output a bit from a logical XOR of 
their inputs , which forms either an encoded output bit or a 
bit which is fed back as an input to one of the memory 
elements 406. A switch in the upper convolutional encoder 
410 switches the input bits between an input 412 and an 
output of the upper convolutional encoder 414 to form 
respectively , on a first output 416 , a systematic frame 
bzu = [ b3,5 " ] } = 1 and on a third output 426 , three message 
termination bits 

Kj + 3 
[ 63 , k Ik = K4 + 1 

A second output 416 of the upper convolutional encoder 401 
provides a parity frame b_4 = [ 52,4 " ) = 1K1 + 3 . In FIG . 5 the three 
message termination bits 

Ki 

[ 63 , k ] k = K4 + 1 K1 + 3 

are used to terminate the upper convolutional encoder 401 in 
a known state , which is not shown in FIG . 4 for simplicity . Ki 

[ 0034 ] In the lower convolutional encoder 403 a switch 
420 switches between the received bits from the internal 
interleaver 404 and corresponds to the switch 410 for the 
upper convolutional encoder . In a similar manner to the 
upper convolutional encoder , output channels 422 , 424 of 
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the lower convolutional encoder provide respectively a 
parity frame bz ' = [ b2,4 ? l = 1 * 1 + 3 and three message termination 
bits 

[ b's , K PREKI + 1 " + 3 

quent state is selected from St E { 1,5 } . This example can 
also be expressed using the notation c ( 1 , 1 ) = 1 and c ( 1,5 ) = 1 , 
where c ( Sk - 1 , Sb = 1 indicates that it is possible for the 
convolutional encoder to transition from Sk - 1 into Sky 
whereas c ( Sk - 1 , Sk ) = 0 indicates that this transition is impos 
sible . Of the K = 2 options , the value for the state Sk is 
selected such that b , ( Sx - 1 , Sx ) = b1,4 : For example , Sx - 1 = 1 and 
b1x = 0 gives Sx = 1 , while Sx - 1 = 1 and 6 = gives Sx = 5 in 
FIG . 6. In turn , binary values are selected for the corre 
sponding bit in the parity frame b2 and the systematic frame 
bz , according to b2,4 = b2 ( Sk - 1 , Sk ) and b3 , x = b3 ( Sk - 1 , Sk ) . In 
the example of FIG . 6 , Sk - 1 = 1 and Sx = 1 gives b2.x = 0 and 
63,450 , while Sk - 1 = 1 and St = 5 gives b2 , x = 1 and 63,6 = 1 . 

The systematic data bits of the lower convolutional encoder 
b = ' = [ b3.1'1x = 1K are not output from the lower convolutional 
encoder because these are already present on the first output 
416. Accordingly , with the first output 416 providing the 
input bits as a systematic code the second and fourth outputs 
418 , 422 providing respective parity bits , the turbo encoder 
provides a 1 rate code . As with the upper convolutional 
encoder , three message termination bits 

Examples of LTE Turbo Decoders 

[ bs , k ] 3 , k ? k = K4 + 1 K1 + 3 

[ 0037 ] Following their transmission over a wireless chan 
nel , the three encoded frames b2 " , bz " and bz ' , generated by 
the turbo encoder as illustrated in FIG . 4 , may be demodu 
lated and provided to the turbo decoder of FIG . 7. However , 
owing to the effect of noise in the wireless channel , the 
demodulator will be uncertain of the bit values in these 
encoded frames . Therefore , instead of providing frames 
comprising K , hard - valued bits , the demodulator provides 
three frames each comprising K , soft - valued a priori Loga 
rithmic Likelihood Ratios ( LLRs ) 5,4 , a = [ 52,44,4 ] } = 1 
53u , a = [ 53,44,0 ] ; = 151 , and 521,9 = [ 52,4-41 = 1 * 7 . Furthermore , a 
fourth frame 531,2 = [ 53.420 ] = 1 may also be obtained by 
interleaving the LLRs of 534.a. Here , an LLR pertaining to 
bit bjk is defined by 

Ki 

bjk = In Pr ( bjyk = 1 ) Prabj , k = 0 ) 

are used to terminate the lower convolutional encoder 403 in 
a known state , which is not shown in FIG . 4 for simplicity . 
[ 0035 ] In summary , the LTE turbo encoder [ 1 ] of FIG . 5 
employs twelve additional termination bits to force each 
convolutional encoder into the final state SK , + 3 = 1 . More 
specifically , the upper convolutional encoder 401 generates 
the three message termination bits b3 , K , + 1 “ , b3 , K + 2 “ , b3 , K1 + 3 “ 
as well as the three parity termination bits frame b2 , K ; +1 " , 
b2 , K , + 2 “ , b2 , K , + 3 “ . The lower convolutional encoder 403 operates in a similar manner , generating corresponding sets 
of three message termination bits b3,6 ; +1 ' , 13 , K + 2 ' , 53 , K1 + 3 ' as well as the three parity termination bits b2 , k , + 1 " , b2 , K + 2 ' , b2 , K , + 3 ? In contrast to the systematic frame bz " that is 
produced by the upper convolutional encoder , that of the 
lower convolutional encoder bz ' is not output by the LTE 
turbo encoder . Owing to this , the LTE turbo encoder uses a 
total of ( 3K2 + 12 ) bits to represent the K , bits of the message 
frame b , “ , giving a more precise coding rate of R = K / ( 3K , + 
12 ) . 
[ 0036 ] The example of the turbo encoder presented in 
FIG . 5 provides upper and lower convolutional encoders 
401 , 403 , which each have three memory elements 406. As 
will be known by those acquainted with convolutional 
encoders , the binary content of the memory elements 406 
can be interpreted as a state , so that the convolutional 
encoding process can be synthesised as transitions through 
a trellis comprising the possible states of the convolutional 
encoder . As such , a convolutional encoder or a turbo encoder 
can be described as a Markov process and therefore repre 
sented as a trellis diagram . An example of state transition 
diagram for a convolutional encoder is shown in FIG . 6. The 
state transition diagram of FIG . 6 represents one stage of a 
trellis having M = 8 states and K = 2 transitions per state , and 
can therefore provide an example corresponding to the upper 
and lower convolutional encoders 401 , 403 , which operate 
in the same manner . For the upper convolutional encoder 
401 begins from an initial state of So = 1 and successively 
transitions into each subsequent state S € { 1 , 2 , ... , M } by 
considering the corresponding message bit b Since there 
are two possible values for the message bit 61 € { 0,1 } there 
are K = 2 possible values for the state Sk that can be reached 
by transitioning from the previous state Sk - 1 . In FIG . 6 for 
example , a previous state of Sk - 1 = 1 implies that the subse 

[ 0038 ] where the superscripts ' a ' , ' e ' or ' p ' may be 
appended to indicate an a priori , extrinsic or a posteriori 
LLR , respectively . 
[ 0039 ] The Log - BCJR algorithm generally forms a decod 
ing or detection process which performs a forward recursion 
process and a backward recursion process through a trellis 
representing the connection of each of the states of a Markov 
process , such as a convolutional encoder . For the turbo 
encoded data , a decoder which performs a Log - BCJR 
decoding process comprises an upper decoder and a lower 
decoder . Each of the upper and lower decoders each perform 
a forward recursion process and a backward recursion 
process and generate for each iteration extrinsic LLRs which 
are fed to other of the upper and lower decoders . 
[ 0040 ] FIG . 7 provides a schematic block diagram illus 
trating an example implementation of a simplified turbo 
decoder for the Log - BCJR algorithm , which corresponds to 
the simplified turbo encoder of FIG . 4. The Log - BCJR turbo 
decoder is operated iteratively , where each of the I iterations 
comprises the operation of all processing elements or algo 
rithmic blocks shown . 

[ 0041 ] Embodiments of the present technique can provide 
an arbitrary - parallel turbo decoder , which has an improved 
rate of decoding in comparison to conventional algorithms . 
Furthermore , in contrast to a fully - parallel turbo decoder 
such as that disclosed in our co - pending International patent 
application PCT / EP2015 / 067527 [ 26 ] , an extent to which 
parallel processing of the turbo decoding is applied can be 
set in accordance with a number of processing elements 

1,6 
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( processing element ) which are available rather than a 
number of stages in a trellis describing the encoder . 
[ 0042 ] An LTE turbo decoder according to one example 
implementation for decoding a frame of data encoded by the 
encoder of FIG . 5 comprises an upper decoder and a lower 
decoder , together with an upper terminating element ( TE ) 
and a lower terminating element , as well as a CRC unit . The 
upper decoder is connected to the lower decoder using an 
interleaver , while the lower decoder is connected to the 
upper decoder using a deinterleaver . An LTE turbo decoder 
typically decodes one frame of bits at a time and typically 
supports all L = 188 frame lengths { K1 , K2 , K3 , K , K188 } = { 40 , 
48,56 , K , 6144 } and corresponding interleaver designs of the 
LTE standard [ 1 ] . In order to initiate the decoding of a frame 
having the length K , where IE [ 1 , L ) , the upper decoder is 
provided with K , parity LLRs [ 52,44,4 ] } = 1ki , and K , system 
atic LLRs [ b3.ju , a ] : = . Meanwhile , the lower decoder is 
provided with K , parity LLRs [ 52,41,4 ] , = 157 . Likewise , the 
upper terminating element is provided with six termination 
LLRs 

[ 12.01K + 2 , and [ bam ] +3 k = Kq + 1 3,6 + k = Kq + 1 ? 

while the lower terminating element is provided with six 
more termination LLRs 

K1 + 3 and [ 63,00 +3 . = + 1 

52,4,4 , 53,4,2 from the demodulator which were estimated 
for the frames of encoded bits b? “ , bz “ , generated by the 
upper encoder 401. Correspondingly , the kth algorithmic 
block 620 of the K , algorithmic blocks 620 of the lower 
decoder 602 , which are devoted to performing the forward 
recursion part of the Log - BCJR algorithm , is arranged to 
receive the kth LLR values 52,420 , from the demodu 
lator which were estimated for the frames of encoded bits 

bz ' , bz !, generated by the lower encoder 402. Here , the 
demodulator may obtain bz ' by interleaving bz “ . 
[ 0045 ] The kth algorithmic block 610 , 620 , which each in 
turn are arranged to perform the forward recursion , in the 
upper decoder 601 and the lower decoder 602 , one after the 
other to combine the L = 3 a priori LLRs 51,4,52,5 " , and 53 , k " , 
in order to obtain an a priori metric Tz ( Sk - 1 , Sk ) for each 
transition in the state transition diagram ( as illustrated for 
example in FIG . 6 ) . Following this calculation , each of the 
kth algorithmic blocks 610 , 620 performing the forward 
recursion , combines these a priori transition metrics with the 
a priori forward state metrics of k - 1 ( Sk - 1 ) ) in order to obtain 
the extrinsic forward state metrics of?z ( Sk ) . These extrinsic 
state metrics are then passed to the k + 1th algorithmic block 
610 , 620 , to be employed as a priori state metrics in the next 
time period . However as will be appreciated by those 
familiar with the Log - BCJR algorithm the upper and lower 
decoders of the turbo decoder work alternately , so that when 
one is active the other is idle . 
[ 0046 ] The kth algorithmic block 612 , 622 , which are 
performing the backward recursion , in the upper decoder 
601 and the lower decoder 602 to combine the a priori metric 
Yz ( SK - 1 , Sk ) for each transition with the a priori backward 
state metrics B : ( Sk ) . This produces an extrinsic backward 
state metric Bx - 1 ( Sk - 1 ) , which may be passed to the k - 1th 
algorithmic block , to be employed as a priori state metrics 
in the next time period . Furthermore , the kth algorithmic 
block 612 , 622 , which are performing the backward recur 
sion , in the upper decoder 601 and the lower decoder 602 to 
obtain an a posteriori metric Ox ( Sk - 1 , Sk ) for each transition 
in the state transition diagram ( as for example illustrated in 
FIG . 6 ) . Finally , the kih algorithmic block 612 , 622 , which 
are performing the backward recursion , in the upper decoder 
401 and the lower decoder combine the a posteriori metrics 
8x ( Sk - 1 , Sy ) for the transitions in the state transition diagram 
to generate an extrinsic message LLR bike for the kth bit . 
These LLR values are swapped between the upper and lower 
decoders 601 , 602 . 
[ 0047 ] The upper decoder 601 and the lower decoder 602 
exchange extrinsic LLRs for each of the data bits of the 
frame , which become an estimate of the systematic bits of 
the encoded data frame . More specifically , an interleaver 
604 performs interleaving of the LLR values of data bits 
passed between an upper decoder 601 and the lower decoder 
602 , in accordance with the interleaving of the data bits 
which are used by the upper convolutional encoder 401 and 
the lower convolutional encoder 402 of a turbo encoder . 
Furthermore , the interleaver 604 performs deinterleaving of 
the LLR values of data bits passed between a lower decoder 
602 and the upper decoder 601 , to reverse the interleaving 
of the data bits which are used by the upper convolutional 
encoder 401 and the lower convolutional encoder 402 of a 
turbo encoder . 
[ 0048 ] As will be appreciated from the above description , 
turbo decoding for turbo encoded data generally includes 
upper and lower decoders , which are operated throughout 

2 

The terminating elements are not shown in FIG . 7 for 
simplicity . An example of a conventional turbo decoder 
according to a BCJR algorithm as disclosed in our co 
pending International patent application PCT / EP2015 / 
067527 [ 26 ] is shown in FIG . 7. This will be only briefly 
described in the following paragraphs . 
[ 0043 ] As shown in FIG . 7 , a first set of 2K , algorithmic 
blocks 601 are devoted to performing a first part of the turbo 
decoding algorithm on the turbo encoded data produced by 
an upper convolutional encoder 401. A first row of K , 
algorithmic blocks 610 of the upper decoder 601 are devoted 
to performing a forward recursion process through a trellis 
of possible states , whereas a second row of K , algorithmic 
blocks 612 are devoted to performing backward recursion 
through the trellis stages according to the Log - BCJR algo 
rithm . Each algorithmic block corresponds to one of the K , 
stages in the trellis , which comprises a set of transitions 
between a set of previous states and a set of next states . A 
second set of 2K , algorithmic blocks 602 are devoted to 
performing a second part of the turbo decoding algorithm on 
the turbo encoded data produced by the lower convolutional 
encoder 403. As for the upper decoder 601 , the lower 
decoder includes a first row of K , algorithmic blocks 620 of 
the lower decoder 602 , which are devoted to performing a 
forward recursion process through a trellis of possible states , 
whereas a second row of K , algorithmic blocks 622 are 
devoted to performing backward recursion through the trel 
lis states according to the Log - BCJR algorithm . 
[ 0044 ] The kth algorithmic block 610 , of the K , algorith 
mic blocks 610 of the upper decoder 601 which are devoted 
to performing the forward recursion part of the Log - BCJR 
algorithm 610 , is arranged to receive the kth LLR values 
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the decoding process . More specifically , the operation of the 
upper decoder updates the values of the K , a posteriori LLRs 
[ 61.1 " P ] = 151 and the K , extrinsic LLRs [ b1.4 . € ] = 1K ?. These 
updates to the extrinsic LLRs are interleaved and provided 
to the lower decoder as the K , a priori LLRs [ 61,2 ] = 1K !. 
More specifically , b1,01 ( k ) ue , where the interleaving 
action is described by the vector II , in which each of the K , 
elements II ( k ) E [ 1 , K , ] is unique . For example , the K = 40 - bit 
LTE interleaver may be described by the vector H = [ 1 , 38 , 
15 , 12 , 29 , 26 , 3 , 40 , 17 , 14 , 31 , 28 , 5 , 2 , 19 , 16 , 33 , 30 , 7 , 
4 , 21 , 18 , 35 , 32 , 9 , 6 , 23 , 20 , 37 , 34 , 11 , 8 , 25 , 22 , 39 , 36 , 
13 , 10 , 27 , 24 ) , where b1,241,4 = b1,40 % une . Likewise , the opera 
tion of the lower decoder updates the values of the K , 
extrinsic LLRs [ b1.1 ] = 1K !, which are deinterleaved and 
provided to the upper decoder as the K , a priori LLRs 
[ 61,14,4 ) = 1 * K. More specifically , b1,11 ' ( K ) lie , where the 
deinterleaving action is described by the vector 11-1 , in 
which each of the K , elements II- ( k ) E [ 1 , K , ] is unique and 
obeys the relationship with the interleaver II - ' ( II ( k ) ) = k . For 
example , the K = 40 - bit LTE deinterleaver may be described 
by the vector II ! = [ 1 , 14 , 7 , 20 , 13 , 26 , 19 , 32 , 25 , 38 , 31 , 
4 , 37 , 10 , 3 , 16 , 9 , 22 , 15 , 28 , 21 , 34 , 27 , 40 , 33 , 6 , 39 , 12 , 
5 , 18 , 11 , 24 , 17 , 30 , 23 , 36 , 29 , 2 , 35 , 8 ] , where 51,40 

22,4 . Furthermore , the updates to the a posteriori LLRs 
are typically provided to a CRC unit . This halts 

the decoding process when the LTE CRC is satisfied by the 
decoded bits obtained using the hard decisions b1,4.P > 0 . The 
decoded bits and the a posteriori LLRs are then output by the 
turbo decoder and the decoding of a next frame may 

W 
k = 1 

LTE frame length . The decoding process is completed 
according to a periodic schedule , where the period C 
depends on the current frame length Kj , according to 
C = 2W ,. As the decoding process proceeds , a counter c 
repeatedly counts up to C? . 
[ 0051 ] The processing element having the index PE [ 1 , P ] 
operates on the basis of windows comprising k'E [ 1 , W ] 
parity , systematic , a priori , extrinsic and a posteriori LLRs . 
Here , the notation k'E [ 1 , W ] is used to index an LLR within 
the pth window , which may be converted to the index 
kE [ 1 , K , ] within the frame according to k = k ' + ( p - 1 ) W . At 
the start of the decoding process , the processing element 
having the index p is provided with the W , upper parity 
LLRs [ b2,64,4 ] k = " , the W , lower parity LLRs [ 12.671,2 ] 

and the W , upper systematic LLRs [ 63,44,4 ] k ' = 1 " . 
Throughout the decoding process , the ph processing element 
is continually provided with updates to the W , upper a priori 
LLRs [ 51,24 , " ] k = 1 44 ] x > " , and the W , lower a priori LLRs [ b1,4 % 
alx = 1 " . In response , this processing element continually 
updates the W , upper extrinsic LLRs [ 51,24 . € ] k = 1 " ) , the W , 
lower extrinsic LLRs [ 61,47 ] < = 1 " , and the W , upper a 
posteriori LLRs [ b 1.4.P ] x = 1 " , as discussed below . 
[ 0052 ] Each of the processing elements performs the cal 
culations for each window according to equations ( 1 ) to ( 4 ) 
below . Note that unlike the upper decoder , the lower decoder 
does not benefit from systematic LLRs , which is equivalent 
to having b3.1 ° = 0 . This allows the corresponding terms to be 
omitted from ( 1 ) - ( 3 ) in the case of the lower decoder . 
Likewise , the lower decoder does not generate a posteriori 
LLRs , allowing ( 4 ) to be omitted entirely . 

u , a a = b , 1,5 9 

u , 

a = b1,24 
[ b 1.14.P ] k ! 

commence . 

Adaptation of Turbo Decoding Using Windows of Trellis 
Stages ( 1 ) max BK - 1 ( sk - 1 ) = [ b1 ( 54-1 , 5x ) .VIX + ( sk lc ( sk - 1 » S * ) = 1 } 

62 ( sk - 1 , Sk ) .b2k + b3 ( sk - 1 , sk ) .6 % .k + Bk ( sk ) ] 
( 2 ) ak ( SK ) = max ( { sk – 1 1c ( $ * 1 *** ) = 1 } [ bi ( Sk - 1 , Sk ) . bpk + 

b2 ( Sk - 1 , Sk ) .b2k +63 ( Sk - 1 , Sk ) . 63.k + Qk - 1 ( Sk - 1 ) ] 
( 3 ) 

[ 0049 ] In some implementations of the turbo decoder , 
which operate to perform the Log - BCJR algorithm , the 
parity , systematic , a priori , extrinsic and a posteriori LLRs 
can be grouped together during decoding into chains of 
consecutive windows , each comprising an equal number W , 
of LLRs of each type . Furthermore , the turbo decoding 
process is typically completed according to a periodic sched 
ule , having a period of C , clock cycles . Typically , the value 
of W , and C , depends on the current frame length Kz . 
However , different turbo decoders adopt different window 
ing and different scheduling techniques , discussed in the 
following subsections . 

bisk = 
0.75 , [ Qk - 1 ( Sk - 1 ) + Bx ( sk ) + b2 ( Sk - 1 , Sk ) .b2k ] [ { \ sk – 1 » Sk ) | bl ( Sk – 1 % $ * ) = 1 } 

max ) . Bix By 
max 0.75 , [ Qk - 1 ( Sk - 1 ) + 

[ { ( sk - 1 » Sk ) | bl ( sk - 1 » Sk ) = 0 } 

Bx ( sk ) + b } ( SK - 1 , Sk ) • 6.x ] ] + B5 , 
( 4 ) 

First Example Windowing max 

bik 
0.75 [ post = 1 * [ Qk - 1 ( Sk - 1 ) + Bk ( Sk ) + b2 ( Sk - 1 , sk ) . 69 , B ) ) • 63.4272 [ { ( sk - 1 » $ ) 61 ( sk - 1 *** ) = 1 } 

0.75 [ Qk - 1 ( Sk - 1 ) + [ { ( sk - 1 » sk ) | bi ( sk - 1 -5k ) = 0 } 

sk b2 ( Sk - 1 , Sk + 

max [ 0050 ] In a first example [ 21 ] , the LLRs are grouped into 
chains of P = 8 consecutive windows , since this is the greatest 
common divisor of all L = 188 supported values of the LTE 
frame length K? . This ensures that all windows comprise an 
equal number W = K / P of LLR of each type , regardless of 
the current frame length K / . Accordingly , the design of [ 21 ] 
employs a chain of P = 8 processing elements , each of which 
performs processing for a different one of the windows of 
the upper decoder , as well as for the corresponding window 
of the lower decoder . Thus each of the windows performs the 
processing for the calculations 610 , 612 , 620 , 622 for the 
Log - BCJR algorithm . In this way , the LLRs having the 
index k c [ 1 , K , ] are processed by the processing element 
having the index p = [ k / W ; ] . Note that the maximum window 
length is given by W , mar = maxx = 1 ? W = Kmaz / P = 768 , where 
max = maxy = + K = 6144 is the number of bits in the longest 

[ 0053 ] Additionally , throughout the decoding process , the 
( p - 1 ) processing element in each decoder periodically 
provides the ph processing element with updates to the 
upper forward state metric vector ok ? " = [ ox " Sk ) ] , ; = 1 " and the lower forward state metric vector agar ( sx ) ) = 1 $ , for 
the case where k ' = 0 . However , an exception to this is made 
if p = 1 and hence the ( p - 1 ) th processing element does not 
exist . In these cases , the pth processing element adopts 
a , " = a . ' = [ 0 , –00 , –00 , -00 , -00 , -00 , -00 , -00 ] . Likewise , the ( p + 1 ) th processing element in each decoder periodically provides 
the pih processing element with updates to the upper back 
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appropriate processing elements , where they are stored in 
memory , ready to be used as a priori LLRs , as described 
above . Note that the LTE interleaver is specifically designed 
to be contention free when P is an integer divisor of Kj , 
which is true for all 188 possible values of K , when P - 8 . 
Owing to this , exactly two LLR are delivered to each 
processing element in each clock cycle of the second half of 
the recursions . 

Second Example Windowing 

[ 0056 ] A second example provided from [ 22 ] operates in 
a similar manner to that of the first example , but exploits the 
observation that different consecutive subsets of the sup 
ported LTE frame lengths have different greatest common 
divisors of 8 , 16 , 32 and 64. More specifically , depending on 
the frame length K? , this design employs 8 , 16 , 32 or 64 
windows , each comprising the same number W , of LLRs of 
each type , according to 

( 5 ) 

W = 

K1 / 8 ifK , E { 40 , 48 , 56 , K , 504 } 
K1 / 16 ifK , € { 512 , 528 , 544 , K , 1008 } 
K1 / 32 ifK , € { 1024 , 1058 , 1088 , K , 2016 } 
K1 / 64 ifK , E ( 2048 , 2112 , 2176 , K , 6144 } 

ward state metric vector Bk " = IBk ( ) ] sz = 1 " and the lower 
backward state metric vector Bx ? = [ P " ( Sk ) ] s = ! " , for the case 
where k ' = W1.p . However , an exception to this is made if p = P , 
in which case the backward state metric vector is provided 
by the corresponding terminating element . As described 
below , the pih processing element periodically updates the 
upper forward state metric vector Oz " and the lower forward 
state metric vector az ? for k = W1 , p , as well as the upper 
backward state metric vector Bk " and the lower backward 
state metric vector Bk for k ' = 0 , which are provided to the 
( p + 1 ) th and ( p - 1 ) th processing element , respectively . 
[ 0054 ] The processing elements are operated according to 
the schedule shown in FIG . 8. FIG . 8 provides a graphical 
representation showing how processing elements schedule 
( a ) the backward and forward recursions of ( 1 ) and ( 2 ) , as 
well as ( b ) the generation of the LLRs of ( 3 ) and ( 4 ) for a 
single processing element in the turbo decoder of the first 
windowing example . The processing element performs ( 1 ) 
to ( 4 ) for a window of the upper decoder , followed by ( 1 ) to 
( 3 ) for the corresponding window of the lower decoder . 
Here , backward recursions are performed , in which decre 
mental LLR indices k ' are processed in successive clock 
cycles . Meanwhile , forward recursions are performed , in 
which incremental LLR indices k ' are processed in succes 
sive clock cycles . During the first C // 2 clock cycles in each 
period of C , clock cycles , the processing elements perform 
the forward and backward recursions of the upper decoder . 
Following this , the forward and backward recursions of the 
lower decoder are performed in the final Cd / 2 clock cycles in 
each period ofC , clock cycles , as shown in FIG . 8. Note that 
the following discussions apply equally to both the upper 
and lower decoder and so the superscripts ‘ u ' and ' l ' are 
removed from the notation . The backward recursion oper 
ates on the basis of ( 1 ) , in order to generate the backward 
state metric vector Bk - 1 . This is stored in an internal memory 
in order to facilitate its use as Bk in the next step of the 
recursion , as well as for use in the calculation of the extrinsic 
and a posteriori LLR 61,9 and 51.4 . , as discussed below . 
Furthermore , the backward state metric vector Bk? - 1 is stored 
in an output register in the case where k ' = 1 , in order to 
provide ßo to initialise the backward recursion in the neigh 
bouring processing element . Likewise , the forward recur 
sion operates on the basis of ( 2 ) , in order to generate the 
forward state metric vector agr . This is stored in an internal 
memory in order to facilitate its use as Azt - 1 in the next step 
of the recursion , as well as for use in the calculation of the 
extrinsic and a posteriori LLR 51 , ke and b1 , k , as discussed 
below . Furthermore , the forward state metric vector Ozr is 
stored in an output register in the case where k ' = W , in order 
to provide aw , to initialise the forward recursion in the 
neighbouring processing element . 
[ 0055 ] As shown in FIG . 8 , two a posteriori LLRs and two 
extrinsic LLRs are output by each processing element in 
each clock cycle of the second half of the recursions . More 
specifically , during each clock cycle of the second half of 
each recursion performed for the upper decoder , ( 4 ) is used 
to generate an a posteriori LLR 51,14 . , which is output by 
the processing element and provided to the CRC unit . 
Furthermore , during each clock cycle of the second half of 
each recursion performed for both the upper and lower 
decoders , ( 3 ) is used to generate an extrinsic LLR bike , 
which is output by the processing element and provided to 
the interleaver or deinterleaver , as appropriate . The inter 
leaver and deinterleaver deliver the extrinsic LLRs to the 

[ 0057 ] This design employs a chain of P = 64 processing 
elements , although some of these are deactivated when 
decoding the shorter frame lengths . More specifically , the 
number of activated processing elements is equal to the 
number of windows employed , such that each processing 
element can perform processing for a different one of the 
windows of the upper decoder , as well as for the corre 
sponding window of the lower decoder . 
[ 0058 ] The processing of each window by a processing 
element is completed according to ( 6 ) - ( 9 ) . Note that unlike 
the upper decoder , the lower decoder does not benefit from 
systematic LLRs , which is equivalent to having b3,1 " = 0 . 
This allows the corresponding terms to be omitted from 
( 6 ) - ( 8 ) in the case of the lower decoder . Likewise , the lower 
decoder does not generate a posteriori LLRs , allowing ( 9 ) to 
be omitted entirely . 

( 6 ) Bk - 1 ( Sk - 1 ) = max { s } lc ( $ { – 1 » $ { } = 1 } [ bi ( sk - 1 , Sk ) . birk + 
b2 ( Sk - 1 , Sk ) .62,5 + b3 ( Sk - 1 , Sk ) .b.k + Bk ( sk ) ] - 
max [ max / s \ \ c \ sk –1 *** ) = 1 } [ bi ( Sk - 1 , Sk ) .bºk + 

b2 ( Sk - 1 , Sk ) .62k + b3 ( sk - 1 , Sk ) . b.k + Bk ( sk ) ] ] 
k - 1 = - 1 

ak ( sk ) = max ( sk – 1 1c ( $ 4–1 *** ) = 1 } [ b1 ( Sk - 1 , sk ) . bºok + 
b2 ( Sk - 1 , Sk ) .62k + b3 ( Sk - 1 , Sk ) .bg.k + Qk - 1 ( Sk - 1 ) ] - 
max_1 = 1 [ max { sk_1 Ic ( 4–1 » Sken = 1 } [ b? ( $ k - 1 , Sk ) • 60 , k + 

b2 ( Sk - 1 , Sk ) • 62 , k + b3 ( sk - 1 , Sk ) .63.k + @ k - 1 ( Sk - 1 ) ] ] 

bik ( 8 ) = 

max 0.75 , [ Qk – 1 ( Sk - 1 ) + Bk ( Sk ) + b2 ( Sk - 1 , Sk ) . 62.k ] [ { ( 54–1,5 ) b1 ( SK - 1 » s * ) = 1 } 16x + 1-323 - 1 , Sk ) • 65 x - 
0.75 [ Qk - 1 ( Sk - 1 ) + [ { ( sk - 1 » sk lb 1 ( SK - 1 » ** ) = 1 } 

Bx ( sk ) + b ? ( 52–13 Sk ) • 69.x ] + 65,12 

max 
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-continued 

biki = 
max • b & .x ] ] - 0.12 ( sk - 1,5k ) | bl ( sk - 1 » Sk ) = 1 } [ Qk - 1 ( Sk - 1 ) + Bk ( sk ) + b2 ( Sk - 1 , Sk ) .bºk 

0.75 , [ Qk - 1 ( Sk - 1 ) + [ { ( k - 1 » Sk | b1 ( sk — 1 *** ) = 0 } 
Bk ( Sk ) + b2 ( Sk - 1 , Sk ) . 62 , k ] , + birk + b? , k 

' c'in ( 10 ) and ( 13 ) represents the clock cycle index , while 
the superscript ‘ c - l’in ( 11 ) , ( 12 ) , ( 14 ) and ( 15 ) represents 
the index of the previous clock cycle . This notation is 
included in order to emphasise that the transition metric 
vectors of ( 10 ) and the bit metric vectors of ( 13 ) are 
pipelined . 

max 

Sx - » ] + bf.k $ 
( 10 ) YX ( Sk - 1 , Sk ) = 

0.75 - bi ( Sk - 1 , Sk ) . bick + b2 ( Sk - 1 , Sk ) • b2,6 + b3 ( Sk - 1 , Sk ) • b3 , k 
( 11 ) max BK - 1 ( Sk - 1 ) = [ ( 5x - 1 , 5 * ) + B : ( 5 :) ] - ist elsk- 1,5k ) = 1 } 

[ Y ! ( 1 , sk ) + Bk ( sk ) ] { sk lc ( 1,5k = 1 } 
max 

( 12 ) 

[ 0059 ] Another difference to the turbo decoder design of 
the first example is the computation of the backward and 
forward state metric vectors Bk ' - 1 and Age of ( 6 ) and ( 7 ) , 
respectively . In successive clock cycles of the backward and 
forward recursions , these state metrics can grow without 
bound , which may cause overflow in fixed point implemen 
tations . The modulo normalisation approach of [ 23 ] exploits 
that observation that the absolute values of the state metrics 
in each vector are not important and that instead it is the 
differences between these state metrics that are important . 
This motivates the normalisation of the state metrics within 
each vector during its generation . In order to minimise the 
occurrence of overflow , normalisation is achieved by sub 
tracting the maximum of the state metrics in each vector , as 
shown in ( 6 ) and ( 7 ) . 

Ok ( sk ) = max ( sk – 1 c184–1 * 5 * ) = 1 } [ Yk ( Sk - 1 , Sk ) + & k = 1 ( $ k - 1 ) ] – 
max ( sk_1 | C ( $ – 1 , 1 ) = 1 } [ y : " ( Sk - 1 , 1 ) + Qk - 1 ( Sk - 1 ) ] 

( b1k , b2k ) max ( 13 ) man ( sk - 1,5k $ 1 ( k – 1 » s * ) = b1,6 l [ ak - 1 ( Sk - 1 ) + + Bk ( sk ) ] ] 
52 ( sk - 1,3k ) = b's -1 ) +260 

( 14 ) max [ E ! ( 1 , b2 , k ) + bi xurma 
| 62.4 € 10,11 max [ ( 0 , 62.1 ) + b2 . * • b2k ] • 63x ] ] Bax : 63,1 ] ] Liens 

• 35,1 ] ] [ ormers Third Example Windowing biki max [ er " ( 1 , 62.k ) + b2kb2k ] ( 15 ) 
[ 62 , k = { 0,1 } max [ e- ( 0 , 62.k ) + | 62,6 € ( 0,1 } 

b2b2k ] ] + bºok + b3 , k • 654 
[ 0060 ] A third example is what is referred to as a 
" shuffled ” turbo decoder [ 24 ] which operates in a similar 
manner to the turbo decoders of Examples 1 and 2 , but 
employs one chain of P processing elements dedicated to 
performing the decoding of the upper decoder , as well as a 
second chain of P processing elements dedicated to perform 
ing the decoding of the lower decoder , where P is an integer 
divisor of Kz . Each processing element performs the pro 
cessing for a different one of the windows in the correspond 
ing decoder , where each window has the length W = K , / P . In 
contrast to the turbo decoders of the first and second 
examples , the decoding process is completed according to a 
periodic schedule , where the period is given by CAW , 
rather than C = 2W ,. More specifically , the backward and 
forward recursions of the upper decoder are performed 
concurrently with those of the lower decoder . The extrinsic 
LLRs generated by one decoder in a particular clock cycle 
of the schedule are immediately passed through the inter 
leaver or deinterleaver to the other decoder , where they may 
be used as a priori LLRs in the next clock cycle of the 
schedule . 

[ 0062 ] Rather than performing all processing for the upper 
decoder in the first clock cycle of each period , before 
performing the processing for the lower decoder in the 
second clock cycle , the FPTD employs an odd - even sched 
ule , which is motivated by the odd - even nature of the LTE 
interleaver . Furthermore , the FPTD employs a pipelining 
technique , in order to maximise the achievable clock fre 
quency . More specifically , during the first clock cycle of 
each period , the processing elements having odd indices 
perform the processing of ( 10 ) , ( 14 ) and ( 15 ) for the 
corresponding windows of the upper decoder , as well as the 
processing of ( 11 ) , ( 12 ) and ( 13 ) for the corresponding 
windows of the lower decoder . Meanwhile , the processing 
elements having even indices perform the processing of ( 10 ) 
and ( 14 ) for the corresponding windows of the lower 
decoder , as well as the processing of ( 11 ) , ( 12 ) and ( 13 ) for 
the corresponding windows of the upper decoder . In the 
second clock cycle of each period , the processing elements 
having even indices perform the processing of ( 10 ) , ( 14 ) and 
( 15 ) for the corresponding windows of the upper decoder , as 
well as the processing of ( 11 ) , ( 12 ) and ( 13 ) for the corre 
sponding windows of the lower decoder . Meanwhile , the 
processing elements having odd indices perform the pro 
cessing of ( 10 ) and ( 14 ) for the corresponding windows of 
the lower decoder , as well as the processing of ( 11 ) , ( 12 ) and 
( 13 ) for the corresponding windows of the upper decoder . 
Note that the normalization technique used in the FPTD for 
( 11 ) and ( 12 ) is different to that of the second example . More 
specifically , in order to remove the requirement to determine 
the maximum state metric in each vector , the approach of 
( 11 ) and ( 12 ) is to always subtract the first state metric . Note 
also that the FPTD benefits from providing the lower 

Fourth Example Fully - Parallel Turbo Decoder 

[ 0061 ] A fully parallel turbo decoder ( FPTD ) , such as that 
disclosed in our co - pending International patent application 
PCT / EP2015 / 067527 operates in a similar manner to the 
turbo decoder of first example , but employs K , number of 
windows , each having a length of W 1 . Accordingly , the 
FPTD employs a chain of P = K , processing elements , each of 
which performs processing for a different one of the win 
dows of the upper decoder , as well as for the corresponding 
window of the lower decoder . The FPTD decoding process 
is completed according to a periodic schedule , where the 
period is given by C = 2 . The processing of each window is 
completed according to ( 10 ) - ( 15 ) below . Note that ( 15 ) may 
be omitted entirely in the case of the lower decoder , since it 
does not generate a posteriori LLRs . Here , the superscript 
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u , a and the a 

u , a 

decoder with the systematic LLRs [ b3.k ' > 0 ] = 1K1 , which may 
be obtained by interleaving those of the upper decoder 
[ b3./4.0];=1* ? 
[ 0063 ] FIG . 9 provides an illustration of an FPTD as 
disclosed in PCT / EP2015 / 067527 . In FIG . 9 , the respective 
upper and lower turbo decoding parts 701 , 702 correspond 
to the upper and lower turbo decoding parts of the Log 
BCJR algorithm 601 , 602 , but are replaced with K , parallel 
algorithmic blocks 706 , 708. Thus the upper decoder 701 is 
comprised of K , algorithmic blocks 706 whereas the lower 
decoder 702 is comprised of K , algorithmic blocks 708. As 
shown in FIG . 9 and in correspondence with the operation 
of the Log - BCJR algorithm , the demodulator in the receiver 
of FIG . 3 , provides the a priori LLRs to the turbo decoder's 
2K , algorithmic blocks 708 , 706 , which as shown in FIG . 9 
are arranged in two rows . More specifically , following their 
transmission over a wireless channel , the three encoded 
frames bz , bz “ and bz are demodulated and provided to the 
turbo decoder of FIG . 9. The demodulator provides three 
frames each comprising K , soft - valued a priori Logarithmic 
Likelihood Ratios ( LLRs ) 5,4,4 = [ 52,4 , " ] = 1KL , 534,2 = [ 
534,0 ] ; = 1 \ , and 52,4 = [ 1280 K , while a fourth frame 531,9 = [ 53.720 ] ; = K is obtained by interleaving 5 , u , a . These are 
provided to the fully - parallel turbo decoder's 2K , algorith 
mic blocks , with the a priori parity LLR 52 , 
priori systematic LLR 53.ju , a being provided to the kth 
algorithmic block 706 in the upper decoder 701 shown in 
FIG . 9. Furthermore , the interleaver 704 provides the kth 
algorithmic block in the upper decoder 701 with the a priori 
message LLR 51,15 as will be detailed below . Meanwhile , 
the kth algorithmic block in the lower decoder 702 is 
correspondingly provided with the a priori LLR values 
51,4 * , 52,4 and 53.5-4 . In addition to this , the kt " algorith 
mic block 706 , 708 in each of the upper and lower decoders 
701 , 702 is also provided with a vector of a priori forward 
state metrics Ox - 1 = [ @ x - 1 ( Sk - ul M = 1 and a vector of a priori 
backward state metrics Bx = IB_ ( Sk ) ] si as will be detailed 
below . Unlike a conventional turbo decoder operating in 
accordance with the Log - BCJR algorithm described above 
with reference to FIG . 7 , each of the algorithmic blocks 706 , 
708 of the upper and lower decoders 701 , 702 operates in an 
identical manner to receive the soft decision a priori LLR 
values of 6,4,2 = [ 52,44,4 ] } = 1 and bzu , a = [ 53,44,4 ] } = 1 
upper decoder 521,9 = [ b2,6 b 140K and 
631 , a = [ b3,1-4 ] } = 1 for the lower decoder 702 , corresponding 
to one or more data symbols associated with the trellis stage 
and to receive a priori forward state metrics ?k - 1 from one 
neighbouring algorithmic block , to receive a priori back 
ward state metrics Bk from a second neighbouring algorith 
mic block and to receive a priori LLR value 51 , k " for the data 
symbol being detected for the trellis stage associated with 
the kth algorithmic block from the second detection proces 
sor . Each algorithmic block performs calculations associated 
with one trellis stage , comprising a set of transitions between 
a set of previous states and a set of next states . Each 
algorithmic block is configured to combine the a priori 
forward state metrics ?x.1 [ Cx - 1 ( Sx - 1 ) syy = 1 the a priori 
backward state metrics Bx = [ P_ ( SR ) ] sx = 1 and the a priori 
LLR value 51 , " relating to the data symbol , according to 
equations ( 10 ) to ( 15 ) . 

ing parallel processing for turbo decoding which removes 
the dependency between processing elements which allows 
each processing element to perform the calculations corre 
sponding to each trellis stage in parallel , with increased 
throughput . Effectively therefore the window size is one as 
explained above . However the FPTD suffers a perceived 
disadvantage in that the algorithm and calculations for 
performing the turbo decoding using the FPTD require that 
each of the symbols in the frame providing an LLR value at 
the decoder is represented by a processing element . For the 
example of an LTE frame , the number of required processors 
would be K188 = 6144 , since this is the longest supported 
frame length . This can be perceived as a disadvantage 
because only a limited subset of these processors can be 
exploited for shorter frame lengths , leading to reduced 
hardware utility . Accordingly it would be desirable to find an 
arrangement in which turbo decoding can be achieved with 
an arbitrary number of processing elements , allowing a 
desirable tradeoff between throughput and hardware utility 
to be struck . Such an arrangement is referred to in the 
following paragraphs as an arbitrarily parallel turbo decoder . 
According to embodiments of the present technique there 
fore an arbitrary parallel turbo decoder ( APTD ) is arranged 
to perform further decoding using parallel processing using 
an arbitrary number of processing elements . To this end each 
processing element represents the calculation of the vari 
ables used in the processing algorithm for a plurality of LLR 
values corresponding to the plurality of the symbols in the 
transmitted frame so that the number of processing elements 
can be reduced . However in order to provide the arbitrary 
parallel turbo decoder , it is necessary to adapt the interleav 
ing of the symbols between the upper and lower decoders 
because each of the processing elements is performing 
calculations for a plurality of frame lengths . As a result , a 
configurable network is referred to as a Benes network is 
provided which is scheduled in order to provide an optimum 
switching of symbols between the upper and lower decoders 
which as far as possible prevents conflict or wait cycles in 
which one or more of the processing elements is idle . A 
better appreciation of embodiments of the present technique 
will be described in the following paragraphs . Embodiments 
of the present technique can provide a turbo decoder circuit 
for performing a turbo decoding process to recover a frame 
of data symbols from a received signal comprising either 
parity and systematic soft decision values ( LLR values ) for 
each data symbols of the frame , for an example in which the 
data symbols of the frame have been encoded with a turbo 
encoder using a systematic code or parity soft decision 
values for each data symbol of the frame for an example in 
which the data symbols of the frame have been encoded with 
a turbo encoder using a non - systematic code . The frame 
represented by the received signal may therefore have been 
encoded with a systematic or non - systematic code . The 
turbo decoder circuit recovers data symbols of the frame , 
which have been encoded with a turbo encoder comprising 
upper and lower convolutional encoders which can each be 
represented by a trellis , and an interleaver which interleaves 
the encoded data between the upper and lower convolutional 
encoders . The turbo decoder circuit comprises a clock , 
configurable network circuitry configured to interleave soft 
decision values , an upper decoder and a lower decoder . 

? 

Ki Ki for the 
701 , or 

Ki 

M 
2 

Example Embodiment of an Arbitrarily Parallel 
Turbo Decoder 

[ 0064 ] As explained above , the FPTD as disclosed in 
PCT / EP2015 / 067527 provides an arrangement for perform 

[ 0065 ] The upper decoder comprises a plurality of upper 
processing elements associated with the upper convolutional 
encoder , each of the processing elements of the upper 



US 2021/0176006 A1 Jun . 10 , 2021 
10 

decoder being configured , during a series of consecutive 
clock cycles , iteratively to receive , from the configurable 
network circuitry , a priori soft decision values ( a priori 
LLRs ) pertaining to data symbols associated with a window 
of an integer number of consecutive trellis stages represent 
ing possible paths between states of the upper convolutional 
encoder , to perform parallel calculations associated with the 
window using the a priori soft decision values in order to 
generate corresponding extrinsic soft decision values per 
taining to the data symbols . The series of consecutive clock 
cycles is a number of clock cycles required to perform the 
entire decoding process to recover the data symbols of the 
frame for a number of iterations of the turbo decoding 
process . The processing elements of the upper decoder then 
provide the extrinsic soft decision values to the configurable 
network circuitry . At least one of the processing elements of 
the upper decoder is configured to perform the calculations 
for a window associated with a different number of the trellis 
stages to at least one other of the processing elements of the 
upper decoder . This is because , for example , the number of 
trellis stages corresponding to possible paths between states 
of the upper convolutional encoder may not be an integer 
factor of the number of processing elements . 
[ 0066 ] The lower decoder comprises a plurality of lower 
processing elements associated with the lower convolutional 
encoder , each of the processing elements of the lower 
decoder being configured , during the series of the consecu 
tive clock cycles , iteratively to receive , from the configur 
able network circuitry , a priori soft decision values pertain 
ing to data symbols associated with a window of an integer 
number of consecutive trellis stages representing possible 
paths between states of the lower convolutional encoder , to 
perform parallel calculations associated with the window 
using the a priori soft decision values in order to generate 
corresponding extrinsic soft decision values pertaining to the 
data symbols . Each of the processing elements then provide 
the extrinsic soft decision values to the configurable network 
circuitry . At least one of the processing elements of the 
lower decoder is configured to perform the calculations for 
a window associated with a different number of the trellis 
stages to at least one other of the processing elements of the 
lower decoder . 

[ 0067 ] The configurable network circuitry includes net 
work controller circuitry which controls a configuration of 
the configurable network circuitry iteratively , during the 
consecutive clock cycles , to provide the a priori soft decision 
values for the upper decoder by interleaving the extrinsic 
soft decision values provided by the lower decoder , and to 
provide the a priori soft decision values for the lower 
decoder by interleaving the extrinsic soft decision values 
provided by the upper decoder . The interleaving performed 
by the configurable network circuitry controlled by the 
network controller is in accordance with a predetermined 
schedule , which provides the a priori soft decision values at 
different cycles of the one or more consecutive clock cycles 
to avoid contention between different a priori soft decision 
values being provided to the same processing element of the 
upper or the lower decoder during the same clock cycle . 
[ 0068 ] According to example embodiments of the present 
technique therefore , each of the processing elements of the 
upper decoder and the lower decoder perform calculations 
associated with its window of the trellis . This means that 
each of the processing elements is performing the calcula 
tions associated with the forward and backward recursions 

of the turbo decoding for a section of the trellis associated 
with and corresponding to a section of the data symbols of 
the frame . As a result of the arbitrarily parallel processing of 
the turbo decoder , the processing elements can divide up the 
trellis of the upper decoder without restriction on the map 
ping of the window size to the processing elements although 
a greater decoding rate can be achieved by sharing the 
window sizes of the trellis stages between the available 
processing elements as much as possible . This also means 
that the size of the frame can vary independently of the 
number of processing elements available to perform the 
turbo decoding , so that the window sizes formed by parti 
tioning the trellis can be configured dynamically . 
[ 0069 ] Embodiments of the present technique can achieve 
this arbitrarily parallel decoding by arranging the configur 
able network to provide the a priori soft decision values for 
the upper decoder to the lower decoder and from the lower 
decoder to the upper decoder in a way which both matches 
the interleaving performed at the encoder , but also avoids 
contention between different a priori soft decision values 
being provided to the same processing element of the upper 
or the lower decoder during the same clock cycle , because 
the processing element is performing calculations for a 
widow comprising more than one stage of the trellis . This is 
achieved by the predetermined schedule which arranges for 
one or more of the a priori soft decision values from the 
upper decoder or the lower decoder in at least one of the 
clock cycles to be , for example , delayed by one or more 
clock cycles or skipped in that the a priori soft decision value 
is not delivered . The processing element which would have 
received the a priori soft decision value without delaying or 
skipping continues with the forward and backward recursion 
of the calculation performed by that processing element 
using a previous version of this a priori soft decision value 
received in a previous iteration . 
[ 0070 ] In some example embodiments , in order to com 
municate the extrinsic soft decision values from the upper 
decoder to become the a priori soft decision values for the 
lower decoder and the extrinsic soft decision values from the 

lower decoder to become the a priori soft decision values for 
the upper decoder , the configurable network circuitry may 
include a memory or a plurality of memories which are used 
to store the extrinsic soft decision values before communi 
cation via the configurable network circuitry or the a priori 
soft decision values after communication . The memory can 
therefore also combine with the configuration of the con 
figurable network circuitry according to the predetermined 
schedule to maintain a priori soft decision values which are 
not updated ( over written ) if these are skipped to avoid 
contention . Thus a memory location which stores the a priori 
soft decision values for an iteration of the turbo decoding 
process over one or more clock cycles to perform calcula 
tions for the window of the trellis may reuse the same a 
priori soft decision value which is maintained at a particular 
memory location for that processing element may be re - used 
to avoid contention . As for the example of FPTD [ 26 ] this 
compromise may result in a reduction in accuracy but 
overall the processing of the turbo decoder may produce a 
faster result of an estimate of the frame of data symbols . 
[ 0071 ] Each of the processing elements may be perform 
ing calculations according to forward and backward sched 
uling for an integer number of trellis stages , which output 
extrinsic soft decision values which become a priori soft 
decision values for the other of the lower or upper decoders . 
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1006 in the upper decoder 1001. The interleaver and deinter 
leaver are each formed of a Bene network comprising 
S = S ( P ) = 2 [ P / 2 ] + S ( { P / 2 ] ) + S ( [ P / 2 ] ) crossbar switches , where 
S ( 1 ) = 0 and S ( 2 ) = 1 [ 25 ] . For example , S = 352 when P = 64 . 
[ 0076 ] The configurable interleaver is formed from two 
Beneš networks 1022 , 1024 which are controlled by an 
interleaver ROM controller 1026 in combination with two 

read only memories 1028 , 1030. The interleaver ROM 
controller 1026 is driven by a counter 1032 and a control line 
to control the Bene network switching of the soft decision 
values produced by the upper and lower sets of processing 
elements 1001 , 1002 so that these are made available to each 
of the processing elements at a time which can optimise the 
decoding of the frame in accordance with the present 
decoding technique . Finally , the APTD includes a CRC unit , 
as well as an upper and a lower terminating element , as 
shown in FIG . 10 . 

[ 0077 ] The APTD may be used to decode one frame of bits 
at a time , supporting all L = 188 frame lengths { K1 , K2 , K3 , 
K , K188 } = { 40,48,56 , K , 6144 } and corresponding interleaver 
designs of the LTE turbo code [ 1 ] . In order to initiate the 
decoding of a frame , the index 1E [ 1 , L ] of its length K , is 
input to the APTD using ?log ( L ) ] = 8 bits , as shown by 1034 
in FIG . 10. At the same time , the upper decoder is provided 
with K , parity LLRs [ b2,44,4 ] } = 1 K and K , systematic LLRs 
[ b3.4 , 4 ] = 1K1 . Meanwhile , the lower decoder is provided with 
K ; parity LLRs [ b25 : 0 ) = 1 ?. Likewise , the upper terminating 
element is provided with six termination LLRs 

[ 640 ] ( 1 + 3 " k = K4 + 1 and [ b 3 23,6 ? k = K4 + 1 ' 

The scheduling of the interleaver is therefore determined 
with respect to the calculations and therefore the extrinsic 
soft decision values produced and delivered to the other of 
the upper and lower decoders , which is scheduled to avoid 
any contention at the expense of introducing delay in the 
delivery through the interleaver or deleting some of the soft 
decision values and the schedule is designed to reduce these 
contentions . The design of the predetermined schedule is to 
reduce the delay and the deletions . The effect of delay may 
be for the processing element to continue calculation of the 
forward and backward recursions without the most up to 
date / most current extrinsic / a priori soft decision values , 
because the most update version cannot be delivered as a 
result of the contention . In some examples the soft decision 
values may be delivered earlier than required , but with the 
aim of reducing a number of missed opportunities for using 
the extrinsic soft decision values . The processing elements 
use the a priori soft decision value it had in the previous 
iteration , or if it's the first iteration it sets this to zero . 
[ 0072 ] In some example embodiments the calculations 
performed by one or more of the processing elements 
according to the window of the trellis may be formed from 
different sub - periods comprising one or more of the clock 
cycles in which the calculations and processing is performed 
according to sub - windows , for example two sub - windows 
which comprise the trellis states of the window . In some 
examples , the processing of each window is constrained to 
a sub - window comprising the either the first half rounding 
up of the trellis stages or the last half rounding up of the 
trellis stages . Within these sub - periods and sub - windows , a 
forward and backward recursion is completed and then the 
beginning of a forward and backward recursion is performed 
if the number of clock cycles in the sub - period is greater 
than the number of trellis stages in the sub - window . 
[ 0073 ] In some examples , as part of the calculations 
performed by the processing elements to perform the turbo 
decoding process the extrinsic soft decision values are 
generated from one of the forward or backward state metrics 
the other being loaded from memory . 
[ 0074 ] FIG . 10 provides a schematic block diagram of an 
arbitrarily parallel turbo decoder ( APTD ) . As shown in FIG . 
10 and in correspondence with the reference numerals 
shown in FIGS . 7 and 9 , the APTD employs an upper 1001 
and a lower decoder 1002 , each comprising a chain of P 
processing elements , where the number P may be chosen 
arbitrarily , such as P = 64 . Each of the upper and lower 
decoders includes upper processing elements 1006 and 
lower processing elements 1008 which respectively perform 
calculation of the forward and backward recursions corre 
sponding to the upper convolutional encoder and the lower 
convolutional decoder . A final element in each of the pro 
cessing sets for the upper and lower decoders 1001 , 1002 is 
a terminating element 1010 , 1012 . 
[ 0075 ] As will be explained in the following paragraphs , 
each of the upper and lower processing elements 1006 , 1008 
performs calculations to implement the APTD . However in 
order to accommodate an arrangement in which each of the 
upper and lower processing elements 1006 , 1008 performs 
calculations for a plurality of frame lengths , the APTD 
includes a configurable interleaver 1020 to connect the 
processing elements 1006 in the upper decoder 1001 to the 
processing elements 1008 in the lower decoder 1002 , as well 
as a deinterleaver to connect each processing element 1008 
in the lower decoder 1002 to each of the processing elements 

while the lower terminating element is provided with six 
more termination LLRs 

[ bkie ] , % + 3 and ( bis na heki + l 2 , k_k = K4 + 1 

Ki as 9 

1 , a = bik ue , where 

[ 0078 ] The terminating elements are operated only once at 
the start of the decoding process . By contrast , the processing 
elements of the upper and lower decoders are operated 
continually throughout the decoding process . More specifi 
cally , the upper decoder continually updates the values of the 
K , a posteriori LLRs [ b1.4.P ] = 151 , and the K , extrinsic LLRs 
[ b 1,4 . ] = L * 1 . These updates to the extrinsic LLRs are con 
tinually interleaved by the first Beneg network and provided 
to the lower decoder as the K , a priori LLRs [ b1,40 ] = 1 
shown in FIG . 10. More specifically , b1,81 ( k ) 
the interleaving action is described by the vector II , in which 
each of the K , elements II ( k ) E [ 1 , K , ] is unique , as exempli 
fied in the above explanation for the K = 40 - bit LTE inter 
leaver , which may be described by the vector II = [ 1 , 38 , 15 , 
12 , 29 , 26 , 3 , 40 , 17 , 14 , 31 , 28 , 5 , 2 , 19 , 16 , 33 , 30 , 7 , 4 , 
21 , 18 , 35 , 32 , 9 , 6 , 23 , 20 , 37 , 34 , 11 , 8 , 25 , 22 , 39 , 36 , 13 , 
10 , 27 , 24 ] , where b1,24 a = b , At the same time , the 
lower decoder continually updates the values of the K , 
extrinsic LLRs [ 614.2 ] = 1 K1 , which are deinterleaved by the 
second Beneš network and provided to the upper decoder as 
the K , a priori LLRs [ b144 ) = * . More specifically , b , 

aloe , where the deinterleaving action is described by 
the vector II- ?, in which each of the K , elements II- ( k ) E 
[ 1 , K , ] is unique and obeys the relationship with the inter 

1 , a . u , e 
1,40 

u , a a_bik 
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leaver II - ' ( II ( k ) ) = k . Meanwhile , the updates to the a pos 
teriori LLRs [ b 1.4.P ] k = 1 " ] = 1 , are continually provided to the 
CRC unit . This halts the decoding process as soon as the 
LTE CRC is satisfied by the decoded bits obtained using the 
hard decisions bluP > 0 . The decoded bits and the a poste 
riori LLRs are then output by the APTD and the decoding of 
a next frame may commence . 
[ 0079 ] During the decoding process , the parity , system 
atic , a priori , extrinsic and a posteriori LLRs are grouped 
into chains of consecutive windows , each of which is 
processed by a consecutive processing element in the cor 
responding upper or lower decoder . More specifically , for 
short frames having lengths of K s2P , the first ( P - K , 2 ) 
processing elements in each decoder are deactivated , while 
the remaining K , / 2 consecutive processing elements process 
consecutive windows , each comprising two LLRs of each 
type . Accordingly , the number of LLRs of each type pro 
cessed by the processing element having the index pE [ 1 , P ] 
is given by 

[ 0084 ] where D , is a non - negative integer that may be 
separately chosen for each frame length K? , in order to 
control the trade off between error correction capability and 
the throughput of the APTD . For example , D = 2 may be 
chosen for K = 2016 , which is the longest LTE frame length 
that does not satisfy mod ( K ,, P ) = 0 when P = 64 . In successive 
clock cycles , the counter 1026 of FIG . 10 repeatedly counts 
up to C , where the counter value c is signalled using 
X = [ log2 ( Cmax ) ] bits , where Cmax = max / = , -C ,. For example , 
Cmax = 96 and hence X = 7 , when P = 64 and D = 2V1 . 
[ 0085 ] Throughout the APTD decoding process , the index 
1 of the current frame length K , and the value of the counter 
c are provided to each processing element , as well as to the 
interleaver ROM controller 1026 of FIG . 10. The interleaver 
ROM controller converts 1 and c into an address , which may 
be used to read crossbar switching patterns for the Beneš 
networks to use in the current clock cycle . The interleaver 
ROM comprises Z = 27 = 1188C , memory addresses , which may 
be addressed using Y = flogz ( Z ) ] bits , as shown in FIG . 10 . 
For example , Z = 5,952 and hence Y = 13 , when P = 64 and 
D = 2V1 . Each memory address in each interleaver ROM 
stores S bits , which select switching positions for each of the 
S crossbar switches in the corresponding Bene network . 
[ 0086 ] Each terminating element of FIG . 10 is provided 
with the six input LLRs of 

( 16 ) 
W1 , p = { so ifp < P - K1 / 2 

2 otherwise 

[ 0080 ] Equivalently , the LLRs having the index KE [ 1 , K ] 
are processed by the processing element in the correspond 
ing decoder having the index p = [ k / 21 + P K // 2 . By contrast , 
for longer frames having lengths of K > 2P , the number of 
LLRs of each type processed by the processing element 
having the index pE [ 1 , P ] is given by 

Ki + 3 Ki + 3 [ b2,61k = K4 + 1 and [ B3,6 K = Kq + 1 : 

Here , the superscripts ‘ u ' and ' l ' have been removed from 
the notation , since the discussion of this section applies 
equally to both the upper and lower terminating element . As 
shown in FIG . 10 , each terminating element outputs a 
backward state metric vector 

( 17 ) Wip S [ K // P ] ifp s P- mod ( K? , P ) 
[ K / P ] otherwise 

[ 0081 ] Accordingly , the LLRs having the index KE [ 1 , K ] 
are processed by the processing element in the correspond 
ing decoder having the index 

Bk , = [ Bk , ( Sk ) ] Sk = 1 " 

( 18 ) 
p = 

[ k / [ K / P ] ] ifk s kedge 
[ ( k – kedge ) / [ K / P11 + kedge / [ K / P ] otherwise 

where S = 8 in the LTE turbo code . A fixed - point binary 
representation is employed for each backward state metric 
Bx , ( sk ; ) , where a value of Bx , ( Sx ) = 0 is adopted until the 
computations of the terminating element are completed . 
More specifically , updated values for Bk , may be obtained 
according to ( 20 ) . 

Bk - 1 ( Sk - 1 ) = ( 20 ) 

max 

[ 0082 ] where kedge = [ P - mod ( K ,, P ) ] * [ K // P ] is the index of 
the last LLR that belongs to a window having the length 
[ KG / P ] . In this way , all [ P - mod ( K , P ) ] * [ K , / P ] mod ( K ,, P ) : [ K , 
P ] = K , LLRs of each type are processed by the P processing 
elements in the corresponding decoder . Note that the maxi 
mum window length is given by W , max = maxy = 1 “ maxy = 1 PW 
p = [ Kmax / P ] , which occurs when decoding a frame having 
the longest LTE frame length of Kmax = maxy = 1 K = 6144 bits . 
For example W , = 96 when P = 64 . 
[ 0083 ] The APTD decoding process is completed accord 
ing to a periodic schedule , where the period C , depends on 
the current frame length K? , according to 

[ b2 ( Sk - 1 , Sk ) . 62k +63 ( sk - 1 , Sk ) • 63.k + Bk ( sk ) - Bk ( 1 ) ] { sk ( csk - 1,5k ) = 1 } 1 , 

??? 

-oo may 

[ 0087 ] This equation is computed using a backward recur 
sion , which is initialised using Bk + 3 = [ 0 , - , - 00 , -00,00 , -00 , 
00 , -00 ] , where be represented using the most nega 
tive value supported by the fixed point number 
representation . More specifically , the backward recursion 
successively computes Bk + 2 BK , and then finally the output 
Bk . Note that the notation b ( Sk - 198k ) , bz ( Sk - 1,5k ) , b3 ( sk - 19Sk ) and c ( Sk - 1 , Sp ) is illustrated by the example trellis shown in 
FIG . 6 , as discussed above . 
[ 0088 ] FIG . 11 provides a schematic block diagram show 
ing parts which form one example implementation of a 

2 ( 19 ) if Kis2P 
ifmod ( K? , P ) = 0 , Ci = K / P 

[ K // P ] + DI otherwise 
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Wip 

k = k ' + ? p = 1 P - Wip " 

1.p. 

processing element shown in FIG . 10 for the upper decoder 
1001 and the lower decoder 1002. As mentioned above , the 
processing element may be given the index pE [ 1 , P ] so that 
each decoder operates on the basis of windows comprising 
Wip parity , systematic , a priori , extrinsic and a posteriori 
LLRs . In this section , the notation k'E [ 1 , W1.p ] is used to index an LLR within the pth window , which may be con 
verted to the index KE [ 1 , K ] within the frame according to 

Furthermore , the superscripts ‘ u ' and ‘ l ’ 
are removed from the notation , wherever the discussion of 
this section applies equally to the processing elements of 
both the upper and lower decoder . 
[ 0089 ] As shown in FIG . 11 , the processing elements 
include components which are required to perform the 
calculations to implement the APTD . As shown in FIG . 11 , 
the processing elements receive on an upper side the current 
LLR values on conductors 1101 , 1102 , which are stored in 
RAMs 1104 , 1105. Correspondingly , on the lower side of the 
processing element , a priori LLR values are passed from the 
Bene network on conductor 1104 and placed in the storage 
RAM 1110. The backward state metric values are received 
on a conductor 1112 and fed to a multiplexer 1114 which 
with a multiplexer 1116 an adder 1118 and a backward 
sub - processor element 1120 performs the processing calcu 
lations for the backward recursion to output corresponding 
backward state metric values from a conductor 1122 via a 
multiplexer 1124. Correspondingly , forward state metric 
values are received on a conductor 1130 and fed to a 
multiplexer 1132 which in combination with a multiplexer 
1134 , an adder 1136 and a first forward sub - processing 
element 1138 perform the calculation of the forward state 
metrics values which are fed to an output conductor 1140 via 
a multiplexer 1142. A second forward sub - processing ele 
ment 1150 receives partial calculations from the first for 
ward sub - processing element 1138 and calculates the extrin 
sic LLR output value fed on the output conductor 1106 via 
the storage RAM 1108. Input and output controllers 1160 , 
1170 combined with ROMs 1172 , 1162 are used to control 
the RAMs 1108 , 1110 to both receive a priori LLR values 
from a Benes network on a conductor 1164 , as well as to 
output the extrinsic LLR values from the conductor 1106 . 
Similarly , RAM controllers for the forward and backward 
recursion processes 1174 , 1176 operate with a random 
access memory 1178 to feed backward state metric values to 
the first forward sub - processing element 1138 . 
[ 0090 ] As will be appreciated from the circuit diagram 
shown in FIG . 11 unlike the upper decoder , the lower 
decoder does not benefit from systematic LLRs , which is 
equivalent to having b3 , ka = 0 . Likewise , the lower decoder 
does not generate a posteriori LLRs b1 " . These differences 
allow the RAM for storing b3k " , as well as all circuitry 
associated with b3.k " and bike to be omitted from the 
processing elements of the lower decoder . 
[ 0091 ] At the start of the decoding process , the processing 
element in each decoder having the index p is provided with 
the Win parity LLRs [ 62.6 " } x = 1Wip . Furthermore , the pth 
processing element in the upper decoder is provided with the 

Wip W1p systematic LLRs [ b3,6 • ° ] k = 1 at the start of the 
decoding process . Throughout the decoding process , the ph 
processing element of each decoder is continually provided 
with updates to the a priori LLRs in the window [ 51 , k " ] 

Wip . In response , this processing element continually 
updates the extrinsic LLRs in the window [ 51 , * ] k = 1Wp , as 
discussed below . Furthermore , in the case of the pth pro 

cessing element in the upper decoder , the a posteriori LLRs 
in the window [ b1,2 % .P ] k = 1 are also updated as the decod 
ing process proceeds . 
[ 0092 ] Additionally , throughout the decoding process , the 
( p - 1 ) th processing element in each decoder periodically 
provides the pth processing element with updates to the 
forward state metric vector ax = [ ak- ( Sk ) ] s : = 1 ° for the case 
where k ' = 0 , as shown in FIG . 10. However , an exception to 
this is made if the ( p - 1 ) th processing element is deactivated 
because K s2P or if p = 1 and hence the ( p - 1 ) processing 
element does not exist . In these cases , the ph processing 
element adopts do = [ 0 , -00 , -00 , -00 , -00 , -00 , -00 , -00 ] using the 
multiplexer 1132 shown in FIG . 11. Here , -o may be 
represented using the most negative value supported by the 
fixed point number representation . Likewise , the ( p + 1 ) 
processing element in each decoder periodically provides 
the pth processing element with updates to the backward 
state metric vector Bk [ Bk ( sk ) ] s = 1 " for the case where 
k = W as shown in FIG . 10. However , an exception to this 
is made if p = P , in which case the backward state metric 
vector is provided by the corresponding terminating ele 
ment , as shown in FIG . 10 and described above . As 
described below , the ph processing element periodically 
updates the forward state metric vector Ok , for k = W . and 
the backward state metric vector Bki for k = 0 , which are 
provided to the ( p + 1 ) th and ( p - 1 ) th processing element , 
respectively . 
[ 0093 ] During each clock cycle of the decoding process , 
each processing element accepts the above - described inputs , 
reads from RAM , performs processing within backward , 
first forward and second forward sub - processing element , 
writes into RAM and generates the above - described outputs , 
as shown in FIG . 11. Each upper processing element 
employs five RAMs , for storing the F - bit parity LLRs 
[ b26 " Ik = Wp , the F - bit systematic LLRs [ 63,5 l = Wp , the 
G - bit backward state metric vectors [ Pkºk 1 Wip , the l - bit a 
priori LLRs [ b 1,5 " } x = Wlp and the I - bit extrinsic LLRs [ b? , 
k® ] k = Wp . By contrast , each lower processing element 
employs only four RAMs , since the lower decoder does not 
benefit from systematic LLRs . Each of these RAMs com 
prises Wmax memory addresses , corresponding to the length 
of the longest windows supported by the APTD , as described 
above . The RAMs may be addressed using V = [ log ( Wmax ) ] 
bits , as shown in FIG . 11. For example , V = 7 , when P = 64 . 
[ 0094 ) The RAM storing the a priori LLRs [ ] , " ip , 
the parity LLRs [ 62.kºlk = Wp and the systematic LLRs 
[ b3 , kºlk = ip have two read ports , labelled D , ' and D , " in 
FIG . 11. The second port of each of these RAMs is addressed 
Az " by the output of the backward RAM controller AbE [ 1 , 
W1.p ] , in order to provide the backward sub - processing 
element with the LLRs 61,460 , 62,469 and 63,46 ° , as shown in 
FIG . 11. Note that an adder is used to also provide the 
backward sub - processing element with the LLR given by 
( 62.46 " + b34 ) . Meanwhile , the first port of each RAM is 
addressed Aj ' by the output of the forward RAM controller 
A’E [ 1 , W1p ) , in order to provide the first forward sub 
processing element with the LLRs 51,4 " , 52,4 " , 63,49 and 
( 12.4 + b3 / 4 ) . This sub - processing element is also provided 
with a backward state metric vector BA by the read port of 
the corresponding RAM D ’ , which is also addressed A ” by 
the output of the forward RAM controller A * . At the same 
time , the write port DW of this RAM is addressed AW by the 
output of the backward RAM controller Ab , in order to store 
a backward state metric vector Bas that had been generated 

k = 1 
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1 5 9 13 17 21 26 31 36 ( 21 ) 
during the previous clock cycle . More specifically , a multi 
plexer 1114 is used to select the backward state metric vector 
Bw , provided by the neighbouring processing element or 
terminating element when A = W1 , p , or to select that pro 
vided by the backward sub - processing element otherwise . 

2 6 10 14 18 22 27 32 37 

1 5 9 13 17 21 26 31 36 
f 1 KAI 3 7 11 15 19 23 28 33 38 

4 8 12 16 20 24 29 34 39 

3 7 11 15 19 25 30 35 40 

4 8 12 16 20 23 28 33 38 

[ 0098 ] which comprises one column for each of the P = 9 
processing elements and one row for each of the C = 6 clock 
cycles in each schedule period . Here , the element in the ph 
column and the oth row identifies the index KE [ 1 , K , ] of the 
LLRs that are processed by the pth processing element in the 
oth clock cycle within each schedule period , as generalized 
in FIG . 12. Likewise , the schedules for the backward sub 
processing element of the upper decoder , the first forward 
sub - processing element of the lower decoder and the back 
ward sub - processing element of the lower decoder may be 
described by the following three matrices , respectively . 

2 6 10 14 18 22 27 32 37 ( 22 ) 
1 5 9 13 17 21 26 31 36 

2 6 10 14 18 22 27 32 37 

Kb 4 8 12 16 20 25 30 35 40 

[ 0095 ] The backward and forward RAM controllers are 
driven by 1 and c , which they use to produce the addresses 
AbE [ 1 , W2.p ] and AfE [ 1 , W ) , respectively . Here , the 
addresses A and Aare generated such that the backward 
sub - processing element and the first forward sub - processing 
element are operated according to the schedule shown in 
FIG . 12. Here , the backward sub - processing element per 
forms backward recursions , in which decremental LLR 
indices k ' are processed in successive clock cycles . Mean 
while , the first forward sub - processing element performs 
forward recursions , in which incremental LLR indices k ' are 
processed in successive clock cycles . During the first ( C , / 2 ] 
clock cycles in each period of C , cycles , these sub - process 
ing elements of the upper decoder process the first [ W , p / 2 ] 
LLR indices , while the corresponding sub - processing ele 
ments of the lower decoder process the last [ W , / 2 ] LLR 
indices . Note that ( C // 2 ] may be greater than ( W12 / 2 ] in 
cases where D , > 0 is chosen for the sake of improving the 
APTD's error correction capability . In these cases , the 
beginning of the forward and backward recursions are 
repeated after they have been completed a first time , as 
shown in FIG . 12. During the last [ C // 2 ] clock cycles in each 
period , the backward sub - processing elements and the first 
forward sub - processing elements of the lower decoder pro 
cess the first ( W1 , p / 2 ] LLR indices , while the corresponding 
sub - processing elements of the upper decoder process the 
last [ 1/2 ] LLR indices . Again , the beginning of the 
recursions are repeated after they have been completed a 
first time , when D , > 0 . 
[ 0096 ] FIG . 12 provides a graphical representation show 
ing a sequence of processing performed by the first and 
second forward sub - processing elements as well as the 
backwards sub - processing elements of the processing ele 
ments of the upper decoder corresponding to those shown in 
FIG . 11. FIG . 12 illustrates a schedule for operating the first 
and second forward sub - processing elements , as well as the 
backward sub - processing element within a processing ele 
ment of the upper decoder , as well as within a processing 
element of the lower decoder . Note that as will be described 

below , the operation of the second forward sub - processing 
element is delayed by one clock cycle relative to that of the 
first forward sub - processing element , since they are sepa 
rated by a pipeline register in FIG . 11 . 

3 7 11 15 19 24 29 34 39 

4 8 12 16 20 23 28 33 38 

3 7 11 15 19 25 30 35 40 

3 7 11 15 19 24 29 34 39 ( 23 ) 
4 8 12 16 20 25 30 35 40 

3 7 11 15 19 24 29 34 39 

KA1 1 5 9 13 17 21 26 31 36 

2 6 10 14 18 22 27 32 37 

1 5 9 13 17 23 28 33 38 

2 6 10 14 18 21 26 31 36 

4 8 12 16 20 25 30 35 40 ( 24 ) 
3 7 11 15 19 24 29 34 39 

4 8 12 16 20 25 30 35 40 

K 2 6 10 14 18 23 28 33 38 

1 5 9 13 17 22 27 32 37 

2 6 10 14 18 21 26 31 36 

1 5 9 13 17 23 28 33 38 

[ 0097 ] Note that the schedule for the operation of the 
sub - processing element may be described by matrices . In the 
case where each of the upper and lower decoders employ 
P = 9 processing elements to perform the processing for the 
shortest LTE frame length of K = 40 bits , we obtain window 
lengths of [ Wiplo - 1 ! = [ 4,4,4,4,4,5,5,5,5 ) , according to ( 17 ) . 
Supposing that D = 2 is selected in order to strike a trade - off 
between error correction capability and throughput , we 
obtain a period of C?f40 / 91 + 1 = 7 clock cycles , according to 
( 19 ) . In this case , the schedule for the first forward sub 
processing element of the upper decoder may be described 
by the matrix 

[ 0099 ] In addition to the LLRs 61,4b " , b2,460 , 63,439 and 
( 52,404 + b3,4 " ) , the backward sub - processing element is pro 
vided with the same backward state metric vector do that is 
provided by the multiplexer 1114 described above , as shown 
in FIG . 11. The backward sub - processing element operates 
on the basis of ( 20 ) using the schematic of FIG . 13 ( a ) , in 
order to generate the backward state metric vector Bab - 1 . 

Bx - 1 ( Sx - 1 ) = max { szkle ( $ + 1 » 5x ) = 1 } [ b ( Sx - 1,5x ) = b1,59 + b2 ( Sx + 1 » 
Sk ) -b2,6 ° +63 ( Sk - 1 , SK ) : 63,1 ° + Bx ( Sk ) -P # ( 1 ) ] ( 25 ) 

[ 0100 ) Note that unlike the upper decoder , the lower 
decoder does not benefit from systematic LLRs , which is 
equivalent to having b3.1 " = 0 . This allows the corresponding 
term to be omitted from ( 25 ) in the case of the lower 
decoder . 
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[ 0101 ] FIG . 13 ( a ) shows a schematic representation of 
processing circuits which perform calculation of the back 
ward state metric vector Bx - 1 = [ Px - 1 ( Sk - 1 ) ] s = 1M of ( 20 ) in the backward sub - processing element . Note that unlike the 
upper decoder , the lower decoder does not benefit from 
systematic LLRs . This is equivalent to having 63,4-0 , which 
allows one of the adders shown in FIG . 13 ( a ) to be omitted 
from the processing elements of the lower decoder . As 
shown in FIG . 13 ( a ) the calculations are implemented using 
elements typically formed on integrated circuits such as 
adders 1301 , subtracting circuits 1302 , clipping circuits 
1304 and maximum output circuits 1306. As will be appre 
ciated from the layout of the circuits in accordance with the 
understanding of the conventional operation of these cir 
cuits , the respective circuits implement the calculations 
performed by the backward sub - processing elements shown 
in the processing element of FIG . 11 . 
( 0102 ] Following its computation by the backward sub 
processing element , the backward state metric vector BA - 1 
is stored in an internal register in order to facilitate its use as 
Bab in the next clock cycle , as shown in FIG . 11. Further 
more , the backward state metric vector Bab - ? is stored in an 
output register in the case where 

ciated from the layout of the circuits in accordance with the 
understanding of the conventional operation of these cir 
cuits , the respective circuits implement the calculations 
performed by the first forward sub - processing elements 
shown in the processing element of FIG . 11 . 
[ 0106 ] Following its computation by the first forward 
sub - processing element , the forward state metric vector age 
is stored in an internal register in order to facilitate its use as 
a $ -1 in the next clock cycle , as shown in FIG . 11. Further 
more , the forward state metric vector ag is stored in an 
output register in the case where A? = W1 , or A = W1,2 / 2 , in 
order to provide aw , and aw1 / 2 to initialise the forward recursion in the neighbouring processing eleement or the 
forward recursion in the other half of the window processed 
by the same processing element , respectively . 
[ 0107 ] At the same time , the first forward sub - processing 
element performs the calculations of ( 27 ) using the sche 
matic of FIG . 14a , in order to generate the bit metric vector 

Eps = [ cas ( bl , AS , BADIA 1,4 / € 0,1 } 
2,47 € ( 0,1 ) 

( 27 ) 

WI.P max Ab = 1 or Ab = +1 , 
2 

[ Qk - 1 ( 5k - 1 ) + Bk ( sk ) ] + 
161 ( sk – 1 » ) = b1 , k ) ( Sk - 1,34 ) . 62 ( sk - 1 , Sk ) = b2k 

b . 

[ 0108 ] Here , the superscript ‘ c'in ( 27 ) represents the clock 
cycle index , which is included in order to emphasise the 
action of the pipelining in ( 28 ) and ( 29 ) , as will be discussed 
below . 

in order to provide B , and Bw ,, / 2 to initialise the backward 
recursion in the neighbouring processing element or the 
backward recursion in the other half of the window pro 
cessed by the same processing element , respectively . 
[ 0103 ] Similarly , the first forward sub - processing element 
of FIG . 11 is provided with the LLRs 1,4 " , 52,4 " , 53,4 and 
( 52,49 + b3,4 ) , as well as the backward state metric vector 
Bd , as described above . Furthermore , a multiplexer 1132 is 
used to provide the first forward sub - processing element 
with the forward state metric vector 24-1 , in analogy with 
the provision of B4 to the backward sub - processing element , 
but with the additional option of providing the vector 
do = [ 0 , -00 , –00 , -00 , -00 , -00 , -00 , -00 ] , as described above . The 
first forward sub - processing element performs the calcula 
tions of ( 26 ) using the schematic of FIG . 13 ( b ) , in order to 
generate the forward state metric vector age . 

Az ( sx ) = max ( sk - 110 ( 83-1 sp ) = 1 } [ b ] ( Sk - 1992 ) -61,2 ° +62 ( Sk – 1992 ) • 62,4 + 63 ( Sx_1994 ) -63,3 ° + Qx - 1 ( Sx - 1 ) -Of - 1 ( 1 ) ] ( 25 ) 

[ 0109 ] FIG . 14 ( a ) provides a schematic circuit diagram 
providing a circuit for the calculation of the bit metric vector 
vector 

Es = Lar ( bar , bar ) 1. 25.01.11 0,1 } 
2,41 € ( 0,1 } 

[ 0104 ] Note that unlike the upper decoder , the lower 
decoder does not benefit from systematic LLRs , which is 
equivalent to having b31 = 0 . This allows the corresponding 
terms to be omitted from ( 26 ) in the case of the lower 
decoder . 

[ 0105 ] FIG . 13 ( b ) shows a schematic representation of 
processing circuits which perform the calculation of the 
forward state metric vector Qx- [ Qx ( sk ) ] s = 1 of ( 26 ) in the first forward sub - processing element . Note that unlike the 
upper decoder , the lower decoder does not benefit from 
systematic LLRs . This is equivalent to having 63,6 " = 0 , 
which allows one of the adders shown in FIG . 13 ( b ) to be 
omitted from the processing elements of the lower decoder . 
As shown in FIG . 13 ( b ) the calculations are implemented 
using elements typically formed on integrated circuits such 
as adders 1301 , subtracting circuits 1302 , clipping circuits 
1304 and maximum output circuits 1306. As will be appre 

of ( 27 ) in the first forward sub - processing element . Again , 
the circuits shown in FIG . 14a perform conventional func 
tions of integrated circuit elements , such as adders 1401 , 
maximum value formers 1402 and multiplexers 1404 . 
[ 0110 ] As shown in FIG . 11 , pipelining registers are 
employed to supply the second forward sub - processing 
element with the bit metric vector & ge , as well as the LLRs 
b14a and b3,4 " , albeit delayed by one clock cycle relative to 
the first forward sub - processing element . The second for 
ward sub - processing element operates on the basis of the 
schematic shown in FIG . 14 ( b ) . In the upper decoder , this is 
used to generate the a posteriori LLR 61,4 of ( 29 ) , which is 
output by the processing element and provided to the CRC 
unit , as described above In both the upper and lower 
decoder , the second forward sub - processing element com 
putes the extrinsic LLR of ( 28 ) , which is provided to the 
write port DW of the corresponding RAM and placed in the 
address A ” , which is driven by a pipeline register that 
supplies a delayed copy of A as shown in FIG . 11 . 
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brick ( 28 ) 

0.75 max [ sm ( 1 , 62 , k ) ] -0.75 
b'2,6 € { 0,1 } 

max [ er ! ( 0 , 62.k ) ] + b3.k 6. ) +5 62.4 € 0,1 } 

( 29 ) 
62.5 = 0.75 max [ ( 1 , 62.1 ) ] 62.6 € { 0,1 } 41. - 

extrinsic LLRs [ 61,6 * ] k = 1 Wip would behave like an additional 
pipeline register . More specifically , the LLR written into this 
RAM by the second forward sub - processing element in a 
particular clock cycle , would be read and exchanged through 
the interleaver or deinterleaver in the next clock cycle . In 
this case , the schedules for interleaving and deinterleaving 
schedules could be described by the matrices exemplified 
above in ( 30 ) and ( 31 ) for the first forward sub - processing 
element , but rotated downwards by two rows , owing to the 
pipelining delay . In this example , the schedules for the 
provision of the extrinsic LLRs to the interleaver by the 
upper decoder and to the deinterleaver by the lower decoder 
may be described by the following two matrices , respec 
tively . 

0.75 max [ ET ( 0 , 62.1 ) ] + bqk + b3.k 
b2k 2,5 € ( 0,1 ) 

3 7 11 15 19 25 30 35 40 ( 32 ) 
4 8 12 16 20 23 28 33 38 

1 5 9 13 17 21 26 31 36 

KUT 2 6 10 14 18 22 27 32 37 = 

1 5 9 13 17 21 26 31 36 

3 7 11 15 19 23 28 33 38 

4 8 12 16 20 24 29 34 39 

1 5 9 13 17 23 28 33 38 ( 33 ) 
2 6 10 14 18 21 26 31 36 

3 7 11 15 19 24 29 34 39 

[ 0111 ] Note that unlike the upper decoder , the lower 
decoder does not benefit from systematic LLRs , which is 
equivalent to having b3.ka = 0 . This allows the corresponding 
term to be omitted from ( 28 ) in the case of the lower 
decoder . Likewise , the lower decoder does not generate a 
posteriori LLR , allowing ( 29 ) to be omitted entirely . Here , 
the superscript ‘ c - l’in ( 28 ) and ( 29 ) represents the index of 
the previous clock cycle , in order to emphasise that the bit 
metric vectors of ( 27b ) have been pipelined . 
[ 0112 ] FIG . 14b provides a schematic circuit diagram 
providing a circuit for the calculation of the extrinsic and a 
posteriori LLRs bike and bloof ( 28 ) and ( 29 ) in the second 
forward sub - processing element . Note that unlike the upper 
decoder , the lower decoder does not benefit from systematic 
LLRs , which is equivalent to having b3 , ka = 0 . Likewise , the 
lower decoder does not generate a posteriori LLRs blue 
These differences allow three of the adders shown in FIG . 
14b to be omitted from the processing elements of the lower 
decoder . Again , the circuits shown in FIG . 14b perform 
conventional functions of integrated circuit elements , such 
as subtractions 1410 , multiplications 1408 and clipping 
circuits 1406 . 

[ 0113 ] Note that the schedule for the second forward 
sub - processing element may be described by the same 
matrices exemplified above in ( 21 ) and ( 23 ) for the first 
forward sub - processing element , but rotated downwards by 
one row , owing to the pipelining delay . In this example , the 
schedules for the second forward sub - processing element in 
the upper and lower decoder may be described by the 
following two matrices , respectively . 

17 K ! 4 8 12 16 20 25 30 35 40 

3 7 11 15 19 24 29 34 39 

1 5 9 13 17 21 26 31 36 

| 2 6 10 14 18 22 27 32 37 

[ 0115 ] As described above the K - 40 - bit LTE interleaver 
and deinterleaver may be described by the vectors II = [ 1 , 38 , 
15 , 12 , 29 , 26 , 3 , 40 , 17 , 14 , 31 , 28 , 5 , 2 , 19 , 16 , 33 , 30 , 7 , 
4 , 21 , 18 , 35 , 32 , 9 , 6 , 23 , 20 , 37 , 34 , 11 , 8 , 25 , 22 , 39 , 36 , 
13 , 10 , 27 , 24 ] and II - l = [ 1 , 14 , 7 , 20 , 13 , 26 , 19 , 32 , 25 , 38 , 
31 , 4 , 37 , 10 , 3 , 16 , 9 , 22 , 15 , 28 , 21 , 34 , 27 , 40 , 33 , 6 , 39 , 
12 , 5 , 18 , 11 , 24 , 17 , 30 , 23 , 36 , 29 , 2 , 35 , 8 ] , respectively . 
Therefore , in our example , the schedules for the provision of 
the a priori LLRs to the lower decoder by the interleaver and 
to the upper decoder by the deinterleaver may be described 
by the following two matrices , respectively . 4 8 12 16 20 23 28 33 38 ( 30 ) 

1 5 9 13 17 21 26 31 36 

2 6 10 14 18 22 27 32 37 
15 3 31 19 7 9 34 39 24 ( 34 ) Kf2 = 1 5 9 13 17 21 26 31 36 
12 40 28 16 4 35 20 25 10 

3 7 11 15 19 23 28 33 38 
1 29 17 5 33 21 11 36 

4 8 12 16 20 24 29 34 39 
II ( KUT ) = 38 26 14 2 30 18 23 8 13 

3 7 11 15 19 25 30 35 40 
1 29 17 5 33 21 11 36 

2 6 10 14 18 21 26 31 36 ( 31 ) 15 3 31 19 7 35 20 25 10 

3 7 11 15 19 24 29 34 39 12 40 28 16 4 32 37 22 27 

4 8 12 16 20 25 30 35 40 
13 25 37 9 27 12 17 2 ( 35 ) Kf2 = 3 7 11 15 19 24 29 34 39 14 26 38 10 22 21 6 11 36 

1 5 9 13 17 21 26 31 36 
7 19 31 3 15 40 5 30 35 

2 6 10 14 18 22 27 32 37 
IT - ' ( KLT ) 20 32 4 16 28 33 18 23 8 

1 5 9 13 17 23 28 33 38 
7 19 31 3 15 40 5 30 35 

1 13 25 37 9 21 6 11 36 

14 26 38 10 22 34 39 24 29 [ 0114 ] In an approach where the exchange of LLRs 
through the interleaver and deinterleaver was scheduled 
together with the forward recursions , the RAM storing the 
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[ 0116 ] The particular processing element within the lower 
and upper decoders that the a priori LLRs are delivered to 
may be described by the matrices Pun and P 191 , which may 
be obtained by applying ( 18 ) to II ( KUT ) and II- ( K , { " ) , 
respectively . In our example , we obtain the following matri 
ces . 

4 1 8 5 2 3 8 9 6 ( 36 ) 
3 9 7 4 1 8 5 6 3 

1 7 5 2 8 6 2 3 9 

pun 9 7 4 1 7 5 6 2 4 

1 7 5 2 8 6 2 3 9 7 
4 1 8 5 2 8 5 6 3 

3 9 7 4 18 9 67 
1 4 6 9 3 7 3 5 1 ( 37 ) 
4 7 9 3 6 6 2 39 
2 5 8 1 4 9 2 7 8 

PIT = 5 8 1 4 7 8 5 6 2 

used for the write port DW of the RAM storing the a priori 
LLRs [ 61,4 = 1Wup and the read port D ” of the RAM storing 
the extrinsic LLRs [ b1.8 1x = 1 W. This allows the exchange 
of LLRs through the interleaver and deinterleaver to be 
rescheduled , in order to avoid the Bene network contention 
that would be caused whenever two or more LLRs were 
destined for the same processing element in the same clock 
cycle . This rescheduling may still deliver a particular extrin 
sic LLR through the interleaver or deinterleaver in the third 
clock cycle that immediately follows the two clock cycles in 
which it was generated by the first and second forward 
sub - processing element . This would potentially allow the 
LLR to be used in a fourth clock cycle by the first forward 
or the backward sub - processing element in the connected 
processing element of the other decoder . However , it may 
take several clock cycles for the forward and backward 
recursions of that connected processing element to reach this 
updated LLR , during which time it would go unused . This 
observation reveals that delaying the delivery of some LLRs 
through the interleaver or deinterleaver can have no detri 
mental impact upon the operation of the APTD . Motivated 
by this , the interleaving or deinterleaving of particular LLRs 
may be delayed in order to mitigate contention . However , in 
order to eliminate contention , it may also be necessary to 
disable the interleaving or deinterleaving of extrinsic LLRs 
generated by particular processing elements in particular 
clock cycles within the schedule period . It is this that 
motivates the employment of the D , additional clock cycles 
within the schedule period employed for particular frame 
lengths K ;. As described above , these additional clock cycles 
allow the start of each forward recursion to be repeated after 
its completion , granting a second opportunity to interleave 
or deinterleave an extrinsic LLR that may have been dis 
abled on the first opportunity . By carefully designing the 
interleaver schedule , it can be ensured that every extrinsic 
LLR is interleaved or deinterleaved at least once per sched 
ule period , while minimising the detrimental impact of 
delaying their delivery and minimising the number D , of 
additional clock cycles employed per schedule period . 

2 5 8 1 4 9 2 7 8 

1 4 6 9 3 6 2 3 9 

4 7 9 3 6 8 9 6 7 

[ 0117 ] However , these matrices reveal that the approach 
where the exchange of LLRs through the interleaver and 
deinterleaver are scheduled together with the forward recur 
sions leads to a contention problem . More specifically , in the 
example matrices Pus and P - provided above , some rows 
contain duplicate processing element indices , as highlighted 
in bold . However , the Bene networks used to implement the 
interleaver and deinterleaver are not capable of delivering 
more than one LLR to a processing element at the same time , 
in this way . 
[ 0118 ] In order to solve this contention problem , we 
schedule the interleaving and deinterleaving independently 
of the forward and backward recursions . More specifically , 
the forward and backward recursions of FIG . 11 are imple 
mented by scheduling the read and write operations of most 
RAMs using the forward and backward RAM controllers , as 
described above . By contrast , independent scheduling is 

[ 0119 ] A particular algorithm for designing an interleaving 
or deinterleaving schedule is provided below . 

KT KA 
PIT PA 
for col = 1 to P do 

for row = 1 to C , do 
if K " ( row , col ) duplicates the value of an element higher up in the same column then 

disable K " ( row , col ) and P , " ( row , col ) by setting their values to ' - ' 
end if 

end for 
end for 

for row = 1 to Ci do 
for col 1 to P do 

if P , " ( row , col ) duplicates the value of an element further to the right in the same row 
then 

using an order that wraps from the bottom to the top of the matrix , search the 
successive rows for the first one in which the value of P ; " ( row , col ) is not duplicated 
in any columns and in which the element in the column col is set to ' - ' 
if a suitable row can be identified then 

delay K , " ( row , col ) and P , ( row , col ) by swapping their values with the ' - ' in 
the same column of the identified row 

else 
return ' unsuccessful 

end if 
end if 

end for 
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-continued 

end for 
rotate K , " downwards by two rows 
return “ successful ' 

[ 0120 ] In order to maximise the throughput of the APTD , 
the algorithm above may be employed with successively 
higher values of Di , until it is successful for both the 
interleaver and deinterleaver . In our example , the resultant 
interleaving and deinterleaving schedules K , 44 and K , " are 
given by ( 38 ) and ( 39 ) , respectively . Here , the corresponding 
values of P1 and P are provided in brackets , showing that 
all contention has been eliminated . 

leaving can be completed without contention . By contrast , 
the APTD supports any number P of processing elements 
and employs windows that may have different lengths . The 
APTD avoids contention by scheduling the interleaving and 
deinterleaving of the extrinsic LLRs independently of their 
generation . More specifically , the interleaving or deinter 
leaving of some extrinsic LLRs is delayed relative to their 
generation , or disabled altogether . 

UJT 

127 ) 15 ( 5 ) 25 ( 3 ) 30 ( 8 ) 35 ( 9 ) 40 ( 6 ) ] ( 38 ) 
8 ( 9 ) 11 ( 8 ) 

1 ( 1 ) 5 ( 7 ) 9 ( 5 ) 17 ( 8 ) 21 ( 6 ) 26 ( 2 ) 31 ( 3 ) 36 ( 9 ) 

KULT 2 ( 9 ) 14 ( 1 ) 18 ( 7 ) 22 ( 5 ) 27 ( 6 ) 32 ( 2 ) 37 ( 4 ) 
6 ( 7 ) 10 ( 4 ) 13 ( 2 ) 

3 ( 4 ) 7 ( 1 ) 
| 4 ( 3 ) 

19 ( 2 ) 23 ( 8 ) 28 ( 5 ) 33 ( 6 ) 38 ( 3 ) 

16 ( 4 ) 20 ( 1 ) 24 ( 8 ) 29 ( 9 ) 34 ( 6 ) 39 ( 7 ) 

8 ( 8 ) 9 ( 6 ) 13 ( 9 ) 23 ( 7 ) 28 ( 3 ) 33 ( 5 ) 38 ( 1 ) ( 39 ) 
4 ( 5 ) 6 ( 7 ) 10 ( 9 ) 17 ( 3 ) 

7 ( 5 ) 15 ( 1 ) 19 ( 4 ) 24 ( 9 ) 29 ( 2 ) 34 ( 7 ) 39 ( 8 ) 

KLT = 12 ( 1 ) 16 ( 4 ) 20 ( 7 ) 25 ( 8 ) 30 ( 5 ) 35 ( 6 ) 40 ( 2 ) 
3 ( 2 ) 11 ( 8 ) 18 ( 6 ) 
1 ( 1 ) 5 ( 4 ) 21 ( 6 ) 26 ( 6 ) 31 ( 3 ) 36 ( 9 ) 

22 ( 8 ) 27 ( 9 ) 3216 ) 37 ( 7 ) 2 ( 4 ) 14 ( 3 ) 

[ 0124 ] The turbo decoder of Example 2 disables some of 
its P = 64 processing elements , when the frame length K , is 
shorter than 2048 bits . By contrast , the APTD only disables 
some of its P processing elements in each decoder when the 
frame length K , is shorter than 2P . In this case , K , / 2 of the 
processing elements in each decoder process windows of 
length W 1 , p = 2 , while the remaining processing elements are 
disabled . When K , is greater than 2P , some of the windows 
have a length of W1.5 = [ KG / P ] , while the remainder have a 
length of W1 , p = TK / P ) . 
[ 0125 ] Like the shuffled turbo decoder of Example 3 , the 
APTD employs one processing element for each window of 
the upper decoder , as well as a separate processing element 
for each window of the lower decoder , where all windows 
are processed concurrently throughout the decoding process . 
However , while the shuffled turbo decoder performs a single 
forward recursion and a single backward recursion within 
each window , the APTD divides each window into two 
sub - windows . The APTD performs a forward and backward 
recursion for one sub - window , before performing a forward 
and backward recursion for the other sub - window . This is 
performed according to an odd - even arrangement , such that 
the first sub - window in each window of the upper decoder 
is processed concurrently with the second sub - window in 
each window of the lower decoder , and vice versa . Note that 
in the case where all windows have an even length W , this 
arrangement is equivalent to having twice as many windows 
and using each processing element to alternate between the 
processing of two neighbouring windows within the same 
decoder . This is in contrast to the turbo decoders of 
Examples 1 , 2 and 4 , which use each processing element to 
alternate between the processing of a particular window in 
the upper decoder and the corresponding window in the 
lower decoder . Note that the approach adopted by the APTD 
has the advantage of eliminating the requirement for pro 
cessing elements to be able to interleave or deinterleave 
extrinsic LLRs back to themselves , allowing a simpler 
interleaver and deinterleaver to be employed . 

1.pl 

??? 

[ 0121 ] As shown in FIG . 10 , the interleaver and deinter 
leaver schedules are stored in ROMs . These ROMs are 
controlled by output and input ROM controllers , which 
convert 1 and c into addresses A ” , which may be used to read 
a RAM address from the read port D ” of the corresponding 
ROM . Each ROM comprises Z = 2 ; = 1188C , memory 
addresses , which may be addressed using Y = flog ( 2 ) bits . 
Each ROM memory address comprises V = [ log2 ( Wmax ) +1 ] 
bits , which may store a value in the range 1 to Wmax ' . Here , 
W. = W , +1 represents a dummy value that is used to 
represent the disabled entries in the interleaver or deinter 
leaver schedule , which are indicated using “ -'in ( 38 ) and 
( 39 ) . Note that the schedule used to read extrinsic LLRs 
from one processing element must correspond to the sched 
ule used to write a priori LLRs into the processing element 
connected through the interleaver or deinterleaver . Note that 
in order to maximise the clock frequency of the APTD it 
may be beneficial to include pipelining registers within the 
Bene networks . In this case , the schedule used to write the 
a priori LLR should be rotated downwards by one position 
for each pipelining stage . 

max 

Summary of Advantages 

[ 0122 ] Embodiments of the present technique as explained 
above can provide an APTD , which has the following 
advantages : 
[ 0123 ] Conventional turbo decoders are restricted to 
employing a number P of processing element that is an 
integer factor of the frame length K ;. This ensures that all 
windows have the same length W = K / P and that the inter 

[ 0126 ] In the special case where the windows of the APTD 
have the minimum length of W1 , p = 2 , the odd - even arrange 
ment described above becomes equivalent to that of the 
FPTD and benefits from the odd - even nature of the LTE 

interleaver in the same way . In cases where the window 
length W. , is odd , the recursions performed during the first 
( C / 2 ] clock cycles have a length of [ W1.p / 2 ] , while those 
performed in the remaining ( C / 2 ] clock cycles have a length 
of [ W1,2 / 2 ] , causing a slight overlap between the recursions 
performed for the upper and lower decoders . This is in 
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contrast to the recursions of previously proposed turbo 
decoders , which do not have overlapping recursions . 
[ 0127 ] The known turbo decoders of Examples 1 to 3 
generate extrinsic LLRs during the second halves of both the 
forward and backward recursions . This approach generates 
no extrinsic LLRs during the first halves of the recursions 
and generates two LLRs during each step of the second 
halves . Therefore , this approach requires two interleavers 
and two deinterleavers during the second halves and this 
hardware goes unused during the first halves of the recur 
sions . By contrast , the APTD generates extrinsic LLRs only 
during the forward recursion , based on the backward state 
metrics that have been most recently generated , either during 
the end of the recursion performed during the previous 
decoding iteration , or during start of the current recursion . 
This allows only a single interleaver and a single deinter 
leaver to be used , although this is acheived at the cost of 
requiring more decoding iterations in order to achieve the 
same BER , as characterized in FIGS . 15 and 16 . 
[ 0128 ] In contrast to the turbo decoders of Examples 1 to 
3 , the APTD may repeat the beginning of a recursion 
following its completion . This provides a second opportu 
nity to generate the associated extrinsic LLRs , allowing the 
interleaving or deinterleaving of one or other of these 
regenerated LLRs to be disabled , without eliminating the 
interleaving or deinterleaving of these LLRs altogether . 
When the window length W1 , p is short , this also allows more 
recent backward state metric vectors to be generated , ready 
for use to generate extrinsic LLRs during the next iteration . 
[ 0129 ] Like the FPTD of Example 4 , the APTD employs 
pipelining to increase the maximum clock frequency , but at 
the cost of requiring more decoding iterations to achieve the 
same BER . While the pipeline through each of the upper and 
lower decoder of the FPTD has three stages , the APTD 
reduces this to two stages , improving the BER . This is 
achieved by performing the normalisation and clipping of 
the state metrics at the input to each sub - processing element , 
rather than at the output as in the FPTD . 

[ 0131 ] FIG . 16 provides a graphical plot of Bit Error Ratio 
( BER ) performance of the proposed APTD “ Proposed ” , 
when employing a total of 2P = 128 processing elements , as 
well as maximums of 96 , 192 , 288 , 384 , 480 , 576 , 672 and 
768 clock cycles to decode frames having the length 
K = 6144 . Note that pipelining is disabled in these results and 
that a slight BER degradation may be expected when it is 
enabled . These results are compared with a corresponding 
version of the turbo decoder of Example 1 “ Benchmarker 
( forward only ) ” , which calculates extrinsic LLRs on only 
the forward recursion , as in the proposed scheme . It employs 
8 parallel processors of similar hardware complexity to each 
of the proposed processing element , as well as maximums of 
1654 , 3282 , 4910 , 6538 , 8166 , 9794 , 11422 , 13050 clock 
cycles to decode frames having the same length of K = 6144 . 
Results are also provided for a second version of the turbo 
decoder of Example 1 “ Benchmarker ( forward and back 
ward ) ” which calculates extrinsic LLRs on both the forward 
and backward recursions , at the cost of having 42 % higher 
hardware complexity than each of the proposed processing 
elements . This scheme employs 8 parallel processors , as 
well as maximums of 1654 , 3282 , 4910 , 6538 , 8166 , 9794 , 
11422 , 13050 clock cycles to decode frames having the same 
length of K6144 . 
[ 0132 ] The following paragraphs provide further aspects 
and features of the present technique : 
[ 0133 ] A turbo decoder circuit for performing a turbo 
decoding process to recover a frame of data symbols from a 
received signal comprising one or more parity and / or sys 
tematic soft decision values for each data symbol of the 
frame . The data symbols of the frame have been encoded 
with a turbo encoder comprising upper and lower convolu 
tional encoders which can each be represented by a trellis , 
and an interleaver to interleave the data symbols between the 
upper and lower convolutional encoders . The turbo decoder 
circuit comprises a clock , configurable network circuitry 
which is configured to interleave soft decision values , and 
upper decoder and a lower decoder . The upper decoder 
comprises a plurality of upper processing elements associ 
ated with the upper convolutional encoder , each of the 
processing elements of the upper decoder being configured , 
during a series of consecutive clock cycles , iteratively to 
receive , from the configurable network circuitry , a priori soft 
decision values pertaining to data symbols associated with a 
window of an integer number of consecutive trellis stages 
representing possible paths between states of the upper 
convolutional encoder , to perform parallel calculations asso 
ciated with the window using the priori soft decision 
values in order to generate corresponding extrinsic soft 
decision values pertaining to the data symbols by perform 
ing forward and backward recursions for turbo decoding , 
and to provide the extrinsic soft decision values to the 
configurable network circuitry , at least one of the processing 
elements of the upper decoder being configured to perform 
the calculations for a window associated with a different 
number of the trellis stages to at least one other of the 
processing elements of the upper decoder . The lower 
decoder comprises a plurality of lower processing elements 
associated with the lower convolutional encoder , each of the 
processing elements of the lower decoder being configured , 
during the series of the consecutive clock cycles , iteratively 
to receive , from the configurable network circuitry , a priori 
soft decision values pertaining to data symbols associated 
with a window of an integer number of consecutive trellis 

Illustrative Results 

[ 0130 ] FIG . 15 provides a graphical plot of Bit Error Ratio 
( BER ) performance of the proposed APTD “ Proposed ” , 
when employing a total of 2P = 128 processing elements , as 
well as maximums of 8 , 16 , 24 , 32 , 40 , 48 , 56 and 64 clock 
cycles to decode frames having the length K = 512 . Note that 
pipelining is disabled in these results and that a slight BER 
degradation may be expected when it is enabled . These 
results are compared with a corresponding version of the 
turbo decoder of Example 1 “ Benchmarker ( forward only ) ” , 
which calculates extrinsic LLRs on only the forward recur 
sion , as in the proposed scheme . It employs 8 parallel 
processors of similar hardware complexity to each of the 
proposed processing element , as well as maximums of 246 , 
466 , 686 , 909 , 1126 , 1346 , 1566 and 1786 clock cycles to 
decode frames having the same length of K = 512 . Results 
are also provided for a second version of the turbo decoder 
of Example 1 “ Benchmarker ( forward and backward ) ” 
which calculates extrinsic LLRs on both the forward and 
backwared recursions , at the cost of having 42 % higher 
hardware complexity than each of the proposed processing 
elements . This scheme employs 8 parallel processors , as 
well as maximums of 246 , 466 , 686 , 909 , 1126 , 1346 , 1566 
and 1786 clock cycles to decode frames having the same 
length of K = 512 
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stages representing possible paths between states of the 
lower convolutional encoder , to perform parallel calcula 
tions associated with the window using the a priori soft 
decision values in order to generate corresponding extrinsic 
soft decision values pertaining to the data symbols by 
performing forward and backward recursions for turbo 
decoding , and to provide the extrinsic soft decision values to 
the configurable network circuitry , at least one of the pro 
cessing elements of the lower decoder being configured to 
perform the calculations for a window associated with a 
different number of the trellis stages to at least one other of 
the processing elements of the lower decoder . The config 
urable network circuitry includes network controller cir 
cuitry which controls a configuration of the configurable 
network circuitry iteratively , during the consecutive clock 
cycles , to provide the a priori soft decision values for the 
upper decoder by interleaving the extrinsic soft decision 
values provided by the lower decoder , and to provide the a 
priori soft decision values for the lower decoder by inter 
leaving the extrinsic soft decision values provided by the 
upper decoder , the interleaving performed by the configur 
able network circuitry controlled by the network controller 
being in accordance with a predetermined schedule , which 
provides the a priori soft decision values at different cycles 
of the one or more consecutive clock cycles to avoid 
contention between different a priori soft decision values 
being provided to the same processing element of the upper 
or the lower decoder during the same clock cycle . 

[ 0134 ] A turbo decoder circuit for performing a turbo 
decoding process to recover a frame of data symbols from a 
received signal comprising soft decision values for each data 
symbol of the frame . The data symbols of the frame have 
been encoded with a turbo encoder comprising upper and 
lower convolutional encoders which can each be represented 
by a trellis , and an interleaver to interleave the data symbols 
between the upper and lower convolutional encoders . The 
turbo decoder circuit comprises a clock , configurable net 
work circuitry which is configured to interleave soft decision 
values , and upper decoder and a lower decoder . The upper 
decoder comprises a plurality of upper processing elements 
associated with the upper convolutional encoder , each of the 
processing elements of the upper decoder being configured , 
during a series of consecutive clock cycles , iteratively to 
receive , from the configurable network circuitry , a priori soft 
decision values pertaining to data symbols associated with a 
window of an integer number of consecutive trellis stages 
representing possible paths between states of the upper 
convolutional encoder , to perform parallel calculations to 
generate corresponding extrinsic soft decision values per 
taining to the data symbols , and to provide the extrinsic soft 
decision values to the configurable network circuitry . The 
lower decoder comprises a plurality of lower processing 
elements associated with the lower convolutional encoder , 
each of the processing elements of the lower decoder being 
configured , during the series of the consecutive clock cycles , 
iteratively to receive , from the configurable network cir 
cuitry , a priori soft decision values pertaining to data sym 
bols associated with a window of an integer number of 
consecutive trellis stages representing possible paths 
between states of the lower convolutional encoder , to per 
form parallel calculations to generate corresponding extrin 
sic soft decision values pertaining to the data symbols , and 
to provide the extrinsic soft decision values to the config 
urable network circuitry . The configurable network circuitry 

is configured in accordance with a predetermined schedule 
to provide the a priori soft decision values at different cycles 
of the one or more consecutive clock cycles to between the 
upper and lower decoders to avoid contention between 
different a priori soft decision values . 
[ 0135 ] According to the embodiments recited in the above 
paragraphs the calculations performed by the processing 
elements according to the forward and the backward recur 
sion comprise receiving the forward or backward state 
metrics pertaining to a neighbouring trellis stage , combining 
the forward or backward state metrics with the a priori , 
parity and systematic soft decision values for the data 
symbols and generating the forward or backward state 
metrics pertaining to another neighbouring trellis stage , 
wherein the received forward or backward state metrics are 
normalized before being combined with the a priori , parity 
and systematic soft decision values . 
[ 0136 ] The following numbered paragraphs provide fur 
ther example aspects and features of example embodiments : 
Paragraph 1. A turbo decoder circuit for performing a turbo 
decoding process to recover a frame of data symbols from a 
received signal comprising one or more parity and / or sys 
tematic soft decision values for each data symbol of the 
frame , the data symbols of the frame having been encoded 
with a turbo encoder comprising upper and lower convolu 
tional encoders which can each be represented by a trellis , 
and an interleaver to interleave the data symbols between the 
upper and lower convolutional encoders , the turbo decoder 
circuit comprising 
[ 0137 ] a clock , 
[ 0138 ] configurable network circuitry which is configured 
to interleave soft decision values , 
[ 0139 ] an upper decoder comprising a plurality of upper 
processing elements associated with the upper convolutional 
encoder , each of the processing elements of the upper 
decoder being configured , during a series of consecutive 
clock cycles , iteratively to receive , from the configurable 
network circuitry , a priori soft decision values pertaining to 
data symbols associated with a window of an integer number 
of consecutive trellis stages representing possible paths 
between states of the upper convolutional encoder , to per 
form parallel calculations associated with the window using 
the a priori soft decision values in order to generate corre 
sponding extrinsic soft decision values pertaining to the data 
symbols , and to provide the extrinsic soft decision values to 
the configurable network circuitry , at least one of the pro 
cessing elements of the upper decoder being configured to 
perform the calculations for a window associated with a 
different number of the trellis stages to at least one other of 
the processing elements of the upper decoder , and 
[ 0140 ] a lower decoder comprising a plurality of lower 
processing elements associated with the lower convolutional 
encoder , each of the processing elements of the lower 
decoder being configured , during the series of the consecu 
tive clock cycles , iteratively to receive , from the configur 
able network circuitry , a priori soft decision values pertain 
ing to data symbols associated with a window of an integer 
number of consecutive trellis stages representing possible 
paths between states of the lower convolutional encoder , to 
perform parallel calculations associated with the window 
using the a priori soft decision values in order to generate 
corresponding extrinsic soft decision values pertaining to the 
data symbols , and to provide the extrinsic soft decision 
values to the configurable network circuitry , at least one of 
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tions for a window comprising corresponding trellis stages 
as the corresponding processing element of the lower 
decoder . 

Paragraph 8. A turbo decoder according to any of paragraphs 
1 to 7 , wherein a processing schedule of the processing 
elements and the interleaving is periodic according to the 
same number of clock cycles , each iteration representing a 
period of the same schedule . 
Paragraph 9. A turbo decoder according to paragraph 8 , 
wherein the period is given by a maximum of trellis stages 
in any one window in either the upper or lower decoder plus 
a non - negative integer required to reduce a requirement for 
skipping in accordance with the predetermined schedule to 
avoid contention . 

the processing elements of the lower decoder being config 
ured to perform the calculations for a window associated 
with a different number of the trellis stages to at least one 
other of the processing elements of the lower decoder , 
[ 0141 ] wherein the configurable network circuitry 
includes network controller circuitry which controls a con 
figuration of the configurable network circuitry iteratively , 
during the consecutive clock cycles , to provide the a priori 
soft decision values for the upper decoder by interleaving 
the extrinsic soft decision values provided by the lower 
decoder , and to provide the a priori soft decision values for 
the lower decoder by interleaving the extrinsic soft decision 
values provided by the upper decoder , the interleaving 
performed by the configurable network circuitry controlled 
by the network controller being in accordance with a pre 
determined schedule , which provides the a priori soft deci 
sion values at different cycles of the one or more consecutive 
clock cycles to avoid contention between different a priori 
soft decision values being provided to the same processing 
element of the upper or the lower decoder during the same 
clock cycle . 
Paragraph 2. A turbo decoder circuit according to paragraph 
1 , wherein the processing elements for each of the upper 
decoder and the lower decoder are configured to read the a 
priori soft decision values from memory and to write extrin 
sic soft decision values to memory after the calculations are 
performed , and the configurable network circuitry is con 
figured to read the extrinsic soft decision values from 
memory and to write a priori soft decision values to memory , 
and the reading of one or more of the extrinsic soft decision 
values by the configurable network in accordance with the 
predetermined schedule is delayed by one or more clock 
cycles relative to the writing of the one or more extrinsic soft 
decision values by the processing elements . 
Paragraph 3. A turbo decoder circuit according to paragraph 
1 or 2 , wherein the processing elements for each of the upper 
decoder and the lower decoder are configured to read the a 
priori soft decision values from memory and to write extrin 
sic soft decision values to memory after the calculations are 
performed , and the configurable network circuitry is con 
figured to read the extrinsic soft decision values from 
memory and to write a priori soft decision values to memory , 
and at least one of the reading of one or more of the extrinsic 
soft decision values by the configurable network in accor 
dance with the predetermined schedule or the writing of the 
one or more extrinsic soft decision values by the processing 
elements is skipped . 
Paragraph 4. A turbo decoder circuit according to any of 
paragraphs 1 , 2 or 3 , wherein the number of processing 
elements in the upper decoder or the lower decoder is not an 
integer factor of the number of trellis stages . 
Paragraph 5. A turbo decoder according to any of paragraphs 
1 to 4 , wherein a difference between the minimum and the 
maximum number of the trellis stages within each window 
processed by the processing elements is one in either of the 
upper and lower decoders . 
Paragraph 6. A turbo decoder circuit according to any of 
paragraphs 1 to 5 wherein each of the windows comprising 
the same number of trellis stages which are processed by the 
processing elements which are adjacent to each other . 
Paragraph 7. A turbo decoder circuit according to any of 
paragraphs 1 to 6 , wherein the upper and lower decoder 
comprise the same number of processing elements and each 
processing element of the upper decoder performs calcula 

Paragraph 10. A turbo decoder circuit according to any of 
paragraphs 1 to 9 , wherein each of the processing elements 
is configured to perform the parallel calculations according 
to a periodic schedule , and each period includes a first 
sub - period comprising one or more of first clock cycles in 
the period , and a second sub - period comprising the remain 
ing cycles in the period , during a first sub - period the 
processing of each window comprises forward and back 
ward recursions within either a first sub - window comprising 
a first one or more of the trellis stages in the window , or a 
second sub - window comprising the last one or more of the 
trellis stages in the window , during a second sub - period , 
each of the processing elements is configured to perform 
forward and backward recursions within the other of the first 
and second sub - window , which comprises the remaining 
trellis stages in the window . 
Paragraph 11. A turbo decoder circuit according to para 
graph 10 , wherein one of the first and second sub - periods 
comprises a half rounding down of the clock cycles in the 
period and the other of the first and second sub - period 
comprise the remaining half rounding up of the clock cycles 
of the period , and during one of the first and second 
sub - periods comprising a half - rounding down of the clock 
cycles each processing element performs the parallel calcu 
lations for the first or the second sub - window comprising a 
half rounding down of the trellis stages in the window , and 
during the other of the first and second sub - periods com 
prising a half - rounding up of the clock cycles the processing 
element performs calculations for the first or the second 
sub - window comprising a half rounding up of the trellis 
stages in the window . 
Paragraph 12. A turbo decoder circuit according to para 
graph 11 , wherein the processing elements are configured to 
perform calculations for a sub - window within a sub - period 
associated with a complete forward recursion within the 
sub - window and a complete backward recursion within the 
sub - window , and after performing the complete forward 
recursion and the complete backward recursion any remain 
ing clock cycles are used by the processing elements to 
perform calculations associated with at least part of a 
subsequent forward and a subsequent backward recursion . 
Paragraph 13. A turbo decoder circuit according to para 
graph 12 , wherein during the first sub - period the processing 
elements of the upper decoder are configured to perform 
calculations associated with the same one of a first or a 
second sub - window , and the processing elements of the 
lower decoder are configured to perform calculations asso 
ciated with the other of the first or the second sub - window , 
and 
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[ 0142 ] during the second sub - period the processing ele 
ments of the upper decoder are configured to perform 
calculations associated with the first or the second sub 
window which was not processed by the processing element 
during the first sub - period , and the processing elements of 
the lower decoder are configured to perform calculations 
associated with the other of the first or the second sub 
window which was not processed by the processing element 
during the first sub - period . 
Paragraph 14. A turbo decoder circuit according to any of 
paragraphs 10 to 13 , wherein the forward recursion gener 
ates a plurality of forward state metrics corresponding to the 
plurality of trellis states according to a schedule which 
performs calculations associated with each successive trellis 
stage in a forward direction and the backward recursion 
generates a plurality of backward state metrics correspond 
ing to the plurality of trellis states according to a schedule 
which performs calculations associated with each successive 
trellis stage in a backward direction , and either the forward 
recursion stores the forward state metrics in a memory 
according to the schedule for the forward recursion or the 
backward recursion stores the backward state metrics in the 
memory according to the schedule for the backward recur 
sion , and the other of the forward or the backward recursions 
loads the stored forward or backward state metrics from the 
memory and combines the forward and the backward state 
metrics to calculate the extrinsic soft decision values accord 
ing to the schedule for the forward or the backward recur 
sion . 

upper decoder 

Paragraph 15. A turbo decoder circuit according to any of 
paragraphs 10 to 14 , wherein the calculations performed by 
the processing elements according to the forward and the 
backward recursion comprise receiving the forward or back 
ward state metrics pertaining to a neighbouring trellis stage , 
combining the forward or backward state metrics with the a 
priori , parity and systematic soft decision values for the data 
symbols and generating the forward or backward state 
metrics pertaining to another neighbouring trellis stage , 
wherein the received forward or backward state metrics are 
normalized before being combined with the a priori , parity 
and systematic soft decision values . 
Paragraph 16. A turbo decoder circuit according to para 
graph 15 , wherein the processing elements are configured to 
generate the extrinsic soft decision values according to a two 
step pipeline comprising a first step which combines the 
forward and backward state metrics with each other and with 

the parity soft decision values to form intermediate vari 
ables , and a second step which combines the intermediate 
variables with each other , scales the combination of inter 
mediate variables and combines the scaled combination of 
intermediate variables with the systematic soft decision 
values , and the two steps of the pipeline are performed 
during the two consecutive clock cycles , and the delay 
imposed by the steps of the pipeline are accommodated in 
the delay imposed by the predetermined schedule of the 
configurable network to avoid contention . 

Paragraph 18. A method of turbo decoding to recover a 
frame of data symbols from a received signal comprising 
one or more parity and / or systematic soft decision values for 
each data symbol of the frame , the data symbols of the frame 
having been encoded with a turbo encoder comprising upper 
and lower convolutional encoders which can each be rep 
resented by a trellis , and an interleaver to interleave the 
encoded data have been interleaved between the upper and 
lower convolutional encoders , the method comprising 
[ 0143 ] performing a forward and a backward iterative 
recursion processes using an upper decoder comprising a 
plurality of upper processing elements associated with the 
upper convolutional encoder , by 
[ 0144 ] iteratively receiving at each of the processing ele 
ments of the upper decoder , during a series of consecutive 
clock cycles , from a configurable network circuitry , a priori 
soft decision values pertaining to data symbols associated 
with a window of an integer number of consecutive trellis 
stages representing possible paths between states of the 
upper convolutional encoder , 
[ 0145 ] performing parallel calculations by each of the 
processing elements associated with the window using the a 
priori soft decision values in order to generate corresponding 
extrinsic soft decision values pertaining to the data symbols , 
at least one of the processing elements of the 
performing the calculations for a window associated with a 
different number of the trellis stages to at least one other of 
the processing elements of the upper decoder , 
[ 0146 ] providing the extrinsic soft decision values to the 
configurable network circuitry , and 
[ 0147 ] performing a forward and a backward iterative 
recursion processes using a lower decoder comprising a 
plurality of lower processing elements associated with the 
lower convolutional encoder , by 
[ 0148 ] iteratively receiving at each of the processing ele 
ments of the lower decoder , during the series of the con 
secutive clock cycles , from the configurable network cir 
cuitry , a priori soft decision values pertaining to data 
symbols associated with a window of an integer number of 
consecutive trellis stages representing possible paths 
between states of the lower convolutional encoder , 
[ 0149 ] performing parallel calculations by each of the 
processing elements associated with the window using the a 
priori soft decision values in order to generate corresponding 
extrinsic soft decision values pertaining to the data symbols , 
at least one of the processing elements of the lower decoder 
performing the calculations for a window associated with a 
different number of the trellis stages to at least one other of 
the processing elements of the lower decoder , 
[ 0150 ] providing the extrinsic soft decision values to the 
configurable network circuitry , 
[ 0151 ] controlling a configuration of the configurable net 
work circuitry iteratively , during the consecutive clock 
cycles , to provide the a priori soft decision values for the 
upper decoder by interleaving the extrinsic soft decision 
values provided by the lower decoder , and to provide the a 
priori soft decision values for the lower decoder by inter 
leaving the extrinsic soft decision values provided by the 
upper decoder , the interleaving performed by the configur 
able network circuitry controlled by the network controller 
being in accordance with a predetermined schedule , which 
provides the a priori soft decision values at different cycles 
of the one or more consecutive clock cycles to avoid 
contention between different a priori soft decision value 

Paragraph 17. A turbo decoder circuit according to any of 
paragraphs 1 to 16 , wherein the number of data symbols in 
the frame is variable , and the number of trellis stages of each 
window for calculations performed by the upper and lower 
decoders is determined with respect to the frame length and 
the number of the processing elements of the upper and 
lower decoders . 
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decoder , and to provide the a priori soft decision values for 
the lower decoder by interleaving the extrinsic soft decision 
values provided by the upper decoder , the interleaving 
performed by the configurable network circuitry controlled 
by the network controller being in accordance with a pre 
determined schedule , which provides the a priori soft deci 
sion values at different cycles of the one or more consecutive 
clock cycles to avoid contention between different a priori 
soft decision value being provided to the same processing 
element of the upper or the lower decoder during the same 
clock cycle . 
Paragraph 20. A receiver according to paragraph 19 , wherein 
a number of data symbols in each of the frames varies 
dynamically from one from to another . 
Paragraph 21. An infrastructure equipment forming part of 
a radio access network of a wireless communications net 
work , the infrastructure equipment including a receiver 
according to paragraph 19 or 20 . 
Paragraph 22. A communications device for transmitting or 
receiving data with a wireless communications network , the 
communications device including a receiver according to 
paragraph 19 or 20 . 
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values to the configurable network circuitry , at least one 
of the processing elements of the lower decoder being 
configured to perform the calculations for a window 
associated with a different number of the trellis stages 
to at least one other of the processing elements of the 
lower decoder , 

wherein the configurable network circuitry includes net 
work controller circuitry which controls a configuration 
of the configurable network circuitry iteratively , during 
the consecutive clock cycles , to provide the a priori soft 
decision values for the upper decoder by interleaving 
the extrinsic soft decision values provided by the lower 
decoder , and to provide the a priori soft decision values 
for the lower decoder by interleaving the extrinsic soft 
decision values provided by the upper decoder , the 
interleaving performed by the configurable network 
circuitry controlled by the network controller being in 
accordance with a predetermined schedule , which pro 
vides the a priori soft decision values at different cycles 
of the one or more consecutive clock cycles to avoid 
contention between different a priori soft decision 
values being provided to the same processing element 
of the upper or the lower decoder during the same clock 
cycle . 
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2. A turbo decoder circuit as claimed in claim 1 , wherein 
the processing elements for each of the upper decoder and 
the lower decoder are configured to read the a priori soft 
decision values from memory and to write extrinsic soft 
decision values to memory after the calculations are per 
formed , and the configurable network circuitry is configured 
to read the extrinsic soft decision values from memory and 
to write a priori soft decision values to memory , and the 
reading of one or more of the extrinsic soft decision values 
by the configurable network in accordance with the prede 
termined schedule is delayed by one or more clock cycles 
relative to the writing of the one or more extrinsic soft 
decision values by the processing elements . 

3. A turbo decoder circuit as claimed in claim 1 , wherein 
the processing elements for each of the upper decoder and 
the lower decoder are configured to read the a priori soft 
decision values from memory and to write extrinsic soft 
decision values to memory after the calculations are per 
formed , and the configurable network circuitry is configured 
to read the extrinsic soft decision values from memory and 
to write a priori soft decision values to memory , and at least 
one of the reading of one or more of the extrinsic soft 
decision values by the configurable network in accordance 
with the predetermined schedule or the writing of the one or 
more extrinsic soft decision values by the processing ele 
ments is skipped 

4. A turbo decoder circuit as claimed in claim 1 , wherein 
the number of processing elements in the upper decoder or 
the lower decoder is not an integer factor of the number of 
trellis stages . 

5. A turbo decoder as claimed in claim 1 , wherein a 
difference between the minimum and the maximum number 
of the trellis stages within each window processed by the 
processing elements is one in either of the upper and lower 
decoders . 

6. A turbo decoder circuit as claimed in claim 1 , wherein 
each of the windows comprising the same number of trellis 
stages which are processed by the processing elements 
which are adjacent to each other . 

7. A turbo decoder circuit as claimed in claim 1 , wherein 
the upper and lower decoder comprise the same number of 
processing elements and each processing element of the 
upper decoder performs calculations for a window compris 
ing corresponding trellis stages as the corresponding pro 
cessing element of the lower decoder . 

8. A turbo decoder as claimed in claim 1 , wherein a 
processing schedule of the processing elements and the 
interleaving is periodic according to the same number of 
clock cycles , each iteration representing a period of the same 
schedule . 

9. A turbo decoder as claimed in claim 8 , wherein the 
period is given by a maximum of trellis stages in any one 
window in either the upper or lower decoder plus a non 
negative integer required to reduce a requirement for skip 
ping in accordance with the predetermined schedule to avoid 
contention . 

10. A turbo decoder circuit as claimed in claim 1 , wherein 
each of the processing elements is configured to perform the 
parallel calculations according to a periodic schedule , and 
each period includes a first sub - period comprising one or 
more of first clock cycles in the period , and a second 
sub - period comprising the remaining cycles in the period , 
during a first sub - period the processing of each window 
comprises forward and backward recursions within either a 

first sub - window comprising a first one or more of the trellis 
stages in the window , or a second sub - window comprising 
the last one or more of the trellis stages in the window , 
during a second sub - period , each of the processing elements 
is configured to perform forward and backward recursions 
within the other of the first and second sub - window , which 
comprises the remaining trellis stages in the window . 

11. A turbo decoder circuit as claimed in claim 10 , 
wherein one of the first and second sub - periods comprises a 
half rounding down of the clock cycles in the period and the 
other of the first and second sub - period comprise the remain 
ing half rounding up of the clock cycles of the period , and 
during one of the first and second sub - periods comprising a 
half - rounding down of the clock cycles each processing 
element performs the parallel calculations for the first or the 
second sub - window comprising a half rounding down of the 
trellis stages in the window , and during the other of the first 
and second sub - periods comprising a half - rounding up of the 
clock cycles the processing element performs calculations 
for the first or the second sub - window comprising a half 
rounding up of the trellis stages in the window . 

12. A turbo decoder circuit as claimed in claim 11 , 
wherein the processing elements are configured to perform 
calculations for a sub - window within a sub - period associ 
ated with a complete forward recursion within the sub 
window and a complete backward recursion within the 
sub - window , and after performing the complete forward 
recursion and the complete backward recursion any remain 
ing clock cycles are used by the processing elements to 
perform calculations associated with at least part of a 
subsequent forward and a subsequent backward recursion . 

13. A turbo decoder circuit as claimed in claim 12 , 
wherein during the first sub - period the processing elements 
of the upper decoder are configured to perform calculations 
associated with the same one of a first or a second sub 
window , and the processing elements of the lower decoder 
are configured to perform calculations associated with the 
other of the first or the second sub - window , and 

during the second sub - period the processing elements of 
the upper decoder are configured to perform calcula 
tions associated with the first or the second sub - window 
which was not processed by the processing element 
during the first sub - period , and the processing elements 
of the lower decoder are configured to perform calcu 
lations associated with the other of the first or the 
second sub - window which was not processed by the 
processing element during the first sub - period . 

14. A turbo decoder circuit as claimed in claim 10 , 
wherein the forward recursion generates a plurality of for 
ward state metrics corresponding to the plurality of trellis 
states according to a schedule which performs calculations 
associated with each successive trellis stage in a forward 
direction and the backward recursion generates a plurality of 
backward state metrics corresponding to the plurality of 
trellis states according to a schedule which performs calcu 
lations associated with each successive trellis stage in a 
backward direction , and either the forward recursion stores 
the forward state metrics in a memory according to the 
schedule for the forward recursion or the backward recur 
sion stores the backward state metrics in the memory 
according to the schedule for the backward recursion , and 
the other of the forward or the backward recursions loads the 
stored forward or backward state metrics from the memory 
and combines the forward and the backward state metrics to 
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calculate the extrinsic soft decision values according to the 
schedule for the forward or the backward recursion . 

15. A turbo decoder circuit as claimed in claim 10 , 
wherein the calculations performed by the processing ele 
ments according to the forward and the backward recursion 
comprise receiving the forward or backward state metrics 
pertaining to a neighbouring trellis stage , combining the 
forward or backward state metrics with the a priori , parity 
and systematic soft decision values for the data symbols and 
generating the forward or backward state metrics pertaining 
to another neighbouring trellis stage , wherein the received 
forward or backward state metrics are normalized before 
being combined with the a priori , parity and systematic soft 
decision values . 

16. A turbo decoder circuit as claimed in claim 15 , 
wherein the processing elements are configured to generate 
the extrinsic soft decision values according to a two step 
pipeline comprising a first step which combines the forward 
and backward state metrics with each other and with the 

parity soft decision values to form intermediate variables , 
and a second step which combines the intermediate variables 
with each other , scales the combination of intermediate 
variables and combines the scaled combination of interme 
diate variables with the systematic soft decision values , and 
the two steps of the pipeline are performed during the two 
consecutive clock cycles , and the delay imposed by the steps 
of the pipeline are accommodated in the delay imposed by 
the predetermined schedule of the configurable network to 
avoid contention . 

17. A turbo decoder circuit as claimed in claim 1 , wherein 
the number of data symbols in the frame is variable , and the 
number of trellis stages of each window for calculations 
performed by the upper and lower decoders is determined 
with respect to the frame length and the number of the 
processing elements of the upper and lower decoders . 

18. A method of turbo decoding to recover a frame of data 
symbols from a received signal comprising one or more 
parity and / or systematic soft decision values for each data 
symbol of the frame , the data symbols of the frame having 
been encoded with a turbo encoder comprising upper and 
lower convolutional encoders which can each be represented 
by a trellis , and an interleaver to interleave the encoded data 
have been interleaved between the upper and lower convo 
lutional encoders , the method comprising 

performing a forward and a backward iterative recursion 
processes using an upper decoder comprising a plural 
ity of upper processing elements associated with the 
upper convolutional encoder , by 

iteratively receiving at each of the processing elements of 
the upper decoder , during a series of consecutive clock 
cycles , from a configurable network circuitry , a priori 
soft decision values pertaining to data symbols associ 
ated with a window of an integer number of consecu 
tive trellis stages representing possible paths between 
states of the upper convolutional encoder , 

performing parallel calculations by each of the processing 
elements associated with the window using the a priori 
soft decision values in order to generate corresponding 
extrinsic soft decision values pertaining to the data 
symbols , at least one of the processing elements of the 
upper decoder performing the calculations for a win 
dow associated with a different number of the trellis 
stages to at least one other of the processing elements 
of the upper decoder , 

providing the extrinsic soft decision values to the config 
urable network circuitry , and 

performing a forward and a backward iterative recursion 
processes using a lower decoder comprising a plurality 
of lower processing elements associated with the lower 
convolutional encoder , by 

iteratively receiving at each of the processing elements of 
the lower decoder , during the series of the consecutive 
clock cycles , from the configurable network circuitry , a 
priori soft decision values pertaining to data symbols 
associated with a window of an integer number of 
consecutive trellis stages representing possible paths 
between states of the lower convolutional encoder , 

performing parallel calculations by each of the processing 
elements associated with the window using the a priori 
soft decision values in order to generate corresponding 
extrinsic soft decision values pertaining to the data 
symbols , at least one of the processing elements of the 
lower decoder performing the calculations for a win 
dow associated with a different number of the trellis 
stages to at least one other of the processing elements 
of the lower decoder , 

providing the extrinsic soft decision values to the config 
urable network circuitry , 

controlling a configuration of the configurable network 
circuitry iteratively , during the consecutive clock 
cycles , to provide the a priori soft decision values for 
the upper decoder by interleaving the extrinsic soft 
decision values provided by the lower decoder , and to 
provide the a priori soft decision values for the lower 
decoder by interleaving the extrinsic soft decision 
values provided by the upper decoder , the interleaving 
performed by the configurable network circuitry con 
trolled by the network controller being in accordance 
with a predetermined schedule , which provides the a 
priori soft decision values at different cycles of the one 
or more consecutive clock cycles to avoid contention 
between different a priori soft decision value being 
provided to the same processing element of the upper 
or the lower decoder during the same clock cycle . 

19. A receiver for detecting and recovering frames of data 
symbols which have been encoded with a turbo code , the 
receiver including 

detecting circuitry for detecting a received signal carrying 
the frames of data symbols , each of the frames of data 
symbols comprising one or more parity and / or system 
atic soft decision values for each data symbol of the 
frame , the data symbols of each frame having been 
encoded with a turbo encoder comprising upper and 
lower convolutional encoders which can each be rep 
resented by a trellis , and an interleaver to interleave the 
encoded data have been interleaved between the upper 
and lower convolutional encoders , and 

a turbo decoder circuit for performing a turbo decoding 
process to recover each of the frame of data symbols 
from the received signal , the turbo decoder circuit 
comprising 

a clock , 
configurable network circuitry which is configured to 

interleave soft decision values , 
an upper decoder comprising a plurality of upper process 

ing elements associated with the upper convolutional 
encoder , each of the processing elements of the upper 
decoder being configured , during a series of consecu 
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tive clock cycles , iteratively to receive , from the con 
figurable network circuitry , a priori soft decision values 
pertaining to data symbols associated with a window of 
an integer number of consecutive trellis stages repre 
senting possible paths between states of the upper 
convolutional encoder , to perform parallel calculations 
associated with the window using the a priori soft 
decision values in order to generate corresponding 
extrinsic soft decision values pertaining to the data 
symbols , and to provide the extrinsic soft decision 
values to the configurable network circuitry , at least one 
of the processing elements of the upper decoder being 
configured to perform the calculations for a window 
associated with a different number of the trellis stages 
to at least one other of the processing elements of the 
upper decoder , and 

a lower decoder comprising a plurality of lower process 
ing elements associated with the lower convolutional 
encoder , each of the processing elements of the lower 
decoder being configured , during the series of the 
consecutive clock cycles , iteratively to receive , from 
the configurable network circuitry , a priori soft decision 
values pertaining to data symbols associated with a 
window of an integer number of consecutive trellis 
stages representing possible paths between states of the 
lower convolutional encoder , to perform parallel cal 
culations associated with the window using the a priori 
soft decision values in order to generate corresponding 
extrinsic soft decision values pertaining to the data 
symbols , and to provide the extrinsic soft decision 
values to the configurable network circuitry , at least one 
of the processing elements of the lower decoder being 
configured to perform the calculations for a window 

associated with a different number of the trellis stages 
to at least one other of the processing elements of the 
lower decoder , 

wherein the configurable network circuitry includes net 
work controller circuitry which controls a configuration 
of the configurable network circuitry iteratively , during 
the consecutive clock cycles , to provide the a priori soft 
decision values for the upper decoder by interleaving 
the extrinsic soft decision values provided by the lower 
decoder , and to provide the a priori soft decision values 
for the lower decoder by interleaving the extrinsic soft 
decision values provided by the upper decoder , the 
interleaving performed by the configurable network 
circuitry controlled by the network controller being in 
accordance with a predetermined schedule , which pro 
vides the a priori soft decision values at different cycles 
of the one or more consecutive clock cycles to avoid 
contention between different a priori soft decision value 
being provided to the same processing element of the 
upper or the lower decoder during the same clock cycle . 

20. A receiver as claimed in claim 19 , wherein a number 
of data symbols in each of the frames varies dynamically 
from one from to another . 

21. An infrastructure equipment forming part of a radio 
access network of a wireless communications network , the 
infrastructure equipment including a receiver as claimed in 
claim 19 . 

22. A communications device for transmitting or receiv 
ing data with a wireless communications network , the com 
munications device including a receiver according claim 
19 . 


