US011190221B2

a2 United States Patent

a0y Patent No.: US 11,190,221 B2

Maunder et al. 45) Date of Patent: Nov. 30, 2021
(54) POLAR DECODER WITH LLR-DOMAIN (51) Imt. CL
COMPUTATION OF F-FUNCTION AND HO4L 1/18 (2006.01)
G-FUNCTION HO3M 13/00 (2006.01)
(Continued)
(71) Applicants:Robert Maunder, Southampton (GB); (52) US. CL
Matthew Brejza, Southampton (GB), CPC ... HO3M 13/6575 (201301), HO3M 13/13
Shida Zhong, Southampton (GB); (2013.01); HO3M 13/6362 (2013.01);
Isaac Perez-Andrade, Southampton (Continued)
(GB); Taihai Chen, Southampton (GB) (58) Field of Classification Search
CPC HO3M 13/6575; HO3M 13/13; HO3M
(72) Inventors: Robert Maunder, Southampton (GB); 13/6362; HO3M 13/6505; HO3M 13/6508;
Matthew Brejza, Southampton (GB); (Continued)
Shida Zhong, Southampton (GB);
Isaac Perez-Andrade, Southampton (56) References Cited
(GB); Taihai Chen, Southampton (GB)
U.S. PATENT DOCUMENTS
(73) Assignee: Accelercomm Limited, Southampton 11,063,614 Bl * 7/2021 Chen .oovvevve.. HO3M 13/6502
(GB) 2013/0117344 Al 5/2013 Gross
(Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 194 days.
Yun H-R et al: “Simplified merged processing element for successive-
(21) Appl. No.: 16/622,905 cancellation polar decoder”, Electronics Letters, IEE Stevenage,
GB, vo 1 * 52, No. 4, Feb. 18, 2016 (Feb. 18, 2016), pp. 270-272,
(22) PCT Filed: Jun. 12. 2018 XP006055382, ISSN: 0013-5194, DOI: 10.1049/EL.2015.3432 the
' e whole document.
(86) PCT No.: PCT/EP2018/065549 (Continued)
§ 371 (c)(1), Primary Examiner — Christine T. Tu
(2) Date: Dec. 13, 2019 (74) Attorney, Agent, or Firm — Optimus Patents US,
LLC
(87) PCT Pub. No.: WO02018/229073
(57) ABSTRACT
PCT Pub. Date: Dec. 20, 2018 A polar decoder kernal is described. The polar decoder
. o kernal includes a processing unit having: at least one input
(65) Prior Publication Data configured to recé)ive at lefst one inpu;g Logarithmic LiEe-
US 2021/0159915 Al May 27, 2021 lihood Ratio, LLR; a logic circuit configured to manipulate
the at least one input LLR; and at least one output configured
(30) Foreign Application Priority Data to output the manipulated at least one LLR. The logic circuit
of the processing unit includes only a single two-input adder
Jun. 15, 2017 (GB) oo, 1709505 to manipulate the at least one input LLR, and the input LLR
Sep. 14, 2017 (GB) .evvviviviviviviieeeeeene 1714766 (Continued)
o
oo

- lsion iy
+ isign Rk
- Joon Gty

o a~olf

xira | Slgn | ac

g operation (fig:
E

[
B

5"

2200

US 11,190,221 B2
Page 2

and manipulated LLR are in a format of a fixed-point
number representation that comprises a two’s complement
binary number and an additional sign bit.

20 Claims, 31 Drawing Sheets

(51) Int. CL
HO3M 13/13 (2006.01)
HO4L 1/00 (2006.01)
(52) US.CL

CPC ... HO3M 13/6505 (2013.01); HO3M 13/6508
(2013.01); HO3M 13/6516 (2013.01); HO3M
13/6577 (2013.01); HO4L 1/0054 (2013.01)
(58) Field of Classification Search
CPC HO3M 13/6516; HO3M 13/6577; HO4L
1/0054
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2018/0083655 Al* 3/2018 El-Khamy HO1L 22/10
2018/0123615 Al* 5/2018 Varatkar ... HO4L 1/0054

OTHER PUBLICATIONS

EPO Article 43 Communication; EPO Application No. 18 730
778.0-1210; dated Sep. 29, 2021; pp. 1-9.

* cited by examiner

US 11,190,221 B2

Sheet 1 of 31

Nov. 30, 2021

U.S. Patent

l "©Id
001 _
0=lfe]l=
4 0Ll m z1l oy El=e
/ €Ll / 142" / ,_\
601l W N ,— Z\ skt
jewiay| b
)00|q papoou3] 0 1ejod L 300|q uol} Ju|
0=Ypiq]=q 0=lh=x 0="[lp]=0
LN~ - I-N =N s)q
uonewou|
19019 1 1 vm:o>oowm
papooud Yo0|g %00(q
Hos _%Fwwm_ouw_%w UOHEWLIOM|
eulo DI9A000
fewieNp o YIAIFOTY NI
H3Aa003a ’v10d
300jq
uoIBUWLIO|
[euso)y
0=lffnl=n
o N o
Buiuonipuco \ SRR sy PR Bujuonipuco Txlxl\
)00|q pepoouy 7 Teio] 7 / 320|q uoneLwIolu| 0=Ie]oe
0=Apig]=q 0 =Ite]=
g _ b=
W sol) 0=l N\ sob\ 001G
papooug N o0|q c0l L0 uolEWIOo|
papoous
[euso)
HIALIINSNVHL Ni

H3AOON3 dv10d

U.S. Patent Nov. 30, 2021 Sheet 2 of 31

207\Stage 0
"N
0-0 N a
R
204 201
1/“ G
205 206

F
207\ 201 / 207
Stage 0 Stage 1
_______ r - 3

US 11,190,221 B2

i .
PN s N S o W
| \/ | \/
| i
1 44 T
A > 202
D
2 U
3 - - -t
v 4
206
207\ F®:2 207 207
Stage 0 Stage_1_ / 202 Stage 2
fr” 1—__1——_—{_—3: ; 4 A~ R =
n i M /TN
0 i P N E D
I |
. M l)
T N ; N
| i
LM ! (M
S [N ; v
it L m
T I \/
tmmm s “ >203
4 M)
N N
[T
5 N
M
6 N
7 u\ /"’ -t
205 F®3 \ 206
FIG. 2

200

U.S. Patent Nov. 30, 2021 Sheet 3 of 31 US 11,190,221 B2

105 205 204 206 106
e a L)
0 0 1 0 .
frozen bit dl-/ @ @ encoded bit 0
i 0 U 1) 0 it 1
frozen bit ® q.) encoded bit
frozen bit ofl 1 L @ 0 encoded bit 2
info bit O }\ L \r 1 1 @ 0 encoded bit 3
frozen bit ol /0 @ 1 1 encoded bit 4
=\
i i 0 \‘f 0 1 1 ;
info bit 1 (H— encoded bit 5
info bit 2 0l 1 1 1 encoded bit 6
info bit 3 1 \r 1 1 1 encoded bit 7
L R | J | J [\ J LW — _J
. 207 207 207 J 107
v
203
104 b\
300

U.S. Patent Nov. 30, 2021 Sheet 4 of 31 US 11,190,221 B2

403 401 403 i
~ ~ . l‘_‘l a
Xe = f(X, %y) / %, a \ /
< f
N\
ne) 402 404 5
% < g
>"<d=g(>"<a,>'<b,aa)
(a) (b)
403 -~ - A
; 40% / 0,= XOR(Q, Gy) \
- >(+) >

400

402 404

()
o

[et}
o
[~
a
AT

(c)

FIG. 4

US 11,190,221 B2

Sheet 5 of 31

Nov. 30, 2021

U.S. Patent

GLl

G old
00S
/» £0Z
€Ll oz ' 102 102

- -~ -~ — }, L (81)
£ 471 papodue 4. grz-(11) €L'0-(9 vS'0L-(81)
9 Y711 Pepoous 80 ()
PoStezL0- 8z 7-(L1) 18601/ [[EL0 (1)
0 (s1) 0 (v
S dTIPepOdUs ¢ .y 20z (11) 2oz MY gzz (vh)
N 0 (sl N1l o (e})
v HTIPOROUS I Tega-(11) Y 8z'v N: o'z (el)
ot or {o1) b (8)
€ YT POPOOUS 4.4 ~60'0- (1) 96" o-§ 60~ (8)
L (o1) L @ Nl 0 ()
Z ¥T1POPOIUS g = cre-(o) U Tes0 (1)
e (1) D0 (9) 0 (v)
L YT POPOOUS ;0" ~180-(1) ~ ooo@ 180 (v)
N 1 (ow)) 0 (e

apooue + + e
0 ¥TIPop E.Nf we- (1) ~ Qo@ fmo.o (e)

\. - J
601 90z S0z

1
€119 opul

< iq opul

| 4q ojul

19 uazouy
0 }iq ojui
1q uszoly
1q uazouy

119 uazoly

—
1425

US 11,190,221 B2

Sheet 6 of 31

Nov. 30, 2021

U.S. Patent

. 198ys 0]
panuguod

L198ys 0]
panunuoo

9 9|4
0091 719l vom_‘ 7191 Swr
/ 2)
T Kowsp omwf_‘-) Kowapy
ozo1—" 1" a0 L L = ..
[} |
_‘NSL D
1291
Olel.
S¥TLA
YOve— | uaped
N NQ.»:N w_ M _cio1 119 uazol4
—— f .
= 54T o 8091
— 7 Sove’ v0Se~N| st zosz
Lol s,
Hoot e w__ > 9
;// I a0 iainQ ;
\ ~
2091l 14101574
2191 L09¢ 2191 d 6091
Toa | Mol [o : °s?
Yjedejeg L fuowepy Yiedejeqg
| WNS [efHed 19 wns [eiueg [
avor { |\ / N N N oot
ciLgy| €09¢ \ 0i9l S09L €19l gogL O+ot G091
€091 2092

US 11,190,221 B2

Sheet 7 of 31

Nov. 30, 2021

U.S. Patent

panunuod g ‘o4

0091

N

7091 791 #091 rL9L ¥091
g L e T3
yTl .MJ.I. Kioutay Riousay / owm fowapy L
4TI 4TI -4\ - uTI -
091 Lege Ao l) /
L2l
19]04U07) ‘\\\\\\\\\\\\\\\\\\\ T

(

9091

oL9l

L09¢

yAR 1%
; \
' fowapy sw%mam \nmr aorwms E—
1g wns [eiyed 13
m/om_‘ otol /Nomw /o_‘mF W@
€091 ‘

g 198ys wouj
panuuod

g 198yUs Wouy
penuiuod

US 11,190,221 B2

Sheet 8 of 31

Nov. 30, 2021

U.S. Patent

207
1702

207

207

K_
1703

~-F H4-+4-+ -4 L 4 - -} b 4--p4-R-F - 4- “d)-H4- -4 4 .
®: i) '
TS N S '
" N [!
: &7 o "
1 k. '
1 jf\,%]
1 Y '
)]
N pxr ey '
1 Yo '
s 7 .
A\
¥)
i L 1]
' TON '
H N t
H L%]
1]
€ UWnjo9. Zes :
Jauul, & N
" "
t o 3% i
i
: o b '
N N~ pu ¢
; ~— 7S ,
: o
& '
+ — e - ofm -f -l - b= - - 2=t 4 -]-% 4~ - - - P - = - - 3
1 7. % . 3
N o4)
M L) Y6 N
TS ¢ "
t L, N Y, L]
4 ﬂf L/]
1 pw” '
t (W '
' A pu '
i]
H]
4 o/ <t TS 1
' 7S o S '
' fry ~ & '
< Uwnjoa ”k] | t
Jauun 7 9)i "
[Py N 4 [R W '
Ny N 7 < | S]
! b KEs 3 Ya P~ @) '
s \f \f -~ - ju '
! 7 & 4 !
M ! X (o) Y / @ 1
1
= _.A..u - ey -1 -1 A- -4 -4)~ -1k A- - - 1SR A - 1A - i - ._
-—) 27 R WX 7y 37 1Q jAx
i oy " |\ TS 1 TS [A T ! » VRS |
1 | &> ' ' 1 g 1 1 3 ! |
b4 (1 4 [' 4 1 1 N i - |
| UWINjOO 1 K " t 1 t) 1 ' |
i< 1 ’ 1 ' 1] ']
._mﬁﬂ__ []] i | 1 []
3 W o) [T P " o [Ty o 1) o D, xY D) @)]
- o " A ») e K7 1 ¥ N pvr/ T O o/ v N 7)
0 CES_OO. T |5 T T IS ST LS fr g M Ay ST TS T Y/ ST TS ¢ \
_m. D Fin e mY ,Y P Moy mv. e A eondieind o mY endand o nvx Fial M mw.. mY P M mw; :
J8INo -+ el 2B RSTA MY AVZA A Wy AR A A2 R AR AN WV YT AN U T M

T S

207 207 207

1702

A

1702

LYJt
1701

1600

FIG. 7

U.S. Patent Nov. 30, 2021 Sheet 9 of 31 US 11,190,221 B2

1801 START

1802~ oad LLR from
encode block
conditioning
v
1807— C=C- < column index
y =[0,0,0,...,0} | < row indices for columns o to C-1
s=0 < sub-row index
N v inner column?
—%—0 @ es 1809
11808] -
use outer datapath v=mod (yc-1, fe_) < visit index
to process run yq in re-1,
column O \
use partial sum datapaths
/ to progagate bits from |/~ 1805
1804 column O to Column C
v 1806
use inner datapath to /
visited the 1810 process visit v to subrow
bottom row s in row yg in column C
in outer 1803 __1811
column N v — /
outpu
© Yo=Ro-T > € decp%ed END
1812 bits
N
<« S=S+Y
1816
f 1815 — e
i last visit
visit next sub-row | to the row 1818
below 1817
C=C-1
determine
which of
th? inner <
columns
to visit 1800
first
FIG. 8

_~1821 visit.to? sub-row in the row
S=0 [(———— within the next column first

U.S. Patent Nov. 30, 2021 Sheet 10 of 31 US 11,190,221 B2

SC decoding
1802 N/min (N, n|) steps
{

input
output \||I|IIIIIIIIIII||I|I||||I|IHII1803
Nirg + XZSCN/mln (re, ;) steps
SCL decoding N/min (N, n|) steps
1802 c-1
' N/rg + ¥25¢N/min (rg, ;) steps
c=1
input
glr%l(j;essing 1804, 1805, 1806
output 14803
N/min (N, rp) steps
Step ——>

N

1900
FIG. 9

U.S. Patent Nov. 30, 2021 Sheet 11 of 31 US 11,190,221 B2

N =1024, L=8
8192 R

4096

2048

1024

(S
—
N
Y LA |

N

(8]

»
T

128

Steps in the decoding process
o » o R

N

2 . 4;3 1l6' .3I2. .54““1'28 2'56 15112.“"1024
Kernal block length N

——5 0=0, 52, ni=4, path=2, cutadd=92, inadd=24, bitmem=19200, LLRmem=3776

——5$ 0=1, si=3, ni=16, path=5, outadd=125, inadd=112, bitmem=18432, LLRmem=2304

—k—S 0=2, s:=4,n.=64, path=8, outadd=414, inadd=480, bitmem=24576, LLRmem=2048

— — line decoder, s °=0, path=2, outadd=92, inadd=4096, bitmem=24568, LLRmem=9208

—»— ling decoder, s o1 path=5, outadd=125, inadd=4086, bitmem=24568, LL Rmem=3208

" line decoder, s ,=2, path=8, outadd=414, inadd=406, bitmem=24568, LLRmem=9208

-0+« P=64 semi-parallel, s 0=O, path=2, outadd=92, inadd=512, bitmem=24568, LLRmem=9208

- A+ P=64 semi-parallel, s °=1, path=5, outadd=125, inadd=512, bitmem=24568, LLRmem=9208

+- -+ P=64 semi-parallel, 5,2, path=8, outadd=414, inadd=512, bitmem=24568, LLRmem=9208

FIG. 10 2000

U.S. Patent Nov. 30, 2021 Sheet 12 of 31 US 11,190,221 B2

inner
column 1
inner
column 2
inner
column 3

ml!

2 Column 0

£y outer
2\
A

Nyl
1
<
'
D
1

1

]

t

1

1
X
Eh
1

'

'

'

[}

'
N
h
-
]

'

1

1

1

'

'
B
1

L

L]

L]

]

]

]

'

]

'

'

'

'

I

1

'

1

1

'

]

1

'

'

!

1

'

'

1
NI
th

G

D14

{1
N
70
5/

Dt
Yo

i

e\

CC Ok
7\

)
Fany
/AN

KRB
o)

AVAVYAVYAVWLAN

N\

FarnY

11

NIy
AX

2/

A UAYAVMAVNAVAYAY
)

B

/
)

Ve
D)
A4

A Y
X
N}

(AN

A
Y

. b4 4~

/8N

€

Y
N/
AYAYAYAYAY

—1703

r§

)

N
i)

o)

o

/Y

,'._('.__ «

B/
o)
0/

N\
-
)

o

,
K
L

AN
™Y

/o

\\\}
¢
Ny

Y

£ 200 O oy o ey 1-FY-FH-F3-FVH-FA-FFH-FA-F 1S

-—
Sk
c.o\

-J-- ~F4-F4-HA-F4-FHA-F1-- v H-F

OO OO T

)
Fany

AYASAVANLY

A

Y

-G
4 -;z_é_‘ J-F
X

) 3
A

AMAVAVNAYAYLAY

AYAYAYAY
SO OE

N\

St

(
o)

AY
YLY-2Y.

AYAYAVAYARY

0
)

kaJ \r’ % J%{ JL---;; --------------- ;:—---_--_______J_
207207207 | 207 207 [e
WA L\ . o 20
1701 1702 2101 4702 2101 o

U.S. Patent Nov. 30, 2021 Sheet 13 of 31 US 11,190,221 B2

f operation (f/g=0)

sign(X,) {sign(x,)| select |toggle extra
operation sign
+ + [sign (X,-X,) 0
+ - |sign (Xy-X,) 1
- + Isign (Xy-Xg) 1
- - |sign (X,-X,) 0

g operation (f/g=1)

extra| sign | adder |operation | output extra
(xp) | (xg) | 0= 0,=0 sign
+ + (ib'ia) (ﬁb'~a) +
+ b (ib'ia) (ib'ia) +
- + (ib'ia) (ib'ia) -
- G Gofe) |-

~jo) out
i

o

i extra
L1 sign

out

AY;

2206

2200

2201 FIG. 12

U.S. Patent Nov. 30, 2021 Sheet 14 of 31 US 11,190,221 B2

2301 1 2302 2304 1 2305
Xp w D — [Eé l

m |

) > —>. .
ET 1Y x=f(xa, xb,)
2301, 1 2302 D

Xg M_)N C out

MSB
l

2303
- —v" o Lﬁr“) \
absolute compare
values and select 2300
(a)

FIG. 13

U.S. Patent Nov. 30, 2021 Sheet 15 of 31 US 11,190,221 B2

O
3
= |
2
=N ~o
%, / o
1 2307
O: 1| <1y
I: I)Zbl <rxa|
17
m) C out
(73]
=
a f) Cin™~2306
w
=S
(b)
2308
Xy,

O:Ixyl =l

I Il <l

) C out
2306
Cin

2300

U.S. Patent Nov. 30, 2021 Sheet 16 of 31 US 11,190,221 B2

2401

B

WY
4

@
e

VA
2406—%7 |

X+

T2405

C
(.

)

C 2409
2403 by

2411 2409)\3 E ﬁOZ
<f \J-gﬁ flg Figk—— 7
J 2 2201 | 2y
< 2408 flg — fl\g\
< // fig
“Tl2411 2408 / 7 2407

N A
BN

- E
3

\

N

N

O

rd

N

N
N
S
-
2

N
E
(=
(0]

C

2404 2400

FIG. 14

US 11,190,221 B2

Sheet 17 of 31

Nov. 30, 2021

U.S. Patent

0052 Gl Old
S (LI
e
womm\a olo.vT
cuTi J) 6 3 6 | uoisioag >¢ g
. (] 90sz A \ o7 N guezoy
S Z2uq 9052)
05z pN \ 4
2y U T 1= N_m K uoisioag >z
< (1 \\) / 0 Z Uazol)
: 0
8052 D ﬁ
YT \lﬁ i W_ 6 “ uoisioeg —=> | g
v 908e X X \ 0 | uezoyy
0 1qg
y05Z / vz \ s voz— \ , xmomm
\o e / —> d —>| } = uoisioag >0 9
€06¢ y0GZ 1022] omw& 10s¢ o\, \/ 0 Uszoyy

10GC ¢0S¢

U.S. Patent Nov. 30, 2021 Sheet 18 of 31 US 11,190,221 B2

o0
i
c
- ol
o~
i
|
C|N o
O
- ©
N
SA A AN AN A ANA ‘{/
7]
~N
\(>)
v
o

,(2
+
T
)
|
o
-/}\j
@
|
@
+
|
—
2101
FIG. 16

)\C

=8

US 11,190,221 B2

Sheet 19 of 31

Nov. 30, 2021

U.S. Patent

Ll 'Old
0042
N\ 909}
AN
yipim 202 Jajjouoo UIpIm
tydep 7 > POLC dop, > %00l
O AowsN YT SSo.PPE 1-0 Asowey ¥
ssalppe peal UM
y4REREREE ssaJppe peal vl Tl Tel 1y
y09)” u 2022 o042
_\ONN\ 1451
1191 20¥C /
0
J) =TV
2y Zam
N EI
ey - I 03M
(zzo4)
N 5| Yredejep Jouu 911
_.l‘\ b Nwl_uj
I— P -
:, oum] - %om.: _
- vove J
SeLowsw L08} soLowaw
A1 19410 Wwoly Y711 18410 0}

US 11,190,221 B2

Sheet 20 of 31

Nov. 30, 2021

U.S. Patent

rr1ra

movmkﬁ salowaw 8l Ol
1iq J18yjo 0}
] i= 0082
syjedejep |f
Jauu] k _m < \
[
G08¢ |S08¢ |S08¢C |S08¢C
A
1091 LOVC 2191 0i91
soLowsw ¥ bl
1g Jayjo woy _
108¢
1 T cl..u.l.c 908¢
L09¢ T €082 209¢
- \ I e R S \
- ~
< (z OWU) i q asIMIBI0
<l o yedejep g \ yedejep
<| Wns |eijyed | | 7 1 (48no
. n_¢ 10 Z=0 1)
7 J 1-D ujedejep
€091 Wvd J / wns [efed
9091 d
08¢ /
) ssaippe ¥ 3 Kiowaiy 3g m%mﬁmé N
slumM_ A% = (# Widep 908¢ €091
Jajjonuon \||||\\A; Uipim GO9l
ssaippe peas c08C

U.S. Patent

LLR Memory 1:
LLR Memory 2:

LLR Memory 3:

LLR Memory 4:

Nov. 30, 2021

Address 0: 126
Address0: 120 121
Address 0: 96 100
Address 1: 97 101
Address 2: 98 102
Address 3: 99 103
Address 0: 0 16
Address 1: 1 17
Address 2: 2 18
Address 3: 3 19
Address 4: 4 20
Address 5: 5 21
Address 6: 6 22
Address 7: 7 23
Address 8: 8 24
Address 9: 9 25
Address10: 10 26
Address11: 11 27
Address 12: 12 28
Address 13: 13 29
Address 14: 14 30
Address 15: 15 31

FIG. 19

122

104
105
106
107

32
33
34
35
36
37
38
39
40
41
42
43

45
46
47

Sheet 21 of 31

123

108
109
110
111

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

US 11,190,221 B2

127

124 125
112 116
113 117
114 118
115 119
64 80
65 81
66 82
67 83
68 84
69 85
70 86
71 87
72 88
73 89
74 90
75 91
76 92
77 93
78 94
79 95

2900

126

120
121
122
123

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

127

124
125
126
127

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

U.S. Patent Nov. 30, 2021 Sheet 22 of 31 US 11,190,221 B2

Bit Memory 1: RAM 0: Address 0: 120 121 122 123 124 125 126 127
RAM 1: Address 0:
RAM 2: Address 0:
RAM 3: Address 0:

Bit Memory 2: RAM 0: Address 0: 9% 100 104 108 112 116 88 92
RAM 1: Address 0: 97 101 105 109 113 117 89 93
RAM 2: Address 0: 98 102 106 110 114 118 90 94
RAM 3: Address 0: 99 103 107 111 115 119 91 95

Bit Memory 3: RAM 0: Address 0: 0 16 32 48 64 80
Address 1: 1 17 33 49 65 81
Address 2: 2 18 34 50 66 82
Address 3: 3 19 35 51 67 83

RAM 1: Address 0: 4 20 36 52 68 84
Address 1: 5 21 37 53 69 85
Address 2: 6 22 38 54 70 86
Address 3: 7 23 39 55 71 87

RAM 2: Address O: 8 24 4 56 72 88
Address 1: 9 25 41 57 73 89
Address 2: 10 26 42 58 74 90
Address 3: 11 27 43 59 75 91

RAM 3: Address 0: 12 28 4 60 76 92
Address 1: 13 29 45 61 77 93
Address 2: 14 30 46 62 78 94
Address 3: 15 31 47 63 79 95

2900
FIG. 19 continued

U.S. Patent Nov. 30, 2021 Sheet 23 of 31 US 11,190,221 B2

LLR Memory 1: Address0: 62 63
LLRMemory 2: Address0: 56 57 58 59 60 61 62 63
LLRMemory 3: Address0: 32 36 40 44 48 52 56 60
Address 1: 33 37 41 45 49 53 57 61
Address 2: 34 38 42 46 50 54 58 62
Address3: 35 39 43 47 51 55 59 63
LLR Memory 4: Address 0: 0 8 16 24 32 40 48 56
Address 1: 1 9 17 25 33 41 49 57
Address 2: 2 10 18 26 34 42 50 58
Address 3: 3 11 19 27 35 43 51 59
Address 4: 4 12 20 28 36 44 52 60
“Address 5: 5 13 21 29 37 45 53 61
Address 6: 6 14 22 30 38 46 54 62
Address 7: 7 15 23 31 39 47 55 63
Address 8:
Address 9:
Address 10:
Address 11:
Address 12:
Address 13:
Address 14:
Address 15:

3000

FIG. 20

U.S. Patent Nov. 30, 2021 Sheet 24 of 31 US 11,190,221 B2

Bit Memory 1: RAM 0: Address O: 56 57 58 59 60 61 62 63
RAM 1: Address 0:
RAM 2: Address 0:
RAM 3: Address 0:

Bit Memory 2. RAM 0: Address O: 32 36 40 44 48 52 24 28
RAM 1. Address 0: 33 37 41 45 49 53 25 29
RAM 2: Address 0: 34 38 42 46 50 54 26 30
RAM 3: Address 0: 35 39 43 47 51 55 27 31

Bit Memory 3: RAM0: Address 0: 0 16
Address 1: 1 17
Address 2: 2 18
Address 3: 3 19

RAM 1: Address 0: 4 20
Address 1: 5 21
Address 2: 6 22
Address 3: 7 . 23 .

RAM 2: Address O: . 8 . 24
Address 1: . 9 . 25
Address 2: . 10 . 26
Address 3: . 11 . 27

RAM 3: Address O: . 12 . 28
Address 1: . 13 . 29
Address 2: . 14 . 30
Address 3: . 15 .31

3000

FIG. 20 continued

U.S. Patent Nov. 30, 2021 Sheet 25 of 31 US 11,190,221 B2

LLR Memory 1: Address0: 30 . . .31
LLRMemory 2: AddressO: 24 25 26 27 28 29 30 31

LLR Memory 3: Address 0:
Address 1:
Address 2:
Address 3:

LLR Memory 4: Address 0:
Address 1:
Address 2:
Address 3:
Address 4:
Address 5:
Address 6:
Address 7:
Address 8:
Address 9:
Address 10:
Address 11:
Address 12:
Address 13:
Address 14:
Address 15:

13 17 21 25 29
10 14 18 22 26 30
1M 15 19 23 27 31

wWwN = O
~N Oy
O

3100

FIG. 21

U.S. Patent Nov. 30, 2021 Sheet 26 of 31 US 11,190,221 B2

Bit Memory 1: RAM 0: Address 0: 24 25 26 27 28 29 30 31
RAM 1: Address 0:
RAM 2: Address 0:
RAM 3: Address 0:

Bit Memory 2: RAM 0: Address O:
RAM 1: Address 0:
RAM 2: Address 0:
RAM 3: Address 0:

10 14 18 22
1m 15 19 23

w N - O

Bit Memory 3: RAM 0: Address 0:
Address 1:
Address 2:
Address 3:

RAM 1: Address 0:
Address 1:
Address 2:
Address 3:

RAM 2: Address 0:
Address 1:
Address 2:
Address 3:

RAM 3: Address 0:
Address 1:
Address 2:
Address 3:

3100
FIG. 21 continued

U.S. Patent Nov. 30, 2021 Sheet 27 of 31 US 11,190,221 B2

LLR Memory 1: Address0: 14 ., . . 15
LLR Memory 2: Address 0: 8 9 10 11 12 13 14 15

LLR Memory 3: Address 0:
Address 1:
Address 2:
Address 3:

LLR Memory 4. Address O: 0 2 4 6 8 10 12 14
Address 1: 1 3 5 7 9 11 13 15
Address 2:

Address 3:
Address 4:
Address 5:
Address 6:
Address 7:
Address 8:
Address 9:
Address 10:
Address 11:
Address 12:
Address 13:
Address 14:
Address 15:

3200

FIG. 22

U.S. Patent Nov. 30, 2021 Sheet 28 of 31 US 11,190,221 B2

Bit Memory 1. RAM 0: Address 0: 8 9 10 11 12 13 14 15
RAM 1: Address 0:
RAM 2: Address 0:
RAM 3: Address 0:

Bit Memory 2: RAM0: Address 0: 0 . 4
RAM 1: Address 0: 1 . 5 .
RAM 2: Address 0: . 2 . 6
RAM 3: Address 0: . 3 . 7

Bit Memory 3: RAMO: Address 0:
Address 1:
Address 2:
Address 3:

RAM 1: Address 0:
Address 1:
Address 2:
Address 3:

RAM 2: Address O:
Address 1:
Address 2:
Address 3:

RAM 3: Address O:
Address 1:
Address 2:
Address 3:

3200

FIG. 22 continued

U.S. Patent

LLR Memory 1:
LLR Memory 2:

LLR Memory 3:

LLR Memory 4:

Nov. 30, 2021

Address 0:

Address 0:

Address 0:
Address 1:
Address 2:
Address 3:

Address 0:
Address 1:
Address 2:
Address 3:
Address 4:
Address 5:
Address 6:
Address 7:
Address 8:
Address 9:

Address 10:
Address 11:
Address 12:
Address 13:
Address 14:
Address 15:

Sheet 29 of 31

FIG. 23

US 11,190,221 B2

3300

U.S. Patent

Bit Memory 1:

Bit Memory 2:

Bit Memory 3:

Nov. 30, 2021

RAM 0:
RAM 1:
RAM 2:
RAM 3:

RAM 0:
RAM 1:
RAM 2:
RAM 3:

RAM 0:

RAM 1:

RAM 2:

RAM 3:

Address 0:
Address 0:
Address 0:
Address 0:

Address 0:
Address 0:
Address 0:
Address 0:

Address 0O:
Address 1:
Address 2:
Address 3:
Address O:
Address 1:
Address 2:
Address 3:
Address O:
Address 1:
Address 2:
Address 3:
Address O:
Address 1:
Address 2:
Address 3:

FIG. 23 continued

Sheet 30 of 31

US 11,190,221 B2

3300

U.S. Patent Nov. 30, 2021 Sheet 31 of 31 US 11,190,221 B2

1400

N

é 402 4——p| 1404 Processor
us

<4—p| 1408 Memory

1410
Storage Devices

4—p| |1412 Media Drive [¢—¥»{ 1418 Media

1420 Storage Unit i
intarface g 4—Pp{1422 Storage Unit

interface

¢ > 1424 Communications <(::hannel 1428 >

FIG. 24

US 11,190,221 B2

1
POLAR DECODER WITH LLR-DOMAIN
COMPUTATION OF F-FUNCTION AND
G-FUNCTION

FIELD OF THE INVENTION

The field of the invention relates to a polar decoder, a
communication unit, an integrated circuit and a method for
polar decoding. The invention is applicable to, but not
limited to, polar decoding for current and future generations
of communication standards.

BACKGROUND OF THE INVENTION

In accordance with the principles of Forward Error Cor-
rection (FEC) and channel coding, polar coding [1] may be
used to protect information against the effects of transmis-
sion errors within an imperfect communication channel,
which may suffer from noise and other detrimental effects.
More specifically, a polar encoder is used in the transmitter
to encode the information and a corresponding polar decoder
is used in the receiver to mitigate transmission errors and
recover the transmitted information. The polar encoder
converts an information block comprising K bits into an
encoded block comprising a greater number of bits M>K,
according to a prescribed encoding process. In this way, the
encoded block conveys the K bits of information from the
information block, together with M-K bits of redundancy.
This redundancy may be exploited in the polar decoder
according to a prescribed decoding process, in order to
estimate the values of the original K bits from the informa-
tion block. Provided that the condition of the communica-
tion channel is not too severe, the polar decoder can cor-
rectly estimate the values of the K bits from the information
block with a high probability.

The polar encoding process comprises three steps. In a
first information block conditioning step, redundant bits are
inserted into the information block in prescribed positions,
in order to increase its size from K bits to N bits, where N
is a power of two. In a second polar encoding kernal step, the
N bits of the resultant kernal information block are com-
bined in different combinations using successive eXclusive
OR (XOR) operations, according to a prescribed graph
structure. This graph structure comprises n=log,(N) succes-
sive stages, each comprising N/2 XOR operations, which
combine particular pairs of bits. In a third step, encoded
block conditioning is applied to the resultant kernal encoded
block, in order to adjust its size from N bits to M bits. This
may be achieved by repeating or removing particular bits in
the kernal encoded block according to a prescribed method,
in order to produce the encoded block, which is transmitted
over a channel or stored in a storage media.

A soft encoded block is received from the channel or
retrieved from the storage media. The polar decoding pro-
cess comprises three steps, which correspond to the three
steps in the polar encoding process, but in a reverse order. In
a first encoded block conditioning step, redundant soft bits
are inserted or combined into the soft encoded block in
prescribed positions, in order to adjust its size from M soft
bits to N soft bits, where N is a power of two. In a second
polar decoding kernal step, the N soft bits of the resultant
kernal encoded block are combined in different combina-
tions using a Successive Cancellation (SC) [1] or Successive
Cancellation List (SCL) [7] process, which operates on the
basis of the prescribed graph structure. In a third step,
information block conditioning is applied to the resultant
recovered kernal information block, in order to reduce its

10

15

20

25

30

35

40

45

50

55

60

65

2

size from N bits to K bits. This may be achieved by
removing particular bits in the recovered kernal information
block according to a prescribed method, in order to produce
the recovered information block.

Several hardware implementations of SC [1] and SCL [7]
polar decoders have been previously proposed [8], [14]-[24],
which are capable of flexibly supporting different kernal
block sizes NE{2, 4, 8, . . ., N,,..} at run-time. These
decoders conceptually represent the polar code using a graph
[15] (or equivalently a tree [18]), which has dimensions that
vary depending on the kernal block size N. As exemplified
in FIG. 7, the graph comprises N inputs on its right-hand
edge which accept soft bits (often in the form of Log-
Likelihood Ratios (LLRs) [8]) from the demodulator, as well
as N outputs on its left-hand edge which supply hard bit
decisions for the information and frozen bits. Between these
two edges, the graph comprises log 2(N) horizontally-
concatenated stages, each of which comprises N/2 verti-
cally-aligned XOR operations.

The hardware implementations of [8], [14]-[24] employ
dedicated hardware to combine soft bits at the location of
each XOR in the graph using f and g functions [8], as well
as to conceptually propagate them from right to left in the
graph. Likewise, dedicated hardware is conceptually
employed at the left-hand edge of the graph, to convert the
soft bits into hard bit decisions, as well as to compute and
sort SCL path metrics [8]. Finally, dedicated hardware is
used to combine hard bit decisions according to the XORs
in the graph and to conceptually propagate the resultant
partial sum bits from left to right in the graph, so that they
can be used by the g function. Note that the reliance of the
g function upon the partial sum bits imposes a set of data
dependencies, which require all of the above-mentioned
operations to be performed according to a particular sched-
ule. This leaves only a limited degree of freedom to perform
operations in parallel, which varies as the decoding process
progresses. The line decoder of [14] achieves a high degree
of parallel processing during soft bit propagation, which
allows all f and g functions to be computed within a latency
of 2N-2 clock cycles. This is achieved using L lines of
N,,.../2 processing units, where =1 for SC decoding and
L>1 is the list size for SCL decoding. Each processing unit
is capable of computing one f function or one g function in
each cock cycle. This degree of parallelism is sufficient to
simultaneously perform the maximum number of computa-
tions within any single stage of the graph that are not
prevented by data dependencies. This peak opportunity for
parallel processing is encountered when N=N,, .. and when
computing g functions for the right-most stage in the graph.
However, the above-mentioned date dependencies prevent
the parallelism from being fully exploited when N<N,, . or
when computing f or g functions at other times during the
decoding process. Owing to this, the line decoder of [14]
suffers from a poor hardware efficiency and also a require-
ment for an excessively high memory bandwidth, which can
grant simultaneous access to up to N, soft bits. Motivated
by this, the semi-parallel decoders of [8], [15]-[24] improve
the hardware efficiency and memory bandwidth requirement
by reducing the degree of parallel processing from LN,, /2
to LP, where PE{1, 2, 4, 8, . . . }. However, this approach
still suffers from being unable to exploit all parallelism for
the left-most stages and requires several clock cycles to
perform the f and g for the right-most stages, increasing the
total latency associated with f and g computation to
3,8 227 max(N/2'P),1) clock cycles. Besides the above-
mentioned clock cycles required for f and g computations,
SCL decoders typically require at least one additional dock

US 11,190,221 B2

3

cycle to compute and sort the path metrics associated with
each of the N hard bit decisions made on the left-hand edge
of'the graph. In the case of line decoding, a latency of 3N-2
clock cycles is required to perform f, g and path metric
computations, as well as to sort the latter. However, in [32],
[33], the path metrics are computed and sorted for several
bits at a time, together with the corresponding f and g
functions in the left-most stages of the graph. When 2* hard
bit decisions are made at a time, this approach reduces the
total number of clock cycles required for line decoding to
N/2¥2-2[33], where k{1, 2, 3, . .. }. Note that the latency
of SCL decoding can be further reduced when the polar code
adopts a low coding rate. In this case, any computations
relating to frozen bits at the start of the block can be skipped,
although this technique does not improve the worst-case
latency, which is encountered for high coding rates.

Note that the propagation of partial sum bits is typically
performed concurrently with the computations described
above, within the same clock cycles. In [8], [15], [30],
partial-sum update logic is used to accumulate different
combinations of the decoded bits and an interconnection
network is used to deliver them to the processing of the
corresponding g functions. This results in a large hardware
overhead and a long critical path, which limits the achiev-
able hardware efficiency, throughput and latency. By con-
trast, the feed-forward architecture of [19], [21], [28], [32],
[34] uses dedicated hardware to propagate partial sum bits to
each successive stage of the graph. However, the complexity
of the feed-forward architecture grows rapidly for each
successive stage, limiting the maximum kernal block length
N,,.. that can be supported and limiting the hardware effi-
ciency. By contrast, the approach of [17], [22], [27], [35]
uses a simplified polar encoder kernal to calculate the partial
sum bits, although this does not benefit from reusing cal-
culations that are performed as a natural part of the decoding
process. In the above-described previous polar decoder
hardware implementations, the hardware resource usage is
typically dominated by memory. For example, 90% of the
hardware is occupied by memory in the =8 SCL decoder of
[8], owing to the requirement to store LLRs at the interface
between each pair of consecutive stages in the graph. The
next biggest contributor to hardware resource is used to
process and propagate the LLRs and partial sum bits,
occupying around 5% of the hardware in the =8 SCL
decoder of [8]. Of this processing and propagation hardware,
around 80% is dedicated to the interconnection network
associated with the partial sum bits [15]. Finally, around 1%
of the hardware is dedicated to path metric computation and
sorting in the L.=8 SCL decoder of [8], as well as in the =4
SCL decoders of [18], [19]. However, these operations can
be expected to occupy significantly more hardware in the
multi-bit approaches of [32], [33].

SUMMARY OF THE INVENTION

The present invention provides a polar decoder, a com-
munication unit, an Integrated circuit and a method for polar
decoding, as described in the accompanying claims.

Specific embodiments of the invention are set forth in the
dependent claims.

These and other aspects of the invention will be apparent
from and elucidated with reference to the embodiments
described hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

Further details, aspects and embodiments of the invention
will be described, by way of example only, with reference to

10

15

20

25

30

35

40

45

50

55

60

65

4

the drawings. In the drawings, like reference numbers are
used to identify like or functionally similar elements. Ele-
ments in the FIG’s are illustrated for simplicity and clarity
and have not necessarily been drawn to scale.

FIG. 1 illustrates an example top-level schematic of a
communication unit having a polar encoder and polar
decoder, adapted according to example embodiments of the
invention.

FIG. 2 illustrates an example graphical representation of
the generator matrices F, FP2 and F®?, according to example
embodiments of the invention.

FIG. 3 illustrates an example polar encoding process,
using the graphical representation of the generator matrix
F®* illustrating the case where a particular frozen bit
pattern is used to convert the K=4 information bits a=[1001]
into the M=8 encoded bits b=[00001111], according to
example embodiments of the invention.

FIG. 4 illustrates an example of the three computations
that can be performed for a basic computation unit of the
proposed polar decoder kernal: (a) the f function, (b) the g
function and (c) partial sum calculation, according to
example embodiments of the invention.

FIG. 5 illustrates an example of an SC decoding process,
using the graphical representation of a generator matrix F?,
for a case where a particular frozen bit pattern is used to
convert a particular vector ~b of M=8 encoded LLRs into the
K=4 recovered information bits "a=[1001], according to
example embodiments of the invention.

FIG. 6 illustrates an example schematic of the proposed
polar decoder kernal for the case where C,,,, =5, according
to example embodiments of the invention.

FIG. 7 illustrates an example graphical representation of
the generator matrix F®%, which has been grouped into C=4
columns comprising s=[1; 2; 2; 1] stages, and which corre-
spond to s,=1 and s,=2, according to example embodiments
of the invention.

FIG. 8 illustrates an example flowchart of a decoding
process employed by the proposed polar decoder kernal,
whereby each cycle around the main loop of the flowchart
corresponds to one step of the decoding process, according
to example embodiments of the invention.

FIG. 9 illustrates an example timing diagram for the
proposed polar decoder kernal, according to example
embodiments of the invention.

FIG. 10 illustrates an example plot of a number of steps
required by the decoding process of the proposed polar
decoder kernal, according to example embodiments of the
invention.

FIG. 11 illustrates an example rearranged graphical rep-
resentation of the generator matrix F¥°, for the case of
employing C=4 columns comprising s=[1; 2; 2; 1] stages,
according to example embodiments of the invention.

FIG. 12 illustrates an example schematic of a proposed
processing unit that can be reconfigured to perform either
the ‘f” function of (2) or the ‘g’ function of (3), according to
example embodiments of the invention.

FIG. 13 illustrates an example of the known art on the
two’s complement implementation of the ‘f” function of (2):
(a) Naive implementation; (b) A reduced hardware imple-
mentation; (¢) A reduced critical path implementation.

FIG. 14 illustrates an example schematic of the inner
datapath in the proposed polar decoder kernal, for the
example of s,=2 and n,=8, according to example embodi-
ments of the invention.

FIG. 15 illustrates an example schematic of an outer
datapath for SC decoding in the proposed polar decoder

US 11,190,221 B2

5

kernal, for the example of s,=2 and n,~4, according to
example embodiments of the invention.

FIG. 16 illustrates an example schematic of a partial sum
datapath in the proposed polar decoder kernal, for the
example of s,=2 and n,=8, according to example embodi-
ments of the invention.

FIG. 17 illustrates an example schematic of the interac-
tion between the inner datapath, LLR memory blocks and
controller of the proposed polar decoder kernal, according to
example embodiments of the invention.

FIG. 18 illustrates an example schematic of the interac-
tion between the inner datapath, bit memory blocks and
controller of the proposed polar decoder kernal, for the case
where s,=1 and n=4, according to example embodiments of
the invention.

FIG. 19 illustrates an example of the contents of the LLR
following a completion of the decoding process, for the case
where N=128, N, . =128, s =1, s,=2 and n,=8, according to
example embodiments of the invention.

FIG. 20 illustrates an example of the contents of the LLR
and bit memories following a completion of the decoding
process, for the case where N=64, N, =128, s,=1, s,=2 and
n,=8, according to example embodiments of the invention.

FIG. 21 illustrates an example of the contents of the LLR
and bit memories following a completion of the decoding
process, for the case where N=32, N =128, s =1, s=2and
n,=8, according to example embodiments of the invention.

FIG. 22 illustrates an example of the contents of the LLR
and bit memories following the completion of the decoding
process, for the case where N=16, N,, . =128, s,=1, s,=2 and
n,=8, according to example embodiments of the invention.

FIG. 23 illustrates an example of the contents of the LLR
and bit memories following a completion of the decoding
process, for the case where N=8, N, , =128, s =1, s,=2 and
n,=8, according to example embodiments of the invention.

FIG. 24 illustrates a typical computing system that may be
employed in an electronic device or a wireless communica-
tion unit to perform polar encoding operations in accordance
with some example embodiments of the invention.

DETAILED DESCRIPTION

In a first aspect, examples of the present invention
describe a polar decoder kernal comprising a processing unit
having at least one input configured to receive at least one
input Logarithmic Likelihood Ratio, LLR, a logic circuit
configured to manipulate the at least one input LLR, and at
least one output configured to output the manipulated at least
one LLR. The logic circuit of the processing unit comprises
only a single two-input adder to manipulate the at least one
input LLR. The input LLR and manipulated LLR are in a
format of a fixed-point number representation that comprises
a two’s complement binary number and an additional sign
bit. In this manner, the hardware complexity of the process-
ing unit is reduced to just that of a single adder and some
supporting logic.

In some examples, the processing unit is configured to
either perform at an instant in time either a ‘g’ function or
an ‘f” function, or only ever perform one of: a ‘g’ function
or an ‘f” function. In this manner, the hardware of the
processing unit can be minimised, by flexibly reusing it to
perform both ‘g’ and ‘f” functions where necessary, or by
optimising to perform one or other of the ‘g’ and ‘f’
functions wherever the other is not required.

In some examples, the ‘f” function comprises, X =t(X,,
%,)=sign(X,)sign(X,)min(IX,l, 1X,|), where sign(*) returns
‘=1 if its argument is negative and ‘+1” if its argument if

10

15

20

30

40

45

55

6

positive. In this manner, the hardware complexity is reduced
compared to variations of the ‘f” function that use the tanh
function or other complex functions.

In some examples, the ‘g’ function comprises:

Xg = g(Fa, Xp, Ug)

= (=1D%X, + Zp.

In this manner, the processing unit is capable of performing
the core operations of the successive cancellation and suc-
cessive cancellation list decoding algorithms.

In some examples, the at least one input LLR is repre-
sented using the fixed-point number representation having
W+1 bits, as: x=(-1)"-(-2""'%,+2,_,"2"7%), where %,
is a label of the additional sign bit, X, is a label of a bit that
serves as both a most significant bit, MSB, and a sign bit of
the two’s complement binary number part of the fixed-point
number representation, and X, is a label of at least signifi-
cant bit, LSB, of the two’s complement binary number part
of the fixed-point number representation. In this manner, the
additional sign bit can eliminate the requirement for fre-
quently negating the two’s complement numbers that would
otherwise result during the successive cancellation and
successive cancellation list decoding algorithms.

In some examples, the single two-input adder comprises
two inputs, each input having a first number (‘W”) of bits
that are derived from the two’s complement binary number
parts of the fixed-point number representation (X, and X,)
and is configured to provide a two’s complement output that
comprises a second number of bits including an additional
bit (“W+1" bits) in order to avoid overflow. In this manner,
the requirement for clipping at the output of every two-input
adder is eliminated, enhancing the error correction capabil-
ity of the polar decoder.

In some examples, the output of the processing unit
comprises a third number (“W+2”) of bits, incorporating the
additional bit introduced by the single two-input adder plus
the additional sign bit. In this manner, the requirement for
dipping at the output of every processing unit is eliminated,
enhancing the error correction capability of the polar
decoder.

In some examples when implementing the ‘g’ function,
the two’s complement binary number of the at least one
input LLR is manipulated using the single two-input adder
to, based on a value of a partial sum bit (4,) and the
additional sign bit of the at least one input LLR, either obtain
the two’s complement binary number part of the LLR
X ~g¢(X,, X,, 0,) by adding a two’s complement binary
number part of a first LLR (X,) to a two’s complement
binary number part of a second LLR (X,) or subtracting a
two’s complement binary number part of a first LLR (X))
from a two’s complement binary number part of a second
LLR (X,). In this manner, the ‘g’ function may be completed
using the same operations as the ‘f” function, allowing
hardware to be efficiently reused for both functions.

In some examples when implementing an ‘f” function, the
two’s complement binary number of the at least one input
LLR is manipulated using the single two-input adder to,
based on the additional sign bit of the at least one input LLR,
either obtain the two’s complement binary number part of
the minimum term (min(IX,l, 1X,l) of the ‘f* function by
adding a two’s complement binary number part of a first
LLR (X,) to a two’s complement binary number part of a
second LLR (%,), or subtracting a two’s complement binary

US 11,190,221 B2

7

number part of a first LLR (X,) from a two’s complement
binary number part of a second LLR (X,). The operation is
completed by using the MSB of a resulting two’s comple-
ment number output from the single two-input adder to
select either the two’s complement binary number part of the
first LLR (X,) or the two’s complement binary number part
of the second LLR (%X,) to provide the two’s complement
binary number part of the output manipulated at least one
LLR (X =f(X,, X,). In this manner, the ‘f” function may be
completed using only a single two-input adder, rather than
using two or more two-input adders as in other implemen-
tations.

In some examples, the additional sign bit of the manipu-
lated at least one LLR (X, and %) is obtained as a function
of at least one of a MSB of the two’s complement binary
number part of the at least one input LLR and the additional
sign bit of the at least one input LLR. In this manner, the
additional sign bit may be obtained using only simple logic
hardware.

In some examples, the additional sign bit of the manipu-
lated at least one LLR (%) is obtained as a value of the
additional sign bit of the second LLR (X,). In this manner,
no additional logic hardware is required to obtain the
additional sign bit.

In some examples, the polar decoder kernal further com-
prises an outer datapath that comprises an f/g function graph
that comprises a first number (s,) of processing stages. Each
of the first number (s,) of processing stages comprises a
second number (2*7") of processing units that perform only
the “” function and a second number (2°1) of processing
units that perform only the ‘g’ function. In this manner, some
processing units may be optimised to perform only the ‘f”
function, while the others may be optimised to perform only
the ‘g’ function, reducing the hardware usage.

In some examples, the polar decoder kernal comprises an
inner datapath that comprises a plurality of processing units
arranged into a number (s,) of processing stages configured
to perform at least one of the ‘f” function or the ‘g’ function.
A right-most stage comprises a first number (n,/2) of pro-
cessing units and each successive stage to a left of the
right-most stage contains half as many processing units as
the respective processing stage to its right. In this manner,
the hardware of the inner datapath may be flexibly reused to
perform different combinations of ‘t” and ‘g’ functions,
reducing the hardware usage.

In some examples, a visit index (v) in a range (0 to 2°°-1)
is expressed in base-2 as a binary number having a first
number (s.) of bits, with each successive bit from right to
left being used to control whether an ‘f” function or a ‘g’
function is performed by the processing units of each
successive stage of the plurality of processing units in the
inner datapath from left to right. This is performed such that
the least significant bit (LSB) of the binary number is used
to control a left-most stage of the plurality of processing
units and the most significant bit (MSB) of the binary
number is used to control the right-most stage of the
plurality of processing units. In this manner, the control of
the processing units is achieved using simple hardware,
based only on a counter of the visit index.

In some examples, an incremental bit width of the fixed
point number representation is used in each successive
processing stage from right to left. In this manner, overflow
can be avoided in the outer and inner datapaths, improving
the error correction capability of the polar decoder.

In some examples, the polar decoder kernal further com-
prises a dipping circuit 2411 configured to reduce the bit
width (W) of the LLRs output on a left-most stage of the

20

40

45

50

8

plurality of processing units to match bit widths of the LLRs
on the right-most stage of the plurality of processing units.
In this manner, all LLR memory blocks can represent LLRs
using the same number of bits, without requiring greater
numbers of bits in successive LLR memory blocks. This
reduces the hardware usage, whilst minimising the use of
dipping in order to preserve the error correction capability of
the polar decoder.

In some examples, the clipping circuit 2411 is configured
to additionally reduce the bit width of intermediate process-
ing stages between the right-most stage of the plurality of
processing units and the left-most stage of the plurality of
processing units. In this manner, the hardware resource
usage of the processing units in the left-most stages can be
reduced, at the cost of slightly degrading the error correction
capability of the polar decoder.

In some examples, the polar decoder kernal further com-
prises a plurality of LLR memory blocks coupled to the
plurality of processing units that are each configured to
convert a respective input LLR to a two’s complement
fixed-point number that is stored in the plurality of LLR
memory blocks. In this manner, the number of bits that must
be stored in the LLR memory blocks is reduced, reducing
the associated hardware usage.

In some examples, if the additional sign bit of the fixed-
point number representation is set, the two’s complement
binary number part of the fixed-point number representation
is negated by inverting all of its bits and then a further single
two-input adder is used to increment the resultant value to
convert to the two’s complement fixed-point number repre-
sentation when writing the input LLR to the LLR memory
block in this manner, the conversion from the fixed-point
number representation to the two’s complement fixed-point
number representation can be completed using only simple
hardware.

In some examples, the two’s complement binary number
of the at least one input LLR is pre-converted to the
fixed-point number representation by supplementing the
two’s complement binary number onto a zero-valued addi-
tional sign bit when reading the input LLR from the LLR
memory block. In this manner, the conversion from the
two’s complement fixed-point number representation to the
fixed-point number representation can be completed using
only simple hardware.

In a second aspect, examples of the present invention
describe a communication unit comprising a polar decoder
kernel according to the first aspect.

In a third aspect, examples of the present invention
describe an integrated circuit comprising a polar decoder
kernel according to the first aspect.

In a fourth aspect, examples of the present invention, a
method of polar decoding is described according to the first
aspect. The method includes: receiving at least one input
Logarithmic Likelihood Ratio, LLR, in a format of a fixed-
point number representation that comprises a two’s comple-
ment binary number and an additional sign bit, manipulating
the at least one input LLR in the format of the fixed-point
number representation that comprises the two’s complement
binary number and the additional sign bit, and outputting the
manipulated at least one LLR in the format of the fixed-point
number representation that comprises the two’s complement
binary number and the additional sign bit.

In a fifth aspect, examples of the present invention
describe a non-transitory tangible computer program prod-
uct comprising executable code stored therein for polar
decoding according to the fourth aspect.

US 11,190,221 B2

9

Motivated by the discussions above, the present invention
is a novel polar decoder architecture, which enables flexible,
low latency, hardware-efficient SCL polar decoding. Rather
than processing one stage of the polar code graph at a time,
the proposed architecture achieves a higher degree of par-
allelism by processing several consecutive stages at once. It
is demonstrated that this parallel processing can be fully
exploited throughout the majority of the f and g computa-
tions, achieving greater hardware utility than line and semi-
parallel architectures. Furthermore, since several consecu-
tive stages are processed at once, memory is only required
at the interfaces between each pair of consecutive groupings
of stages, rather than at the interfaces between each pair of
consecutive individual stages. This significantly reduces the
overall memory requirement of the proposed architecture
relative to previous implementations, which is particularly
impactful since memory is the biggest contributor to hard-
ware resource usage.

Although examples of the invention are described with
reference to a use of LLR memory blocks, it is envisaged
that these memory blocks are used to store any form of soft
bits, and the use of LLR memory blocks to store soft bits as
LLRs is used for explanatory purposes only.

Although examples of the invention are described with
reference to an integrated circuit implementation within the
application of a wireless communication receiver, it is
envisaged that in other examples, the invention may be
applied in other implementations and in other applications.
For example, the circuits and concepts herein described may
be composed as a hardware implementation within an Appli-
cation Specific Integrated Circuit, an Application Specific
Instruction Set Processor, an Application Specific Standard
Product, a Field Programmable Gate Array, a General Pur-
pose Graphical Processing Unit, System on Chip, Config-
urable Processor, for example. Similarly, it is envisaged that
in other examples, a software implementation may be com-
posed within a Central Processing Unit, a Digital Signal
Processor or a microcontroller, for example. Besides wire-
less communication receivers, the invention may be com-
posed into a wireless communication transceiver, or a com-
munication device for other communication channels, such
as optical, wired or ultrasonic channels. Furthermore, the
invention may be composed into a storage device, in order
to provide FEC for data recovered from optical, magnetic,
quantum or solid-state media, for example.

Examples of the present invention further provide a
method and architecture to decode information according to
the principles of polar decoding, for the purpose of provid-
ing FEC during communication over unreliable channels or
during storage in unreliable media. Examples of the present
invention further provide a method and architecture to
provide flexible support for information blocks that com-
prise a number of bits that varies from block to block.

Some examples of the present invention are described
with reference to the New Radio (NR) standard, which is
presently being defined by the 3rd Generation Partnership
Project (3GPP) as a candidate for 5th Generation (5G)
mobile communication. Presently, polar encoding and
decoding has been selected to provide FEC in the uplink and
downlink control channels of the enhanced Mobile Broad-
Band (eMBB) applications of NR, as well as in the Physical
Broadcast Channel (PBCH). Polar encoding and decoding
has also been identified as candidates to provide FEC for the
uplink and downlink data and control channels of the Ultra
Reliable Low Latency Communication (URLLC) and mas-
sive Machine Type Communication (mMTC) applications of
NR. Alternatively, some examples of the invention are

25

35

40

45

50

55

60

65

10

described without reference to a particular standardised
application. More broadly, the invention may be applied in
any future communication standards that select polar encod-
ing and decoding to provide FEC. Furthermore, the inven-
tion may be applied in non-standardised communication
applications, which may use polar encoding and decoding to
provide FEC for communication over wireless, wired, opti-
cal, ultrasonic or other communication channels. Likewise,
the invention may be applied in storage applications, which
use polar encoding and decoding to provide FEC in optical,
magnetic, quantum, solid state and other storage media.

In some examples, the circuits and functions herein
described may be implemented using discrete components
and circuits, whereas in other examples the operations may
be performed in a signal processor, for example in an
integrated circuit.

Because the illustrated embodiments of the present inven-
tion may, for the most part, be implemented using electronic
components and circuits known to those skilled in the art,
details will not be explained in any greater extent than that
considered necessary as illustrated below, for the under-
standing and appreciation of the underlying concepts of the
present invention and in order not to obfuscate or distract
from the teachings of the present invention.

DETAILED DESCRIPTION OF FIGURES

Referring now to FIG. 1, a top-level schematic of a
communication unit 116 that includes a polar encoder and
polar decoder is illustrated, adapted according to examples
of the invention. In this example of a communication unit
116, a skilled artisan will appreciate that a number of other
components and circuits (such as frequency generation
circuits, controllers, amplifiers, filters, etc.) are not shown
for simplicity purposes only. In other examples, it is envis-
aged that the block 116 may take the form of an integrated
circuit comprising the polar decoder (and in some instances
the block conditioning and polar decoding processing func-
tionality) as well, for example for use in a communication
unit, storage unit or any electronic device that is designed to
use polar decoding. In other examples, it is envisaged that
the block 116 may take the form of software running on a
general purpose computation processor.

A polar decoder comprises three successive components,
namely information block conditioning 112, the polar
decoder kernal 111 and the encoded block conditioning 110.
These components are discussed in the following para-
graphs. In order to provide context to the present discussion,
FIG. 1 illustrates the communication or storage channel 108,
as well as the corresponding components of the polar
encoder, namely information block conditioning 101, the
polar encoder kernal 102 and encoded block conditioning
103, although these are operated in the reverse order. As will
be discussed in the following paragraphs, the polar decoder
operates on the basis of a recovered information block 115,
recovered kernal information block 114, soft kernal encoded
block 113 and soft encoded block 109. Correspondingly, the
polar encoder operates on the basis of an information block
109, kernal information block 105, kernal encoded block
106 and encoded block 107, although these are processed in
the reverse order.

To understand the operation of the polar decoder, and in
particular the polar decoder kernal 111, it is first worth
considering the operation of the polar encoder kernal 102. In
a context of a polar encoder, the input to the information
block conditioning component 101 may be referred to as an
information block 104, having a block size of K. More

US 11,190,221 B2

11

specifically, this information block is a row vector
a=[a,],_;~~* comprising K information bits, where o,&{0,
1}. The information block conditioning component 101
interlaces the K information bits with N-K redundant bits,
which may be frozen bits [1], Cyclical Redundancy Check
(CRC) bits [2], Parity Check (PC)-frozen bits [3], User
Equipment identification (UE-ID) bits [4], or hash bits [5],
for example.

Here, frozen bits may always adopt a logic value of ‘0’,
while CRC or PC-frozen bits or hash bits may adopt values
that are obtained as functions of the information bits, or of
redundant bits that have already been interlaced earlier in the
process. The information block conditioning component 101
generates redundant bits and interlaces them into positions
that are identified by a prescribed method, which is also
known to the polar decoder. The information block condi-
tioning component 101 may also include an interleaving
operation, which may implement a bit-reversal permutation
[1] for example. The output of the information block con-
ditioning component 101 may be referred to as a kernal
information block 105, having a block size of N. More
specifically, this kernal information block 105 is a row
vector u=[u,],_,*' comprising N kernal information bits,
where uE{0, 1}. Here, the information block conditioning
must be completed such that N is a power of 2 that is greater
than K, in order to provide compatibility with the polar
encoder kernal, which operates on the basis of a generator
matrix having dimensions that are a power of 2, as will be
discussed below. The input to the polar encoder kernal 102
is a kernal information block u 105 and the output of the
polar encoder kernal 102 may be referred to as a kernel
encoded block 106, having a block size that matches the
kernal block size N. More specifically, this kernal encoded
block 106 is a row vector: x=X] jZON"l comprising N kernal
encoded bits, where XjE{O, 1}. Here, the kernal encoded
block 106 is obtained according to the modulo-2 matrix
multiplication x=uF®”, where the modulo-2 sum of two bit
values may be obtained as their XOR. Here, the generator
matrix F” is given by the [n=log 2(N)]th Kronecker power
of the kernal matrix:

Note that successive Kronecker powers of the kernal
matrix may be obtained recursively, where each power F%”
is obtained by replacing each logic ‘1’ in the previous power
F®-D with the kernal matrix and by replacing each logic
0’ with a 2x2 zero matrix. Accordingly, the n” Kronecker
power F®” of the kernal matrix has dimensions of 2”x2”. For
example,

10000000

11000000

1000 10100000
1100 11110000
FO2 _ JF® =)
1010 10001000
1111 11001100
10101010

11111111

Here, u=[1011] gives x=uF®?=[1101] and u=[11001001]
gives x=uF®>=[00110111].

20

25

40

45

55

60

65

12

A skilled artisan will appreciate that the level of integra-
tion of circuits or components may be, in some instances,
implementation-dependent. Furthermore, it is envisaged in
some examples that a signal processor may be included in a
communication unit 116 and be adapted to implement the
encoder and decoder functionality. Alternatively, a single
processor may be used to implement a processing of both
transmit and receive signals, as shown in FIG. 1, as well as
some or all of the baseband/digital signal processing func-
tions. Clearly, the various components, such as the described
polar encoder, within a wireless or wired communication
unit 116 can be realized in discrete or integrated component
form, with an ultimate structure therefore being an applica-
tion-specific or design selection.

In some examples, the operation of the polar encoder
kernal 102 may be represented by a graphical representation
201, 202, 203 of the generator matrix F®”, which is exem-
plified in FIG. 2. Referring now to FIG. 2 an example
graphical representation 200 of the generator matrices F 201,
F®2 202 and F®3 203 are illustrated according to examples
of'the invention. The graphical representations 201, 202, 203
of the generator matrix F®” are examples of small polar code
graphs, whereas in general, the polar code graphs may be
much bigger and have any dimension n>0. Thus, the
example in FIG. 2 illustrates a much more simplified
arrangement than exists in practice, purely for the purpose of
explanation and not to obfuscate the description of the
invention.

Here, each modulo-2 addition & 204 may be imple-
mented using a binary eXclusive-OR (XOR) operation. Note
that the graph comprises ‘N’ inputs on its left edge 205 and
‘N’ outputs on its right edge 206, corresponding to the ‘N’
kernal information bits of ‘u’ 105 and the ‘N’ kernal encoded
bits of ‘x” 106. The graphical representations of the genera-
tor matrices F 201, F®2 202 and F®? 203 comprise n=log
2(N) stages 207, each of which comprises N/2 vertically
aligned XORs 204, giving a total of N log 2(N)=2 XORs.
Note that there are data dependencies between successive
stages 207 that enforce a left to right processing schedule.
More specifically, the data dependencies prevent the com-
putation of the XORs in a particular stage 207 until after the
XORs in the stage 207 to its left have been computed.

In some examples, in common with the recursive nature
of successive Kronecker powers F®”, successive graphical
representations of these generator matrices also have recur-
sive relationships. More specifically, the graphical represen-
tation 200 for a polar encoding kernal operation having a
kernal block size of N=2 201 comprises a single stage 207,
containing a single XOR 204. Notably, in the example polar
encoder, the first of the N=2 kernal encoded bits is obtained
as the XOR of the N=2 kernal information bits, while the
second kernal encoded bit is equal to the second kernal
information bit. For greater kernal block sizes ‘N’, the
graphical representation may be considered to be a vertical
concatenation of two graphical representations for a kernal
block size of N/2, followed by an additional stage 207 of
XORs. In analogy with the N=2 kernal described above, the
first N/2 of the N kernal encoded bits are obtained as XORs
of corresponding bits from the outputs of the two N/2
kernals, while the second N/2 of the kernal encoded bits are
equal to the output of the second N/2 kernal.

In this example, the input to the encoded block condi-
tioning component 103 of the polar encoder is a kernal
encoded block x 106 and its output may be referred to as an
encoded block 107, having a block size of M. More spe-
cifically, this encoded block is a row vector comprising M
encoded bits b=[b,],_,*""', where b,&{0, 1}.

US 11,190,221 B2

13

Here, the resultant polar coding rate is given by R=K/M,
where the encoded block conditioning 103 must be com-
pleted such that ‘M’ is greater than ‘K’. The encoded block
conditioning component 103 may use various techniques to
generate the ‘M’ encoded bits in the encoded block b 107,
where ‘M’ may be higher or lower than ‘N’. More specifi-
cally, repetition [6] may be used to repeat some of the ‘N’
bits in the kernel encoded block ‘x’, while shortening or
puncturing techniques [6] may be used to remove some of
the ‘N’ bits in the kernel encoded block ‘x’. Note that
shortening removes bits that are guaranteed to have logic
values of ‘0’, while puncturing removes bits that may have
either of logic ‘0’ or ‘1’ values. The encoded block condi-
tioning component may also include an interleaving opera-
tion. Following polar encoding, the encoded block ‘b* 107
may be provided to a modulator, which transmits it over a
communication channel 108.

Referring now to FIG. 3 an example polar encoding
process, using an extension of the graphical representation
300 of the generator matrix F* 203, illustrates the example
where a particular frozen bit pattern is used to convert the
K=4 information bits a=[1001] 104 into the M=8 encoded
bits b=[00001111] 107. More specifically, information block
conditioning 101 is used to convert the K=4 information bits
a=[1001] 104 into the N=8 Xkernal information bits
u=[00010001]105. These are then converted into the N=8
kernal encoded bits x=[00001111]106 by the polar encoder
kernal 102 using the polar code graph 203. Here, the input
paths can be traced through the various XOR operations to
identify the output Finally, encoded block conditioning 103
preserves all kernal encoded bits, to provide the M=8
encoded bits b=[00001111] 107.

In the receiver, the demodulator’s role is to recover
information pertaining to the encoded block. However, the
demodulator is typically unable to obtain absolute confi-
dence about the value of the M bits in the encoded block
107, owing to the random nature of the noise in the com-
munication channel 108. The demodulator may express its
confidence about the values of the bits in the encoded block
107 by generating a soft encoded block 109, having a block
size of M. More specifically, this soft encoded block 109 is
a row vector comprising M encoded soft bits b=[b,],_;***.
Each soft bit may be represented in the form of a Logarith-
mic Likelihood Ratio (LLR):

5

S [Prib=0)
"= n[Pr(bk = 1)]

where Pr(b,=‘0") and Pr(b,=*1") are probabilities that sum
to ‘1.

Here, a positive LLR 4 indicates that the demodulator has
greater confidence that the corresponding bit b, has a value
of ‘0’, while a negative LLR indicates greater confidence in
the bit value ‘1°. The magnitude of the LLR expresses how
much confidence, where an infinite magnitude corresponds
to absolute confidence in this bit value, while a magnitude
of ‘0’ indicates that the demodulator has no information
about whether the bit value of ‘0’ or ‘1” is more likely.

In an alternative approach, each soft bit may be repre-
sented by a pair of Logarithmic Likelihoods (LLs):

b(0)=In[Pr(b,=0)]
by(1)=In[Pr(b,=1)]

A polar decoder comprises three successive components,
namely encoded block conditioning 110, the polar decoder

20

25

40

45

50

55

65

14

kernal 111 and information block conditioning 112, as
shown in FIG. 1. These components are discussed in the
following paragraphs.

The input to the encoded block conditioning component
110 of the polar decoder is a soft encoded block b 109 and
its output may be referred to as a soft kernal encoded block
113, having a block size of N. More specifically, this soft
kernal encoded block 113 is a row vector comprising ‘N’
kernal encoded LLRs X=[X],_,"~*. In order to convert the M
encoded LLRs into ‘N’ kernal encoded LLRs, infinite-
valued LLRs may be interlaced with the soft encoded block
109, to occupy the positions within the soft kernal encoded
block that correspond to the ‘0’-valued kernal encoded bits
that were removed by shortening in the polar encoder.
Likewise, ‘0’-valued LL.Rs may be interlaced with the soft
encoded block 109, to occupy the positions where kernal
encoded bits were removed by puncturing. In the case of
repetition, the LLRs that correspond to replicas of a par-
ticular kernal encoded bit may be summed and placed in the
corresponding position within the soft kernal encoded block
109. A corresponding deinterleaving operation may also be
performed, if interleaving was employed within the encoded
block conditioning component 103 of the polar encoder.

The input to the polar decoder kernal 111 is a soft kernal
encoded block % 113 and its output may be referred to as a
recovered kernal information block 114, having a block size
of ‘N’. More specifically, this recovered kernal information
block 114 is a row vector comprising ‘N’ recovered kernal
information bits 0=[0,],,""*, where 0,€{0, 1}. In some
examples, the polar decoder kernal 111 may operate using
various different algorithms, including Successive Cancel-
lation (SC) decoding [1] and Successive Cancellation List
(SCL) decoding [7].

The input to the information block conditioning compo-
nent 112 of the polar decoder is a recovered kernal infor-
mation block 114 and its output may be referred to as a
recovered information block 115, having a block size of ‘K.
More specifically, this recovered information block 115 is a
row vector 5:[&;]1.:0"{"1 comprising ‘K’ recovered informa-
tion bits, where a,£[0, 1]. The recovered information block
may be obtained by removing all redundant bits from the
recovered kernal information block G 114. A corresponding
deinterleaving operation may also be performed, if inter-
leaving was employed within the information block condi-
tioning component 101 of the polar encoder.

1) SC decoding: A polar decoder kernal that operates on
the basis of SC decoding may be considered to have a
similar graph structure 201, 202, 203 to a polar encoder, as
illustrated in FIG. 2. It may be observed that each stage 207
of the graph comprises N/2 basic computation units, which
resemble the N=2 graph 201. More specifically, each basic
computation unit has two connections on its left-hand edge,
which connect to basic computation units in the stage 207
immediately to the left, or which connect to the left-hand
edge of the graph 205 if there are no stages to the left. These
connections on the left-hand edge of the basic computation
unit are horizontally-aligned with two connections on its
right-hand edge, which connect to basic computation units
in the stage 207 immediately to the right, or which connect
to the right-hand edge of the graph 206 if there are no stages
to the right. Within the basic computation unit, the first of the
two right-hand connections is connected via an XOR 204 to
the two-left hand connections, while the second right-hand
connections is directly connected to the second left-hand
connection. In the left-most stage of the graph, the two
connections on the left-hand and right-hand edges of each
basic computation unit are vertically consecutive to each

US 11,190,221 B2

15

other. But in the other stages, the two connections of each
basic computation unit are vertically separated from each
other by an offset that doubles in each successive stage 207.

An SC decoder performs computations pertaining to the
basic computation units, according to a sequence that is
dictated by data dependencies. More specifically, there are
three types of computations that can be performed for a
particular basic computation unit, depending on the avail-
ability of LLRs provided on the connections 403, 404 on its
right-hand edge, as well as upon the availability of bits
provided on the connections 401, 402 on its left-hand edge.

The first occasion when a basic computation unit can
contribute to the SC decoding process is when an LLR has
been provided by both of the connections 403, 404 on its
right-hand edge. As shown in FIG. 4(a), we refer to the first
and second of these two LLRs as X, and X,, respectively.
This enables the basic computation unit to compute an LLR
X, for the first 401 of the two connections on its left-hand
edge, according to the f function:

M

Xe = f(Xa, %)
= 2tank~ (tanh(X, / Dtanh(%, / 2))
(2)

~ sign(X,)sign(Xp Jmin(|%s .| %p).

where sign(®) returns ‘-1’ if its argument is negative and
‘+1” if its argument if positive.

Later in the SC decoding process, a bit 0, will be provided
on the first 401 of the connections on the left-hand edge of
the basic computation unit, as shown in FIG. 4(4). Together
with the LLRs X, and X, that were previously provided using
the connections 403, 404 on the right-hand edge, this
enables the basic computation unit to compute an LLR X, for
the second 402 of the two connections on its left-hand edge,
according to the g function:

©)

Xa = g&a, Xp, Ula)

= (-D%x, + %

Later still, a bit G, will be provided on the second 402 of
the connections on the left-hand edge of the basic compu-
tation unit, as shown in FIG. 4(c). Together with the bit G,
that was previously provided using the first 401 of the
connections on the left-hand edge, this enables the partial
sum computation of bits {i, and 0, for the first 403 and
second 404 connections on the right-hand edge of the basic
computation unit, where:

4, =XOR(4,,4,), 4

a=d

®

As may be appreciated from the discussions above, the
function of (1) or (2) may be used to propagate LLRs from
right-to-left within the graph, while the partial sum compu-
tations of (4) and (5) may be used to propagate bits from
left-to-right and while the g function of (3) may be used to
switch from propagating bits to propagating LLRs.

In order that LLRs can be propagated from right to left,
it is necessary to provide LLRs on the connections on the
right-hand edge 206 of the graph. This is performed at the
start of the SC decoding process, by providing successive
LLRs from the soft kernal encoded block X 113 on succes-
sive connections on the right-hand edge 206 of the graph.

20

25

35

40

45

50

55

60

65

16

Likewise, it is necessary to provide bits on the connections
of the left-hand edge 205 of the graph, in order to facilitate
the propagation of bits from left to right. Here, a further data
dependency beyond those described above is imposed. If the
position of a particular connection on the left-hand edge of
the graph corresponds to the position of an information bit
in the kernal information block u 105, then the bit that is
input into that connection depends on the LLR that is output
from that connection. More specifically, if a positive LLR is
output on the connection, then a value of 0 may be selected
for the corresponding bit of the recovered kernal information
block 0 114 and then input into the connection. Meanwhile,
a negative LLR allows a value of ‘1’ to be selected for the
corresponding bit of the recovered kernal information block
114 and then input into the connection. In the case of a
connection corresponding to a redundant bit within the
kernal information block u 105, the value of that redundant
bit may be input into the connection as soon as it is known.
Here, the value of frozen and UE-ID bits may be known
before the SC decoding process begins, but the value of
CRC, PC and hash bits may not become available until
related information bits have been recovered.

In combination, the data dependencies described above
impose a requirement for the information bits within the
recovered kernal information block 0 114 to be obtained one
at a time on the connections on the left edge 205 of the
graph, in order from top to bottom. More specifically, the SC
decoding process begins by using the f function (1) or (2) to
propagate LLRs from the right hand edge 206 of the graph,
to the top connection on the left-hand edge 205 of the graph,
allowing the first bit to be recovered. Following this, each
successive bit from top to bottom is recovered by using the
partial sum computations of (4) and (5) to propagate bits
from left to right, then using the g function of (3) for a
particular basic computation unit to switch from bit propa-
gation to LLR propagation, before using the f function to
propagate LLRs to the next connection on the left-hand edge
205 of the graph, allowing the corresponding bit to be
recovered. This process is illustrated in the example of FIG.
5.

FIG. 5 illustrates an example of an SC decoding process,
using a graphical representation of a generator matrix F®?
203 for a case where a particular frozen bit pattern is used
to convert a particular vector ~b of M=8 encoded LLLRs 109
into the K=4 recovered information bits "a=[1001] 115,
according to example embodiments of the invention. The
LLRs obtained using the f and g functions of equations (2)
and (3) are shown above each connection. The bits obtained
using the partial sum computations of equations (4) and (5)
are shown below each connection. The accompanying num-
bers in parenthesis identify the step of the SC decoding
process where the corresponding LLLR or bit becomes avail-
able.

2) SCL Decoding:

In one example of the herein described SC decoding
process, the value selected for each bit in the recovered
information block 115 depends on the sign of the corre-
sponding LLR, which in turn depends on the values selected
for all previous recovered information bits. If this approach
results in the selection of the incorrect value for a particular
bit, then this will often result in the cascading of errors in all
subsequent bits. The selection of an incorrect value for an
information bit may be detected with consideration of the
subsequent frozen bits, since the decoder knows that these
bits should have values of ‘0’. More specifically, if the
corresponding LLR has a sign that would imply a value of
‘1’ for a frozen bit, then this suggests that an error has been

US 11,190,221 B2

17

made during the decoding of one of the preceding informa-
tion bits. However, in the SC decoding process, there is no
opportunity to consider alternative values for the preceding
information bits. Once a value has been selected for an
information bit, the SC decoding process moves on and the
decision is final.

This motivates SCL decoding [7], which enables a list of
alternative values for the information bits to be considered.
As the decoding process progresses, it considers both
options for the value of each successive information bit.
More specifically, an SCL decoder maintains a list of can-
didate kernal information blocks, where the list and the
kernal information blocks are built up as the SCL decoding
process proceeds. At the start of the process, the list com-
prises only a single kernal information block having a length
of zero bits. Whenever the decoding process reaches a
frozen bit, a bit value of 0 is appended to the end of each
kernal information block in the list. However, whenever the
decoding process reaches an information bit, two replicas of
the list of candidate kernal information blocks is created.
Here, the bit value of ‘0’ is appended to each block in the
first replica and the bit value of 1 is appended to each block
in the second replica. Following this, the two lists are
merged to form a new list having a length which is double
that of the original list. This continues until the length of the
list reaches a limit L, which is typically chosen as a power
of two. From this point onwards, each time the length of the
list is doubled when considering an information bit, the
worst [among the 21 candidate kernal information blocks
are identified and pruned from the list. In this way, the length
of the list is maintained at L. until the SCL decoding process
completes.

Here, the worst candidate kernal information blocks are
identified by comparing and sorting metrics that are com-
puted for each block [8], based on the LL.Rs obtained on the
left-hand edge 205 of the polar code graph. These LLRs are
obtained throughout the SCL decoding process by using
separate replicas of the partial sum computations of (4) and
(5) to propagate the bits from each candidate kernal infor-
mation block into the polar code graph, from left to right.
Following this, separate replicas of the g and f computations
of (1)-(3) may be used to propagate corresponding LLRs
from right to left, as in the herein described example SC
decoding process. The metric associated with appending the
bit value 0, in the position jE[0, N-1] to the candidate
kernal information block 1 is given by:

b)) = ¢y +1n(1 + e’(l’ﬁ‘l,j)*l,j) (6)
i 4= 201 - sientt M
DS if oy =5 (1 - sign(¥, ;)
Brj-1 + %41 otherwise

where %, is the corresponding LLR and ¢,,_, is the metric
that was calculated for the candidate kernal information
block in the previous step of the SCL decoding process. Note
that since the metrics accumulate across all bit positions
JE[0, N-1], they must be calculated for all L. candidate
kernal information blocks whenever a frozen bit value of ‘0’
is appended, as well as for all 2. candidates when both
possible values of an information bit are considered. In the
latter case, the 21 metrics are sorted and L. candidates having
the highest values are identified as being the worst and are
pruned from the list.

25

50

55

18

Following the completion of the SCL decoding process,
the candidate kernal information block having the lowest
metric may be selected as the recovered kernal information
block 114. Alternatively, in CRC-aided SCL decoding [9],
all candidates in the list that do not satisty a CRC are pruned,
before the candidate having the lowest metric is selected and
output.

Proposed Polar Decoder Kernal

Referring now to FIG. 6, an example schematic of the
proposed polar decoder kernal 1600 is illustrated for the case
where C,,, =5, according to example embodiments of the
invention. The proposed polar decoder kernal 111 comprises
datapath 1601, 1602, 1603, memory 1604, 1605, and con-
troller 1606 components. More specifically, an inner data-
path 1601, an outer datapath 1602 and C,,,,—2 replicas of the
partial sum datapath 1603 are employed. Furthermore,
C,,.x—1 bit memory blocks 1605 are employed, together
with C,,,. LLR memory blocks 1604. In contrast to known
processor architectures for implementing a decoder,
examples of the present invention can flexibly group all
stages in the polar code graph into a number of columns in
the range 1 to C,, .., depending on the kernal block size N at
run-time, where in some examples C,,, may be selected at
design time. By contrast, some prior art always uses a fixed
number of columns that does not vary with kernal block size,
whilst some prior art can only group the left-most stages into
a column, with the requirement for all other stages to remain
individual.

In this way, examples of the present invention accrue the
advantage of using columns, which is that the number of
steps required to complete the polar decoding process is
reduced. Examples of the present invention also retain the
flexibility to support long kernal block sizes N, without the
requirement for columns having excessive widths and there-
fore hardware requirements. Likewise, some examples of
the present invention retain the flexibility to support short
kernal block sizes N, whilst retaining high utility of the inner
datapath hardware, and therefore maintaining hardware effi-
ciency.

More specifically, rather than processing one stage of the
polar code graph at a time, the proposed architecture
achieves a higher degree of parallelism by processing the
several consecutive stages within each column at once. This
parallel processing can be fully exploited throughout the
majority of the f and g computations, achieving greater
hardware utility than line and semi-parallel architectures.
Furthermore, since several consecutive stages are processed
at once, memory is only required at the interfaces between
each pair of consecutive groupings of stages, rather than at
the interfaces between each pair of consecutive individual
stages. This significantly reduces the overall memory
requirement of the proposed architecture relative to previous
implementations, which is particularly impactful since
memory is the biggest contributor to hardware resource
usage. Finally, a simple mechanism for propagating partial
sum bits is proposed, which is also impactful since partial
sum propagation is the second biggest contributor to hard-
ware resource usage in previous implementations.

More specifically, under the control of the controller
1606, each of the inner datapath 1601, the outer datapath
1602 and the partial sum datapaths 1603 may be directed to
process one sub-row of one row of one column in each step
of'the polar encoder kernal operation. Here, the inputs to the
datapath 1601, 1602 or 1603 are read from the LLR and/or
bit memory blocks 1604 and 1605 that reside at the appro-
priate interface on one or other edge on either side of the
current column, depending on whether information is propa-

US 11,190,221 B2

19

gating from left-to-right or right-to-left in the polar code
graph. Likewise, the outputs of the datapath 1601, 1602 or
1603 are written to the LL.R and/or bit memory blocks 1604
and 1605 that reside at the appropriate interface on either
side of the current column, depending on the direction of
information flow. In this way, bits or LLRs can be passed
between processing performed in adjacent columns by read-
ing and writing to the same memory block 1604 or 1605.

The LLRs and bits are arranged within these memory
blocks 602, 603 in a manner that allows the datapaths 1601,
1602 or 1603 to perform seamless read and write operations,
without the requirement for complex interconnection net-
works or complex control signals.

Architecture

The proposed polar decoder kernal 111 enables the flex-
ible decoding of one recovered kernal information block 114
at a time, where successive recovered kernal information
blocks can have kernal block sizes N that can vary from
block to block.

More specifically, the kernal block size N can adopt the
value of any power of two between 2 and N, , where N~
is a parameter that is fixed at design time. At the start 1801
of the polar decoding process, the soft kernal encoded block
)N(:[)A(j]jzoN"l 113 is loaded 1802 into the LLR input 1607 of
the polar decoder kernal 111, over a series of N/min(N, n,)
consecutive steps. The LLR input 1607 has a width that can
accept n, LLRs in each step, where the parameter n, is fixed
at design time. Here, each LLR may be represented using a
two’s complement fixed-point number, having a bit width
that is fixed at design time. In the case where N<n,, an equal
number of zero-valued LLRs are inserted after each LLR in
the soft kernal encoded block 113, in order to increase its
length to n; before it is provided to the proposed polar
decoder kernal 111. During the polar decoding process, the
redundant bit patterns and the corresponding redundant bit
values are provided to corresponding inputs 1608 of the
proposed polar decoder kernal 111. Each of these inputs has
a width that can accept 2° pattern bits or redundant bits in
each step, which are provided to the proposed polar decoder
kernal 111 using an on-demand basis, according to the needs
of the polar decoding process. In the case where N<2%,
asserted frozen bit flags are appended to the frozen bit
pattern, in order to increase its length to 2%.

Following the completion of the polar decoding process,
a series of N/min(N, n,) consecutive steps is used to output
1803 the recovered kernal information block 6=[f,],_, -1
114 on the bit output 1609 of the proposed polar decoder
kernal 111, which has a width of n, bits. In the case where
N<n,, zero-valued bits may be removed from the end of the
output 1609 of the proposed polar decoder kernal 111. When
decoding a soft kernal encoded block 113 having a block
size of N, one described example of the proposed polar
decoder kernal 111 operates on the basis of a graph repre-
sentation 201, 202, 203 of the polar code generator matrix
F®" Here, the n=log 2(N) stages 207 within the graph 201,
202, 203 are grouped into a number C of columns 1701,
1702, where each column comprises a particular number of
consecutive stages 207. Each column 1701, 1702 may be
referred to by its index c€[0, c-1], where the left-most
column 1701 has the index ¢=0 and the right-most column
has the index ¢c=C-1. The number of stages in each column
1701, 1702 may be expressed using the row vector
s=[s_]._,“"!, where s, is the number of stages in the left-
most column 1701 and s._, is the number of stages in the
right-most column. Here, s must be chosen such that
3" 's_=n. This is exemplified in FIG. 7 for the case where
the graph representation of the generator matrix F®° is

5

10

15

20

25

30

35

40

45

50

55

60

65

20

grouped into C=4 columns 1701, 1702, comprising s=[1; 2;
2; 1] stages 207. In the proposed polar decoder kernal 111,
the left-most column with the index ¢c=0 is referred to as the
outer column 1701, while the other columns having the
indices ¢&[1, C-1] are referred to as the set of inner columns
1702. The particular number of stages in each column 1701,
1702 is selected depending on the kernal block size N, as
well as the parameters s, and s,, which are fixed at design
time. Here, s, specifies the maximum number of stages that
may be accommodated in the outer column 1701, which can
adopt any value in the range ‘0’ to n,,,,=log,(N,,..). Mean-
while s, specifies the maximum number of stages that may
be accommodated in each inner column 1702, which can
adopt any value in the range 1 to n,,, -s,. If the number of
stages in the graph n=log 2(N) satisfies n=s,, then the graph
201, 202, 203 is decomposed into only C=1 column, namely
the outer column 1701, which will comprise s,=n stages
207. Otherwise, the graph 201, 202, 203 is decomposed into
C=[(n-s,)/s;, |+1 (number of columns, where the outer
column 1701 comprises s,=s, stages 207, the right-most
inner column 1702 comprises s,_,=n-s,—(C-2)s, stages 207
and all other inner columns 1702 comprise s,=s, stages 207.
This is exemplified in FIG. 7, where s=[1; 2; 2; 1] results
from s =1 and s,=2 in the case where the graph 201, 202, 203
comprises n=6 stages 207. Note that in alternative arrange-
ments, the n—-s, right-most stages 207 could be distributed
among the C-1 inner columns 1702 using any other com-
bination that satisfies s_=s, for all c€[1, C-1], although this
requires modifications to the design described throughout
this section.

Note that if the maximum number of stages in the graph
n,,..=log,(N, .) satisfies n,,,,=s,, then the graph 201, 202,
203 will always be decomposed into only C,,,.=1 column
1701, comprising a maximum of s, .=, stages 207.
Otherwise, the graph 201, 202, 203 is decomposed into a
maximum of C,,,.=[(n,,,.—s,)/s;]+1 number of columns
1701, 1702, where the outer column 1701 comprises a
maximum of s, _,..=s, stages 207, the right-most inner
column 1702 comprises a maximum 0Of S¢_; ™ a—So—
(C,,ux—2)s; stages 207 and all other inner columns 1702
comprise a maximum of s_,,.=s, stages 207. The set of
columns 1701, 1702 is associated with a vector of sub-code
radixes r=[r_]__,“', where each sub-code radix is given by:

_~93 Pt
p =277 =0c,

Here, the sub-code radix r,.. of a particular column 1701,
1702 quantifies the kernal block size N that would result if
the graph 201, 202, 203 comprised only the stages 207 in
that column and in the columns to its left Note that the
sub-code radix r., of each successive column 1701, 1702
grows from left to right. The corresponding maximum
sub-code radixes are given by:

» :22c F0e! max

cmax

Each column 1701, 1702 comprises a number of rows,
which may be expressed using the vector R=[R_]__,“,
where the number of rows in a particular column is given by
R =N/r,

Here, each row 1703 comprises a sub-graph comprising s,
stages 207 and r... consecutive connections on its left and
right edges, which are horizontally-aligned. It may be
observed in FIG. 7 that the row definition given above
results in there being no interconnections between any pair
of rows 1703 within any particular column 1701, 1702. Each
row 1703 of each column 1701, 1702 may be visited one or
more times by the polar decoding process, in order to
perform XOR operations, or f and g functions, for example.

US 11,190,221 B2

21

More specifically, processing associated with particular
rows in particular columns may be performed on more than
one temporally-separated occasion during the polar decod-
ing process, where each set of temporally-separated pro-
cessing may be referred to as a ‘visit’ to the row. However,
the visits to the rows 1703 in columns 1701, 1702 to the right
of the graph 201, 202, 203 involve more computations than
the visits within columns to the left of the graph, since the
number of connections within the rows 1703 of each column
r.. grows from left to right. However, it may be observed in
FIG. 7 that the rows 1703 in the right-most columns may be
decomposed into sub-rows 1704, which have no connections
between each other. Owing to this, the computations asso-
ciated with a particular visit to a row 1703 at a particular
time during the polar decoding process may be spread over
several consecutive steps, each of which performs compu-
tations 1804, 1805, 1806 for a different sub-row 1704 in the
row 1703. In this way, the polar decoding process is com-
pleted one step at a time, where each step may correspond
to one or more hardware clock cycles, depending on if and
how pipelining is employed. By using more sub-rows 1704
per row 1703 in the columns 1702 to the right of the graph
201, 202, 203, the number of computations performed in
each step of the decoding process can be maintained at a
relatively constant level, irrespective of which column is
being visited. Formally, the number of sub-rows that com-
prise each row 1703 of each column 1701, 1702 may be
expressed using the vector S=[S_]_,“~'. Here, S_ must be a
power of two and must not exceed r /2% in order to ensure
that there are no connections between sub-rows 1704. Note
that this implies that the rows 1703 in the outer column 1701
cannot be further decomposed into sub-rows 1704. Each
sub-row 1704 comprises a sub-graph comprising s, stages
207 and n_=r/S_ horizontally-aligned connections on its left
and right edges, which are vertically offset from each other
by r./n, positions. Here, n,. is referred to as the block size of
the sub-row 1704, which must be a power of two in the range
[2%, r.]. In the proposed polar decoder kernal 111, the
particular block size of the sub-rows 1704 in each inner
column 1702 is selected as n_.=min(r,, n,). Here, n, specifies
the maximum inner sub-row block size, which is a parameter
that is fixed at design time and which can adopt the value of
any power of two in the range 2% to N,,, ... Each row 1703 of
each column 1701, 1702 is enclosed in a dashed box. The
first sub-row 1704 in the first row 1703 of each column
1701, 1702 is highlighted in bold.

This is exemplified in FIG. 7, where S=[1; 1; 4; 8] results
from n,=8 in the case where the graph 201, 202, 203
comprises n=6 stages 207.

FIG. 8 illustrates an example flowchart of a decoding
process employed by the proposed polar decoder kernal,
whereby each cycle around the main loop of the flowchart
corresponds to one step of the decoding process, according
to example embodiments of the invention. The flowchart
starts at 1801 and, at 1802, the LLRs of the soft kernal
encoded block 113 are loaded into the proposed polar
encoder kernal 111. At 1807, the current column index c¢ is
initialised as c=C-1, the current row indices y are initialised
as a zero-valued vector of length C and the current sub-row
index s is initialised as 0.

At 1808, the determination ¢>0 is used to identify if the
current column is an inner column. If so, then the flowchart
proceeds to 1809, where v=mod(y,._,, r/r._,) is determined
to identify the index of the current visit to the current
sub-row in the current row of the current column. Following
this, at 1805, the partial sum datapaths 1 to ¢ are used to
propagate partial sum bits from column O to the current

10

15

20

25

30

35

40

45

50

55

60

65

22

column. Following this, at 1806, the inner datapath is used
to process the current visit to the current sub-row in the
current row of the current column. At 1813, the determina-
tion s=S_-1 is used to determine if the visit with index v has
now been made to all sub-rows in the current row. If not,
then the sub-row index s is incremented at 1812, so that the
next sub-row will be visited next. The flowchart then returns
to 1808, to continue processing the sub-rows in the current
row of the current inner column.

By contrast, if it was determined at 1813 that the visit with
index v has now been made to all sub-rows in the current
row of the current inner column, then the flowchart proceeds
to 1814. Here, the determination v=rJ/r._;-1 is used to
determine if the last visit has now been made to all sub-rows
in the current row of the current inner column. If not then the
flow chart proceeds to 1818, or if s, then the flowchart first
proceeds to 1816, before advancing to 1818. At 1816, the
row index for the current column is incremented, so that
when the current inner column is visited again later in the
polar decoding process, it will be the next row down that will
be visited. At 1818, the current column index ¢ is decre-
mented, so that the column to the left will be visited next, be
it the outer column or another of the inner columns. At 1821,
the sub-row index s is reset to 0, so that the next visit to a
row in an inner column will start with its top sub-row.
Following this, the flow chart returns to 1808.

If, at 1808, the determination ¢>0 identifies that the
current column is the outer column, then the flowchart
proceeds to 1804. Here, the outer datapath is used to process
the current row y,, in the outer column. Following this, the
determination y,=R,-1 is used at 1810 to determine if the
bottom row in the outer column has been visited. If not, then
the flowchart proceeds to 1815, where the row index for the
outer column is incremented, so that when the outer column
is visited again later in the polar decoding process, it will be
the next row down that will be visited. Next, a process is
used in 1817, 1820 and 1819 to determine which of the inner
columns should be visited next. In 1817, the column index
¢ is initialised to that of the right-most inner column C-1. In
1819, ¢ is continually decremented, until mod(y,2*°,r._,)=0
at 1820. Following this, the flowchart proceeds to 1821,
where the sub-row index s is reset to 0, before the flow chart
returns to 1808.

By contrast, if it was determined at 1810 that the bottom
row in the outer column has been visited, then the recovered
kernel information block 114 is output from the proposed
polar decoder kernal 111 and the process ends at 1811.

In some examples, the proposed polar decoder kernal 111
completes the decoding process in accordance with the data
dependencies. As the decoding process proceeds, computa-
tions are performed for different rows 1703 in different
columns 1701, 1702, according to a particular schedule, as
illustrated in the flowchart of FIG. 8. Each row 1703 in the
outer column 1701 will be visited once by the process, while
each row 1703 of each particular inner column 1702 will be
visited 2% times by the process, where s_ is the number of
stages in that column. The decoding process begins by
passing the LLRs of the soft kernal encoded block % 113 to
the single row 1703 in the right-most column. The decoding
process then uses the f function of (1) or (2) to perform
calculations upon these LLRs during a first visit to this
single row 1703 in the right-most column. Whenever a visit
to a row 1703 in an inner column 1702 has been completed,
it will pass the resultant LLRs to one of the connected rows
1703 in the column to the left, where the particular row 1703
is selected as the top-most one that has not been visited yet.
The decoding process will then use the f function of (1) or

US 11,190,221 B2

23

(2) to perform calculations upon these LLRs during a first
visit to this row 1703 in the column to the left. Whenever a
visit 1804 to a row 1703 in the outer column 1701 has been
completed, it will contribute bits to the recovered kernal
information block 0 114. Following this, the partial sum
equations of (4) and (5) will be used to pass 1805 partial sum
bits from this row 1703 in the outer column 1701 to the
left-most inner column 1702 having a horizontally-aligned
row 1703 where fewer than 2 visits have been completed so
far. At the same time, the decoding process will perform a
visit to this row 1703, in which the g function of (3) is used
to combine these bits with the LL.Rs that were provided at
the start of the first visit to the row 1703. Note that each visit
to a row 1703 in an inner column 1702 may be performed
spread over a number of consecutive steps of the decoding
process, where each step 1806 operates on a different one of
the sub-rows 1704 in the row 1703. Here, the sub-rows 1704
may be processed in any order, although the flowchart of
FIG. 8 illustrates the case where they are processed from top
to bottom. Here, the partial sum bits are propagated 1805
from the outer column 1701 to the sub-row 1704 in the inner
column 1702 within the same step where they are used by
the g function of (3), as discussed below. Note that this same
approach may be used for both the SC and the SCL decoding
processes. In the case of SCL decoding, each visit to each
sub-row 1704 uses parallel processing to simultaneously
perform the computations associated with all L candidate
kernal information blocks in the list.

FIG. 9 illustrates an example timing diagram for the
proposed polar decoder kernal, according to example
embodiments of the invention.

As shown in FIG. 9, the total number of steps required to
complete the decoding process may be obtained by com-
bining the number of visits made to each row 1703 in each
column 1701, 1702 with the number of sub-rows 1704 in
each column, giving a total of N/ro+Z__, “~'2"N/min(r_, n,)
steps, as plotted in FIG. 10.

FIG. 10 illustrates an example plot of a number of steps
required by the decoding process of the proposed polar
decoder kernal, according to example embodiments of the
invention. It plots the number of steps required by the
decoding process of the proposed polar decoder kernal 111,
as functions of the kernal block length N, the number of
stages s, in the outer datapath 1602, the number of stages s,
in the inner datapath 1601 and the block size n, of the inner
datapath. For the case of [.=8 list decoding and for each
combination of so, s, and n,, “path’ quantifies the number of
fixed-point adders in the critical datapath length, ‘outadd’
quantifies the number of fixed-point adders that must be laid
out in the outer datapath 1602, ‘inadd’ quantifies the number
of fixed-point adders that must be laid out in the inner
datapath 1601. Furthermore, for the case of N,,, =1024,
‘LLRmem’ quantifies the required LLR memory 1604
capacity in LLRs, while ‘bitmem’ quantifies the required bit
memory 1605 capacity in bits, including the memory for the
candidate kernal information blocks obtained by the outer
datapath 1602.

Note that a further N/min(N, n,) steps are required to load
1802 the LLRs of the soft kernal encoded block 113 into the
proposed polar decoder kernal 111, before the decoding
process can begin. Note that in an alternative example
arrangement, the processing of the right-most column 1702
may begin towards the end of the loading 1802 of the soft
kernal encoded block 113, thereby allowing some concur-
rency to be achieved, subject to a modification to the
illustrated design. In the case of SC decoding, the recovered
kernal information block 114 can be output 1803 from the

25

30

35

40

45

50

55

24

proposed polar decoder kernal 111 concurrently with the
processing of the outer column 1701 in the graph 201, 202,
203, n,=2"% bits at a time, albeit sporadically according to
when the outer column 1701 is visited 1804 by the decoding
process. However, in the case of SCL decoding, the output-
ting 1803 of the recovered kernal information block 114
cannot begin until after all processing has been completed
and the best among the L. candidate kernal information
blocks has been selected. In this case, a further N/min(N, n,)
steps are required to output 1803 the recovered kernal
information block 114. Each step may correspond to a single
clock cycle in a hardware implementation, depending on if
and how pipelining is applied.

The number of steps used by three parameterisations of
the proposed polar decoder kernal is plotted as a function of
the kernal block length N in FIG. 10. The legend of this
figure also quantifies the computation and memory resources
used by each parameterisation, as will be detailed in the
following sections. As may be expected, fewer steps are
used by parameterisations having more stages s, in the outer
datapath 1602, more stages s, in the inner datapath 1801 and
greater inner datapath block sizes n,. Although the datapaths
of these faster parameterisations use more computation
resources with longer critical paths, they tend to use less
memory resources, since they use fewer columns. FIG. 10
compares the proposed polar decoder kernal with the line
decoder of [14] and the semi-parallel decoder of [15], which
have been parameterised to use the multi-bit technique of
[26] to recover 2°° kernal information bits at a time. As
shown in FIG. 10, the proposed polar decoder having the
parameter s =2 completes the decoding process using fewer
steps than the benchmarkers employing the same value of
s,=2. Furthermore, it uses fewer computation resources and
it uses less than 25% of the amount of LLR memory.
Furthermore, the proposed polar decoder kernal employs an
elegant method for partial sum propagation, which has a
small hardware overhead. Since LLR memory and the
partial sum propagation are the two biggest contributors to
hardware resource usage, it may be expected that the hard-
ware efficiency of the proposed polar decoder may be four
to five times better than that of state-of-the-art polar decod-
ers.

This proposed approach can be considered to employ a
conventional polar code graph 201, 202, 203 as the basis of
LLR propagation using the f and g functions of (1)-(3).
However, a novel rearrangement of the polar code graph
201, 202, 203 is employed as the basis of bit propagation
1805 using the partial sum equations of (4) and (5).

FIG. 11 illustrates an example rearranged graphical rep-
resentation of the generator matrix F¥°, for the case of
employing C=4 columns comprising s=[1; 2; 2; 1] stages,
according to example embodiments of the invention.

This rearranged graph is exemplified in FIG. 11, for an
example where the graph 201, 202, 203 representation of the
generator matrix F®® has been decomposed into C=4 col-
umns comprising s=[1; 2; 2; 1] stages 207. Here, it may be
observed that the bottom r,_;, XORs in each stage 207 of
each row 1703 of the inner columns 1702 have been
removed, where r,._, is the sub-code radix of the column to
the left, as defined above. Instead, XORs 2101 have been
introduced at the interface between each inner column 1702
and the column to its right. More specifically, each of the top
r—r,_, bits that are passed from each row 1703 of each inner
column 1702 to the column to its right is XORed 2101 with
a particular one of the bottom r,_, bits that are passed from
that row 1703. Here, the particular bit is identified such that
both bits in each XORed pair have the same index modulo

US 11,190,221 B2

25

r._,, where each bit index will be in the range 0 to N-1
before the modulo operationand O tor,_, -1 after the modulo
operation.

As shown in FIG. 6, the proposed polar decoder kernal
111 comprises inner datapath 1601, outer datapath 1602,
partial sum datapath 1603, LLR memory block 1604, bit
memory block 1605 and controller 1606 components. More
specifically, while the proposed polar decoder kernal 111
comprises only a single instance of the outer datapath 1602
and inner datapath 1601, it comprises C,,,,—2 instances of
the partial sum datapath 1603, C,,, —1 instances of the bit
memory block 1605 and C,, . instances of the LLLR memory
block 1604. Here, the outer datapath 1602 is interfaced with
the bit output of the polar decoder kernal 111 and can be
considered to reside within the outer column 1701, which
has the index ¢=0. Meanwhile, the inner datapath 1601 can
be considered to reside within different inner columns 1702
having different indices c€[1, C-1] during different steps of
the decoding process. Furthermore, the partial sum datapath
1603 with the index c&[1, C-2] can be considered to reside
within the inner column 1702 of the polar code graph 201,
202, 203 having the corresponding index c.

Furthermore, an inner column 1702 having the index
ce[1, C-2] can be considered to interface with the column
to its left via the bit memory block 1605 and LL.R memory
block 1604 having the index c, as well as to interface with
the column to its right via the bit memory block 1605 and
LLR memory block 1604 having the index c+1. Furthermore
the right-most column 1702 having the index C-1 can be
considered to interface with the LLR input 1607 of the
proposed polar decoder kernal 111 via the LLR memory
block 1604 having the index C,, .. As shown in FIG. 6, the
outer datapath 1602, the bit memory blocks 1605 and the
partial sum datapaths 1603 form a chain, which represent the
C columns 1701, 1702 in the polar code graph 201, 202, 203.
The inner datapath 1601 can take inputs from and provide
outputs to different points in this chain, as the decoding
process visits different inner columns 1702 in the graph 201,
202, 203. FIG. 6 also illustrates, in some example embodi-
ments, a mechanism for bypassing 1610 the bit memory
blocks 1605 in this chain. This is the mechanism alluded to
above, which allows bits to propagate 1805 from the outer
datapath 1602, through successive partial sum datapaths
1603 and into the inner datapath 1601 within a single step of
the decoding process, irrespective of which inner column
1702 is being visited. Note that in the case of SCL decoding
in some examples, the datapaths 1601, 1602, 1603 and
memories 1604, 1605 have sufficient resources to perform
the computation for all I candidate kernal information
blocks in parallel.

The proposed polar decoder kernal 111 has significant
differences to all previously proposed approaches to polar
decoding. The programmable architecture of [10], [11]
adopts a serial approach, which performs the computations
associated with a single f or g function in each step, using
a schedule that obeys the aforementioned data dependencies.
By contrast, the proposed approach performs all computa-
tions associated with a sub-row 1704 in each step, resulting
in a much higher parallelism, much higher throughput and
much lower latency. The unrolled decoder of [12], [13]
achieves a very high degree of parallelism by employing a
different piece of dedicated hardware for each f or g com-
putation in the polar decoding process. However, each step
of a polar decoding process uses the hardware for only a
single f or g computation, resulting in a high latency. While
this approach can achieve a high throughput by overlapping
many decoding processes at once, it suffers from a limited

25

40

45

50

26

degree of flexibility. By contrast, the proposed approach is
fully flexible, since its computation hardware can be reused
for each sub-row 1704 in the polar code graph 201, 202, 203,
even if they comprise fewer stages 207 or have smaller block
sizes than those assumed by the hardware. The line decoder
of [14] achieves a high degree of parallel processing, by
simultaneously performing all f and g computations associ-
ated with the right-most stage 207 of a polar code graph 201,
202, 203 having particular dimensions. However, the afore-
mentioned data dependencies may prevent this parallelism
from being fully exploited when processing the other stages
207 in the graph 201, 202, 203. Instead, successively smaller
subsets of the hardware may be reused to perform the
processing of each successive stage 207 to the left, resulting
in a poor hardware efficiency and flexibility. Motivated by
this, the semi-parallel decoders of [8], [15]-[24] improve the
hardware efficiency and flexibility by reducing the degree of
parallel processing, requiring several processing steps to
perform the computations for the right-most stages 207, but
still suffering from being unable to exploit all parallelism for
the left-most stages 207. By contrast, each step of the
proposed approach achieves a high degree of parallelism by
simultaneously performing computations that span not only
up and down the length of each column, but also across the
multiplicity of stages 207 in each column 1701, 1702. More
specifically, the proposed approach uses a tree-structure to
perform the computations for each sub-row 1704, which
ensures that the full degree of parallelism is exploited in the
typical case, irrespective of which column 1701, 1702 is
being visited and irrespective of the graph dimensions. This
enables a high degree of flexibility, a high hardware effi-
ciency, a high throughput and a low latency.

While there are several previously proposed approaches
to polar decoding that employ the concept of columns 1701,
1702, there are none that apply it in the fully generalised
manner of the proposed polar decoder kernal 111, where an
arbitrary number of columns 1701, 1702 may be employed,
each comprising a potentially different and arbitrary number
of stages 207. The tree structures of [14], [25]-[29] operate
on the basis of a single column 1701 that comprises all
stages 207 in the polar code graph 201, 202, 203, but this
approach supports only a single kernal block length and can
result in a large hardware resource requirement. The polar
code graph 201, 202, 203 is decomposed into two columns
1701, 1702 comprising an equal number of stages 207 in the
approach of [30], [31], but again this approach supports only
a single kernal block length. By contrast, the approach of
[32], [33] uses an outer column 1701 that may comprise
several stages 207, but all other stages are processed sepa-
rately, using the semi-parallel approach described above. In
contrast to these approaches, the proposed polar decoder
kernal 111 can benefit from the generalised application of
columns 1701, 1702, owing to its novel memory architec-
tures. These are necessary because particular groupings of
bits and LLRs are written at the same time during the
processing of one column 1701, 1702, but different group-
ings of bits and LLRs are read at the same time during the
processing of the adjacent columns 1701, 1702. The pro-
posed memory architectures seamlessly enable read and
write operations using these groupings, ensuring that the
correct groups of bits and LLRs are elegantly delivered to
the right place at the right time. Furthermore, a significant
memory reduction is facilitated by the proposed approach,
since bits and LLRs are only stored at the boundary between
each pair of consecutive columns 1701, 1702, rather than at
the greater number of boundaries between each pair of
consecutive stages 207.

US 11,190,221 B2

27

These same novel memory architectures are also used as
the basis of the partial sum propagation 1805 in the proposed
polar decoder kernal 111, where a bypass mechanism 1610
is used to pass bits from the outer column 1701 to any of the
inner columns 1702 in a single step of the decoding process.
This is in contrast to the partial sum propagation methods
that have been proposed previously. In [8], [15], [30],
partial-sum update logic is used to accumulate different
combinations of the decoded bits and a complicated inter-
connection network is used to deliver them to the processing
of the corresponding g functions. This results in a large
hardware overhead and a long critical path, which limits the
achievable hardware efficiency, throughput and latency. By
contrast, the feed-forward architecture of [19], [21], [28],
[32], [34] uses dedicated hardware to propagate partial sum
bits to each successive stage 207 of the polar code graph
201, 202, 203. However, the complexity of the feed-forward
architecture grows rapidly for each successive stage 207,
limiting the range of kernal block lengths that can be
supported and limiting the hardware efficiency. By contrast,
the approach of [17], [22], [27], [35] uses a simplified polar
encoder kernal 102 to implement the partial sum, although
this does not benefit from reusing calculations that are
performed as a natural part of the decoding process, like in
the proposed approach.

Datapaths

The proposed polar decoder kernal 111 uses dedicated
hardware datapaths 1601, 1802, 1603 to implement the fand
g LLR functions of (2) and (3), as well as the partial sum
functions of (4) and (5). While the latter may be imple-
mented using networks of XOR gates 204, the f and g
functions may be implemented using networks of fixed-
point processing units 2201. In some examples, the inner
datapath 1601 may perform the computations 1806 associ-
ated with one visit to one sub-row 1704 in one row 1703 of
one inner column 1702. Likewise, in some examples, the
outer datapath 1602 may perform the computations 1804
associated with one row 1703 in the outer column 1701.
Finally, in some examples of the partial sum chain described
herein, each instance of the partial sum datapath 1603 may
be used to propagate 1805 partial sums through one inner
column 1702.

FIG. 12 illustrates an example schematic of a proposed
processing unit that can be reconfigured to perform either
the ‘f” function of (2) or the ‘g’ function of (3), according to
example embodiments of the invention.

1) Processing Unit and Fixed-Point Number Representa-
tion:

The proposed processing unit 2201 of FIG. 12 accepts two
fixed-point input LLRs %, 2202 and %, 2203, as well as a bit
input i, 2204 and a mode input 2205. Depending on a binary
value provided by the mode input 2205, the processing unit
2201 combines the other inputs to produce a fixed-point
output LLR 2206 X =f(X , X,) or X ~g(X ,, X, 0,), according
to either (2) or (3), as depicted in FIG. 4.

Some previous implementations of polar codes in the
literature [10], [13] have used the two’s complement fixed
point number representation to represent each LLR X as a
vector of W bits [X,],_,”, where &, is both the Most
Significant Bit (MSB) and the sign bit, X,, is the Least
Significant Bit (LSB) and ¥=-2""'% +% _,"277"% . With
this approach, the g function of (3) may be implemented
using a single adder. Here, subtraction may be implemented
when required by complementing all of the bits in the two’s
complement fixed-point representation of the LLR being
subtracted, then adding it to the other LLR, together with an
additional ‘1’ using the carry-in input of the full adder

25

35

40

45

55

28

circuit. In the f function of (2), it is necessary to negate X,
and X, if they are negative, in order to determine the absolute
values IX,| and IX,|, respectively.

FIG. 13 illustrates an example of the known art on the
two’s complement implementation of the ‘f” function of (2):
(a) Naive implementation; (b) A reduced hardware imple-
mentation; (¢) A reduced critical path implementation.

In a naive implementation of the f function, each of these
two negations can be implemented by complementing 2301
all bits in the two’s complement fixed-point representation
of the LLR and adding 1, using an adder circuit 2302,
producing the absolute values shown in FIG. 13a. Following
this, min(IX,l, IX,)i can be implemented by using a third
adder 2303 to subtract IX,| from IX,| and using the sign bit
of the result to select 2304 either IX,| or IX,|, according to the
compare and select operations shown in FIG. 13a. Finally,
depending on the signs of X, and X, it may be necessary to
negate min(IX,|, 1X,1), requiring a fourth adder 2305. In more
sophisticated two’s complement implementations, the func-
tionality of the first three adders 2302, 2303 described above
may be achieved using only a single adder 2306. This
enables the f function to be implemented using two adders
in series, where the second adder 2307 performs a negation
when necessary, as shown in FIG. 135. In order to reduce the
critical path length to only a single adder, an alternative
implementation can implement the f function using three
adders 2306, 2308 in parallel, as shown in FIG. 13¢. Here,
one adder 2306 is used to combine the functionality of the
first three adders 2302, 2303 described above and to deter-
mine whether f(X , X,) should be given by X ,, -X , X, or -X,.
Meanwhile, the other two adders 2308 calculate —X, and
-X,, in case these values are selected 2309 by the first adder
2306. Some other previous implementations of polar codes
in the literature [15], [16], [26], [36] have used the sign-
magnitude fixed point number representation to represent
each LLR % as a vector of W bits [%,],,_,”, where %, is the

w=l >
sign bit, %, is the MSB, &, is the LSB and %=(-1)"-
2,72 "%, . Meanwhile, some previous implementations
[29] have used the one’s complement fixed point number
representation, where %X=(-1)"(Z,_,"27""XOR(%,, X))
While these approaches allow the f function of (2) to be
completed using a single adder, additional adders are
required to convert to and from the two’s complement fixed
point number representation, in order to perform the g
function of (3). Alternatively, these approaches can be
implemented using only a single adder to perform both the
f and g function, at the cost of sometimes introducing an
error of =1 into the resultant LLRs X_ and % ;, which degrades
the error correction capability of the polar decoder [29].
In contrast to these previous implementations, the input
LLRs, output LLR and internal operation of the proposed
processing unit 2201 of FIG. 12 employ a fixed-point
number representation in which a two’s complement number
is appended onto an additional sign bit. More specifically,
each input LLR ~x 2202, 2203 is represented as a vector of
W+1 bits [%X,],,_,”, where %_ is the additional sign bit, X,
serves as both the MSB and the two’s complement sign bit,
&, is the LSB and x=(-1)"(-27"'%,+2,,_,"2"7%). Here,
the sign of the LLR may be obtained as sign(X)=
(=1Y*ORE 2 I other words, the additional sign bit indi-
cates whether the value represented by the two’s comple-
ment fixed point number should be negated or not, in order
to recover the true LLR value. Note that in alternative
arrangements, the W+1 bits of the proposed fixed-point
number representation may be reordered, for example by
placing the additional sign bit last rather than first in the
vector and/or by using an [SB-first rather than MSB-first

US 11,190,221 B2

29

two’s complement representation. This illustrates that, in
some instances, the indices w included in the label X, of the
bits may relate to their significance or function, rather than
to their ordering, given that other examples of the envisaged
implementation cover re-ordering of the proposed fixed-
point number representation. Note that while some of the
previous efforts referenced above have momentarily used
binary flags to indicate that an accompanying two’s comple-
ment fixed point number requires negation. However, these
flags are not passed between processing units or into
memory. In particular, none of the processing units of
previous efforts have the input circuitry required to accept
inputs 2202, 2203 adopting the proposed fixed-point number
representation.

The proposed processing unit 2201 employs only a single
adder 2207, which may be shared to perform both the g
function of (3) and the ‘f” function of (2), as characterised by
the schematic and truth tables of FIG. 12. In some instances,
the single adder of a particular processing unit may be used
to perform ‘g’ functions in some clock cycles and ‘f’
functions in other clock cycles. Alternatively, in some
instances, the single adder may only ever be used to perform
‘> functions. Alternatively, in other instances, the single
adder may only ever be used to perform ‘g’ functions. The
two inputs 2208 to the adder each have W bits, which derive
from the two’s complement parts of X, and X,, while the
output 2209 comprises W+1 bits, in order to avoid overtlow.
For example, the W+1=7-bit fixed point number represen-
tations of the LLRs %, and X, would each include a two’s
complement binary number comprising W=4 bits, as well as
an additional sign bit. The W=6 bits of the two’s comple-
ment binary numbers of the LLRs X, and X, may be provided
to the single adder. This may produce a two’s complement
output comprising W+1=7 bits, in order to avoid overtlow
when X, and X, both have large magnitudes. When the two’s
complement output is combined with an additional sign bit,
the resulting fixed point number representation will com-
prise W+2=8 bits. Depending on the value of 11, as well as
the additional sign bits of X, and X,,, the two’s complement
part of the LLR X ~g(X,, X,, 0i,) may be implemented by
using the adder 2207 to either add the two’s complement
part of X, to that of X, or to subtract the two’s complement
part of X, from that of X,. As is conventional, a control signal
may be used to control whether a two-input adder calculates
the addition or subtraction of its two’s complement inputs.
More specifically, this control signal may be XORed with
the bits of one of the two’s complement inputs, before it is
provided to the single adder, such that all bits of the input are
toggled when the control signal is asserted. Furthermore, the
control signal may be provided to the ‘carry in’ input of the
adder. It is envisaged that all references to a single two-input
adder may encompass all such variations hereafter. A high
degree of hardware reuse is achieved because the min(Ix,|,
Ix,|) term of the f function can also be implemented by using
the adder 2207 to perform either this addition or this
subtraction, depending on the values of both sign bits in both
of X, and X,. The MSB of the resulting two’s complement
number may then be used to select 2210 either the two’s
complement part of X, or X, to provide that of the LLR
X =t(X,, X,). For both the f and g functions, the additional
sign bit of the LLRs X and X, can be obtained using simple
combinational logic, as characterised by the truth tables of
FIG. 12. Owing to the additional bit introduced by the adder
2207, the output 2206 of the proposed processing unit 2201
comprises W+2 bits, where the represented LLR %_ or X, is
given by X=(-1y-(-27%,+%,_,”2"*17%). Note that the
proposed approach does not introduce any x1 errors into the

20

30

40

45

55

30

resultant LLRs X_ or X, preserving the same error correction
capability as the two’s complement fixed-point number
representation, but using only a single adder 2207 per
processing unit 2201.

Note that in the outer datapath 1602 of Section I1-B3,
some processing units 2201 are only ever required to per-
form one or other of the f or g functions. In these cases, the
mode input 2205 and all circuitry that is specific to the
unused mode can be removed. Note that the two’s comple-
ment fixed-point numbers that are provided to the LLR input
1607 of the proposed polar decoder kernal 111 can be
converted to the proposed fixed-point number representation
by appending them onto a zero-valued additional sign bit.
Given that other examples of the envisaged implementation
cover re-ordering of the proposed fixed-point number rep-
resentation, it may also be considered that the zero-valued
additional sign bit is supplemented with the bits of the two’s
complement fixed point number in any ordering. Following
this, the proposed fixed-point number representation may be
used throughout the proposed polar decoder kernal 111,
without the need to ever convert to a two’s complement or
any other fixed-point number representation. For example,
LLR memory 5 in the example of FIG. 6 may store LLRs
using the two’s complement number representation, and
may include an optional conversion circuit 1621 on its
output port, for providing the supplemental zero-valued
additional sign bits. Alternatively, the LLR memory 1604
required to store each LLR can be reduced by one bit by
using an adder to convert the LLR to a two’s complement
fixed-point number, before it is written. More specifically, if
the additional sign bit is set, the two’s complement number
can be negated by inverting all of its bits and then using the
adder to increment the resultant value. For example, LLR
memories 1 to 4 in the example of FIG. 6 may store LLRs
using the two’s complement number representation and may
include an optional conversion circuit 1620 on their input
ports, for negating the two’s complement parts of the
proposed fixed-point number representation, depending on
the values of the corresponding additional sign bits. These
conversion circuits 1620, 1621 are optional components,
depending on how the LLRs are stored in the memory. In
order to convert back to the proposed fixed-point number
representation when reading the LLR from the LLR memory
block 1604, the two’s complement fixed-point number can
be appended onto a zero-valued additional sign bit. For
example, LLR memories 1 to 4 in the example of FIG. 6 may
store LLRs using the two’s complement number represen-
tation and may include an optional conversion circuit 1621
on their output ports, for providing the supplemental zero-
valued additional sign bits.

2) Inner Datapath:

The inner datapath 1601 is used to perform all LLR and
bit calculations for each visit 1806 to each sub-row 1704 in
the inner columns 1702 of the polar code graph 201, 202,
203. In some examples, as described herein, the inner
datapath 1601 may be parameterised by s, and n,. Here, these
parameters are referred to as the number of inner datapath
stages and the inner datapath block size, respectively. Note
that using a larger value for n, is similar to processing more
than one sub-row having a smaller n, at the same time. In this
example, the values of these parameters are fixed at design
time, where the number of inner datapath stages s, can adopt
any value in the range 1 to n,,, -s,, while the inner datapath
block size can adopt the value of any power of two in the
range 2% to N, ...

FIG. 14 illustrates an example schematic of the inner
datapath in the proposed polar decoder kernal, for the

US 11,190,221 B2

31

example of s,=2 and n,=8, according to example embodi-
ments of the invention. This example of the inner datapath
1601 schematic may be suitable for SC decoding. In the case
of SCL decoding, L. number of parallel replicas of this
schematic may be used, where L is the list size. The inner
datapath 1601 has an input v that identifies which visit is
being made to the current sub-row 1704, where the visit
index s n the range 0 to 2%-1. Note that this input is not
shown in FIG. 14, for the sake of simplicity. In the case of
SC decoding, the inner datapath 1601 takes inputs from n,
bits on its left-hand edge 2401. In this example, these input
bits originate from the outer datapath 1602 as described
herein and previous visits of the inner datapath 1601 to the
inner columns 1702 to the left, via successive hops through
the partial sum datapaths 1603 and the bit memory blocks
1605. This vector of bit inputs may be decomposed into 2%
equal-length sub-vectors, corresponding to the 2* connected
rows 1703 in the column immediately to the left. However,
during a particular visit v to the current sub-row 1704, only
the first v sub-vectors will contain valid bits, since the
processing will only have been completed for the first v
connected rows 1703 in the column to the left. Note that
since the lowest connected row 1703 in the column to the
left will not be visited until after the final visit to the current
row 1703 in the current column, the last sub-vector of the
input bits will never provide valid bits. Motivated by this,
the last n,/2™ inputs and all connected circuitry may be
removed in an alternative arrangement. Furthermore, the
inner datapath 1601 takes inputs from n, LLRs on its
right-hand edge 2402, which originate from previous visits
of the inner datapath 1601 to the column 1702 immediately
to the right, via the corresponding LR memory block 1604.
Here, the proposed aforementioned fixed-point number rep-
resentation may be used for each LLR, as detailed below.
The inner datapath 1601 provides outputs for n, bits on its
left-hand edge 2403, which are provided to the partial sum
datapath 1603 of Section 11-B4, via the corresponding bit
memory block 1605. Furthermore, in some examples, the
inner datapath 1601 provides outputs for n, fixed-point LLRs
on its left-hand edge 2404, which are provided to the column
1701, 1702 immediately to the left, via the corresponding
LLR memory block 1604. However, only a subset of these
outputs carry valid LLRs, as identified by the n, write enable
signals that are output on the left-edge of the inner datapath
1601. Note that these write enable signals are not shown in
FIG. 14, for the sake of simplicity.

As shown in FIG. 14, the inner datapath 1601 includes a
graph 2405 of XORs 204. Here, each input to the left-hand
edge of the XOR graph 2405 is taken from the correspond-
ing bit input 2401 on the left-hand edge of the inner datapath
1601, while the corresponding output from the right-hand
edge of the XOR graph 2405 is provided to the correspond-
ing bit output 2403, which is also on the left-hand edge of
the datapath. Note that the XOR graph 2405 resembles the
right-most s, stages 207 in a graph representation of the
generator matrix F® 2820 However the lowest n,/2% XORs
204 in each stage are omitted in the XOR graph 2405 of the
inner datapath 1601, since these would connect to the lowest
n,/2% input bits, which never carry valid bits, as described
above. This leads to the omission of some XORs 204 in the
rearranged graph of FIG. 11. Note that when the number of
stages s, in the current column is lower than s,, the number
of stages in the XOR graph 2405 is reduced to match s_ by
disabling the XOR gates 204 in the left-most stages of the
graph 2405. This may be achieved by using AND gates 2406
to mask the corresponding vertical connections in the data-
path, as shown in FIG. 14.

20

25

40

45

55

32

Furthermore, in some examples, the inner datapath 1601
may include a network 2407 of processing units 2201, each
of which may be configured at run time to perform either an
f function of (2) or a g function of (3). Each input to the
right-hand edge of the processing unit network 2407 is taken
from the corresponding LLR input 2402 on the right-hand
edge of the inner datapath 1601, while each output from the
left-hand edge of the network is provided to the LLR output
2404 on the left-hand edge of the datapath. The network
2407 comprises s, stages, where the right-most stage com-
prises n,/2 processing units 2201 and each successive stage
to the left contains half as many processing units 2201 as the
stage to its right.

In some examples, the processing units may be configured
to operate on the basis of the fixed point number represen-
tation as described herein, where an incremental bit width is
used in each successive stage from right to left. However, a
dipping circuit 2411 may be used to reduce the bit width of
the soft bits or LLRs output on the left-hand edge of the
network of processing units, so that it matches the bit widths
of the soft bits or LLRs input on the right-hand edge. In an
alternative arrangement, dipping may be additionally per-
formed between some particular stages of the processing
unit network, which reduces the inner datapath’s hardware
resource requirement, at the cost of degrading the polar
decoder’s error correction capability. The critical path
through the processing unit network comprises s, processing
units 2201 in series and the total number of processing units
2201 is given by n,(1-27%), as quantified in FIG. 10 for the
case of =8 list decoding, which implies that =8 replicas
of'the inner datapath 1601 are required. The processing units
2201 in the network 2407 are connected together in order to
form a binary tree. These connections are arranged in
accordance with the top-most XORs 204 in the right-most s,
stages 207 from a graph representation 201, 202, 203 of the
generator matrix F® %2 20 Note that this tree structure is
similar to those proposed in [26], [30] and [32], albeit those
previous implementations do not flexibly support different
kernal block lengths N at run-time. Note that when the
number of stages s, the current column is lower than s,, the
number of stages in the processing unit network 2407 is
reduced to match s_ by using multiplexers 2408 to bypass the
processing units 2201 in the left-most stages of the network
2407, as shown in FIG. 14.

Depending on which visit v is being made to the current
sub-row 1704, the processing units 2201 perform either the
f function of (2) or the g function of (3). More specifically,
the visit index v is converted to a binary number having s,
digits, but in reverse order with the LSB mapped to the
left-most stage of processing units in the inner datapath and
a most significant bit (MSB) mapped to the right-most stage
of processing units in the inner datapath. If the bit in a
particular position within the reversed binary representation
of the visit index has a value ‘0, then the processing units
2201 in the corresponding stage of the network perform the
f function of (2). By contrast, if the corresponding bit is a
‘1, then these processing units 2201 perform the g function
of (3). Here, multiplexers 2409 are used to deliver the
correct bit from the XOR graph 2405 to each processing unit
2201 that computes a g function.

As shown in FIG. 14, an arrangement of multiplexers
2408 is used to position the n,/2% LLRs generated by the
processing unit network among the n, LLR outputs on the
left-hand edge 2404 of the inner datapath 1601. Circuitry is
also provided to assert the write enable outputs that have the
corresponding positions to these LL.Rs. More specifically,
the arrangement of multiplexers 2408 maps the LLR having

US 11,190,221 B2

33
each index m&|[0, n,/2°-1] provided by the processing unit
network 2407 to a different one of the n, outputs on the
left-hand edge 2404 of the inner datapath 1601 having the
index n(m)&[0, n,-1], according to

d(jes Te-1)
n(m):{w +2%m

Fe-l

Here, j€]0, N-1] A is referred to as the first index, which
represents the vertical index of the top-most connection of
the polar code graph 201, 202, 203 that belongs to the
current sub-row 1704 in the current column ¢, where j_=0 for
the top-most sub-row in the top-most row. The first index
may be obtained according to:

JeTY I HS

where y €[0, N/r.-1] is the index of the row 1703
currently being visited in the column ¢, and s€[0, max(r/n,,
1)-1] is the index of the sub-row 1704 being visited in that
row 1703. Among the vector of n, write enable signals that
are output on the left-hand edge of the inner datapath 1601,
the corresponding sub-set of n/2% signals having the indices
n(m) are asserted. In some examples, this operation of the
multiplexers 2408 and the write enable signals allows the
LLRs output by the inner datapath 1601 to be written
directly to the corresponding LR memory block 1604. In
some examples, the controller 1606 may be configured to
insert pipelining registers between some or all of the stages
in the XOR graph 2405 and the processing unit network
2407.

3) Outer Datapath:

FIG. 15 illustrates an example schematic of an outer
datapath for SC decoding in the proposed polar decoder
kernal, for the example of s =2 and n~=4, according to
example embodiments of the invention.

In the case of SC decoding, the outer datapath 1602 of
FIG. 15 may be used to perform all LLR and bit calculations
1804 for each row 1703 in the outer column 1701 of the
polar code graph 201, 202, 203. The outer datapath 1602 is
parameterised by s,, which is referred to as the number of
outer datapath stages. In some examples, the value of this
parameter is fixed at design time and may adopt any value
in the range O to n,,,,=log,(N,,,.). Here, it is assumed that
2%=<n,. In the case 2°>n,, the larger width of 2* would be
required for the interface with the corresponding LLR
memory block 1604 of FIG. 6, together with modifications
to the controller 1606.

The outer datapath 1602 takes inputs from 2°° redundant
bits 2501 and 2* redundant bit flags 2502 on its left-hand
edge, which originate from the corresponding inputs 1608 of
the proposed polar decoder kernal 111. The outer datapath
1602 also takes inputs from n, LLRs on its right-hand edge
2503, which originate from the inner datapath 1601, via the
corresponding LLR memory block 1604. Furthermore, the
outer datapath 1602 provides outputs for n, bits on its
right-hand edge 2504, which are provided to the inner
datapath 1601 and the partial sum datapath 1603, via the
corresponding bit memory block 1605. Additionally, the
outer datapath 1602 provides outputs for 2* bits on its
left-hand edge 2505, which contribute to the recovered
kernal information block 0 114. In the case of SC decoding,
these bits may be written directly to the bit output 1609 of
the proposed polar decoder kernal 111, which therefore
adopts a width of n,=2%.

The outer datapath 1602 operates on the basis of a graph
representation 201, 202, 203 of the generator matrix F®se,

15

30

35

40

45

50

55

60

65

34

which it uses to perform all XOR, f and g operations,
according to the previously described data dependencies.
Accordingly, the outer datapath 1602 includes an XOR
graph, comprising s, stages, each comprising 2" XORs
204. Furthermore, the outer datapath 1602 includes an f/g
graph, which also comprises s, stages, each having 2%~'
processing units 2201 that perform only the f function and
2%~! processing units 2201 that perform only the g function,
as described herein.

The processing units 2201 operate on the basis of the fixed
point number representation, where an incremental bit width
is used in each successive processing unit 2201 along the
critical path shown in FIG. 15.

The input on the right-hand edge 2503 of the f/g graph
comprises 2 fixed-point LLRs, as shown in FIG. 15. An
arrangement of multiplexers 2506 is used to select these 2°
LLRs from among the n, LLR provided by the input on the
right-hand edge 2503 of the outer datapath 1602. More
specifically, the arrangement of multiplexers 2506 selects
the LLR having each index m&[0, min(2*, N)-1] on the
input of the f/g graph from a different one of the n, inputs on
the right-hand edge 2503 of the inner datapath 1601 having
the index n(m)E[0, n,~1], according to n(m)=mn,/r,.

Note that if N<2%, then the LLRs having each index
mE[N, 2%-1] on the input of the f/g graph are set to the
greatest positive value supported by the fixed-point number
representation. These additional LLRs have no influence
upon the decoding process, since they correspond to the
asserted frozen bit flags that are appended to the frozen bit
vector in the case where N<2%.

The outer datapath 1602 also includes circuits 2507 for
selecting the value of the bits that are output on the left-hand
edge 2505 of the outer datapath. More specifically, if the
corresponding redundant bit flag is set 2502, then the value
of the corresponding redundant bit 2501 is adopted. If not,
then the sign of the corresponding LLLR is used to select a
value for the bit, where a positive LLR gives a bit value of
0, while a negative LLR gives a bit value of 1. These
decisions inform the XOR and g operations performed
within the graph and also drive the bit output on the
left-hand edge 2505 of the outer datapath 1602.

Following the completion of all XOR operations 204
within the outer datapath 1602, a vector of 2% bits are
produced on the right-hand edge of the XOR graph, as
shown in FIG. 15. An arrangement of multiplexers 2508 is
used to position these 2° bits among the n, bit outputs on the
right-hand edge 2504 of the outer datapath 1602. More
specifically, the arrangement of multiplexers 2508 maps the
bit having each index m&[0, min(2°, N)-1] on the output of
the XOR graph to a different one of the n, output on the
right-hand edge 2504 of the inner datapath 1601 having the
index n(m)E[0, n,~1], according to n(m)=mn,/r,; while
zero-valued bits are provided to all other outputs on the
right-hand edge 2504 of the outer datapath 1602. In some
examples, the controller 1606 may be configured to insert
pipelining registers between some or all of the stages in the
XOR graph and the f/g graph.

In the case of SCL decoding, the outer datapath 1602 must
be additionally capable of performing all partial sum, f and
g computations for all candidates in the list. Furthermore,
the outer datapath 1602 must compute the metrics of (7),
which accumulate over successive kernal information bits.
Here, registers may be used to pass metrics between suc-
cessive visits to successive rows 1703 in the outer column
1701. Additionally, in some examples, the outer datapath
1602 requires a sorting circuit, in order to identify and select
the L. candidates having the lowest metrics. Finally, a bit

US 11,190,221 B2

35

memory block having a capacity of LN, . bits is required to
store the L candidate kernal information blocks. Here,
additional pointer memories [18] may be used to assist the
addressing of this bit memory block. FIG. 10 quantifies the
total number of adders required to implement the f, g, metric
and sort computations for the case of L=8 SCL decoding.

4) Partial Sum Datapath:

The partial sum datapath 1603 is used to perform the XOR
operations 2101 for each sub-row that were omitted from the
XOR graph in the inner datapath 1601 and to propagate 1805
bits from left to right in the polar code graph 201, 202, 203.
The partial sum datapath 1603 is parameterised by s, and n,,
which are referred to as the number of inner datapath stages
and the inner datapath block size, respectively. Note that
using a larger value for n,, is similar to processing more than
one sub-row having a smaller n, at the same time. As
described, in some examples, the values of these parameters
are fixed at design time, where the number of inner datapath
stages s, can adopt any value in the range 1 ton,,,,—s,,, while
the inner datapath block size can adopt the value of any
power of two in the range 2 to N .

In this example, the operation of the partial sum datapath
1603 schematic shown in FIG. 14, is used for SC decoding.
In the case of SCL decoding, I number of parallel replicas
of' this schematic may be used, where L is the list size. In the
case of SC decoding, the partial sum datapath 1603 takes
inputs from n, bits on its left-hand edge 2601, which origi-
nate from the right-hand edge 2504 of the outer datapath
1602 and the left-hand edge 2403 of the inner datapath 1601,
via successive hops through other replicas of the partial sum
datapath 1603 and via the bit memory blocks 1605. The
partial sum datapath 1603 outputs n, bits on its right-hand
edge 2602, which are provided to the left-hand edge 2401 of
the inner datapath 1601, via successive hops through other
replicas of the partial sum datapath 1603 and via the bit
memory blocks 1605.

FIG. 16 illustrates an example schematic of a partial sum
datapath in the proposed polar decoder kernal, for the
example of s,=2 and n,=8, according to example embodi-
ments of the invention.

As shown in FIG. 16, the bottom-most n,/2* output bits are
set equal to the corresponding input bits. However, the
top-most n,-n,/2% output bits are obtained as an XOR 204 of
the corresponding input bit and one of the bottom-most n,/2"
input bits. Here, the particular bit is identified such that both
bits in each XORed pair have the same index modulo n,/2%,
where each bit index will be in the range ‘0’ to n,—1 before
the modulo operation and ‘0’ to n,/2%-1 after the modulo
operation. Since the partial sum datapath 1603 is invoked at
the interface between each consecutive pair of inner col-
umns 1702, the XORs 204 of the partial sum datapath 1603
correspond to the additional XORs 2101 that were intro-
duced in the rearranged graph of FIG. 11.

Note that in an alternative arrangement, the results of the
XORs 204 performed by the inner datapath 1601 may be
discarded after they are used as inputs to the g functions,
rather than output on the left-edge 2403 of the inner datapath
1601 and stored in the bit memories 1605. In this case, the
partial sum datapath 1603 must be relied upon to perform all
XOR operations 204 for the corresponding sub-row during
the propagation 1805 of the partial sums. This may be
achieved by replacing the n,—n,/2° XORs 2101 of FIG. 16
with a complete XOR graph, which resembles the right-most
s, stages 207 in a graph representation 201, 202, 203 of the
generator matrix F® 2 2% However, this approach would
require s;n,/2 XORs 204, which is typically a higher number
than the n,-n,/2% XORs 204 employed by the proposed

10

15

20

25

30

35

40

45

50

55

60

65

36

approach. Furthermore, the critical path would comprise s;
XORs 204, as compared with the single XOR 204 of the
proposed approach

Memory

The proposed polar decoder kernal 111 employs two types
of memory, namely the LLR memory blocks 1604 and the
bit memory blocks 1605.

1) LLR Memory:

As shown in FIG. 17, the proposed polar decoder kernal
111 employs C,,,,. two-dimensional blocks of LLR memory
1604, namely LLR Memory 1 to LLR Memory C,,,..
Conceptually, LLR Memory c€[1, C,,,.~1] may be consid-
ered to be situated at the interface on the left-hand edge of
the inner column 1702 with the index c€[1, C,, . ~1]I, while
LLR Memory C,, . may be considered to reside at the
interface between the right-most column 1702 and the LLR
input 1607 of the proposed polar decoder kernal 111. The
memory block with the index ¢ comprises a single Random
Access Memory (RAM), having a width of n, fixed-point
LLRs and a depth of max(r__, ,../n;, 1) addresses, where the
width and depth represent the two dimensions of the
memory block. The total LLR memory requirement of the
proposed polar decoder kernal 111 is given by X__ Crer
max(r,_,, max, n;) LLRs. Note that rather than accommo-
dating the C,,,. memory blocks in a third RAM dimension
using C,,,, distinct RAMs, alternative arrangements may
accommodate the C, . blocks of memory within a single
RAM, by extending its depth to accommodate all of the
memory blocks in the depth dimension instead. However,
this alternative arrangements would imply different datapath
interfaces and controller 1606 designs to those described
below and elsewhere in the description. In some examples,
it is assumed that n,=2%. In the case where n,>2%, the larger
width of 2° would be required for LLR Memory 1 and LLR
Memory C,,, ., together with modifications to the controller
1606, in order to support the interface with the outer
datapath 1602.

Note that in the case of SCL decoding, the LLLR memory
blocks 1604 having the indices ‘1’ to C,,,~1 must be
replicated L. times, which may be accommodated in the
RAM dimension or in the width dimension. Here, an addi-
tional pointer memory [18] may be used to assist the
addressing between these replicas of the memory. However,
only a single replica of the LLR memory block 1604 having
the index C,, . is required, since the LL.Rs provided by LLR
input 1607 of the polar decoder kernal 111 are common to
all L. decoding attempts. The total capacity of the LLRs
memory blocks is quantified for the case of L=8 SCL
decoding in FIG. 10, excluding the pointer memory. As a
result of these considerations, the LLRs provided to the LLR
input 1607 of the proposed polar decoder kernal 111 are
always stored in the LLR memory block 1604 having the
index C,, ., irrespective of how many columns Care used to
decode the current kernal block length N. As an additional
benefit, the LLR memory block 1604 having the index C,,,,
may be interfaced with the LLR input 1607 of the proposed
polar decoder kernal 111 using a width n, that is decoupled
from that of the inner datapath n,. In this way, LLRs may be
loaded into the proposed polar decoder quickly, using a large
value for n,, irrespective of how the inner datapath 1601 is
parameterised.

For the sake of simplicity however, in this example let us
assume that n~n,. In the case where the number N of input
LLRs is less than the width n, of LLR Memory C,,,., an
equal number of zero-valued LLRs are inserted after each
input LLR, before they are provided to the input to the
memory, in order to occupy its full width. Note that in the

US 11,190,221 B2

37

case where the LLR input 1607 of the proposed polar
decoder kernal 111 adopts the two’s complement fixed-point
number representation, the LLR memory block 1604 having
the index C,,,. can store the supplied two’s complement
LLRs directly, without the additional sign bit introduced by
the proposed fixed-point number representation of some
examples.

FIG. 17 illustrates an example schematic of the interac-
tion between the inner datapath, LLR memory blocks and
controller of the proposed polar decoder kernal, according to
example embodiments of the invention.

A single LLR memory block 1604 is exemplified in FIG.
17, for the case of s,=1 and n/=4. As shown n FIG. 17, the
RAM of each LLR memory block 1604 has an n-LLR read
data port 2701 which outputs the n, LL.Rs across the width
of a particular one of the max(r,_, ,,../n;, 1) addresses across
the depth of the RAM, where the particular address is
selected by an input provided on an address port 2702, as
shown in FIG. 17. Likewise, the RAM has a n,-L.LR write
port 2703, as shown in FIG. 17. This write port 2703 accepts
inputs that can update the n, LLRs across the width of a
particular address, which is selected by the input provided
on the address port 2704. However, these n, LLRs are only
updated if corresponding write enable signals 1615 are
asserted. It is assumed that n, individual write enable signals
1615 can be used to control whether each of the n, LLRs is
written individually. If this is not supported natively by a
particular hardware RAM implementation, then the write
port can be driven by n, multiplexers 1614, which can be
used to multiplex the input LLRs with feedback from the
read port 2701, as shown in FIG. 17. In this way, the n, write
enable signals 1615 can individually control the LLRs
selected by these n, multiplexers, either writing the new LLR
value to the RAM, or maintaining the current LLR value by
writing the corresponding LLR obtained from the read port
2701.

As shown in FIG. 17, each operation of the inner datapath
1601 within the column ¢ reads from the LL.R memory block
1604 having the index c+1 and writes into the LLR memory
block 1604 having the index c, using corresponding write
enable signals 1615. Likewise, each operation of the outer
datapath 1602 reads from the LLR memory block 1604
having the index c=1 if C>1 or from the LL.R memory block
1604 having the index C,,,,. otherwise. These interfaces
between the LLR memory blocks 1604 and the various
datapaths 1601, 1602 are designed specifically to avoid the
requirement for complicated routing networks, which would
be required to allow any LLR in the memory blocks to be
read or written by any of the inputs or outputs of the
datapaths 1601, 1602. Instead, the arrangement of the LLRs
in the memory block is designed such that only simple
routing networks are required between the LLR memory
blocks 1604 and the datapaths 1601, 1602. Likewise, in
some examples, it is designed so that only a limited number
of control signals are required from the controller 1606.
More specifically, during each step of the decoding process,
the n, LLRs across the width of a particular address within
the appropriate memory block are read and delivered seam-
lessly to the inner datapath 1601 or outer datapath 1602, as
appropriate. Likewise, a subset of the n, LLRs across the
width of a particular address within the appropriate memory
block are written using L.L.Rs and write enable signals 1615
that are delivered seamlessly by the inner datapath 1601,
whenever it is operated. The controller 1606 only has to
provide appropriate read and write addresses 2702, 2704 to
the two memory blocks 1604.

10

20

25

30

35

40

45

50

55

60

65

38

2) Bit Memory:

As shown in FIG. 6, the proposed polar decoder kernal
111 employs C,, -1 three-dimensional blocks of bit
memory 1605, namely Bit Memory 1 to Bit Memory C,, .~
1. Conceptually, Bit Memory ¢ may be considered to be
situated on the left-hand edge of the column 1702 having the
corresponding index c, at the interface with the column
1701, 1702 having the index c-1. Here, the bit memory
block 1605 with the index ¢ comprises 2% RAMs, having
widths of n, bits and depths of max(2**“ " sm, 1)
addresses, where the RAMs, width and depth represent the
three dimensions of the memory block 1605. The total bit
memory requirement of the proposed polar decoder kernal
111 is given by =__, ==t max(2°* 25n) bits.

Note that in the case of SCL decoding, the bit memory
blocks 1605 must be replicated L times, which may be
accommodated in the RAM dimension or in the width
dimension. Here, additional pointer memories [18] may be
used to assist the addressing between these replicas of the
memory. The total capacity of the bit memory blocks 1605
is quantified for the case of .=8 SCL decoding in FIG. 10,
including the output bit memories described in some
examples, but excluding the pointer memories. Note that an
alternative arrangement may swap the roles of the RAM and
width dimensions, instead employing n, RAMs, having
widths of 2% bits, although this would imply different data-
path interfaces and controller 1606 designs to those
described below and in other examples. As mentioned, in
some examples, it is assumed that n,=z2". In the case where
n,<2%, the larger width of 2° would be required for bit
Memory 1, together with modifications to the controller
1606, in order to support the interface with the outer
datapath 1602.

FIG. 18 illustrates an example schematic of the interac-
tion between the inner datapath, bit memory blocks and
controller of the proposed polar decoder kernal, for the case
where s,=1 and n,=4, according to example embodiments of
the invention.

A single bit memory block 1605 is exemplified in FIG. 18,
for the case of s,=1 and n~=4. As shown in FIG. 18, each
RAM in each block of bit memory 1605 has an n,-bit read
port 2801. This read port 2801 outputs the n, bits across the
width of a particular one of the max(2°*“"%n, 1)
addresses across the depth of the RAM. Here, the particular
address is selected by an input provided on an address port
2802, as shown in FIG. 18. Likewise, each RAM has an
n,-bit write port 2803, as shown in FIG. 18. This write port
2803 accepts inputs that can update the n, bits across the
width of the particular address, which is selected by the
input provided on the address port 2804. However, these n,
bits are only updated if corresponding write enable signals
1616 are asserted. It is assumed that n, individual write
enable signals 1616 can be used to control whether each of
the n, bits is written individually. If this is not supported
natively by a particular hardware

RAM implementation, then the write port 2404 can be
driven by n, multiplexers 1617, which can be used to
multiplex the input bits with feedback from the read port
2801. For the sake of simplicity, this mechanism is not
shown in FIG. 18, although it is shown in FIG. 6. In this way,
the n, write enable signals 1616 can individually control the
bits selected by these n, multiplexers 1617, either writing the
new bit value to the RAM, or maintaining the current bit
value by writing the corresponding bit obtained from the
read port 2801.

As shown in FIG. 6, the outer datapath 1602, the C-2
instances of the partial sum datapath 1603 and the C-1

US 11,190,221 B2

39

instances of the bit memory block 1605 form a chain. More
specifically, Bit Memory 1 resides between the outer data-
path 1602 and Partial Sum Datapath 1, while Bit Memory
c€[2, C-2] resides between Partial Sum Datapath c-1 and
Partial Sum Datapath ¢, while Bit Memory C-1 terminates
the chain and resides to the right of Partial Sum Datapath
C-2. In a step of the decoding process where a sub-row 1704
in the inner column c is being visited, the multiplexers 1612
connected to the bit inputs and outputs on the left-hand edge
of the inner datapath 1601 are controlled such that it is
interfaced with Bit Memory c. Here, FIG. 18 details the
interface between Bit Memory ¢ and its neighbouring data-
paths 1601, 1602, 1603.

These interfaces between the bit memory blocks 1605 and
the various datapaths 1601, 1602, 1603 are designed spe-
cifically to avoid the requirement for complicated routing
networks, which would be required to allow any bit in the
memory blocks 1605 to be read or written by any of the
inputs or outputs of the datapaths 1601, 1602, 1603. Instead,
the arrangement of the bits in the memory block 1605 is
designed such that only simple routing networks are
required between the bit memory blocks 1605 and the
datapaths 1601, 1602, 1603. Likewise, in this example, it is
designed so that only a limited number of control signals are
required from the controller 1606. More specifically, the
address ports of the 2°’ RAMs within a particular bit memory
block 1605 are all tied together, only requiring the controller
1606 to generate a single address 2802, 2804 for each of the
bit memory blocks 1605. Furthermore, the bit input 2601 on
the left-hand edge of Partial Sum Datapath ¢ and the bit
input 2401 on the left-hand edge of the inner datapath 1601
both read from Bit Memory ¢ on a simple width-wise basis,
as detailed below. Similarly, the bit output 2403 on the
left-hand edge of the inner datapath 1601 writes to Bit
Memory ¢ on a width-wise basis. By contrast, the bit output
2602 on the right-hand edge of Partial Sum Datapath c-1
writes to Bit Memory ¢ on a simple RAM-wise basis, as
detailed below. Likewise, the bit output 2504 on the right-
hand edge of the outer datapath 1602 writes to Bit Memory
1 on a RAM-wise basis. In some alternative examples, the
width-wise bit memory accesses may be replaced with
RAM-wise accesses and vice-versa, although this would
imply different datapath interfaces and controller 1606
designs to those described below and elsewhere.

For both width-wise and RAM-wise interfaces between a
bit memory block 1605 and a datapath, the bit having the
position 1€[0, n,~1] in the input or output of the datapath is
read from or written to a particular position within the width
of a particular address within the depth of a particular one of
the RAMs in the memory block 1605. This location in the
memory block 1605 may be identified by the width coordi-
nate w,£[0, n,~1], the depth coordinate d, [0, max(25+©-
ns/n,, 1)-1] and the RAM coordinate r, &[0, 2%-1]. As
mentioned above, the arrangement of the bits in each
memory block 1605 and the operation of the proposed polar
decoder kernal 111 is such that the address ports 2802, 2804
of the 2° RAMs within a particular bit memory block 1605
can all be tied together. This implies that for both width-wise
and RAM-wise interfaces, all n, of the bits that are accessed
together will all have the same depth coordinate, which is to
say that d, has the same value for all 1€[0, n,-1].

Furthermore, the bit in a width-wise datapath interface
having the position 1€[0, n,-1] only ever accesses locations
in the bit memory block 1605 having the corresponding
width coordinate w,~=1. However, this bit in the datapath
interface may need to access any of the possible RAM
coordinates r, &[0, 2%-1] at different times during the polar

30

40

45

40

decoding process. Owing to this, a 2*:1 multiplexer 2805 is
the only circuitry required to provide the P bit to a width-
wise datapath input.

More specifically, this multiplexer 2805 selects between
the bits provided by the 1” position in the read ports 2801 of
each of the 2% RAMs, as shown in FIG. 18. Here, the
controller 1606 in some examples is required to provide n,
RAM read coordinates to the bit memory block 1605, which
may be decoded in order to provide separate control signals
to each of these n, multiplexers 2805. By contrast, no
additional circuitry is required for the 1”* bit of a width-wise
datapath output, since this bit can be provided to the 17
position in the write ports of each of the 2 RAMs and the
write enable signals 116 can be used to control which of
these RAMs is updated. Here, the controller 1606 in some
examples is required to provide n, RAM write coordinates to
the bit memory block 1605, which may be decoded in order
to assert n,; of the write enable signals 1616.

Furthermore, the bit having the position 1[0, n,-1] n a
RAM-wise output of a datapath is only ever written to
locations in the memory block 1605 having the correspond-
ing RAM coordinate r,=mod(l, 2%). However, this bit may
need to be written to any of the possible width coordinates
w/[0, n,~1] at different times during the polar decoding
process. Owing to this, an,/2":1 multiplexer 2806 is the only
circuitry required to provide each of the n, inputs to each of
the RAMs’ 2 write ports 2803, as shown in FIG. 18. This
is because each input of the RAM having the RAM coor-
dinate n is only selected from the sub-set of datapath outputs
having positions 1€[0, n,~1] that satisfy mod(1,2%)=r,. Here,
the controller 1606 may be required to provide n, width write
coordinates to the memory block 1605, which may be
decoded to assert n, of the write enable signals 1616, as well
as to provide control signals for the corresponding sub-set of
n, multiplexers 2806.

As described above, in a step of the decoding process
where a sub-row 1704 in the inner column c is being visited,
a particular selection of bits are read width-wise from each
bit memory block 1605 having an index ¢'€[1, c-1], passed
though the partial sum datapath 1603 having the index ¢' and
written RAM-wise into the bit memory block 1605 having
the index c'+1. Note that a sub-set of the locations in the Bit
Memory c¢' that are written RAM-wise by Partial Sum
Datapath ¢'-1 will also be read width-wise by Partial Sum
Datapath ¢'. Motivated by this, the bit memories with indices
in the range 2 to ¢'-1 are operated in transparent mode, so
that these bit values provided by the write operation become
available to the read operation in the same step of the
decoding process. More specifically, as a complement to the
feedback from the read port of each RAM in Bit Memory ¢'
to its write port 1617, a bypass 1610 is provided so that the
bits provided to the write port 2803 by Partial Sum Datapath
c'-1 can be fed directly to the read port 2801. As shown in
FIG. 18, multiplexers 1610 are provided to select between
the outputs provided by the read ports 2801 of Bit Memory
¢' and the inputs provided by Partial Sum Datapath c¢'-1.
These multiplexers may be driven by the same write enable
signals 1616 that control the operation of the corresponding
write ports. This allows bits to propagate 1805 from Bit
Memory 1, through the chain of partial sum datapaths 1603
and bit memory blocks 1605 described herein, and be
delivered to the bit input 2401 on the left edge of the inner
datapath 1601. Here, the controller 1606 provides control
signals to the bit memory blocks 1605 to ensure that the
correct bits are XORed 2101 together in the partial sum
datapaths 1603. Following the completion of the inner
datapath 1601 operation, the bits provided by the bit output

US 11,190,221 B2

41

2403 on its left-hand edge are written to the bit memory
block 1605 having the index c. Here, multiplexers 1613 are
provided at the input to the write ports 2803, to select
between the outputs provided by Partial Sum Datepath ¢'-1
and the inner datapath 1601. Note that these multiplexers
1613 are located after the point where the transparent bypass
1610 is taken from, in order to prevent the creation of an
endless feedback loop.

Controller

As described previously, the proposed polar decoding
process comprises a total of N/ry+X__ “'12N/min(r_, n,)
steps. During each step where a sub-row 1704 in an inner
column 1702 having the index ¢ is processed 1806, the
controller 1606 is required to provide read control signals to
the bit memory blocks 1605 having indices 1 to c. Addi-
tionally, the controller 1606 is required to provide read
control signals to LLR Memory c+1 when processing 1806
a sub-row 1704 in an inner column 1702 having the index
c[1, C-2] or to LLR Memory C,,,, when processing 1806
a sub-row 1704 in inner column C-1. Furthermore, the
controller 1606 is required to provide write control signals
to the bit memory blocks 1605 having indices 2 to ¢, as well
as to the LLR memory block 1604 having the index ¢, when
processing 1806 a sub-row 1704 in an inner column 1702
having the index c. During each step where a row 1703 in
the outer column 1701 having the index ¢=0 is processed
1804, the controller 1606 is required to provide write control
signals to Bit Memory 1, as well as to provide read control
signals to LLR Memory 1 if C>1 or to LLR Memory C,, .
if C=1. The controller 1606 is designed such that each
memory write operation seamlessly arranges the corre-
sponding bits or LLRs in the memory, so that they can be
seamlessly read subsequently, without requiring complex
interconnection networks.

In addition to the various signals used in the flowchart of
FIG. 8, the controller 1606 operation depends on a signal
referred to as the first index j &£[0, N-1]. This represents the
vertical index of the top-most connection of the polar code
graph 201, 202, 203 that belongs to the sub-row 1704
currently being visited in the column ¢, where j =0 for the
top-most sub-row 1704 in the top-most row 1703. The first
index may be obtained according to j_=y_r_+s;;

where y €[0, N/r.-1] is the index of the row 1703
currently being visited in the column ¢, and s€[0, max(r_/n,,
1)-1] is the index of the sub-row 1704 being visited in that
row 1703. During the process of propagating 1805 partial
sum bits through successive bit memory blocks 1605 and
replicas of the partial sum datapath 1603, the first index
associated with each of the columns ¢'€[1, ¢-1] is obtained
according to:

Jo = U—CJrC +VFeo) = Fe +m0d(jc, max(%, 1));

c i

where u€[0, 2°-1] (is the index of the visit to the current
row 1703 in the current column c.

As described previously in some examples, read and write
accesses to the LLR memory blocks 1604 may both be
performed width-wise. The position 1€[0, n,~1] in the input
or output of LLR Memory ¢ accesses the LLR stored at
particular depth d, and width w, coordinates,

where

w=l in all cases.

As described herein in some examples, it is assumed that
a circuit is provided to load 1802 LLRs from the corre-

35

40

50

55

65

42

sponding input 1607 of the proposed polar decoder kernal
111, into LLR Memory C,, .. The controller 1606 is required
to operate this loading circuit such that when the inner
datapath 1601 performs processing 1806 for a particular
sub-row 1704 in column C-1, it can read the corresponding
LLRs from LLR Memory C,,,. using the depth coordinate:

d; = mod(jc,l, mx(%, 1)):

i

Furthermore, when the inner datapath 1601 or outer
datapath 1602 performs processing 1804, 1806 for a par-
ticular sub-row 1704 in column c¢&[0, C-2], it reads from
LLR Memory c+1 using the depth coordinate:

d; = mod(jc, max(%, 1))

i

By contrast, when the inner datapath 1601 performs
processing 1806 for a particular sub-row 1704 in column c,
it writes to LLR Memory ¢ using the depth coordinate:

d; = mod(jc, mx(%, 1)):

i

Here, it may be observed that the width coordinates w1
are independent of the first index j. and may therefore be
hardwired according to the width-wide operation described
in some examples. By contrast, the depth d, coordinate must
be controlled by the controller 1606, as a function of the first
index j.. Note however that the depth coordinates d, are
independent of the bit index 1, only requiring the controller
1606 to provide a single address 2702, 2704 to the memory
block 1604. Note that the LLR provided in position 1€[0,
n,~1] of the write port is only written to the LLR memory
block 1604 if the write enable signal 1615 in the corre-
sponding position 1€[0, n,~1] is asserted, as described in
some examples.

As described in some examples, read and write accesses
to the bit memory blocks 1605 made by the inner datapath
1601 are both performed width-wise. For these width-wise
memory accesses, the position 1[0, n,~1] in the input or
output of Bit Memory ¢ accesses the bit stored at particular
depth d,, RAM r, and width w, coordinates, according to:

sa+e=L)s;
d; = mod(jc, ma>{ — S 1]]

(. lre
Jo t {—_Jﬂi
i Lo

Fe-1

r; = mod i

Wl=l,

Here, it may be observed that the width coordinates w,=1
are independent of the first index j. and may therefore be
hardwired according to the width-wide operation described
in some examples. By contrast, the depth d, and RAM r,
coordinates must be controlled by the controller 1606, as a
function of the first index j.. Note however that the depth
coordinates d, are independent of the bit index 1, only

US 11,190,221 B2

43

requiring the controller 1606 to provide a single address
2802, 2804 to the memory block. Note that in some cases
where n,>r,, the approach described above may result in two
or more of the input bits attempting to write to the same in
the bit memory block 1605. In this case, the bit having the
lowest index 1 should be written to the memory and the other
contending bits may be safely discarded.

As described in some examples, write accesses to the bit
memory blocks 1605 made by the outer datapath 1602 and
the partial sum datapath 1603 are performed RAM-wise. For
these RAM-wise memory accesses, the position 1[0, n,~1]
in the input of Bit Memory c+1 accesses the bit stored at
particular depth d, RAM r, and width w, coordinates,
according to:

9sates;
i = mod .. man =
m

)
ry = mod(l, 2%)

o | e
Jet | — |
n
e B (31

Fe+l

wy = mod|

Here, it may be observed that the RAM coordinates
r~mod(l, 2*) are independent of the first index j_ and may
therefore be hardwired according to the RAM-wide opera-
tion described in some examples. By contrast, the depth d,
and width w, coordinates must be controlled by the control-
ler 1606, as a function of the first index j... Note however that
the depth coordinates d, are independent of the bit index 1,
only requiring the controller 1606 to provide a single
address 2802, 2804 to the memory block. The above-
described method of controlling memory read and write
operations results in a characteristic arrangement of the
LLRs and bits within the memory blocks 1604, 1605.

FIGS. 19 to 23 provide various examples of this charac-
teristic arrangement, following the completion of the decod-
ing process. Each FIG. illustrates the index j€[0, N-1] of the
connection between two adjacent columns 1701, 1702 in the
polar graph 201, 202, 203 that provides the LLR or bit stored
at each RAM, depth and width coordinate in the correspond-
ing memory block 1604, 1605.

FIG. 19 illustrates an example of the contents of the LLR
following a completion of the decoding process, for the case
where N=128, N, . =128, s _=1, 5,=2 and n,=8, according to
example embodiments of the invention.

FIG. 20 illustrates an example an example of the contents
of'the LLR and bit memories following a completion of the
decoding process, for the case where N=64, N, =128,
s,=1, s,=2 and n,=8, according to example embodiments of
the invention.

FIG. 21 illustrates an example of the contents of the LLR
and bit memories following a completion of the decoding
process, for the case where N=32, N =128, s =1, s=2and
n,=8, according to example embodiments of the invention.

FIG. 22 illustrates an example of the contents of the LLR
and bit memories following the completion of the decoding
process, for the case where N=16, N,, . =128, s,=1, s,=2 and
n,=8, according to example embodiments of the invention.

FIG. 23 illustrates an example of the contents of the LLR
and bit memories following a completion of the decoding
process, for the case where N=8, N, , =128, s =1, s,=2 and
n,=8, according to example embodiments of the invention.

Referring now to FIG. 24, there is illustrated a typical
computing system 2400 that may be employed to implement

15

20

25

40

45

44

polar encoding according to some example embodiments of
the invention. Computing systems of this type may be used
in wireless communication units. Those skilled in the rel-
evant art will also recognize how to implement the invention
using other computer systems or architectures. Computing
system 2400 may represent, for example, a desktop, laptop
or notebook computer, hand-held computing device (PDA,
cell phone, palmtop, etc.), mainframe, server, client, or any
other type of special or general purpose computing device as
may be desirable or appropriate for a given application or
environment. Computing system 2400 can include one or
more processors, such as a processor 2404. Processor 2404
can be implemented using a general or special-purpose
processing engine such as, for example, a microprocessor,
microcontroller or other control logic. In this example,
processor 2404 is connected to a bus 2402 or other com-
munications medium. In some examples, computing system
2400 may be a non-transitory tangible computer program
product comprising executable code stored therein for
implementing polar encoding.

Computing system 2400 can also include a main memory
2408, such as random access memory (RAM) or other
dynamic memory, for storing information and instructions to
be executed by processor 2404. Main memory 2408 also
may be used for storing temporary variables or other inter-
mediate information during execution of instructions to be
executed by processor 2404. Computing system 2400 may
likewise include a read only memory (ROM) or other static
storage device coupled to bus 2402 for storing static infor-
mation and instructions for processor 2404.

The computing system 2400 may also include informa-
tion storage system 2410, which may include, for example,
a media drive 2412 and a removable storage interface 2420.
The media drive 2412 may include a drive or other mecha-
nism to support fixed or removable storage media, such as
a hard disk drive, a floppy disk drive, a magnetic tape drive,
an optical disk drive, a compact disc (CD) or digital video
drive (DVD) read or write drive (R or RW), or other
removable or fixed media drive. Storage media 2418 may
include, for example, a hard disk, floppy disk, magnetic tape,
optical disk, CD or DVD, or other fixed or removable
medium that is read by and written to by media drive 2412.
As these examples illustrate, the storage media 2418 may
include a computer-readable storage medium having par-
ticular computer software or data stored therein.

In alternative embodiments, information storage system
2410 may include other similar components for allowing
computer programs or other instructions or data to be loaded
into computing system 2400. Such components may
include, for example, a removable storage unit 2422 and an
interface 2420, such as a program cartridge and cartridge
interface, a removable memory (for example, a flash
memory or other removable memory module) and memory
slot, and other removable storage units 2422 and interfaces
2420 that allow software and data to be transferred from the
removable storage unit 2418 to computing system 2400.

Computing system 2400 can also include a communica-
tions interface 2424. Communications interface 2424 can be
used to allow software and data to be transferred between
computing system 2400 and external devices. Examples of
communications interface 2424 can include a modem, a
network interface (such as an Ethernet or other NIC card),
a communications port (such as for example, a universal
serial bus (USB) port), a PCMCIA slot and card, etc.
Software and data transferred via communications interface
2424 are in the form of signals which can be electronic,
electromagnetic, and optical or other signals capable of

US 11,190,221 B2

45

being received by communications interface 2424. These
signals are provided to communications interface 2424 via a
channel 2428. This channel 2428 may carry signals and may
be implemented using a wireless medium, wire or cable,
fibre optics, or other communications medium. Some
examples of a channel include a phone line, a cellular phone
link, an RF link, a network interface, a local or wide area
network, and other communications channels.

In this document, the terms ‘computer program product’,
‘computer-readable medium’ and the like may be used
generally to refer to media such as, for example, memory
2408, storage device 2418, or storage unit 2422. These and
other forms of computer-readable media may store one or
more instructions for use by processor 2404, to cause the
processor to perform specified operations. Such instructions,
generally referred to as ‘computer program code’ (which
may be grouped in the form of computer programs or other
groupings), when executed, enable the computing system
2400 to perform functions of embodiments of the present
invention. Note that the code may directly cause the pro-
cessor to perform specified operations, be compiled to do so,
and/or be combined with other software, hardware, and/or
firmware elements (e.g., libraries for performing standard
functions) to do so.

In an embodiment where the elements are implemented
using software, the software may be stored in a computer-
readable medium and loaded into computing system 2400
using, for example, removable storage drive 2422, drive
2412 or communications interface 2424. The control logic
(in this example, software instructions or computer program
code), when executed by the processor 2404, causes the
processor 2404 to perform the functions of the invention as
described herein.

In the foregoing specification, the invention has been
described with reference to specific examples of embodi-
ments of the invention. It will, however, be evident that
various modifications and changes may be made therein
without departing from the scope of the invention as set forth
in the appended claims and that the claims are not limited to
the specific examples described above.

The connections as discussed herein may be any type of
connection suitable to transfer signals from or to the respec-
tive nodes, units or devices, for example via intermediate
devices. Accordingly, unless implied or stated otherwise, the
connections may for example be direct connections or
indirect connections. The connections may be illustrated or
described in reference to being a single connection, a
plurality of connections, unidirectional connections, or bidi-
rectional connections. However, different embodiments may
vary the implementation of the connections. For example,
separate unidirectional connections may be used rather than
bidirectional connections and vice versa. Also, plurality of
connections may be replaced with a single connection that
transfers multiple signals serially or in a time multiplexed
manner. Likewise, single connections carrying multiple sig-
nals may be separated out into various different connections
carrying subsets of these signals. Therefore, many options
exist for transferring signals.

Those skilled in the art will recognize that the architec-
tures depicted herein are merely exemplary, and that in fact
many other architectures can be implemented which achieve
the same functionality.

Any arrangement of components to achieve the same
functionality is effectively ‘associated’ such that the desired
functionality is achieved. Hence, any two components
herein combined to achieve a particular functionality can be
seen as ‘associated with’ each other such that the desired

10

15

20

25

30

35

40

45

50

55

60

65

46

functionality is achieved, irrespective of architectures or
intermediary components. Likewise, any two components so
associated can also be viewed as being ‘operably con-
nected,” or ‘operably coupled,’ to each other to achieve the
desired functionality.

Furthermore, those skilled in the art will recognize that
boundaries between the above described operations merely
illustrative. The multiple operations may be combined into
a single operation, a single operation may be distributed in
additional operations and operations may be executed at
least partially overlapping in time. Moreover, alternative
embodiments may include multiple instances of a particular
operation, and the order of operations may be altered in
various other embodiments.

The present invention is herein described with reference
to an integrated circuit device comprising, say, a micropro-
cessor configured to perform the functionality of a polar
decoder. However, it will be appreciated that the present
invention is not limited to such integrated circuit devices,
and may equally be applied to integrated circuit devices
comprising any alternative type of operational functionality.
Examples of such integrated circuit device comprising alter-
native types of operational functionality may include, by
way of example only, application-specific integrated circuit
(ASIC) devices, field-programmable gate array (FPGA)
devices, or integrated with other components, etc. Further-
more, because the illustrated embodiments of the present
invention may for the most part, be implemented using
electronic components and circuits known to those skilled in
the art, details have not been explained in any greater extent
than that considered necessary, for the understanding and
appreciation of the underlying concepts of the present inven-
tion and in order not to obfuscate or distract from the
teachings of the present invention. Alternatively, the circuit
and/or component examples may be implemented as any
number of separate integrated circuits or separate devices
interconnected with each other in a suitable manner.

Also for example, the examples, or portions thereof, may
implemented as soft or code representations of physical
circuitry or of logical representations convertible into physi-
cal circuitry, such as in a hardware description language of
any appropriate type.

Also, the invention is not limited to physical devices or
units implemented in non-programmable hardware but can
also be applied in programmable devices or units able to
perform the desired polar encoding by operating in accor-
dance with suitable program code, such as minicomputers,
personal computers, notepads, personal digital assistants,
electronic games, automotive and other embedded systems,
cell phones and various other wireless devices, commonly
denoted in this application as ‘computer systems’.

However, other modifications, variations and alternatives
are also possible. The specifications and drawings are,
accordingly, to be regarded in an illustrative rather than in a
restrictive sense.

In the claims, any reference signs placed between paren-
theses shall not be construed as limiting the claim. The word
‘comprising” does not exclude the presence of other ele-
ments or steps then those listed in a claim. Furthermore, the
terms ‘a’ or ‘an,” as used herein, are defined as one or more
than one. Also, the use of introductory phrases such as ‘at
least one’ and ‘one or more’ in the claims should not be
construed to imply that the introduction of another claim
element by the indefinite articles ‘a’ or ‘an’ limits any
particular claim containing such introduced claim element to
inventions containing only one such element, even when the
same claim includes the introductory phrases ‘one or more’

US 11,190,221 B2

47

or ‘at least one’ and indefinite articles such as ‘a’ or ‘an.” The
same holds true for the use of definite articles. Unless stated
otherwise, terms such as ‘first’ and ‘second’ are used to
arbitrarily distinguish between the elements such terms
describe. Thus, these terms are not necessarily intended to
indicate temporal or other prioritization of such elements.
The more fact that certain measures are recited in mutually
different claims does not indicate that a combination of these
measures cannot be used to advantage.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for con-
structing capacity-achieving codes for symmetric binary-
input memoryless channels,” IEEE Transactions on Infor-
mation Theory, vol. 55, no. 7, pp. 3051-3073, July 2009.

[2] K. Niu and K. Chen, “CRC-aided decoding of polar
codes,” IEEE Communications Letters, vol. 16, no. 10,
pp. 1668-1671, October 2012.

[3] Huawei, HiSilicon, “Polar code construction for NR,” in
3GPP TSG RAN WG1 Meeting #86bis, Lisbon, Portugal,
October 2016, R1-1608862.

[4] Huawei, HiSilicon, “Evaluation of channel coding
schemes for control channel,” in 3GPP TSG RAN WG1
Meeting #86bis, Lisbon, Portugal, October 2016,
R1-1608863.

[5] CATT, “Polar codes design for eMBB control channel,”
in 3GPP TSG RAN WG1 AH NR Meeting, Spokane,
USA, January 2017, R1-1700242.

[6] ZTE, ZTE Microelectronics, “Rate matching of polar
codes for eMBB,” in 3GPP TSG RAN WG1 Meeting #88,
Athens, Greece, February 2017, R1-1701602.

[7] L. Tal and A. Vardy, “List decoding of polar codes,” in
2011 IEEE International Symposium on Information
Theory Proceedings, July 2011, pp. 1-5.

[8] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg,
“Llr-based successive cancellation list decoding of polar
codes,” IEEE Transactions on Signal Processing, vol. 63,
no. 19, pp. 5165-5179, October 2015.

[9] K. Niu and K. Chen, “Crc-aided decoding of polar
codes,” IEEE Communications Letters, vol. 16, no. 10,
pp. 1668-1671, October 2012.

[10] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J.
Gross, “Fast polar decoders: Algorithm and implementa-
tion,” IEEE Journal on Selected Areas in Communica-
tions, vol. 32, no. 5, pp. 946-957, May 2014.

[11] P. Giard, A. Balatsoukas-Stimming, G. Sarkis, C. Thi-
beault, and W. J. Gross, “Fast low-complexity decoders
for low-rate polar codes,” Journal of Signal Processing
Systems, pp. 1-11, 2016. [Online]. Available:
http:/dx.doi.org/10.1007/s11265-016-1173-y

[12] P. Giard, G. Sarkis, C. Thibeault, and W. I. Gross, “237
gbit/s unrolled hardware polar decoder,” Electronics Let-
ters, vol. 51, no. 10, pp. 762-763, 2015.

[13] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross,
“Multi-mode unrolled architectures for polar decoders,”
IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 63, no. 9, pp. 1443-1453, September 2016.

[14] C. Leroux, 1. Tal, A. Vardy, and W. J. Gross, “Hardware
architectures for successive cancellation decoding of
polar codes,” in 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), May
2011, pp. 1665-1668.

[15] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross,
“A semi-parallel successive-cancellation decoder for
polar codes,” IEEE Transactions on Signal Processing,
vol. 61, no. 2, pp. 289-299, January 2013.

10

15

20

25

30

35

40

45

50

55

60

65

48

[16] A. Mishra, A. J. Raymond, L. G. Amaru, G. Sarkis, C.
Leroux, P. Meinerzhagen, A. Burg, and W. J. Gross, “A
successive cancellation decoder asic for a 1024-bit polar
code in 180 nm cmos,” in 2012 IEEE Asian Solid State
Circuits Conference (A-SSCC), November 2012, pp. 205-
208.

[17]Y. Fan and C. y. Tsui, “An efficient partial-sum network
architecture for semi-parallel polar codes decoder imple-
mentation,” IEEE Transactions on Signal Processing, vol.
62, no. 12, pp. 3165-3179, June 2014.

[18] A. Balatsoukas-Stimming, A. J. Raymond, W. J. Gross,
and A. Burg, “Hardware architecture for list successive
cancellation decoding of polar codes,” IEEE Transactions
on Circuits and Systems I1: Express Briefs, vol. 61, no. 8,
pp- 609-613, August 2014.

[19] J. Lin and Z. Yan, “An efficient list decoder architecture
for polar codes,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 23, no. 11, pp. 2508-
2518, November 2015.

[20]Y. Fan, J. Chen, C. Xia, C.y. Tsui, J. Jin, H. Shen, and
B. L, “Low-latency list decoding of polar codes with
double thresholding,” in 2015 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), April 2015, pp. 1042-1046.

[21] J. Lin, C. Xiong, and Z. Yan, “A high throughput list
decoder architecture for polar codes,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 24,
no. 6, pp. 2378-2391, June 2016.

[22] Y. Fan, C. Xia, J. Chen, C.Y. Tsui, J. Jin, H. Shen, and
B. U, “A low-latency list successive-cancellation decod-
ing implementation for polar codes,” IEEE Journal on
Selected Areas in Communications, vol. 34, no. 2, pp.
303-317, February 2016.

[23] G. Berhault, C. Leroux, C. Jego, and D. Dallet, “Hard-
ware implementation of a soft cancellation decoder for
polar codes,” in 2015 Conference on Design and Archi-
tectures for Signal and Image Processing (DASIP), Sep-
tember 2015, pp. 1-8.

[24] G. Sarkis, 1. Tal, P. Giard, A. Vardy, C. Thibeault, and
W. J. Gross, “Flexible and low-complexity encoding and
decoding of systematic polar codes,” IEEE Transactions
on Communications, vol. 64, no. 7, pp. 2732-2745, July
2016.

[25] C. Zhang, B. Yuan, and K. K. Parhi, “Reduced-latency
sc polar decoder architectures,” in 2012 IEEE Interna-
tional Conference on Communications (ICC), June 2012,
pp. 3471-3475.

[26] B. Yuan and K. K. Parhi, “Low-latency successive-
cancellation polar decoder architectures using 2-bit
decoding,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 61, no. 4, pp. 1241-1254, April 2014.

[27] O. Dizdar and E. Arkan, “A high-throughput energy-
efficient implementation of successive cancellation
decoder for polar codes using combinational logic,” IEEE
Transactions on Circuits and Systems I: Regular Papers,
vol. 63, no. 3, pp. 436-447, March 2016.

[28] C. Xiong, J. Lin, and Z. Yan, “A multimode area-
efficient scl polar decoder,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 24, no. 12,
pp- 3499-3512, December 2016.

[29] C. Kim, H. Yun, S. Ajaz, and H. Lee, “High-throughput
low-complexity successive-cancellation polar decoder
architecture using ones complement scheme,” Journal of
Semiconductor Technology and Science, vol. 15, no. 3,
pp. 427-435, 2015.

[30] A. Pamuk and E. Arkan, “A two phase successive
cancellation decoder architecture for polar codes,” in

US 11,190,221 B2

49
2013 IEEE International Symposium on Information
Theory, July 2013, pp. 957-961.

[31] X. Liang, J. Yang, C. Zhang, W. Song, and X. You,
“Hardware efficient and low-latency ca-scl decoder based
on distributed sorting,” in 2016 IEEE Global Communi-
cations Conference (GLOBECOM), December 2016, pp.
1-6.

[32] C. Xiong, J. Lin, and Z. Yan, “Symbol-decision suc-
cessive cancellation list decoder for polar codes,” IEEE
Transactions on Signal Processing, vol. 64, no. 3, pp.
675-687, February 2016.

[33] B. Yuan and K. K. Parhi, “Low-latency successive-
cancellation list decoders for polar codes with multibit
decision,” IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 23, no. 10, pp. 2268-2280,
October 2015.

[34] C. Zhang and K. K. Parhi, “Low-latency sequential and
overlapped architectures for successive cancellation polar
decoder,” IEEE Transactions on Signal Processing, vol.
61, no. 10, pp. 2429-2441, May 2013.

[35] T. Che and G. S. Choi, “An efficient partial sums
generator for constituent code based successive cancella-
tion decoding of polar codes,” CoRR, vol. abs/
1611.09452, 2016. [Online]. Available: http://arxiv.org/
abs/1611.09452

[36] J. Sha, X. Liu, Z. Wang, and X. Zeng, “A memory
efficient belief propagation decoder for polar codes,”
China Communications, vol. 12, no. 5, pp. 34-41, May
2015.

The invention claimed is:

1. A polar decoder kernal comprising a processing unit
having:

at least one input configured to receive at least one input

Logarithmic Likelihood Ratio, LLR;

logic circuit configured to manipulate the at least one

input LLR; and

at least one output configured to output the manipulated at

least one LLR;
wherein the logic circuit of the processing unit comprises
only a single two-input adder to manipulate the at least one
input LLR, and the input LLR and manipulated LLR are in
a format of a fixed-point number representation that com-
prises a two’s complement binary number and an additional
sign bit.

2. The polar decoder kernal of claim 1, wherein the
processing unit is configured to either:

(1) perform at an instant in time either a ‘g’ function or an

‘> function; or

(ii) only ever perform one of: a ‘g’ function or an ‘f’

function.

3. The polar decoder kernal of claim 2, wherein at least
one of the following function conditions exist: the ‘f’
function comprises:

% =f(X X,)=sign(X,)sign(X,)min(IX |, IX,!), where sign(*)

returns ‘-1’ if its argument is negative and ‘+1” if its
argument if positive; the ‘g’ function comprises:

Xg = g(Fa, Xp, Ug)

=(-1)%%, + %,

4. The polar decoder kernal of claim 2, when implement-
ing the ‘g’ function, wherein the two’s complement binary
number of the at least one input LLR is manipulated using
the single two-input adder to, based on a value of a partial

5

10

15

20

25

30

35

40

45

50

55

60

65

50

sum bit (ii,) and the additional sign bit of the at least one
input LLR, obtain the two’s complement binary number part
of the LLR X ~g(X,, X,, 1) by:

(1) adding a two’s complement part of a first LLR (X,) to
a two’s complement binary number part of a second
LLR (%,), or

(i) subtracting a two’s complement part of a first LLR
(%,) from a two’s complement binary number part of a
second LLR (X,).

5. The polar decoder kernal of claim 2, when implement-
ing an ‘t” function, wherein the two’s complement binary
number of the at least one input LLR is manipulated using
the single two-input adder to, based on the additional sign bit
of the at least one input LLR, obtain the two’s complement
binary number part of the minimum term (min(IX,|, 1X,1)) of
the ‘f” function by:

(1) adding a two’s complement binary number part of a
first LLR (X,) to a two’s complement binary number
part of a second LLR (X,), or

(i1) subtracting a two’s complement binary number part of
a first LLR (%X,) from a two’s complement binary
number part of a second LLR (%X,);

and using the MSB of a resulting two’s complement number
output from the single two-input adder to select either the
two’s complement binary number part of the first LLR (%)
or the two’s complement binary number part of the second
LLR (X,) to provide the two’s complement binary number
part of the output manipulated at least one LLR (X _=f(%,,
%,))-

6. The polar decoder kernal of claim 5, wherein the
additional sign bit of the manipulated at least one LLR (X,
and X) is obtained according to one of the following:

as a function of at least one of: a MSB of the two’s
complement binary number part of the at least one
input LLR and the additional sign bit of the at least one
input LLR;

as a value of the additional sign bit of the second LLR
&)

7. The polar decoder kernal of claim 2, wherein the polar
decoder kernal further comprises an outer datapath that
comprises:

an /g function graph that comprises a first number (s,) of
processing stages, wherein each of the first number (s,)
of processing stages comprises a second number (2%71)
of processing units that perform only the ‘f” function
and a second number (2%7!) of processing units that
perform only the ‘g’ function.

8. The polar decoder kernal of claim 7, wherein an
incremental bit width of the fixed point number representa-
tion is used in each successive processing stage from right
to left.

9. The polar decoder kernal of claim 8, further comprising
a clipping circuit configured to perform at least one of:
reduce the bit width (W) of the LLRs output on a left-most
stage of the plurality of processing units to match bit widths
of the LLRs on the right-most stage of the plurality of
processing units when an incremental bit width of the fixed
point number representation is used in each successive
processing stage from right to left; additionally reduce the
bit width of intermediate processing stages between the
right-most stage of the plurality of processing units and the
left-most stage of the plurality of processing units.

10. The polar decoder kernal of claim 7, further compris-
ing a plurality of LLR memory blocks coupled to the
plurality of processing units that are each configured to

US 11,190,221 B2

51

convert a respective input LLR to a two’s complement
fixed-point number that is stored in the plurality of LLR
memory blocks.

11. The polar decoder kernal of claim 2, wherein the polar
decoder kernal comprises an inner datapath that comprises a
plurality of processing units arranged into a number (s,) of
processing stages configured to perform at least one of: the
‘> function, the ‘g’ function, where a right-most stage
comprises a first number (1n,/2) of processing units and each
successive stage to a left of the right-most stage contains half
as many processing units as the respective processing stage
to its right.

12. The polar decoder kernal of claim 11, wherein a visit
index (v) in a range (0 to 2°°=1) is expressed in base-2 as a
binary number having a first number (s.) of bits, with each
successive bit from right to left being used to control
whether an ‘f” function or a ‘g’ function is performed by the
processing units of each successive stage of the plurality of
processing units in the inner datapath from left to right, such
that the least significant bit (LSB) of the binary number is
used to control a left-most stage of the plurality of process-
ing units and the most significant bit (MSB) of the binary
number is used to control the right-most stage of the
plurality of processing units.

13. The polar decoder kernal of claim 1, wherein each of
the at least one input LLR is represented using the fixed-
point number representation having W+1 bits, as:

X=(=1)"(=2771%,42, 7277k), where

X, is a label of the additional sign bit,

%, is a label of a bit that serves as both a most significant
bit, MSB, and a sign bit of the two’s complement
binary number part of the fixed-point number rep-
resentation, and

X;-1s a label of a least significant bit, LSB, of the two’s
complement binary number part of the fixed-point
number representation.

14. The polar decoder kernal of claim 1, wherein the
single two-input adder comprises two inputs, each input
having a first number (“W”) of bits that are derived from the
two’s complement binary number parts of the fixed-point
number representation (X, and X,) and is configured to
provide a two’s complement output that comprises a second
number of bits including an additional bit (“W+1’ bits) in
order to avoid overflow.

15. The polar decoder kernal of claim 14, wherein the
output of the processing unit comprises a third number
(“W+2”) of bits, incorporating the additional bit introduced
by the single two-input adder plus the additional sign bit.

16. The polar decoder kernal of claim 1, wherein, if the
additional sign bit of the fixed-point number representation
is set, the two’s complement binary number part of the
fixed-point number representation is negated by inverting all
of its bits and then a further single two-input adder is used
to increment the resultant value to convert to the two’s

52
complement fixed-point number representation when writ-
ing the input LLR to the LLR memory block.
17. The polar decoder kernal of claim 1, wherein the two’s
complement binary number of the at least one input LLR is
5 pre-converted to the fixed-point number representation by
supplementing the two’s complement binary number onto a
zero-valued additional sign bit when reading the input LLR
from the LLR memory block.
18. A communication unit comprising a polar decoder
kernal comprising a processing unit having:
at least one input configured to receive at least one input
Logarithmic Likelihood Ratio, LLR;
logic circuit configured to manipulate the at least one
input LLR; and

10

B at least one output configured to output the manipulated at
least one LLR;

wherein the logic circuit of the processing unit comprises

only a single two-input adder to manipulate the at least

2 one input LLR, and the input LLR and manipulated

LLR are in a format of a fixed-point number represen-
tation that comprises a two’s complement binary num-
ber and an additional sign bit.

19. An integrated circuit for a wireless communication
unit, the integrated circuit comprising a polar decoder kernal
comprising a processing unit having:

at least one input configured to receive at least one input

Logarithmic Likelihood Ratio, LLR;

logic circuit configured to manipulate the at least one

input LLR; and

25

30 at least one output configured to output the manipulated at
least one LLR;

wherein the logic circuit of the processing unit comprises

only a single two-input adder to manipulate the at least

35 one input LLR, and the input LLR and manipulated

LLR are in a format of a fixed-point number represen-
tation that comprises a two’s complement binary num-
ber and an additional sign bit.

20. A method of polar decoding comprises, at a polar
decoder kernal having a processing unit that comprises only
a single two-input adder within a logic circuit:

receiving at least one input Logarithmic Likelihood Ratio,

LLR, in a format of a fixed-point number representa-
tion that comprises a two’s complement binary number
and an additional sign bit;

40

» manipulating the at least one input LLR in the format of
the fixed-point number representation that comprises
the two’s complement binary number and the addi-
tional sign bit; and

0 outputting the manipulated at least one LLR in the format

of the fixed-point number representation that comprises
the two’s complement binary number and the addi-
tional sign bit.

