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A B S T R A C T

Various deterministic models for economic ship speed optimisation exist in the literature, but
none considered the time charter contract, and in particular the influence of the redelivery time.
This paper studies the economic optimal speed of a ship on a (time) charter contract through
the development of an Operational Research (OR) optimisation model. The ship charterer’s
objective is to maximise the Net Present Value (NPV) of a cash-flow function of the ship’s
activities over a relevant future horizon 𝐻 , where 𝐻 can be interpreted as any possible day
within the redelivery time window as specified in the time charter clause. We develop a general
time charter contract model P𝑀 (𝐻), and three special cases P1, P∞ and P𝑀 (𝐻 → ∞), each model
mapping onto different contractual contexts, and present algorithms to each of these models for
finding optimal ship speeds for any journey structure. While ships on time charter contracts may
travel to any series of ports during the charter contract, examining the models’ behaviour when
the ship repeatedly executes a roundtrip journey allows us to reach some important general
insights about the impact of contract type for any journey structure. In particular, economic
speeds in P𝑀 (𝐻) follow a very different pattern than those in the classic models from the
literature, as well as in the recent class of NPV models (𝑛, 𝑚,𝐺𝑜) from Ge et al., (2021). We
prove that P1 and P∞ map quite generally to the classes (1, 𝑛, 0) and (∞, 𝑛,−), respectively,
while (𝑛, 𝑚, 0) shows behaviour in approximation equal to the special case P𝑀 (𝐻 → ∞). We
prove that two main strands of speed optimisation models from the literature, which did not
consider the contract type nor used the NPV approach, show equivalence under mild conditions
to P1 and P∞, respectively. These results facilitate matching models to contract types. None of
these models, however, matches the general time charter contract model P𝑀 (𝐻) introduced in
this paper. In general, the paper demonstrates how optimal economic speed is dependent on
the (time) charter contract type, and that this should thus be reflected in the speed optimisation
model developed.

. Introduction

The optimisation of seaborne transportation has received much attention in the literature. We refer to the systematic reviews
n Ronen (1983, 1993), Christiansen et al. (2004, 2013), Wang et al. (2013) and Meng et al. (2014). Most of the studies focus on
hip routing and scheduling, where ship speed is either a constant or determined approximately from a cost structure that is linear in
hip speed. This assumption removes the flexibility of decision making deemed important in many practical applications, according
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to Psaraftis and Kontovas (2013, 2014), who also provide comprehensive reviews on speed optimisation models in maritime OR
literature.

Close to 80% of world trade is carried by ships. Bulk carriers and tankers make up 32% of the total merchant fleet of 53,000
essels, and 70% of the global fleet capacity of 1190 million deadweight tonnage (maribus, 2010). Two main actors in this industry
re ship owners (operators) and charterers. The charter contract specifies how the owner hires out the ship (and its crew) to the
harterer. Several types of contract exist. In this paper we focus on the speed optimisation problem for the ship charterer in this
ndustry when the ship is subject to a time charter contract. In a time charter contract, the charterer rents the ship for a certain
ime and compensates the owner with a daily hire (in USD/day). The charterer determines the vessel’s route(s) but pays for certain
perational costs, including fuel costs. Ships under these contracts are commonly used for repetitive tasks, see also Wu et al. (2021).

Optimal ship speed in maritime economics and operations research literature, as well as in this paper, is to be seen as an average
peed value over a particular leg, and as a proxy for the time that a ship should ideally take when travelling from one particular
ort to another particular port, so as to help maximise the ship’s commercial success. These strategic models differ in scope from
perational models that aim to account for weather conditions, as also explained in e.g. Yan et al. (2020), or to design voyage
harter arrangements as in Sun et al. (2021).

It is known that ship speed affects overall profitability. Lowering ship speed reduces daily fuel consumption, but less profit
enerating trips can be undertaken by the ship over time. If speed is a variable, it should thus be set in the context of this economic
rade-off. Economic theory to date (Ronen, 1982; Stopford, 2009; Devanney, 2010; Psaraftis, 2017) finds that the optimal speed
s largely determined from a non-linear function of the ratio between the freight rate and the fuel price (Adland and Jia, 2018;
saraftis, 2019a).

According to Psaraftis (2019b), slow steaming is typically observed in periods of depressed market conditions or high fuel prices,
nd this is reported in every market. In the context of ongoing climate change concerns, ship speed has become an important
onsideration since slow steaming saves fuel and reduces emissions (Psaraftis and Kontovas, 2014). Psaraftis (2019b) investigates
hether reducing speed by imposing a limit is better than doing the same by imposing a bunker levy, and concludes that having

hip speed flexibility remains important (see also Section 3.3.3). It thus seems that speed flexibility and speed optimisation may
ontinue to serve an important role in maritime optimisation (Psaraftis, 2017).

The aim of this paper is to present a modelling approach and analyse its properties so as to investigate how this economic
rade-off plays out for ships under (time) charter contracts. Speed optimisation models which consider contract type explicitly are
carce, see also Table 1. Actually, Devanney (2010), in an industrial report, claims that contract types or details would not affect
he optimal economic (speed) choices. This may be questionable, as Adland and Prochazka (2021) have examined and shown the
alue of optionality in a time charter contract, which unfortunately is not based on speed optimisation.

To this end, we follow the OR approach and develop a framework of speed optimisation models with the consideration of time
harter contracts and its relevant time horizon. We adopt the principle that optimal economic speeds maximise the Net Present
alue (NPV) of this activity for the decision maker, and apply this to a continuous time formulation based on cash-flow functions,
n approach that Grubbström (1967) presented as highly suitable to economic problems in which decisions and impacts arise over
onger time horizons. While the techniques of NPV evaluation and cash-flow accounting are not new to the economics of shipping,
ee e.g. Stopford (2009) (Chapter 6), the approach has, to our knowledge, not yet been widely applied to the shipping industry as
methodology to find optimal ship speed decisions. To the best of our knowledge, ship operators do currently not make explicit

se of the NPV methodology for speed decisions. Our discussions with an international ship charterer, operating a large number of
hartered vessels, give us a good level of confidence that the NPV models developed, and the insights derived from them, exhibit
he characteristics and trade-offs experienced decisions makers in this industry take into account. Recently, this NPV approach has
lso been adopted in Ge et al. (2021), where an unconstrained ship speed optimisation problem without the consideration of charter
ontract is studied. An NPV perspective is also adopted in Zhang et al. (2020) in the context of cold chain shipping for perishable
oods.

In this paper we develop the general model P𝑀 (𝐻) where the charterer has to decide the optimal usage of the ship over the
duration of the charter contract 𝐻 . Prior to signing the contract, deciding on the duration of the contract forms part of the decision

hether to hire this ship. Once signed, the charterer has to return the ship to the owner within a time-frame as specified in the
edelivery clause. The model P𝑀 (𝐻) also applies to ships already sailing under a time charter contract as to make adjustments to

the remaining journey plan, and to decide on the actual date of redelivery. 𝐻 is then the time remaining on the contract until the
intended actual date of redelivery.

Three additional models, P1, P∞, and P𝑀 (𝐻 → ∞), are each a special case of P𝑀 (𝐻). They map to specific types of charter
ontracts and situations that are also commonly found in the industry. Optimal speeds can be very dependent on which model is
sed, supporting the view that more attention may be needed in the speed optimisation literature to contract type.

That said, some of the model types in the literature can be used in certain charter contract situations. We are able to demonstrate
his by proving, under mild conditions, that P1 and P∞ map onto two main types of ‘classic’ (not based on NPV principles, and not
xplicitly considering the charter contract) ship speed optimisation models from the literature. We henceforth call these models of
ype ‘PK’ and ‘R’, respectively. See also Table 1.

In particular, P1 shows equivalence to speed models like Psaraftis and Kontovas (2014), where the objective function is to
aximise the total profit or to minimise the total cost per trip, per set of routes, or per nautical mile. We henceforth denote with

Model PK’ the type of models from the literature using this kind of objective function. Model PK is found in e.g. Corbett et al.
2009), Norstad et al. (2011), Fagerholt et al. (2015), Wen et al. (2017), Theocharis et al. (2019), Adland and Prochazka (2021).
2

he P∞ class, on the other hand, shows equivalence to another class of speed models, where the objective function is to maximise
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Table 1
Related economic speed optimisation modelling literature.

Authors Objective or
criterion

Time value
of money

Charter
contract

Fuel consumption Harbour
Cost/Time

Incentive of
revenue(1)

Psaraftis and Kontovas (2014) Model PK(2) ✗ ✗ Payload Dependent ✗ ✗

Adland and Prochazka (2021) Model PK ✗ ✓(3) Constant ✗ ✗

Theocharis et al. (2019) Model PK ✗ ✗ Payload Dependent ✗ ✗

Wen et al. (2017) Model PK ✗ ✗ Payload Dependent ✗ ✗

Fagerholt et al. (2015) Model PK ✗ ✗ Piece-wise Linear Approximation of Data ✗ ✗

Norstad et al. (2011) Model PK ✗ ✗ Quadratic Approximation of Data ✗ ✗

Corbett et al. (2009) Model PK ✗ ✗ Cubic Law ✗ ✗

Ronen (1982) Model R(4) ✗ ✗ Cubic Law ✓ ✓

Devanney (2010) Model R ✗ ✓(5) Data ✗ ✓

Ronen (2011) Model R ✗ ✗ Cubic Law ✓ ✓

Magirou et al. (2015) Model R ✓(6) ✗ Cubic Law ✓ ✓

Lee and Song (2017) Model R ✗ ✗ Cubic Law ✓ ✓

Adland et al. (2020) Model R ✗ ✗ Speed dependent Elasticity ✗ ✗

Ge et al. (2021) NPV Profits ✓ ✗ Payload dependent + Ballast ✓ ✓

This Paper NPV Profits ✓ ✓ Payload dependent + Ballast ✓ ✓

(1) The model captures the impact of revenue on speed choices, c.f. Psaraftis (2017); (2) Model PK refers to the type of (non-NPV based) models that optimises
the total profits/costs per route; (3) Their model is about route selection rather than speed optimisation; (4) Model R refers to the type of (non-NPV based)
models that optimises the total profits/costs per unit of time; (5) Devanney (2010) however claimed that charter contract would not affect the optimisation
problem; (6) Magirou et al. (2015) proposed a discounted model as an extension to the standard model.

Fig. 1. Time-charter players and interactions.

the daily profit, or minimise the daily cost, as in Ronen (1982), and also Devanney (2010), Ronen (2011), Magirou et al. (2015),
Lee and Song (2017), Adland et al. (2020). Models in this class divide the profit (or cost) earned on a route by total travel time of
the route to arrive at their objective function. ‘Model R’ in this paper denotes models that follow Ronen’s approach to constructing
the objective function. Because we show the equivalence of Model PK to P1 and of Model R to P∞ (under mild conditions), we can
from the study of the properties of the NPV models learn about the properties and underlying assumptions of the classic models.1
We also show how the general class of models (𝑛, 𝑚,𝐺0) introduced in Ge et al. (2021), and which place no constraint on the
available contract duration, behave similar to the special case P𝑀 (𝐻 → ∞), and thus differently from the general model P𝑀 (𝐻).

The differences between speed optimisation model types have not been explicitly discussed until Psaraftis (2017) and Ge et al.
(2021). In this paper, we will enrich this discussion by showing the links of these models to charter contracts.

2. Problem description

This paper considers the time charter agreement in the bulk cargo/tanker industry. Fig. 1 illustrates the players and their
interactions. The three major players are ship owners, ship charterers, and shippers. The charterers rent ships (including crew)
from ship owners and receive revenues from shippers for the transport of cargo between ports.

We are concerned with determining the profitability of a particular time charter offer available to the ship charterer. The time
charter party is the contract between ship owner and charterer, and typically allows charterers to decide on which journeys are
undertaken, and at which speeds the ship will travel.

Our primary purpose is to develop an understanding of the degree by which the time charter contract affects how fast a vessel
should ideally travel on the different journeys. We assume that the ship is not limited in its choice of speeds by time windows imposed
by external players (e.g. ports, shippers). At the moment of considering chartering a vessel in this industry, time windows are not
an exogenous input. Only when (voyage) contracts with shippers are signed may these become (soft) constraints, see also Psaraftis

1 The study of equivalence between models derived from classic principles and models based on NPV principles finds its roots in Grubbström (1980) (in the
context of production–inventory systems), see also Beullens and Janssens (2014).
3
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(2017) and Prochazka and Adland (2021). At this point the ship is already planned to travel according to a chosen optimal speed
range. This still allows for the charterer, if so desired, to alter speeds on later voyages of the ship within the time charter contract.2

Most of the examples in this paper consider a repeated ballast–laden journey between two ports. Journeys of ships under time
charters in the tanker and bulk shipping industry are often of such a relatively simple structure, as are those found in a Contract of
Affreightment (COA) agreed between a charterer and a shipper. A COA may run from a few months to several years, and has become
the most commonly used contract in tramp shipping, see also Wu et al. (2021). The models and algorithms presented, however, can
find optimal ship speed for each of the legs on a journey of arbitrary structure, with or without repetitions. More importantly, the
repeated laden–ballast situation as considered in this paper facilitates the analysis and extraction of general insights that equally
apply to journeys of arbitrary structure under time charter contracts.

It is perhaps worthwhile to stress that deterministic models have formed the basis of economic understanding of ship speed
optimisation and routing in general, and this paper follows in this tradition. We indeed consider deterministic freight rates as in
most ship routing optimisation literature. This assumption fits reality often quite well. It is true that both the time charterer’s costs
of renting the ship, as well as the revenues received from shipping goods, follow freight rate market indices, and future values of
these should be regarded as random variables. Typically, however, charterers fix the renting cost in an agreement with the particular
ship owner for the duration of the contract. Furthermore, freight rates received for each delivery by the ship may have been agreed
upon with the shippers, as would be typical in a COA. Alternatively, if operating on the spot market, the freight rates can be hedged
through the adoption of a freight futures contract with a broker. In both cases the adoption of deterministic rates would then be
correct.3

2.1. Charter party characteristics

When a ship charterer hires a ship from an owner through a typical time charter contract, the ship owner carries the costs of
crew, repair, maintenance, lubricants, supplies, and capital costs. The charterer is concerned with revenues and costs associated
with cargo handling, including costs of loading and unloading at ports, and main and auxiliary fuel costs. The agreement is made at
decision time 0 for a certain duration during which the charterer pays a daily rate to the owner. The main variables involved are:

• 𝐻 : initial approximate duration of charter party (in days);
• 𝑡𝐹𝑆 : start time of charter relative to signing contract (in days);
• 𝑓𝑇𝐶𝐻 : daily charter rate (USD/day);
• 𝐻∗: actual duration of charter party (in days).

The rate 𝑓𝑇𝐶𝐻 is known as the Time Charter Hire (TCH), and 𝑡𝐹𝑆 as the Forward Start. TCH is a function of charter time
duration and market conditions. In late November 2017, for example, TCH estimates for a Suezmax oil tanker published by the
Hellenic Shipping News Worldwide were increasing with contract duration: 18,750 (USD/day) for 1 year; 20,000 (USD/day) for 2
years; and 23,500 (USD/day) for 3 to 5 years, respectively. At other times, these estimates may be constant or decreasing. TCH can
be a function of 𝑡𝐹𝑆 . Angolucci et al. (2014) found, for example, that rates in the Panamax market for the period 2008–2012 reduced
on average by 60 USD per extra day Forward Start. The agreed TCH will also depend on the ship’s condition and negotiation.

The process of negotiating the time charter contract may require some iterations, and typically occurs through mediation by
intermediate brokers. We refer to Ge (2021) (Chapter 3, Section 3.1). In this article, we assume that the 𝑓𝑇𝐶𝐻 is agreed based on
the contract length 𝐻 and 𝑡𝐹𝑆 , and will be accepted to hold for the actual value 𝐻∗ that represents the actual redelivery day.

We remark that time charter contracts include a redelivery clause with details about the time window in which the charterer
must return the vessel. We show in Section 3.3.1 that the model P𝑀 (𝐻) can indeed account for this redelivery flexibility. In addition,
the model can also be used for ships already travelling on a time charter contract, see Section 3.3.2.

2.2. Journey characteristics

During the time of the charter, the ship transports cargo between ports, see also Fig. 2. The charterer can adjust the speed of
the ship on its voyages within an allowed range of speeds. This freedom, as discussed in Section 1, is important in order to help
maximise the charterer’s profits.

To characterise the logistics tasks to be undertaken, we adopt a modelling logic based on Psaraftis and Kontovas (2014), but
which extends this in various respects.

We define a journey of the ship as a scenario in which the ship visits a set of 𝑛 + 1 ports numbered 0, 1, 2, . . . to 𝑛 in this given
order, see also Fig. 3. Based on demand from an origin port 𝑖 to a destination port 𝑗, the ship will, at each port 𝑖, unload cargo
destined for this port and picked up from previous ports 𝑗 < 𝑖 and pickup loads to be delivered to ports 𝑗 > 𝑖. These amounts are
such that at any point in the journey the cargo load remains feasible with respect to the ship’s deadweight carrying capacity.

2 In liner services, speed optimisation is also important, but additional constraints, see e.g. Christiansen et al. (2019), may make it difficult to implement
ptimal speeds identified by the models presented in this paper.

3 The assumption of fixed freight rates when on the spot market will only hold for a limited time period. Ship owners operating in the spot market may
4

enefit from models using stochastic freight rates, see also (Magirou et al., 2015).



Transportation Research Part E 170 (2023) 102996P. Beullens et al.
Fig. 2. The timeline and workflow of the speed optimisation problem for a time-chartered ship.

Fig. 3. Cash-flows for a Journey of 𝑛-legs between 𝑛 + 1 ports.

We define a leg 𝑖 (𝑖 = 1,… , 𝑛) as the process of the ship moving from port 𝑖 − 1 to port 𝑖. The time 𝑇𝑖 (in years) corresponding
to leg 𝑖 consists of: loading time 𝑇 𝑙

𝑖 at port 𝑖− 1, sea voyage time to port 𝑖 denoted by 𝑇 𝑠
𝑖 , waiting time 𝑇𝑤

𝑖 at port 𝑖, and unloading
time 𝑇 𝑢

𝑖 at port 𝑖:

𝑇𝑖(𝑣𝑖) = 𝑇 𝑙
𝑖 + 𝑇 𝑠

𝑖 (𝑣𝑖) + 𝑇𝑤
𝑖 + 𝑇 𝑢

𝑖 , (1)

where 𝑣𝑖 the sailing speed (in kn) on leg 𝑖. The (un)loading time at a port is linearly dependent on the tonnage to be (un)loaded. For
oil, for example, those times depend on the pump capacity of the harbour and the ship, respectively. During unloading and loading
at port 𝑖, the ship will also replenish supplies and remove waste, take the main fuel and auxiliary fuel, and adjust the amount of
ballast water needed to cover leg 𝑖 + 1. The travel time (in days) is given by:

𝑇 𝑠
𝑖 (𝑣𝑖) =

𝑆𝑖
(24)𝑣𝑖

, (2)

where 𝑆𝑖 is the distance (in nm) from port 𝑖 − 1 to 𝑖.
Each visit to a port incurs costs. Without loss of generality, we will split the total costs incurred at a port 𝑖 into two components.

The first component 𝐶𝑢
𝑖 represents costs associated with entering the port for unloading, the second component 𝐶 𝑙

𝑖+1 represents costs
at port 𝑖 associated with loading so that the ship is ready to undertake the sea voyage of leg 𝑖+1. We take 𝐶𝑢

𝑖 at port 𝑖 to include the
costs of waiting to enter port and dock at berth, fixed port charges, any mooring dues, and unloading charges. Cost 𝐶 𝑙

𝑖+1 incurred
at port 𝑖 include cargo loading costs, cost of readjusting ballast, and the costs of main and auxiliary fuel intake.

The amount of main fuel to cover leg 𝑖 depends on the sailing speed 𝑣𝑖, and the deadweight tonnage (dwt) 𝑤𝑖 carried, which
includes cargo, ballast, supplies, and main and auxiliary fuels carried. We adopt a fuel consumption function (tonne/day) proposed
in Psaraftis and Kontovas (2014):

𝑔)(𝑤 + 𝐴)ℎ, (3)
5

𝐹 (𝑣𝑖, 𝑤𝑖) = 𝑘(𝑝 + 𝑣𝑖 𝑖
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Fig. 4. Example of a round-trip journey from Port A to B to C, and back to A.

where 𝑤𝑖 is the dwt carried on leg 𝑖, 𝐴 the lightweight of the ship, and typically 𝑔 ≥ 3 and ℎ ≈ 2∕3. We impose a stability constraint
that dwt carried should be at least a given percentage of the design dwt of the vessel, see also David (2015): any shortcoming arising
from zero or low amounts of cargo carried is to be made up from ballast water. The loading cost can be stated as:

𝐶 𝑙
𝑖 (𝑣𝑖) = 𝐶ℎ

𝑖 + 𝑐𝑓𝑖 𝐹 (𝑣𝑖, 𝑤𝑖)
𝑆𝑖
24𝑣𝑖

, (4)

where 𝑐𝑓𝑖 is the fuel cost (USD/tonne) at port 𝑖− 1, and 𝐶ℎ
𝑖 represent the sum of other costs associated with the loading operations.

The sum of 𝐶𝑢
𝑖 and 𝐶 𝑙

𝑖+1 is due within a number of 𝑑𝑐𝑖 days after leaving the port 𝑖. The time lapse of this payment (in days),
relative to the completion time of the leg 𝑖, is given by:

𝜖𝑖 = 𝑇 𝑙
𝑖 + 𝑑𝑐𝑖 . (5)

Revenues are based on freight rates, i.e. (market) unit prices of the cargo type and the distance between origin and destination
ports, and negotiations with shippers. For the journey described with known tonnages transported, we can thus calculate the total
revenues 𝑅𝑖 from unloading cargo at each port 𝑖. This value is not dependent on the actual sailing distances or leg speeds. Most
ship charterers will demand payment a number of days 𝑑𝑟𝑖 prior to the start of unloading the cargo at the destination port. Let us
thus define the time of payment, relative to the completion time of leg 𝑖, as :

−𝛿𝑖 = −(𝑇 𝑢
𝑖 + 𝑑𝑟𝑖 ). (6)

The negative signs indicate that payments are made earlier. The time charter hire payments can be modelled as an annuity
stream at rate 𝑓𝑇𝐶𝐻 over the period of the contract,4 see Fig. 3.

Note that where we differ from Psaraftis and Kontovas (2014) in the modelling of the logistics process is primarily in the following
aspects: (a) we include the costs and times of harbour activities, (b) we include the revenues earned from cargo transport, (c) we
specify the actual timing of when costs and revenues are occurring, (d) we do not explicitly incorporate the carrying charges of
payload and goods yet to be picked up. For further discussion on these differences, see Section 6.1.

2.3. Model formulations: P𝑀 (𝐻), P1, P𝑀 (𝐻 → ∞) and P∞

We consider the situation in which the charterer desires to use the ship for the repeated execution of the journey between ports,
as illustrated in Fig. 4. As the journey represents a round-trip, port 𝑛 equals port 0 and, without loss of generality, we can choose
𝑅0 = 𝐶𝑢

0 = 𝐶 𝑙
𝑛+1 = 0.

We develop one general model P𝑀 (𝐻), and derive three special cases. Define 𝑉 −
𝑖 = {𝑣1,… , 𝑣𝑖} and 𝑉 +

𝑖 = {𝑣𝑖,… , 𝑣𝑛} (𝑖 =
1, 2,… , 𝑛). Let us define variable 𝐿𝑗 (𝑗 = 1,… , 𝑛) as the time (in days) from the start of the charter party 𝑡𝐹𝑆 to the moment that
leg 𝑗 is completed:

𝐿𝑗 (𝑉 −
𝑗 ) =

𝑗
∑

𝑖=1
𝑇𝑖(𝑣𝑖). (7)

4 The actual charter hire payment times could be e.g. twice every month on day 1 and 15. These details are not relevant since the payments scheme is not
linked to any intermediate events in the model. Any actual payments plan can be converted to an equivalent annuity stream value in the model with simple
modifications.
6
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We refer to these as leg completion times, and 𝐿𝑛 represents the duration of the journey. The Net Present Value (NPV) of the first
journey relative to decision time 0 is therefore:

NPV1(𝑉 −
𝑛 ) =

[

𝑛
∑

𝑗=1

(

𝑅𝑗𝑒
−𝛼(𝐿𝑗−𝛿𝑗 ) − 𝐶𝑢

𝑗 𝑒
−𝛼(𝐿𝑗+𝜖𝑗 ) − 𝐶 𝑙

𝑗𝑒
−𝛼(𝐿𝑗−1+𝜖𝑗−1)

)

−
𝑓𝑇𝐶𝐻 (1 − 𝑒−𝛼𝐿𝑛 )

𝛼

]

𝑒−𝛼𝑡𝐹𝑆 , (8)

here 𝛼 is the (continuous) opportunity cost of capital against which the charterer wishes to evaluate this activity. Note that 𝛼 is
ot an interest rate but the profit rate of the next best alternative foregone (Grubbström, 1967). Typical values are larger than the
nterest rate on a risk-free investment. The most appropriate time unit in this study is per day: we use a daily rate 𝛼 = 0.000219 (per
ay), equivalent to a cost of capital at 8% (per annum), a value consistent with marine industry values, see also Yagerman (2015).
ee also Section 5.1, where we examine the model’s sensitivity to 𝛼.

Let integer 𝑀 represent the number of times the ship will repeat this journey. The NPV of this is given by (using geometric
eries):

NPV𝑀 = NPV1

[

∞
∑

𝑖=0
𝑒−𝑖𝛼𝐿𝑛 −

∞
∑

𝑖=0
𝑒−(𝑖+𝑀)𝛼𝐿𝑛

]

= NPV1
1 − 𝑒−𝛼𝑀𝐿𝑛

1 − 𝑒−𝛼𝐿𝑛
. (9)

Note the dependencies of loading costs and completion times on speed variables, i.e. 𝐶 𝑙
𝑖 (𝑣𝑖) and 𝐿𝑖(𝑉 −

𝑖 ), whereas 𝑅𝑖 and 𝐶𝑢
𝑖 are

onstants (𝑖 = 1, 3,… , 𝑛). Let 𝑣− and 𝑣+ indicate the minimum and maximum sailing speeds allowed for the ship.
We can now formulate Model P𝑀 (𝐻):

Max NPV𝑀 (𝑉 −
𝑛 ,𝑀), (10)

and subject to

𝑣− ≤ 𝑣𝑖 ≤ 𝑣+,∀𝑣𝑖 ∈ 𝑉 −
𝑛 , (11)

𝑀𝐿𝑛(𝑉 −
𝑛 ) <= 𝐻, (12)

𝑉 −
𝑛 ,𝑀 >= 0. (13)

The decisions variables are leg speeds 𝑣𝑖 and number of journey repetitions 𝑀 where 𝑀𝐿𝑛(𝑉 −
𝑛 ) = 𝐻∗ (recall Section 2.1). After

completion of the work at time 𝐻∗, the charterer will return the vessel to the owner and stops paying the time charter hire. We
ssume that other (future) projects for the charterer do not depend on the completion time of this contract.5

Taking 𝑀 = 1 and dropping constraint (12) (as if taking 𝐻 → ∞), we get as a special case the decision problem P1. This model
optimises the NPV of a single journey. Decisions about ship speed will affect the duration 𝐿𝑛 of the journey. If the ship charterer
would like to undertake further journeys with this ship, it would have to account for this in the formulation. The fact that P1 does
not do so means that after completion of the journey, the ship is returned to the owner and that 𝐿𝑛 = 𝐻∗, i.e. 𝐿𝑛 is the duration of
the charter contract. P1 is thus a model for what is known as a trip time charter, which is a time charter contract of comparatively
short duration agreed for a specified route, where route in this context refers to the 𝑛-leg journey. For further information about
charter contract types, see Section 6.2. We can formulate it as Model P1:

Max NPV1(𝑉 −
𝑛 ), (14)

and subject to

𝑣− ≤ 𝑣𝑖 ≤ 𝑣+,∀𝑣𝑖 ∈ 𝑉 −
𝑛 , (15)

𝑉 −
𝑛 ≥ 0, (16)

where the time constraint (12) can be added if, for example, a time window is considered. We do not explicitly consider this scenario
in this paper, but such time constrained P1 model can be solved in the similar manner as our P𝑀 (𝐻) model; see Algorithm 2 in
Section 2.4.

A second special case is when 𝐻 → ∞ in P𝑀 (𝐻), but is 𝑀 predetermined and fixed. This can be seen as the model P𝑀 (𝐻) where
constraint (12) is removed, and 𝑀 is a parameter, not a decision variable. We refer to this model as P𝑀 (𝐻 → ∞). With 𝐻 → ∞ in
P𝑀 (𝐻), but 𝑀 yet unspecified, we arrive at a third special case. For a charter contract to be considered, it must be that repeating
the journey once must be profitable, i.e. NPV1 ≥ 0, for at least some speed values. Then (9) shows it is optimal that the journey is
infinitely repeated (𝑀 → ∞, 𝐻∗ → ∞). We call this model P∞. For NPV problems with infinite horizons, it is more convenient to
maximise the Annuity Stream (AS) value, where AS = 𝛼 NPV, representing the constant stream of cash (USD/day) with the same
NPV value. We can formulate it as Model P∞:

Max AS(𝑉 −
𝑛 ) = 𝛼NPV∞ = NPV1

𝛼
1 − 𝑒−𝛼𝐿𝑛

, (17)

5 This is valid if the charterer has access to capital so it can hire other ships at any other time if other profitable business is on the horizon. This is different
o the viewpoint of a ship owner, who may need this ship to complete before undertaking some other activities. For further information about how to handle
7

he comparison of investments of different duration, when the completion time affects future activities, see e.g. Brealey and Myers (2003), p.132.
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and subject to

𝑣− ≤ 𝑣𝑖 ≤ 𝑣+,∀𝑣𝑖 ∈ 𝑉 −
𝑛 . (18)

𝑉 −
𝑛 ≥ 0, (19)

Model P∞ represents an idealised case of a time charter of very long duration.

.4. Algorithms

For solving P1 or P∞ models, use Algorithm 1 where 𝑀 = 1 and 𝐻 → ∞, or 𝑀 → ∞ and 𝐻 → ∞, respectively, and where
minimum and maximum speeds on each of the legs correspond to the minimum and maximum speeds allowed for the ship, 𝑣− and
+, respectively. For P𝑀 (𝐻 → ∞), use Algorithm 1 where 𝑀 is the required number of repetitions, and 𝐻 → ∞.

Algorithm 1: Grid search algorithm to solve P1, P𝑀 (𝐻 → ∞) (with given 𝑀), or P∞

Result: {𝑣∗1 ,… , 𝑣∗𝑛} , 𝐹 ∗, 𝐻∗

𝐹 ∗ is the optimal NPV and 𝐻∗ is the number of days used by the ship)
Input: 𝑀 , 𝐻 , {(𝑣𝑚𝑖𝑛𝑖 , 𝑣𝑚𝑎𝑥𝑖 ), 𝑖 = 1,… , 𝑛};
Step 1: For 𝑖 = 1,… , 𝑛, set 𝜖 > 0 and V𝑖 =∶ {𝑣𝑚𝑖𝑛𝑖 , 𝑣𝑚𝑖𝑛𝑖 + 𝜖,… , 𝑣𝑚𝑎𝑥𝑖 } ;
Step 2: Let 𝐹 be given by equation (9) (If 𝑀 → ∞, let 𝐹 be given by equation (17)), and 𝐿𝑛 is given by equation (7);
Step 3: {𝑣∗1 ,… , 𝑣∗𝑛} = argmax𝑣𝑖∈V𝑖 ,∀𝑖 𝐹 (𝑣∗1 ,… , 𝑣∗𝑛) s.t. 𝑀𝐿𝑛 ≤ 𝐻 ;
𝐹 ∗ = 𝐹 (𝑣∗1 ,… , 𝑣∗𝑛) ;
𝐻∗ = ⌈(𝑀𝐿𝑛(𝑣∗1 ,… , 𝑣∗𝑛))⌉

Finding the maximum of 𝐹 (𝑣∗1 ,… , 𝑣∗𝑛), for small values of 𝑛, can be done by grid search. For a 7 knot range and a laden–ballast
ourney, as considered in this paper, this requires (7∕𝜂)2 function evaluations, where the factor 𝜂 (knots) is speed accuracy required.
Note that 𝑀 and 𝐻 values are given, and even large values for these will not complicate the algorithm. For cases where 𝐻 → ∞,
the constraint does not need to be checked.

If the ship cannot run at certain intermediate values of speed on one or more of the legs (e.g. to avoid ship vibrations), the
algorithm can be adjusted in Step 1, by eliminating these invalid speed ranges in V𝑖. Likewise, if the ship has different upper- and
lowerbounds on speed for different legs of the journey, it is straightforward to make the necessary adjustments. For large values of
𝑛, one may need to resort to other approaches, for example a dynamic programming formulation as in Ge et al. (2021).

For solving the general time charter contract problem P𝑀 (𝐻), one can use Algorithm 2. It will generate speed menu profiles
introduced in Section 3.2) as in e.g. Fig. 5, starting from the minimum possible horizon 𝐻𝑜, corresponding to the time needed by

the ship to execute the journey when travelling at maximum speed 𝑣+. 𝐻𝑚𝑎𝑥 is the latest possible redelivery date considered. The
lgorithm iteratively calls Algorithm 1, each time feeding it specific values for 𝑀 , 𝐻 , and minimum and maximum speeds on each
f the legs. Algorithm 2 produces as output a record, for every possible redelivery horizon 𝐻 within 𝐻𝑜 to 𝐻𝑚𝑎𝑥, the actual optimal
edelivery day (which can be less that 𝐻), optimal leg speeds, optimal number of journey repetitions, and corresponding NPV value.

Algorithm 2: Grid search algorithm to solve time charter P𝑀 (𝐻) (with unknown 𝑀)

Result: Recorded for each 𝐻𝑜, 𝐻𝑜 + 1,..., 𝐻𝑚𝑎𝑥: {𝑣′∗1 ,… , 𝑣′∗𝑛 } , 𝑀 ′∗, 𝐹 ′∗, 𝐻 ′∗

nput: 𝐻 (∗)
𝑜 ,𝐻𝑚𝑎𝑥

nitialisation: Set 𝜃 > 0, 𝐻 = 𝐻𝑜 + 1. Call Algorithm 1 (1,𝐻𝑜, {(𝑣−𝑖 , 𝑣
+
𝑖 ),∀𝑖}) and record 𝐻 ′∗ = 𝐻∗, 𝑀 ′∗ = 1 and

{𝑣′∗1 ,… , 𝑣′∗𝑛 } = {𝑣∗1 ,… , 𝑣∗𝑛};
hile 𝐻 ≤ 𝐻𝑚𝑎𝑥 do

Call Algorithm 1 (𝑀 ′∗,𝐻, {(𝑣−𝑖 , 𝑚𝑖𝑛(𝑣
+
𝑖 , 𝑣

′∗
𝑖 + 𝜃)),∀𝑖});

record 𝐹 ′∗ = 𝐹 ∗, 𝐻 ′∗ = 𝐻∗, {𝑣′∗1 ,… , 𝑣′∗𝑛 } = {𝑣∗1 ,… , 𝑣∗𝑛} ;
Call Algorithm 1 (𝑀 ′∗ + 1,𝐻, {(𝑚𝑎𝑥(𝑣−𝑖 , 𝑣

′∗
𝑖 − 𝜃), 𝑣+𝑖 ),∀𝑖});

if 𝐹 ∗ > 𝐹 ′∗ then
update 𝐹 ′∗ = 𝐹 ∗, 𝐻 ′∗ = 𝐻∗, {𝑣′∗1 ,… , 𝑣′∗𝑛 } = {𝑣∗1 ,… , 𝑣∗𝑛}, 𝑀

′∗ = 𝑀 ′∗ + 1;
𝐻 = 𝐻 + 1;

nd
*) 𝐻0 is the minimum days required to complete the journey when travelling at maximum speed.

In Algorithm 2, we are considering that the journey takes, at maximum sailing speeds, considerably more time than 1 day.
herefore, when extending the allowable horizon with 1 additional day in the next iteration of the while loop, the optimal number
f journey repetitions either stays the same, or increases at most with one.6

6 This is supported e.g. by Fig. 5 as otherwise we would observe there a jump from some value 𝑀 to 𝑀 + 1 at some day 𝐻 , being followed to a jump to
𝑀 + 2 on day 𝐻 + 1. The fact that the solutions in Fig. 5 show each time a steady plateau of 𝐻 values where one 𝑀 value is optimal proves the optimality in
8

lgorithm 2 of only considering one additional repetition for each increment in 𝐻 .
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Fig. 5. Speed menu curve: Optimal leg speeds (kn) and repetitions as functions of 𝐻 (days), in the base case example.

When extending the allowable horizon with one day, and if we keep the number of repetitions the same, then intuitively there
is no point for the ship to speed up a lot. Likewise, when extending the allowable horizon with one day but the number of journey
repetitions increases, then intuitively it does not make sense that the ship would slow down a lot. For this reason we can adjust the
speed boundaries in the two calls to Algorithm 1 and using 𝜃 in the range of 1 knot or lower.

The output from Algorithm 2 is of course also applicable for a time charter contract with a redelivery time window from (𝐻1,𝐻2),
where 𝐻𝑜 ≤ 𝐻1 < 𝐻2 ≤ 𝐻𝑚𝑎𝑥.

3. General model P𝑴

In this section, we examine the general model P𝑀 (𝐻), given by (10)–(13), and show that the charter party horizon 𝐻 strongly
influences speed decisions of NPV profit-maximising ship charterers under deterministic conditions. We introduce the novel concept
of a speed menu curve to show the possible solutions to the general problem P𝑀 (𝐻) as a function of available days 𝐻 . We discuss
differences with the models in Ge et al. (2021), and the differences with other deterministic models from the literature are discussed
in Section 4, and also Section 6. The impact of redelivery flexibility and uncertainty are discussed in Section 3.3.

Throughout the paper, we consider the following base case example: a Suezmax ship of 157,880 dwt is to transport 1,200,000
barrels of light crude oil over a distance of 8,293 nm, and return to the first port in ballast. Minimum and maximum speeds are 10
and 17 kn. Further details are given in Appendix A.

3.1. When subject to a given number of journey repetitions 𝑀

Before we examine the general model, it is useful to show the special case P𝑀 (𝐻 → ∞) and show its similarity with the
unconstrained model in Ge et al. (2021). In P𝑀 (𝐻 → ∞) there is no constraint on maximum available days 𝐻 but we adopt a
given number of journey repetitions 𝑀 , and return the vessel at 𝐻∗ = 𝑀𝐿∗

𝑛. Table 2 shows optimal return times, speeds, and NPV
values for increasing 𝑀 in the base case example. We observe that the economic principle that ships react to improved market
conditions (increased freight rate) by speeding up is recognised in P𝑀 (𝐻 → ∞). Also it shows that an increase in the daily hire cost
(TCH) will tend to speed up the ship so as to conclude the work in less time. These findings are no different to what is concluded
in Ge et al. (2021) and also the classic models ‘PK’.

Indeed, this special case P𝑀 (𝐻 → ∞) is similar to the (𝑛, 𝑚,𝐺𝑜) model7 developed in Ge et al. (2021), where 𝑛 = 𝑀 , 𝑚 = 2
and 𝐺0 = 0 here. In particular, the laden and ballast speeds obtained from 𝑃𝑀 (𝐻 → ∞) can be viewed as the approximations of the
averaged speeds on laden and ballast legs, respectively, in (𝑀, 2, 0).

More interestingly, and similar to the chain effect observed in Ge et al. (2021), Table 2 indicates that ships would ideally travel
faster (on average) on both laden and ballast leg with the increase of repetitions 𝑀 . Indeed, the ship’s optimal speeds of a series
of repetitive journeys would converge to a stationary state if we extend the repetitions 𝑀 → ∞. Intuitively, we may see that this
converges to the solution of P∞ (as P𝑀→∞(𝐻 → ∞) ≡ P∞). We note that the chain effect was not observed in the classic models
‘PK’ and ‘R’.

7 The difference is that in 𝑃𝑀 (𝐻) model, the speed on a particular leg is kept identical in each repetition to reserve the same frequency, while in Ge et al.
(2021), speeds at each repetition would vary.
9
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Table 2
Performance of P𝑀 (𝐻 → ∞) for a given number of journey repetitions 𝑀 .
Variable/M-values 𝑀 = 5 𝑀 = 10 𝑀 = 20 𝑀 = 30

Base case
𝐻∗ (days) 331.85 656.59 1, 289.79 1, 996.83
𝑣1 (kn) (laden) 11.0 11.1 11.3 11.5
𝑣2 (kn) (ballast) 12.6 12.8 13.1 13.3
NPV (USD) 7, 829, 768 15, 113, 504 28, 219, 741 37, 580, 022

Freight rates × 1.5
𝐻∗ (days) 322.12 637.58 1, 218.99 1, 770.21
𝑣1 (kn) (laden) 11.2 11.5 12.1 12.5
𝑣2 (kn) (ballast) 12.8 13.2 13.9 14.5
NPV (USD) 19, 826, 413 38, 300, 872 71, 709, 624 101, 078, 409

TCH × 1.5
𝐻∗ (days) 299.80 597.90 1, 187.91 1, 770.21
𝑣1 (kn) (laden) 12.3 12.3 12.4 12.5
𝑣2 (kn) (ballast) 14.2 14.3 14.4 14.60
NPV (USD) 4, 789, 051 9, 273, 999 17, 413, 688 24, 569, 661

Table 3
Optimal speeds for a laden–ballast journey (base case example).

Variable/Model P1 P∞ Model PK Model R

𝑣1 (kn) (laden) 10.9 14.0 12.9 17.0
𝑣2 (kn) (ballast) 12.5 16.3 12.5 12.5
𝐿𝑛 (days) 66.9 53.4 62.0 55.5
NPV (USD) 1, 616, 189 10, 069, 976a 1, 576, 804 8, 828, 658a

𝑓 𝑇𝐶𝐸 (USD/day) 44,344 47,589 45,621 44,188

aAS (USD/year).

.2. When subject to a finite horizon H: speed menu curves

Fixing the number of journeys a priori, however, is not necessarily optimal in the case that 𝐻 is finite, i.e., the optimisation
roblem P𝑀 (𝐻) is subject to (12), that is 𝐻∗ = 𝑀∗𝐿∗

𝑛 ≤ 𝐻 . We will show why the value of 𝐻 has a significant impact on optimal
peeds. We also introduce a novel representation of optimal solutions to model P𝑀 (𝐻) as a function of 𝐻 that we refer to as ‘speed
enu curves’.

Though it appears that only one additional constraint 𝐻 (12) is added to the model, the complexity of the optimisation problem
𝑀 (𝐻) is much increased as we need to also decide the optimal value of repetition 𝑀 simultaneously. We can visualise the optimal
esults obtained from model P𝑀 (𝐻) to illustrate how, for each possible choice of 𝐻 , the corresponding optimal speed would vary for
ach optimal value of 𝑀 and how it would converge to the optimal solution of P∞. For the base case example, using Algorithm 2 and
teratively updating the 𝐻𝑚𝑎𝑥, we depict these results in Fig. 5. It displays the optimal laden speeds (𝑣1) and ballast speeds (𝑣2) and
orresponding optimal number of journey repetitions (𝑀∗) as functions of integer values for 𝐻 , where 𝐻 ∈ [65, 665]. Fig. 6 plots
he corresponding NPV profits; this is a non-decreasing function of 𝐻 . Optimal speeds, broadly speaking, follow a saw-tooth pattern
here each cycle corresponds to a constant optimal 𝑀∗ value. It is clear why: when 𝑀∗ remains constant (and 𝐻∗ ≈ 𝐻), an increase

n available days 𝐻 allows the ship to travel slower and slower, up to the point where an increase in 𝑀∗ would achieve a higher
PV value rather than further reducing the ship speed. In that case, however, the ship will have to speed up on all planned journeys

o as to accommodate the extra journey. It is for this reason that one cannot derive an optimal strategy for a single journey through
ecomposition, as used in the classic models ‘PK’ and ‘R’. Also, the model in Ge et al. (2021), while not using decomposition, still
oes not identify these solutions: for any given 𝑀 in Fig. 5 it would fail to find any of the optimal speeds as from P𝑀 (𝐻). Instead, it
ould typically execute at a much more conservative low speed. For 𝑀 = 5, for example, the Ge et al. (2021) model would produce
verage speeds of 11.0 and 12.6 kn on laden and ballast legs, respectively, as reported in Table 2. From Fig. 5, the slowest optimal
verage speeds for 𝑀∗ = 5 are 12.5 and 14.4 kn, respectively.

We also observe that the amplitude of the saw-tooth slowly reduces for larger 𝑀∗ values, i.e. that the range of optimal speeds
ithin a cycle reduces with 𝐻 . As 𝐻 values increase, although not shown in the figure, optimal speeds converge slowly to unique
alues for ballast and laden leg speeds, respectively. These limits correspond to the solution for P∞ (displayed in Table 3), i.e., when
→ ∞, 𝑀 → ∞, we have 𝑃𝑀 (𝐻) ≡ 𝑃𝑀 (𝐻 → ∞) ≡ 𝑃∞. This pattern of convergence is essentially very different than our

𝑀 (𝐻 → ∞) model as well as the chain effect reported in Ge et al. (2021), due to the impact of duration constraint 𝐻 (12).
We provide three examples to help clarify how the model P𝑀 (𝐻) and its solutions over a range of possible 𝐻 values, presented

s speed-menu curves, can be utilised.

xample 1. The charterer considers hiring a ship from an owner, who needs the ship back in 200 days. From Fig. 5 and Fig. 6,
e can see that the highest NPV that could be achieved is 4 repetitions of the journey, at high speeds of 15.7 kn and 16.9 kn for
ll laden and all ballast legs, respectively. If adopted, the ship will only complete on day 200, and it would not have the ability
10
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Fig. 6. Optimal NPV profit (USD) as a function of 𝐻 (days) in the base case example.

to make up any time lost during the four journeys. The more sensible solution is for the ship charterer to aim for 3 repetitions at
the lowest optimal speeds of 11.5 kn and 13.1 kn, needing 192 days in total (including harbour time), or 64.0 days per roundtrip
(without harbour time). □

Example 2. As in Example 1 but now the ship can be returned in 300 days maximum. From Figs. 5 and 6, we deduce that, with
this ship, it would be optimally executed at 12.6 kn laden speed and 14.5 kn ballast speed, requiring 294 days in total (including
harbour time), or 58.8 days per roundtrip (without harbour time), thus a 9% decrease in the optimal roundtrip time! □.

Example 3. From Table 2, we see that the 𝑃𝑀 (𝐻 → ∞) model suggests it is optimal to complete 5 journeys in 331.85 days.
However, for 𝐻 = 331 days, see Fig. 5, 𝑃𝑀 (𝐻) arrives at speeds of 13.5 kn and 15.7 kn in order to complete 6 journeys. The NPV of
this is USD 8, 751, 115, which is much higher (i.e., an increase of 11.8%) than the results of the 𝑃𝑀 (𝐻 → ∞) model. It is clear that
given a number of available days 𝐻 , the charterer will greatly benefit from seeking an optimal value 𝑀∗ using model 𝑃𝑀 (𝐻). □

The above examples consider an identical ship, the same daily hiring cost, the same journey structure, and under identical
economic conditions. Yet, the range of optimal speeds for the ship clearly depend on the time charter contract horizon.

We note that the solutions of P𝑀 (𝐻), and represented in the speed menu curves, as illustrated in the above examples, do not
require the ship to flexibly adjust its speeds over a 7 knots range from one voyage to the next. Rather, the ship would operate
within quite a narrow range: in each of the laden legs over the time charter contract duration, it would travel at constant speed.
The differences in optimal speeds on a laden and ballast leg is within a range of 2 kn, or less, and it would be optimal for the ship
to travel faster on the ballast legs: this will happen quite naturally when the ship uses a similar power setting as used on the laden
leg.

3.3. Further usage of P𝑀 (𝐻)

The speed menu curves as in Fig. 5 plot solutions to P𝑀 (𝐻), i.e. the optimal speeds on each leg, and number of journey repetitions
as a function of the available horizon 𝐻 . In this section we illustrate further possible scenarios in which the model and the speed
menu curves can be of usage.

3.3.1. Redelivery clause
The solutions from P𝑀 (𝐻) as depicted in Fig. 5 are also applicable for a ship which would already be on a time charter contract

by reinterpreting 𝐻 as the time remaining on the contract. It also allows for the consideration of flexible redelivery time windows,
often present in contracts, showing how the choice of actual redelivery date and optimal journey choices and leg speeds are linked
decision problems.

As introduced in Section 2.1, the redelivery clause of a charter party stipulates when the charterer’s right to use the vessel
terminates. Such clauses exist in many variations, but most include some flexibility. The example considered here is the approach
whereby the ship is to be returned up to 45 days earlier or later, at the charterer’s discretion, relative to an agreed termination
date.8

To examine the impact of such a redelivery clause, we can re-use the results of Section 3.2. We focus on 𝐻 ∈ [320, 410] in Fig. 5
and it is re-interpreted as displaying the range of optimal strategies available to the charterer when the agreed termination date is
one year ahead (365 days), plus or minus 45 days. Depending on the actual completion date, possible speed choices for ballast legs
range from 17 kn down to 15 kn, and laden leg speeds from 15.8 kn to 12.6 kn. Which speeds from these ‘speed menus’ are optimal?
Recall that the NPV within this range of available horizons is strictly increasing (see Fig. 6). Does this mean that charterers, when
having agreed to this contract, will select the solution as to arrive at day 410?

8 This is a typical arrangement in for example the ExonMobil2000 charter contracts.
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Fig. 7. Optimal leg speeds (kn) and number of repetitions (fuel prices × 1.5) for 𝐻 ∈ [265, 355].

Example 4. When aiming to complete 8 journeys and arrive at day 410, the ship would travel at 17 kn in ballast and 15 kn laden.
However, any delays means that the ship would not be able to complete this. Very few charterers would take this risk, and the hassle
and penalties associated with overrunning the contract duration. Travelling at these high speeds but completing only 7 journeys is
by far out-competed by targeting initially 7 journeys only (see next example).

Example 5. When targeting 7 journeys, several choices can be made. For example, a solution (𝑣1 = 14.0 kn, 𝑣2 = 16.3 kn)9 would
lead to a completion by day 375. But this still gives 35 days of buffer relative to day 410. Some charterers may think this buffer can
be smaller, since as the NPV curve indicates, travelling slower can increase profits. Therefore, a charterer may perhaps conclude
that a solution (𝑣1 = 13.0 kn, 𝑣2 = 15.1 kn), which will complete the 7 journeys by day 399, with a buffer of 11 days, would be a
decent compromise between profit maximisation and risk. □

3.3.2. Decision dynamics
The model P𝑀 (𝐻) is a deterministic model, like many other classic speed optimisation models in the literature. While there

are situations in which prices can be agreed over a longer-term contract, recall also the discussion in Section 2, uncertainty
during voyages from e.g. bad weather, or port delays, may introduce unanticipated disruptions. These situations may call for a
re-optimisation. Considering the present state of the ship, and the redelivery time window remaining on the contract, as above, one
can repopulate the model with the new parameter values and re-assess the remaining strategy for the ship on this contract.

From the discussion in Section 3.3.1 follows that, under identical conditions, charterers may make different initial choices about
vessel speeds. This also sets them each on a different course towards addressing future dynamic changes.

Consider two charterers operating under identical conditions, aiming to complete 7 journeys in a one-year contract: charterer
CI adopts (𝑣1 = 14.0 kn, 𝑣2 = 16.3 kn, 𝐿𝑛 = 53.4 days), but charterer CII adopts (𝑣1 = 13.0 kn, 𝑣2 = 15.0 kn, 𝐿𝑛 = 57 days).

Example 6. Consider that near the time of completing the first journey, fuel prices rise by a factor 1.5. CI then has 410−53.4 = 356
days left on the contract, and CII 410 − 57 = 353 days. Fig. 7 displays the new optimal solutions to P𝑀 (𝐻) under the fuel price rise.
Having completed the first journey as planned, CI adjusts its estimate of needed buffer down to 25 days, while CII to 8 days. They
thus target completion by days 332 and 345, respectively. Fig. 7 shows that they each can now only complete another 5 journeys,
and CI selects (𝑣1 = 11.0 kn, 𝑣2 = 12.6 kn, 𝐿𝑛 = 66.4 days), while CII chooses (𝑣1 = 10.5 kn, 𝑣2 = 12.1 kn, 𝐿𝑛 = 69.0 days). The fuel
price change has had a dramatic impact on the chosen speeds of both charterers. □

Example 7. Consider that the fuel price rise occurs only when they have completed 4 journeys according to plan. They then
have, respectively, 196 and 182 days left on the contract. It is reasonable to assume that with only 3 more journeys to go, without
disruptions for previous journeys, CI and CII may become embolden to reduce the buffer more drastically to, say, 6 days and 2 days,
respectively. This means CI now targets completion by day 196 − 6 = 190, and CII by day 182 − 2 = 180. We see on Fig. 8 that CI
selects (𝑣1 = 11.6 kn, 𝑣2 = 13.3 kn, 𝐿𝑛 = 63.3 days), while CII chooses (𝑣1 = 12.3 kn, 𝑣2 = 14.2 kn, 𝐿𝑛 = 60 days). Note that CI now
steers the ship at a lower speed than CII, and from Fig. 8 it is also clear that a fuel price rise would now have no impact on their
speed choices. □

Even if we assume identical ship, journey, and charter contract characteristics, we can thus still expect different charterers to
arrive at different strategies to (adjusting) ship speeds when subject to a change in external data.

9 This is the solution obtained from P , see Section 4.3.
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Fig. 8. Optimal leg speeds (kn) and number of repetitions (fuel prices × 1.5) for 𝐻 ∈ [105, 195].

Fig. 9. Optimal leg speeds (kn) and repetitions as functions of 𝐻 (days), maximum ship speed 14 kn.

3.3.3. Environmental constraints: speed limits
The modelling approach developed in this study may help in the assessment of developments in emission related regulatory and

technological initiatives when these affect the conditions under which ship speed decisions are made. Note that the ship’s speed
range limitations corresponding to Fig. 5 is 10 to 17 kn.

Example 8. An often discussed maritime regulation to decarbonisation is to impose strict restrictions on the maximum speed of
a ship. Fig. 9 plots the speed menu curve in the case that maximum speed 𝑣+ is reduced from 17 kn to 14 kn. Comparing with
Fig. 5, the ship with this speed limitation can do, generally speaking, one less repetition when given the same number of days (𝐻).
The charterer’s NPV is much reduced (when rates remain the same), and the charter market would in total need more ships to
perform the same amount of cargo movements per day. Notice in Fig. 9 that on ballast legs in longer time charter contracts the ship
already travels close to the maximum allowed speed. The ship may thus have much greater difficulty making up for any lost time.
When considering the potential profitability of a time charter contract under such speed limits, the ship charterer thus may feel it
necessary to build in safety against such risks by considering only solutions where 𝑣1 and 𝑣2 are set even lower than the 14 kn. □

An alternative is for legislation to define the speed limit as an average over different legs, but this seems difficult to clearly
define, check and enforce. For a thorough discussion of speed limits, see Psaraftis (2019a).

4. Special cases P𝟏 and P∞

Recall from Section 2.3 that P1 optimises the NPV of a single journey and assumes the journey time can be freely decided like
in a trip time charter, while P∞ optimises the stationary speeds per unit of journey time, assuming the journey would be repeated
infinitely under static economic conditions. These are two special cases of our proposed P𝑀 (𝐻), namely when 𝐻 → ∞, and with
fixed 𝑀 = 1 and 𝑀 → ∞, respectively.

We analyse these two special cases by comparing them to models from the literature. Ge et al. (2021) showed that Model PK
and Model R, without the consideration of charter contract, can be also mapped to two special cases in their model. We therefore
consider to map our P1 and P∞ first to the (𝑛, 𝑚,𝐺𝑜) framework in Ge et al. (2021), and then compare to Model PK and Model R,
respectively.

By demonstrating this equivalence, an understanding about the differences between Model PK and Model R can be obtained by
studying the differences between P and P , and it also shows how PK and R models map onto charter contract types.
13
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4.1. Equivalence to (1, 𝑛, 0) and (∞, 𝑛,−)

Consider model P1 maximising (8) for a journey of arbitrary number of legs 𝑛 and payment times 𝛿 and 𝜖. Let us denote the NPV
for a single leg 𝑗 of the journey, discounted to the start time of that leg, by ℎ𝑗 (𝑇𝑗 , 𝛿𝑗 , 𝜖𝑗 , 𝜖𝑗−1). We can then re-write (8) as follows:

ℎ𝑗 (𝑇𝑗 , 𝛿𝑗 , 𝜖𝑗 , 𝜖𝑗−1) = 𝑅𝑗𝑒
−𝛼(𝑇𝑗−𝛿𝑗 ) − 𝐶𝑢

𝑗 𝑒
−𝛼(𝑇𝑗+𝜖𝑗 ) − 𝐶 𝑙

𝑗𝑒
−𝛼𝜖𝑗−1 − ∫

𝑇𝑗

0
𝑓𝑇𝐶𝐻𝑒−𝛼𝑡𝑑𝑡, (20)

𝑁𝑃𝑉1(𝑉 −
𝑗 ) = 𝑁𝑃𝑉1(𝑉 −

𝑗−1) + ℎ𝑗 (𝑇𝑗 , 𝛿𝑗 , 𝜖𝑗 , 𝜖𝑗−1)𝑒
−𝛼𝐿𝑗−1 . (21)

Comparing to Ge et al. (2021), if 𝛿 = 𝜖 = 0, it is clear that (20) is identical to (6) in their paper, and (21) is a recursive function
that is equivalent to their dynamic programming formulation of model (1, 𝑛, 0). It implies that a trip time charter model P1, in the
formalism of Ge et al. (2021), considers a zero value for the future profit potential. This result is formalised in Lemma 1.

Lemma 1 (Equivalence of (1, 𝑛, 0).) (a) The objective function of model (1, 𝑛, 0) is identical to P1 when 𝛿 = 𝜖 = 𝐺0 = 0, which can be
olved by Algorithm 1; (b) Solving (1, 𝑛, 0) is equivalent to solving a problem in P1, i.e. maximising the Goodwill of the current journey
ubjected to a scenario like in a trip time charter with zero future profit potential.

We now consider model P∞ that maximises (17) for a journey of arbitrary number of legs 𝑛 and payment times 𝛿 and 𝜖. Given
20) and (21), if 𝛿 = 𝜖 = 0, (17) can be re-written as:

𝐴𝑆(𝑉 −
𝑛 ) = 𝛼𝑁𝑃𝑉∞ =

𝛼𝑁𝑃𝑉1
1 − 𝑒−𝛼𝐿𝑛

= 𝐴𝑆(𝛤1), (22)

where 𝛤1 is used in Ge et al. (2021) that is equivalent to our 𝑉 −
𝑛 . We thus see that P∞ maps onto (∞, 𝑛,−) and there is no need

to consider a future profit potential.

Lemma 2 (Equivalence of (∞, 𝑛,−).) (a) The objective function of model (∞, 𝑛,−) is identical to P∞ when 𝛿 = 𝜖 = 0, which can be
solved by Algorithm 1; (b) Solving (∞, 𝑛,−) is equivalent to solving a problem in P∞, i.e. maximising the Goodwill of the repeating current
journey infinitely under static economic conditions subjected to a contract of very long duration.

The above results prove that, unlike model P𝑀 (𝐻), assuming identical speeds for each repetition does not make P1 and P∞ any
different to (1, 𝑛, 0) and (∞, 𝑛,−), respectively.

4.2. Equivalence to model PK and model R

Model PK refers to the class of models as presented by Psaraftis and Kontovas (2014). Using our notation, their formulation
(after (1) on p. 59) can be stated as:

Min 1
𝑣𝑗

[

𝑐𝑓𝑗 𝐹 (𝑣𝑗 , 𝑤𝑗 ) + 𝑓𝑇𝐶𝐻 + 𝛼𝑠𝑢 + 𝛽𝑠𝑤
]

. (23)

In this model, 𝑢 refers to volume of cargo yet to be picked up in ports 𝑗 + 1 to 𝑛 − 1 that would be waiting in these ports, and
𝑤 to the volume of the cargo currently on the ship. The 𝛼𝑠 and 𝛽𝑠 represent the carrying charges for the shipper, and from the
example on p.64 in that paper, we observe that e.g. 𝛽𝑠 = 𝛼𝐺, where 𝐺 is taken (in the examples on p. 64 of that paper) to be the
CIF value of the cargo. The objective function (USD/nm) expresses costs per unit of distance travelled on the leg. Since distance is
a constant, this is equivalent to minimising (USD/leg). The Model PK is adopted in e.g. Wen et al. (2017). When not considering
holding costs (𝛼𝑠 = 𝛽𝑠 = 0) and replacing 𝐹 (𝑉 ,𝑊 ) by the simpler propeller law 𝐹 (𝑉 ) ∼ 𝑉 𝑔 , the model is also representative of those
used to optimise speeds in earlier literature, as in e.g. Corbett et al. (2009). More generally, Model PK represents the models from
the literature that use the criterion (USD/nm), (USD/journey), or (USD/leg).

Model R refers to another class of models following the approach developed in the income generating leg model in Ronen (1982).
When we replace the propeller law by (3), and use our notation, Ronen’s problem statement is that optimal speed for leg 𝑗 is found
from:

Max 1
𝑇𝑗 (𝑣𝑗 )

[

𝑅 − 𝑇𝑗 (𝑣𝑗 )𝐶 − 𝑐𝑓𝑗 𝐹 (𝑣𝑗 , 𝑤𝑗 )𝑇 𝑠
𝑗 (𝑣𝑗 )

]

, (24)

where 𝑅 is the income from the leg, and 𝐶 the (constant) daily cost of the vessel (which can be dropped from the objective function).
This formulation thus seeks to maximise the profits per day on the leg (USD/day). Model R, using the propeller law, can be recognised
in e.g. the models of Devanney (2010) and Fagerholt and Psaraftis (2015).

Equivalence analysis has also been used in Ge et al. (2021), where the authors find equivalence of these two classic models,
namely Model PK and Model R, to their (1, 𝑛, 0) and (∞, 𝑛,−) models, respectively. From Lemmas 1 and 2, it is easy to verify
also the equivalence of our P1 and P∞ to these classic models. Therefore, applying the conclusion of Ge et al. (2021)[Section 5.1],
classic models that maximise daily profitability as in Model R should only consider journeys of a roundtrip structure, as does P∞,
see Fig. 4. As indicated by the chain effect in Ge et al. (2021)[Section 4.3], the decomposition principle explicitly proposed by Ronen
(1982) and Psaraftis and Kontovas (2014) in their model setting does not produce optimal results in the NPV framework. One thus
14
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Fig. 10. Cash-flows functions of the abstract representations of 4 different ship journeys 𝑝1, 𝑝2, 𝑝3 and 𝑝4.

To better appreciate such equivalence, we use a high level setting that is rather general to illustrate the rationale of why (the
linear approximations of) our P1 and P∞ can be mapped to Model PK and Model R types of classic models.

Consider 4 logistics scenarios, see also Fig. 10, that may represent the cash flows arising during trip time or long term time
charters, respectively.

Projects p1 and p2 are simplified representation of a one-leg journey and two-leg journey model, respectively. Most models from
the literature do not specify when revenues and costs are incurred. The more it is reasonable to assume that profits earned from a
leg 𝑖 arrive at a uniform rate 𝑎𝑖 over the leg’s duration, for which only its magnitude would depend on 𝑥𝑖 ∈ 𝑋, the more p1 and p2
are fair characterisations of such models. Projects 𝑝3 and 𝑝4 represent infinite repetitions of the one-leg journey project 𝑝1 and the
two-leg journey project 𝑝2, respectively.

Let 𝑎(𝑥) denote a cash-flow function associated with a leg when the ship travels at speed 𝑥 with a corresponding duration 𝛿(𝑥),
then consider four possible journeys:

1. p1: a laden leg where it generates daily profit 𝑎(𝑥) for 𝑡 = [0, 𝛿(𝑥)], and 0 (𝑡 ≥ 𝛿(𝑥));
2. p2: a laden leg where it generates daily profit 𝑎1(𝑥1) for 𝑡 = [0, 𝛿1(𝑥1)], followed by a ballast leg where it incurs daily cost

𝑎2(𝑥2) for 𝑡 = [𝛿1(𝑥1), 𝛿1(𝑥1) + 𝛿2(𝑥2)], and 0 (𝑡 ≥ 𝛿1(𝑥1) + 𝛿2(𝑥2)).
3. p3: an infinite repetition of a laden leg where it generates profit at times 0, 𝛿(𝑥), 2𝛿(𝑥), . . . , of magnitude 𝐴(𝑥), where 𝐴(𝑥)

equals the NPV of p1;
4. p4: an infinite repetition of a laden leg followed by a ballast leg, where it generates profit 𝐴1(𝑥1) at times 0, (𝛿1(𝑥1) + 𝛿2(𝑥2)),

2(𝛿1(𝑥1) + 𝛿2(𝑥2)), . . . and it incurs cost 𝐴2(𝑥2) at times 𝛿1(𝑥1), 𝛿1(𝑥1) + (𝛿1(𝑥1) + 𝛿2(𝑥2)), 𝛿1(𝑥1) + 2(𝛿1(𝑥1) + 𝛿2(𝑥2)), . . . , where
𝐴1(𝑥1) is the NPV of 𝑎1(𝑥1) and 𝐴2(𝑥2) is the NPV of 𝑎2(𝑥2) of p2.

Let 𝑌 (𝛼) represent the linear approximation of a function in 𝛼; and ‘Max x’ shorthand for maximising a function x.

Theorem 1. (proof in Appendix B):

• (I) (Model PK) Max 𝑎𝛿 of p1 ≡ (Model P1) Max NPV(𝛼) of p1;
• (II) (Model PK with decomposition) Max 𝑎1𝛿1 + 𝑎2𝛿2 of p2 ≡ (Model P1) lim𝛼→0 Max NPV(𝛼) of p2;
• (III) (Model R) Max 𝑎(𝑥) of p1 ≡ (Model P∞) Max AS(𝛼) of p3;
• (IV) (Model R without decomposition) Max (𝑎1𝛿1 + 𝑎2𝛿2)∕(𝛿1 + 𝛿2) of p2 ≡ (Model P∞) lim𝛼→0 Max AS(𝛼) of p4;
• (V) (a) (Model R with decomposition) Max 𝑎1𝛿1

𝛿1
+ 𝑎2𝛿2

𝛿2
of p2 ≢ (Model P∞) Max AS(𝛼) of p4, even if 𝛼 = 0, and (b) Max 𝑎1+𝑎2 will

skew the optimisation by placing too much emphasis on the cash-flow 𝑎𝑖 of leg 𝑖 with the smallest value for 𝛿𝑖∕(𝛿𝑖 + 𝛿𝑗 ) (𝑖, 𝑗 ∈ {1, 2}).

In the theorem, the left-hand sides of ≡ or ≢ represent (possible) methods we can apply when the objective function is set up
following the classic models. The right-hand sides follow the NPV approach — but possibly applied to the linear approximation of
the NPV function. Because this approximation is often of good accuracy, a result of equivalence (≡) implies a good correspondence
between the classic method and the NPV approach. We can then also expect to be able to learn about the classic method through
the study of the equivalent NPV model. See also (Beullens and Janssens, 2014).

In particular we derive the following insights. (I) and (II) indicate that an approach as in Model PK that maximises profits per
nautical mile per leg (by decomposition), will come close to maximising the NPV for the ship charterer of single journey only. This
implies that Model PK implicitly assumes that the time of completing the journey does not affect future investment opportunities for the ship
charterer (as this is indeed what optimising the NPV of p1 or p2 establishes).

(III) to (V) show properties of models such as Model R that maximise daily profits over legs of a single finite journey. (III)
indicates that Model R is equivalent to maximising the AS (USD/day) of a model where this journey, that Model R considers, is in fact
infinitely repeated. It is thus important to realise that such models implicitly adopt this assumption. (IV) and (V) show how to best
construct Model R when legs are not uniform in their profit characteristics and/or duration. (V) indicates that decomposition will not
15
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Table 4
Optimal speeds for a ballast–laden journey.

Variable/Model P1 P∞ Model PK Model R

𝑣1 (kn) (ballast) 12.6 16.4 15.1 12.5
𝑣2 (kn) (laden) 10.9 14.1 12.5 17.0
𝐿𝑛 (days) 65.7 52.1 57.2 55.5
NPV (USD) 1, 608, 351 10, 246, 502a 1, 517, 854 8, 674, 053a

𝑓 𝑇𝐶𝐸 (USD/day) 44,672 48,073 46,701 43,765

aAS (USD/year).

ork well. For example, if leg 1 requires 1 month and leg 2 half of that, (III) indicates that the decomposed model will account for
12 repetitions of the first and 24 repetitions of the second leg in one year. This is wrong, since both legs can only be repeated an
equal number of times (8 in a year). Using decomposition will thus skew the results by putting too much weight on the importance
of leg 2. (IV) shows that an approach which maximises the weighted profits over the total journey duration will achieve much better
results.

4.3. Numerical comparison

The purpose of this section is to compare solutions of P1, P∞, Model PK and Model R on the base case example. Table 3 compares
the models when the journey starts with the laden leg. In Model PK, inventory costs are at CIF value of 63 USD/barrel and an
opportunity cost of 0.08 per annum. In Model R, we use the revenue generating leg model for both laden and ballast legs. To
determine journey times 𝐿𝑛, we evaluate the solution of Model PK and Model R into our journey model (which also accounts for
harbour times). We evaluate the speed values obtained from Model PK and Model R using the NPV and AS functions of models P1
and P∞, respectively.

Observe that the models arrive at different speed recommendations. Both P1 and P∞ find ballast optimal speeds to be higher than
laden leg speeds, corresponding to observed industry practice. P∞ arrives at much higher speeds, completing the journey (including
port times) in about 13 days less, and also the gap between the optimal laden and ballast speed is widened.

Comparing journey times and speeds, we observe that Model PK is closer to P1 and Model R is closer to P∞. As P1 maximises
(USD/journey) while P∞ maximises (USD/year), and given the equivalence results in Section 4.2, this is not surprising. While Model
PK arrives at a higher TCE10 than P1, it is the result of shorter journey time, and its NPV value is lower. Model R arrives at a journey
time close to that of P∞, but the very different laden and ballast speeds will achieve one million USD less in AS value. Both Model
R and Model PK find ballast speeds to be lower than laden speeds.

Table 4 shows results when the journey starts with the ballast leg. P∞ and Model R give each the same speed results they obtained
under the laden–ballast case, while P1 slightly raises the speed on the ballast leg. The largest difference is observed in Model PK,
where ballast speed shows a large increase and laden speed is slightly lowered. NPV and AS values are lower because costs arise
earlier and revenues later compared to the laden–ballast situation. TCE values are therefore also lower, except in Model PK due to
the much smaller journey time.

The example illustrates that optimal speeds depend on the model used. With respect to the differences between P1 and P∞, we
see that charter contract type matters. Optimal speeds on a time charter contract of very long duration (P∞) are significantly higher
(in this example) than those on a trip time charter (P1), and the gap between laden and ballast speed is significantly larger. Whether
or not the decision maker has an interest in what happens with the ship after completion of a journey, and thus the type of the
charter contract, influences speed decisions.

Further comparison with results for P𝑀 (𝐻) and P𝑀 (𝐻 → ∞) on the same base case example, as shown in Fig. 6 and Table 2,
respectively, shows that optimal speeds are highly model dependent, despite the fact that in each case the logistics task, and the
basic economic parameters and ship’s characteristics, always remain the same. In each model, however, the contract type differs.

5. Sensitivity analysis

This section reports on the sensitivity of the models P1, P𝑀 (𝐻) and P∞ to various model parameters.

5.1. Sensitivity to the opportunity cost 𝛼

It is useful to give an indication of the importance of using appropriate estimates for the value of 𝛼. Table 5 lists optimal speeds
for 𝛼 ranging from 0 to 0.3 (per year) for P1, P∞, and P10 (𝐻 → ∞) (as in Section 3.1). The optimal speed 𝑣1 on the laden leg is
lower than that on the ballast leg 𝑣2.

Profitability (NPV or AS) is determined by the value of 𝛼. If the next best available alternative is more profitable, 𝛼 is higher,
and the relative attractiveness of this project reduces, and its NPV reduces. This matters most in P10, and much less in P1 and P∞.

10 Time Charter Equivalent (TCE) earnings is an industry standard expressing the difference between voyage revenues and voyage costs (excluding charter
16

ire costs), divided by the total number of voyage days. We calculate TCE with time discounted cash-flows, for details, see Ge (2021), Chapter 3.
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Table 5
Sensitivity analysis of 𝛼 for 𝑀 = 1, 𝑀 = 10 and 𝑀 → ∞.

Variable/Model P1 P10 (𝐻 → ∞) P∞ (𝑀 → ∞)

𝛼 = 0 (/year)
𝑣1 (kn) 10.8 10.8 14.0
𝑣2 (kn) 12.5 12.5 16.3
NPV (USD) 1, 630, 374 16, 303, 740 10, 084, 697a

𝛼 = 0.05 (/year)
𝑣1 (kn) 10.8 11.0 14.0
𝑣2 (kn) 12.5 12.7 16.3
NPV (USD) 1, 621, 467 15, 568, 458 10, 075, 487a

𝛼 = 0.1 (/year)
𝑣1 (kn) 10.9 11.2 14.0
𝑣2 (kn) 12.5 12.9 16.3
NPV (USD) 1, 612, 675 14, 885, 105 10, 066, 268a

𝛼 = 0.2 (/year)
𝑣1 (kn) 11.0 11.5 14.0
𝑣2 (kn) 12.5 13.1 16.3
NPV (USD) 1, 595, 239 13, 654, 616 10, 047, 317a

𝛼 = 0.3 (/year)
𝑣1 (kn) 11.1 11.8 14.0
𝑣2 (kn) 12.4 13.4 16.2
NPV (USD) 1, 578, 092 12, 577, 983 10, 027, 717a

aAS (USD/year).

In P1 the timeframe is short (less than 70 days) and reduced sensitivity is thus as expected. In P∞, AS values change very little, in
part due to optimal speeds in that model being quite insensitive to 𝛼.

Optimal speeds on both laden and ballast legs are typically increasing with 𝛼 in P1 and P10. Interestingly, the difference in
optimal speeds of these models in comparison to P∞ is the largest when 𝛼 is the smallest, while the difference between P1 and P10
is the largest for the largest values of 𝛼.

From the table, we can infer that for an estimate of 𝛼 (per year) within an accuracy of ±0.05 (or ±5%), we find optimal speeds
(in knots) within a ±5% accuracy. Given that optimal speeds thus remain fairly insensitive to the value of 𝛼, we have conducted all
experiments in this study using the marine industry average value of 𝛼 at 8% (per year) reported in Yagerman (2015).

.2. Sensitivity to other economic parameters in model P𝑀 (𝐻)

The sensitivity is greatly dependent on whether the constraint (12) is binding in the optimal solution. Two examples illustrate:

Example 9. Fig. 7 illustrates the impact of a rise in fuel prices by a factor 1.5 for 𝐻 ∈ [265, 355]. For 𝐻 ∈ [297, 345], optimal speeds
drop by 2 to 2.5 kn since 𝑀∗ reduces with 1. In certain ranges, such as 𝐻 ∈ [283, 297] the optimal speeds are not significantly
affected by the fuel price change. This is because 𝑀∗ remains constant and also 𝑀∗𝐿∗

𝑛 = 𝐻∗ ≈ 𝐻 , so the journey time 𝐿∗
𝑛 is

unaffected. For fuel price rises much smaller than by a factor 1.5, the ranges of 𝐻 for which we would see no significant impact
from fuel price changes will become more prominent. □

Example 10. Sometimes 𝐻∗ ≪ 𝐻 , i.e. the constraint is non-binding, see Fig. 8. In the base case scenario, such non-binding solutions
arise for 𝐻 ∈ [134, 144]. The increase in fuel prices moves the region of non-binding solutions to 𝐻 ∈ [145, 159]. For 𝐻 ∈ [134, 144],
the fuel price increase would thus result in the ship slowing down slightly and the solution moves from non-binding to binding, but
for 𝐻 ∈ [145, 159], the ship’s speed reduces drastically and the solution moves from binding to non-binding. □

Further sensitivity analysis in Ge (2021) indicates that we can draw similar conclusions with respect to the sensitivity to changes
in other cost or revenue parameters. If as a consequence of the change in parameter value, the solution remains binding, and 𝑀∗

keeps its original value, optimal speeds remain largely unaffected. If harbour times increase, however, then under these conditions
the ship must speed up to realise the same total journey time. These insights are summarised in the second column of Table 6.

For some data inputs, a change in value of a parameter produces a new optimal value for 𝑀∗. An increase in freight rates,
ceteris paribus, may thus include one extra journey within 𝐻 , with usually a large increase in ballast and laden speeds. Conversely,
a decrease in 𝑀∗ usually results in much lower speeds, and may be the result from increases in fuel prices, TCH values, fixed
(un)loading costs, or harbour times. This is summarised the last two columns in Table 6.

The above situations are most commonly arising. Less often occurring, but possible, are situations where an optimal non-binding
solution remains non-binding at the same 𝑀∗ value. Then, speeds tend to decrease with increases in fuel prices, and increase with
increased TCH values. This is summarised in the third column of Table 6.

To summarise, the impacts of model parameters are largely affected by the time constraint as well. They may play completely
17

opposite roles if we are looking at different time periods; recall Figs. 7 and 8.
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Table 6
Main drivers of ship speeds in model P𝑀 .

Parameter/Model P𝑀 speedsa P𝑀 speedsb 𝑀∗c P𝑀 speedsc

Fuel prices ≈ 0 – – −−
Freight rates ≈ 0 ≈ 0 + ++
Time Charter Hire ≈ 0 + – −−
Fixed (un)loading costs ≈ 0 ≈ 0 – –
Harbour times + ≈ 0 – –

How an increase in parameter value (e.g. Freight rates) affects model outcome (e.g. optimal speeds): −− and – indicate,
respectively, a large and small reduction in outcome value; ++ and + indicate a large and small increase in outcome value; 0
indicates no impact.
aFor constant 𝑀∗ such that 𝐻∗ ≈ 𝐻 .
bFor constant 𝑀∗ such that 𝐻∗ << 𝐻 .

cFor changes leading to new optimal 𝑀∗ value.

Table 7
Main drivers of ship speeds and profitability in P1 and P∞.

Parameter P1 speeds P1 NPV P∞ speeds P∞ AS

Fuel prices −− −− −− −−
Dwt carried −− 𝑛∕𝑎 −− 𝑛∕𝑎
Freight rates + ++ ++ ++
Time Charter Hire ++ −− 0 −−
Leg distance (with linearly increasing revenues) +𝜖 + + +
Leg distance (at constant revenues) 0 −− −− −−
Fixed (un)loading costs −𝜖 −− −− −−
Harbour times 0 – – –

How an increase in parameter value (e.g. Freight rates) affects model outcome (e.g. optimal speeds): −𝜖 indicate a minimal
reduction in outcome value; +𝜖 indicate a minimal increase in outcome value.

5.3. Sensitivity to economic parameters in P1 and P∞

A similar sensitivity analysis was conducted for model P1 and P∞, see Ge (2021). The main drivers of optimal speed values and
profitability are reported in Table 7. In both models, fuel price increases will greatly lower optimal speeds.

From this we derive that speed decisions under trip charter contracts may differ from those under time charter contracts of very
long duration. The first main difference is the impact of the time charter hire: higher values drive up optimal speeds in P1, as this
helps to reduce the total number of contract days. In P∞, this has no effect because it is simply a constant term in the objective
function. A second difference is in how port related events affect speeds: higher (un)loading costs will greatly reduce the optimal
speeds in P∞, but have only a minimal effect in P1, while an increase of the time spend in harbours reduces speeds in P∞, but has no
impact in P1. Port events affect speed decisions, but not in the way as hypothesised in some of the literature, see also Example 11.
A third main difference is freight rate sensitivity: in P∞ optimal speeds are highly sensitive to increases in freight rates, but this
sensitivity remains small in P1. Given this, it is intuitive why an increase in leg distance (with linearly increasing revenues) increases
optimal speeds in P∞, but has only a minimal impact in P1.

Example 11. It has been postulated in literature, see Johnson and Styhre (2015), that reducing harbour time may encourage
slow-steaming. What would the models predict? From Table 7 we see that reducing harbour times in P1 has no effect on optimal
speed. Reducing harbour times does not seem to be an effective incentive towards slow steaming for ships on trip time charter
contracts. In P∞, it has the opposite effect. Thus, slow steaming is encouraged by increasing port times, or increasing port costs, at
the expense of reducing the profitability of the ship charterers. In P𝑀 , the hypothesised effect will only be seen when the number
of journeys as well as the optimal contract duration remains unaltered (Case (∗) in Table 6). This is logical, as then the ship has to
spend more time at sea. In the other cases (∗∗) and (∗∗∗), the impact would be either of no significance (as in P1), or opposite (as in
P∞). □

We note that Johnson and Styhre (2015) observed in their study that shippers made no adjustment of ship speeds. The conditions
of that study (shorter distances, possibly fixed liner routes) also differ from the situations we consider.

In order to develop some intuition for this difference in freight rate sensitivity, we can use an analytical process of approximation,
see Ge (2021)[Chapter 3], and write the linear approximation in 𝛼 of the objective function (8) as NPV1 =

∑𝑛
𝑗=1 NPV1(𝑗), that is, as

a sum of terms with information that is mostly related to each of the legs, and which allows us to associate also an interpretation to
the terms in this objective function that are influenced by data from other legs. This process of simplification arrives at the following
minimisation problem for each leg 𝑗 (Ge, 2021):

Min 1
𝑣

[

𝑐𝑓𝑗 𝐹 (𝑣𝑗 , 𝑤𝑗 ) + 𝑓𝑇𝐶𝐻 + 𝛼
𝑛
∑

(𝑅𝑖 − 𝐶𝑢
𝑖 − 𝐶 𝑙

𝑖+1(𝑣𝑖+1))
]

. (25)
18

𝑗 𝑖=𝑗



Transportation Research Part E 170 (2023) 102996P. Beullens et al.

f

o
𝐻

j
o
o
𝑀

t
𝐻
h

2
i

Table 8
Performance of repeated laden–ballast journeys having a maximum of 𝐻 available days.
Variable/Model P1 P∞ P𝑀 (𝐻)

𝐻 = 335 (days)
𝐻∗ (days) 334.4 320.5 334.8
𝑀∗ (−) 5 6 6
𝑣1 (kn) (laden) 10.9 14.0 13.4
𝑣2 (kn) (ballast) 12.5 16.3 15.5
NPV (USD) 7, 828, 927 8, 514, 068 8, 829, 191

𝐻 = 268 (days)
𝐻∗ (days) 267.5 267.1 268.0
𝑀∗ (−) 4 5 5
𝑣1 (kn) (laden) 10.9 14.0 13.9
𝑣2 (kn) (ballast) 12.5 16.3 16.3
NPV (USD) 6, 308, 705 7, 136, 261 7, 158, 921

𝐻 = 365 (days)
𝐻∗ (days) 334.4 320.5 364.6
𝑀∗ (−) 5 6 7
𝑣1 (kn) (laden) 10.9 14.0 14.4
𝑣2 (kn) (ballast) 12.5 16.3 16.8
NPV (USD) 7, 828, 927 8, 514, 068 9, 618, 736

This function is dependent on 𝑣𝑗 , and only on 𝑉 +
𝑗+1 through the 𝐶 𝑙

𝑖+1 terms. The first two terms of the function (25) show
that important drivers of speed decisions in P1 are fuel price, deadweight carried, and time charter hire. The third term shows
a dependency on the opportunity cost of deferred profits from all subsequent legs only. It can be inferred that the greatest impact
of future legs on the speed of the ship will be witnessed on the first legs of the journey, and in particular when 𝑛 grows to larger
values. This chain effect is further formally analysed in Ge et al. (2021). It also intuitively explains the difference in freight rate
sensitivity between P1 and P∞, because the latter model can be viewed as the model P1 with an increasing number of legs 𝑛 growing
to infinity. Note that, as a consequence of the approximations, the impact of harbour times and leg distances are no longer present
in (25), although have an impact on speed in the unapproximated NPV models (see Table 7).

In conclusion, the impact of the main drivers on optimal speeds works quite differently in each of the models P1, P∞, and
P𝑀 . This contributes to the understanding of general economic principle in maritime economics that ship speed is determined by
a nonlinear function of the ratio of freight rates to fuel prices. In trip time charters (P1), the sensitivity to freight rates remains
very small, assuming that the ship charterer aims to maximise the NPV of the ship to execute the planned for (multiple-leg) single
journey, and can sign the contract for the time required to do so. The underlying assumption here is that the charterer’s other
business opportunities are not dependent on this contract’s termination date. What would happen in P1 if the single journey would
start to take longer and longer time? Then the importance of the freight rate would increase. This can be deduced from the results
presented in Section 3.1 about P𝑀 (𝐻 → ∞), since repeating 𝑀 times a short journey can be reinterpreted as performing a long
multiple-leg journey once. This is also in line with the finding that P∞ is highly sensitive to freight rates. In the general model
P𝑀 (𝐻) the economic principle is more nuanced, see Table 6.

5.4. What if we use the wrong model?

In this section we illustrate that, when having a maximum of 𝐻 available days, deriving solutions from P𝑀 (𝐻) is superior to
inding solutions based on speeds found from models P1 (or Model PK) or P∞ (or Model R).

We illustrate the impact of a finite time horizon in base case example. We test for: 𝐻 = 335 days, or 5 times the journey duration
btained from model P1; 𝐻 = 268 days, or 5 times the journey duration obtained from P∞; and finally, an arbitrary horizon set at
= 365 days.
In Table 8, we compare the performance of P𝑀 (𝐻) with that obtained from using a feasible number of repetitions of optimal

ourney speeds obtained from P1 and P∞, respectively. For each of the three possible horizons, the table lists the optimal values
f the agreed duration 𝐻∗, the corresponding number of feasible repetitions 𝑀∗, the leg speeds, and the NPV. For P1 and P∞, the
ptimal leg speeds are as reported in Table 3. In P𝑀 , optimal leg speeds are determined simultaneously with the optimal values for
∗ and 𝐻∗.
It is a striking observation how much better a solution from P𝑀 (𝐻) is compared to those obtained from P1 or P∞.
Note that in each solution, the charterer only pays the charter rate 𝑓𝑇𝐶𝐻 during 𝐻∗(≤ 𝐻). In P∞ for 𝐻 = 335, for example,

he charter rate only applies to 320.5 days. P𝑀 (𝐻) completes an equal number of journeys at lower speeds such that 𝐻∗ ≈ 𝐻 . For
= 365 days, however, optimal leg speeds increase relative to the P∞ solution as to include one additional journey within the time

orizon, increasing NPV profits by over 1 million USD, or an increase of 15%.
Depending on the horizon, P1 leads to solutions which are between 0.8 and 1.8 million USD worse in NPV, or about 11% to

3% worse. The reason for this bad performance of P1 can by now be understood since trip time charter contracts assume the ship
s returned to the owner after a single journey is completed, and does not account for future repetitions. Model P is on average
19
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Table 9
Comparison between P1, P∞ and P𝑀 (𝐻) models.
Contract Length Objective Model

Short or Undefined (a few months, e.g. Spot Contract) maximise the profitability over given leg(s) (USD/Nautical Miles) P1
Very long (> 5 years, e.g. the decision maker owns the ship) maximise the daily profitability over a round-trip (USD/Day) P∞
In between, with speficied duration H (e.g. Time Charter) maximise the profitability over given horizon H (USD/Journey) P𝑀 (𝐻)

better equipped as it considers journey repetition, although depending on the horizon constraint, can still be quite inferior relative
to P𝑀 (𝐻).

In brief, the example illustrates that the horizon of the charter contract is a factor of significant impact on speed decisions. The
mpact of the horizon is not explicitly considered in the special cases: in P1 it is given as a result of speed choices on the journey
egs, i.e. 𝐻 ≡ 𝐻∗ = 𝐿∗

𝑛, and in P∞ is it taken as 𝐻 ≡ 𝐻∗ → ∞. Model P𝑀 (𝐻), by explicitly accounting for the impact of 𝐻 to
etermine 𝐻∗ in conjunction with optimal leg speeds, can significantly outperform the more naive approaches of multiplying the
ptimal journey speeds obtained from either of the special cases.

. Comments on literature

.1. Models PK and R revisited

Because of the equivalence, most of the insights developed in Section 5 transfer to Model PK and Model R (for roundtrips). Yet
here are a few distinctions we here further address.

The approximate optimisation function (25) for P1 and the objective (23) of Model PK show great similarity. The interpretation
e need to associate with the terms in 𝛼 are, however, very different. In Model PK, these terms account for holding costs incurred
y shippers. Although usually not charged to the charterer, they might be relevant to the charterer’s speed decision, as argued
n Psaraftis and Kontovas (2014), in a context where competition for demand makes transport time a competitive service component.
n P1, the opportunity cost rate is that of the charterer, and the opportunity costs are based on freight rate, not CIF values. In addition,
he model considers the opportunity rewards from deferred fixed (un)loading costs and fuel costs for future legs, a component that
s missing from Model PK, but should always be relevant.

As discussed, the opportunity cost components of P1 and the holding costs of Model PK consider different aspects of a problem
ontext. If service requires the consideration of holding costs for shippers, these should be added to the model in addition to the
pportunity costs of deferred profits identified in P1. According to our understanding, the bulk cargo markets are not (yet) that
ophisticated, and rather use the mechanism of changes to freight rates to implicitly reflect imbalances between ship availability
nd demand pressures. Model P1 will then better reflect how speed decisions are made on trip charter journeys.

The optimisation function for P∞ differs in structure from the function (24) of the R model. Theorem (IV) establishes that
ontributions of individual legs should be valued per unit of time over the whole roundtrip journey, and such a modification can be
asily implemented in Model R. Further analysis in Ge (2021) shows that it is best to take 𝑅 = 𝑅𝑘 −𝐶𝑢

𝑘 −𝐶ℎ
𝑘 in the Model R. When

esting with these modifications only, we find that the so adapted R model will give speeds only marginally above those found from
∞, with AS values that remain typically within 1%.

It is worthwhile to restate that the equivalence analysis shows that Model R, by maximising the USD/day on a single (round-trip)
ourney, implicitly adopts the assumption that the same journey is infinitely repeated under identical economic conditions. This strong
ssumption makes model R (and P∞) a more rough approximation of reality when compared to Model PK (and P1). This difference
etween the models, however, has no bearing on the relative value of trip time charters versus long time charters to a ship charterer.

.2. Selecting models based on contract type

We have demonstrated the importance of choosing the correct model in previous sections. In this section, we would like to
ummarise common types of contracts that can be modelled by our P1, P𝑀 (𝐻), P𝑀 (𝐻 → ∞) and P∞ (and also Model PK and Model
according to the equivalence).
Table 9 lists the main relationship between objective type and contract length. When optimising speeds over a journey choosing

etween the criterion (USD/nm) or (USD/day) is crucial as they imply adopting very different underlying assumptions about the
uture use of the vessel. In the former, the decision maker has no interest at all in its future use, while in the latter, it is assumed
o be repeatedly used for an infinite repetition of identical journeys under identical circumstances. This difference in assumptions
s only implicitly present in Model PK and Model R, but made explicit in P1 and P∞.

Table 10 lists a number of key model characteristics. In P𝑀 (𝐻), the decision variables are the leg speeds 𝑉 −
𝑛 , and the number of

ourney repetitions 𝑀 . The final contract horizon length then follows from: 𝐻∗ = 𝑀∗𝐿𝑛(𝑉 ∗−
𝑛 ) ≤ 𝐻 . In the special cases P1 and P∞,

eg speeds are the only decision variables, and there is no constraint on the horizon. The table also lists how the three models may
e matched to other contract types found in Stopford (2009), and the corresponding decision maker. For example: Model P∞ can
lso represent the situation in which the ship owner would not engage in a time charter party, but use the ship to attract business
rom shippers and plan its own (infinite series of) voyage charters. Then 𝑓𝑇𝐶𝐻 represents the owner’s daily costs of crew, lubricants,
upplies, etc. If, however, the owner has signed a contract for a time charter to start at a time 𝐻 into the future, then model P𝑀 (𝐻)
s a better representation of the owner’s decision problem of how to use the ship up to that time 𝐻 .
20
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Table 10
Types of Contracts for Models.

Model Decision variables Contract horizon 𝐻∗ Possible contract types (1 ) Decision maker

P1 𝑉 −
𝑛 Not a decision variable but follows from solving P1 ,

since 𝐻∗ = 𝐿𝑛 (𝑉 ∗−
𝑛 ), where 𝐿𝑛 is a function of 𝑉 −

𝑛

Trip Time Charter Charterer

Spot Market or various Voyage Charters (before retiring the ship) (5 ) Owner

P𝑀 (𝐻 → ∞) 𝑉 −
𝑛 Not a decision variable but follows from solving P𝑀 (𝐻 → ∞). 𝑀∗ is given, and 𝐻∗ = 𝑀∗𝐿𝑛 (𝑉 ∗−

𝑛 ) Any contract in which one has the power to freely decide its length Any

P𝑀 (𝐻) 𝑉 −
𝑛 , 𝑀 It is now part of the decision: 𝐻∗ = 𝑀∗𝐿𝑛 (𝑉 ∗−

𝑛 ) ≤ 𝐻 ,
where 𝑀∗ is solved from P𝑀 (𝐻)

Time Charter Charterer

Consecutive Voyage Charter Charterer
Contract of Affreightment (3 ) Charterer
Spot Market or various Voyage Charters (limited availability to 𝐻) (4 ) Owner

P∞ 𝑉 −
𝑛 Not a decision variable and we have infinite 𝐻∗ → ∞ Time Charter (long duration) Charterer

Consecutive Voyage Charter (long duration) Charterer
Bare Boat Charter Charterer (2 )
Spot Market (voyage charters) Owner (2 )

(1) For definitions, see Stopford 2009 p. 176; (2) The time charter hire 𝑓 𝑇𝐶𝐻 in the models is replaced by the operations costs, see Stopford, 2009, p. 182; (3) When using only a single ship. (4) H: e.g. the time at which the owner
s required by law to lay ship up for major overhaul/maintenance operations, or the time at which the owner is bound to deliver the ship to a charterer under an agreed time charter contract. (5) The last leg includes the cost (or
evenue) to the owner of dispositioning the ship.

.3. Impact on related literature

We have spent considerable effort in analysing the differences between the decision contexts of P1, P∞, and P𝑀 (𝐻), and on
he equivalence with Model PK and R. We belief that this helps us better understand the results found in previous literature, and
etermine avenues for further research. We give three examples to illustrate this point.

Fagerholt and Psaraftis (2015) study speed choices for a ship using a model that maximises daily profit over the (variable)
uration of a journey. The underlying assumptions are therefore that of a model like P∞. They argue that the time in port can be
eft out as it is constant, and that their one-leg journey model can be adapted to account for roundtrips if the ship’s payload on all
egs would be the same. From Table 7, we conclude that harbour times would indeed have no effect in models akin P1, but do affect
peed choices in P∞. Further, Theorem 1, (IV)-(V), in Section 4.2 shows that erroneous speed decisions will be found in models that
aximise daily profits of an individual leg.

As a second example, consider Corbett et al. (2009). The paper examines how speeds are to be found for a (variable) fleet of ships
hat must meet a certain annual demand rate for freight between origin and destination pairs. The approach consists of modelling,
or each ship, the objective function as maximising the profits per trip from a particular origin to a particular destination. The
umber of trips possible within a year is then determined after the optimisation of this function. The optimisation in essence thus
onsiders a model such as P1. We have seen in Section 4.2 the importance of accounting for the future use of a ship when it is to be
sed repeatedly, and thus a much better choice of model would be based on P∞, maximising the annual profitability (or USD/day)
rom each ship instead.

As a final example, consider Devanney (2010), who claims that all ship operators (either being the owner or as a charterer) will
asically react in the same manner to changes in freight rates, independent of the particular charter contract type and its duration.
he proof consists of developing two objective functions, one from the viewpoint of a ship owner operating in the spot market,
he second from the viewpoint of a charterer. However, both models are based on maximising (USD/day) of a roundtrip journey,
hich implicitly assumes an infinite repetition of this activity. As indicated in Section 6.2, model P∞ can indeed also be interpreted
s the situation of a ship owner, operating the ship on voyage charters in the spot market. However, our analysis of model P𝑀 (𝐻)
n Section 5.4 leads us to a very different conclusion when the time remaining on the charter contract would be finite, as then
he charterer would face a different optimisation problem than that of the owner, with different optimal strategies to react to an
ncrease in freight rates.

. Conclusions

Current deterministic models for economic ship speed optimisation in the literature have not considered the time charter contract,
nd in particular the influence of the redelivery time. The charterer’s objective is to maximise the Net Present Value (NPV) of a
ash-flow function of the ship’s activities over a relevant future horizon 𝐻 , where 𝐻 can be interpreted as any possible day within
he redelivery time window as specified in the time charter clause. We develop a general time charter contract model P𝑀 (𝐻),
nd three special cases P1, P∞ and P𝑀 (𝐻 → ∞), each model mapping onto different contractual contexts (Table 10), and present
lgorithms for finding optimal ship speeds for any journey structure.

In this paper we have also established equivalence results between our models and those from the literature, and this is
ummarised in Table 11. We show in Sections 3.1 and 4.1 that the three special cases P1, P𝑀 (𝐻 → ∞) and P∞ are equivalent
o particular NPV models in Ge et al. (2021) that do not explicitly consider the contract type. Theorem 1 in Section 4.2 maps the
odels PK and R of classic speed optimisation literature to P1 and P∞, respectively. Through the analysis of this equivalence, in

ection 6.1, the insights developed in Section 5 can transfer to Model PK and Model R (for roundtrips). It therefore improves our
nderstanding of the applicability of the classic models by also mapping these models to specific contract types in Section 6.2.
n Section 6.3, we further show that how these findings can help us better understand the results found in previous literature. As
bserved from Table 11, model P𝑀 (𝐻) has no equivalent model. Optimal leg speeds of a ship working for a profit maximising
21

harterer are different from situations in which the relevant time horizon considered is not pre-specified.
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Table 11
Equivalence table of models.

This paper Ge et al. (2021) Classic models

P1 (1, 𝑛, 0) Model PK
P𝑀 (𝐻 → ∞) (𝑀,𝑛, 0)a –
P∞ (∞, 𝑛, 0) Model Rb

P𝑀 (𝐻) – –
– (𝑀,𝑛,𝐺𝑜) –

aP𝑀 (𝐻 → ∞) provides approximations of the averaged speeds on laden and
ballast legs, respectively, in (𝑀,𝑛, 0).
bOnly valid for Model R of roundtrips without decomposition.

When a ship is hired on a time charter, the charterer’s wish is to let it perform as much profit generating work as possible during
he time the ship is used, up to the point of actual redelivery. We can examine these characteristics, which should also play their role
or journeys of any structure, with or without repetitions, through the consideration of a repeated laden–ballast journey structure
n which, next to legs speeds, also the number of repetitions and the actual redelivery date (as available within the contract) are
ptimised. All these features are present in the general model P𝑀 (𝐻), but some of these features are fixed or absent in the three
pecial cases. This explains why the structure of optimal solutions, and their sensitivity to economic and ship-specific parameters,
n each of these models differ so much, as discussed in Section 5.

Using the general model P𝑀 (𝐻), we visualise the optimal solutions via the speed menu curve, a saw-tooth pattern which plots
ptimal solutions to P𝑀 (𝐻) as a function of available time left on the charter contract 𝐻 . The examples in Section 3.2 illustrate
ow the charterer will want to choose the best possible speeds from these speed menus so as to realise the preferred number of
ourneys given the trade-off between profitability and risk within an allowable horizon. The speed menu curve demonstrates that
he optimal speed range depends on horizon length: when contracts of longer duration are considered, these saw-tooth patterns
lowly converge to particular values for laden leg and ballast leg speeds, respectively, in a way that is not identified in any classic
eterministic speed optimisation models that have not considered the time charter contract. The economic principle from maritime
conomics theory that ship speed is determined by a nonlinear function of the ratio of freight rate to fuel price is therefore more
uanced when ships travel under a time charter contract: it seems that the shorter the remaining available time on the contract,
he less the impact of freight rate (see Section 5.3).

The use of the P𝑀 (𝐻) model was further discussed in Section 3.3. We considered three cases: (1) the valid range of 𝐻 represents
he available time remaining according to the redelivery clause; (2) reaction to exogenous changes; (3) impact of speed limitations.
rom these examples we see that ship speed is not only determined by the ship’s characteristics, the journey characteristics, and
he economic parameters, but also by the time charter contract. For example, we showed how maximising profits may imply that
ome ships will not speed up when freight rates increase. It is also concluded that identical ships may want to travel at different
conomic speeds. This is not in contradiction to the mixed signals founds in the empirical data study of Adland and Jia (2018) and
he empirical findings of Prakash et al. (2016).

Restricting ourselves to static conditions in this paper allows us to make direct comparisons with classic deterministic models from
he literature. The NPV models developed may form the basis for further research into various areas, including: the consideration
f cargo load decisions (Adland et al., 2018); redelivery port selection or contract extensions (Adland et al., 2020); impact of
nderperformance quotation by ship owner on the actual value of time charter contracts (Veenstra and van Dalen, 2011); alternative
r refined treatment in the models of how a ship’s power setting translates into fuel consumption and travel time (Meng et al., 2016);
nd the interactions with various financial instruments and strategies in stochastic settings. The use of such models may also help
n the assessment of how changes in the economic and regulatory frameworks may impact ship design and contract selection.
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Appendix A. Data of the base case example

Ship characteristics: 157,800 tonne dwt capacity (scantling) and 145,900 tonne dwt (design); 𝐴 = 49,000 tonne lightweight;
𝑘 = 3.910−6, 𝑝 = 381, 𝑔 = 3.1 and 𝑎 = 2∕3, corresponding to 60.5 tonne bunker fuel at nominal speed 15.2 kn. Auxiliary fuel (in
ports) at 5 tonne/day. Max. speed 𝑣+ = 17 kn and min. speed 𝑣− = 10 kn. Cargo discharge at 3000 m3/h. Ballast stability condition:
minimum fill-rate of vessel at 30% of design dwt (ballast tank capacity 54,500 m3). Journey characteristics: Distance between
the two ports is 8, 293 nm (symmetric). Waiting time (prior to unloading) 24 h in first port, 48 h in second port; loading rates 3000
m3 per hour in both ports. Demand characteristics: parcel of 1,200,000 barrels of light crude oil at 1.07 m3∕tonne, and 1 barrel
equals 0.136 m3. Revenue structure: Freight rate at 0,50 USD per barrel and 1,000 nm. Revenue received 12 h before start of
unloading at destination port. Cost structure: Total fixed port costs of a journey towards the first port equals 300,000 USD, while
being 500,000 USD for a journey towards the second port. Unloading and loading charges are at a rate of 4000 USD/hour in both
ports. Main bunker fuel at 63 USD/barrel and auxiliary fuel at 590 USD/tonne in both ports. Port and fuel costs due within 72 h
after leaving port. Charter party data: Zero forward start, and TCH at 20,000 USD/day. Opportunity cost of capital: 𝛼 = 0.08 per
year.

Appendix B. Proof of Theorem 1

Proof (I). The NPV of p1 is:

NPV(𝑥, 𝛼) = 𝑎(𝑥)
𝛼

(1 − 𝑒−𝛼𝛿(𝑥)) =
𝑎(𝑥)
𝛼

(1 −
∞
∑

𝑘=0

(−𝛼𝛿(𝑥))𝑘

𝑘!
). (B.1)

With NPV representing the linear approximation of NPV, we get:

NPV(𝑥, 𝛼) = 𝑎(𝑥)
𝛼

(1 − (1 − 𝛼𝛿(𝑥))) = 𝑎(𝑥)𝛿(𝑥). (B.2)

(II) The NPV of p2 is:

NPV(𝑥, 𝛼) =
𝑎1
𝛼
(1 − 𝑒−𝛼𝛿1 ) +

𝑎2
𝛼
(1 − 𝑒−𝛼𝛿2 )𝑒−𝛼𝛿1 (B.3)

=
𝑎1
𝛼
(1 −

∞
∑

𝑘=0

(−𝛼𝛿1)𝑘

𝑘!
) +

𝑎2
𝛼
(1 −

∞
∑

𝑘=0

(−𝛼𝛿2)𝑘

𝑘!
)

∞
∑

𝑘=0

(−𝛼𝛿1)𝑘

𝑘!
. (B.4)

lgebraic manipulation shows that:

NPV(𝑥, 𝛼) = 𝑎1(𝑥1)𝛿1(𝑥1) + 𝑎2(𝑥2)𝛿2(𝑥2) + 𝛼𝑎2(𝑥2)𝛿2(𝑥2)
(

𝛿1(𝑥1) −
𝛿2(𝑥2)

2

)

(B.5)

≠ 𝑎1(𝑥1)𝛿1(𝑥1) + 𝑎2(𝑥2)𝛿2(𝑥2), unless 𝛼 = 0 or 𝛿2(𝑥2) = 2𝛿1(𝑥1). (B.6)

(III) The NPV of p1 is: NPV(𝑎, 𝛼) = 𝑎
𝛼 (1 − 𝑒−𝛼𝛿). Therefore, if 𝐴 = 𝑁𝑃𝑉 (𝑎, 𝛼):

𝑎 = 𝑁𝑃𝑉 (𝑎, 𝛼) 𝛼
1 − 𝑒−𝛼𝛿

= 𝑁𝑃𝑉 (𝑎, 𝛼)
∞
∑

𝑖=0
𝛼𝑒−𝑖𝛼𝛿 = 𝛼𝑁𝑃𝑉 (𝐴, 𝛼) = 𝐴𝑆(𝐴, 𝛼). (B.7)

ecause both projects have the same 𝛿(𝑥) (𝑥 ∈ 𝑋), maximising 𝑎 of p1 is thus equal to maximising the AS of p3.
(IV) The AS of p4, given 𝐴1 and 𝐴2 being the NPV of 𝑎1 and 𝑎2, is:

AS =
[𝑎1
𝛼
(1 − 𝑒−𝛼𝛿1 ) +

𝑎2
𝛼
(1 − 𝑒−𝛼𝛿2 )𝑒−𝛼𝛿1

] 𝛼
1 − 𝑒−𝛼(𝛿1+𝛿2)

=
𝑎1(1 − 𝑒−𝛼𝛿1 )
1 − 𝑒−𝛼(𝛿1+𝛿2)

+
𝑎2(1 − 𝑒−𝛼𝛿2 )𝑒−𝛼𝛿1

1 − 𝑒−𝛼(𝛿1+𝛿2)
. (B.8)

Note that:
𝛼

1 − 𝑒−𝛼𝑋
= 1

𝑋
+ 𝛼

2
+ 𝛼2𝑋

12
+ 𝑂(𝛼3).

Therefore, algebraic manipulation shows that:

AS = 1
(𝛿1 + 𝛿2)

[

𝑎1𝛿1 + 𝑎2𝛿2 +
𝛼
2
(𝑎1(𝛿1)2 + 𝑎2(𝛿2)2) − 𝛼𝑎2𝛿1𝛿2

]

+ 𝛼
2
(𝑎1𝛿1 + 𝑎2𝛿2) (B.9)

≠
𝑎1𝛿1 + 𝑎2𝛿2
𝛿1 + 𝛿2

, unless 𝛼 = 0. (B.10)

(V) (a) follows immediately from the proof of part (IV). For (b) observe from proof (IV) that:

lim𝛼→0AS =
𝑎1𝛿1 + 𝑎2𝛿2
𝛿1 + 𝛿2

=
𝑎1𝛿1

𝛿1 + 𝛿2
+

𝑎2𝛿2
𝛿1 + 𝛿2

≠ 1
2
(𝑎1 + 𝑎2), unless 𝛿1 = 𝛿2. (B.11)

The contributions of 𝑎1 and 𝑎2 need to be weighted by their relative duration to the total journey duration. An objective function
𝑎 + 𝑎 places too much emphasis on the process with the shortest relative duration. This completes the proof. □
23

1 2



Transportation Research Part E 170 (2023) 102996P. Beullens et al.

A
A
A
A

B

B
C

C
C
C

D
D

F
F
G
G
G
G
J
L
M

m
M
M

N

P

P

P
P
P
P

P

R
R
R
R
S
S

T

V
W

W

W
Y
Y

Z

References

Adland, R., Cariou, P., Wolff, F.-C., 2020. Optimal ship speed and the cubic law revisited: Empirical evidence from an oil tanker fleet. Transp. Res. E 140,
101972.

dland, R., Jia, H., 2018. Dynamic speed choice in bulk shipping. Marit. Econ. Logist. 20 (2), 253–266.
dland, R., Jia, H., Strandenes, S.P., 2018. The determinants of vessel capacity utilization: The case of Brazilian iron ore exports. Transp. Res. A 110, 191–201.
dland, R., Prochazka, V., 2021. The value of timecharter optionality in the drybulk market. Transp. Res. E 145, 102185.
ngolucci, P., Smith, T., Rehmatulla, N., 2014. Energy efficiency and time charter rates: Eenery efficiency savings recovered by ship owners in the Panamax

market. Transp. Res. A 66, 173–184.
eullens, P., Janssens, G.K., 2014. Adapting inventory models for handling various payment structures using net present value equivalence analysis. Int. J. Prod.

Econ. 157, 190–200.
realey, R.A., Myers, S.C., 2003. Principles of Corporate Finance. McGraw-Hill Higher Education.
hristiansen, M., Fagerholt, K., Nygreen, B.r., Ronen, D., 2013. Ship routing and scheduling in the new millennium. European J. Oper. Res. 228 (3), 467–483.

http://dx.doi.org/10.1016/j.ejor.2012.12.002.
hristiansen, M., Fagerholt, K., Ronen, D., 2004. Ship routing and scheduling: Status and perspectives. Transp. Sci. 38 (1), 1–18.
hristiansen, M., Hellsten, E., Pisinger, D., Sacramento, D., Vilhelmsen, C., 2019. Liner shipping network design. European J. Oper. Res..
orbett, J.J., Wang, H., Winebrake, J.J., 2009. The effectiveness and costs of speed reductions on emissions from international shipping. Transp. Res. D 14 (8),

593–598. http://dx.doi.org/10.1016/j.trd.2009.08.005.
avid, M., 2015. Vessels and ballast water. In: Global Maritime Transport and Ballast Water Management. Springer, pp. 13–34.
evanney, J., 2010. The impact of bunker price on VLCC spot rates. In: Proceedings of the 3rd International Symposium on Ship Operations, Management and

Economics. SNAME Greek Section, Athens, Greece, October.
agerholt, K., Gausel, N.T., Rakke, J.G., Psaraftis, H.N., 2015. Maritime routing and speed optimization with emission control areas. Transp. Res. C 52, 57–73.
agerholt, K., Psaraftis, H.N., 2015. On two speed optimization problems for ships that sail in and out of emission control areas. Transp. Res. D 39, 56–64.
e, F., 2021. Net Present Value Models to Help Determine the Economic Operational Speed of a Chartered Ship (Ph.D. thesis). University of Southampton.
e, F., Beullens, P., Hudson, D., 2021. Optimal economic ship speeds, the chain effect, and future profit potential. Transp. Res. B 147, 168–196.
rubbström, R., 1967. On the application of the Laplace transform to certain economic problems. Manage. Sci. 13 (7), 558–567.
rubbström, R., 1980. A principle for determining the correct capital costs of work-in-progress and inventory. Int. J. Prod. Res. 18 (2), 259–271.
ohnson, H., Styhre, L., 2015. Increased energy efficiency in short sea shipping through decreased time in port. Transp. Res. A 71, 167–178.
ee, C.-Y., Song, D.-P., 2017. Ocean container transport in global supply chains: Overview and research opportunities. Transp. Res. B 95, 442–474.
agirou, E.F., Psaraftis, H.N., Bouritas, T., 2015. The economic speed of an oceangoing vessel in a dynamic setting. Transp. Res. B 76, 48–67. http:

//dx.doi.org/10.1016/j.trb.2015.03.001.
aribus, 2010. Maritime highways of global trade. In: World Ocean Review. maribus gGmbH, Hamburg, www.maribus.com, pp. 163–175.
eng, Q., Du, Y., Wang, Y., 2016. Shipping log data based container ship fuel efficiency modeling. Transp. Res. B 83, 207–229.
eng, Q., Wang, S., Andersson, H., Thun, K., 2014. Containership routing and scheduling in liner shipping: Overview and future research directions. Transp.

Sci. 48 (2), 265–280.
orstad, I., Fagerholt, K., Laporte, G., 2011. Tramp ship routing and scheduling with speed optimization. Transp. Res. C 19 (5), 853–865. http://dx.doi.org/10.

1016/j.trc.2010.05.001.
rakash, V., Smith, T., Rehmatulla, N., Mitchell, J., Adland, R., 2016. Revealed preferences for energy efficiency in the shipping markets. pp. 1–57, UCL Energy

Institute.
rochazka, V., Adland, R., 2021. Contractual obligations and vessel speed: Empirical evidence from the Capesize Drybulk market. In: 2021 IEEE International

Conference on Industrial Engineering and Engineering Management. IEEM, IEEE, pp. 1132–1136.
saraftis, H.N., 2017. Ship routing and scheduling: The cart before the horse conjecture. Marit. Econ. Logist. 1–14.
saraftis, H.N., 2019a. Sustainable Shipping. Springer.
saraftis, H.N., 2019b. Speed optimization vs speed reduction: The choice between speed limits and a bunker Levy. Sustainability 11 (8), 2249.
saraftis, H.N., Kontovas, C.A., 2013. Speed models for energy-efficient maritime transportation: A taxonomy and survey. Transp. Res. C 26, 331–351.

http://dx.doi.org/10.1016/j.trc.2012.09.012.
saraftis, H.N., Kontovas, C.A., 2014. Ship speed optimization: Concepts, models and combined speed-routing scenarios. Transp. Res. C 44, 52–69. http:

//dx.doi.org/10.1016/j.trc.2014.03.001.
onen, D., 1982. The effect of oil price on the optimal speed of ships. J. Oper. Res. Soc. 33 (11), 1035–1040.
onen, D., 1983. Cargo ships routing and scheduling: Survey of models and problems. European J. Oper. Res. 12 (2), 119–126.
onen, D., 1993. Ship scheduling: The last decade. European J. Oper. Res. 71 (3), 325–333. http://dx.doi.org/10.1016/0377-2217(93)90343-L.
onen, D., 2011. The effect of oil price on containership speed and fleet size. J. Oper. Res. Soc. 62 (1), 211–216. http://dx.doi.org/10.1057/jors.2009.169.
topford, M., 2009. Maritime Economics 3e. Routledge.
un, Q., Meng, Q., Chou, M.C., 2021. Optimizing voyage charterparty (VCP) arrangement: Laytime negotiation and operations coordination. European J. Oper.

Res. 291 (1), 263–270.
heocharis, D., Rodrigues, V.S., Pettit, S., Haider, J., 2019. Feasibility of the Northern Sea Route: The role of distance, fuel prices, ice breaking fees and ship

size for the product tanker market. Transp. Res. E 129, 111–135.
eenstra, A.W., van Dalen, J., 2011. Ship speed and fuel consumption quotation in ocean shipping time charter contracts. J. Transp. Econ. Policy 45 (1), 41–61.
ang, S., Meng, Q., Liu, Z., 2013. Bunker consumption optimization methods in shipping: A critical review and extensions. Transp. Res. E 53 (1), 49–62.

http://dx.doi.org/10.1016/j.tre.2013.02.003.
en, M., Pacino, D., Kontovas, C., Psaraftis, H., 2017. A multiple ship routing and speed optimization problem under time, cost and environmental objectives.

Transp. Res. D 52, 303–321.
u, L., Wang, S., Laporte, G., 2021. The robust bulk ship routing problem with batched cargo selection. Transp. Res. B 143, 124–159.

agerman, J., 2015. Marine investing: An income opportunity. p. 12, Investment Insights, JPMorgan Chase and Co, January.
an, R., Wang, S., Du, Y., 2020. Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship. Transp. Res. E 138,

101930.
hang, X., Lam, J.S.L., Iris, Ç., 2020. Cold chain shipping mode choice with environmental and financial perspectives. Transp. Res. D 87, 102537.
24

http://refhub.elsevier.com/S1366-5545(22)00373-8/sb1
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb1
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb1
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb2
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb3
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb4
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb5
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb5
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb5
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb6
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb6
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb6
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb7
http://dx.doi.org/10.1016/j.ejor.2012.12.002
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb9
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb10
http://dx.doi.org/10.1016/j.trd.2009.08.005
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb12
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb13
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb13
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb13
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb14
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb15
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb16
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb17
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb18
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb19
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb20
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb21
http://dx.doi.org/10.1016/j.trb.2015.03.001
http://dx.doi.org/10.1016/j.trb.2015.03.001
http://dx.doi.org/10.1016/j.trb.2015.03.001
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb23
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb24
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb25
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb25
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb25
http://dx.doi.org/10.1016/j.trc.2010.05.001
http://dx.doi.org/10.1016/j.trc.2010.05.001
http://dx.doi.org/10.1016/j.trc.2010.05.001
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb27
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb27
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb27
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb28
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb28
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb28
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb29
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb30
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb31
http://dx.doi.org/10.1016/j.trc.2012.09.012
http://dx.doi.org/10.1016/j.trc.2014.03.001
http://dx.doi.org/10.1016/j.trc.2014.03.001
http://dx.doi.org/10.1016/j.trc.2014.03.001
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb34
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb35
http://dx.doi.org/10.1016/0377-2217(93)90343-L
http://dx.doi.org/10.1057/jors.2009.169
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb38
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb39
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb39
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb39
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb40
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb40
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb40
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb41
http://dx.doi.org/10.1016/j.tre.2013.02.003
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb43
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb43
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb43
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb44
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb45
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb46
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb46
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb46
http://refhub.elsevier.com/S1366-5545(22)00373-8/sb47

	The economic ship speed under time charter contract—A cash flow approach
	Introduction
	Problem description
	Charter party characteristics
	Journey characteristics
	Model formulations: PM(H), P1, PM(H→∞) and P∞
	Algorithms

	General model PM
	When subject to a given number of journey repetitions M
	When subject to a finite horizon H: speed menu curves
	Further usage of PM(H)
	Redelivery clause
	Decision dynamics
	Environmental constraints: speed limits


	Special cases P1 and P∞
	Equivalence to P(1,n,0) and P(∞,n,-)
	Equivalence to Model PK and Model R
	Numerical comparison

	Sensitivity analysis
	Sensitivity to the opportunity cost α
	Sensitivity to other economic parameters in model PM(H)
	Sensitivity to economic parameters in P1 and P∞
	What if we use the wrong model?

	Comments on literature
	Models PK and R revisited
	Selecting models based on contract type
	Impact on related literature

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A. Data of the base case example
	Appendix B. Proof of Theorem 1
	References


