
IN
US 20200204197A1

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0204197 A1

Maunder et al . (43) Pub . Date : Jun . 25 , 2020

(30) (54) BLOCKWISE PARALLEL FROZEN BIT
GENERATION FOR POLAR CODES

Foreign Application Priority Data

(71) Applicants : Robert MAUNDER , Southampton ,
Hampshire (GB) ; Matthew BREJZA ,
Southampton , Hampshire (GB) ; Shida
ZHONG , Southampton , Hampshire
(GB) ; Isaac ANDRADE , Southampton ,
Hampshire (GB) ; Taihai CHEN ,
Southampton , Hampshire (GB) ;
Accelercomm Limited , Southampton
(GB)

(72) Inventors : Robert Maunder , Southampton (GB) ;
Matthew Brejza , Southampton (GB) ;
Shida Zhong , Southampton (GB) ;
Isaac ANDRADE , Southampton (GB) ;
Taihai Chen , Southampton (GB)

Jul . 10 , 2017 (GB) 1711055.2
Sep. 11 , 2017 (GB) 1714559.0

Publication Classification

(51) Int . Ci .
HO3M 13/13 (2006.01)
HO3M 13/00 (2006.01)
G06F 7/76 (2006.01)

(52) U.S. CI .
CPC HO3M 13/13 (2013.01) ; G06F 7/76

(2013.01) ; HO3M 13/6575 (2013.01)
(57) ABSTRACT
An electronic device configured to perform polar coding is
described . The electronic device includes a bit pattern gen
erator (3403) configured to successively perform a bit pat
tern generation process over a series (t = [n / w]) of clock
cycles ; and a counter (c , 4203) , operably coupled to the bit
pattern generator (3403) and configured to count a number
of successive bit pattern generation sub - processes over the
series (t = [n / w]) of clock cycles . The bit pattern generator
(3403) is configured to : provide a successive sub - set of (w)
bits from a bit pattern vector (bkn) in each successive
t = [n / w] clock cycle ; where the bit pattern vector comprises
n bits , of which ‘ k’bits adopt a first binary value and n - k bits
adopt a complementary binary value .

(21) Appl . No .: 16 / 628,825

(22) PCT Filed : Jul . 4 , 2018

PCT / EP2018 / 065554 (86) PCT No .:
$ 371 (c) (1) ,
(2) Date : Jan. 6 , 2020

POLAR ENCODER
IN TRANSMITTER

Information
block

Kernal
encoded
block

x = { xjlj = 0
102 -103

Encoded
block

105
a = fail ; = 0 b = { bklk = 0

Information block conditioning
Polar

Encoder
Kernal

Encoded block
conditioning 7 107

u = [uj] j = 0
Keral

Information
block

108 Channel

POLAR DECODER
IN RECEIVER Recovered kernal

Information
block

Soft kernal
encoded Soft

encoded
block Recovered

Information
bits

u = [0] ; = 0 X = [x]) ; = 0 b = [bklk = 0

??
Information block

conditioning
Polar

Decoder
Kernal

Encoded block conditioning
109

114 113
a = [ail = 0 112 110

POLAR ENCODER IN TRANSMITTER

Kernal encoded block
xxjlj = 0

102

103

Encoded block

Information
101

block

105

a = faili - 01

Information block conditioning
K

Patent Application Publication

M - 1

b = { bklk = 0

Polar Encoder Kernal

Encoded block conditioning
7

104

107

106

N - 1

u = [ujlj = 0 Kernal information block

108

Channel

POLAR DECODER IN RECEIVER

Recovered kernal Information block

Soft kernal encoded block

Jun . 25 , 2020 Sheet 1 of 24

Soft encoded block

Recovered Information bits

?????

M - 1

X = [x]] j = 0

b = [bklk = 0

û = [?jdj = 0
f

Information block conditioning

Polar Decoder Kernal

Encoded block conditioning

K

N

N

109

115

1

114

113

K - 1

â = [aili = 0

112

111

US 2020/0204197 A1

100

FIG . 1

Patent Application Publication Jun . 25 , 2020 Sheet 2 of 24 US 2020/0204197 A1

207 Stage 0

201 204

205 F 207
206

207
201

Stage 1 Stage 0

ODES

pa

202

2

3

205
207 F?2 206

207 207
202 Stage 0 Stage 1 Stage 2

LE EX **** ?

0
www

wear

???
w

}
monte

2
}

} 3
ne on y

203

4 1

5

6

205 FO3 206

FIG . 2 200

Patent Application Publication Jun . 25 , 2020 Sheet 3 of 24 US 2020/0204197 A1

105 205 204 206 106

1
frozen bit solutions encoded bit o

0 frozen bit 0 encoded bit 1

??? frozen bit 1 0 encoded bit 2

1 1 1 info bit 0 O encoded bit 3

frozen bit 0 0 1 Home
+ encoded bit 4

prom info bit 1 with
encoded bit 5

info bit 2 1 1 1 encoded bit 6

info bit 3 1 1 encoded bit 7

207 207 207

203
104

300

FIG . 3

Patent Application Publication Jun . 25 , 2020 Sheet 4 of 24 US 2020/0204197 A1

3401
3406

3405 In [w - 1 : 0) B [w - 2 : 0]
[2w - 2 : w - 1] [W - 2 : 0)

C [log (w) -1 : 0)
Shifter Controller

3409

S [2w - 2 : 0) 3407 P [w - 1 : 0)

3409

P [w - 1 : 01 3403
Buffer Insertion Bit pattern

generator ***
w

w

mm

} Out [w - 1 : 0] 13408 www

ww 3404 3402 Counter ma

4203
3400

FIG . 4

Patent Application Publication Jun . 25 , 2020 Sheet 5 of 24 US 2020/0204197 A1

3401 3502

3502

13 12 11 10 Redundant bits
3502 3406

3501

Addr

3405 Controller 010
3503

3504 3503

UUD

070
3407

00

FOTO
3402 3404 04 { {

b2 b1 p3 p2p 1p0D 03.0201100 Bit pattern
generator

3409

3403

3500

FIG . 5

Patent Application Publication Jun . 25 , 2020 Sheet 6 of 24 US 2020/0204197 A1

step ROM shifter input Pi Ri C Ci insert input output buffer

0 4321000 20 3 0004321 0201 043
gar 1011 8765043 3 2 landing 0876543 5043 876
2 XXXX876 2 3 0000876 0760
3 0009008 ya 2 0000098 9800 N

3600

FIG . 6

Patent Application Publication Jun . 25 , 2020 Sheet 7 of 24 US 2020/0204197 A1

c
wwwww

w +
t k

(4203 4202
bo

64

Bit
pattern
ROM

b2

163

4201
4204

4200

FIG . 7

Patent Application Publication Jun . 25 , 2020 Sheet 8 of 24 US 2020/0204197 A1

k bit pattern vector bkin
pornon 1 2

sund 4

2 4

3 4

gene 8 00000001

2 8 00000011

3 8 00000111

4 8 00010111

5 8 00011111

8 00111111

7 8
swoudt 0000000000000001

2 0000000000000011

3 0000000000000111
4 16 0000000000010111

0000000100010111

6 16 0000000100011111
7 0000000100111111

8 0000000101111111

9 16 0000001101111111

10 16 0000011101111111

11 0001011101111111
12 0001011111111111

13 0001111111111111
3700

0011111111111111

15 16 0111111111111111 FIG . 8

Patent Application Publication Jun . 25 , 2020 Sheet 9 of 24 US 2020/0204197 A1

rank vector Rn
2

4

[10]
[32101

[76 5 34 210]
(15 14 13 10 12 9 8411 7 6 3 5210]

8
minn

32 31 30 29 25 28 24 23 16 27 22 21 14 19 13 11 5 26 20 18 12 17 1094 15 87362101

3900

FIG . 9

Patent Application Publication Jun . 25 , 2020 Sheet 10 of 24 US 2020/0204197 A1

to
+

3804 7 ch
3803 4203

ro PoFrock LUT

11 615r4 < k 1

Rank
ROM

12 b2 = r2 < k

13 1b3 = 23 < k

3802 4204
3801

3800

FIG . 10

c < [n / 2w)]

wwwwww

mmmmmm 4203

In / wl - c

4001

Patent Application Publication

you

nanananahan

3803
LUT

< m

bo

frym

b ?

Rank ROM

12

12m

b2

Jun . 25 , 2020 Sheet 11 of 24

3m

b3

grannaltaanan

3802

4002

3801

4003
4204

US 2020/0204197 A1

FIG . 11

4402

Recursive Qn (n - K)

..

Arithmetic module
B [Qn (n - k]

annon

Patent Application Publication

rang

cm

module

Register
B [cw]

bo = B [cw] 2 BIQn (n - k)]

Arithmetic module

+++++++++

4203

B [CW + 1]

b1 = B [CW 1] 2 BIQn (n - k)]

CW + 1 Arithmetic
module

B [CW + 2]

2

b2 = B [CW + 2] B [Qn (n - k)]

CW + 2 Arithmetic
module

Jun . 25 , 2020 Sheet 12 of 24

nurunan

B [CW + 3]

63 - B [CW + 3] 2 BIQnin - k)]

comment

CW 3 Arithmetic
module

4405

4407

4204

4400

FIG . 12

US 2020/0204197 A1

bo - cw 2n - K borcwan - k

Y *******

CW41 b4 cw +1 2n - K CW + 1 b4cw +1 2n - k

C + MO CW + 2 by - cw +2 2n - K CW + 2 b2 = cw +2 2n - k

CW + 11

reverse reverse reverse reverse] 4103

4102
CW + 3 bz = cw +3 2n - k CW + 3 bs - cw +3 2n -

kunne mand | 4104 } 4102 } 4104

RE 4101 4203 4101
4203 mm Cefota7.11 Celo - 1971)

5
WE mg w

? (a)

bos CW < k bo - cw <

b = cw +1 < k Di = cw +1 < k CW + 1

Z + MO #MO
www b2 - cw +2 < k CW + 2 b2 = cw +2 < k reverse reverse) reverse reverse 4103

6 + MO b3 = cw +3 < k b = cw +3 < k CW + 3

pos 4102 4104 4102 w 4104 4101
4203 C & jo.Cal.1

4101
4203 Celo (@ 71

yk
kud

goog O
*** 4100 FIG . 13

US 2020/0204197 A1 Jun . 25 , 2020 Sheet 13 of 24 uogheriqnd uonyezddy juared

Patent Application Publication Jun . 25 , 2020 Sheet 14 of 24 US 2020/0204197 A1

1500
1504 Processor 1502

Bus

1508 Memory

1510
Storage Devices

1512 Media Drive 1518 Media

1520 Storage Unit
interface 1522 Storage Unit

1524 Communications
interface Channel 1528

FIG . 15
1400

1402 Successively performing a bit pattern
generation process over a series (t = (n / wt)
of clock cycles

Counting a number of successive bit pattern
generation sub - processes over the series (t = (n / w])
clock cycles

1406 Providing a successive sub - set of (w) bits from
a bit pattern vector (bk.n) in each successive (t = (n / wt)
clock cycle , where the bit pattern vector
includes ' n ' bits of which ' k ' bits adopt a first binary
value and ' n - k ' bits adopt a complementary value

FIG . 14

Patent Application Publication Jun . 25 , 2020 Sheet 15 of 24 US 2020/0204197 A1

4200

N logic 4205 Controller 9. - 4201

N

C1
Counter -4206

4202
Reversed
sequence
ROMs

Interleaved
sequence
ROMs

-4204

Q $ 14,0] to
QF1C1 , WO - 1]

QN [C1 , O] to
QN (C1 , WQ - 1]

f logic -4207

b1 [0] to
b1 [Wq - 1]

C2 -4209 Accumulator
logic

-4208

CWQ oto 1
C3 Counter -4203

x

(continued on sheet 16)
FIG . 16

Patent Application Publication Jun . 25 , 2020 Sheet 16 of 24 US 2020/0204197 A1

4200 (continued from sheet 15)

FIG . 16 continued

** ** *** W * K

3403

4203 ---
Deinterleaver
ROMS Rank ROMS 3801

TIN ' [C3 , Oj to
IN " (C3 , WR - 1

RN [C3 , 0] to
RN [C3 , WR - 1]

C3 WR to
(C3 + 1) WR - 1]

Register 4210

f logic k 3804

4211 4 -3802

62 [0] to
b2 (WR - 1]

b3 [0] to
63 [WR - 1] -4204

-4212

64 [0] to
ba [WR - 1] -3409

Frozen or UE - D bits

Uncoded bits
Interlacer
(101) or

deinterlacer
(112)

Information or CRC bits WR

Patent Application Publication Jun . 25 , 2020 Sheet 17 of 24 US 2020/0204197 A1

index i
address c 1 0) 2

61
3
59 63 62

4
55
46

31
gaan 51

23 2 29 27 52
38 3 50

25
28
21 4

49
26
11

37 35
22
13
20
5
0

4300 24
6
2

6 9
3 32 8 1 FIG . 17

index i
addressc 1 2 3 6

0 63 62
4
57 47

51
29

gram 44
31 52

53
37
38
23

2
3
4
5
6
7

39 41
42

33 27
21 34
19 12
3 18

36
11
20

25
26

28
13
24

4400
9 32 22

7 10 01
2 you 0 FIG . 18

index i
quan 2 3 addressc

0 1 3
9 gran

2
3 12

16
24
32

2
5

hver
13 14

20
25 28
33 36

5
21
29
37

7

18 23
31 26

34
42

22
30
38

27
35 39

12
57

61 62 63 FIG . 19

Patent Application Publication Jun . 25 , 2020 Sheet 18 of 24 US 2020/0204197 A1

addressc ??? 3
0

1
2

43
42
23 3

21 5
6

index i
0 2
63 62

55 53
59 54 51
49 39 37
58 52 50

36
32 34

28 17 15
57 48
44 33 30

29 27
25 14 12
38 26 24
22
20 8
7

35

10 16
5
13 12

4
3

2 1

4600

FIG . 20

Patent Application Publication Jun . 25 , 2020 Sheet 19 of 24 US 2020/0204197 A1

START
FIG . 21

4205 Use K and M to determine N

4703
false 4700 4704

M < N

true
4705

C20 continued
on sheet 20

Read Q $ [0,0] to QF [C1 , WQ - 1]
from address c of reversed sequence ROM for N

4708 11 Read QMC0] to QP (C1 , WO -
from address a of interleaved sequence ROM for N

4710
tumes

4709
bl) + f (K , M , N , QV (C1 , 1] , QH (C1,1])

4714
false bil

true
4713

C2 C2 + 1

false
C2 = K

true
4716

kCWo to jest 1

4712
false

? = Wo - 1

true

4706 false 61 01 +1 C2 K

4701

Patent Application Publication Jun . 25 , 2020 Sheet 20 of 24 US 2020/0204197 A1

FIG . 21 continued 4700

4210 4718 Store k
in register C3 + 0 continued

from sheet 19
4719 Read Rn (C3,0] to RN [C3 , WR

from address cz of rank ROM for N

4720 ReadIn (C3 , 0] to MIN " [C3 , WR
from address C3 of deinterleaver ROM for N

4726

4722
620) + f (K , M , N , C3 WR + I , TIN ' (C3 , [])

4723
63 [/] fu R [C3 , i] < k

4724
b4 [1] < 62 [] AND 63 [0]

4728 4727
false

? = WR 1

true 4725
Use b4 [0] to b4 (WR - 1] to interlace or deinterlace the

next set of Wp information , CRC , frozen and UE - D bits

4721 false
4729

C3 2N / WR - 1

true
END

4702

Patent Application Publication Jun , 25 , 2020 Sheet 21 of 24 US 2020/0204197 A1 2

clock bit pattern
cycle c b4 [0] bg [1] bg [2] b4 [3]
? ? 0 0
.... ?. 0

0 0 ? 2
3 gram

0
1 5 0 mad
0 mi

?? . 1 1 7
8

1
0 ?

? 0
0
1
1 mad 1

1 mile
?? ts

?? manni 12
13

4800
1 gran 1

1
1

quan
--

15 1 EG . 22

clock
cycle C3

bit pattern
b , [0] b41] b42 b4 [3]

0 0 0

1 0 0
2 ?

3 0 1 1 1
4 0
5 0 1 1

? 6 gan

1 grann 7
8

1
1
1
0
1
1

0 (~~~

9 annak
?

1
1
1 1 -? grann

?.
? " 1 ~~ . 4900 12

13
14

med ?? 1 0
? 0 0

? FIG . 23

Patent Application Publication Jun . 25 , 2020 Sheet 22 of 24 US 2020/0204197 A1

clock bit pattern
cycle cz [0] b . [0] 6411)

0
64 [2] 6413]

0
1 0 0 0

2 0 0 0
3

0 0 0
0 0 0

4
5
6
7
8

0

1 1 1
0 0

0
0
0 1

pers
mand wild

???? 1 12
13 pen gran 1 1

?? pan pan ???
plan pran 1 1 5000

FIG . 24

5100

1024

Patent Application Publication

*

512
Clock cycles
88309

Jun . 25 , 2020 Sheet 23 of 24

512
K

256 128
64

1024

512

US 2020/0204197 A1

64 128

256

M w

FIG . 25

5200

1024

Patent Application Publication

512
Clock cycles

256 .
AR

128 .

Jun . 25 , 2020 Sheet 24 of 24

1024

512 ww

256 128

1024

64

512

US 2020/0204197 A1

64

128

256

M

FIG . 26

US 2020/0204197 A1 Jun . 25 , 2020

BLOCKWISE PARALLEL FROZEN BIT
GENERATION FOR POLAR CODES

FIELD OF THE INVENTION

[0001] The field of the invention relates to an electronic
device configured to perform polar coding and a method for
bit pattern generation . The invention is applicable to , but not
limited to , a bit pattern generation for a polar encoder and a
polar decoder for current and future generations of commu
nication standards .

BACKGROUND OF THE INVENTION

[0002] In accordance with the principles of Forward Error
Correction (FEC) and channel coding , polar coding [1] may
be used to protect information against the effects of trans
mission errors within an imperfect communication channel ,
which may suffer from noise and other detrimental effects .
More specifically , a polar encoder is used in the transmitter
to encode the information and a corresponding polar decoder
is used in the receiver to mitigate transmission errors and
recover the transmitted information . The polar encoder
converts an information block comprising K bits into an
encoded block comprising a greater number of bits M > K ,
according to a prescribed encoding process . In this way , the
encoded block conveys the K bits of information from the
information block , together with M - K bits of redundancy .
This redundancy may be exploited in the polar decoder
according to a prescribed decoding process , in order to
estimate the values of the original K bits from the informa
tion block . Provided that the condition of the communica
tion channel is not too severe , the polar decoder can cor
rectly estimate the values of the K bits from the information
block with a high probability .
[0003] The polar encoding process comprises three steps .
In a first information block conditioning step , redundant bits
are inserted into the information block in prescribed posi
tions , in order to increase its size from K bits to N bits , where
N is a power of two . In a second polar encoding kernal step ,
the N bits of the resultant kernal information block are
combined in different combinations using successive eXclu
sive OR (XOR) operations , according to a prescribed graph
structure . This graph structure comprises n = log2 (N) succes
sive stages , each comprising N / 2 XOR operations , which
combine particular pairs of bits . In a third step , encoded
block conditioning is applied to the resultant kernal encoded
block , in order to adjust its size from N bits to M bits . This
may be achieved by repeating or removing particular bits in
the kernal encoded block according to a prescribed method ,
in order to produce the encoded block , which is transmitted
over a channel or stored in a storage media .
[0004] A soft encoded block is received from the channel
or retrieved from the storage media . The polar decoding
process comprises three steps , which correspond to the three
steps in the polar encoding process , but in a reverse order . In
a first encoded block conditioning step , redundant soft bits
are inserted or combined into the soft encoded block in
prescribed positions , in order to adjust its size from M soft
bits to N soft bits , where N is a power of two . In a second
polar decoding kernal step , the N soft bits of the resultant
kernal encoded block are combined in different combina
tions using a Successive Cancellation (SC) [1] or Successive
Cancellation List (SCL) [7] process , which operates on the
basis of the prescribed graph structure . In a third step ,

information block conditioning is applied to the resultant
recovered kernal information block , in order to reduce its
size from N bits to K bits . This may be achieved by
removing particular bits in the recovered kernal information
block according to a prescribed method , in order to produce
the recovered information block .
[0005] In a context of a polar encoder , the information
block conditioning component 101 interlaces the K infor
mation bits with N - K redundant bits , which may be frozen
bits [1] , Cyclical Redundancy Check (CRC) bits [2] , Parity
Check (PC) -frozen bits [3] , User Equipment Identification
(UE - ID) bits [4] , or hash bits [5] , for example . Here , frozen
bits may always adopt a logic value of ‘ O ' , while CRC or
PC - frozen bits or hash bits may adopt values that are
obtained as functions of the information bits , or of redundant
bits that have already been interlaced earlier in the process .
The information block conditioning component 101 gener
ates redundant bits and interlaces them into positions that are
identified by a prescribed method , which is also known to
the polar decoder . The information block conditioning com
ponent 101 may also include an interleaving operation ,
which may implement a bit - reversal permutation [1] for
example .
[0006] In a context of a polar encoder , the encoded block
conditioning component 103 may use various techniques to
generate the ‘ M ' encoded bits in the encoded block 107 ,
where ‘ M’may be higher or lower than ‘ N ’ . More specifi
cally , repetition [6] may be used to repeat some of the ‘ N ’
bits in the kernel encoded block , while shortening or punc
turing techniques [6] may be used to remove some of the ‘ N ’
bits in the kernel encoded block . Note that shortening
removes bits that are guaranteed to have logic values of ' O ' ,
while puncturing removes bits that may have either of logic
‘ O ' or ' l ' values . The encoded block conditioning compo
nent may also include an interleaving operation .
[0007] The input to the encoded block conditioning com
ponent 110 of the polar decoder is a soft encoded block . In
order to convert the M encoded LLRs into ' N ' kernal
encoded LLRs , infinite - valued LLRs may be interlaced with
the soft encoded block 109 , to occupy the positions within
the soft kernal encoded block that correspond to the ' O’
valued kernal encoded bits that were removed by shortening
in the polar encoder . Likewise , ' O ’ - valued LLRs may be
interlaced with the soft encoded block 109 , to occupy the
positions where kernal encoded bits were removed by punc
turing . In the case of repetition , the LLRs that correspond to
replicas of a particular kernal encoded bit may be summed
and placed in the corresponding position within the soft
kernal encoded block 109. A corresponding deinterleaving
operation may also be performed , if interleaving was
employed within the encoded block conditioning component
103 of the polar encoder .
[0008] The input to the information block conditioning
component 112 of the polar decoder is a recovered kernal
information block 114. The recovered information block
may be obtained by removing all redundant bits from the
recovered kernal information block 114. A corresponding
deinterleaving operation may also be performed , if inter
leaving was employed within the information block condi
tioning component 101 of the polar encoder .
[0009] During the implementation of the four block con
ditioning components , it is challenging to achieve the flex
ibility that is required to enable bits or soft bits (which may
be represented in the form of LLRs) to be inserted into or

US 2020/0204197 A1 Jun . 25 , 2020
2

removed from arbitrary positions within the corresponding
blocks , where these positions vary depending on the par
ticular combination of K , N and M. This is particularly
challenging in the implementation of flexible polar encoders
and decoders , which allow K , N and M to vary from block
to block , during run - time . It is particularly challenging to
implement these flexible block conditioning components
with a low hardware usage and the ability to complete the
block conditioning processes within a low number of clock
cycles . Owing to this challenge , all previous implementa
tions [14 , 15] of the block conditioning components have
only processed one bit or soft bit per clock cycle , requiring
a total of N clock cycles to complete the process .

SUMMARY OF THE INVENTION

[0010] The present invention provides an electronic
device configured to perform polar coding using block
conditioning circuits , an integrated circuit and a method for
block conditioning , as described in the accompanying
claims .
[0011] Specific embodiments of the invention are set forth
in the dependent claims .
[0012] These and other aspects of the invention will be
apparent from and elucidated with reference to the embodi
ments described hereinafter .

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Further details , aspects and embodiments of the
invention will be described , by way of example only , with
reference to the drawings . In the drawings , like reference
numbers are used to identify like or functionally similar
elements . Elements in the FIG's are illustrated for simplicity
and clarity and have not necessarily been drawn to scale .
[0014] FIG . 1 illustrates an example top - level schematic
of a communication unit having a polar encoder and polar
decoder , adapted according to example embodiments of the
invention .
[0015] FIG . 2 illustrates an example graphical represen
tation of the generator matrices F , F®2 and F?3 , according to
example embodiments of the invention .
[0016] FIG . 3 illustrates an example polar encoding pro
cess , using the graphical representation of the generator
matrix F?3 , illustrating the case where a particular frozen bit
pattern is used to convert the K = 4 information bits a = [1001]
into the M = 8 encoded bits b = [00001111] , according to
example embodiments of the invention .
[0017] FIG . 4 illustrates an example block diagram of an
interlacer architecture , according to some example embodi
ments of the invention .
[0018] FIG . 5 illustrates a more detailed example of an
interlacer architecture for the case of w = 4 , according to
some example embodiments of the invention .
[0019] FIG . 6 illustrates an example table to operate an
interlacer , where : w = 4 , for the case where the k = 9 input
elements [9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1] are interlaced from
right - to - left with O - valued interlacing elements , according to
the n = 16 - bit pattern [1100011010110101] , according to
some example embodiments of the invention .
[0020] FIG . 7 illustrates a naive bit pattern generator , for
the case where w = 4 , according to some example embodi
ments of the invention .
[0021] FIG . 8 illustrates an example table of contents of a
bit pattern ROM , when using a Polarization Weight (PW) bit

pattern construction of [8] for all combinations of ne { 2 , 4 ,
8,16 } and kE { 1,2,3 , ... , n - 1 } , according to some example
embodiments of the invention .
[0022] FIG . 9 illustrates an example contents of the rank
ROM 3801 , when using the PW bit pattern construction of
[8] for all ne { 2 , 4 , 8 , 16 , 32) , according to some example
embodiments of the invention .
[0023] FIG . 10 illustrates a bit pattern generator exploiting
the nested property , for the case where w = 4 , according to
some example embodiments of the invention .
[0024] FIG . 11 illustrates a bit pattern generator exploiting
the nested and symmetric properties , for the case where
w = 4 , according to some example embodiments of the inven
tion .
[0025] FIG . 12 illustrates a bit pattern generator exploiting
the nested , recursive and arithmetic properties , for the case
where w = 4 , according to some example embodiments of the
invention .
[0026] FIG . 13 illustrates circuits for generating w bits
from a particular bit pattern in each step of the encoded
block conditioning process : (a) Block puncturing ; (b) Block
shortening ; (c) Bit reversal puncturing ; and (d) Bit reversal
shortening , according to some example embodiments of the
invention .
[0027] FIG . 14 illustrates a high - level flowchart of a polar
coder operations performed by a bit pattern generator in
accordance with some example embodiments of the inven
tion .
[0028] FIG . 15 illustrates a typical computing system that
may be employed in an electronic device or a wireless
communication unit to perform polar encoding operations in
accordance with some example embodiments of the inven
tion .
[0029] FIG . 16 provides a schematic of the proposed
hardware implementations for frozen bit insertion and
removal , in accordance with some example embodiments of
the invention .
[0030] FIG . 17 exemplifies elements Qv [c , i] of the
reversed sequence Read Only Memory (ROM) for N = 64 and
Wo = 8 , where iE [0 , wq - 1] and cE [0 , N / wq - 1] , in accor
dance with some example embodiments of the invention .
[0031] FIG . 18 exemplifies elements Qv " [c , i] of the
interleaved sequence ROM for N = 64 and wo = 8 , where iE [0 ,
Wg - 1] and cELO , N / wq - 1] , in accordance with some
example embodiments of the invention .
[0032] FIG . 19 exemplifies elements Ty = ' [c , i] of the
deinterleaver ROM for N = 64 and wr = 4 , where iE [0 , wr - 1]
and cELO , N / wr - 1] , in accordance with some example
embodiments of the invention .
[0033] FIG . 20 exemplifies elements Ry [c , i] of the rank
ROM for N = 64 and wr = 4 , where iE [0 , wr - 1] and cE [0 ,
N / wr - 1] , in accordance with some example embodiments of
the invention .
[0034] FIG . 21 provides a flow chart of the proposed
hardware implementations for frozen bit insertion and
removal , in accordance with some example embodiments of
the invention .
(0035] FIG . 22 exemplifies elements of the bit pattern
generated in each of the N / wr = 16 clock cycles of a second
sub - process (identified as 4702) for K = 32 , M = 68 , N = 64 and
WR = 4 in accordance with some example embodiments of the
invention . In this case , repetition is used and k = 32 . Since Air
M < N is not satisfied , no clock cycles are used to complete
the first sub - process (identified as 4701) , irrespective of wo .

US 2020/0204197 A1 Jun . 25 , 2020
3

Wo = 8 , five

Wo = 8 , four

[0036] FIG . 23 exemplifies elements of the bit pattern
generated in each of the N / wR = 16 clock cycles of the second
sub - process for K = 32 , M = 56 , N = 64 and wr = 4 , in accor
dance with some example embodiments of the invention . In
this case , shortening is used and k = 40 . When w
clock cycles are used to complete the first sub - process .
[0037] FIG . 24 exemplifies elements of the bit pattern
generated in each of the N / wr = 16 clock cycles of the second
sub - process for K = 24 , M = 56 , N = 64 and wr = 4 , in accor
dance with some example embodiments of the invention . In
this case , puncturing is used and k = 25 . When w
clock cycles are used to complete the first sub - process 4701 .
[0038] FIG . 25 an example of a number of clock cycles
required by the first sub - process 4701 as a function of
ME [17 , 1024] and KE [[M / 8] , M - 1] , for the worst case
where wo = 1 , in accordance with some example embodi
ments of the invention . When we adopts the value of a
higher power of two , these numbers of clock cycles may be
linearly scaled down and then rounded up to the nearest
integer .
[0039] FIG . 26 plots an example of a number of clock
cycles required by the second sub - process as a function of
ME [17 , 1024] and KE [[M / 8] , M - 1] , for the worst case
where wr = 1 , in accordance with some example embodi
ments of the invention . When we adopts the value of a
higher power of two , these numbers of clock cycles may be
linearly scaled down and then rounded up to the nearest
integer .

DETAILED DESCRIPTION

[0040] Several sequences have been proposed for the
selection of information bits during information block con
ditioning within a polar encoder [8-12] . These sequences
may be used to obtain a bit pattern vector bkn , in which k out
of n bits have the value ‘ l ' , where n is a power of two greater
than k . These 1 - valued bits identify the positions where the
k information bits should be inserted into the n - bit kernal
information block . The process of generating the bit pattern
may be completed over a series of t = [n / w] clock cycles at
the start of the polar encoding process , where a sub - process
of the bit pattern generation process is completed in each
successive clock cycle . Here , successive sub - sets of w bits
from the bit pattern vector bkn may be used to control the
insertion of information bits into successive sub - sets of w
bits for the kernal information block . Throughout this pro
cess , these successive w - bit sub - sets of the kernal informa
tion block may be simultaneously funnelled into a polar
encoder kernal having a corresponding input width of w ,
such as the design of [13] , which has demonstrated w = 32 . In
this way , the insertion of the k information bits into the n - bit
kernal information block may impose no additional latency
upon the polar encoding process . Likewise , similar benefits
can be obtained in the polar decoder , when extracting the k
recovered information bits from the recovered kernal infor
mation block . Note that the proposed approach processes w
pattern bits in each step , which is in contrast to the block
conditioning modules of previous efforts [14 , 15] , which are
only capable of processing a single pattern bit in each step .
[0041] In a first aspect , examples of the present invention
an electronic device configured to perform polar coding is
described . The electronic device includes a bit pattern gen
erator configured to successively perform a bit pattern
generation process over a series (t = [n / w]) of clock cycles ;
and a counter , operably coupled to the bit pattern generator

and configured to count a number of successive bit pattern
generation sub - processes over the series (tx [n / w]) of clock
cycles . The bit pattern generator is configured to : provide a
successive sub - set of (w) bits from a bit pattern vector (bk.n)
in each successive t = [n / w] clock cycle ; where the bit pattern
vector comprises n bits , of which ‘ k’bits adopt a first binary
value and n - k bits adopt a complementary binary value .
[0042] In this manner , parallel processing may be used to
reduce the number of clock cycles required to complete the
bit pattern generation process .
[0043] In some examples , the bit pattern generator circuit
may include a bank of (w) comparators , and wherein each of
w bit pattern bits { bo , b1 , b2 , ... , bw - 1 } may be obtained
from a corresponding comparator in the bank of compara
tors . In this manner , w bit patterns bits may be generated in
each clock cycle , using only low complexity hardware .
[0044] In some examples , the bit pattern generator is
configured to perform the bit pattern generation process as
a part of at least one of : an information block conditioning
circuit in an encoder that receives an information block as
the input data block and outputs an n - bit kernal information
block ; an encoded block conditioning circuit in an encoder
that receives an n - bit kernal encoded block as the input data
block and outputs an encoded block ; an encoded block
conditioning circuit in a decoder that receives a soft encoded
block as the input data block and outputs an n - soft - bit soft
kernal encoded block ; an information block conditioning
circuit in a decoder that receives an n - bit recovered kernal
information block as the input data block and outputs a
recovered information block . In some examples , the bit
pattern generator may be configured to perform in at least
one of : an interlacer whereby successive w - bit sub - sets of
the kernel information block are funnelled into a polar
encoder kernal) having a corresponding input width of ' w '
bits ; and an interlacer whereby successive w - soft - bit sub
sets of the soft kernal encoded block are funnelled into a
polar decoder kernal having a corresponding input width of
' w'soft bits . In this manner , parallel processing may be used
to reduce the number of clock cycles required to complete
the block conditioning and interlacing processes .
[0045] In some examples , the bit pattern generator may be
configured to obtain the bit pattern vector (bkn) in which ‘ k ’
out of ‘ n ’ bits has the first binary value and ‘ n - k'out of ‘ n ’
bits has the complementary binary value , where n is a power
of two greater than k . In this manner , compatibility is
ensured with the polar coding kernal process , which oper
ates on blocks having a length which is a power of two .
[0046] In some examples , the bit pattern generator circuit
may be operably coupled to a bit pattern Read Only
Memory , ROM , and configured to store therein a set of
supported bit pattern vectors bkn) . In this manner , any
arbitrary set of bit patterns may be supported , even if there

no nested relationships between them . In some
examples , the set of supported bit pattern vectors , bk , n , may
be generated in an off - line pre - computation process and
stored in the bit pattern ROM for reading from during an
on - line bit pattern generation process . In this manner , no
on - line computation is required , reducing the on - line com
plexity of the bit pattern generator . In some examples , the bit
pattern ROM may have a width of ' w ' bits and each bit
pattern vector (bk.n) may be stored across a number [n / w] of
consecutive addresses , wherein for some examples , for n < w ,
the bit pattern vector (bkn) may be appended with a number ,
W - n , of dummy bits , such that bit pattern vector (bkn)

are

US 2020/0204197 A1 Jun . 25 , 2020
4

occupies a width of a single address in the bit pattern ROM .
In this manner , W bit pattern bits may be read in each clock
cycle , reducing the number of clock cycles required to
obtain the complete bit pattern vector . Furthermore , the
special case of very short bit pattern vectors can be accom
modated naturally , without the requirement for a separate
solution .
[0047] In some examples , the bit pattern ROM may be
operably coupled to a first look - up table , wherein the values
of ' k ' and ' n ' are used as an input to as well as to index the
first look - up table in order to identify a start address of each
respective bit pattern vector (bkn) . In this manner , each bit
pattern vector can be located within the bit pattern ROM
without the requirement for any on - line computation , for
example . In some examples , the counter may be operably
coupled to the bit pattern ROM , and configured to increment
a counter value from ‘ O ' to ' -1 ' wherein the counter value
may be used as an offset from a start address of the bit
pattern ROM in order to read successive w - element sub - sets
(bo , b? , b2 , ... , bw - 1) of the bit pattern vector (bkn) . In this
manner , the bit pattern vector may be read from the bit
pattern ROM using only low complexity addressing hard
ware .

[0048] In some examples , the bit pattern generator may
include a rank ROM configured to store information suffi
cient to obtain a rank vector (Rn) for each supported length
of the bit pattern , ‘ n ’ . In this manner , the ROM capacity may
be significantly reduced relative to storing each supported
bit pattern vector separately . Furthermore , the rank vector R ,
may be used to generate the bit pattern vector bin without
the requirement for a complex sort or interleaving operation ,
as is required when using the index vector Qn as the basis of
the bit pattern generation process . In some examples , the
rank vector (Rn) for a particular length of the bit pattern , ‘ n ’ ,
may include integers in a range of ' O’to “ n - 1 ” , permuted in
an order that corresponds to a rank of each bit position . In
some examples , a rank may indicate a maximum value for
the number out of ' n ' bits in the bit pattern adopting the first
binary value , for which a corresponding bit in the bit pattern
vector (bk.n) has the complementary binary value . In this
manner , the rank vector contains all information necessary
to generate all bit pattern vectors having the length of ‘ n ’
bits , when the bit pattern vectors obey the nested property .
[0049] In some examples , a length of the bit pattern n may
be used to index a second look - up table , in order to identify
the start address of each particular rank vector (Rn) . In this
manner , each bit pattern vector can be located within the bit
pattern ROM without the requirement for any on - line com
putation , for example . In some examples , the rank ROM
may include multiple multiplexed rank ROMs , wherein one
multiplexed rank ROM may be configured to store the rank
vector (Rn) corresponding to each supported value of the
length of the bit pattern ‘ n ’ . In this manner , each separate
multiplexed rank ROM may adopt a different bit width for
the stored fixed point numbers . Also , the requirement for a
look up table to store the start addresses is eliminated . In
some examples , the bit pattern vector (bkn) may be gener
ated for a respective combination of the number , k , of bits in
the bit pattern adopting the first binary value and the length
of the bit pattern ‘ n’using the bank of (w) comparators that
may be configured to compare each element of the rank
vector (Rn) with ‘ k ” . In some examples , each comparison of
the element of the rank vector (Rn) with ‘ k ' may be per
formed to determine whether the element is less than ' k ' . In

this manner , w bits of the bit pattern vector may be generated
in each clock cycle , using only low complexity hardware . In
some examples , all entries in the rank ROM may be stored
using fixed point numbers having a width of log2 (nmax) bits ,
where nmar is a maximum of the supported bit pattern
lengths . In this manner , a common fixed point number width
is used throughout the bit pattern generator , avoiding the
requirement to convert between fixed point number widths .
In some examples , all entries in the rank ROM for particular
values of n may be stored using fixed point numbers having
a width of log2 (n) bits . In some examples , each address of
the rank ROM may be configured to store w fixed - point
numbers . In this manner , the ROM capacity may be reduced
relative to using a constant fixed point number width for all
value of n . In some examples , the rank ROM , in cases where
n < w , may be configured to append the rank vector (R ,,) with
W - n dummy elements , such that the rank vector (Rn) occu
pies a width of a single address in the rank ROM . In this
manner , the special case of very short bit pattern vectors can
be accommodated naturally , without the requirement for a
separate solution .
[0050] In some examples , the rank ROM may be operably
coupled to the counter , such that during each successive
sub - process of the bit pattern generation process , the counter
may be configured to increment a counter value from “ O'to
t - 1 ' wherein the counter value may be used as an offset
from a start address of the rank ROM in order to read
successive w - element sub - sets of the rank vector (Rn) . In
this manner , the bit pattern vector may be read from the bit
pattern ROM using only low complexity addressing hard
ware . In some examples , a bit pattern bit of the bit pattern
vector st may be obtained by representing both a rank value
and k using a two's complement fixed - point number repre
sentation , and the bit pattern generator circuit may perform
a twos complement subtraction of ' k ' from the rank value
and then use a most significant bit , MSB , as a value of the
bit pattern bit . In this manner , the bit pattern bit may be
obtained using only low complexity hardware .
[0051] In some examples , the rank ROM may be config
ured to store a first half of each rank vector Rw) , when the
bit pattern vectors (bk.n) follow a symmetric property . In
some examples , the symmetric property may be satisfied if
any pair of elements in the rank vector (Rn) having the
indices i and n - i - 1 sum to n - 1 , for all n and for all iE [0 ,
n - 1] . In some examples , the rank ROM may include a width
of ' w ' ranks , such that only a first half of each rank vector
(Rn) is stored across [n / (2w)] consecutive addresses , where
n is a bit pattern length supported by the rank vector (R ») .
In this manner , the capacity of the rank ROM may be
reduced by 50 % relative to storing the entirety of each rank
vector .
[0052] In some examples , for n / 2 < w , the rank vector (Rn)
may be appended with ‘ w - n ' dummy elements and stored
across a width of a single address in the rank ROM . In this
manner , the special case of very short bit pattern vectors can
be accommodated naturally , without the requirement for a
separate solution .
[0053] In some examples , during a first half of successive
operations of the bit pattern generation process when c < [n /
(2w] , successive w - element sub - sets of the rank vector (Rn)
may be obtained from incremental addresses in the rank
ROM 3801 , where the offset from the start address of the
rank ROM may be given by c . In this manner , the bit pattern
vector may be read from the bit pattern ROM using only low

US 2020/0204197 A1 Jun . 25 , 2020
5

complexity addressing hardware . In some examples , the
electronic device may further include a bank of w multi
plexers operably coupled to the rank ROM , wherein during
a first half of successive operations of the bit pattern
generation process the bank of w multiplexers may maintain
the order of the w pattern bits { bo , b1 , b2 , ... , bw - 1 } . In some
examples , a bit pattern bit of the bit pattern vector bkn may
be obtained by representing both a rank value and k using a
two's complement fixed - point number representation , and
the bit pattern generator circuit perform a subtraction of ' k '
from the rank value and then uses a most significant bit ,
MSB , as a value of the bit pattern bit . In this manner , the bit
pattern bit may be obtained using only low complexity
hardware .
[0054] In some examples , the electronic device may fur
ther include a multiplexer operably coupled to the rank
ROM , wherein during a second half of successive operations
of the bit pattern generation process when cz [u / (2w] , suc
cessive w - element sub - sets of the rank vector (Rn) may be
obtained from decremental addresses in the rank ROM in a
reverse order , where the offset from the start address of the
rank ROM may be given by the multiplexer and may be
derived from the counter value ' c ' as ([n / w] -c - 1) . In this
manner , the bit pattern vector may be read from the bit
pattern ROM using only low complexity addressing hard
ware .

[0055] In some examples , the bit pattern vector (bk.n) may
be generated for a respective combination of ' k ' and ' n '
using the bank of (w) comparators that may be configured to
compare each element of the rank vector (Rn) with ‘ n - k ' . In
some examples , each comparison of the element of the rank
vector (Rn) with ‘ n - k ’ may be performed to determine
whether the element of the rank vector (Rn) is greater than
or equal to ‘ n k ' . In some examples , each comparison of the
element of the rank vector (R) with ‘ n - k’may be performed
to determine whether the element of the rank vector (Rm) is
less than ‘ n - k’and the result may be passed through a NOT
logic gate . In this manner , the bit pattern bit may be obtained
using only low complexity hardware . In some examples , the
bit pattern bit may be obtained by representing both a rank
value and n - k using a two's complement fixed - point number
representation , and the bit pattern generator circuit may
perform a subtraction of n - k from the rank value and then
passes a most significant bit , MSB , of a result through a
NOT gate . In some examples , the electronic device may
further include a bank ofw multiplexers operably coupled to
the rank ROM , wherein during a second half of successive
operations of the bit pattern generation process the bank of
w multiplexers may reverse the order of the w pattern bits
{ bo , b1 , b2 , ... , bw - 1 } . In this manner , the bit pattern bits may
be generated in the correct order , using only low complexity
hardware .
[0056] In some examples , elements of the rank vector
(Rn) , for a particular value of the length of the bit pattern ‘ n ’
may be stored in rank ROM in a native form or subtracted
from ‘ n - 1 ' and stored in rank ROM in a subtracted form . In
some examples , each comparison to determine if a rank of
the rank vector (Rn) may be less than may be performed by
using a comparator to determine if the rank in subtracted
form may be greater than or equal to ‘ n - k ' and each
comparison to determine if a rank of the rank vector (R)
may be greater than or equal to than ‘ n - k’may be performed
by using a comparator to determine if the rank in subtracted
form is less than ' lc ' .

[0057] In some examples , the bank of w comparators may
be used during both a first half of successive operations of
the bit pattern generation process and a second half of
successive operations of the bit pattern generation process .
In some examples , the bank of comparators may be imple
mented using twos complement subtractions .
[0058] In some examples , the electronic device may fur
ther include a multiplexer operably coupled to the bank of w
comparators and configured to select between ‘ k’or ‘ n - k'as
an input to the bank of w comparators ; and a bank of w NOT
logic gates operably coupled to an output of the bank of w
comparators and configured to invert an output of the
comparators bank of w comparators . In some examples , the
electronic device may further include a bank of w multi
plexers operably coupled to the rank ROM , wherein during
a second half of successive operations of the bit pattern
generation process the bank of w multiplexers may reverse
the order of the w pattern bits { bo , b? , b2 , ... , bw - 1 } . In this
manner , the same low complexity hardware may be reduced
in both the first and second halves of the bit pattern gen
eration process .
[0059] In some examples , the bit pattern generator may be
configured to exploit a nested , recursive and arithmetic
property of the bit patterns vectors . In this manner , the ROM
storage required to generate the bit pattern vector may be
reduced relative to approaches that store the supported bit
pattern vectors or the rank vectors in ROM . In some
examples , a recursive circuit may be used to convert a value
of n - k into an index Q_ (n - k) of a bit having an (n - k) th
highest bit reliability . In this manner , the index of the bit
having the threshold bit reliability may be identified with a
low complexity . In some examples , the recursive circuit may
be further configured to unpack compressed information , in
order to obtain the index Q_ (n - k) . In this manner , the
decompression process may be configured to unpack only
the single index Q_ (n - k) , rather than the entire index vector
Qn , reducing the associated complexity .
[0060] In some examples , the electronic device may fur
ther include an arithmetic circuit operably coupled to a
recursive circuit and configured to use an arithmetic prop
erty that may be satisfied if a bit reliability metric can be
obtained for each of the n bits in the bit pattern vector based
only on its index in the range ' O’to‘n - l ’ to convert the index
(Qn (n - k)) of the bit having the (n - k) th rank into a bit
reliability metric (B (Q_ (n - k))) . In this manner , the threshold
bit reliability may be obtained with a low complexity . In
some examples , in a Polarization Weight , PW , sequence , the
recursive property of the bit pattern vector (bk , n) may be
used to determine relationships between bits in the kernal
information block . In some examples , the bit pattern gen
erator circuit may determine : (i) in response to the recursive
property of the bit pattern vector (bk.n) being a frozen bit ,
that other selected bits will also be frozen bits ; or (ii) in
response to the recursive property of the bit pattern vector
(bk.n) being an information bit , that other selected bits will
also be information bits . In some examples , in response to
the bit pattern generator circuit determining that a relation
ship between bits in the kernal information block exists , the
bit pattern generator circuit may be configured to disable at
least one arithmetic circuit . In this manner , the arithmetic
calculations of bit reliability may be skipped if the corre
sponding bits have already been determined as being frozen
or information bits , reducing the power consumption of the
bit pattern generator .

US 2020/0204197 A1 Jun . 25 , 2020
6

[0061] In some examples , the electronic device may fur
ther include a register operably coupled to the arithmetic
circuit and configured to store the bit reliability metric
(B (Q_ (n - k))) that may be used in the process of generating
the bit pattern vector bk.n. In this manner , the threshold bit
reliability metric may be stored and used throughout the bit
pattern generation process , eliminating the requirement to
recalculate this threshold in each successive clock cycle .
[0062] In some examples , the electronic device may fur
ther include a multiplier and a bank of w - 1 adders operably
coupled to the counter , wherein , during each successive
performance of the bit pattern generation process over a
series (t = [n / w]) of clock cycles , the counter may be con
figured to increment a counter value , c , from 0 to t - 1 to
obtain bit indices { cw , cw + 1 , cw + 2 , , CW + w - 1 } for
successive w - element sub - sets (bo , b1 , b2 , ... , bw - 1) of the
bit pattern vector bk , n :
[0063] In some examples , the electronic device may fur
ther include a bank of ' w ' replicas of the arithmetic circuit
that may be configured to compute a corresponding
sequence of bit reliabilities , B [cw] , [cw + 1] , B [cw + 2] , ...
, B [cw + w - 1] . In some examples , the bank of (w) compara
tors may be configured to compare the computed corre
sponding bit reliabilities { B [cw] , B [cw + 1] , B [cw + 2] , ... ,
B [cw + w - 1] } with the bit reliability metric (B (Q , (n - k))) , in
order to obtain the corresponding w elements of the bit
pattern vector bkn by determining whether the correspond
ing bit reliabilities { B [cw] , B [cw + 1] , B [cw + 2] , ... , B [cw +
W - 1] } are greater than or equal to BQ , (n - k)) . In this
manner , the bit reliability metrics associated with w bit
pattern bits may be compared with the threshold bit reli
ability metric in each clock cycle , with a low complexity .
[0064] In some examples , the electronic device may fur
ther include a bank of ' w ' reverse modules operably coupled
via the multiplier and the bank of w - 1 adders to the counter ,
and configured to reverse an order of bits in a log (n) -bit
binary representation of each bit index , in order to produce
reversed bit indices . In some examples , the electronic device
may further include a bank of w comparators operably
coupled bank of ' w ' reverse modules and configured to
compare either the bit indices or the reversed bit indices with
either ‘ k ' or ' n - k ' . In some examples , in response to the
polar coder implementing a shortening scheme , the bank of
w comparators may be configured to set bit pattern bits { bo ,
b? , b2 , ... , bw - 1 } to the first binary value if the correspond
ing bit indices or reversed bit indices are less than ' k ' and
other bits to the complementary binary value . In some
examples , the bank of ze comparators may be configured to
set bit pattern bits { bo , b? , b2 , ... , bw - 1 } to the first binary
value if the corresponding bit indices or reversed bit indices
are greater than or equal to ‘ n - k’in a puncturing scheme and
other bits to the complementary binary value . In this manner ,
bit patterns for bit reversed shortening , bit reversed punc
turing , natural shortening and natural puncturing may be
generated .
[0065] In some examples , frozen bit insertion or frozen bit
removal within the polar coding is performed by the elec
tronic device and comprises at least two sub - processes and
the bit pattern generator is configured to provide the suc
cessive sub - set of (w) bits from the bit pattern vector (bk.n)
in each successive t = [n / w] clock cycle that spans a duration
of a second sub - process that is preceded by a first sub
process that spans a series of zero or more clock cycles . In
this manner , the first sub - process can initialise the second

sub - process , such that it can select the K most reliable bits
that are not frozen by rate - matching .
[0066] In some examples , a first logic circuit is arranged
to provide during the first sub - process a reliability threshold ,
k , to an input of the bit pattern generator for use in the
second sub - process . In this manner , it can be guaranteed that
there will be K bits that are not frozen by rate matching
among the bits selected by the second sub - process having
reliabilities greater than the reliability threshold .
[0067] In some examples , the electronic device is config
ured to support at least two modes of operation , where a
respective mode of operation is employed in response to
whether a number , M , of encoded bits is less than a kernel
block size , N. In this manner , the bits that are frozen by rate
matching can be identified with consideration of the rate
matching mode .
[0068] In some examples , the at least two modes of
operation comprise at least two from : a repetition mode of
operation when M is not less than N , a shortening mode of
operation when M < N , a puncturing mode of operation when
M < N . In this manner , repetition , shortening and puncturing
modes of rate matching can be supported .
[0069] In some examples , the first sub - process has zero
clock cycles when M is not less than N , and the second
sub - process is performed with the threshold reliability num
ber , k , set to a number of K bits that adopt the first binary
value in a final output bit sequence . In this manner , support
is provided for the repetition mode of operation , which does
not freeze any bits .
[0070] In some examples , a controller operably coupled to
a second counter is arranged to count a number of clock
cycles under control of the controller in the first sub - process
when M is less than N , and the first sub - process determines
the rank threshold , k , that indicates a number of bits having
a first binary value contained in an intermediate value for the
bit pattern vector (bk.n) output by the bit pattern generator
circuit . In this manner , it can be guaranteed that there will be
K bits that are not frozen by rate matching among these bits
selected by the second sub - process having ranks greater than
the rank threshold .
[0071] In some examples , a second logic circuit is con
figured to successively perform a binary flag generation
process over the series (t = [n / w]) of clock cycles that com
prise the second sub - process and configured to provide a
successive sub - set of (w) binary flags in each successive
t = [n / w] clock cycle . In this manner , bits that are not frozen
by rate matching can be identified .
[0072] In some examples , a binary flag is set in the binary
flag generation process if a corresponding bit in the bit
pattern vector (bkn) is not frozen by rate matching . In this
manner , bits that are not frozen by rate matching can be
signaled .
[0073] In some examples , a third logic circuit is config
ured to receive at least a first input from the second logic
circuit and a second input from the bit pattern generator
circuit wherein the third logic circuit is configured to pro
vide an output of a first binary value when a bit in the subset
ofw bits of the intermediate bit pattern vector (bk , n) from the
bit pattern generator circuit adopts the first binary value and
a corresponding flag from the plurality of binary flags from
the second logic circuit is set , thereby adjusting a bit pattern
vector (bk.n) of the intermediate bit pattern based on the at
least first and second inputs . In this manner , bits that are
frozen by rate matching can be removed from the bit pattern .

US 2020/0204197 A1 Jun . 25 , 2020
7

[0074] In some examples , the first logic circuit is arranged
to identify the reliability threshold , k , for use in the second
sub - process by determining whether each uncoded bit is
frozen by rate matching and the first logic circuit comprises
a non - frozen bit counter arranged to count a number of
uncoded bits that are not frozen by rate matching in order of
decreasing reliability during the first sub - process , and once
the count reaches the number of final value bits in a final
output bit sequence , K , whereupon the rank of the Kth most
reliable unfrozen bit is determined as the rank threshold , k ,
and the first logic circuit provides the rank threshold k as an
input to the bit pattern generator . In this manner , the bit
pattern generator can identify the set of most reliable bits , in
which there are guaranteed to be K bits that are not frozen
by rate matching .
[0075] In some examples , the electronic device further
comprises at least one of : a set of reversed sequence read
only memories , ROMs , located in the first logic circuit
configured to store sets of reversed sequences where each
successive element of the reversed sequence indicates a
position of each successive uncoded bit arranged in order of
decreasing reliability ; a set of deinterleaver ROMs located in
the first logic circuit configured to store a set of deinterleaver
patterns , where each element of the deinterleaver pattern
indicates an interleaved position of a polar encoded bit
during rate matching ; a set of interleaved sequence ROMs
located in the first logic circuit configured to store a set of
interleaved sequences ; a second counter (c1) , incremented in
successive clock cycles of the first sub - process , wherein
successive addresses of a reversed sequence ROM and
successive addresses of an interleaved sequence ROM ,
corresponding to a particular value of N are indexed ; a rank
ROM located in the bit pattern generator configured to store
information sufficient to obtain a rank vector (Rn) for each
supported length of the bit pattern , ‘ n ’ ; a first set of func
tional logic , f1 , located in the first logic circuit and config
ured to obtain a set of binary flags based on received
successive sets of elements read from the set of reversed
sequence ROMs and the set of interleaved sequence ROMs
in each successive clock cycle ; and an accumulator logic
circuit located in the first logic circuit and configured to
receive and count the set of binary flags up to a number , K ,
of uncoded bits that are not frozen by rate matching in a final
output bit sequence , and the threshold reliability number , k ,
is set to complete the first sub - process . In this manner , the
generation of the bit pattern can be completed several bits at
a time , reducing the number of clock cycles required .
[0076] In some examples , the logic circuit is configured to
identify a frozen bit as the complementary binary value in
the bit pattern vector (bk.n) and identify using the first binary
value in the bit pattern vector (bk.n) a bit that comprises one
from a group of : an information bit , a cyclic redundancy
check , CRC , bit , a parity - check frozen bit , a user equipment
identifier , UE - ID , bit , a hash bit . In this manner , non - frozen
bits can be treated separately from frozen - bits during the
processes of interlacing and deinterlacing .
[0077] In some examples , the electronic device may
include at least one of : a transmitter comprising an encoder
configured to perform the bit pattern generation process , a
receiver comprising a decoder configured to perform the bit
pattern generation process .

[0078] In a second aspect , examples of the present inven
tion describe an integrated circuit for an electronic device
comprising the bit pattern generator and the counter accord
ing to the first aspect .
[0079] In a third aspect , examples of the present invention ,
a method of method of polar coding is described . The
method includes successively performing a bit pattern gen
eration process over a series (t = [n / w]) of clock cycles by a
bit pattern generator ; and counting a number of successive
bit pattern generation sub - processes over the series (t = [n /
w]) of clock cycles . The method further includes providing
a successive sub - set of (w) bits from a bit pattern vector
(bkn) in each successive t = [n / w] clock cycle ; where the bit
pattern vector comprises ' n ' bits , of which ‘ k ' bits adopt a
first binary value and n - k bits adopt a complementary binary
value .
[0080] In a fourth aspect , examples of the present inven
tion describe a non - transitory tangible computer program
product comprising executable code stored therein for bit
pattern generation according to the third aspect .
[0081] Although examples of the invention are described
with reference to an electronic device and at least one
integrated circuit implementation , it is envisaged that in
other examples , the invention may be applied in other
implementations and in other applications , such as a wire
less communication having a transmitter with a polar
encoder and / or a receiver with a polar decoder .
[0082] For example , the circuits and concepts herein
described may be composed as a hardware implementation
within an Application Specific Integrated Circuit , an Appli
cation Specific Instruction Set Processor , an Application
Specific Standard Product , a Field Programmable Gate
Array , a General Purpose Graphical Processing Unit , System
on Chip , Configurable Processor , for example . Similarly , it
is envisaged that in other examples , a software implemen
tation may be composed within a Central Processing Unit , a
Digital Signal Processor or a microcontroller , for example .
Besides wireless communication transmitters and receivers ,
the invention may be composed into a wireless communi
cation transceiver , or a communication device for other
communication channels , such as optical , wired or ultra
sonic channels . Furthermore , the invention may be com
posed into a storage device , in order to provide FEC for data
recovered from optical , magnetic , quantum or solid - state
media , for example .
[0083] Some examples of the present invention are
described with reference to the New Radio (NR) standard ,
which is presently being defined by the 3rd Generation
Partnership Project (3GPP) as a candidate for 5th Generation
(5G) mobile communication . Presently , polar encoding and
decoding has been selected to provide FEC in the uplink and
downlink control channels of the enhanced Mobile Broad
Band (MBB) applications of NR , as well as in the Physical
Broadcast Channel (PBCH) . Polar encoding and decoding
has also been identified as candidates to provide FEC for the
uplink and downlink data and control channels of the Ultra
Reliable Low Latency Communication (URLLC) and mas
sive Machine Type Communication (mMTC) applications of
NR . Alternatively , some examples of the invention are
described without reference to a particular standardised
application . More broadly , the invention may be applied in
any future communication standards that select polar encod
ing and decoding to provide FEC . Furthermore , the inven
tion may be applied in non - standardised communication

US 2020/0204197 A1 Jun . 25 , 2020
8

applications , which may use polar encoding and decoding to
provide FEC for communication over wireless , wired , opti
cal , ultrasonic or other communication channels . Likewise ,
the invention may be applied in storage applications , which
use polar encoding and decoding to provide FEC in optical ,
magnetic , quantum , solid state and other storage media .
[0084] In some examples , the circuits and functions herein
described may be implemented using discrete components
and circuits , whereas in other examples the operations may
be performed in a signal processor , for example in an
integrated circuit .
[0085] Because the illustrated embodiments of the present
invention may , for the most part , be implemented using
electronic components and circuits known to those skilled in
the art , details will not be explained in any greater extent
than that considered necessary as illustrated below , for the
understanding and appreciation of the underlying concepts
of the present invention and in order not to obfuscate or
distract from the teachings of the present invention .

vector a = [a] -6K - 1 comprising K information bits , where
a , & { 0,1 } . The information block conditioning component
101 interlaces the K information bits with N - K redundant
bits , which may be frozen bits [1] , Cyclical Redundancy
Check (CRC) bits [2] , Parity Check (PC) -frozen bits [3] ,
User Equipment Identification (UE - ID) bits [4] , or hash bits
[5] , for example .
[0091] Here , frozen bits may always adopt a logic value of
“ O ' , while CRC or PC - frozen bits or hash bits may adopt
values that are obtained as functions of the information bits ,
or of redundant bits that have already been interlaced earlier
in the process . The information block conditioning compo
nent 101 generates redundant bits and interlaces them into
positions that are identified by a prescribed method , which
is also known to the polar decoder . The information block
conditioning component 101 may also include an interleav
ing operation , which may implement a bit - reversal permu
tation [1] for example . The output of the information block
conditioning component 101 may be referred to as a kernal
information block 105 , having a block size of N. More
specifically , this kernal information block 105 is a row
vector u = [uj] ; = 0 comprising N kernal information bits ,
where u , E { 0,1 } . Here , the information block conditioning
must be completed such that N is a power of 2 that is greater
than K , in order to provide compatibility with the polar
encoder kernal , which operates on the basis of a generator
matrix having dimensions that are a power of 2 , as will be
discussed below . The input to the polar encoder kernal 102
is a kernal information block u 105 and the output of the
polar encoder kernal 102 may be referred to as a kernel
encoded block 106 , having a block size that matches the
kernal block size N. More specifically , this kernal encoded
block 106 is a row vector : X = [̂ ;] ; = 0 comprising N kernal
encoded bits , where x , E { 0 , 1 } . Here , the kernal encoded
block 106 is obtained according to the modulo - 2 matrix
multiplication x = uFn , where the modulo - 2 sum of two bit
values may be obtained as their XOR . Here , the generator
matrix FØn is given by the [n = log 2 (N)] th Kronecker power
of the kernal matrix :

DETAILED DESCRIPTION OF FIGURES
N - 1

N - 1

0
F =

[0086] Referring now to FIG . 1 , a top - level schematic of
a communication unit 116 that includes a polar encoder and
polar decoder is illustrated , adapted according to examples
of the invention . In this example of a communication unit
116 , a skilled artisan will appreciate that a number of other
components and circuits (such as frequency generation
circuits , controllers , amplifiers , filters , etc.) are not shown
for simplicity purposes only . In other examples , it is envis
aged that the associated circuitry in the communication unit
116 may take the form of an integrated circuit comprising
block conditioning in a polar encoder or polar decoder as
well as , for example , for use in a storage unit or any
electronic device that is designed to use polar encoding or
polar decoding . In other examples , it is envisaged that the
communication unit 116 may take the form of software
running on a general purpose computation processor .
[0087] A polar encoder comprises three successive com
ponents , namely information block conditioning 101 , the
polar encoder kernal 102 and encoded block conditioning
103. These components are discussed in the following
paragraphs . In order to provide context to the present
discussion , FIG . 1 illustrates the communication or storage
channel 108 , as well as the corresponding components of the
polar decoder , namely the information block conditioning
112 , the polar decoder kernal 111 and the encoded block
conditioning 110 , although these are operated in the reverse
order .
[0088] As will be discussed in the following paragraphs ,
the polar encoder operates on the basis of an information
block 104 , kernal information block 105 , kernal encoded
block 106 and encoded block 107. Correspondingly , the
polar decoder operates on the basis of a recovered informa
tion block 115 , recovered kernal information block 114 , soft
kernal encoded block 113 and soft encoded block 109 ,
although these are processed in the reverse order .
[0089] Therefore , hereinafter throughout the description ,
claims and drawings , the expression “ polar coding ' is
intended to encompass polar encoding and / or polar decod
ing , unless specifically referenced otherwise .
[0090] In a context of a polar encoder , the input to the
information block conditioning component 101 may be
referred to as an information block 104 , having a block size
of K. More specifically , this information block is a row

--
[0092] Note that successive Kronecker powers of the
kernal matrix may be obtained recursively , where each
power Fºn is obtained by replacing each logic “ l ' in the
previous power F® (n - 1) with the kernal matrix and by replac
ing each logic ‘ O ' with a 2x2 zero matrix . Accordingly , the
nth Kronecker power Fºn of the kernal matrix has dimen
sions of 2 " x2 " . For example ,

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0

1 0 0 0

1 0 0

1 0 1 0 0 0 0 0

1 1 0 0 0 0 1
0 0 0 1 0 0 0

1
F®3 =

1

1 0 1

1 1 0 1

0 1 0 1 0 1 0

1 1 1 1

US 2020/0204197 A1 Jun . 25 , 2020
9

a row vector comprising M encoded soft bits b = [bz] = 6M - 1
Each soft bit may be represented in the form of a Logarith
mic Likelihood Ratio (LLR) :

Bk = In Príbk = 0)
Pr bk = 1)

[0099] where Pr (bx = ' 0 ') and Pr (bx = ' 1 ') are probabilities
that sum to ' 1 ' .
[0100] Here , a positive LLR , indicates that the demodu
lator has greater confidence that the corresponding bit bz has
a value of ' o ' , while a negative LLR indicates greater
confidence in the bit value * 1 ' . The magnitude of the LLR
expresses how much confidence , where an infinite magni
tude corresponds to absolute confidence in this bit value ,
while a magnitude of ' O’indicates that the demodulator has
no information about whether the bit value of ' O ' or “ l ' is
more likely .
[0101] In an alternative approach , each soft bit may be
represented by a pair of Logarithmic Likelihoods (LLs) :

b : (0) = ln [Pr (bx = 0)]

[0093] Here , u = [1011] gives X = uF?2 = [1101] and
u = [11001001] gives x = uF83 = [00110111] .
[0094] A skilled artisan will appreciate that the level of
integration of circuits or components may be , in some
instances , implementation - dependent . Furthermore , it is
envisaged in some examples that a signal processor may be
included in a communication unit 116 and be adapted to
implement the encoder and decoder functionality . Alterna
tively , a single processor may be used to implement a
processing of both transmit and receive signals , as shown in
FIG . 1 , as well as some or all of the baseband / digital signal
processing functions . Clearly , the various components , such
as the described polar encoder , within a wireless or wired
communication unit 116 can be realized in discrete or
integrated component form , with an ultimate structure there
fore being an application - specific or design selection .
[0095] In this example , the input to the encoded block
conditioning component 103 of the polar encoder is a kernal
encoded block x 106 and its output may be referred to as an
encoded block 107 , having a block size of M. More spe
cifically , this encoded block is a row vector comprising M
encoded bits b = [bik M - 1 , where b? € { 0,1 } .
[0096] Here , the resultant polar coding rate is given by
R = K / M , where the encoded block conditioning 103 must be
completed such that ‘ M ’ is greater than ‘ K ’ . The encoded
block conditioning component 103 may use various tech
niques to generate the ‘ M'encoded bits in the encoded block
b 107 , where ` M'may be higher or lower than ‘ N ’ . More
specifically , repetition [6] may be used to repeat some of the
‘ N ’ bits in the kernel encoded block ‘ x ' , while shortening or
puncturing techniques [6] may be used to remove some of
the ' N ' bits in the kernel encoded block ' X ' . Note that
shortening removes bits that are guaranteed to have logic
values of O ' , while puncturing removes bits that may have
either of logic ' O ' or ' 1 ' values . The encoded block condi
tioning component may also include an interleaving opera
tion . Following polar encoding , the encoded block ‘ b ’ 107
may be provided to a modulator , which transmits it over a
communication channel 108 .
[0097] Referring now to FIG . 2 and FIG . 3 an example
polar encoding process , using an extension of the graphical
representation 300 of the generator matrix F?3 203 , illus
trates the example where a particular frozen bit pattern is
used to convert the K = 4 information bits a = [1001] 104 into
the M = 8 encoded bits b = [00001111] 107. More specifically ,
information block conditioning 101 is used to convert the
K = 4 information bits a = [1001] 104 into the N = 8 kernal
information bits u = [00010001] 105. These are then con
verted into the N = 8 kernal encoded bits x = [00001111] 106
by the polar encoder kernal 102 using the polar code graph
203. Here , the input paths can be traced through the various
XOR operations to identify the output . Finally , encoded
block conditioning 103 preserves all kernal encoded bits , to
provide the M = 8 encoded bits b = [00001111] 107 .
[0098] In the receiver , the demodulator's role is to recover
information pertaining to the encoded block . However , the
demodulator is typically unable to obtain absolute confi
dence about the value of the M bits in the encoded block
107 , owing to the random nature of the noise in the com
munication channel 108. The demodulator may express its
confidence about the values of the bits in the encoded block
107 by generating a soft encoded block 109 , having a block
size of M. More specifically , this soft encoded block 109 is

N - 1
.

bz (1) = ln [Pr (bx = 1)]
[0102] A polar decoder comprises three successive com
ponents , namely encoded block conditioning 110 , the polar
decoder kernal 111 and information block conditioning 112 ,
as shown in FIG . 1. These components are discussed in the
following paragraphs .
[0103] The input to the encoded block conditioning com
ponent 110 of the polar decoder is a soft encoded block 5 109
and its output may be referred to as a soft kernal encoded
block 113 , having a block size of N. More specifically , this
soft kernal encoded block 113 is a row vector comprising
‘ N ’ kernal encoded LLRs ž = [x ;] ; = 0 In order to convert
the Mencoded LLRs into ‘ N’kernal encoded LLRs , infinite
valued LLRs may be interlaced with the soft encoded block
109 , to occupy the positions within the soft kernal encoded
block that correspond to the ' O ’ - valued kernal encoded bits
that were removed by shortening in the polar encoder .
Likewise , ' O ’ - valued LLRs may be interlaced with the soft
encoded block 109 , to occupy the positions where kernal
encoded bits were removed by puncturing . In the case of
repetition , the LLRs that correspond to replicas of a par
ticular kernal encoded bit may be summed and placed in the
corresponding position within the soft kernal encoded block
109. A corresponding deinterleaving operation may also be
performed , if interleaving was employed within the encoded
block conditioning component 103 of the polar encoder .
[0104] The input to the polar decoder kernal 111 is a soft
kernal encoded block x 113 and its output may be referred
to as a recovered kernal information block 114 , having a
block size of ‘ N ’ . More specifically , this recovered kernal
information block 114 is a row vector comprising ‘ N ’
recovered kernal information bits û = [ûl ; -oN - 1 , where û , & { 0 ,
1 } . In some examples , he polar decoder kernal 111 may
operate using various different algorithms , including Suc
cessive Cancellation (SC) decoding [1] and Successive
Cancellation List (SCL) decoding [7] .
[0105] The input to the information block conditioning
component 112 of the polar decoder is a recovered kernal
information block 114 and its output may be referred to as
a recovered information block 115 , having a block size of

US 2020/0204197 A1 Jun . 25 , 2020
10

K - 1
‘ K ’ . More specifically , this recovered information block 115
is a row vector â = [âli = 0 comprising ‘ K ' recovered infor
mation bits , where â , E { 0 , 1 } . The recovered information
block may be obtained by removing all redundant bits from
the recovered kernal information block û 114. A correspond
ing deinterleaving operation may also be performed , if
interleaving was employed within the information block
conditioning component 101 of the polar encoder .
[0106] Proposed Block Conditioning Units
[0107] As shown in the top - level schematic of FIG . 1 , a
polar encoder and polar decoder pair includes the four block
conditioning modules 101 , 103 , 110 , 112 .
[0108] The information block conditioning module 101 of
the polar encoder and the encoded block conditioning mod
ule 110 of the decoder may both convert a shorter input into
a longer output . More specifically , the input to the informa
tion block conditioning module 101 of the polar encoder
comprises K information bits 104. In some examples , the K
information bits 104 may be interlaced with N - K redundant
bits , in order to produce N > K kernal information bits 105 .
Likewise , the input to the encoded block conditioning mod
ule 110 of the polar decoder comprises M soft encoded LLRs
109. In some examples , the M soft encoded LLRs 109 may
be interlaced with N - M punctured or shortened LLRs , in
order to produce N > M soft kernal encoded LLRs 113 .
[0109] In accordance with example embodiments of the
invention , an interlacer (for example as illustrated in , and
described with reference to FIG . 4 and FIG . 5) has been
designed to implement these interlacing operations that are
performed in the information block conditioning module
101 of the polar encoder and the encoded block conditioning
module 110 of the decoder .
[0110] By contrast , the encoded block conditioning circuit
103 of the polar encoder and the information block condi
tioning module 112 of the decoder both convert a longer
input into a shorter output . More specifically , the input to the
encoded block conditioning circuit 103 of the polar encoder
comprises N kernal encoded bits 106. In some examples ,
N - M of these bits may be punctured or shortened , in order
to produce M < N encoded bits 107. Likewise , the input to the
information block conditioning module 112 of the polar
decoder comprises N recovered kernal information bits 114 .
In some examples , N - K of these bits may be redundant bits
and may thus be removed , in order to produce K < N recov
ered information bits 115 .
[0111] In accordance with examples of the invention the
block conditioning circuits operate on the basis of bit
patterns . More specifically , an information bit pattern is used
in the information block conditioning modules of the polar
encoder and decoder , in order to specify how the corre
sponding interlacing and deinterlacing operations may be
performed . Likewise , an encoded bit pattern is used in the
encoded block conditioning modules of the polar encoder
and decoder , in order to specify how the corresponding
deinterlacing and interlacing operations may be performed .
In some examples , bit pattern generators 3403 (as illustrated
in FIGS . 4 , 5 , 7 , 10 , 11 , 12 and 13) may be employed by the
interlacer to control the interlacing operations .
[0112] Interlacer
[0113] Referring now to FIG . 4 , an example block diagram
of an interlacer 3400 is illustrated , according to some
example embodiments of the invention . In some examples ,
the interlacer 3400 may be capable of flexibly converting
k - element input vectors into corresponding n - element output

vectors , where k and n may vary from use to use . More
specifically , the interlacer 3400 may perform interlacing for
each input vector according to a bit pattern , which may be
selected from a predefined set of supported bit patterns ,
having various combinations of k and n . The interlacer 3400
may be used to implement a flexible information block
conditioning circuit , such as information block conditioning
circuit 101 of FIG . 1 , for a polar encoder . In this case , the
flexible information block conditioning circuit 101 may be
capable of converting one k = K - bit information block 104
into the corresponding n = N - bit kernal information block
105 at a time , where the block sizes K and N may vary from
block - to - block . Additionally , the interlacer 3400 may be
used to implement a flexible encoded block conditioning
circuit 110 for a polar decoder . In this case , the flexible
encoded block conditioning circuit 110 may be capable of
converting one k = M - LLR soft encoded block 109 into the
corresponding u = N - LLR soft kernal encoded block 113 at a
time , where the block sizes M and N may vary from
block - to - block . Note than in both the polar encoder and
polar decoder examples , the kernal block size N is a power
of two .
[0114] In some examples , the interlacing process is com
pleted over a series of t = [n / w] steps , where w is a power of
two that is referred to as the width of the proposed inter
lacer's input port 3401 and output port 3402 (with the input
port 3401 and output port 3402 of FIG . 4 carrying multiple
signals as illustrated in FIG . 5) . This quantifies the number
of elements that the respective ports may consume from the
input vector or generate for the output vector in each step .
Here , the output port 3402 generates w elements for the
output vector in every step , while the input port 3401 only
consumes w elements from the input vector in [k / w] < 1 of
the steps , which may be distributed across the t steps , as
detailed below .
[0115] The first in each set of elements of the input and
output vectors are mapped to the right - most of the w
elements of the input port 3401 and output port 3402 , with
successive elements of the vectors mapped to successive
elements of the input port 3401 and output port 3402 from
right to left . Depending on if and how pipelining is applied ,
each step of the interlacing process may correspond to one
clock cycle in a hardware implementation . Here , each LLR
may be represented using the two's complement number
representation having a same bit - width as the LLR input to
a polar decoder kernal , such as the polar decoder kernal 111
of FIG . 1. It is noteworthy that the proposed approach
processes w pattern bits in each step , which is in contrast to
the block conditioning modules of known designs [14 , 15) ,
which are only capable of processing a single pattern bit in
each step .
[0116] The interlacer 3400 also comprises bit pattern
generator 3403 , buffer 3404 , shifter 3405 , controller 3406
and insertion 3407 circuits (or logic or software - based
operations) . In some examples , each of the w bits 3409
output by the bit pattern generator 3403 in a particular step
of the interlacing process corresponds to the element in the
corresponding position among the w elements generated by
the output of the proposed interlacer in that step . If the bit
has a value ‘ l ’ , then the corresponding output element is
supplied by the next element provided by the input of the
interlacer 3400 , as will be detailed below . By contrast , if the
bit has the value ' O ’ , then the corresponding output element
3402 is provided by an interlaced element (such as inter

US 2020/0204197 A1 Jun . 25 , 2020
11

laced element 3501 in FIG . 5) . It is noteworthy that , in the
case , where : u < w , the bit pattern generator 3403 may append
w - n dummy bits to the end of the bit pattern , in order to
increase its length to w .
[0117] In the case of the information block conditioning
circuit 101 of the polar encoder , the interlaced element may
be a frozen bit having the value “ O ' , a cyclic redundancy
check (CRC) bit , a parity check (PC) -frozen bit , a user
equipment identifier (UE - ID) bit or a hash bit , for example .
In the case of the encoded block conditioning circuit 110 of
the polar decoder , the interlaced element may be a punctured
LLR having the value ' O ' , or a shortened LLR having a
maximum positive value supported by the two's comple
ment fixed - point number representation [6] , for example .
Note that in some applications , more than one type of
interlaced element may be required , where the information
bits may be interlaced with both frozen bits and CRC bits ,
for example . In this case , separate bit patterns may be used
for each type of interlaced element . Alternatively , the bit
pattern may use ?loga (z)] bits for each element of the bit
pattern , where the combination of the log (2) bits may
identify which one of z different types of element is used .
For example , the bit pairings 10 , 01 and 11 may be used to
represent the z = 3 options of frozen bit , CRC bit and infor
mation bit , respectively . In this case , a decoder circuit may
be used to extract the separate bit patterns for each type of
interlaced element .
[0118] In each step iE [O , t - 1] of the interlacing process ,
the controller 3406 may count the number P , of 1 - valued bits
among the bits 3409 provided by the bit pattern generator
3403 , as described herein . This number of elements is
compiled for the output of the proposed interlacing process ,
by drawing upon two sources of elements : firstly , any
elements that reside within the (w - 1) -element buffer 3404
and secondly , the input port 3401 of the interlacer 3400. The
controller 3406 keeps track of the number R , E [0 , w – 1] of
valid elements that are stored in the buffer 3404 at the
beginning of each step of the interlacing process , where the
buffer 3404 is initially empty at the start of the interlacing
process , giving R [text missing or illegible when filed]
= 0 . In any steps where the number of valid elements in the
buffer R , is less than the number required Pi , the controller
3406 may cause w elements to be drawn from the input
3401 , on an on - demand basis .
[0119] Referring now to FIG . 5 , a more detailed example
of an interlacer 3500 for the case of w = 4 is illustrated ,
according to some example embodiments of the invention .
As exemplified in FIG . 5 , a bit - shifter circuit 3405 is used to
combine elements drawn from the w - element input port
3401 and the (w - 1) -element buffer 3404 , producing a (2w
1) -element output containing at least P ; valid elements . In
cases where R ; < P ;, the w - element input port 3401 of the
proposed interlacer is appended to the left of the elements
from the buffer 3404. However , only R , ELO , W - 1] of the
w - 1 elements from the buffer 3404 will be valid , so the
controller 3406 directs a bit - shifter circuit 3405 to shift the
W - element input port 3401 of the proposed interlacer 3500
by C - w - 1 - R , positions to the right , before multiplexing it
with R [text missing or illegible when filed] the ele
ments from the buffer 3404. The bit - shifter circuit 3405 may
be implemented using logz (w) rows of multiplexers , where
each row 3503 uses w - 1 multiplexers to implement a
different power - of - two shift . As shown in FIG . 5 , the control
signal for each multiplexer row 3503 may be obtained from
the corresponding bit of the binary representation of Ci ,

where the Most Significant Bit (MSB) drives the row
implementing the largest power - of - two shift and the Least
Significant Bit (LSB) drives the row implementing the shift
of one position . In some examples , it is noted that the rows
may be permuted in any order . A further w - 1 multiplexers
3502 are required to multiplex the shifted input with the
contents of the buffer 3404 , where the right - most Ri ele
ments are selected from the buffer 3404 and the remaining
elements are selected from the output of the bit - shifter
circuit 3405. It is envisaged that in an alternative architec
ture , the further w - 1 multiplexers may be arranged within
the same rows of the bit - shifter circuit 3405 , reducing the
critical path length of the interlacer 3500. In cases where :
B [text missing or illegible when filed] < P? , the above
described approach results in valid elements for the right
most R [text missing or illegible when filed] + w of the
2w - 1 outputs of the bit - shifter circuit 3405. By contrast ,
when R Pi , no input is taken from the input of the interlacer
3500 and the bit - shifter circuit 3405 is disabled . This results
in the R [text missing or illegible when filed] valid
elements from the buffer 3404 providing the right - most R , of
the 2w - 1 outputs of the bit - shifter circuit 3405 .
[0120] The (2w - 1) -element output of the bit - shifter circuit
3405 is provided to the insertion circuit 3407 , which extracts
Pi elements in positions dictated by the bit pattern and places
all remaining elements into the buffer 3404 , ready for use in
the next step of the interlacing process . The insertion circuit
3407 comprises w rows of multiplexers , where the top - most
row comprises 2w - 2 multiplexers and each successive row
below it contains one fewer multiplexer than the last . In this
manner , each row of multiplexers forms a shifting circuit ,
which is controlled by the value of the corresponding bit
from the bit pattern . More specifically , if the corresponding
bit from the bit pattern is a ' 1 ' , then the right most element
at the input to the row is extracted for the output of the
interlacer 3500 and all other elements at the input to the row
are shifted to the right by one position , as shown in FIG . 5 .
The bits of the bit pattern are also used to control a set of w
multiplexers 3504 , which multiplex the elements extracted
from the insertion circuit 3407 with the corresponding
interlaced elements 3501 , which may be redundant bits in
the case of the information block conditioning module 101
of the polar encoder or punctured or shortened LLRs in the
case of the encoded block conditioning module 110 of the
polar decoder . In cases where different interlaced elements
3501 have different values , replicas of the interlacer 3500
may be operated on the basis of the complementary bit
patterns described above . The outputs of these interlacers
may then be multiplexed together , using the set of multi
plexers 3504 described above .
(0121] Following a completion of each step of the inter
lacing process , the (w - 1) elements output by the bottom row
of the insertion circuit 3407 are stored in the buffer 3404. In
steps where R ; < P ;, the number of these elements that are
valid will be given by Ri + 1 = R ; w - P ;, while Ri + 1 = R , -P ; of the
elements will be valid in steps where R_ZP ;. The buffer 3404
then makes these valid elements available to the next step of
the interlacing process , as described above .
[0122] The total number of multiplexers required for the
interlacer 3500 is given by 3w2 / 2 + w log2 (W) + w / 2 - logz (w)
1. The critical path comprises w + log2 (w) multiplexers , in
the case where all multiplexers of the bit - shifting circuit
3405 are accommodated within the same log2 (w) rows .
[0123] FIG . 6 illustrates an example table to operate
interlacer 3400 or 3500 where w = 4 , for the case where the
k = 9 input elements [9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1] are interlaced

US 2020/0204197 A1 Jun . 25 , 2020
12

1

filed] = { 2,4,15
nmax

from right - to - left with ' O ’ - valued interlacing elements ,
according to the n = 16 [text missing or illegible when
filed] -bit pattern [1100011010110101] . In step ' O ’ , P = 2
elements are required , but the buffer (for example buffer
3404 of FIG . 4 or FIG . 5) contains Ro = 0 valid elements , so
w = 4 elements are consumed from the input port 3401. Of the
w = 4 elements , Po = 2 contribute to the output in positions
dictated by the bit pattern , with the remaining R = 2 elements
being stored in the buffer 3404. In step ' 1 ' , P = 3 elements
are required , but the buffer 3404 contains only R [text
missing or illegible when filed] = 2 valid elements , so
w = 4 elements are consumed from the input port 3401. Of the
R1 + w = 0 elements , P1 = 3 contribute to the output in positions
dictated by the bit pattern , with the remaining R2 = 3 elements
being stored in the buffer 3404. In step “ 2 ” , P = 2 elements
are required and the buffer 3404 contains R = 3 valid ele
ments , so no elements are consumed from the input port
3401. Of the R2 = 3 elements , P2 = 2 contribute to the output in positions dictated by the bit pattern , with the remaining
Rz = 1 element being stored in the buffer 3404. In step 63 ' ,
Pz = 2 elements are required , but the buffer 3404 contains
only Rz = 1 valid element , so the remaining element is
consumed from the input 3401 , but padded with zeros in
order to make up a width of w = 4 . Both of the R [text
missing or illegible when filed] + 1 = 2 elements contrib
ute to the output in positions dictated by the bit pattern .
[0124] Bit Pattern Generator
[0125] In examples of the invention , a number of alterna
tive designs for the bit pattern generator 3403 are proposed
herein , any of which may be used to generate the informa
tion bit pattern used by the interlacer 3400 or 3500 in order
to implement the information block conditioning circuit 101
of the polar encoder . Furthermore , these example designs
may be used to generate the encoded bit pattern used by the
interlacers 3400 , 3500 in order to implement the encoded
block conditioning circuit 110 of a polar decoder .
[0126] The following sections propose alternative bit pat
tern generator designs that may exploit various different
combinations of the bit pattern properties .
[0127] 1) Naive Bit Pattern Generator :
[0128] Referring now to FIG . 7 , a naive bit pattern gen
erator 4200 , for the case where w = 4 , is illustrated according
to some example embodiments of the invention . a naive
implementation , the bit pattern generator 4200 may be
implemented using a bit pattern Read Only Memory (ROM)
4201 , which may store a set of supported bit pattern vectors
bkn each corresponding to a particular combination of input
and output vector lengths k and u . In some examples , an
off - line pre - computation process may be used to generate
this set of supported bit pattern vectors bk , n for all supported
bit patterns , which may be read from the bit pattern ROM
4201 as required during the on - line block conditioning
process .
[0129] Referring now to FIG . 8 , an example table of
contents 3700 of the bit pattern ROM , when using the
Polarization Weight (PW) bit pattern construction of [8] for
all combinations of nE { 2 , 4 , 8 , 16 } and ke { 1 , 2 , 3 ,
n - 1 } , is illustrated according to some example embodiments
of the invention . In the example table of FIG . 8 , a set of
information bit pattern vectors bkin is generated for all
combinations of nE { 2 , 4 , 8 , 16 } and ke { 1 , 2 , 3 , ... n - 1 } .
Here , a “ l ’ - valued element in the information bit pattern
vector bkn indicates that the corresponding bit in the kernal
information block , say kernal information block 105 of FIG .
1 , should be an information bit . Meanwhile , a ' O ’ - valued
element in the information bit pattern vector bkn corre
sponds to a redundant bit , which may be a frozen bit , CRC

bit , PC - frozen bit , UE - ID bit , or hash bit , for example . Note
that in alternative arrangements , a ‘ l ’ - valued element in the
information bit pattern vector bkn indicates that the corre
sponding bit in the kernal information block should be a
non - frozen bit , which may be an information bit , CRC bit ,
PC - frozen bit or UE - ID bit or hash bit , for example . Mean
while , a ' O ’ - valued element in the information bit pattern
vector bkin may correspond to a frozen bit . Alternatively ,
separate bit pattern vectors may be used to indicate whether
each bit belongs to each type of bit .
[0130] Referring back to FIG . 7 , in order to support all
combinations of nE { 2 , 4 , 8 , ... , nmax } and kE { 1 , 2 , 3 , ..

u - 1 } , the total capacity requirement of the bit pattern
ROM 4201 is given by X [text missing or illegible when

[text missing or illegible when filed]
} (n -n) , which corresponds to 1.33 Mbit in the case where

= 1024 . The bit pattern ROM 4201 has a width of w bits
and each bit pattern vector bkin is stored across [n / w] consecutive addresses , where n is the output vector length
supported by the bit pattern vector bk.vn. In some examples ,
in cases where : n < w , the bit pattern vector bkn may be
appended with w - n dummy bits , such that it occupies the
width of a single address in the bit pattern ROM 4201. As
shown in FIG . 7 , k and n may be used to index a look - up
table 4202 , in order to identify the start address of each
particular bit pattern vector bkm . During each of the t = [n / w]
successive steps of the block conditioning process , a counter
4203 c may be incremented from 0 to t = 1 and used as an
offset from the start address of the bit pattern ROM 4201 , in
order to read successive w - element sub - sets { bo , bi , b2 , ..
, bw - 1 } 4204 of the bit pattern vector bkn In examples of the
invention , the counter 4203 c is configured to count a
number of clock cycles up to [n / w] .
[0131] 2) Bit Pattern Generator that Exploits a Nested
Property :
[0132] The amount of ROM required for the generation of
bit pattern vectors bk , n may be significantly reduced in cases
where the bit pattern vectors bkn obey the nested property .
Here , the nested property is satisfied if the ‘ l ’ - valued bits in
a bit pattern vector bkn for a particular combination of k and
n always form a sub - set of the ‘ l ’ - valued bits in a bit pattern
vector bkn for any combination of a greater k and the same
n . For example , the nested property is satisfied by the
information bit pattern vectors bk , n that are generated by the
PW technique , as well as by the FRActally eNhanced Kernel
(FRANK) technique of [9] . Rather than storing a bit pattern
vector bkn for each supported combination of k and n , a rank
ROM 3801 according to example embodiments of the
invention may be used to store a rank vector Rn for each
supported u . The rank vector R , for a particular value of u
comprises the integers in the range 0 to u = 1 , permuted in an
order that corresponds to the rank of each bit position , where
a particular rank indicates the maximum k for which the
corresponding bit in the bit pattern vector bkn has the value
0 .
[0133] Referring now to FIG . 9 an example table of the
contents of a Rank ROM (such as rank ROM 3801 of FIG .
10) , for a set of rank vectors Rn generated using a PW bit
pattern construction of [8] for all ne { 2 , 4 , 8 , 16 , 32 } , is
illustrated according to some example embodiments of the
invention . Here , lower ranks correspond to more reliable bits
within the kernal information block , such as kernal infor
mation block 105 of FIG . 1 .
[0134] Referring now to FIG . 10 , a bit pattern generator
exploiting the nested property , for the case where w = 4 , is
illustrated according to some example embodiments of the

US 2020/0204197 A1 Jun . 25 , 2020
13

invention . Here , the bit pattern vector bkin may be generated
for a particular combination of k and u by using a bank of
w comparators 3802 , in order to compare each element of
the rank vector R. , with k . If a rank is less than k , then the
corresponding bit pattern vector bkn bit is set to ‘ l ’ , other
wise the corresponding bit pattern bit is set to ' O ’ . Here , the
bit pattern bit may be obtained by representing the rank and
k using the two's complement fixed - point number represen
tation , performing a subtraction , and then retaining the MSB
of the result .
[0135] In some examples , and assuming that all entries in
the rank ROM 3801 are stored using fixed point numbers
having a width of log2 (nmar) bits , the total capacity required
for the rank ROM 3801 to store all rank vectors R ,, for ne { 2 ,
4 , 8 , ... , nmax } may be given by (2nmax - 2) log2 (nmax) bits .
In this way , the rank ROM stores information sufficient to
obtain a rank vector R. , for each supported length of the bit
pattern ‘ n ’ . This corresponds to 19.98 kbit in a case where
nmax = 1024 , representing a 98.5 % reduction compared to the
total capacity required for the bit pattern ROM in the
aforementioned naive bit pattern generator .
[0136] Alternatively , the total capacity required can be
reduced to [text missing or illegible when filed] = (2 , 4 , 8,1 ... [text missing or illegible when filed] , n log in
bits , if different widths of log (n) bits are used to store the
fixed - point numbers for different values of n , corresponding
to 18.00 kbit for nmax = = 1024 .
[0137] In some examples , the rank ROM 3801 has a width
of w log2 (nmar) bits or w logz (n) bits , depending on whether
the fixed - point number representation for each rank com
prises log2 (nmar) bits or log2 (n) bits . Here , each rank vector
R , is stored across [n / w] consecutive addresses , where n is
the output vector length supported by the rank vector Rm . It
is noteworthy that in cases where n < w , the rank vector Rn
may be appended with w - n dummy elements , such that it
occupies the width of a single address in the rank ROM
3801 .
[0138] In some examples , u may be used to index a
look - up table 3803 , in order to identify the start address of
each particular rank vector Rm . Alternatively , a separate
multiplexed rank ROM 3801 may be used to store the rank
vector n corresponding to each supported value of n , in
which case each may employ a start address of ' o ' .
[0139] During each of the t = [n / w) successive steps of the
block conditioning process , a counter 4203 c may be incre
mented from ' O ' to ' t = 1 ' and used as an offset from the start
address of the rank ROM 3801 , in order to read successive
w - element sub - sets of the rank vector Rm . These sub - sets of
the rank vector R , may then be converted into n pattern bits
{ bo , bi , b2 , ... , bw - 1 } 4204 using the bank of w comparators
3802 , as described above .
[0140] In some examples , it is envisaged that a counter
4203 c configured to count from 0 to t - 1 may be used for this
example circuit and approach , as well as the example circuit
of the previous approach .
(0141] It is noteworthy that the rank vector R , described
above is different to the index vector Qn described in [8 , 9] .
More specifically , the rank vector R , ranks the reliabilities of
the bits within the kernal information block 105 , where the
rank of the first bit in the kernal information block 105
appears at one of the vector and the rank of the last bit
appears at the other end of the vector . By contrast , the index
vector Qn , provides the indices of the bits within the kernal
information block 105 sorted in order of reliability , where
the index of the most reliable bit appears at one end of the

vector and the index of the least reliable bit appears at the
other end of the vector . However , an approach based on
storing the index vector Qn may require the use of an
interleaver or other complex circuitry to interpret the index
vector On and produce the bit pattern vector bkan . By con
trast , the proposed approach relies only on simple compara
tors 3802 to interpret the rank vector R. , and produce the bit
pattern vector bkin , as described above .
[0142] It is envisaged in alternative examples that the
elements of the rank vectors Rn described above may be
subtracted from n - 1 and stored instead in this adjusted form .
In this way , the rank ROM stores information sufficient to
obtain a rank vector R. , for each supported length of the bit
pattern ‘ n ’ . In the examples of the information bit pattern
vectors bkin generated using the PW and FRANK techniques ,
this adjustment would cause bits within the kernal informa
tion block 105 having higher reliabilities to correspond to
adjusted ranks having higher values , rather than lower
values as in the non - adjusted approach . Note that this
adjustment is equivalent to reversing the order of the non
adjusted ranks shown in FIG . 9 , owing to the symmetric
property of the PW technique . In the descriptions above ,
each comparison to determine if a non - adjusted rank is less
than k may be replaced by a comparison to determine if an
adjusted rank is greater than or equal to n - k .
[0143] 3) Bit Pattern Generator Exploiting Nested and
Symmetric Properties :
[0144] In this bit pattern generator example , the total
capacity required for the rank ROM 3801 described above
may be reduced by 50 % in cases where the bit pattern
vectors bz?n obey the nested property and the symmetric
property . Here , the symmetric property is satisfied if any pair
of elements in the rank vector R. , having the indices i and
n - i - 1 sum to n - 1 , for all n and for all iE [0 , n - 1] . For
example , the symmetric property is satisfied by the infor
mation bit pattern vectors bkin that are generated by the PW
technique , but not those generated by the FRANK technique
of [9] in general .
[0145] In some examples , when the symmetric property is
satisfied , the rank ROM 3801 may only need to store the first
half of each rank vector In the case where fixed point
numbers having a constant width of log2 (nmax) bits are used ,
this reduces the total capacity required for the rank ROM
3801 to store all rank vectors R , for ne { 2 , 4 , 8 , , nmar }
to (nmax - 1) logz (nmar) bits , which corresponds to 9.99 kbit in
the case where nmax = 1024 . In this way , the rank ROM stores
information sufficient to obtain a rank vector H for each
supported length of the bit pattern ‘ n ’ .
[0146] Alternatively , this reduces the total capacity
required to [text missing or illegible when filed) 2 , 4 ,

[text missing or illegible when filed] , n log (n) / 2
bits , in the case where fixed point numbers having varying
widths of log2 (n) bits are used . The rank ROM 3801 has a
width of w ranks and each rank vector H is stored across
[n / (2w)] consecutive addresses , where n is the output vector
length supported by the rank vector
[0147] It is noteworthy that in cases where n / 2 < w , the rank
vectors ' n may be appended with w - n dummy elements
and stored across the width of a single address in the rank
ROM 3801 .
[0148] Referring now to FIG . 11 , a bit pattern generator
4000 exploiting the nested and symmetric properties , for the

8 , ·

7

US 2020/0204197 A1 Jun . 25 , 2020
14

n .

n

77

2

case where w = 4 , is illustrated according to some example
embodiments of the invention . Here , n may be used to index
a look - up table 3803 , in order to identify the start address of
each particular rank vector Alternatively , a separate
multiplexed rank ROM 3801 may be used to store the rank
vector corresponding to each supported value of n , in
which case each may employ a start address of ' o ' .
[0149] In some examples , the bit pattern generator 4000
may be used to interface with the reduced - capacity rank
ROM 3801 and generate the bit pattern vectors bikin During
each of the t = [n / w] successive steps of the block condition
ing process , a counter 4203 [text missing or illegible
when filed] may be incremented from ‘ O ' to ' t - 1 ' and used
to generate an offset from the start address of the rank ROM
3801. During the first half of the t = [n / w] successive steps of
the block conditioning process when c < ln / (2w)] , successive
W - element sub - sets of the rank vector R are read from
incremental addresses in the rank ROM 3801 , where the
offset from the start address is given by c .
[0150] Referring back to the example of FIG . 10 , the bank
of z , comparators 3802 may be used to convert these
sub - sets of the rank vector into w pattern bits { bo , bi , b2 ,

bw - 1 } 4204. In this example , during the second half of
the process when cz [n / (2w)] , w - element sub - sets of the rank
vector R. are read from decremental addresses in the rank
ROM 3801 , the offset from the start address may be given
by ([n / w] -c - 1) . In this way , the same addresses are read as
during the first half of the block conditioning process , but in
reverse order . In this example , a multiplexer 4004 may be
used to provide ([n / w] -c - 1) rather than c as the offset from
the start address of the rank ROM 3801. During this second
half of the process , if a rank is greater than or equal to n - k ,
then the corresponding bit pattern bit is set to‘l ’ , otherwise
it is set to ' 0 ' . This may be implemented by using a
multiplexer 4001 in order to provide n - k as the input to the
bank of w comparators 3802 , rather than k , as well as by
using a bank of w NOT gates 4002 to invert the output of the
comparators 3802. Furthermore , a bank of w multiplexers
4003 may be used to reverse the order of the w pattern bits
{ bo , b , b2 , ... , b [text missing or illegible when filed] }
4204 during the second half of the process , as shown in FIG .
11 .
[0151] It is envisaged that in alternative examples , the
elements of the rank vectors IL described above may be
subtracted from n - 1 and stored in this adjusted form instead .
In this way , the rank ROM stores information sufficient to
obtain a rank vector R , for each supported length of the bit
pattern ‘ n ’ . Here , each comparison to determine if a non
adjusted rank is less than k may be replaced by a comparison
to determine if an adjusted rank is greater than or equal to
n - k . Likewise , each comparison to determine if a non
adjusted rank is greater than or equal to n - k may be replaced
by a comparison to determine if an adjusted rank is less than
k .

[0152] 4) Bit Pattern Generator Exploiting the Nested ,
Recursive and Arithmetic Properties :
[0153] In some examples , in cases where the bit pattern
vectors bkn obey nested , recursive and arithmetic properties ,
the amount of ROM required for the generation of bit pattern
vectors bkn can be significantly further reduced . Here , the
recursive property is satisfied if the index vectors Qn asso
ciated with successive values of can be generated by per
forming simple operations upon the preceding index vector

On / 2 . For example , in the PW sequence of [8] , the index
vector Qn can be obtained by interlacing Qn / 2 with Qn / 2 + n / 2 ,
according to a particular interlacing pattern P ,. The arith
metic property is satisfied if a bit reliability metric can be
obtained for each of the n bits in the output vector based only
on its index in the range ‘ O ' to “ n - 1 ” . In the PW sequence of
[8] , the reliability of each kernel information bit may be
determined by calculating a ß expansion upon the binary
representation of each bit index in the range ' O’to “ n - 1 ” . The
elements in a corresponding vector of these bit reliabilities
B [text missing or illegible when filed] may be sorted in
order to obtain the index vector On , or may be ranked in
order to obtain the rank vector Rn .
[0154] Referring now to FIG . 12 , a bit pattern generator
4400 exploiting the nested , recursive and arithmetic prop
erties , for the case where w = 4 , is illustrated according to
some example embodiments of the invention . In some
examples , in cases where the bit pattern vectors bkn obey
nested , recursive and arithmetic properties , the example bit
pattern generator 4400 may obtain the bit pattern vector bkin
for a particular combination of k and n . Here , a recursive
circuit 4401 may be used to convert the value of n - k into the
index Q_ (n - k) of the bit having the (n - k) highest bit
reliability . This recursive circuit 4401 may exploit the recur
sive property to obtain Qn (n - k) based on a recursive com
bination of elements from the preceding index vectors
{ Qn / 2 (k) , (n) [text missing or illegible when filed] (k) ,
On [text missing or illegible when filed] (k) , ... } . In
some examples , it is noteworthy that rather than unpacking
the entirety of each successive index vector , the unpacking
may targ only the particular elements that are required to
obtain Qn (n - k) . In the case of the PW sequence , the module
may include a circuit for performing interlacing , as well as
a ROM for storing some or all of the interlacing patterns { P1 ,
P2 , P4 , ... , Pnpas }
[0155] In some examples , it is also noteworthy that by also
exploiting the symmetric property , this ROM may have a
total capacity requirement of 1 kbit . To provide a reference
for this significant improvement , let us consider the expla
nation in [8] , whereby a vector Pn is defined , together with
a technique for generating Qin based on { P2 , P4 , ... Pn } .
Here , Pn is a binary vector that satisfies the symmetric
property . Since n can vary between { 2 , 4 , 8 , ... 1024 } at run
time , the capability to generate { Q2 , Q4 , Q3 , Q1024 } is
required . As a result , the capability to generate all of { P2 , P4 ,

. , P1024 } is needed . In accordance with example
embodiments of the present invention , and by exploiting the
symmetric property of Pn , the P , vectors can be generated by
storing only the first half of each of { P2 , P4 , P3 , ... P1024) .
Here , n / 2 bits are required to store the first half of Pn , giving
a total of 1023 bits for all of { P2 , P4 , P3 , ... P1024 } . In this
way , the recursive circuit may be considered to unpack
compressed information , in order to obtain Q , (n - k) .
[0156] Following this , an arithmetic circuit 4402 may use
the arithmetic property to convert the index Qn (n - k) of the
bit having the (u - k) th rank into a bit reliability metric
BlQn (n - k)) . This value may then be stored in a register 4403
and used throughout the process of generating the bit pattern
vector bkn
[0157] More specifically , during each of the t = [n / w] suc
cessive steps of the block conditioning process , a counter e
4203 may be incremented from ' O ' to ' t - l ' and used to
obtain bit indices { cw , cw + 1 , cw + 2 , cw + w - 1 } for
successive - element sub - sets of the bit pattern vector bk.n. In
some examples , this may be achieved using the arrangement

P 89

US 2020/0204197 A1 Jun . 25 , 2020
15

of a multiplier 4404 and a bank of w - 1 adders 4405 , as
shown in FIG . 12. Following this , a bank of w replicas 4406
of the arithmetic circuit may be used to compute correspond
ing bit reliabilities { B [cw] , B [cw + 1] , B [cw + 2] , ... , B [cw +
W – 1] } , which may then be compared with BlQn (n - k)) using
a bank of comparators 4407 , in order to obtain the corre
sponding w elements of the bit pattern vector bkin . In the PW
sequence , greater ... expansion values imply greater bit
reliabilities and so the bank of w comparators 4407 obtains
the bit pattern bits { bo , bi , b2 , ... b - 1 } 4204 by
determining whether the corresponding bit reliabilities
{ B [cw] , B [cw + 1] , B [cw + 2] , ... , B [cw + w - 1] } are greater
than or equal to B (Qn (n - k)) . It is noteworthy that it may be
possible to achieve a power saving by exploiting the recur
sive property of the bit pattern vector bk - n . For example , in
the case of a PW sequence the recursive properties may be
used to determine relationships between bits in the kernel
information block . More specifically , it may be determined
that if a particular bit is chosen as a frozen bit , then this
guarantees that particular other bits will also be chosen as
frozen bits . Likewise , it may be determined that if a par
ticular bit is chosen as an information bit , then this guaran
tees that particular other bits will also be chosen as infor
mation bits . This may be exploited in the bit pattern
generator 4400 of FIG . 12 , to disable particular arithmetic
circuits during particular steps in the process , whenever the
corresponding bit pattern bit can be determined based on
decisions that have been made in earlier steps of the process .
[0158] In some examples , it is envisaged that the approach
of FIG . 12 may be simplified further in the case of encoded
block conditioning , where the bit reliabilities are simple
functions of the bit indices . Here , during each of the t = [n / w]
successive steps of the encoded block conditioning process ,
a counter 4203 may be incremented from ' O ' to ' t - 1 ' and
used to control a circuit that provides successive w - element
sub - sets of the bit pattern vector bimn , depending on the
values of n and k .
[0159] Referring now to FIG . 13 circuits for generating w
bits from a particular bit pattern in each step of the encoded
block conditioning process are illustrated , according to
examples of the invention . For example the illustrated
circuits include : (a) Block puncturing ; (b) Block shortening ;
(C) Bit reversal puncturing ; and (d) Bit reversal shortening ,
according to some example embodiments of the invention .
Suitable circuits for block puncturing , block shortening , bit
reversal puncturing and bit reversal shortening [16] are
illustrated in FIGS . 13a 13d . Here , a multiplier 4101 and a
bank of w - 1 adders 4102 are used to convert the counter c
4203 into the indices of the bits in the current sub - set of the
bit pattern vector { cw , cw + 1 , cw + 2 , . cw + w - 1 } . In the
bit - reversal schemes of FIGS . 13c and 13d , a bank of reverse
modules 4103 is used to reverse the order of the bits in the
log (n) -bit binary representation of each bit index , in order
to produce the reversed bit indices { [text missing or
illegible when filed] cw , cw [text missing or illegible
when filed] +1 , cw [text missing or illegible when
filed] +2 , . . , cw + [text missing or illegible when
filed] w - 1 } . Finally , a bank of w comparators is used to
compare either the bit indices or the reversed bit indices with
either k or n - k . More specifically , the bit pattern bits { bo , bu ,

bw - 1 } are set to one if the corresponding bit indices
or reversed bit indices are less than k in the shortening
schemes of FIGS . 13b and 13d . By contrast , the bit pattern
bits { bo , bi , b2 , bw - 1 } are set to one if the corresponding
bit indices or reversed bit indices are greater than or equal

to n - k in the puncturing schemes of FIGS . 13a and 13c .
Compared to FIG . 12 , it may be observed that the arithmetic
module 4401 and the recursive module 4402 cancel each
other out in all cases shown in FIGS . 13a 13d . In the case
of FIGS . 13c and 13d , the functionality of the arithmetic
modules 4406 is performed by the bit reversal operations
4103 .
[0160] Examples of Proposed Hardware Implementations
for Frozen Bit Insertion and Removal
[0161] Several polar code sequences were proposed and
compared in [17] and the Huawei sequence was selected for
the 3GPP New Radio polar code at 3GPP TSG RAN WG1
Meeting # 90 [18 , Al 6.1.4.2.2] . The Huawei sequence from
[17] is defined for a maximum mother code block length of
No = 1024 bits and the sequence Qy for a shorter power
of - two mother block length N can be extracted by exploiting
the sequence's nested property . For example , the sequence
for N = 64 is Q46 = [0 , 1 , 2 , 4 , 8 , 16 , 32 , 3 , 5 , 9 , 6 , 17 , 10 , 18 ,
12 , 33 , 20 , 34 , 24 , 36 , 7 , 11 , 40 , 19 , 13 , 48 , 14 , 21 , 35 , 26 ,
37 , 25 , 22 , 38 , 41 , 28 , 42 , 49 , 44 , 50 , 15 , 52 , 23 , 56 , 27 , 39 ,
29 , 43 , 30 , 45 , 51 , 46 , 53 , 54 , 57 , 58 , 60 , 31 , 47 , 55 , 59 , 61 ,
62 , 63] . Here , each successive element Qx [u] (where uE [0 ,
N - 1]) of the sequence Qvindicates the position (in the range
[0 , N - 1]) of the next more reliable uncoded bit of the polar
code , where Qx [0] and QxN - 1] give the positions of the
least and most reliable bits , respectively . For example ,
264 [5] = 16 indicates the that bit in position 16 is more
reliable than the bits in positions Q64 [0] to Q64 [4] , but less
reliable than the bits in positions Q64 [6] to (64 [63] .
[0162] Two polar code rate matching schemes were pro
posed and compared in [19] and Option 2 was selected at
3GPP TSG RAN WG1 Meeting # 90 [18 , Al 6.1.4.2.3] .
Option 2 from [19] defines a sub - block interleaver , which
decomposes the polar encoded bits into 32 equal - length
sub - blocks , which are reordered according to the interleaver
pattern o [0 , 1 , 2 , 4 , 3 , 5 , 6 , 7 , 8 , 16 , 9 , 17 , 10 , 18 , 11 , 19 , 12 ,
20 , 13 , 21 , 14 , 22 , 15 , 23 , 24 , 25 , 26 , 28 , 27 , 29 , 30 , 31] .
Here , each element [m] (where mE [0 , 31]) of the inter
leaver pattern ot indicates the position (in the range [0 , 31])
that the interleaved sub - block in position m is sourced from .
For example , o [9] = 16 indicates that the interleaved sub
block in position 9 is sourced from the sub - block that was in
position 16 before interleaving . Furthermore , dependent on
the uncoded block length A and the encoded block length M ,
Option 2 from [19] defines rules which govern the selection
of the mother code block length N and the selection of
puncturing , shortening or repetition . Crucially , Option 2
from [19] also defines rules which govern the selection of
frozen bits , which depends on all of the other aspects of this
rate matching scheme .
[0163] More specifically , the rate matching scheme influ
ences which of the N uncoded bits are provided by the K
information and Cyclical Redundancy Check (CRC) bits .
The remaining N - K uncoded bits are provided by frozen
bits , which may be scrambled by User Equipment Identifi
cation (UE - ID) bits . In the absence of rate matching , the
positions of the K information and CRC bits would be
selected by using the sequence Qv to identify the K uncoded
bits having the highest reliability , with all other uncoded bits
becoming frozen . However , when rate matching is
employed , this requires a set of frozen bits to be identified
independently of and before applying the sequence . Follow
ing this , the K information and CRC bits are positioned
within the remaining uncoded bits by using the sequence Qv

b23

US 2020/0204197 A1 Jun . 25 , 2020
16

-1

-1

v

to identify those having the highest reliability , with all other
remaining uncoded bits becoming frozen .
[0164] This section proposes examples of hardware imple
mentations that can perform the frozen bit insertion and
removal processes for several bits at a time , allowing them
to be completed using a small number of clock cycles . More
specifically , this allows frozen bits to be interlaced with
information bits and CRC bits , before polar encoding .
Likewise , this allows the frozen bits to be deinterlaced from
the information and CRC bits , following polar decoding .
Examples of the proposed approach may also be adapted to
interlace and deinterlace Parity Check (PC) bits . Examples
of the proposed hardware implementations do not require
circuits for sorting , interleaving or performing other com
plex operations , nor do they require an excessive amount of
ROM for storing pre - computed frozen bit positions or
intermediate variables . Some envisaged examples of the
proposed hardware implementations are detailed below .
[0165] During a first sub - process 4701 , as identified in
FIGS . 16 , 21 , and 25 , some examples of the proposed
hardware implementations consider w uncoded bit posi
tions at a time in order of decreasing reliability , considering
whether each successive uncoded bit is frozen by rate
matching . This continues until K number of bits that are not
frozen by rate matching have been found , whereupon the
reliability of the Kth - most reliable unfrozen bit is determined
and referred to as the threshold reliability 3804. During a
second sub - process 4702 , as identified in FIGS . 16 , 21-24
and 26 , WR uncoded bit positions are considered at a time in
their natural order . Each of the wr uncoded bit positions is
determined to be an information or CRC bit if its reliability
is no less than the threshold reliability 3804 and if it is not
frozen by rate matching , otherwise it is determined to be a
frozen bit . In this way , a bit pattern is generated wr bits at
a time 3409 throughout the second sub - process 4702 , which
identifies whether each uncoded bit is an information or
CRC bit , or if it is a frozen bit . At the same time , the bit
pattern may be used to interlace 101 or deinterlace 112 wr
uncoded bits at a time in their natural order . More specifi
cally , the information and CRC bits may be interlaced with
the frozen bits throughout the second sub - process 4702 , in
order to implement frozen bit insertion 101 during polar
encoding . Likewise , the information and CRC bits may be
deinterlaced from the frozen bits throughout the second
sub - process 4702 , in order to implement frozen bit removal
112 during polar decoding .
[0166] Some examples of the proposed hardware imple
mentations for frozen bit insertion and removal are detailed
in the schematic of FIG . 16 , where the top and bottom halves
correspond to the first and second sub - processes 4701 and
4702 , respectively . This schematic includes four sets of
ROMs 4202 , 3801 , 4203 , 4204 , as detailed below . The
operation of these ROMs and the logic shown in FIG . 16 is
coordinated by the controller 4201 , as detailed below .
[0167] 1) ROMs
[0168] As shown in FIG . 16 , some examples of the
proposed hardware implementations employ four sets of
ROMs , as follows .

[0169] A set of reversed sequence ROMs 4202 stores
the set of reversed sequences { Q32 , 264 , Q128

Q1024 } . Here , each successive element Qv [u]
= QxN - u - 1] (where uE [O , N - 1]) of the reversed
sequence Qve indicates the position (in the range [0 ,
N - 1]) of the next less reliable uncoded bit of the polar

code , where ev [0] and Qv [N - 1] give the positions
of the most and least reliable bits , respectively .

[0170] A set of rank ROMs 3801 stores a set of rank
sequences { R32 , R64 , R 28 , ... , R1024 } . Here , each
element Ry [u] (where uE [O , N - 1]) of the rank
sequence Ry indicates the reliability ranking in the
range [0 , N - 1]) of the corresponding uncoded bit of the
polar code , where a lower value Rx [u] indicates a
higher reliability . For example , R [u] = 0 and Rx [u]
= N - 1 indicate that the uncoded bits u , and u2 are the
most and least reliable bits , respectively . The relation
ship between the reversed sequence Qve and the rank
sequence Ry is such that Qv [Ry [u]] = u .

[0171] A set of deinterleaver ROMs 4203 stores a set of
deinterleaver patterns { 1t32-1 , 164- ?, T128-1
T1024- ? } . Here , each element Ty " [u] (where uE [0 ,
N - 1]) of the deinterleaver pattern Ty ? indicates the
position (in the range [0 , N - 1]) that the polar encoded
bit in position u is interleaved to , during rate matching .
The relationship between the deinterleaver pattern Ty
and the interleaver pattern u is such that a [[aty = [u]
• 32 / N]] = [u : 32 / N] . Furthermore , all elements tx - ' [u] in
Try- that evaluate to the same value of [Ty [u] : 32 / N]
appear in consecutive positions within ty in ascend
ing order .

[0172] A set of interleaved sequence ROMs 4204 stores
a set of interleaved sequences { Q32 " , Q64 " , Q128 " ,

21024 " } . Here , each element ev " [u] of the interleaved
sequence Qv * is obtained as Qv " [u] = ry - ' [[u]] .

[0173] Each address in each reversed sequence ROM 4202
and each interleaved sequence ROM 4204 stores w ele
ments of the respective sequences , where we is a power of
two . More specifically , each successive group of
secutive elements of each reversed sequence Qwe are stored
in successive addresses of the corresponding reversed
sequence ROM 4202 , as exemplified for N = 64 and we = 8 in
FIG . 17. Likewise , each successive group of w , consecutive
elements of each interleaved sequence Qvt are stored in
successive addresses of the corresponding interleaved
sequence ROM 4204 , as exemplified for N = 64 and wo = 8 in
FIG . 18. More specifically , each element in these ROMs
4202 , 4204 is obtained according to Qv [c , i] = Qv [c Wo +
i] and Q " [c , i] = Qv " [cówo + i] , where cE [O , N / wo - 1] is the
corresponding address and iE [0 , w , -1] is the index of the
element within that address .
[0174] By contrast , each address in each deinterleaver
ROM 4203 and each rank ROM 3801 stores WR elements of
the respective sequences , where wr is a power of two that
may be selected independently of w NO More specifically ,
each successive group of wr consecutive elements of each
deinterleaver pattern Tyl are stored in successive addresses
of the corresponding deinterleaver ROM 4203 , as exempli
fied for N = 64 and wr = 4 in FIG . 19. Likewise , each succes
sive group of wr consecutive elements of each rank
sequence Ry are stored in successive addresses of the
corresponding rank ROM 3801 , as exemplified for N = 64
and wr = 4 in FIG . 20. More specifically , each element in
these ROMs 4203 , 3801 is obtained according to itx - ' [c ,
i] = ry - ' [C.Wr + i] and Ry [c , i] = Ry [c.Wr + i] , where cELO ,
N / wr - 1] is the corresponding address and iE [0 , wr - 1] is the
index of the element within that address .
[0175] Note that in cases where N < w , or N < wr , each
sequence stored in a corresponding ROM X202 , 3801 , 4203 ,
4204 may be appended with wo - N or wr - N dummy ele

wo con

US 2020/0204197 A1 Jun . 25 , 2020
17

-continued
3N

AND M > AND U ?
4

3N M

4

OR (M < 33 AND U >
9N
16

ments having the value N - 1 , in order to fill a single address
of the ROM . Note that rather than storing sequences of the
same type in separate ROMs corresponding to each sup
ported value of N , these sequences could be stored within
different address spaces of a single larger ROM . In this case ,
the value of N may be used to index a lookup table 3803 ,
which identifies the start address of the corresponding
sequence .
[0176] Assuming that all entries in the ROMs 4202 , 3801 ,
4203 , 4204 are stored using fixed point numbers having a
width of log (Nmax) = 10 bits , the total capacity required for
the ROMs to store all sequences Qv , Qv " , uy- and Ry for
NE { 32 , 64 , 128 , ... , 1024 } is 78.75 kbit . Alternatively , the
total capacity required can be reduced to 71.62 kbit , if
different widths of log (N) bits are used to store the fixed
point numbers for different values of N.
(0177] 2) Logic and Controller
[0178] As shown in FIG . 16 , some examples of the
proposed hardware implementations for frozen bit insertion
and removal comprise four sets of ROMs 4202 , 3801 , 4203 ,
4204 and various logic circuits . These operate under the
coordination of the controller 4201 shown in FIG . 16 ,
according to the flowchart of FIG . 21. As described above ,
some examples of the proposed hardware implementations
complete the processes of frozen bit insertion or removal
using two sub - processes 4701 and 4702 , which correspond
to the left and right halves of FIG . 21. At the beginning of
the first sub - process 4701 , the N logic 4205 of FIG . 16 is
used to compute the mother code block size N , as a function
of the number K of information and CRC bits , as well as of
the number 1 of polar encoded bits that remain after rate
matching . As shown in FIG . 21 , if M < N is not satisfied 4703 ,
then the first sub - process 4701 can be immediately con
cluded by setting the rank threshold k equal to K 4704 ,
where k implements the reliability threshold 3804 men
tioned above . Otherwise , the first sub - process 4701 must use
further computations in order to determine the rank thresh
old k3804
[0179] In this case , the controller 4201 resets the counters
C , and c2 shown in FIG . 16 to zero 4705. In successive clock
cycles , successive addresses of the reversed sequence ROM
4202 and the interleaved sequence ROM 4204 correspond
ing to the particular value of N are indexed using the counter
Ci 4206 , which is incremented in each clock cycle 4706. As
shown in FIGS . 16 and 21 , the W , consecutive elements
Qv [C1 , 0] to Qv [C1 , W , -1] and [c1 , 0] to " [C1 ,
Wo - 1] of the reversed sequence Qve and the interleaved
sequence Qvt are read 4707 , 4708 from the reversed
sequence ROM 4202 and the interleaved sequence ROM
4204 , respectively .
[0180] Each successive set of elements read from the
reversed sequence and interleaved sequence ROMs 4202 ,
4204 in each successive clock cycle is provided to the first
set of f logic 4207 shown in FIG . 16. As shown in FIG . 21 ,
this f logic 4207 obtains a set of w , binary flags by
computing b , [i] = f (K , M , N , Qv [c] , i] , Öv " [C1 , i]) for each
value of iE [0 , w , -1] in parallel 4709 , where

-1

[0181] The binary flags b , [0] to b , [w , -1] obtained in
each clock cycle are provided to the accumulator logic 4208
shown in FIG . 16. As shown in FIG . 21 , this uses an index
i which is initially set to 0 (4710) and is incremented (4711)
towards wo - 1 (4712) , in order to consider the binary flags
in order from b [0] to b , [wg - 1) . At the same time , the
counter c2 4209 is incremented once (4713) for each of the
binary flags having the value ‘ l ’ (4714) . When the counter
c , reaches the value K (4715) , the threshold rank k 3804 is set
equal to c , wo + i + 1 (4716) , whereupon the first sub - process
4701 is completed . More specifically , the first sub - process
4701 continues through successive clock cycles until c2zK
is satisfied (4717) , which will typically occur before c?
reaches the index of the final address of the reversed
sequence and interleaved sequence ROMs 4202 , 4204 .
[0182] As shown in FIGS . 16 and 21 , the threshold rank k
3804 is stored in a register 4210 , so that it can be used
throughout the second sub - process 4702. At the start of the
second sub - process 4702 , the controller 4201 resets the
counter cz 4203 shown in FIG . 16 to zero 4718. In succes
sive clock cycles , successive addresses of the deinterleaver
ROM 4203 and the rank ROM 3801 corresponding to the
particular value of N are indexed using the counter C3 , which
is incremented in each clock cycle 4721 , until cz = N / wr - 1 is
satisfied 4729. As shown in FIGS . 16 and 21 , the wr
consecutive elements ay ' [cz , 0] to ty [Cz , Wr - 1] and
Ry [C3 , 0] to Rx [C3 , Wr - 1] of the deinterleaver pattern Ty
and the rank sequence Ry are read 4719 , 4720 from the
deinterleaver ROM 4203 and the rank ROM 3801 , respec
tively .
[0183] Each successive set of elements read from the
deinterleaver ROM 4203 in each successive clock cycle is
provided to the second set of flogic 4211 shown in FIG . 16 .
Note that since the first and second sets of f logic are not
used simultaneously , they may share the same hardware by
multiplexing between the inputs provided in the first sub
process 4701 and those provided in the second sub - process
4702. As shown in FIG . 21 , this f logic obtains a set of wr
binary flags by computing b2 [i] = f (K , M , N , czwrti , ty = " [03 ,
i]) of (1) 4722 for each value of iELO , wr - 1] 4726 , 4727 ,
4728 in parallel . At the same time , each successive set of
elements read from the rank ROM 3801 in each successive
clock cycle is provided to the set of wr comparators 3802
shown in FIG . 16. As shown in FIG . 21 , these comparators
obtain a set of wr binary flags 4204 by computing bz [i] = Rx
[cz , i] < k for each value of iELO , WR - 1] in parallel 4723 .
Then , the binary flags b2 [0] to bz [wr - 1] and b3 [0] to
b3 [wr - 1] are provided to a set of WR AND gates 4212 , which
obtain a set of wr binary flags 3409 by computing b4 [i] =
(b2 [i] AND 63 [i]) for each value of iE [0 , wr - 1] in parallel
4724 , as shown in FIG . 21. Tables 22 to 24 illustrate the bit
patterns b4 [0] to b4 [WR - 1] 3409 that are generated in each
clock cycle of the second sub - process 4702 , for examples in
which repetition , shortening and puncturing are used .
[0184] In each successive clock cycle of the second sub
process 4702 , the bit pattern b4 [0] to b_ [wr - 1] may be used
to interlace 101 or deinterlace 112 each successive set of wr

K (1) f (K , M , N , u , ten [u]) = M N OR
7

16 AND T ' [u] < M
K 7

OR isto AND T ' [u] 2 N - M 16

US 2020/0204197 A1 Jun . 25 , 2020
18

ducing WR

uncoded bits in parallel 4725 , as shown in FIGS . 16 and 21 .
Each of the bits in the bit pattern b4 [0] to b4 [wr - 1] having
the value ‘ l’indicates that the corresponding uncoded bit is
provided by an information or CRC bit . Likewise , each of
the bit pattern bits having the value o indicates that the
corresponding uncoded bit is a frozen bit , which may be
scrambled by the UE - ID . During polar encoding , the inter
lacer of FIG . 16 operates on the basis of First - In First - Out
(FIFO) buffering . In each clock cycle , an input FIFO buffer
supplies a number of information and CRC bits equal to the
number of 1s in the corresponding bit pattern . Meanwhile , a
second input FIFO buffer supplies a number of UE - ID
scrambled frozen bits equal to the number of Os in the bit
pattern . Alternatively , if UE - ID scrambling is not used and
all frozen bits adopt a value of ' o ' , then the second FIFO
buffer can be replaced with a circuit that supplies the
corresponding number of O - valued bits . The interlacer 101
of FIG . 16 may then interlace the information , CRC and
frozen bits according to the corresponding bit pattern , pro

number of uncoded bits in parallel , in each clock
cycle of the second sub - process 4702. Likewise , during
polar decoding , the deinterlacer 112 of FIG . 16 may perform
the reverse operation for wr number of uncoded bits in each
clock cycle , where the information and CRC bits are pro
vided to an output FIFO buffer .
[0185] The total number of clock cycles required to com
plete the frozen bit insertion and removal processes is given
by the sum of the number used in each of the first and second
sub - processes 4701 and 4702. FIG . 25 characterises the
number of clock cycles required to complete the first sub
process 4701 as a function of K and M , for the worst case
where wo = 1 . When we adopts the value of a higher power
of two , the number of clock cycles required may be obtained
by linearly scaling down those of FIG . 25 and taking the
ceiling . It may be observed that greater numbers of clock
cycles are required at coding rates of K / M > 7/16 , where
shortening is employed . This is because shortening uses
some of the most reliable uncoded bit positions for frozen
bits . A smaller number of clock cycles is required when
employing puncturing , since this typically uses the least
reliable bit positions for frozen bits . More specifically , the
number of clock cycles used in the first sub - process 4701
with w No 1 is equal to k 3804 in the case of shortening or
puncturing . By contrast , no clock cycles are required when
employing repetition , as described above . Note however that
the first sub - process 4701 may be completed in parallel with
CRC generation and interleaving during polar encoding and
in parallel with channel interleaving during polar decoding .
Owing to this , the first sub - process 4701 does not necessar
ily impose additional latency . The number of clock cycles
required to complete the second sub - process 4702 is given
by [N / wr] , as characterised in FIG . 26 , for the worst case
where wr = 1 . When wr adopts the value of a higher power
of two , the number of clock cycles required may be obtained
by linearly scaling down those of FIG . 26 and taking the
ceiling . The second sub - process 4702 can stream uncoded
bits into a polar encoder kernal or stream uncoded bits out
of a polar decoder kernal alongside their operation , without
imposing additional latency .
(0186] This section has proposed some examples of hard
ware implementations that can perform the frozen bit inser
tion and removal processes for several bits at a time ,
allowing them to be completed using a small number of
clock cycles . More specifically , this allows frozen bits

(which may be scrambled using UE - ID bits) to be interlaced
with information bits and CRC bits , before polar encoding .
Likewise , this allow the frozen bits to be deinterlaced from
the information and CRC bits , following polar decoding .
Some examples of the proposed hardware implementations
do not require circuits for sorting , interleaving or performing
other complex operations , nor do they require an excessive
amount of ROM for storing pre - computed frozen bit posi
tions or intermediate variables . Some , and in some instances
all , operations of the proposed hardware implementations
can be performed alongside other polar encoding or decod
ing operations and so they do not impose any additional
latency .
[0187] Referring now to FIG . 14 , a high - level flowchart
1400 of a polar coder operation performed by a bit pattern
generator is illustrated in accordance with some example
embodiments of the invention . The flowchart comprises , at
1402 , successively performing a bit pattern generation pro
cess over a series (t = [n / w]) of clock cycles by a bit pattern
generator (3403) . At 1404 , the flowchart moves to counting
a number of successive bit pattern generation sub - processes
over the series (t = [n / w]) of clock cycles . At 1406 , a suc
cessive sub - set of (w) bits from a bit pattern vector (bk.n) in
each successive t = [n / w] clock cycle is provided ; where the
bit pattern vector comprises ‘ n bits , of which ‘ k ’ bits adopt
a first binary value and n - k bits adopt a complementary
binary value .
[0188] Referring now to FIG . 15 , there is illustrated a
typical computing system 1500 that may be employed to
implement polar encoding according to some example
embodiments of the invention . Computing systems of this
type may be used in wireless communication units . Those
skilled in the relevant art will also recognize how to imple
ment the invention using other computer systems or archi
tectures . Computing system 1500 may represent , for
example , a desktop , laptop or notebook computer , hand - held
computing device (PDA , cell phone , palmtop , etc.) , main
frame , server , client , or any other type of special or general
purpose computing device as may be desirable or appropri
ate for a given application or environment . Computing
system 1500 can include one or more processors , such as a
processor 1504. Processor 1504 can be implemented using
a general or special - purpose processing engine such as , for
example , a microprocessor , microcontroller or other control
logic . In this example , processor 1504 is connected to a bus
1502 or other communications medium . In some examples ,
computing system 1500 may be a non - transitory tangible
computer program product comprising executable code
stored therein for implementing polar encoding .
[0189] Computing system 1500 can also include a main
memory 1508 , such as random access memory (RAM) or
other dynamic memory , for storing information and instruc
tions to be executed by processor 1504. Main memory 1508
also may be used for storing temporary variables or other
intermediate information during execution of instructions to
be executed by processor 1504. Computing system 1500
may likewise include a read only memory (ROM) or other
static storage device coupled to bus 1502 for storing static
information and instructions for processor 1504 .
[0190] The computing system 1500 may also include
information storage system 1510 , which may include , for
example , a media drive 1512 and a removable storage
interface 1520. The media drive 1512 may include a drive or
other mechanism to support fixed or removable storage

US 2020/0204197 A1 Jun . 25 , 2020
19

media , such as a hard disk drive , a floppy disk drive , a
magnetic tape drive , an optical disk drive , a compact disc
(CD) or digital video drive (DVD) read or write drive (R or
RW) , or other removable or fixed media drive . Storage
media 1518 may include , for example , a hard disk , floppy
disk , magnetic tape , optical disk , CD or DVD , or other fixed
or removable medium that is read by and written to by media
drive 1512. As these examples illustrate , the storage media
1518 may include a computer - readable storage medium
having particular computer software or data stored therein .
[0191] In alternative embodiments , information storage
system 1510 may include other similar components for
allowing computer programs or other instructions or data to
be loaded into computing system 1500. Such components
may include , for example , a removable storage unit 1522
and an interface 1520 , such as a program cartridge and
cartridge interface , a removable memory (for example , a
flash memory or other removable memory module) and
memory slot , and other removable storage units 1522 and
interfaces 1520 that allow software and data to be trans
ferred from the removable storage unit 1518 to computing
system 1500 .
[0192] Computing system 1500 can also include a com
munications interface 1524. Communications interface 1524
can be used to allow software and data to be transferred
between computing system 1500 and external devices .
Examples of communications interface 1524 can include a
modem , a network interface (such as an Ethernet or other
NIC card) , a communications port (such as for example , a
universal serial bus (USB) port) , a PCMCIA slot and card ,
etc. Software and data transferred via communications inter
face 1524 are in the form of signals which can be electronic ,
electromagnetic , and optical or other signals capable of
being received by communications interface 1524. These
signals are provided to communications interface 1524 via a
channel 1528. This channel 1528 may carry signals and may
be implemented using a wireless medium , wire or cable ,
fibre optics , or other communications medium . Some
examples of a channel include a phone line , a cellular phone
link , an RF link , a network interface , a local or wide area
network , and other communications channels .
[0193] In this document , the terms ' computer program
product ' , ' computer - readable medium ' and the like may
used generally to refer to media such as , for example ,
memory 1508 , storage device 1518 , or storage unit 1522 .
These and other forms of computer - readable media may
store one or more instructions for use by processor 1504 , to
cause the processor to perform specified operations . Such
instructions , generally referred to as “ computer program
code (which may be grouped in the form computer
programs or other groupings) , when executed , enable the
computing system 1500 to perform functions of embodi
ments of the present invention . Note that the code may
directly cause the processor to perform specified operations ,
be compiled to do so , and / or be combined with other
software , hardware , and / or firmware elements (e.g. , libraries
for performing standard functions) to do so .
[0194] In an embodiment where the elements are imple
mented using software , the software may be stored in a
computer - readable medium and loaded into computing sys
tem 1500 using , for example , removable storage drive 1522 ,
drive 1512 or communications interface 1524. The control
logic (in this example , software instructions or computer
program code) , when executed by the processor 1504 ,

causes the processor 1504 to perform the functions of the
invention as described herein .
[0195] In the foregoing specification , the invention has
been described with reference to specific examples of
embodiments of the invention . It will , however , be evident
that various modifications and changes may be made therein
without departing from the scope of the invention as set forth
in the appended claims and that the claims are not limited to
the specific examples described above .
[0196] The connections as discussed herein may be any
type of connection suitable to transfer signals from or to the
respective nodes , units or devices , for example via interme
diate devices . Accordingly , unless implied or stated other
wise , the connections may for example be direct connections
or indirect connections . The connections may be illustrated
or described in reference to being a single connection , a
plurality of connections , unidirectional connections , or bidi
rectional connections . However , different embodiments may
vary the implementation of the connections . For example ,
separate unidirectional connections may be used rather than
bidirectional connections and vice versa . Also , plurality of
connections may be replaced with a single connection that
transfers multiple signals serially or in a time multiplexed
manner . Likewise , single connections carrying multiple sig
nals may be separated out into various different connections
carrying subsets of these signals . Therefore , many options
exist for transferring signals .
[0197] Those skilled in the art will recognize that the
architectures depicted herein are merely exemplary , and that
in fact many other architectures can be implemented which
achieve the same functionality .
[0198] Any arrangement of components to achieve the
same functionality is effectively “ associated ' such that the
desired functionality is achieved . Hence , any two compo
nents herein combined to achieve a particular functionality
can be seen as ' associated with each other such that the
desired functionality is achieved , irrespective of architec
tures or intermediary components . Likewise , any two com
ponents so associated can also be viewed as being “ operably
connected , ' or ' operably coupled , ' to each other to achieve
the desired functionality .
[0199] Furthermore , those skilled in the art will recognize
that boundaries between the above described operations
merely illustrative . The multiple operations may be com
bined into a single operation , a single operation may be
distributed in additional operations and operations may be
executed at least partially overlapping in time . Moreover ,
alternative embodiments may include multiple instances of
a particular operation , and the order of operations may be
altered in various other embodiments .
[0200] The present invention is herein described with
reference to an integrated circuit device comprising , say , a
microprocessor configured to perform the functionality of a
polar decoder . However , it will be appreciated that the
present invention is not limited to such integrated circuit
devices , and may equally be applied to integrated circuit
devices comprising any alternative type of operational func
tionality . Examples of such integrated circuit device com
prising alternative types of operational functionality may
include , by way of example only , application - specific inte
grated circuit (ASIC) devices , field - programmable gate
array (FPGA) devices , or integrated with other components ,
etc. Furthermore , because the illustrated embodiments of the
present invention may for the most part , be implemented

be

US 2020/0204197 A1 Jun . 25 , 2020
20

using electronic components and circuits known to those
skilled in the art , details have not been explained in any
greater extent than that considered necessary , for the under
standing and appreciation of the underlying concepts of the
present invention and in order not to obfuscate or distract
from the teachings of the present invention . Alternatively ,
the circuit and / or component examples may be implemented
as any number of separate integrated circuits or separate
devices interconnected with each other in a suitable manner .
[0201] Also for example , the examples , or portions
thereof , may implemented as soft or code representations of
physical circuitry or of logical representations convertible
into physical circuitry , such as in hardware description
language of any appropriate type .
[0202] Also , the invention is not limited to physical
devices or units implemented in non - programmable hard
ware but can also be applied in programmable devices or
units able to perform the desired polar encoding by operat
ing in accordance with suitable program code , such as
minicomputers , personal computers , notepads , personal
digital assistants , electronic games , automotive and other
embedded systems , cell phones and various other wireless
devices , commonly denoted in this application as “ computer
systems ' .
[0203] However , other modifications , variations and alter
natives are also possible . The specifications and drawings
are , accordingly , to be regarded in an illustrative rather than
in a restrictive sense .
[0204] In the claims , any reference signs placed between
parentheses shall not be construed as limiting the claim . The
word “ comprising ' does not exclude the presence of other
elements or steps then those listed in a claim . Furthermore ,
the terms “ a ' or ‘ an , ' as used herein , are defined as one or
more than one . Also , the use of introductory phrases such as
at least one ' and ' one or more in the claims should not be

construed to imply that the introduction of another claim
element by the indefinite articles “ a ' or “ an ’ limits any
particular claim containing such introduced claim element to
inventions containing only one such element , even when the
same claim includes the introductory phrases “ one or more ’
or at least one ' and indefinite articles such as ' a ' or ' an . ' The
same holds true for the use of definite articles . Unless stated
otherwise , terms such as ‘ first ' and ' second ' are used to
arbitrarily distinguish between the elements such terms
describe . Thus , these terms are not necessarily intended to
indicate temporal or other prioritization of such elements .
The mere fact that certain measures are recited in mutually
different claims does not indicate that a combination of these
measures cannot be used to advantage .

[0208] [4] Huawei , HiSilicon , “ Evaluation of channel cod
ing schemes for control channel , ” in 3GPP TSG RAN
WG1 Meeting # 86bis , Lisbon , Portugal , October 2016 ,
R1-1608863 .

[0209] [5] CATT , “ Polar codes design for eMBB control
channel , ” in 3GPP TSG RAN WG1 AH NR Meeting ,
Spokane , USA , January 2017 , R1-1700242 .

[0210] [6] ZTE , ZTE Microelectronics , “ Rate matching of
polar codes for eMBB , ” in 3GPP TSG RAN WG1 Meet
ing # 88 , Athens , Greece , February 2017 , R1-1701602 .

[0211] [7] I. Tal and A. Vardy , “ List decoding of polar
codes , ” in 2011 IEEE International Symposium on Infor
mation Theory Proceedings , July 2011 , pp . 1-5 .

[0212] [8] Huawei , HiSilicon , " Sequence design for polar
codes , ” in 3GPP TSG RAN WG1 Meeting # 89 , Hang
zhou , China , May 2017 , R1-1706966 .

[0213] [9] Qualcomm Incorporated , “ Polar code informa
tion bit allocation and nested extension construction , ” in
3GPP TSG RAN WG1 Meeting # 88 , Athens , Greece ,
February 2017 , R1-1702646 .

[0214] [10] Nokia , Alcatel - Lucent Alcatel - Lucent Shanghai Bell ,
“ Sequence design for polar codes , ” in 3GPP TSG RAN
WG1 Meeting # 89 , Hangzhou , China , May 2017 ,
R1-1708834 .

[0215] [11] NTT DOCOMO , “ Sequence design of polar
codes , ” in 3GPP TSG RAN WG1 Meeting # 89 , Hang
zhou , China , May 2017 , R1-1708489 .

[0216] [12] Samsung , “ Design of a nested polar code
sequences , ” in 3GPP TSG RAN WG1 Meeting # 89 ,
Hangzhou , China , May 2017 , R1-1708051 .

[0217] [13] G. Sarkis , I. Tal , P. Giard , A. Vardy , C.
Thibeault , and W. J. Gross , “ Flexible and low - complexity
encoding and decoding of systematic polar codes , ” IEEE
Transactions on Communications , vol . 64 , no . 7 , pp .
2732-2745 , July 2016 .

[0218] [14] C. Leroux , A. J. Raymond , G. Sarkis , and W.
J. Gross , “ A semi - parallel successive - cancellation
decoder for polar codes , ” IEEE Transactions on Signal
Processing , vol . 61 , no . 2 , pp . 289-299 , January 2013 .

[0219] [15] G. Berhault , C. Leroux , C. Jego , and D. Dallet ,
“ Hardware implementation of a soft cancellation decoder
for polar codes , ” in 2015 Conference on Design and
Architectures for Signal and Image Processing (DASIP) ,
September 2015 , pp . 1-8 .

[0220] [16] Qualcomm Incorporated , " A comprehensive
rate - matching scheme for polar codes and performance
evaluation , ” in 3GPP TSG RAN WG1 Meeting # 88bis ,
Spokane , USA , April 2017 , R1-1705634 .

[0221] [17] Huawei , “ Summary of email discussion
[NRAH2-11] Polar code sequence , ” in 3GPP TSG RAN
WG1 Meeting # 90 , Prague , Czech Republic , August
2017 , R1-1712174 .

[0222] [18] MCC Support , “ Draft Report of 3GPP TSG
RAN WG1 # 90 v0.1.0 , ” in 3GPP TSG RAN WG1 Meet
ing # 90 , Prague , Czech Republic , August 2017 .

[0223] [19] Media Tek , Qualcomm , Samsung , ZTE , “ Way
Forward on Rate - Matching for Polar Code , ” in 3GPP
TSG RAN WG1 Meeting # 90 , Prague , Czech Republic ,
August 2017 , R1-1715000 .
1-74 . (canceled)
75. An electronic device configured to perform polar

coding , the electronic device comprising :

REFERENCES

[0205] [1] E. Arikan , “ Channel polarization : A method for
constructing capacity - achieving codes for symmetric
binary - input memoryless channels , ” IEEE Transactions
on Information Theory , vol . 55 , no . 7 , pp . 3051-3073 , July
2009 .

[0206] [2] K. Niu and K. Chen , “ CRC - aided decoding of
polar codes , ” IEEE Communications Lett vol . 16 , no .
10 , pp . 1668-1671 , October 2012 .

[0207] [3] Huawei , HiSilicon , “ Polar code construction
for NR , ” in 3GPP TSG RAN WG1 Meeting # 86bis ,
Lisbon , Portugal , October 2016 , R1-1608862 .

US 2020/0204197 A1 Jun . 25 , 2020
21

a bit pattern generator configured to successively perform
a bit pattern generation process over a series , t = [n / w] ,
of clock cycles ; and

a counter , c , operably coupled to the bit pattern generator
and configured to count a number of successive bit
pattern generation sub - processes over the series , t = [n /
w] , of clock cycles ,

wherein the bit pattern generator is configured to :
provide a successive sub - set of , w , bits from a bit pattern

vector , bk , n , in each successive t = [n / w] clock cycle ;
where the bit pattern vector comprises n bits , of which
‘ k ' bits adopt a first binary value and n - k bits adopt a
complementary binary value , and wherein the bit pat
tern generator comprises a bank of (w) comparators ,
and wherein the successive sub - set of , w , bits cause
each of bit pattern bits { bo , b1 , b2 , ... , b [text missing
or illegible when filed] .i } to be obtained from a
corresponding comparator in the bank of w compara
tors .

76. The electronic device of claim 75 , wherein the bit
pattern generator comprises a rank read only memory , ROM ,
configured to store information sufficient to obtain a rank
vector , Rn , for each supported length of the bit pattern , ‘ n ’ ,
wherein the rank vector , Rn , for a length of the bit pattern ,
‘ n ’ , comprises integers in a range of ‘ O ’ to n - 1 ” , permuted
in an order that corresponds to a rank of each bit position ,
and wherein the bit pattern vector , bk , no is generated for a
respective combination of the number , k , of bits in a bit
pattern adopting the first binary value and the length of the
bit pattern ' n ' using the bank of w comparators that com
pares each element of the rank vector , R. , with ‘ k ' .

77. The electronic device of claim 76 , wherein the rank of
each bit position indicates a maximum value for the number
k'out of ‘ n ’ bits in the bit pattern adopting the first binary
value , for which a corresponding bit in the bit pattern vector ,
bkin , has a complementary binary value , and wherein each
comparison determines whether the element of the rank
vector , Rm is less than ‘ k ' .

78. The electronic device of claim 76 , wherein at least one
of the following is adopted :

a length of the bit pattern n is used to index a second
look - up table , in order to identify a start address of each
particular rank vector , Rn ;

the rank ROM comprises multiple multiplexed rank
ROMs , wherein one multiplexed rank ROM is config
ured to store the rank vector , R. „ , corresponding to each
supported value of the length of the bit pattern ‘ n ’ .

79. The electronic device of claim 76 , wherein at least one
of the following is adopted :

all entries in the rank ROM are stored using fixed point
numbers having a width of log2 (nmax) bits , where nmax
is a maximum of the supported bit pattern lengths ;

all entries in the rank ROM for values of n are stored using
fixed point numbers having a width of log (n) bits .

80. The electronic device of claim 76 , wherein each
address of the rank ROM is configured to store w fixed - point
numbers and wherein the rank ROM , in cases where n < w , is
configured to append the rank vector , Rm , with w - n dummy
elements , such that the rank vector , Rm occupies a width of
a single address in the rank ROM .

81. The electronic device of claim 76 , wherein the rank
ROM is operably coupled to the counter , c , such that during
each successive sub - process of the bit pattern generation
process , the counter , c , is configured to increment a counter
value from ' O ' to ' t - 1 ' wherein the counter value is used as

an offset from a start address of the rank ROM in order to
read successive w - element sub - sets of the rank vector , Rn .

82. The electronic device of claim 76 , wherein a bit
pattern bit of the bit pattern vector bkin is obtained by
representing both a rank value and k using a two's comple
ment fixed - point number representation , and the bit pattern
generator circuit performs a twos complement subtraction of
‘ k ’ from the rank value and then uses a most significant bit ,
MSB , as a value of the bit pattern bit .

83. The electronic device of claim 75 , wherein frozen bit
insertion or frozen bit removal within the polar coding is
performed by the electronic device and the frozen bit
insertion or frozen bit removal comprises at least two
sub - processes and the bit pattern generator is configured to
provide the successive sub - set of (w) bits from the bit pattern
vector (bk.n) in each successive t = [n / w] clock cycle that
spans a duration of a second sub - process that is preceded by
a first sub - process that spans a series of zero or more clock
cycles and wherein a first logic circuit is arranged to provide
during the first sub - process a reliability threshold , k , to an
input of the bit pattern generator for use in the second
sub - process .

84. The electronic device of claim 83 , wherein the elec
tronic device is configured to support at least two modes of
operation , where a respective mode of operation is
employed in response to whether a number , M , of encoded
bits is less than a kernal block size , N , and wherein the at
least two modes of operation comprise at least two from : a
repetition mode of operation when M is not less than N , a
shortening mode of operation when M < N , a puncturing
mode of operation when M < N .

85. The electronic device of claim 84 , wherein the first
sub - process has zero clock cycles , and the second sub
process is performed when M is not less than N , and the
threshold reliability number , k , is set to a number of K bits
that adopt the first binary value in a final output bit sequence .

86. The electronic device of claim 84 , further comprising
a controller operably coupled to a second counter arranged
to count a number of clock cycles under control of the
controller in the first sub - process when M is less than N , and
the first sub - process determines the rank threshold , k , that
indicates a number of bits having the first binary value
contained in an intermediate value for the bit pattern vector ,
bk.no output by the bit pattern generator .
87. The electronic device of claim 86 , further comprising

a second logic circuit configured to successively perform a
binary flag generation process over the series (t = [n / w]) of
clock cycles that comprise the second sub - process and
configured to provide a successive sub - set of w binary flags
in each successive t = [n / w] clock cycle and wherein a binary
flag is set in the binary flag generation process if a corre
sponding bit in the bit pattern vector , bk?n , is not frozen by
rate matching

88. The electronic device of claim 87 , further comprising
a third logic circuit configured to receive at least a first input
from the second logic circuit and a second input from the bit
pattern generator wherein the third logic circuit is configured
to provide an output of a first binary value when a bit in the
subset of w bits of the intermediate bit pattern vector , bk , ne
from the bit pattern generator - adopts the first binary value
and a corresponding flag from a plurality of binary flags
from the second logic circuit is set , thereby adjusting a bit
pattern vector , bking of the intermediate bit pattern based on
the at least first and second inputs .

US 2020/0204197 A1 Jun . 25 , 2020
22

89. The electronic device of claim 83 , wherein the first
logic circuit is arranged to identify the reliability threshold ,
k , for use in the second sub - process by determining whether
each uncoded bit is frozen by rate matching and the first
logic circuit comprises a non - frozen bit counter arranged to
count a number of uncoded bits that are not frozen by rate
matching in order of decreasing reliability during the first
sub - process , and once the count reaches the number of final
value bits in a final output bit sequence , K , whereupon the
rank of the Kth most reliable unfrozen bit is determined as
the rank threshold , k , and the first logic circuit provides the
rank threshold k as an input to the bit pattern generator .

90. The electronic device of claim 83 , wherein the elec
tronic device further comprises at least one of :

a set of reversed sequence read only memories , ROMs ,
located in the first logic circuit configured to store sets
of reversed sequences where each successive element
of the reversed sequence indicates a position of each
successive uncoded bit arranged in order of decreasing
reliability ;

a set of deinterleaver ROMs located in the first logic
circuit configured to store a set of deinterleaver pat
terns , where each element of the deinterleaver pattern
indicates an interleaved position of a polar encoded bit
during rate matching ;

a set of interleaved sequence ROMs located in the first
logic circuit configured to store a set of interleaved
sequences ;

a second counter , cl , incremented in successive clock
cycles of the first sub - process , wherein successive
addresses of a reversed sequence ROM and successive
addresses of an interleaved sequence ROM , corre
sponding to a particular value of N are indexed ;

a rank ROM located in the bit pattern generator config
ured to store information sufficient to obtain a rank
vector , Rn , for each supported length of the bit pattern ,

complementary binary value in the bit pattern vector , bk , na
and identify using the first binary value in the bit pattern
vector , bk , n , a bit that comprises one from a group of : an
information bit , a cyclic redundancy check , CRC , bit , a
parity - check frozen bit , a user equipment identifier , UE - ID ,
bit , a hash bit .

92. The electronic device of claim 75 , wherein the elec
tronic device comprises at least one of : a transmitter com
prising an encoder configured to perform the bit pattern
generation process , a receiver comprising a decoder config
ured perform the bit pattern generation process .

93. An integrated circuit for an electronic device config
ured to perform polar coding , the integrated circuit com
prising :

a bit pattern generator configured to successively perform
a bit pattern generation process over a series (t = [n / w])
of clock cycles ; and

a counter , c , operably coupled to the bit pattern generator
and configured to count a number of successive bit
pattern generation sub - processes over the series , t = [n /
w] , of clock cycles ,

wherein the bit pattern generator is configured to :
provide a successive sub - set of (w) bits from a bit pattern

vector (bkn) in each successive t = [n / w] clock cycle ;
where the bit pattern vector comprises n bits , of which
‘ k ' bits adopt a first binary value and n - k bits adopt a
complementary binary value and wherein the bit pat
tern generator comprises a bank of (w) comparators ,
and wherein the successive sub - set of w bits cause each
of w bit pattern bits { bo , bi , b2 , bw - 1 } to be
obtained from a corresponding comparator in the bank
of w comparators .

94. A method of polar coding , wherein the method com
prises :

successively performing a bit pattern generation process
over a series , t = [n / w] , of clock cycles by a bit pattern
generator ;

counting a number of successive bit pattern generation
sub - processes over the series t = [n / w] of clock cycles ;
and

providing a successive sub - set of w bits from a bit pattern
vector , bkin , in each successive t = [n / w] clock cycle ;
where the bit pattern vector comprises ‘ n’bits , of which
‘ k ' bits adopt a first binary value and n - k bits adopt a
complementary binary value and wherein the bit pat
tern generator comprises a bank of w comparators , and
wherein the successive sub - set of (w) bits cause each of
w bit pattern bits { bo , b? , b2 , ... , bw - 1 } to be obtained
from a corresponding comparator in the bank of w
comparators .

‘ n ’ ;
a first set of functional logic , f1 , located in the first logic

circuit and configured to obtain a set of binary flags
based on received successive sets of elements read
from the set of reversed sequence ROMs and the set of
interleaved sequence ROMs in each successive clock
cycle ; and

an accumulator logic circuit located in the first logic
circuit and configured to receive and count the set of
binary flags up to a number , K , of uncoded bits that are
not frozen by rate matching in a final output bit
sequence , and the threshold reliability number , k , is set
to complete the first sub - process .

91. The electronic device of claim 83 , wherein the first
logic circuit is configured to identify a frozen bit as the

