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Off and On Again: Modeling and Optimizing Intermittent Computing Systems

by Sivert T. Sliper

Intermittent computing (IC) is a vital technology for realizing IoT at a vast scale. By
harvesting energy from the environment, and leveraging non-volatile memory (NVM)
to retain computational progress through power cycles, IC enables untethered and
battery-free devices that perform incremental computation whenever ambient energy
is available. The backbone of IC is NVM, and recent advances in energy-efficient byte-
addressable NVM have the potential to expand the application domain of IC sub-
stantially. The tight interaction between energy and execution does, however, cause
complexities that require specialized modeling, hardware design, and software design;
complexities that hamper adoption. This thesis is focused on optimizing IC using soft-
ware and hardware support leveraging energy-efficient NVM, and also on system-level
modeling of IC systems to enable such research.

Supporting IC on commercially available microcontrollers is important to lower the
barrier to entry, and for adoption of IC in real-world applications. However, current
methods suffer from inefficient state retention. To address this issue, this thesis pro-
poses ManagedState, a new page-based memory manager that tracks used and modified
regions of memory to reduce the overhead of state retention by 26–87 %. To make IC as
efficient, robust and useful as possible, however, software support alone is insufficient.
Hardware support for IC is needed; and to research system-level hardware support for
IC, electronic system-level modeling is the most reasonable approach. However, mod-
eling IC presents unique challenges that current modeling tools do not support, most
prominent of which is the tight interactions between energy and execution. To model
IC systems, this thesis proposes a new full-system simulator, named Fused, that specif-
ically models the interplay between energy and execution in IC devices. Using Fused,
this thesis then explores new hardware support for IC that leverages energy-efficient
and byte-addressable NVMs. The result is MEMIC, a memory architecture with hard-
ware support that improves performance by 13–39 % compared to the state-of-art, and
furthermore allows systems to operate under harsher conditions. MEMIC strives to
combine volatile- and non-volatile memory in such a way that the operations of IC are
as efficient as possible, while also maximizing computational performance per joule.
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Chapter 1

Introduction

The internet of things (IoT) is increasing demand for low-power computing devices
to bridge between the cyber- and physical worlds with advanced monitoring capabil-
ities [7]. These devices are beginning to be deployed in a wide variety of domains,
such as smart buildings and cities, logistics, healthcare, remote surveillance, industrial
automation and wearable computing [2]. However, despite widespread optimism for
an IoT comprising tens of billions, or even a trillion, devices, progress has been slower
than expected [39]. At such scale, computers need to be small and low-cost, with mini-
mal environmental impact and maximal deployment lifetime. When tens of billions of
connected devices are deployed1, maintenance operations such as battery replacement
or replenishment become practically and economically infeasible.

To extend maintenance-free deployment lifetime without requiring increased battery
capacity, devices can instead be powered by energy harvesting (EH). EH devices can
extract a small amount of electrical power from ambient energy sources such as light,
thermal gradients, or mechanical motion/vibration for an indefinite period of time.
However, EH is typically an unstable and unpredictable power source.

To cope with the dynamics of EH, energy-neutral devices [72] buffer harvested energy
in a rechargeable battery or supercapacitor, and modulate their energy consumption to
match harvested energy over the periodicity of the power source (e.g. 24 h for outdoor
solar). Thus they can theoretically operate indefinitely. A typical method of adjusting
the power consumption is to operate at a variable duty cycle, calculated based on the
amount of harvested and stored energy. During periods of abundant energy harvest,
an energy-neutral device can operate at a higher performance level, i.e. at higher duty
cycle or clock frequency, and it can buffer some of the extra energy to make up for peri-
ods of diminished harvest. However, even rechargeable batteries and supercapacitors

1The Ericsson mobility report predicts that there will be 26 billion internet-connected devices by
2026, excluding PCs, laptops, tablets and mobile phones. Source: https://www.ericsson.com/en/

mobility-report/mobility-visualizer

https://www.ericsson.com/en/mobility-report/mobility-visualizer
https://www.ericsson.com/en/mobility-report/mobility-visualizer
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degrade and eventually expire after hundreds or thousands of charge cycles or years of
operation, and, together with their charging circuitry, they often constitute the majority
of the total cost of an IoT device.

Instead of relying on energy storage to compensate for EH dynamics, intermittent com-
puting (IC) systems operate in an incremental manner, making progress whenever en-
ergy is available [103, 132]. They can be coupled directly to energy harvesters supplying
as little as a few micro watts of power, without the use of batteries, because they retain
computational progress despite frequently losing power. By enabling tiny long-life de-
vices at low environmental and monetary cost, IC widens the application domain for
IoT, thereby opening new opportunities for computation in environments that were
previously too harsh and/or constrained. For example, researchers have proposed that
IC can be used in micro-satellites [91], which experience potentially hundreds of kelvins
of temperature variation, and where every cubic centimeter of volume counts.

Figure 1.1 depicts a typical IC system, comprising a low-power microcontroller, an en-
ergy harvester, and some power management circuitry. The microcontroller itself typi-
cally embeds volatile memory, which has fast and energy-efficient access but loses data
if power is lost, and some non-volatile memory which is usually slower and less en-
ergy efficient, but retains data through power loss. The power management circuitry
can perform a wide set of functions, such as voltage conversion, voltage detection etc.,
based on the specifics of the IC method. The energy harvester harvests energy from am-
bient sources, such as e.g. solar irradiation. Figure 1.2 illustrates intermittent operation
by showing a possible supply voltage trace, whereby brief on-periods of execution are
interleaved with off-periods where the supply voltage recovers. The key ability of IC is
to retain state so that execution can continue from where it left off after a power failure.
Various methods of retaining state have been proposed, as detailed in the background
chapter of this thesis. In the pioneering work by Ransford et al. [116], computational
state is saved periodically in a checkpoint. When the supply recovers after a power
loss, the execution then resumes from the latest checkpoint.

A recent example of an application IC system, was demonstrated by Bing et al. [16].
The application is a batteryless and wireless bicycle trip counter comprising a sensor
node attached to the wheel of a bicycle. To the fork of the bike, they attached a strong
magnet. The sensor node embeds a copper coil that harvests a pulse of energy every
time it passes the magnet as the wheel rotates. It then sends information, , wirelessly
to a battery-powered bicycle computer. The transmitted information includes analysis
computed through several power cycles (revolutions of the wheel). This is a good ex-
ample of the usage of IC with a system mounted in a harsh environment (on the rim
of a bicycle wheel) with stringent size and weight constraints. Furthermore, there is a
symbiotic relation between the variable being measured (the rotation of the wheel) and
the energy harvesting method: the data is only valuable while the wheel is rotating,
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FIGURE 1.2: Illustration of intermittent operation. The device operates during brief
on-periods (typically in the order of milliseconds), until its stored energy is depleted.

It then remains off until the supply voltage recovers.

and that is also the only time when energy is harvested. Other notable applications of
IC includes a batteryless step-counter [118] and a batteryless Game Boy clone [155].

1.1 Research justification

Most of the IC literature diverges into either purely software-based approaches that
support IC on commercial off-the-shelf (COTS) microcontrollers [9, 68, 92, 116], or cus-
tom non-volatile processors (in which volatile logic is backed up in, or replaced by,
non-volatile logic)[88, 89, 95, 123, 151].

Software solutions to IC generally aim to make the best use of existing hardware by
implementing various ways to retain computational progress through power cycles.
Providing support for IC through software is attractive because it can enable IC on ex-
isting devices with little development cost. Among methods proposed for IC, those
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based on checkpointing have the best performance [96, 97, 98], and the best compati-
bility with existing software [8, 9, 12, 68, 77, 98]. Early checkpointing methods saved
and restored the entirety of volatile state, i.e. CPU registers and the contents of volatile
memory, in every power cycle [8, 9]. A straightforward optimization of this was to in-
stead only checkpoint the allocated volatile memory, comprising the regions of memory
allocated for the various data sections (.data, .bss, .stack) [12, 15]. However, during
short on-periods, not all allocated state is used, because only a small portion of the ap-
plication is executed, so loading the entirety of allocated state during boot is inefficient.
Furthermore, when saving a new checkpoint at the end of an on-period, it is wasteful
to write unmodified data to non-volatile memory (NVM), especially for NVMs with
high write-energy [10, 43, 84, 148]. These factors motivate research into a checkpoint-
ing method that loads variables only when they are used, and also writes to NVM only
data that have changed.

Software support for IC on COTS microcontrollers can only go so far. To achieve op-
timal performance, hardware support for core IC operations is necessary. Although
hardware changes require substantially more development effort than software changes,
they have greater potential for efficiency gains. Furthermore, the envisioned use cases
for IC involve very large quantities of devices over which to amortize the initial cost
of developing and fabricating new hardware platforms; the marginal cost likely out-
weighs initial development costs.

The backbone of IC is NVM. While initial IC research used flash memory as their
NVM, it was soon demonstrated that the byte-addressable and more energy-efficient
ferroelectric random access memory (FRAM) was a better candidate [68, 116]. Us-
ing a more suitable NVM meant that IC devices could operate using only the energy
buffered in a few micro farads of capacitance already necessary for power condition-
ing purposes, as opposed to requiring supercapacitors to supply the checkpointing en-
ergy [9]. Today, magnetoresistive random access memory (MRAM) and phase-change
memory (PCM) are emerging as replacements for flash in advanced process nodes for
microcontrollers [24]. MRAM is available from several foundries, and in some com-
mercially available microcontrollers [18, 50]. Like FRAM, MRAM is byte-addressable,
but it is also more energy-efficient and scalable to advanced process nodes. It is still,
however, not as energy-efficient as static random access memory (SRAM), which has
orders of magnitude lower write-energy, and a fraction of the read-energy. As such,
it is clear that MRAM-enabled conventional microcontrollers still benefit from using
SRAM in addition to MRAM. For microcontrollers designed for IC, combining SRAM
and NVM is a complex topic with many trade-offs.

Researchers in the closely related field of non-volatile processors (NVPs) tend to in-
corporate NVMs using a bottom-up approach. They start with new device-level inno-
vations and use them to build a processor that implicitly retains state through power
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loss. They either replace each volatile cell (flip-flop/SRAM) with its non-volatile coun-
terpart, or use NVM-backed cells [89, 152]. The latter technique is designed to mini-
mize the active power of the system by essentially adding a non-volatile storage ele-
ment, such as a magnetic tunnel junction (MTJ), to every volatile flip-flop and SRAM-
cell. Most accesses are then served from the energy-efficient volatile part of the cell,
and the non-volatile part is only accessed to checkpoint and restore state. Replacing
each flip-flop in the processor core with its non-volatile counterpart may be a good
solution for a simple 8-bit processor, but could impose substantial design effort and
power/performance/area overhead if a larger 32-bit pipelined processor, such as the
Arm Cortex-M0+, were used. The idea of replacing every volatile storage element with
its non-volatile, or NVM-backed, counterpart is also at odds with modern system-on-
chip (SoC) practices, whereby the chip is composed of multiple unmodifiable func-
tional units (intellectual property blocks) acquired from different design companies.
Additionally, fabricating irregularly distributed single memory elements may not be
practical due to manufacturing process control requirements. An approach that uses
specialized hardware to accommodate emerging NVMs, and uses hardware/software
co-design to minimize complexity has the potential to result in a versatile IC platform
that can be used with legacy software across myriad applications.

To research hardware support for IC, however, an appropriate modeling methodol-
ogy is needed. The complex interactions between energy availability, energy consump-
tion, energy management and intermittent operation complicate IC research. Industry-
standard development tools and workflows typically decouple power consumption
and execution. For example, register transfer level (RTL) power estimation flows first
simulate execution to produce activity traces, then use the activity traces to estimate
how much power was consumed. Hence, this flow assumes that execution is unaf-
fected by power consumption. Although this flow, or slight variations of it, is common
practice in IC literature, it yields incorrect results because the execution depends on en-
ergy, ultimately leading researchers in the wrong direction. In particular, the decoupled
method leads towards optimizing for execution time without sufficient concern for en-
ergy consumption. Furthermore, IC is a field of research where obtaining repeatable and
reproducible results from physical experiments is particularly challenging because en-
ergy harvesters, which have complex dynamics, are used as power sources. A method
of modeling IC is thus an integral addition to experimentation, that will greatly im-
prove researchers’ ability to share trustworthy results and methods, ultimately acceler-
ating the progress of IC research.

Other areas of research within the field of IC, include such topics as, for example,
wireless communication under intermittent operation, cybersecurity within intermit-
tent computing, formal verification. Because this thesis focusses on the computational
aspects of IC, these related topics are only reviewed briefly, and are considered to be
outside the scope of this thesis.
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1.2 Research questions

Following from the above research justification, this thesis addresses three main re-
search questions:

Q1 How can the efficiency of IC running on COTS microcontrollers be improved?

Several methods and programming models have been proposed to support IC on COTS
microcontrollers. Among them, methods based on checkpointing are the most promis-
ing, due to their good performance and compatibility with existing embedded soft-
ware. The current state of the art for checkpointing is to save and restore all allocated
volatile memory. However, not all allocated memory is modified, or even used, in ev-
ery on-period, especially not when they are short. Through answering Q1, this thesis
addresses such inefficiencies to improve checkpointing on COTS hardware.

Q2 How can microcontrollers targeting IC leverage energy-efficient NVM and hard-
ware support to improve efficiency?

Software to support IC on COTS hardware can only go so far. To run IC optimally, hard-
ware support is necessary. Furthermore, new byte-addressable and energy-efficient
NVMs are emerging as low-power process nodes scale below 28 nm. Given that NVM
is the backbone of IC, these have the potential to greatly improve the performance of IC
devices, ultimately enabling IC to be used for a wider range of applications. However,
though more energy efficient than existing technologies like flash and FRAM, emerging
memories are still much less energy efficient than SRAM, and furthermore have asym-
metric read and write energies. Q2 encompasses the challenge of how best to leverage
energy-efficient NVMs, organize the memory system, and provide hardware support
for core IC operations in order to accommodate reliable and energy-efficient IC.

Q3 How can new hardware and software for IC systems be developed efficiently,
and their performance evaluated with a high degree of repeatability and repro-
ducibility?

Researching both hardware and software for IC, and particularly assessing perfor-
mance, is complex due to the interactions between energy availability, energy con-
sumption and intermittent operation. Existing modeling tools are inadequate for mod-
eling IC because they lack flexibility (RTL), accuracy (gem52), and closed-loop power-
performance simulation (both).

2A widely used simulation framework in the mobile, desktop, and server computing space (https:
//www.gem5.org)

https://www.gem5.org
https://www.gem5.org
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Furthermore, the dynamics of EH make it difficult to obtain repeatable and repro-
ducible results. A simulation method that can model the interactions correctly and
ensure repeatable and reproducible results is needed.

To address this gap, i.e. Q3, Fused, a full-system simulator for energy-driven computers
was presented in Chapter 4.

1.3 Research contributions

This section outlines the key novel contributions reported in this thesis, addressing the
aforementioned research questions. The contributions are listed in the order they are
presented in the thesis, and associated publications are listed under each contribution.
In addition to publishing datasets that support each article (available through eprints.

soton.ac.uk), the source code has also been published (where relevant), as mentioned
in each contribution.

1.3.1 Taxonomy of IC methods for COTS microcontrollers

To begin addressing Q1, an analysis of the current state of the art for IC support on
COTS hardware was needed. To this end, Chapter 2 presents a taxonomy that divides
existing methods for IC into three classes, and qualitatively compares them against a set
of correctness requirements, performance goals, and scalability goals. An early version
of this analysis was included in the first publication listed below, and subsequently
extended substantially for the second listed publication.

• S. T. Sliper, D. Balsamo, A. S. Weddell, and G. V. Merrett. “Enabling Intermittent
Computing on High-Performance Out-of-Order Processors”. In: Proceedings of the
6th International Workshop on Energy Harvesting & Energy-Neutral Sensing Systems.
ENSsys ’18. New York, NY, USA: ACM, 2018, pp. 19–25. ISBN: 978-1-4503-6047-0.
DOI: 10.1145/3279755.3279759

• S. T. Sliper, O. Cetinkaya, A. S. Weddell, B. Al-Hashimi, and G. V. Merrett. “Energy-
Driven Computing”. In: Philosophical Transactions of the Royal Society A: Mathemat-
ical, Physical and Engineering Sciences 378.2164 (Feb. 7, 2020), p. 20190158. DOI:
10.1098/rsta.2019.0158

eprints.soton.ac.uk
eprints.soton.ac.uk
https://doi.org/10.1145/3279755.3279759
https://doi.org/10.1098/rsta.2019.0158
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1.3.2 Paged memory management for efficient state retention on COTS mi-
crocontrollers

To complete addressing Q1, Chapter 3 proposes a software memory management layer
to support IC on COTS microcontrollers. It substantially reduces time and energy spent
on saving and restoring state by carefully controlling which data are loaded when
restoring from a checkpoint, and written to NVM when saving checkpoints. This mem-
ory management method functionally resembles hierarchical memory, and the evalu-
ation results indicate that hierarchical memory is warranted for IC, even though it is
rarely seen in today’s low-power microcontrollers (Q2). This work was published in
the publication listed below, and the full source code of the method was published as
an open-source project at https://github.com/UoS-EEC/ICLib.

• S. T. Sliper, D. Balsamo, N. Nikoleris, W. Wang, A. S. Weddell, and G. V. Mer-
rett. “Efficient State Retention Through Paged Memory Management for Reactive
Transient Computing”. In: Proceedings of the 56th Annual Design Automation Con-
ference 2019 (Las Vegas, NV, USA). DAC ’19. New York, NY, USA: ACM, 2019,
26:1–26:6. ISBN: 978-1-4503-6725-7. DOI: 10.1145/3316781.3317812

1.3.3 Full-system simulator for IC research

Addressing Q3, and facilitating research of Q2, a new full-system energy-driven com-
puting simulator, named Fused, is proposed in Chapter 4. Unlike existing simulators,
Fused simulates energy and execution in a closed feedback loop, and is therefore able
to model the complex interactions between execution and energy (storage, manage-
ment, consumption, harvesting). Fused enables investigation into Q2 with the flexibility
needed to explore emerging NVMs and novel hardware support for IC.

A paper describing and evaluating Fused has been published in the first reference listed
below. Fused has been published to the community as an open-source project at https:
//github.com/UoS-EEC/Fused, and several improvements have been made since the
original paper. In the second publication listed below, I assisted the first author by im-
plementing a board-level abstraction in an effort towards simulation of a full wireless
sensor node.

• S. T. Sliper, W. Wang, N. Nikoleris, A. S. Weddell, and G. V. Merrett. “Fused:
Closed-Loop Performance and Energy Simulation of Embedded Systems”. In:
Proceedings of the 2020 IEEE International Symposium on Performance Analysis of Sys-
tems and Software. IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS’20). Boston, MA, USA: IEEE, Apr. 2020

https://github.com/UoS-EEC/ICLib
https://doi.org/10.1145/3316781.3317812
https://github.com/UoS-EEC/Fused
https://github.com/UoS-EEC/Fused
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• S. C. Wong, S. T. Sliper, W. Wang, A. S. Weddell, S. Gauthier, and G. V. Merrett.
“Energy-Aware HW/SW Co-Modeling of Batteryless Wireless Sensor Nodes”.
In: Proceedings of the 8th International Workshop on Energy Harvesting and Energy-
Neutral Sensing Systems. ENSsys ’20. New York, NY, USA: Association for Com-
puting Machinery, Nov. 16, 2020, pp. 57–63. ISBN: 978-1-4503-8129-1. DOI: 10.
1145/3417308.3430272

1.3.4 Memory system support for efficient IC

Memory system support for IC, which provides added mechanisms and functionality
to simplify or accelerate the core operations of IC, can be used to significantly improve
performance. Chapter 5 presents memory system support for IC, called MEMIC, to ad-
dress Q2. Motivated by results from Chapter 3, Chapter 5 explores hardware-managed
instruction and data caching, to optimize the core operations of IC. Additionally, it
proposes a method for limiting the volatile state, which reduces the necessary amount
of energy buffering, simplifies application development and increases robustness. To
support atomicity, MEMIC includes a hardware undo-logger that enables the capability
to roll back NVM state when re-executing sections of code. MEMIC was modeled and
evaluated using hardware-software co-design in Fused.

This contribution has been submitted for publication and is currently under review.
The reference is listed below. To make MEMIC readily available to anyone, all Fused
models, software support code, and simulation scripts associated with MEMIC have
been published at https://github.com/UoS-EEC/MEMIC and large parts of the soft-
ware developed for MEMIC have been up-streamed to the aforementioned ICLib and
Fused repositories.

• S. T. Sliper, W. Wang, N. Nikoleris, A. S. Weddell, A. Savanth, P. Prabhat, and
G. V. Merrett. “Pragmatic Memory-System Support for Intermittent Computing
using Emerging Non-Volatile Memory”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (2022). DOI: 10.1109/TCAD.2022.3168263

1.4 Organization

This thesis begins by providing background, review and a taxonomy of contemporary
works in IC in Chapter 2. Then, to address Q1, Chapter 3 proposes a novel page-based
memory manager that improves the efficiency of checkpointing. Before addressing
Q2, an appropriate modeling method is needed, so Q3 must be addressed before Q2.
Chapter 4 addresses Q3 by proposing Fused, a full-system simulator for IC. Then, in

https://doi.org/10.1145/3417308.3430272
https://doi.org/10.1145/3417308.3430272
https://github.com/UoS-EEC/MEMIC
https://doi.org/10.1109/TCAD.2022.3168263
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Chapter 5, memory organization and specialization for IC is presented to address Q3.
Finally Chapter 6 concludes the thesis and suggests topics for future work.
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Chapter 2

Intermittent computing

This chapter provides background and a review of current literature relating to IC. It
starts by introducing the main challenges pertaining to IC by categorizing published
literature (§ 2.1), then outlines application constraints for intermittent operation (§ 2.2);
in essence answering the question “Which applications are amenable to intermittent oper-
ation?”. Next, challenges that are particularly pertinent to this thesis are reviewed in
more detail. First, bugs that may occur when re-executing code are then described
in § 2.3, to motivate a set of correctness requirements that define the minimum viable
IC method in the following section, § 2.4. Performance and scalability goals are then
introduced; these are referenced throughout, in order to systematically compare pub-
lished works. Evaluating related works against the set of requirements and goals set
in § 2.4, a taxonomy of software-based IC methods is given in § 2.5. Next, § 2.6 reviews
support for atomic sections in detail. Then, background on prototyping techniques for
IC systems is presented in § 2.7. Finally, emerging NVM, and how it can be utilized to
provide efficient IC, as well as a review of NVPs are discussed in § 2.8.

The majority of this chapter has been published as part of [130, 131, 132].

2.1 Challenges of IC

IC brings unique challenges that slow down adoption in the real world. This section
provides an overview of published literature in field of IC, categorized into the specific
challenges each work addresses, as summarized in Table 2.1. Challenges addressed
by this thesis are highlighted in bold font in the table. The remainder of this section
provides a brief description of each main category of challenges.
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TABLE 2.1: Categorized literature on intermittent computing. Challenges addressed
in this thesis are highlighted in bold font.

Category Literature

Software

Reactive IC [8, 9, 12, 15, 68, 69, 117, 128, 129, 130, 148]

Task-based IC
[21, 25, 28, 30, 38, 46, 53]. . .
[62, 92, 96, 122, 161, 164]

Static IC [4, 14, 26, 93, 97, 116, 146, 153]
OS-support [12, 77]
Task scheduling [73, 99]

Processor hardware
NVP

[76, 80, 88, 89, 90, 95, 123, 151, 152]. . .
[42, 74, 87, 104, 107, 135, 165, 166]

HW support [54, 65, 85, 108, 159, 160]

Energy mgmt. & optimization [30, 40, 52, 53, 57, 60, 70, 75, 93, 110, 136, 154, 161]

Timers [62, 64]

Peripheral support
Software [12, 19, 98, 119, 137]
Hardware [85]

FASE support [12, 98]

Sisyphean tasks [29, 98]

Security [49, 78, 124, 140, 145]

Reliability [26]

Formal verification [11, 138, 139]

Approximate computing [46, 55, 94, 105]

Development tools

Simulation [45, 163]
Emulation [47, 58, 121]
Debugging [27]
Static analysis [30, 137]
Hardware prototyping [61]

Networking [1, 3, 22, 31, 34, 37, 48, 79, 101, 141, 144, 162]

Applications [16, 33, 35, 102, 106, 118, 127]

Machine learning [51, 67, 81, 82, 106, 158]

Software support. Works relating to software to support IC on COTS microcontrollers
are divided into three categories, reactive IC, task-based IC and static IC. These IC method-
ologies are detailed in § 2.5. Researchers have also worked on the challenges of operating
system (OS) support and task scheduling under intermittent operation.

Processor hardware. In the hardware domain, the literature is categorized into NVP
and hardware support for IC; where NVP involves replacing volatile logic with non-
volatile alternatives, and hardware support for IC involves adding logic that improves
checkpointing, peripheral support etc. By adding hardware support to improve IC
to an otherwise conventional ultra low power microcontroller, instead of replacing or
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augmenting all volatile logic with their non-volatile counterparts, hardware support for
IC can remain compatible with conventional system on chip (SoC) design practices like
combining black-box functional units (“hard IP”) acquired from different IP vendors.

Energy management (mgmt.) & optimization. This category broadly includes works
that have focused on techniques for reducing or managing energy consumption through
various techniques, for example by proposing PCB-level circuits that manage energy
storage in several capacitors of varying capacity.

Timers. Perhaps the most obvious challenge with IC is to maintain a sense of time
despite power outages, a topic addressed by the works listed under Timers. Without
power, clocks cannot run, so an IC device can usually only keep track of time within
the current on-period. Recent works have proposed methods that can maintain an ap-
proximate sense of time through short off-periods by measuring the decay of a charged
capacitor, or the gradual information loss in volatile memory [64], but they are far too
inaccurate for e.g. synchronizing wireless communication (3.7–8.7 % error over a pe-
riod of 35 s). These methods may suffice in specific applications, but an IC device is
generally unaware of absolute time.

Peripheral support. Methods for recovering peripheral state after power-loss; this is
generally more complex than recovering memory and processor state, as some periph-
erals require an ordered and timed sequence of commands to enter certain states.

FASE support. A failure-atomic section (FASE) is a section of code that needs to be
restarted from the beginning if it is interrupted by a power failure. FASE support is
needed to express indivisible operations, such as radio transmissions, time-series sam-
pling, and sampling of temporally correlated sensors. Later in this chapter, § 2.3 de-
scribes bugs that may occur when re-executing arbitrary sections of code, and § 2.6
describes techniques to avoid them.

Sisyphean tasks. In reference to the Greek mythological king who was condemned “to
push a immense boulder up a hill only for it to roll down every time it neared the top,
repeating this action for eternity” [wikipedia], a Sisyphean task is a FASE that requires
more energy than the device can muster, hence it will be restarted indefinitely, render-
ing the device non-functional [115]. Using a task-based IC method involves a manual
and error prone process of dividing computation into appropriately-sized tasks; this
process often leads to sisyphean task. Under certain constraints, it is, however, possi-
ble to do this process automatically and with protection against sisyphean tasks [29].
To reduce the effort in sizing application-level FASEs without introducing a sisyphean
task, Maeng and Lucia [98] proposed a framework to divide certain peripheral oper-
ations, such as DMA data transfer or performing computations in an accelerator, into
several FASEs.
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Security. Literature on security for IC mainly addresses encryption of checkpoints to
protect secrets from an attacker that reads the contents of NVM. Reading the contents
of locked on-chip NVM, however, requires physical access to the device under attack,
a large time-investment, and sophisticated equipment [124]; unless checkpoints are
stored off-chip, it is therefore, in the author’s opinion, unlikely that encrypted check-
points are warranted in most realistic scenarios. A more judicious approach would, in
most cases, be to address access protection issues with on-chip NVM.

Reliability. To the author’s knowledge, there is only a single published work that
specifically addresses reliability. Choi et al. [26] consider degradation of ceramic ca-
pacitors due to e.g. temperature variation or cracking [142]. The characteristics of the
energy buffering capacitor are critical for IC methods that depend on stored energy to
save checkpoints (reactive IC), or complete tasks (task-based IC). Adapting to changes
in capacitor characteristics during deployment may therefore be necessary to ensure
decades of operation.

Formal verification. Researchers have built up a foundation for formally modeling and
verifying IC, by relating intermittent and continuous execution models and forming
proofs of equivalence between them (at specific points of execution) [11, 137]. These
have since been used for automatic instrumentation of checkpoints and FASEs [138].

Approximate computing. The energy-driven nature of IC makes it a good complement
for approximate computing, wherein the core idea is to produce produce high-quality
results (highly accurate sensing and computation) when energy is plentiful, and lower-
quality results when energy is scarce. Thus a device can utilize the energy optimally to
produce the most accurate results according to the operating conditions.

Development tools. Because of the tight interaction between energy availability and
operation, traditional development tools are insufficient for IC. Prior works have high-
lighted several unique challenges that emerge when researching and developing energy-
driven, and particularly intermittent, computing devices [27, 59, 100]. The challenges
mostly stem from the interactions between energy and execution, and from the fact that
IC devices frequently reboot, thereby complicating debugging. Another issue is with
repeatability of EH sources, which have complex power output dynamics that depend
on their environment as well as their load. Development tools for IC are discussed
further in § 2.7.1.

Networking. Because IC devices lack an accurate sense of time, reliably synchronizing
communication between intermittent nodes is particularly challenging. Proposed so-
lutions include exploiting external sources of synchronization, such as power grid AC
signals recovered from artificial light sources [48], or using back-scatter communica-
tion [101] combined with radio-frequency energy harvesting (RF-EH).
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Applications. Despite a decade of research into IC, only a handful of applications
have been demonstrated in the literature. This may be caused by a lack of suitable
development tools, and the unsolved challenges related to wireless communication
under intermittent operation.

Machine learning. Machine learning, most often deployed in high-power data centers,
may seem like an odd companion for IC, but when deployed to reduce the need for
communication, it can reduce overall energy consumption. For example, Camaroptera [106],
uses machine learning to decide which photos should be transmitted from a wildlife
tracking IC device.

Among the challenges listed in this section, a few can be seen as fundamental chal-
lenges that can be mitigated, but not overcome. To answer the question “Which applica-
tions are amenable to intermittent operation?”, the next section presents a set of conditions
that aim to clarify which types of applications are most suitable for intermittent opera-
tion.

2.2 Application constraints for intermittent operation

From the aforementioned research challenges of IC, a set of application constraints
for intermittent operation can be derived to indicate which types of applications are
amenable to intermittent operation. Because intermittent operation does, by definition,
include periods where the device is completely turned off, an application that is to be
executed intermittently must:

A1 not depend on absolute time, unless it can be gathered from an external source
(e.g. via wireless communication);

A2 be guaranteed sufficient power during events of interest, or allow some events to
be missed due to a lack of energy;

Note that all conditions typically can result in unreliable and/or reduced quality of
service (QoS) when compared to a battery-powered or energy-neutral system.

A typical application for IC is to sense the environment, detect events, and report them
to a central server [29, 98]. Without a consistent source of power, an IC device cannot
maintain an absolute sense of time; it can only keep track of time within an on-period.
Wireless communication between IC devices is therefore a major challenge, and, de-
spite considerable research effort [1, 20, 31, 34, 37, 101, 141], still an unsolved problem,
so today’s IC devices generally communicate with an always-on server. Thus, the cen-
tral server only needs to be notified when an event happens, and can itself annotate
absolute timing.
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Similarly, under frequent and random power outages, events of interest can be missed
as a result of the device being off when the event occurred. This issue can sometimes
be alleviated by using an energy harvester that can guarantee power during the event
of interest, as exemplified in the following text.

A good example of an IC device is the wireless bicycle trip counter by Bing et al. [16],
which counts and reports the revolutions of a bicycle wheel. The device itself is pow-
ered by the current induced when a magnet attached to the bicycle wheel passes a coil
mounted on the bicycle’s fork, hence the event to be detected directly coincides with
the power source. By use of intermittent operation, their sensor node is made with
a minimum of components, leading to small size and cost without introducing main-
tenance requirements or sacrificing lifetime. Another potentially suitable application
for IC is predictive maintenance on industrial equipment via vibrational or acoustical
monitoring [150]; energy for the system could be supplied by a piezoelectric vibration
harvester.

2.3 Re-execution bugs

To motivate the set of criteria, performance goals and scalability goals in the following
section, § 2.4, this section describes bugs that can occur when re-executing arbitrary
sections of code. Re-execution can occur as a consequence of the IC method used, but
is also necessary if an operation must restart from the beginning after a power outage
(see § 2.6).

Figure 2.1 illustrates three possible faults when re-executing arbitrary sections of code.
The function sampleAndLog reads a sensor value and appends it to an array of samples,
log. If a value greater than five is sampled, the alarm should be set (assume that alarm
is a global flag that gets checked and reset by the caller). A power failure occurs at the
end of sampleAndLog, as denoted by . The points A , B and C mark potentially prob-
lematic checkpoint/task-boundary locations. Consider a naive approach that allocates
all variables to NVM, does not checkpoint peripheral state, and allows re-execution
(because of statically placed checkpoints, or failed reactive checkpoints). Assume that
a checkpoint has been saved immediately before calling sampleAndLog. The following
three scenarios describe three bugs that can occur when calling sampleAndLog, with a
subsequent power failure at .

Scenario A illustrates a repeated-IO bug [137]. In the first on-period, a checkpoint was
saved at A . If we assume that the sensor value was read to be > 5, alarm gets set to
true. After the power failure, execution resumes from A , but assume that the sensor
now reads ≤ 5; the alarm should not be set. The resulting state is corrupt, because the
latest logged sensor value is < 5 and the alarm has been set; this is a state that could
not have occurred were it not for the power failure.
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void sampleAndLog () {

SENSOR ->CONTROL |= SENSOR_ENABLE;

while (!(SENSOR ->STATUS & SENSOR_READY ));

sample = SENSOR ->DATA;

log_size ++;

log[log_size] = sample;

if (sample > 5)

alarm = true;

SENSOR ->CONTROL &= ~SENSOR_ENABLE;

}

A

B

C

FIGURE 2.1: Pseudo code illustrating three possible faults when re-executing arbitrary
sections of code.

In scenario B , a checkpoint was saved at B , and execution continued until the power
failure at . After resuming from B , execution stalls indefinitely, because the sensor
was never initialized and so the ready flag never gets set.

Finally, in scenario C , the checkpoint was saved just before incrementing log size.
Since this system allocates all variables to NVM, the state of log size and log persists
through the power outage. When power returns, log size gets incremented yet again,
and another log entry is saved. This bug lead to two log entries being saved on one call
to sampleAndLog; in fact, the log would continue growing if power failed repeatedly
at . Scenario C is an example of a write-after-read idempotency violation1 [115]. In
fact, this same bug also occurs in scenario A .

Scenarios A and C can be protected against by allocating all variables to volatile mem-
ory and never re-executing code, by double buffering checkpoints, or by logging and
rolling back changed state after a checkpoint/task-boundary [96]. The simplest way
to avoid B is to avoid such checkpoint placements entirely, for example by executing
(parts of) sampleAndLog as a FASE. Other works have focused specifically on the topic
of saving and restoring peripheral state [12, 120].

1In this context, an idempotency violation refers to re-execution of a section of code that is not idempo-
tent. This, in turn, means that the same section of code produces different results when it is re-executed.
Conversely, an idempotent section of code could theoretically be re-executed infinitely many times, and
produce the same effect (i.e. the same memory state, execution state etc.) every time.
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2.4 Correctness requirements, performance goals and scalabil-
ity goals

For systematic evaluation of IC methods, this thesis will use the following correctness
requirements(C1-C4), performance goals (P1-P3), and scalability goals (S1-S3). Cor-
rectness requirements must be met for IC to function correctly. Performance and scal-
ability goals are ideals that should be sought after, but are not critical — and will in-
evitably lead to compromises. The requirements and goals are inspired by the ones
introduced by Maeng et al. [96], but have been generalized and expanded in order to
include recent progress and insights in the field [11, 29, 30, 60, 61, 137, 138, 139, 164].

For correctness, an IC device must:

C1 retain computational progress through power outages;

C2 ensure consistency between volatile and non-volatile memory despite power out-
ages;

C3 allow blocks of code to be executed atomically within a single on-period;

C4 avoid sisyphean tasks.

For performance, an IC device should:

P1 maximize forward progress through applications;

P2 be reactive to external events;

P3 minimize extra memory footprint imposed by IC framework.

For scalability, and to accommodate widespread adoption, an IC device should:

S1 require minimal IC-specific expertise from the programmer;

S2 be compatible with existing software;

S3 be portable across hardware platforms.

C1 is the base premise of intermittent operation: some computational progress must be
preserved through power cycles.

In certain situations, arbitrary sections of code can be re-executed because the system
has to restore to an earlier state after a power failure, for example when re-executing
a FASE. This can lead to inconsistency between volatile memory, which loses its state



2.4. Correctness requirements, performance goals and scalability goals 19

when power fails, and NVM, which does not, as previously detailed § 2.3. C3 guards
against such inconsistencies.

Support for user (or machine) annotated FASEs is necessary to express application-level
atomicity constraints, C3 encompasses this constraint.

The requirement to avoid sisyphean tasks (C4) follows from C3: if certain tasks are
to be executed atomically, it is imperative that they can be completed within a power
cycle.

P1 implies that IC methods should minimize the time and energy spent on state reten-
tion, boot, and rollback. This can be measured, for example, as the time and energy
spent on the aforementioned overheads compared to the time spent towards complet-
ing the workload. To remain reactive to external events (P2), IC methods should sup-
port asynchronous interrupts, and should generally wake up frequently so as to not
miss an event while recharging for the next on-period. Note that P1 and P2 often con-
flict with each other. To optimize for P1 means that reboots are rare, so that boot and
rollback overheads are amortized over a long period of application-execution. On the
contrary, optimizing for P2 means frequent reboots to ensure that no events are missed.
In addition to time and energy overheads, IC methods generally impose extra mem-
ory footprint to, for example, checkpoint system state, or to instrument application
code with checkpoints; this extra footprint should be minimized, because the IC de-
vices typically have strict memory constraints (P3). The memory extra footprint an IC
system imposes, can be measured as the fraction of memory and storage spent on the
IC method as compared to the memory footprint of the application without IC was
implemented.

The scalability goals express basic characteristics to enable widespread use of IC, with
a large number of devices deployed. As stated in S1, the IC method should strive to
require little IC-specific expertise from the application programmer, and should there-
fore aim to encapsulate complexities such as voltage thresholds and FASE support in
a lower software layer (or in hardware). This lowers the barrier to entry, and enables
more numerous application programmers to employ IC systems. To further lower the
barrier to entry and overall development effort, IC systems should strive to be compat-
ible with existing software (S2) so that they can leverage prior efforts and mature soft-
ware libraries. Hardware compatibility (S3) is also important – an IC method should
strive to be easily portable across different hardware platforms (i.e. printed circuit
boards) without large changes.
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2.5 Taxonomy

In order to differentiate and evaluate existing works, this section presents a taxonomy
based on the following three classes of IC methods.

Static: where checkpoints are inserted at predetermined (design-time or compile-
time) points in the program.

Task-based: where the application is divided into small tasks that are executed
atomically by a runtime.

Reactive: where checkpoints are triggered as a reaction to the environment.

The fundamental divergence is between static and reactive IC; task-based IC can be
regarded as a development of static IC, where checkpoints are replaced by task bound-
aries. Static and reactive IC typically retain progress through power cycles by peri-
odically (static) or reactively (reactive) checkpointing the volatile state in NVM. Task-
based IC needs, in principle, only to save the result from a task’s execution and an
indicator to the next task to be executed.

State diagrams for the three classes are shown in Figure 2.2. These diagrams show the
fundamental states, although most methods diverge slightly —typically by having ad-
ditional states and edges to improve performance. A key insight is that both static
and task-based methods have power-off edges (red) from all states, meaning that the
system could potentially instantaneously shut down at any point in the program/run-
time. Reactive IC (Figure 2.2c), on the other hand, ensures that the system only powers
off after reaching a safe sleep state.

Figure 2.3 illustrates the behavior of each class in relation to the power supply voltage.
Static IC restores (R) as soon as the supply voltage, vcc, exceeds the on-threshold of
the processor, Von, and starts useful computation (C) while checkpointing (CP) state ac-
cording to heuristics, for example every few milliseconds. Task-based IC also restores
(boot runtime and restart the latest task) as soon as vcc > Von. The restore operation can
be quick because only the runtime and a single task need to be booted, not the entire
program. When complete, the results of the current task are saved, and the next task
is booted and started; this is termed a task-transition (TT). Reactive IC sleeps until an
interrupt triggers restore, when vcc exceeds the restore threshold VR. Reactive IC does
not take checkpoints along the way, but rather continues useful computation until vcc

drops below VS, the suspend threshold, which triggers suspend (S), checkpointing just
before power is lost. In the literature, this is also referred to as Just-In-Time checkpoint-
ing [98]. The circles show the latest checkpoint before power is lost; any computation
after the latest checkpoint is a waste of resources. Note that some task-based or static
approaches may mitigate wasted computation after a checkpoint by measuring stored
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FIGURE 2.3: Behavior of the three classes of IC strategies with regards to vcc.

energy and comparing it to predictions [14] or observations [69] of the energy required
to reach the next task-boundary or checkpoint.

The following subsections analyze the three classes of IC in the context of the afore-
mentioned correctness requirements, performance objectives and scalability objectives.
Table 2.2 summarizes the findings.

2.5.1 Static IC

Static IC approaches are based on instrumenting application code with checkpoints by
the user during application development, or automatically at compile time [14, 97, 116,
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TABLE 2.2: Summarized analysis of the three classes of IC.

Objective/Requirement Static IC Task-based IC Reactive IC

C1: Comp. progress ✓ ✓ ✓

C2: Consistent memory Challenging Challenging ✓

C3: FASE support ✓ ✓ Challenging
C4: Avoid sisyph. tasks ✗ ✗ ✓

P1: Forward progress Slower1 Slower1 Faster1

P2: Reactive to events Challenging Challenging ✓

P3: Memory overhead Instr.2, checkpoint
Instr.2, runtime, logs,

tiny checkpoint Checkpoint

S1: Required IC expertise Moderate Major Minor
S2: Software compatibility ✓3 ✗ ✓

S3: Hardware portable ✗ ✗ ✓

1Depends on specific implementation. 2Code instrumentation. 3With full recompilation.

146]. Because the checkpoints are inserted a priori, off-line analysis of program exe-
cution and control flow graphs can be applied to guarantee memory consistency (C2)
and improve P1-P3. The main two advantages of static IC are: (1) information about
program execution flow can be exploited to improve restore and suspend performance
(P1) [14, 83, 97, 165], and (2) checkpoints are triggered regardless of the environment.
The latter eliminates the need for energy buffering when powered by a pulsed supply,
although some amount of buffering may be necessary for performance reasons.

Key metrics for static IC systems is the accuracy of checkpoints (how many checkpoints
were saved compared to how many checkpoints were actually needed), the energy-
efficiency of checkpoints (how much energy is spent on saving each checkpoint), the
re-execution overheads, and often the overhead of tracking various state for check-
pointing and roll-back.

The main challenges to static IC are in the placement of checkpoints: placing them too
far apart minimizes superfluous checkpoints, but makes it unlikely or even impossible
to reach the next checkpoint; placing them too densely wastes time and energy on su-
perfluous checkpoints. The optimal checkpoint placement depends both on hardware
and on harvesting conditions, making solutions unlikely to be portable (S3).

Static IC also suffers from frequent code re-execution, because the state rolls back to
the latest checkpoint when power returns after a power failure (the computation after
the circle in Figure 2.3 is re-executed in the next power cycle). Code re-execution is a
waste of energy (P1), and can corrupt memory if the re-executed section of code is not
idempotent (C2) [115].

2.5.2 Task-based IC

Task-based IC is a recent development of static IC where the application is divided
into a set of small tasks that are executed atomically by a runtime [28, 38, 69, 96]. This



2.5. Taxonomy 23

20

22

plai
n C

Alp
ac

a
Chain

DIN
O

0

2

4

6

8

10

12

R
u
n
 t

im
e
 (

n
o
rm

a
liz

e
d
)

checkpointing

channeling

privatization

task transition

app code

cem ar rsa(64) cf(128) blowfish bc

FIGURE 2.4: Run-time overhead of task-based methods while continuously powered
(no reboots). Reprinted from [96], 10a.

development is motivated by protecting static IC against idempotency violations, by
carefully controlling or recording each task’s accesses to NVM, thus making code re-
execution safe (C2) [28]. Additionally, systems like Alpaca [96] offer fast reboot and
state-saving because only the runtime and the current task is booted, and only persis-
tent data from the task needs to be saved (P1). However, in addition to re-execution
overheads, handling idempotency is expensive. Figure 2.4, shows the run-time over-
head of contemporary task-based methods when continuously powered (no reboots).

Key metrics for a task-based IC system include the overhead of the task-based runtime
(and sometimes scheduler), and the overhead spent on various memory access track-
ing. Figure 2.4 shows these static overheads (no reboot) clearly, as compared to the
plain C implementation where IC functionality was not implemented. Additionally,
the time and energy spent on rolling back and re-executing code after power failures
plays a significant role in the overheads of task-based IC.

In addition to technical challenges, such as

• expensive and complicated roll-back schemes necessary for protection against
idempotency violations (C2),

• large memory footprint (P3),

• expensive task-transitions (P1),

• and handling interrupts to react to asynchronous events (P2),
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task-based systems struggle to meet any of the three scalability objectives. The im-
posed programming model is not compatible with existing software (S2), as it requires
redesigning applications into tasks. Finding optimal task boundaries (analogous to
checkpoint placement in static IC) is difficult, and depends on both the specific under-
lying hardware and the energy harvesting conditions; great care must be taken to avoid
sisyphean tasks (C4). Thus designing a task-based application generally requires a high
degree of IC-specific expertise (S1) [30]. Furthermore, since optimal task-boundaries
are hardware-specific, applications are not portable across hardware platforms (S3).

CleanCut [30] is a recent method that checks for sisyphean tasks (termed “non-terminating
path bugs” in the paper) and performs automatic task decomposition. The method is
a significant step towards making task-based methods scalable (S1-S3). However, lim-
itations of the method, such as the requirement that the programmer must specify an
iteration bound for each unbounded loop in the program, restrict its utility for applica-
tions that depend on existing libraries (S2).

Classical task-based approaches such as Alpaca [96] are incompatible with asynchronous
interrupts, because they would break the premise of an application divided into atom-
ically executed tasks. Ink [164] aims to resolve this by use of task-threads and schedul-
ing. However, tasks in Ink cannot be pre-empted, making reaction time slow and unpre-
dictable. A more recent alternative is Coati, which “employs a split-phase model that
handles time-critical I/O immediately in a brief interrupt handler, but defers process-
ing the interrupt’s results until after the interrupted task or transaction completes” [122]
thus accomplishes real-time response to interrupts.

2.5.3 Reactive IC

Contrary to static and task-based approaches, reactive IC is generally implemented in
an application agnostic manner [8, 9, 68], greatly improving S1 and S2 when compared
to typical task-based or static methods. Reactive IC consists of the following two oper-
ations:

Suspend: Checkpoint volatile state to NVM, and enter low power mode or shut
down.

Restore: Restore volatile state from a checkpoint.

The volatile state is any state that is lost in the event of a power outage, and that is
needed for computation to proceed correctly when power returns. The set of volatile
state is architecture and platform specific. However, reactive IC remains portable across
hardware (S3), because only the suspend and restore functions need be redesigned for
each platform, not the entire application.
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Power supply monitoring is set up to generate interrupts that trigger suspend and re-
store operations when the supply voltage, vcc, crosses a threshold. When the restore
threshold is exceeded, an interrupt triggers restore, which restores state from a previous
checkpoint. Similarly, when vcc drops below the suspend threshold, VS, a checkpoint
is triggered and the system enters low-power mode (where volatile state is retained)
or shuts down. If power returns while the system is still in low-power mode, restore
is unnecessary because the volatile state was retained, so the application can continue
execution directly, thus improving P1 [8]. When powered by a low-current source, sus-
pend can often be avoided altogether by pre-emptively entering sleep mode before vcc

drops below VS [32, 93]; this can, in some cases, improve P1.

The suspend threshold ensures that checkpoints are only triggered when power fail-
ure is imminent, thus nearly eliminating superfluous save operations (P1) [9, 98]. The
restore threshold is used to guarantee the success of the next checkpoint; it eliminates
code re-execution, and thus also idempotency violations (C2). Determining such a VR

is intractable for static and task-based IC because all possible execution paths must be
exhaustively analyzed. In reactive IC, VR can be determined by online measurement, or
calculated based on the amount of state to suspend and restore[8]. Note that to guarantee
the success of the next checkpoint, a minimum amount of energy buffering is required.
The energy buffer needs only suffice to power suspend, but additional capacity may
improve performance.

With proper, pre-emptive, interrupt prioritization, reactive IC is natively reactive to
asynchronous external events (P2), and furthermore can guarantee forward progress in
application code (assuming that any FASEs used are sufficiently small).

The main drawback of reactive IC is that saving and restoring the entire state is expen-
sive compared to task-based systems where only one task is saved/restored at a time.
This is especially wasteful if the power cycle is short, because only a small part of the
program is expected to execute. This problem can be partially alleviated by techniques
such as comparing the current state to the latest checkpoint, and only saving the dif-
ference [15, 43, 148]. Another drawback is that reactive IC does not generally handle
FASEs (C3) as gracefully as task-based methods. A solution to this is proposed in [12],
where a formal division between application code (which accesses only application
memory) and driver code (which accesses peripherals and NVM) assists a kernel to en-
sure atomic execution of driver-functions without introducing idempotency violations
(C2).

The key metrics for a reactive IC system is the time and energy spent on restoring state
after a power failure and on suspending state when a power failure is detected. This is
often referred to as the restore time/energy and the suspend time/energy.
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2.6 Supporting failure-atomic section (FASE) execution

Due to the potential for re-execution bugs, as outlined in § 2.3, FASE support demands
special attention. As previously mentioned, FASEs are used to express indivisible oper-
ations, such as radio transmissions, time-series sampling, and sampling of temporally
correlated sensors. For example, if the transmission of a radio packet gets interrupted
partway by a power outage, it needs to be restarted from the beginning. Another ex-
ample is recording a contiguous window of time-series data from a sensor such as
a microphone or accelerometer: the resulting data is only sensible if it was recorded
without power interruptions.

For such application-specific atomicity constraints, the FASE is annotated by the pro-
grammer, for example by using a wrapper function [12]. The programmer is respon-
sible for ensuring that FASEs are small enough to be executed in a single power cy-
cle; specifying a FASE that requires more energy than the device can muster leads to
(a sisyphean task, as explained shortly), because the FASE, by definition, cannot be
subdivided. In particular cases, FASEs can be annotated automatically to prevent re-
execution bugs (see § 2.3) [137, 138, 139].

Reactive and static IC methods have often omitted FASE support [8, 9, 116]. Task-based
IC implements FASE support by default, since task-based IC is, in fact, based on divid-
ing programs into a set of FASEs. These task-based methods use various techniques to
ensure protection against re-execution bugs:

• data versioning, where relevant variables residing in NVM are loaded to the
stack during a task execution, then saved back to NVM during the next task-
transition [92];

• accessing NVM through abstract channels in a fashion similar to transactional
memory [28, 56];

• buffering (certain) writes to NVM, and only committing the changes during check-
pointing [96].

These techniques could also be used to provide FASE support for static and reactive IC.
However, they all impose substantial runtime overhead, increase memory footprint be-
cause of privatization or double-buffering, and require programmers to declare “pro-
tected” variables and use explicit application programmer’s interfaces (APIs) to access
protected variables, and often rely on custom static analysis tooling.

A simpler method is possible for static and reactive IC, under the reasonable constraint
that all variables be allocated to volatile memory [12]. Static and reactive IC methods
can then support FASEs by:



2.7. Prototyping and evaluating IC devices 27

1. saving a checkpoint immediately before starting the FASE,

2. disabling checkpointing during the FASE,

3. and finally enabling checkpointing again once the FASE has completed.

This method may be preferable because it reuses the existing checkpointing mecha-
nisms, and maintains the software-compatibility of reactive IC, i.e. does not require
static analysis tools or manual annotation of special variables.

Using FASEs can, however, introduce sisyphean tasks (C4). Samoyed [98] handles sisyphean
tasks by profiling all FASEs in hardware, and, for suitable peripherals/operations, dy-
namically breaks down the FASE into parts that are small enough to execute in a sin-
gle on-period. Not all peripheral operations can be divided into smaller parts, but as
shown in their paper, this method is very effective for certain memory mapped ac-
celerators. In the general case, though, FASEs cannot be divided, and so it is up to
the programmer to avoid sisyphean tasks, possibly with assistance from static analysis
tools [29].

2.7 Prototyping and evaluating IC devices

This section describes different approaches to evaluating new methods and ideas within
IC. First, hardware prototyping is discussed, where COTS hardware components, usu-
ally combined with software support is used to implement and evaluate a new method.
Second, high-level analytical models are discussed. These have the advantage of en-
abling rapid evaluation across a wide range of parameters, but could suffer from inac-
curacies. Last, simulation, a middle-of-the-road option between analytical modelling
and hardware prototyping, is discussed. All three approaches are useful and necessary
tools within their applicable domain, but none can be used for all experiments.

2.7.1 Hardware prototyping

Hardware prototyping, in the form of making a functional IC device out of COTS com-
ponents mounted on a circuit board, is commonly used, and is a good evaluation strat-
egy for software-based IC methods and new peripheral hardware such as energy man-
agement circuits. For many experiments and IC methods, hardware prototyping can
be the most straightforward approach, as COTS hardware platforms that can support
IC are readily available. For instance, the MSP430FR-series of microcontrollers from
Texas Instruments is a popular choice in IC literature [4, 8, 9, 10, 12, 13, 14, 16, 27, 28, 29,
30, 32, 77, 122, 129, 164] due to its energy-efficient and byte-addressable FRAM NVM.
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Furthermore, researchers have designed printed circuit board (PCB) level prototyping
platforms to make IC more accessible [61].

Given appropriate measurement equipment and design of experiment, hardware pro-
totyping yields accurate results. However, in addition to common complications in the
field of computing, such as selection of appropriate benchmarks etc., evaluation of IC
systems is greatly complicated by its inherent tight interactions between energy avail-
ability and operation [27, 58, 59, 100]. A related issue is with the repeatability of EH
sources, which have complex power output dynamics that depend on their environ-
ment as well as their load [126]. The combination of a system with complex interac-
tions between energy and operation, and an energy source that is difficult to control in
terms of both repeatability and reproducibility, mean that realistic experiments with IC
systems can become unreliable.

To help overcome challenges related to reproducibility and repeatability, as well as
simplifying hardware and software development for IC devices built with COTS com-
ponents, the following works have proposed new development tools. Ekho [58, 59]
addresses the repeatability challenge by recording IV-surfaces (current-voltage curves
over time) of energy harvesters, so that they can be replayed in the lab for realistic and
repeatable evaluation of energy-driven systems. This approach was later refined and
extended to support a experiments on networks of several intermittent nodes, all pow-
ered by replayed IV-surfaces [47]. To simplify development of IC systems, Colin and
Lucia [29] proposed EDB, the energy-interference-free debugger, which is a debugger
that aims to enable debugging of energy-driven systems without interfering with their
energy state. EDB proposes new debugging primitives, such as energy-breakpoints
that halt execution when the system’s energy storage depletes or charges to a specific
level, to facilitate efficient debugging of intermittently-powered devices.

However, although researchers have made significant improvements in hardware pro-
totyping of IC systems, hardware prototyping will always be limited by available hard-
ware. To research new hardware approaches at the level of integrated circuits, model-
ing is the only feasible option, due to the prohibitive cost of designing, verifying, and
manufacturing integrated circuits. The next two subsections discuss two different ap-
proaches to modeling IC systems.

2.7.2 Analytical modelling

When studying a system through a large parameter space, analytical modelling can be
a powerful tool. It is very well suited to answer questions like “What’s the trend of
application completion time as the size of the energy buffer increases”, or “How much
relative performance would be gained by doubling the size of the energy harvester?”.
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As it is based on abstracting mechanics from a real system into solvable equations, it
does not model every detail, but can provide fast answers and show trends. Thus it can
be used as a first step before hardware prototyping or simulation, to determine where
in the design space time-consuming experiments and simulations should focus. It can
also be used during development to reveal areas of improvement that are likely to yield
a high return.

Several analytical models have been proposed to evaluate IC methods [9, 119, 125]
and energy-neutral systems [72]. The most comprehensive in the space of IC, EH-
model [125], can provide early estimations of completion time for several IC methods
using different state retention mechanisms, but does, however, depend on detailed in-
put data obtained through offline profiling.

2.7.3 Simulation of IC hardware and software

In a sense, simulation, or more specifically virtual prototyping, can be a middle way
between hardware prototyping and analytical modelling, offering more flexible design
space exploration than the first, and higher accuracy than the latter.

The typical workflow for early performance and power modeling of digital circuits
consists of RTL design, synthesis and simulation to obtain accurate power and timing
information. This workflow works well for continuously-powered circuits, and can
yield very accurate results for a specific process node. It is, however, not suitable for
IC, because it does not take into account the effect of energy availability and consumption on
execution and vice versa. For example, under intermittent operation, a device commonly
reboots as a consequence of severely constrained power supply, thus its execution flow
cannot be determined without modeling energy availability. RTL design, synthesis and
simulation is is also inflexible, very time consuming, and computationally expensive,
hindering efficient design space exploration.

A popular option in high-performance computing (mobile, desktop and server) is to
use gem5 [17], where processing systems are modeled at a much higher level of ab-
straction. Here, software is written to model hardware behavior, mainly by abstracting
signals and operations to function calls. It is not synthesizable, hence not a replacement
for RTL, but it provides for fast simulation and prototyping, allowing reasonably accu-
rate power and performance modeling of complex systems running complex software.
Power consumption can be estimated in gem5, e.g. by recording high-level architectural
events and feeding them to a power modeling tool [149]. However, being optimized
for simulation speed and for modeling high-performance systems, gem5 lacks cycle-
accurate capability, and is far too complex to efficiently and flexibly model low-power
microcontrollers.
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A key factor for IC is that their behavior is governed by the availability of energy. Their
power consumption can even affect the amount of power being harvested, because of
the non-linear IV-curve of many energy harvesters [63]. This is not the case for tradi-
tional “always on” computers, hence gem5 and RTL workflows can decouple power
and performance modeling.

I postulate that, for energy-driven computers, power and performance must be modeled simul-
taneously, in a closed feedback loop. Closed-loop modelling of power and performance
means that the power model feeds its results to the performance/functional model,
which in turn feeds back its results to the power model. In simulation, this feedback
might occur once per simulation time-step, such that the power model makes its es-
timations based on the power results from previous time step and immediately feed
them to the performance model; thus the otherwise infinite loop is broken. Further-
more, timing accuracy requirements may be stricter for energy-driven IC devices, be-
cause they might only be active for a few thousand clock cycles at a time (as is shown
later, in Chapter 3).

NVPSim, a gem5-based model of the THU1010N [151] NVP was proposed in Yizi Gu
et al. [163], and extended in Wu et al. [157] to include limited support for modeling
peripherals. To model intermittent execution, gem5 was modified to include a simple
capacitor model, and the replaying of a power trace. NVPSim supports only a fully cus-
tom in-house NVP based on an architecture rarely used in modern embedded systems.
Its extension for modeling peripherals also requires specialized driver code. The simu-
lator therefore does not run the exact same binary as the real device, and may operate
differently, potentially hiding hardware and/or software bugs.

Ma et al. [95] explored the microarchitecture of NVPs with RTL simulation, using NVSim
[36] as the NVM model. The paper focused on comparing execution pipelines (non-
pipelined, in-order, out-of-order), as well as exploring which parts of the microarchi-
tectural state to save on power failure. Simulating the THU1010N, their RTL based
simulations achieved intermittent execution of several benchmarks with reported per-
formance errors of less than 5 %; however the simulation method is only briefly de-
scribed. Notably, with a fully non-volatile processor, power and performance can more
easily be calculated from an execution trace after simulation (decoupled power and
performance), because the executed program can be agnostic to reboots.

Ruffini et al. [121] recently proposed NORM, an field-programmable gate-array (FPGA)-
based framework for prototyping of IC systems. It includes a framework for emulating
non-volatile logic and memories (and their longer access times), a method for replaying
voltage traces, and a simple counter-based “energy approximator”. This framework
emulates prospective IC designs at the RTL abstraction level, meaning that it is mostly
suitable for validation/verification, rather than design space exploration. NORM uses
static voltage traces, so the effects of power consumption on harvested energy are not
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modelled. In a subsequent paper, Philip et al. [112] used NORM to simulate a RISC-
V core running intermittently, and to evaluate different software-implemented check-
pointing strategies (different hardware architectures were not explored).

Siren [45] extended the MSP430 simulator MSPSim [41] to include NVM, and basic
energy simulation capabilities. Siren’s analog/energy domain consists of a capacitor
model that also controls whether or not execution is active, and an Ekho emulator, that
replays Ekho IV surfaces in simulation. Siren does not, however, realistically simulate
energy consumption, because it assumes a single static energy consumption per in-
struction.

Power estimation is an integral part of any simulator that targets IC. A common ap-
proach to model the power consumption of a central processing unit (CPU) is to use
instruction level power modelling (ILPM) [23], where the aim is to first ascertain how
much energy each instruction (or instruction type) consumes, and then estimate to-
tal energy consumption based on the tally of how many times each instruction was
executed. This methods is very practical, as it offers a simple way to add power esti-
mation to existing CPU emulators. However, it can only accurately model the power
consumption of the CPU, as it does not account for other parts of the SoC. For exam-
ple, microcontrollers comprise several peripheral units and heterogeneous memories in
addition to the CPU; all of which can contribute significantly to total power consump-
tion. Full-system simulators, like gem5, therefore use a much wider set of events (e.g.
reads and writes to each specific memory and so on), and also the state of individual
components to model the full-system power consumption [149]. The events are used
to model dynamic power consumption, i.e. the component of power consumption that
varies with activity, and the states are used to model static power consumption (chiefly
leakage power). All the aforementioned simulation methods used in IC either rely on
RTL power estimation (which is decoupled from execution), assume constant power
consumption, or assume constant energy per instruction.

Although there have been several prior works that target simulation of energy-driven/
intermittent systems, they lack support for modeling external circuitry beyond a sim-
ple storage capacitor, and none include a methodology for capturing power modeling
parameters. Most also lack the modularity and flexibility necessary to allow efficient
hardware-software co-design.

2.8 Leveraging emerging NVM for IC

Nearly all COTS microcontrollers today use flash as their embedded NVM. Flash mem-
ories can be made to have high density and low read access energy. However, writing
to flash is expensive in terms of energy and time. A page of memory (hundreds to
thousands of bytes) must first be erased in a process which uses a high-voltage pulse to
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set all the bits in the page to a common value (typically 1). This erase process also limits
the write-endurance of flash memories to be on the order of 105 cycles. Therefore flash
memory cannot be used as regular memory, but is instead used as a programmable
read-only memory for storing instructions, constants and initial values, but not vari-
ables.

The other type of embedded NVM that is commercially available for ultra low power
microcontrollers is FRAM, which has orders of magnitude lower write energy than
flash, and virtually unlimited write-endurance [143]. FRAM can thus be used as a
regular memory (like SRAM), albeit with higher access energy and latency than SRAM.
A decade after the first COTS microcontroller using FRAM was demonstrated [167],
however, FRAM is still only available from a single manufacturer in niche product line.

Recent developments in NVM technologies, such as various forms of MRAM (MRAM,
STT-RAM, SOT-RAM, and more), PCM, and resistive RAM (RRAM/ReRAM/memristor)
are opening new opportunities for IC. Emerging NVMs have order-of-magnitude im-
provements in write-energy, write-time and endurance when compared to the tradi-
tional embedded flash memory in today’s microcontrollers [24]. Additionally, new
NVMs such as spin transfer torque MRAM (STT-MRAM) and PCM are compatible
with existing complementary metal oxide semiconductor (CMOS) processes and scales
to smaller process nodes than what is economically feasible with embedded flash or
FRAM (≲ 28 nm) [6, 18]. However, whereas embedded PCM is available only from a
single manufacturer (ST Microelectronics) targeting a high-performance microcontroller,
MRAM is available from two foundries (GlobalFoundries and Samsung) [18, 50] and mi-
crocontrollers optimized for low power consumption, featuring embedded MRAM are
also beginning to emerge [5]. MRAM is therefore the primary candidate for ultra low
power microcontrollers, with PCM being a likely contender.

Because IC requires extensive use of NVM to retain computational progress through
power cycles, more energy-efficient NVM technologies are likely to enable substantial
improvements if employed appropriately. Reductions in NVM access energy will sub-
stantially decrease the active power consumption of IC devices, as well as the more crit-
ical suspend and restore energies, leading to relaxed requirements for both energy supply
and storage. Similarly, small access granularity allows for further energy-optimization
by selectively saving specific data instead of large blocks.

These emerging NVM technologies have been used at varying levels of integration.
The following subsections first describe the related field of NVP, where non-volatility
is tightly integrated at the level of bit cells and flip-flops, then reviews hardware-
supported IC, which instead use functional units that help saving and restoring state
in an otherwise conventional SoC. The latter approach is enticing because it can lever-
age efficient memory compilers and enables SoCs composed of functional units from
different vendors without the need to re-design them for IC.
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FIGURE 2.5: Example NVM-backed flipflop used as registers in [87]. The figure is re-
arranged and reprinted from [87].

2.8.1 Non-volatile processors

Instead of backing up and restoring volatile state in NVM, NVPs[42] eliminate the
volatile state by using only NVM as memory, and integrating a non-volatile register
file in the processor core [76, 80, 83, 86, 87, 88, 89, 123, 135, 151, 152, 160]. Because
emerging NVMs still suffer from low endurance and relatively high write energy com-
pared to SRAM, most published NVM designs opt for NVM-backed SRAM memory
cells and registers in place of using non-volatile registers directly. They then oper-
ate as reactive IC, backing up register contents in parallel when a power failure is
detected [80, 95]. Figure 2.5, reprinted from [87] shows the principle, and a circuit
diagram of their non-volatile flip flop (NVFF) used in their recent NVP. Using their
previously developed 8051 instruction set architecture (ISA) NVP [151], together with
a novel integrated supply voltage monitoring circuit, 32 kB FRAM instruction memory,
32 kB FRAM data memory and five voltage domains, their non-volatile SoC achieved
9 µs suspend time and 3 µs restore time with an active power of 371 µW/MHz at an oper-
ating frequency of up to 16 MHz. Their non-volatile SoC was fabricated using a 130 nm
CMOS process, amounting to a 22.09 mm2 die area. To contextualize this, a commer-
cially available MSP430FR-series microcontroller with integrated FRAM spends a min-
imum of 12.3 µs on suspend and restore when using FRAM as unified memory, run-
ning at it’s maximum clock frequency of 8 MHz at an active power of ≈375 µW/MHz
(VCC = 3.0 V)2 [68].

Although NVP can retain state very efficiently (P1), FASE support becomes compli-
cated (C3). To handle FASE execution, NVPs must either incorporate energy manage-
ment circuits that halt execution until sufficient energy to complete the next FASE is
guaranteed [71], or carefully roll back state after a failed attempt. The former neces-
sitates precise knowledge about how much time and energy the next FASErequires.
The latter involves carefully controlling NVM writes and applying state logging and

2MSP430FR5739 datasheet from Texas Instruments. Power consumption read from
IAM,FRAM UNI @8 MHz and multiplied by a supply voltage of 3.0 V.
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roll-back in order to return to a previous execution state without corrupting memory
(C2).

The tight integration of non-volatile elements in NVP also poses fabrication challenges.
Replacing each flip-flop in the processor core with its non-volatile counterpart may be a
good solution for a simple 8-bit processor, but may impose substantial design effort and
power/performance/area overhead if a larger 32-bit pipelined processor, such as the
Arm Cortex-M0+, were used. The idea of replacing every volatile storage element with
its non-volatile (-backed) counterpart is also at odds with modern SoC practices, where
the chip consists of multiple unmodifiable functional units (IP blocks) acquired from
different companies. Additionally, fabricating irregularly distributed single memory
elements may not be practical due to manufacturing process control requirements.

2.8.2 Hardware support

As an alternative to making a processor fully non-volatile, one can instead create hard-
ware support units that provide fast and efficient state retention through efficiently
moving data between volatile memory and NVM.

Clank proposes additional circuits in the memory subsystem that track write-after-read
dependencies (which can cause idempotency violations), and buffers them in a volatile
buffer. When the buffer is full, a checkpoint is triggered, saving state to avoid re-
execution. In the event of a power failure, the offending memory accesses are im-
plicitly discarded because the buffers are volatile; execution can easily and safely re-
sume from a previous checkpoint. Clank satisfies C1 and C2 without software modifica-
tions, but does not have explicit support for FASEs; one potential problem occurs if the
buffer consistently overflows during an FASE, leading to the equivalent of a sisyphean
task. Another important aspect that Clank does not explore, is the difference in energy-
consumption between volatile memory and NVM. Clank also does not protect against
repeated IO bugs, which were first described after Clank was published.

Freezer proposes a simple hardware peripheral that controls accesses to SRAM and
NVM, and tracks which blocks of SRAM have been written to in the current on-period,
so as to avoid copying unmodified blocks [108]. As shown in our evaluation (§ 5.3.6),
Freezer can be an effective way to reduce checkpointing energy. However, the worst-
case checkpointing energy remains unchanged, so Freezer does not reduce the necessary
amount of energy buffering. Additionally, Freezer considers data memory, but has no
mention of instruction memory, which often is a larger factor for total energy consump-
tion.

A hybrid MRAM-SRAM cache was proposed by Xie et al. [159] on a 480 MHz NVP
simulated in gem5. It comprises a mix of SRAM blocks, which offer fast and energy-
efficient access, and MRAM blocks, which offer non-volatility and higher density, and
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an access pattern predictor that intelligently allocates cache lines to either block type.
This architecture may be efficient for a high-speed device with non-uniform memory
access latency and energy (i.e. expensive access to main NVM). However, it is likely
not applicable for ultra-low power IC devices that run at a few megahertz and thus
would have similarly fast and energy efficient access to non-volatile cache blocks as to
NVM. The proposed hybrid cache also does not include FASE support.

2.9 Summary and discussion

This chapter established correctness criteria, performance goals, and scalability goals
for IC, and used them to provide a systematic review and taxonomy of contemporary
methods for IC on COTS hardware. Among the three classes of IC, reactive IC is the
most promising because of its compatibility with existing software, as well as its per-
formance. However, contemporary reactive IC methods suffer from inefficient state
retention, as they checkpoint and restore all data in every power cycle, regardless of
whether the data are modified, or even referenced during each on-period. This moti-
vates Q1, which this thesis addresses in Chapter 3.

While support for IC on COTS hardware is important to lower the barrier to entry, es-
pecially while IC is an emerging technology, having some hardware support can poten-
tially provide much improved performance. Furthermore, recent years have seen large
developments in byte-addressable and more energy-efficient NVM technologies. It is
clear that leveraging these can improve the performance of IC substantially. However,
it is not clear how best to take advantage of these NVMs to optimize the core operations
of IC. While being far more energy efficient than flash, they are still not as efficient as
volatile SRAM. Furthermore, they exhibit asymmetric read and write energies. These
factors may warrant techniques like instruction and data caching; techniques which are
common in performance-optimized computing devices, but are not commonly used in
energy-optimized ones. These issues are encompassed by Q2, but in order to perform
such research, an appropriate modeling method is required (Q3). This thesis therefore
addresses Q3 before Q2.

To research hardware support for IC, an appropriate modeling tool is required. Whereas
energy and execution can be modeled separately for most embedded systems, IC relies
on real-time interactions between energy-availability, energy-consumption, and execu-
tion; this thesis therefore postulates that their energy-environment and execution must
be modeled in a closed feedback loop. Fused, presented in Chapter 4 addresses this
challenge, i.e. Q3. In the subsequent chapter, Chapter 5, Fused is then employed to
address Q2.
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Chapter 3

Efficient intermittent computing on
commercial off-the-shelf (COTS)
microcontrollers

3.1 Introduction

Support for IC on COTS microcontrollers can be important for adoption, because it
allows early testing, prototyping, and possibly products to start using IC with existing
hardware. This chapter improves on the state-of-the art of checkpointing, to address
Q1.

The previous chapter, Chapter 2, found that, among the three classes of IC, reactive IC
is the most promising, due to its software compatibility, low execution overheads, and
more (see § 2.5). However, existing reactive IC methods [8, 9] suffer from inefficient
state retention because the entirety of volatile memory (VM) is saved and restored in
every power cycle. Recent works proposed tracking dynamic memory to avoid back-
ups of unallocated state [15, 148], henceforth termed AllocatedState. However, not all al-
located memory is modified or even used during power cycles with short on-periods.
Figure 3.1 shows the result of an experiment measuring the percentage of modified
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FIGURE 3.1: Percentage of allocated memory that is modified at the end of an on-
period in relation to its duration (on-time).
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allocated memory in relation to the on-time of a power cycle. The experiment was per-
formed by executing 128 b advanced encryption standard (AES) encryption on a 2 kB
string on an MSP430FR5994 microcontroller running at 8 MHz. Suspend and restore
operations were triggered by a function generator connected to general purpose in-
put/output (GPIO) pins. As Figure 3.1 shows, the percentage of state that is modified
at the end of an on-period can be very low, especially if the on-period is short. This
is true for all applications, although the slope and shape of the trend would differ;
some applications may modify a large amount of data during specific phases, whereas
others, like the demonstrated, have a more linear pattern.

Bhatti and Mottola [15] proposed comparing the current state with a previous check-
point to identify unmodified data, but this method is only applicable for asymmetric
memories such as flash, where reads are much cheaper than writes [148]. For FRAM,
where reads and writes have the same energy cost, the method is counterproductive.
An alternative to explicit state retention is to use NVM as main memory [68], but this
degrades overall performance due to increased access energy [8, 66].

In this chapter, ManagedState, a lightweight page1-based memory manager that tracks
active and modified regions of memory is proposed. A mathematical model that lever-
ages the memory manager to increase available execution time by calculating suspend
and restore voltage thresholds at runtime is then developed. Based on energy con-
sumption, the model also yields a constraint on the number of active and modified
pages. Because violating this constraint may lead to a corrupt checkpoint, the memory
manager maintains a limit on the number of modified pages by writing back inactive
modified pages when necessary.

A conceptual comparison between ManagedState and AllocatedState is shown in Fig-
ure 3.2. Knowing precisely the active regions of memory speeds up restore (R), while
knowing which regions are modified speeds up suspend (S). Improved suspend and re-
store performance also enables runtime threshold adjustments to defer suspend to the
last possible moment and to wake up from sleep (Z) and restore at the first possible op-
portunity; thus maximizing the time spent on useful computation (C). To enable this,
ManagedState loads (LD) pages as needed, and saves (SV) pages to NVM at runtime
when necessary.

The key contributions of this chapter are:

• ManagedState, a page-based memory manager for tracking active and modified re-
gions of memory, resulting in 26.8–86.9 % reduction in accumulated suspend and
restore time, with minimal memory footprint (84–1102 B) and minimal to moder-
ate runtime overhead (1.05–1.48×) (§ 3.2).

1Herein, the term “page” refers to a fixed-size contiguous region of any memory. The size is deter-
mined by the user at compile time, and does not change during runtime.
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FIGURE 3.2: Conceptual comparison between AllocatedState, and ManagedState, in re-
sponse to a power supply trace.

• Runtime calculation of safe suspend/restore thresholds, based on the amount of
active and modified memory, that eliminate code re-execution and corrupt check-
points, as well as increase available execution time. The combination of both con-
tributions result in up to 5.3× faster application execution (§ 3.4).

This chapter begins by presenting ManagedState, then presents a method for determin-
ing safe and efficient suspend and restore thresholds, followed by experimental valida-
tion. It concludes with a discussion on key findings and how they relate to the research
questions of this thesis.

The majority of this chapter has been published in Sliper et al. [129].

3.2 ManagedState: tracking and limiting volatile state

In order to load regions of data memory only when it is needed, and to avoid writ-
ing unmodified data when suspending, tracking of active and modified memory is
necessary. While high-performance processors use hardware memory management
units (MMUs) to translate and control access to memory [111], low-power microcon-
trollers suited for EH-powered applications do not have such features. Additionally,
MMUs are designed for applications with megabytes to gigabytes of memory footprint
as opposed to the kilobytes of a typical embedded application.

ManagedState is a light-weight memory manager that applies the well-known concept
of paging to track accesses to volatile memory. In this work, it is implemented and
evaluated with bare-metal applications, although it could also be used in conjunction
with a typical embedded systems operating system. Like traditional paged memory,
ManagedState loads pages only when they are referenced, and writes them back to main
memory only if they are modified. However, ManagedState imposes little overhead
because it is much simpler than traditional paged memory systems: it does not perform
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FIGURE 3.3: Illustration of memory operations of ManagedState where only active
pages are loaded during restore (←) and only modified pages are saved during sus-
pend (→); pages which are both modified and active must be loaded during restore and
saved during suspend (↔). Pages that are colored in main memory are considered res-

ident, i.e. they are loaded.

address translations or relocations, as the entire application is assumed to fit in main
memory.

To use ManagedState, the application calls Acquire before using a block of data with a
pointer to the start of the data in main memory, the number of bytes to be acquired
and the reference mode (RO/RW, explained later in this section). ManagedState is then
responsible for loading the relevant pages from NVM into main memory and for main-
taining their persistence through power cycles. When the application no longer needs
the block of data, it calls Release with a pointer to the data, and the number of bytes.

When possible, it is most efficient to process blocks of data one page at a time; thus
keeping only a single page active (or two, if an element crosses a page boundary) with-
out excessive Acquire/Release calls. For non-linear RW access, where data residing in
several pages are accessed sporadically, the application must either acquire the entire
block (minimal overhead, but keeps the entire block active) or acquire a few elements at
a time (minimal active pages, but large overhead). A third option to alleviate the over-
head of non-linear RW memory accesses is to restructure the application algorithm to
improve locality, as demonstrated in § 3.5.2.

ManagedState divides a memory section, .mmdata (memory managed data), into a set P
of pages p, where each page is of size |p|. Accesses to variables located in P are tracked
to determine the following three sets at runtime.

• R: the resident set of pages held in main memory

• M: the set of modified pages
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• A: the set of active, i.e. currently referenced, pages

A reference consists of the operations Acquire and Release, shown in Algorithms 1 and 2;
these two operations maintain R, M and A. There are two types of references:

• RO - Read Only reference

• RW - Read Write reference

An RO reference to a variables causes the corresponding page to be marked as active,
i.e. added to A. Similarly, an RW reference to a variable causes the corresponding page
to be marked as active and modified, i.e. added to A and to M. If the page is not already
resident, i.e. not in R, it is loaded into main memory and added to R. The number of
references to each page is tracked. When the reference count to a page p is 0, i.e. the
page is no longer referenced, it is marked as non-active (removed from A).

When suspending, all modified pages, i.e. pages that exist in M, are saved to NVM.
Pages which are in A, but not in M are not saved; their values are already guaranteed to
be persistent. Pages that are in M, but not in A may be modified, but are not currently
referenced; hence they are safely removed from M when they are saved to NVM.

During startup, the volatile state is restored. With ManagedState method, only active
pages are loaded; that is, only pages in A. All other pages will be loaded only if and
when they are referenced.

The pages in M comprise the volatile state of .mmdata. ManagedState maintains an
upper limit M̂ (determined in § 3.4) on the number of modified pages |M|. When an
RW access that would cause M̂ to be exceeded occurs, a page needs to be removed from
M. ManagedState finds a page in M that is not in A (a page that may have been modified,
but is not currently active), saves it to NVM and removes it from M. If no such page
can be found, M̂ must be increased or the application’s usage of Acquire and Release
modified to reduce the number of concurrently active pages. Note that the page is still
resident after being saved to NVM, so it does not have to be loaded again the next time
it is used within the current on-period. A least-recently-used (LRU) table is maintained
to select which pages get removed from M to avoid excessive page thrashing (repeated
saving of the same page). A page is never loaded more than once during a power cycle.

3.3 Usage

This section gives a brief introduction to the practical usage of ManagedState as a soft-
ware library. Figure 3.4 shows a code excerpt from an AES workload, and an exam-
ple of how it can be modified to take advantage of ManagedState. Figure 3.4a shows
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1 #define AES_BLOCK_SIZE 16u; // 128-bit AES

2 static unsigned char buffer [2048];

3 static unsigned char key [16];

4
5 int main () {

6 // ...

7 // Prepare the buffer with sample data etc ...

8 // Prepare the key

9 // ...

10
11 // Encrypt results

12 unsigned char *ptr = buffer;

13 while (ptr < buffer + sizeof(buffer )) {

14 aes_encrypt(ptr , key);

15 ptr += AES_BLOCK_SIZE;

16 }

17 // ...

18 }

(a) Unmodified code.

1 #define AES_BLOCK_SIZE 16u; // 128-bit AES

2 static unsigned char buffer [2048] MMDATA ;

3 static unsigned char key [16];

4
5 int main () {

6 // ...

7 // Prepare the buffer with sample data etc ...

8 // Prepare the key

9 // ...

10
11 // Encrypt results

12 unsigned char *ptr = buffer;

13 while (ptr < buffer + sizeof(buffer )) {

14 mm acquire(/*addr=*/ptr, /*size=*/AES BLOCK SIZE, /*mode=*/MM READ WRITE);

15 aes_encrypt(ptr , key);

16 mm release(/*addr=*/ptr, /*size=*/AES BLOCK SIZE);

17 ptr += AES_BLOCK_SIZE;

18 }

19 // ...

20 }

(b) Basic usage of ManagedState. Modifications and additions to the original code are high-
lighted.

FIGURE 3.4: A code snippet that encrypts a 2 kB string using AES. For clarity, this
example is somewhat simplified compared to the AES workload used in the evaluation

section (cipher block chaining is ommited).
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Algorithm 1 Acquire a variable residing in .mmdata.

1: function ACQUIRE(pointer, ReferenceMode)
2: p← getPageNumber(pointer)
3: if ReferenceMode = RW then
4: while |M| ≥ M̂ do
5: w← nextPage ∈ LRU
6: if w /∈ A then
7: saveNVM(w)

8: M← M− {w}
9: M← p ∪M

10: if p /∈ R then
11: load(p)
12: R← p ∪ R
13: re f Count[p] = re f Count[p] + 1
14: A← p ∪ A

return

Algorithm 2 Release a variable residing in .mmdata.

1: function RELEASE(pointer)
2: p← getPageNumber(pointer)
3: re f Count[p] = re f Count[p]− 1
4: if re f Count[p] = 0 then
5: A← A− {p}

return

the original code, where a data buffer is encrypted block-by-block using 128-bit AES.
Figure 3.4b shows an example of modifications and additions to leverage Managed-
State. First, in line 2, buffer is allocated to the .mmdata section by use of the MMMDATA

macro. Note that only the (large) data buffer was allocated to MMDATA, all other local
and global variables can remain as they were. Generally, only variables that are large
enough to have a significant negative impact on restore and suspend operations benefit
from being managed through ManagedState’s API. In line 14, one 16 B block of data
is acquired vi ManagedState’s API before being processed in the next line. Finally, in
line 16, the block is released. By using the ManagedState API in this fashion, only 16 B of
the 2048 B buffer variable is active at a time. Whereas Figure 3.4a loads the entirety of
buffer during boot, and save the entirety of buffer when checkpointing, Figure 3.4b
only loads parts of buffer immediately before they are used, and only saves the parts
of buffer which have been processed when saving a checkpoint.

Note that the ManagedState library uses semantics similar to those used for heap alloca-
tion in the C language. As such, there is no protection against use-after-free and similar
programming bugs. The library also does not implement security features.
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3.4 Dynamic suspend and restore thresholds

When the supply voltage drops below the suspend threshold, suspend is triggered and
execution halted. Later, when supply recovers beyond the restore threshold, restore is
triggered to resume execution. To maximize the time spent on useful computation,
and to minimize superfluous state saving, suspend should be postponed as much as
possible, as illustrated in Figure 3.2. Hence the suspend threshold VS should be min-
imized, while still ensuring sufficient energy for successful state saving. The restore
threshold VR protects against re-execution, so must guarantee that sufficient energy for
suspend remains after restoring. For safety, VR must be calculated under the assump-
tion that no energy is supplied after restore begins. This minimum restore threshold
is termed VR,min. Practical systems should increase VR beyond VR,min by a voltage ∆vC

that ensures a minimum of computational progress in every power cycle. The optimal
∆vC depends on power supply characteristics and application constraints. For a low-
current source, maximizing ∆vC effectively amortizes the cost of suspend and restore.
In contrast, minimizing ∆vC makes the device more responsive to events as it wakes up
more frequently, but also less energy efficient because less computation is performed
per power cycle. For a sparse supply, where energy arrives in short pulses, ∆vC should
be small to ensure that every pulse is utilized instead of being wasted through leakage
and sleep currents.

Figure 3.5 shows measured voltage traces and operation on a worst-case power pulse,
which charges vcc to VR, then immediately drops to zero. As is typical for microcon-
trollers, the one used in this work draws nearly constant current (8% variation) over
its operating voltage range because of its on-chip linear voltage regulator. Current
draw does, however, depend on peripherals, so the application’s most power-hungry
combination of simultaneously active peripherals should be assumed when calculat-
ing suspend/restore thresholds. Constant current draw makes the suspend, restore
and compute voltage drops ∆vS, ∆vR and ∆vC, respectively, proportional to their re-
spective execution times tS, tR and tC. Thus, a linear model is suited to calculate the
threshold voltages

VS = Von + ∆vS = Von +
∆vCC

∆t
tS, (3.1)

VR = VS + ∆vC + ∆vR = VS +
∆vCC

∆t
(tC + tR). (3.2)

The voltage drop ∆vCC
∆t can be calculated from the platform’s current draw I and capac-

itance C as
∆vCC

∆t
=

I
C

, (3.3)

although measuring ∆vCC
∆t directly is often simpler.
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FIGURE 3.5: Safe restore and suspend thresholds, ensuring sufficient energy to guar-
antee a minimum of useful computation (tC) and a successful checkpoint.
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Furthermore, tS and tR are proportional to the amount of data to be saved/restored,
as shown in Figure 3.6, where the average execution time of suspend and restore were
measured in relation to the amount of memory saved/restored. The dashed line shows
the linear fit, confirming that

tS(nbytes) ≈ tR(nbytes) = αnbytes, (3.4)

where α is the time it takes to read/save one byte, and nbytes is the number of bytes
saved/restored, yields accurate estimation of tS and tR. The constant term shown in
the figure is negligible for reasonable checkpoint sizes (10 B). Combining (3.1), (3.2)
and (3.4) yields

VS = Von +
∆vCC

∆t
(αnut + α|p||M|), (3.5)

VR = VS +
∆vCC

∆t
(tC + αnut + α|p||A|), (3.6)
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where nut is the number of untracked bytes, which must be saved and restored in ev-
ery power cycle. Hence nut + |p||M| is the number of bytes written during suspend,
and nut + |p||A| is the number of bytes read during restore. The CPU registers, allo-
cated stack, tables of ManagedState, and untracked application variables comprise the
untracked memory. The restore threshold has an upper bound Vmax, given by the maxi-
mum output voltage of the supply or the maximum operating voltage, constraining VR

to

VR ≤ Vmax. (3.7)

Substituting (3.5) and (3.7) into (3.6) and rearranging yields the constraint

|A|+ |M| ≤ Vmax −Von
∆vCC

∆t α|p|
− tC

α|p| −
2nut

|p| , (3.8)

determining the maximum number of modified pages at runtime as

M̂ = f loor
(Vmax −Von

∆vCC
∆t α|p|

− tC

α|p| −
2nut

|p| − |A|
)

. (3.9)

During runtime, VR and M̂ are updated when a page is acquired or released, while
VS is updated when the application issues an RW reference and when saving modi-
fied pages during suspend. Calculating M̂ at runtime maximizes the capacity of M,
minimizing the number of pages saved during execution, while still eliminating cor-
rupt checkpoints and re-execution by guaranteeing the success of future suspends and
restores.

3.5 Evaluation

This section evaluates the performance of ManagedState by running a set of experiments
to assess memory tracking accuracy and overheads, suspend and restore time, suspend
threshold calculations, and finally application performance. But first, the experimental
setup, as well as the benchmarks used, are described.

3.5.1 Experimental setup

This work was experimentally evaluated on the MSP430FR5994 LaunchPad Development
Kit, a development board for the MSP430FR5994 ultra-low-power microcontroller. This



3.5. Evaluation 47

M
SP430

FR5994GND VCCGND

VCC

GPIO
GPIO

GPIO

GPIO

GPIO

GND

GNDOscilloscope

Function generator

MSP430FR5994
Development kit

FIGURE 3.7: Experimental setup. The first channel from the function generator is used
as a configurable power supply, and the second channel is used (in some experiments)
to generate GPIO interrupts. An oscilloscope is used to measure the input voltage,
supply voltage, and GPIO pins that indicate activity. The rectifying diode prevents

current backflow from the development board to the function generator.

platform was chosen due to its on-chip energy-efficient and byte-addressable FRAM
memory; which is more suitable for IC than the traditional flash memory used in most
microcontrollers. No energy storage beyond the platform’s 10 µF decoupling capaci-
tance was added. This small capacitance limits the amount of state that can be safely
restored and suspended in an on-period. For large applications, this necessitates tech-
niques such as this work to limit said state during runtime, as demonstrated in § 3.5.3.

The software used in this evaluation was compiled using the MSP-430 version of the
GCC compiler (MSP430-GCC-OPENSOURCE), and used the -Os optimization target to
optimize the machine code for size and performance.

As shown in Figure 3.7, the development board under test was connected to a function
generator, which acted as a configurable power supply and a way to generate GPIOs
interrupts, and an oscilloscope which was used to measure the supply voltage, the in-
put voltage from the function generator, and GPIOs indicating activity (such as e.g. the
start and completion of the suspend operation). A rectifying diode was used on the
power input to prevent current flow in the reverse direction (from the development
board to the function generator). For some experiments, the power input channel of
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FIGURE 3.8: (a) Tracking accuracy and (b) suspend time overhead, in relation to page
size |p|.

the function generator was simply used as a constant voltage source, whereas in oth-
ers it was used to generate voltage pulses, as described for each experiment in their
respective subsections.

• AES: 128-bit AES encryption of a 2 kB string. Typically used to secure communi-
cation.

• CRC32: 32-bit checksum generation. Typically used for error checking of com-
munication payloads.

• MATMUL: Multiplication of two 25× 25 matrices of 16-bit values. Representa-
tive workload for signal processing and classification tasks.

AES and CRC32 access memory linearly, hence ManagedState tracks their memory ac-
cesses efficiently. In contrast, MATMUL, accesses memory in a sparse and repetitive
manner, leading to excessive Acquire and Release calls, hence large overhead. AES mod-
ifies the whole data buffer, while MATMUL only modifies the output buffer and CRC32
only modifies a single output variable.

3.5.2 Memory tracking

This subsection validates correct state retention and evaluates the accuracy and over-
heads of the memory tracking implemented in ManagedState. The experiments de-
scribed in this subsection used the first channel of the function generator as a constant
voltage source, and the second channel to trigger suspend operations (via GPIO inter-
rupts).

Efficient and safe state retention through power cycles is the main aim of this work.
Memory consistency was verified by taking a core dump (capturing memory and pro-
cessor state using a debugger) immediately before suspending state, then power cy-
cling the platform, then another core dump immediately after restoring the state. The
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TABLE 3.1: Overhead of ManagedState on a continuous supply when compared to Al-
locatedState.

Benchmark Runtime overhead Memory overhead
AES 1.05× 86 B (3.5%)
CRC32 1.14× 86 B (3.5%)
MATMUL 6.81× 86 B (5.0%)
MATMUL TILED 1.48× 102 B (2.5%)

allocated portion of the two core dumps were confirmed as identical, thus state is con-
sistent through power cycles.

The page size |p| affects tracking accuracy, suspend performance and memory over-
head. To evaluate accuracy, the number of bytes saved during suspend by ManagedState
(i.e. nut + |p||M|) while executing the AES benchmark were compared with the actual
number of modified bytes since the previous checkpoint. Results are shown in Fig-
ure 3.8. Tracking accuracy decreases with increased page size (Figure 3.8a). Execution
time overhead of suspend was measured and compared to the time taken to save the
same amount of state without paging. Decreased page size leads to increased suspend
overhead (Figure 3.8b) because of the larger number of page attributes to maintain.

The static memory overhead of ManagedState consists of the least recently used (LRU)
and attribute tables. The LRU table consists of M̂ 1-byte page-number entries. The
attribute table consists of |P| 1-byte entries; each entry’s MSB indicate whether the
page is loaded (in R), the next bit indicates whether the page is modified (in M), and the
remaining 6 bits constitute the reference counter (A = {p ∈ P : Re f erenceCounter[p] >
0}). For the remainder of the experiments, |p| = 128 B, balancing suspend overhead,
memory overhead and tracking accuracy.

ManagedState’s memory overhead and application execution time was compared to that
of AllocatedState, results are shown in Table 3.1. The runtime overheads of AES and
CRC32 are both small. MATMUL, however, has very large overhead due to poor spa-
tial and temporal locality. There are two ways to alleviate the overhead of MATMUL.
The first is to acquire all three matrices, perform the computation, then release; this al-
leviates the tracking overhead at the expense of restore and suspend performance. This
solution yields nearly identical results to using AllocatedState, which also loads/saves
the entire matrices at every restore/suspend. The second alternative is to improve lo-
cality by e.g. using a tiled implementation — a technique often used for performance
improvement in systems with hierarchical memory. Computing MATMUL using 5× 5
tiles, reduced the overhead to 1.48× (MATMUL TILED in Table 3.1). The matrices were
now acquired 3 tiles at a time (2 inputs, 1 output), maintaining superior suspend and
restore performance when compared to AllocatedState, as evaluated in § 3.5.3. For the
remainder of the chapter, evaluation results will be given for MATMUL TILED, as the
raw MATMUL implementation has very large overhead.
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FIGURE 3.9: Suspend and restore time of ManagedState and AllocatedState in relation to
application size.

3.5.3 Suspend and restore time

ManagedState allows large applications to run intermittently. Figure 3.9 shows the re-
sult of a comparison between the suspend and restore times (proportional to energy)
of AllocatedState and ManagedState in relation to application size while running the AES
benchmark. The size of the string was modified to vary the application size. The ex-
periments described in this subsection used the first channel of the function generator
as pulsed power source to emulate intermittent operation while controlling the du-
ration of on and off periods. The second channel was unused. For fair comparison,
on-time was set higher than the application’s run time. Both methods’ suspend times
grow linearly until ≈3 kB. AllocatedState can no longer find a safe restore threshold af-
ter 3.93 kB (shaded area on the figure), because the platform’s capacitance cannot store
sufficient energy for a safe restore-compute-suspend cycle. The dashed line shows pro-
jected suspend/restore time for AllocatedState, growing linearly with application size.
ManagedState limits volatile state according to M̂, thus keeping suspend time at a safe
level regardless of application size.

ManagedState provides substantial improvement in suspend and restore performance.
Figure 3.10 shows measured accumulated suspend and restore time, tS+R = tS + tR,
in relation to on-time. The reduction in tS+R when compared to AllocatedState (dashed
line) is 26.8–86.9 %, 86.7 % and 49.9–65.3 % for AES, CRC32 and MATMUL TILED, re-
spectively. For AES, tS+R grows linearly until on-time approaches the run time of the
application. For CRC32, tS+R remains constant, because only a single page is active and
only a single page is modified, as CRC32 accesses data linearly and only modifies a sin-
gle output variable. MATMUL TILED quickly reaches M̂, after which ManagedState
starts saving modified pages to NVM.
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FIGURE 3.10: Accumulated suspend and restore time in relation to on-time.

3.5.4 Suspend threshold

Adjusting the suspend threshold at runtime assures that checkpoints are saved success-
fully while maximizing energy spent on application execution.

The safety and accuracy of the suspend threshold was evaluated by using an oscillo-
scope to measure vCC at the start and completion of the suspend operation, vstart and
vcomplete, respectively. The function generator provided 3.6 V square-wave pulses on
its first channel to power the platform, which executed AES. The second channel of
the funciton generator was unused in this experiment. The range of on-time spans
from a short 10 ms pulse, modifying only a few pages, to a long 350 ms pulse, suffi-
cient to finish the entire application. The results, shown in Figure 3.11, show that the
method adjusts the suspend threshold such that corrupt checkpoints are avoided, i.e.
vcomplete > VON , while wasting minimal energy by keeping vcomplete close to VON . The
variance of vcomplete increases with the amount of state saved (proportional to on-time),
indicating imperfections in the constant-current model of § 3.4. However, to minimize
overhead, the computational complexity must be low.

3.5.5 Application performance

Benchmark run times were compared against AllocatedState while powered by an inter-
mittent supply, as shown in Figure 3.12. For clear and repeatable results on an inter-
mittent supply, the platform was powered by 3.6 V variable-width square-wave pulses
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FIGURE 3.12: Benchmark run time relative to AllocatedState when powered by square-
wave pulses.

from the function generator. Because a rectifying diode was used to prevent the func-
tion generator from discharging the platform during off-periods, vCC discharges grad-
ually through the platform’s current draw. A voltage trace of this operation mode was
shown earlier, in Figure 3.5, where tP denotes pulse width (note that the figure shows
a minimal pulse that with an on-time, tP, of 2 ms, barely sufficient to charge vCC to vR

before turning off again). The duty cycle of the square-wave was adjusted such that the
platform’s capacitance was completely discharged to 0 V (through leakage and sleep
current) between the pulses. Using a real energy harvester for evaluation would make
the results difficult to reason about, and hardly repeatable, because of the complex dy-
namics of specific harvesters in relation to their environment. Because ManagedState’s
application performance depends largely on on-time, the square-wave results are read-
ily transferable when considering specific energy harvesters.

As expected from Figure 3.10, ManagedState is most effective when on-periods are short,
completing the application up to 5.3× faster than AllocatedState. The extra execution
time gained by restoring early and deferring suspend, as well as the improved suspend
and restore performance, becomes less significant when on-time increases. Hence the
run time of ManagedState approaches the overheads from Table 3.1 when on-time ap-
proaches an application’s completion time.
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3.6 Discussion

Tracking memory references can alleviate the inefficiencies of existing state retention
methods, reducing accumulated suspend and restore time by 26.8–86.9 %, at a small
cost in runtime overhead (1.05–1.14×) for applications with good locality. For appli-
cations with poor locality, tracking becomes expensive (6.81× overhead), but this may
be alleviated by improving locality (1.48× overhead). After a setup phase, where the
user characterizes the voltage drop of the device while saving a checkpoint and set
up parameters such as the page size, ManagedState provides functionality to limit the
amount of state to be saved when power fails, and to adapt suspend and restore voltage
thresholds. Limiting the amount of state to be saved when power fails, allows larger
application size (.data >4 kB) without corrupt checkpoints. Runtime calculation of
suspend and restore thresholds capitalize on efficient state retention to improve en-
ergy efficiency, while still protecting against corrupt checkpoints. Combining memory
tracking using ManagedState, and runtime suspend and restore threshold calculations
resulted in up to 5.3× faster workload execution time when on-time was short.

The software developed for this work is published as a library with a build system, ex-
amples and usage instructions at https://git.soton.ac.uk/energy-driven/iclib.

Pertinent to Q2, these results indicate that although hierarchical memory is not typi-
cally used in microcontrollers, it may be warranted for IC. A large portion of the over-
head incurred by tracking and managing memory could be alleviated by implementing
the functionality in hardware, for example with a cache. Hardware support and mem-
ory architecture to support IC is are topics researched in Chapter 5. But first, to enable
research of hardware support for IC, an appropriate modeling method is required. The
next chapter addresses the challenge of modeling IC systems, i.e. Q3.

https://git.soton.ac.uk/energy-driven/iclib
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Chapter 4

Modeling intermittent computing
systems

4.1 Introduction

In the previous chapter, it was found that tracking active and modified regions of mem-
ory could significantly improve the performance of IC systems. However, doing so in
software is inefficient, and cumbersome as the programmer is tasked with annotating
data usage. A better way would be to use hardware support to perform the tracking
and management of data. To research hardware support for IC, though, an appropriate
modeling method is required. This chapter addresses that challenge, i.e. Q3.

As mentioned in § 2.7.1, the two main approaches to researching new hardware is ana-
lytical modelling and simulation. At the level of detail necessary to research Q2, simu-
lation is the appropriate approach, as it can enable:

• detailed exploration of new hardware logic; and

• hardware-software co-design, where hardware and software is partitioned, de-
veloped, tested and evaluated in parallel.

Simulation is, however, a broad term and can be applied at widely different levels of
abstraction. The digital part of integrated circuits, are, for instance, usually designed
and simulated using RTL abstraction, then synthesized to lower abstractions (netlists)
and simulated further (before eventually being taped out for manufacture). RTL is,
however, often too detailed for efficient and flexible design space exploration, thus
electronic system level (ESL) simulation tools were created. Among non-proprietary
tools, SystemC, supported by the open IEEE standard 1666-2011, stands out as the most
prominent. It allows modelling at various levels of abstraction spanning from a very
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high level using transaction level modeling (TLM) (OSCI TLM-2.0), down to approxi-
mately the level of RTL. It also has supporting libraries for surrounding functions such
as verification with unified verification methodology (UVM) and modeling of analog
and mixed signal (AMS) components. As such, it is a good basis for creating a simulator
for IC that addresses Q3 and can be used to address Q2 and beyond.

Being governed by energy availability, the operation of IC systems is difficult to rea-
son about, validate, and debug [27, 63, 100]. Traditional development, validation and
debugging tools typically assume that energy is always available, rendering them im-
practical when targeting intermittent operation.

Existing simulation tools used or proposed in prior IC research all lack in one or sev-
eral important areas, as described previously in § 2.7.3. Table 4.1 and the following
paragraph summarizes the previous discussion.

TABLE 4.1: Qualitative comparison of simulation tools pertinent to IC.

Simulator

Energy
consump-
tion

Energy
input

Closed
loop General

HWSW
congruent AMS

gem5 [17] ✓ ✓ ✗ ✓ ✓ ✗
NVPSim [157, 163], ✓ voltage trace ✗ ✗ ✗ ✗
Ma et al. [95] ✓ voltage trace ✗ ✗ ✓ ✗
Siren [45] limited ✓ ✓ ✗ ✓ ✗
NORM [121] ✓ voltage trace ✗ ✓ ✓ ✗
Fused (this chapter) ✓ ✓ ✓ ✓ ✓ ✓

First, the simulator must model energy consumption e.g. energy harvesting. All prior
methods have some form of energy consumption modeling, although some are lim-
ited. Siren, for example, uses an overly simplistic model which simply tallies the count
of executed instructions and multiplies it by a constant instruction energy. In reality,
the energy per instruction depends on several other factors, such as memory accesses,
internal states etc. Second, energy input must be modeled, e.g. in the form of a model
of an energy harvester. Again, all methods do model energy input, although some use
static voltage traces to do so; thus they are unable to model the effect of the load cur-
rent on the input energy. The fourth column specifies whether energy and execution is
modeled in a closed loop. This is important to model energy consumption and input
correctly when execution depends on energy conditions, as is the case in IC. To empha-
size this point: consider a device that is about to run out of stored energy, as indicated
by the supply voltage dropping below a certain threshold. In reality, that device would
likely start performing numerous writes to NVM, which would deplete the stored en-
ergy quickly, meaning that the supply voltage drops: the device under test is mainly
constrained by energy, not by time. The voltage-trace based systems do not model this –
the voltage trace is not affected by the device’s power consumption – so the device will
seemingly have a time-constraint on checkpointing, rather than an energy-constraint.
Siren is the only current method that checks this box, the others model execution first,
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and estimate power afterwards based on an activity trace. The fifth column specifies
whether the simulator is general purpose, in the sense that it can be used to model dif-
ferent hardware architectures, i.e. different CPUs etc. All existing methods except gem5
and potentially NORM are purpose-built for a specific microcontroller, and are thus not
general in this sense. The sixth column specified whether each simulator is hardware-
software (HWSW) congruent, meaning that the same software binary runs on both the
targeted hardware and in simulation. This can be an important aspect for evaluation
and hardware-software co-design. NVPSim uses mocked peripherals that require spe-
cialized driver code, and hence the simulator is unable to execute the same binary as
the targeted hardware. Finally, AMS simulation, i.e. the ability to model complex ana-
log and mixed-signal components, is important in IC, as power components (voltage
regulators, voltage detectors, capacitors etc.) are analog components which should be
modeled as such. This is an area where none of the existing methods tick the box, as
none of them are based on a simulation framework that supports AMS.

To address the gap in simulation tools, and as an enabler and accelerator for the re-
search and development of intermittent computing systems, this chapter proposes Fused1,
a mixed-signal SystemC-based simulator that:

• simulates execution, power consumption, and power supply in a closed loop,
thus enabling efficient hardware-software co-design and design space exploration
in energy-driven computing;

• hosts a GNU debugger (GDB) server to interface with most software development
environments;

• enables debugging functionality across power cycles, and the ability to freeze and
step through the dynamic energy state in lockstep with execution;

• executes unmodified binaries to be deployed on real hardware, and can integrate
existing CPU emulators with relatively little development effort;

• enables modeling of external circuitry, such as energy harvesters and power man-
agement circuits, improving repeatability in evaluation.

Hardware-software co-design, whereby hardware and software are developed simul-
taneously and continuously tested with each other, will become increasingly important
for IC in coming years, as a plethora of new NVMs are emerging [24]. By designing
hardware and software simultaneously, the implementation of desired functionality
can be partitioned between software and hardware to optimally balance software com-
plexity, hardware PPA (power, area and performance), and flexibility.

1Full-system Simulation of Energy-Driven Computers
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Byte addressable NVM with low access energy is a key enabler for intermittent oper-
ation, where computational progress must be retained through frequent reboots, but a
simulation tool such as Fused is necessary to determine which of these NVMs to choose,
and how best to utilize them.

The key contributions presented in this chapter are as follows:

• Fused, a simulation framework tailored towards modeling energy-driven com-
puters, utilizing powerful SystemC and SystemC-AMS models of computation to
succinctly, flexibly and accurately model the interplay between program behav-
ior, digital hardware, and analogue power management circuits.

• An event-based power modeling methodology, leveraging timing-accurate simu-
lation to correlate a small set of high-level events with the power consumption of
a COTS microcontroller.

• A case-study that demonstrates hardware-validated simulation of a state-of-the-
art intermittent computing system using Fused.

This chapter begins by introducing the experimental platform used for evaluation (§ 4.2),
then gives an overview of Fused’s model architecture (§ 4.3), before describing its high-
level event-based power modeling methodology (§ 4.4). Fused is then evaluated through
experiments (§ 4.5), and finally a case-study shows how it is able to accurately model a
state-of-the-art intermittent system (§ 4.6). This chapter is based on [131].

4.2 Experimental Setup

The experimental platform used for the validation of Fused is a customized version of
the MSP430FR5994 Launchpad Development Kit, which was used in Chapter 3. A sim-
plified schematic is shown in Figure 4.1. The development board was modified in or-
der to more efficiently support intermittent operation, and to provide high-bandwidth
measurements of the microcontroller’s current consumption. During the experiments
performed for this work, the clock frequency of the microcontroller was set to 8 MHz.
The external circuitry (i.e. external to the microcontroller) consists of a 4.7 µF ceramic
capacitor used for energy storage, a load switch that can disconnect the microcontroller
from its supply voltage, and a low-power comparator with built-in voltage reference
and hysteresis that monitors the supply voltage.

When charging the system from a cold start (vcap = 0 V), the load switch remains open
until the comparator closes it, i.e. once vcap >3.5 V. The microcontroller must then ac-
tivate a pull up on the positive input of the comparator to keep the switch closed. If
the GPIO pin is left in a high impedance state (High-Z), the comparator will open the
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FIGURE 4.1: Hardware test platform.

switch at vcap = 3.4 V, due to its 0.1 V built-in hysteresis. By enabling pull-up on the
GPIO pin, the microcontroller can keep the switch closed, and thus remain operational
until it decides to open the switch to recharge C1, or until vcap drops below the mini-
mum operating voltage and the microcontroller browns out. The microcontroller’s in-
ternal analog to digital converter (ADC) is used to detect power failures, so that it can
save execution context to support IC; the internal comparator in the microcontroller
could also be used for this purpose. While the microcontroller is powered off, its GPIO
pins are left in an undefined state; the diode in Figure 4.1 prevents current from flowing
into the GPIO pin in this situation.

The current sense amplifier converts milliamperes of current draw to volts (1 V/mA),
and is used for gathering high-bandwidth (100 kHz) current traces of the microcon-
troller’s current consumption. This capability is used to profile the microcontroller’s
current consumption, to run regression, and for evaluation. The current sense ampli-
fier is powered by a separate supply, so that its power consumption is excluded from
measurements. An oscilloscope is used to measure the current sense output, and a logic
analyzer for monitoring microcontroller pins; both measurements were triggered by a
common GPIO pin.

4.3 Model overview

This section describes the overall architecture of Fused, and the main components used
to model the simulation target.

4.3.1 Implementation

To accurately model the complex dependencies between energy and execution inherent
in IC systems, Fused simulates energy and execution in a closed loop, as illustrated in
Figure 4.2. Note that the figure shows a simplified minimal view, where power man-
agement circuits etc. are omitted. An execution model executes the target software
binary and outputs a list of simulation events and module states. It also reads input
signals from the analog domain, such as the current supply voltage. In the simplest
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FIGURE 4.2: Abstract view of Fused’s closed-loop energy and execution simulation.
Thin black lines show analog signals, and the thick gray line represents module states
(CPU, memory and peripheral states) and event counts (memory accesses etc.) used
by the power model to predict the microcontroller power consumption. All blocks are

evaluated in every time step.

case, execution halts and volatile state gets reset when the supply voltage drops below
a certain threshold. In more advanced cases, software can, for example, read the value
of the supply voltage via an ADC peripheral, and use the result to determine when to
checkpoint or restore.

The power model receives the simulation events and module states from the execution
module, and uses them to calculate instantaneous power consumption, which is then
fed to an energy storage model. On the other side of the energy storage model, a power
supply model provides input current (dependent on the supply voltage, i.e. the load
voltage as seen from the perspective of the power supply). The energy storage model
then calculates the instantaneous supply voltage based on outgoing power, incoming
current, and its own capacitance.

In this way, Fused is able to model how execution affects power consumption, how
power consumption affects the supply voltage, how the supply voltage affects execu-
tion, how power consumption affects input power, and so on, in a closed feedback
loop.

Fused is implemented using SystemC, an open C++ based IEEE-standardized language
for designing and modeling digital electronic devices. SystemC brings the advantage
of combining several different models of computation to allow a high degree of flexi-
bility for fast design space exploration, while allowing more detailed modeling where
necessary.

To achieve high simulation speed and flexible target architecture, most of the mod-
ules within Fused are implemented using TLM, a high-level fast and flexible modeling
methodology which, in simple terms, models hardware as function calls rather than
signal toggling. Where more detailed simulation is required, i.e. within peripherals,
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FIGURE 4.3: Illustration outlining how the software implementing Fused is organized.

and for interrupts, RTL-like modeling is used. Furthermore, by use of the SystemC
Analogue and Mixed-Signal extensions (SC-AMS), complex power supplies and power
management circuits are be modeled accurately, flexibly, and in a closed loop with ex-
ecution.

The software implementing Fused is organized as illustrated in Figure 4.3. Apart from
support functionality (config, libs, test), the implementation can be roughly divided
into modelling the internals of the microcontroller, and the outside world. The mi-
crocontroller (mcu) model embodies models of CPU(s), peripherals, memories etc., and
also contains some support models used to standardize how models interact with each
other. The models within the microcontroller generally communicate through a TLM
bus, plus some additional interfaces where required. The outside world comprises se-
rial devices, such as an SPI-accelerometer, and power-related circuitry (ps). ps includes
basic electronic components such as capacitors, load switches, voltage detectors and
voltage regulators, but also energy sources – i.e. energy harvesters and various power
supply models. Finally, the board model is used to instantiate all components and con-
nect them together, forming a model of a full PCB. The following subsection describes
how Fused is used to implement a specific simulation model.

4.3.2 Simulation target

The initial version of Fused targets a typical embedded system, consisting of a mi-
crocontroller, power management circuitry, and a power supply, as described in § 4.2.
Specifically, the MSP430FR5994 microcontroller is used as the target for the evaluation
in this chapter. This microcontroller has been widely used in the energy-driven com-
puting community because its low-power, byte-addressable and non-volatile FRAM
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FIGURE 4.4: Model architecture of Fused. This proof-of-concept implementation tar-
gets the system shown in Figure 4.1, but all modules within the virtual prototype, ex-

ternal circuitry and supply can readily be modified or replaced.

enables efficient state retention through power cycles. Fused’s microcontroller model
implements a subset of the modules within an MSP430FR5994, including a CPU core, a
bus, memories, some internal peripherals, and some externally interfacing peripherals.
An overview of Fused is shown in Figure 4.4.

The following subsections describe each component of the model.

4.3.3 Software interface

To enable efficient hardware-software co-design, Fused hosts a GDB server that acts as
the target software interface to the model. This GDB server was adapted from Em-
becosm’s reference design2. Through the GDB interface, code can be debugged in the
same way as on a hardware platform, i.e. with breakpoints, single-stepping, memory
examination etc.

Because Fused models power and execution in a closed loop, the analog circuitry also
pauses when execution is halted by the debugger. Thus Fused adds the capability of step-
ping through code in lockstep with the dynamic power supply and energy storage. This can
be an important feature, e.g. for IC devices which race to finish saving state before the
stored energy runs out. Using monitor outputs, such as an execution trace linked to
the supply voltage, the programmer can refine the application by iterative testing us-
ing Fused. When satisfactory results are achieved, the same application binary can be
deployed onto the real device.

4.3.4 CPU

Fused includes CPU models for the MSP430 and the Armv6-M instruction set architec-
tures, which execute unmodified binaries to achieve hardware-software congruity. The
Armv6-M is adapted from the open source Thumbulator3, whereas the MSP430 model

2Documented at https://www.embecosm.com/appnotes/ean4/embecosm-howto-rsp-server-ean4-issue-2.
pdf. The version adapted for usage in Fused is available at https://github.com/uos-eec/gdb-server

3Available at https://github.com/dwelch67/thumbulator.

https://www.embecosm.com/appnotes/ean4/embecosm-howto-rsp-server-ean4-issue-2.pdf
https://www.embecosm.com/appnotes/ean4/embecosm-howto-rsp-server-ean4-issue-2.pdf
https://github.com/uos-eec/gdb-server
https://github.com/dwelch67/thumbulator
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was implemented by the author. All memory accesses from the CPU models go through
the SystemC bus, and they use Fused’s API to consume simulation time. Fused is de-
signed to be flexible, so that other microcontrollers and instruction set architectures can
be modeled with minimal effort. To enable comparison with real hardware, the evalu-
ation on Fused is focused on an MSP430-based microcontroller, which is also currently
the most widely used platform in published works on IC due to its energy-efficient
on-chip FRAM NVM.

4.3.5 Bus

To allow flexible modeling of different hardware architectures, comprising several het-
erogeneous peripherals and memories, the bus model is implemented using a TLM
interface. Thus bus targets (peripherals etc.) can be flexibly instantiated, attached and
address mapped when composing the model. For evaluation, the data and bus width
are set to 16 b for the MSP430FR5994 model. Later, in Chapter 5, the bus is instantiated
with 32 b address and data.

4.3.6 Peripherals

Further aiding in flexibility, peripherals implement a common blocking TLM interface.
This means that adding new peripherals requires minimal effort as they implement a
common interface. Additionally, most peripherals have one or more interrupt request
outputs, which are routed to the CPU via an interrupt arbiter. Externally facing periph-
erals have their ports routed to the top level microcontroller interface, so that they can
interact with external digital and analog signals.

4.3.7 Power management module

The power management module (PMM) monitors the supply voltage, and controls the
core voltage within the microcontroller, turning it on when the supply voltage reaches
approximately 1.88 V, and turning it off when it drops below approximately 1.80 V.
Fused models this behavior with a signal PWR GOOD. While PWR GOOD is asserted,
execution continues, otherwise it is halted. A reset to default values for all internal
registers and volatile memory is performed on the positive edge of PWR GOOD.

4.3.8 Memory

The bus communicates with memory through a blocking TLM read/write interface,
where the memory module annotates the transaction with access delay. The volatile
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byte-addressable SRAM memory has a simple single-cycle access delay. The non-
volatile byte-addressable FRAM memory caches reads to reduce power consumption
and average access latency. Its access time is nominally one clock cycle, but additional
wait states on miss can be added by use of a control register; this is to avoid access
time violations when running the CPU at clock speeds above 8 MHz. The cache con-
sists of four 64 B lines arranged in two sets. From experiments with the MSP430FR5994
(see § 4.5), I found that writes go directly to FRAM, invalidating hits in the cache, and
that the replacement policy is likely to be LRU (least recently used). Because the mem-
ory model in Fused is implemented in TLM, changing the bus parameters, memory
sizes and delays, etc. requires minimal effort.

4.3.9 Event & state logging

Fused implements a global logger that records states and event rates at runtime. Each
module, i.e. a memory, registers its events during elaboration and reports the event on
each occurrence. Similarly, they report their state at the beginning of simulation, and
whenever their state changes. Event counts within a configurable time step (e.g. 100 µs)
are then aggregated, logged, and reported to the power estimator.

4.3.10 Power estimator

The power estimator computes the current consumption of the microcontroller based
on the state and event counts within the current time step. It estimates current con-
sumption rather than power, because of the targeted platform’s on-chip linear voltage
regulator, which draws (relatively) constant current regardless of supply voltage. This
current is then fed to the external circuitry.

4.3.11 External circuitry and power supply

Circuitry external to the microcontroller is modeled in the timed data flow (TDF) model
of computation, i.e. essentially a set of equations that are evaluated according to a static
schedule. For evaluation, the model includes a constant-current power supply model,
also modeled in TDF, but the power model can readily be exchanged for a different
supply that e.g. models an energy harvester, or replays EH traces.

4.4 Power modeling methodology

This section describes the proposed methodology for profiling and modeling the en-
ergy consumption of a real hardware platform. This is useful both for modeling real
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FIGURE 4.5: Average current consumption across all kernels as a function of supply
voltage, normalized to the current draw at 2V.

systems, and for estimating the effect of changes to the hardware. The power model is
modular, so if hardware is unavailable, the parameters can also be found from e.g. an
RTL power estimation flow. The proposed methodology is similar to ILPM [23], com-
monly used for high-level power modeling of microcontrollers. However the power
model used herein is focused on memory access energy, in place of per-instruction
energy, because the target platform’s energy consumption depends more strongly on
memory accesses than on instructions [66]. The energy consumption of memories is an
important factor when developing microcontrollers that utilize emerging NVMs. An-
other key difference is that the model developed herein relies on far fewer parameters,
and thus substantially decreases the burden on writing test programs.

The primary objective of the power model used for this demonstration of Fused, is to
obtain an explainable model with a high degree of generality, and thereby avoiding
over-fitting (rather than demonstrating the highest possible accuracy). To this end,
multiple linear regression with a minimal set of explanatory variables4 was used. The
explanatory variables were mostly based on memory accesses. Other users of Fused
may choose to include more numerous and detailed explanatory variables to gain ac-
curacy, especially if tailoring the model towards specific hardware or investigating the
power consumption of specific instructions.

The power estimator of Figure 4.4 estimates power consumption in the current time
step based on module states and event-counts. In this context, a module is any part of
the model which has a state that may consume current, e.g. a peripheral. To do that,
it multiplies each event count with its energy consumption, and similarly sums the
current consumption of each module state. The current consumption, icc, per time step
can be expressed as

icc = (
ΣEkck

vcore∆t
+ ΣIm,s) · creg(vcc), (4.1)

4Explanatory variables are the inputs to the regression model, used to predict a scalar response. A
common alternative term for “explanatory variable” is “independent variable”. Similarly “dependent
variable” is often used instead of “result scalar”.
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FIGURE 4.6: A selection of measured current traces, showing that current consump-
tion is highly application-dependent, and can exhibit relatively large variations over

time.

where Ek is the energy consumption per occurrence of event k, ck is the number of
occurrences of event k within the current time step, vcore is the core supply voltage, ∆t
is the duration of the time step, Im,s is the current consumption of module m in state
s, and creg(vcc) is a factor to compensate for current variation as a function of supply
voltage. The first term within the parentheses in (4.1) converts dynamic energy (events)
into current consumed at the core voltage, the second sums the current consumption
of states. Note that the target platform demonstrated herein uses an internal linear
regulator to convert the external supply voltage, vcc to the internal supply voltage, vcore,
and thus should ideally draw constant current regardless of supply voltage (within
operating bounds). However, the current consumption increases when vcc approaches
the maximum operating voltage of 3.6 V, as shown in Figure 4.5. To compensate for
this, the current consumption is multiplied by creg(vcc), implemented as a lookup table
of the sample points from Figure 4.5.

4.4.1 Power profiling

To find the energy and current consumption attributable to each event and state, re-
spectively, a power profiling flow based on correlating current measurements from
hardware with event and state logs from simulation is proposed in this section. This
method leverages timing accurate simulation to pinpoint how much power consump-
tion to attribute to each event.

First, traces of the current consumption of all test programs are measured on real hard-
ware. In this step, it can be beneficial to use a high sampling rate, effectively to gain
a large number of samples per test program, so that the model can be robust despite
fewer test programs. Figure 4.6 shows three examples of current traces from three test
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programs chosen to demonstrate that the average current consumption varies substan-
tially between applications, and, in some applications, also varies rapidly over time.
Thus a model that assumes constant power consumption over time and across work-
loads, is bound to have large errors.

Then, the workloads are simulated to collect event and state logs. A GPIO pin is used
to indicate the start of each iteration of the workloads, so that measured current traces
and simulated logs can be synchronized temporally. These synchronized event logs
and current traces are then passed on to a regression step, which estimates the energy
consumption attributable to each state and event.

4.4.2 Selecting explanatory variables for linear regression

Fused can record an arbitrary amount of events during simulation, but not all of these
are useful for power modeling. To obtain an explainable and stable model with a high
degree of generality, a minimal set of generic explanatory variables was chosen:

• FRAM-RHIT: Read hits in the FRAM cache. These reads are served from the
cache, without incurring FRAM accesses.

• FRAM-RMISS: Read misses in the FRAM cache. These cause a read from FRAM,
loading a cache line, before serving the data.

• FRAM-W: Writes to FRAM. The written data goes directly to FRAM. If the data
is present in the cache, the relevant cache line gets discarded.

• SRAM-RW: Total number of accesses to SRAM.

• EX: CPU execution cycles, here defined as cycles where the CPU does not fetch or
store any data.

Fused also records the rate of occurrence of each instruction, addressing mode and
more. Including these variables may improve the accuracy of the power model, but
would require a vast set of test programs to ensure that every instruction is exercised
sufficiently.

For the final regression step, the non-negative least squares (NNLS) method is used
to ensure non-negative values for all events and states, corresponding to physical in-
tuition (events cannot consume negative energy). The correlation coefficient of each
event k, coe f fk, is multiplied by vcore and the time step between samples, ∆t, to obtain
Ek, the energy-consumption per occurrence of the event:

Ek = ∆t · vcore · coe f fk. (4.2)
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FIGURE 4.7: Current consumption during hardware boot.

4.4.3 Hardware boot

When powering up the microcontroller, energy is consumed while the hardware boots,
before any code is executed. The current draw during hardware boot was similar
across power cycles, as observed through oscilloscope measurements of the hardware.
Figure 4.7 shows the boot-current trace averaged over 128 power cycles, measured by
power-cycling the microcontroller while measuring the current consumption with an
oscilloscope. Since the real hardware’s operation during boot is undocumented, Fused’s
PMM replays the current trace of Figure 4.7 during boot, and delays execution for its
duration. Most simulators can safely ignore this boot current, because the systems they
target rarely reboot; for energy-driven computers, however, reboots can be frequent,
and may constitute a significant part of total energy consumption (demonstrated in
Figure 4.13).

4.5 Experimental Validation

4.5.1 Computational kernels & benchmarks

To generate inputs to the regression model, and to evaluate simulation accuracy, and
check for specific microarchitectural features, a suite of computational kernels and
benchmarks was assembled. The computational kernels are small assembler programs
written to exercise specific operations of the targeted microcontroller. These operations
include: read and write accesses to FRAM, read and write accesses to SRAM, sparse
and dense reads from FRAM (to exercise the cache), jumps, and copying data between
memories. The computational kernels are not necessarily representative of real work-
loads, but help in validating correct execution, and in generating data for the power
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model. The following list gives a short description of each kernel. The source code for
all kernels is available at https://github.com/sivertism/msp430fr5994-microbenchmarks.

• kF: A series of MOV instructions between variables located in FRAM.

• kF-raw: A series of MOV instructions that write and then immediately read vari-
ables located in FRAM. This kernel exposes whether writes invalidate cache data.

• kF-wsingle: A series of MOV instructions that write to a single variable located in
FRAM.

• kF-wsinglesparse: A series of MOV instructions that write once to each of five
sparsely located variables in FRAM in a loop.

• LRUTest: A series of JMP instructions executed from FRAM that jump to specific
locations to test whether the cache replacement policy is “least recently used”.

As representative workloads of embedded systems, several computational workloads
from the BEEBS [109] online repository were ported. The workloads include common
mathematical and data structure operations, and cryptographic workloads such as AES
encryption, and SHA256 hashing. The data memory footprint (data+bss and stack)
and code memory footprint (text+const), as well of a short description of each work-
load is shown in Table 4.2. For the remainder of this chapter, the term “workloads” will
be used when referring to both kernels and workloads.

Because the current consumption of the target platform depends heavily on memory
allocation and access patterns, several permutations of

{CODE, DST DATA, SRC DATA} ∈ {FRAM, SRAM},

were generated, i.e. permutations of allocating each of the three sections (LHS) to each
of the memories (RHS). This is denoted in the benchmark names as CDS, where C is
the code section, D is the destination data section, and S is the source data section. A
kernel with its code allocated to SRAM, that copies data from FRAM to SRAM would
thus get the suffix SSF. The stack was allocated to SRAM.

4.5.2 Execution time

To evaluate the simulator’s execution time accuracy, the completion time of all work-
loads was simulated and measured on real hardware. A GPIO pin indicated the start
and completion of each test program. The geometric mean percentage error, across all
benchmarks, between the simulated and measured completion time, was found to be
0.20%, and the maximum percentage error 1.16%.

https://github.com/sivertism/msp430fr5994-microbenchmarks
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TABLE 4.2: List of names and memory footprints for workloads used in the evaluation
of Fused. Sizes listed are in bytes. Source code for all workloads is available at https:

//github.com/uoS-EEC/fused-workloads.

Name stack data+bss text+const Description

aes 512 2068 1044 Encryption
dijkstra 512 140 4420 Networking
fp 512 24 19976 Floating point arith-

metic
matmul 512 36 5878 Integer matrix mul-

tiply
matmul-tiled 512 4126 4078 Tiled implementa-

tion of matmul
memcpy 512 222 3864 c-library memcpy
memcpy asm 512 420 3564 Hand-crafted mem-

cpy
nettle-sha256 512 4270 1162 Secure hash
newlib-exp 512 4522 3102 Exponential of float

number (s)
newlib-log 512 220 3136 Logarithm of float

number (s)
newlib-mod 512 2420 16 Modulo of float

number (s)
newlib-sqrt 512 24 6130 Square root of float

number (s)
sglib-arraybinsearch 512 1320 1908 Binary search
sglib-arrayheapsort 512 4570 2862 Heap sort
sglib-dllist 512 4602 12684 Doubly linked list
sglib-hashtable 512 2104 1100 Hash table
sglib-listinsertsort 512 620 5548 List insert sort
sglib-listsort 512 20 2334 List sort
sglib-queue 512 426 5416 Queue
sglib-rbtree 512 4322 1404 Red-black tree

4.5.3 Cache model

To validate the cache model in Fused, the simulated cache miss rate was compared to
the real hardware miss rate. Herein, the miss rate is defined as being the ratio of cache
misses over accesses, i.e. including both reads and writes. However, there are no direct
ways of measuring miss rate on the real platform, so an indirect measurement was
used.

To measure the miss rate,the execution time was measured while setting the FRAM
cache miss penalty, WS, to 0 and to 15 clock cycles; setting WS = 15, causes the CPU
to stall for 15 clock cycles on every cache miss, and hence the execution time becomes
highly sensitive to the miss rate. The miss rate of a test program can then be calculated
as

https://github.com/uoS-EEC/fused-workloads
https://github.com/uoS-EEC/fused-workloads
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FIGURE 4.8: Cache miss rate across benchmarks with more than 1000 total FRAM
accesses.

MR =
fclk(tWS15 − tWS0)

15
· 1

nR + nW
. (4.3)

The first term calculates the total number of cache misses, and the second calculates
the access rate. The clock frequency is denoted fclk, tWS15 is the execution time when
setting WS = 15, tWS0 the execution time when setting WS = 0, and nR + nW is the
number of read and write accesses to FRAM.

Figure 4.8 shows the measured and simulated miss rate. The geometric mean error be-
tween measurement and simulation is 2.69 %. However, the model significantly under-
estimates the miss rate for certain programs. In the worst case, i.e. for sglib-listsort-FSS,
the measured miss rate was 30%, but the simulated miss rate was only 17%.

The cache in the MSP430FR5994 is sparsely described in documentation. The cache is
specified as a two-way set associative cache with a total of four lines holding 64 bits
each. Writes to FRAM bypass the cache. However, the documentation does not declare
which replacement policy and write policy is used.

To ascertain which write policy is used, a micro benchmark, kF-raw, that repeatedly
writes to and then reads from the same location in FRAM was designed. The cache
miss rate was found to be 100 %, meaning that: on a write to FRAM, if the destination
data already exists in the cache, it gets invalidated rather than updated. This is often
referred to as a write-around policy.
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FIGURE 4.9: Energy consumption per occurence of events included in the power
model.

The read policy of the cache is not specified in documentation, so LRU, first in first
out (FIFO) and least frequently used (LFU) policies were simulated, and the one that
best correlated to measurements was selected. Additionally, a micro-kernel, LRUTest,
was designed to be sensitive to whether the replacement policy is LRU or FIFO (the two
most likely candidates). The measurements from the LRU test, and from correlation
indicate that the replacement policy is LRU.

The results of this analysis of cache miss rates indicate that the cache used in the
MSP430FR5994 does implement write-around write policy, and a LRU-like read pol-
icy, but that there is additional undocumented behavior during reads, that the cache
model does not cover.

4.5.4 Power estimation

To run regression and evaluate Fused’s power model, a set of 61 workloads were run
on the hardware platform. Then 30 ms current traces were recorded, starting from the
beginning of each workload (as indicated by a GPIO pin). The measured traces were
sampled at 1.25 MHz, and averaged over 128 runs of each workload. Simulations were
performed with a time step of 100 µs. The measured traces were then downsampled by
averaging, to match the simulation sample rate, before the correlation step; 100 µs was
chosen as the sampling rate to allow some degree of temporal misalignment between
measurement and simulation.

The estimated energy of each event, obtained through NNLS, is shown in Figure 4.9.
Accesses to FRAM are in excess of 3× more costly in energy than those that can be
served by the FRAM cache, or SRAM. This implies that, without knowing the cache
miss rate of specific applications, power estimates will be severely inaccurate.
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Figure 4.10 shows the measured average current of all workloads on the left bar, and
their estimated average current on the right bar. Current is used in place of power
because of the targeted platform’s on-chip linear voltage regulator. A portion of the
workloads were used exclusively for evaluation, in order to evaluate the power model
for unseen workloads. The bars for the estimated current also show the contributions
attributable to each power model event. In general, FRAM-RMISS and FRAM-W are
the strongest two predictors of current consumption, as expected from the device data
sheet. The kernels kF-raw and kcache-sparse are both designed to have very high rates
of access to FRAM; the first repeatedly reads and writes to the same FRAM-allocated
variable (to test the write policy), the second consists entirely of long jumps that force
a cache miss every second clock cycle. On the low-current end are workloads which
operate mostly out of SRAM, or have very low miss rates in the FRAM cache. Across
all benchmarks, the geometric mean error of the current estimates is 3.4%, and the
maximum error is 23.0%.

4.6 Case study: Simulating intermittent computing systems

To demonstrate Fused’s ability to simulate truly energy-driven systems, this section
presents a case study that models the AES workload running under ManagedState from
Chapter 3, and compares simulation results to real hardware.

In regards to simulation, an important aspect of ManagedState is that, unlike most reac-
tive IC methods, the time and energy consumption of the suspend and restore operations
vary during runtime based on how much state needs to be saved and restored. Further-
more, ManagedState adapts its suspend threshold at runtime, depending on the number
of pages that need to be saved during the next suspend (the adaptive restore threshold
was disabled during these experiments, because the external comparator has a constant
restore threshold). These complications necessitate simulation over analytical methods.

4.6.1 Experimental setup

A current-limited power source was used to power the hardware platform, and the
completion time of a workload that encrypts a 2 kB string using AES was measured on
the hardware platform shown in Figure 4.1. This power source setup resembles that
of a system connected to a solar harvester, but under more controlled conditions for
the purposes of this demonstration. The current was varied from 200 µA to 2 mA in
100 µA steps. To avoid damaging the hardware, the power supply output voltage was
limited to 3.59 V. For the following experiments, ManagedState was configured to assert
a pull-up on the “keep alive” GPIO pin early in the boot process, and to de-assert it at
the completion of suspend.
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ered by a current-limited power source.

4.6.2 Results & analysis

Figure 4.11 shows a sample trace from Fused, where GPIO pins indicate when the sys-
tem was active, the start of the benchmark, when a previous checkpoint was restored,
and when state was suspended.

Figure 4.12 shows the measured and simulated completion time of the application, for a
range of supply currents, measured as the duration between positive edges on the start
signal. The completion time increases exponentially with a linear decrease in supply
current, mostly due to increased recharging time: as the supply current decreases, on-
periods become shorter, and charging periods longer. The maximum error between
simulation and measurement was 6.8 %, at the lowest-current measurement point. The
mean absolute error was found to be 2.2 %. As indicated on the figure, the platform is
continuously on for input currents larger than 1.5 mA.
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Figure 4.13 shows the simulated energy consumption of the full system, calculated from
the simulated current and voltage traces, and divided into components. The energy de-
noted “compute” is calculated as the energy consumption of the microcontroller while
it is active, but not restoring or suspending. The increase in energy consumption at
supply current limits exceeding 1.4 mA is caused by an increase in the average supply
voltage; beyond 1.6 mA, the power supply is voltage-limited to 3.59 V. The compute
energy remains relatively constant for supply current limits below 1.4 mA because the
average supply voltage remains nearly constant; this, in turn, is because the compara-
tor has a fixed on-threshold, and ManagedState adjusts the suspend threshold so that the
voltage at the completion of suspend remains nearly constant. Hence, the voltage wave-
form seen in Figure 4.11 remains similar, although temporally stretched/compressed.

The energy overhead of hardware-boot, suspend and restore grows linearly with the
number of power cycles required to complete the workload. Even for the lowest-
current measurement point, where one iteration of the workload spans an average of
70 power cycles, the combined energy overhead of restore and suspend constitute only
6.5 %.

The energy consumption of the external circuitry, however, increases proportionally
with total completion time, because it is always powered on. These simulation results
indicate that for the MSP430FR5994 platform, when the supply current is weak, reduc-
ing the current consumption of the external circuitry would likely have a larger impact
than further optimization of the suspend and restore operations.
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4.7 Discussion

Existing methods of modeling digital circuits are inadequate or impractical for model-
ing energy-driven computers because they lack flexibility (RTL), accuracy (gem5) and
closed-loop energy and performance simulation (both). Addressing Q3, this chapter
presented Fused, a full-system simulator for energy-driven computers. Its focus is on
closed-loop energy and performance simulation, as well as providing the flexibility
needed to explore new hardware and software designs to improve energy-driven com-
puters. Using Fused, a developer can rapidly get an accurate picture of the interplay
between analog circuitry, digital hardware, and software; thus facilitating IC research.

Fused models execution time with a maximum error of 1.16 % across a broad set of 61
workloads. The power model of Fused profiles current consumption of real hardware,
and correlates it to simulation events; this resulted in a power model using only five
parameters, that achieves geometric mean error of 3.4 %, with a maximum error of
23.0 % across the 61 workloads. Importantly, the power model is explainable; the power
consumption is readily attributable to specific functional units and events. e.g. NVM
writes and reads.

To evaluate Fused’s ability to model truly energy-driven systems, a case study simu-
lated a state-of-the-art intermittent computing system, and validated results against
real hardware. Fused modeled the completion time of an application running intermit-
tently with a mean and maximum absolute error of 2.2 % and 6.8 %, respectively.

Having shown that Fused can model real hardware running intermittently, Fused can
now be used to model and evaluate new hardware ideas, such as the integration of
energy-efficient NVMs and support mechanisms for IC.

It should be noted that Fused was used and evaluated within the operating conditions
and simulation targets that are most pertinent to the research aims of this thesis. When
using Fused in research, it is important that the user reviews which variables are part
of Fused’s execution and power model. For example, the power model used in this
evaluation does not consider power drawn from the microcontroller’s peripherals; if
a user wants to perform research related to the power consumption of peripherals, or
using a different microcontroller, she must first update the execution and power model
accordingly. Similarly, these experiments were performed at room temperature and
with fixed clock frequencies; to make predictions at a wider set of operating conditions,
Fused must be updated or extended accordingly.

Using Fused for modeling and evaluation, the next chapter researches the memory ar-
chitecture and hardware support for IC, i.e. Q2.
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Chapter 5

Memory-system support for
intermittent computing

5.1 Introduction

Leveraging Fused from the previous chapter, this chapter proposes a memory system
with hardware-support for IC to address Q2.

Whereas the related field of NVPs has proposed several devices that leverage recent
NVM developments to enable implicit non-volatility, few works have studied the com-
bination of hardware and software support for IC. To support reliable and efficient IC,
both areas need innovation. Utilizing energy-efficient and byte-addressable NVM and
specialized circuits is necessary to efficiently perform the core operations of IC. On
the other hand, software support is necessary to express application-level mechanisms
like atomicity, and to overcome limited hardware resources. By combining appropriate
hardware and software support, the result is a device that maintains the programma-
bility of existing software-only methods while reducing software complexity and in-
creasing performance per joule.

This chapter proposes MEMIC, a memory subsystem tailored for IC that improves ef-
ficiency and reliability while also simplifying IC software. A core tenet of MEMIC is
to combine volatile and non-volatile memories to get the best of both worlds: volatile
memory offers low latency and low per-access energy, whereas non-volatile memory
offers persistence, lower leakage power, and potentially higher density. By using an
instruction cache, and a data cache tailored for IC, MEMIC also simplifies software by
removing the need for explicitly loading instructions and data before use. MEMIC’s
data cache, which implements a software-configurable limit on the size of modified
state, also ensures that state is saved before brown-out, regardless of the application’s
data usage. Naively using a data cache instead of data SRAM would cause bugs when
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restarting an aborted FASE. To support FASEs without risking re-execution bugs or re-
sorting to double-buffered checkpoints, MEMIC uses a hardware undo-logging mod-
ule. Both caches reduce the overall energy consumption compared to systems with
only NVM, or NVM and SRAM. Unlike many software-based IC methods, MEMIC
is also compatible with complex industry-standard libraries such as CMSIS5, without
needing to modify (or even recompile) them.

The main contributions of this chapter are:

• MEMIC, a memory system comprising volatile caches, non-volatile main mem-
ory, and a hardware undo logger to enable energy-efficient IC that completes
workloads 13–39 % faster, using 13–39 % less energy, and operates under con-
ditions where state-of-the-art systems fail.

• Data cache specializations for IC which minimize writes to NVM, and provide an
adjustable bound on suspend-energy that is independent of application software.

• Hardware undo logger that provides protection against re-execution bugs when
restarting failure-atomic sections.

5.2 Memory-System Support for Reactive Intermittent Com-
puting

This section describes the design of MEMIC. It begins by specifying design objectives
followed by a description of the target technology, then presents the top-level archi-
tecture, followed by detailed descriptions of the features that MEMIC implements to
achieve the objectives.

5.2.1 Objectives

For the design of MEMIC, the following design objectives were set, derived from Chap-
ter 2 and relevant literature [97, 115, 132, 137, 138]:

1. support FASEs, with minimal roll-back cost;

2. software-configurable limit of energy needed to suspend state, i.e. to back up
volatile data in NVM;

3. minimal writes to NVM;

4. minimal suspend, restore, and roll-back energy;
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5. minimal software complexity.

Firstly, MEMIC should support FASEs, as discussed in § 2.1; for the memory system,
this implies support for rolling back state in case a FASE is aborted. Secondly, a limit
on the energy it takes to suspend is required to guarantee that every suspend operation
succeeds despite the finite energy buffer. This limit should be software-configurable
such that the same MEMIC integrated circuit can be employed across a variety of ap-
plications, on a variety of printed circuit boards. Furthermore, this enables resiliency
against adverse effects such as capacitor degradation over time and temperature by
correspondingly adjusting the limit during deployment. In practice, this limit on the
suspend energy can be implemented as a configurable limit on how many modified
bytes are held in volatile (cache) memory. When this limit is reached, some modified
state has to be saved in NVM before more modified state can be added. The final
three objectives are optimization goals. Minimizing writes to NVM as well as suspend,
restore, and roll-back overheads leads to better end-performance (i.e. application com-
pletion time). Minimizing software complexity eases the adoption of IC into a myriad
of applications, ultimately accommodating widespread adoption of battery-less com-
puting devices.

Prior works have demonstrated software implementations of the first two objectives.
FASEs can be supported by data versioning or by inserting an extra checkpoint im-
mediately before executing the FASE [12], as discussed in § 2.6. A limit on suspend-
energy can be achieved by using software to track and limit modified state, as was
done in Chapter 3. However, tracking modified state in software introduces extra soft-
ware complexity by requiring special annotations, and can significantly degrade both
performance and energy efficiency.

Since the core operations of IC (restore, checkpoint, roll-back aborted FASE) consist of
various forms of memory access tracking and control, they can be performed much
more efficiently and transparently with hardware support than a pure software im-
plementation. MEMIC will therefore employ novel hardware support to achieve the
design objectives.

5.2.2 Target technology

Fused was, in Chapter 4, developed to target the MSP430 CPU in order to enable valida-
tion against real hardware on a highly relevant platform and show that Fused simula-
tions do indeed reflect real-world experiments. However, as MEMIC includes proposed
hardware changes, the choice of target architecture was reevaluated. The MSP430 ar-
chitecture is a proprietary 16-bit CPU architecture available only from a single vendor
(Texas Instruments) for a limited series of ultra-low-power microcontrollers. The ma-
jority of contemporary ultra-low-power microcontrollers are, however, based on the
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FIGURE 5.1: Top-level architecture of MEMIC.

Arm Cortex-M series of 32-bit CPU architectures. These are available through licensing
from Arm. Microcontrollers using an Arm Cortex-M CPU are today available from most
microcontroller vendors.

To make MEMIC relevant to a broad set of microcontrollers, MEMIC therefore targets
the Arm Cortex-M0+ CPU. Arm Cortex-M0+ has the lowest power and cost among the
Cortex-M series, and is thus likely the best fit for IC. It should be noted, however,
that MEMIC does not rely on a specific CPU architecture or specialist instructions, so
porting MEMIC to a different CPU architecture is likely be straightforward.

On NVM technology, Chapter 2 found that MRAM is the primary candidate to replace
flash memory in advanced process nodes for microcontrollers. MRAM is proven to
scale to smaller device geometries, and is commercially available from foundries [50],
and as standalone memory chips [134]. Microcontrollers using embedded MRAM are
also beginning to emerge [5]. MEMIC therefore primarily targets MRAM NVM, al-
though the proposed hardware and architecture could likely be used for other NVMs
as well.

5.2.3 Top-level architecture

To achieve the design objectives, MEMIC leverages existing memory subsystems like
caches and an undo-log, specializes these for IC, and arranges them in a synergistic ar-
chitecture that covers their weaknesses. Figure 5.1 illustrates the top-level architecture,
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are numbered in the order they are performed, although not all steps are performed

for every memory access.

comprising a volatile instruction cache, a volatile data cache, a hardware undo logger,
and non-volatile data and instruction memories. The overall goal is to combine volatile
and non-volatile memory in a way that yields good energy-efficiency, by serving most
accesses from volatile memory (cache) and carefully preserving state in NVM.

Caching of data and instructions is a well-known method which is used extensively
to speed up memory accesses in high-performance computing. In the context of low-
power computing, however, caching can also provide reduced energy consumption.
The MSP430FR-series of low-power microcontrollers, for example, use a read-cache to
reduce the energy consumption of their FRAM.

This chapter shows that caching has further benefits in the context of IC. First, they
mitigate the overheads of frequently rebooting, by loading data from NVM on demand
instead of loading the entirety of data (and possibly instructions) to a separate SRAM
during boot. Second, they inherently limit volatile state; a property MEMIC leverages
and expands upon to enable software-control of the maximum suspend energy.

Employing data caching instead of a separate volatile memory can, however, compli-
cate FASE support because software has less control over which variables are volatile
and which are persistent, and must therefore assume that all variables are persistent.
MEMIC solves this by using a hardware undo-logger. In a conventional hardware ar-
chitecture, using an undo-logger would cause large overheads, as it logs every write
access to NVM. However, in MEMIC, the undo-logger is placed behind the data cache,
and thus only sees very infrequent write accesses (as shown later in § 5.3.8).



84 Chapter 5. Memory-system support for intermittent computing

MEMIC’s caches both use pseudo-random replacement policy, which is a suitable for
constrained devices due to its simplicity and robustness against cache-thrashing. The
instruction cache is a write-through cache, as writes to instruction memory are assumed
to be very infrequent (except during programming). The data cache, detailed in § 5.2.4,
is a write-back cache to minimize NVM writes (and thus also pressure on the undo-
logger during FASEs). Note that the caches and the undo logger are attached to the
NVMs instead of being attached directly to the CPU. This arrangement ensures that
memory accesses by peripherals (such as direct memory access (DMA)) are treated the
same as CPU accesses, and thus will not break idempotency or state retention. Fig-
ure 5.2a and Figure 5.2b show memory operations during normal execution, and FASE
execution, respectively; these are detailed in § 5.2.4 and § 5.2.7. The unsafe zone allows
certain memory accesses to bypass the undo logger, as detailed in § 5.2.7.

MEMIC requires that the platform has some energy stored in a capacitor (in the order of
5 µJ), and that it has a supply voltage supervisor that signals a voltage warning when
the supply voltage has dropped below a fixed threshold. The voltage warning can
be achieved using a single voltage detector, and is usually already part of brown-out
detection circuits on microcontrollers.

MEMIC provides software-configurable parameters to ensure portability across hard-
ware platforms (i.e. different end-devices with varying capacitance and power con-
sumption).

The key features implemented by MEMIC to achieve objectives 1-5 are as follows:

• a replacement policy that minimizes writes to NVM;

• MODMAX: a memory-mapped read/write register that sets a hard limit on the num-
ber of modified cache lines;

• Undo-log: Logging-support used for cache write-backs during FASE execution;

• unsafe zone: a region of memory that is excluded from undo logging.

These features are detailed in the following subsections.

5.2.4 Minimizing writes to NVM and limiting volatile state

Due to the relatively high write-energy and low endurance of NVM, design objectives
2 is to minimize writes to NVM. An effective way of achieving that is to employ a
write-back data cache upstream of the NVM (shown in Figure 5.1). In contrast to write-
through caches, which update both the internal version of a cache line and the down-
stream memory (NVM), write-back caches only update the internal version and thus
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reduce the number of NVM writes. Figure 5.2a shows the memory transactions to and
from the cache. Most read or write accesses from the bus (chiefly from CPU or DMA),
1 , are served by the cache (cache hit). Writes then only perform step 1 , and reads

perform 1 and 4 (return data). Read and write hits thus finish in a single clock cycle.
However, if the cache does not contain the accessed cache line (cache miss), it has to
load it first ( 3 ), consuming an extra clock cycle (assuming the NVM can be accessed in
one clock cycle). If the cache has to evict a modified line to make room for the new line,
a write back ( 2 ) occurs before the load ( 3 ); this cache miss with write back takes three
clock cycles in total.

Cache evictions occur due to aliasing and limited capacity. The number of such evic-
tions generally decreases with increased cache capacity and associativity1. Increasing
the capacity or associativity, however, also increases power consumption and area. In
addition to these well-known trade-offs, the configuration of the data cache also affects
suspend energy: flushing a larger cache requires more energy.

An additional approach to reducing the number of write-backs in an associative cache
is to bias the replacement policy, which selects the line in the set to be replaced when
a cache miss occurs. By biasing the replacement policy such that it prefers evicting
unmodified lines, the number of write-backs is reduced. This is achieved by modifying
the data cache replacement policy such that, within a set, it always evicts an unmodified
line if there is one; modified lines are only evicted if the set is filled with modified lines.

However, if the cache fills up with modified lines, the volatile state may grow larger
than can safely be persisted on a power failure. Furthermore, some end-devices may
have very stringent limitations on the energy buffer (capacitor). To address this issue,
MODMAX, a hard limit on the number of modified lines in the data cache is proposed.
It guarantees that the volatile state of the data cache never exceeds the limits of the
energy buffer. When the total number of modified lines in the cache reaches MODMAX,
the cache automatically evicts a single2 pseudo-randomly chosen modified line so as to
make it clean. The limit is software-configurable so that individual devices can be tuned
for process variation, runtime variation and degradation over time, without requiring
a variable suspend voltage threshold. In the simplest case, an appropriate value for
MODMAX is found for a specific device, and set to a constant value during boot. In
more advanced use cases, it can be adjusted throughout deployment. For example, as
the storage capacitor degrades over the deployment lifetime of the device, the limits
can be reduced correspondingly so that the device remains functional.

1Organizing a cache with set-associativity is common practice to reduce the number of conflicts
(aliases) by enabling each cache line to have more than one possible storage location in the data array.

2Evicting multiple modified lines upon reaching MODMAX was also considered, but there is no ben-
efit to spending N extra cycles to proactively write back N modified lines, versus spending one extra cycle
to write back one line every time MODMAX is hit. In fact, evicting a single line at a time is preferable
because it never writes back more lines than is necessary.
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Without MODMAX, the cache size would be limited by the minimum expected energy
buffer. Or, put the other way, the chosen cache size would impose a minimum capacitor
value on the end-device throughout its lifetime.

5.2.5 Suspend and restore during normal execution

When a power failure occurs during normal execution, a checkpoint is taken so that
execution can resume from exactly where it left off when power returns. The suspend
operation simply entails saving the processor registers to memory, then flushing the
cache. This operation is powered by buffered energy alone, as one must assume the
worst case where the power source has cut off completely.

When restoring after a power failure, the state is restored simply by loading processor
registers. The cache logic automatically loads data as and when they are needed.

5.2.6 Suspend and restore during failure-atomic sections

Conversely, when a power failure occurs during a FASE, execution needs to restart from
the beginning of the FASE, hence the current state must be discarded. To ensure that
code outside of the FASE never gets re-executed, and to persist writes that occurred
before the FASE, a checkpoint must be saved immediately before starting the FASE.
When a FASE is aborted, the (volatile) state kept in the CPU registers and the cache is
implicitly reset. Data which have been updated in NVM during the FASE, however,
must be rolled back before execution can continue in the next on-period. MEMIC uses
an undo logger to roll back such data, as described in the next subsection. Since the
cache and CPU registers are not backed up when a FASE is aborted, the whole energy
buffer can be used to apply the undo log, i.e. to roll-back persisted state to the beginning
of the FASE.

5.2.7 Undo logging module

Because of possible memory corruption due to write-after-read and repeated-I/O vio-
lations (see § 2.3), it is imperative that any data that has been written to NVM during
a FASE is rolled back before a FASE is restarted. Ideally, no data would be written to
NVM during FASE execution; roll-back would then simply consist of invalidating the
cache and loading the checkpointed processor registers. However, due to limited cache
capacity, write-backs may occur during FASEs too.

Taking inspiration from task-based IC [92], MEMIC employs undo-logging. However,
in contrast to prior works, MEMIC’s undo-logger is only active while executing FASEs,
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is implemented in hardware, and is placed behind a write-back data cache. These are
three factors which greatly reduce the energy overhead of the undo-logger, and also
reduces its required logging capacity. When disabled, the undo logger simply forwards
all writes to NVM without delay.

Figure 5.2b shows memory operations while the undo logger is enabled. Steps 1 , 2 ,
3 and 3 are the same as during normal execution, except that write-backs to loca-

tions outside the unsafe zone are intercepted by the undo logger. When enabled, and
a cache line write back ( 2 ) to an address outside the unsafe zone (see § 5.2.8) occurs,
the undo logger first reads the old cache line from NVM and saves it, along with its
address, in an internal volatile memory ( 2b ). Then, the write back is forwarded to
NVM ( 2c ), completing the write back. To prevent overflow, the undo logger automat-
ically saves the oldest entry to NVM ( 2a ) when the size of the internal log exceeds a
software-configurable threshold. The overflowed entries are saved at a location defined
by a memory-mapped register. Software can then load and apply overflowed entries
at the start of the next on-period. The overhead caused by the undo logger during
cache write-backs is one cache line load (one clock cycle) when not overflowing, and
an additional cache line write when overflowing (for a total of two clock cycles).

An alternative to undo logging would be to use a volatile write-back buffer that buffers
cache write-backs during FASEs, and only commits the writes to NVM after the FASE
has completed. With some added logic, this could have the advantage of reducing the
number of NVM writes through write-merging. However, there is a drawback with
this technique when it comes to IC: the volatile state at the end of a FASE would then
comprise both the modified cache lines and the lines held in the write-back buffer. This,
in turn, would increase the necessary amount of energy buffering; when committing a
successful FASE, a larger amount of data would have to be written to NVM at a critical
point of execution. In contrast, when using an undo logger, the volatile state to be
backed up is never larger than the maximum modified cache lines or the maximum
undo log size, whichever is bigger. Both the undo log size (threshold) and the limit on
modified cache lines are software-configurable.

5.2.8 The unsafe zone

The main use case for FASE is likely tasks such as taking sample windows of sensor
data (e.g. audio or acceleration) or receiving radio packets, similar in nature to the
sample window function in Listing Figure 5.3. These are tasks that read a potentially
large amount of data into structures that can readily be made insusceptible to write-
after-read and repeated-I/O hazards; i.e. they can safely be overwritten if the FASE is
re-executed, without first resetting the state.
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UNSAFE uint32_t [WINDOW_SIZE] data;

void sample_window(uint32_t *data) {

for (int i = 0; i < WINDOW_SIZE; ++i;) {

data[i] = readSensor ();

sleep(10, TIME_US );

}

}

void main () {

run_atomic(sample_window , data);

}

FIGURE 5.3: A simple sensor-sampling FASE showing the usage of the unsafe zone
and how FASE can be annotated.

To reduce pressure on the undo log for applications that write excessive amounts of
data (approaching the data cache size) during a FASE, the proposed undo logger im-
plements an unsafe zone: a region of memory which bypasses the undo logger. The term
unsafe is used to express that the protection normally provided by the undo logger does
not apply; i.e. the programmer becomes responsible for avoiding re-execution bugs for
variables they choose to allocate to the unsafe zone. A pair of memory mapped regis-
ters are used to define the base and bound of the unsafe zone. The unsafe zone is opt-in
rather than opt-out, so that an unmodified program will execute correctly, albeit with
sub-optimal performance. While specific variables that are allocated to an unsafe zone
are excluded from the undo log, and thereby not protected against write-after-read and
repeated-I/O hazards, all other variables are protected by default. In Listing Figure 5.3,
the programmer knows that data can be safely ignored from logging, so allocates it to
the unsafe zone to improve performance.

While this section has assumed manual allocation of data arrays into unsafe, methods
to automatically detect write-after-read and repeated-IO hazards [137] could be applied
to automatically allocate data to the unsafe region.

5.3 Evaluation

This section evaluates the performance of MEMIC against several relevant baselines.
After describing the experimental setup, workloads and baselines, cache configuration
is discussed. Then, the instruction cache and the data cache are investigated separately
and compared to their relevant baselines. Next, operating conditions for MEMIC and
the baselines are evaluated. Then follows a case study on a solar-powered IC device
running a realistic sensing, computation, and logging workload. Finally, NVM write-
endurance is discussed.
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TABLE 5.1: Simulation parameters.

Parameter Value

CPU Cortex M0+
CPU frequency 1.25 MHz
CPU active current 1.0 µA
Instruction memory size 128 kB (32 banks of 4 kB)
Data memory size 32 kB (8 banks of 4 kB)
Storage capacitor 10 µF
Supply power (Psupply) 10 µW
Core voltage (Vcore) 1.8 V
On-voltage (Von) 2.6 V
Suspend Voltage Threshold (Vwarn) 2.1 V
SRAM read/write 0.33 pJ/b
SRAM leakage (active) 52.9 pA/b
SRAM leakage (retention) 11.2 pA/b
SRAM activate bank 94 pJ

5.3.1 Experimental setup

The evaluation is performed using Fused from Chapter 4. Importantly for this evalu-
ation, Fused simulates energy and execution in a closed feedback loop, enabling the
exploration of the effects of various design choices on the overall performance of a
system that is intermittently powered.

The simulation parameters are listed in Table 5.1. A power source that outputs constant
power, Psupply, is used as a simple model of real energy harvesters, which typically have
decreased output current at higher output voltage (and vice versa). In each simulation
time step, it adjusts its output current according to load voltage to achieve constant
power output. Using a constant power source instead of a specific energy harvester
model facilitates analysis (for example, energy can be calculated as the product of time
and the power supply setting), and makes the results more readily transferable to a
specific setup (energy harvester, capacitor, voltages etc.).

The device turns on when the voltage across the storage capacitor, vcap reaches the
on-voltage Von. When vcap discharges below the voltage warning threshold, Vwarn, an
interrupt is issued to trigger a suspend (or abort a FASE). After suspend completes,
the device shuts off and charges back up to Von. If vcap drops below Vcore, the device
shuts off regardless of whether a suspend has completed; shut-off without completing
suspend results in system failure, and should never occur in a properly configured
device.

Dividing memories into banks allows the power gating of inactive banks to reduce
leakage power. For example, if an application only uses a fraction of available memory
for extended periods of execution, the inactive banks can be powered down. For NVMs
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FIGURE 5.4: State machine for power gating inactive memory banks

like MRAM, that could mean powering down a bank completely (as it is non-volatile),
or powering down certain (power-hungry) parts of the macro.

To ensure fair evaluation, all SRAM and MRAM memories are divided into banks with
automatic retention modes. The caches are not power gated, as they are considered
them too small for this method to yield significant benefits.

This is consistent with modern practices for low-power devices. Importantly, it also
ensures that our evaluation does not overestimate the leakage power of the baseline
methods that employ separate SRAM memories. When comparing a small cache to a
large SRAM, the possibility that most of the large SRAM is in fact kept in a low-power
retention mode when inactive should not be neglected. The power gating scheme em-
ployed for evaluation is shown in Figure 5.4, and is loosely based on prior work [44,
113]. In essence, each bank is individually controlled, and will only become active
when accessed, and will again enter a retention mode when an inactivity timer expires.
These power mode transitions cost energy, so a trade-off exists between too frequently
changing the power modes of the banks, and leaving them on for too long and thus con-
suming excessive leakage power. In this evaluation, an inactivity timer of 1000 clock
cycles, which was found to give a reasonable balance.

The energy consumption of the SRAM and MRAM memories are modeled as read and
write energy per accessed bit, leakage current per bit according to operating state (AC-
TIVE/SLEEP/OFF), and the transition energy between operating modes. The data and
tag arrays of the caches are modeled to have the same access energy and leakage cur-
rent per bit as the SRAM memory in ACTIVE-state. The parameters were obtained
using Arm’s production MRAM [18] and SRAM [114] compilers, targeting commercial
28 nm FDSOI and 22 nm bulk processes, respectively. While used in our experiments,
the specific values of the MRAM parameters are confidential, and are therefore omitted
from Table 5.1 (and altered in the public MEMIC simulation package). Note however,
that since all source code associated with this chapter is released to the public, readers
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TABLE 5.2: List of workloads and their code and data footprints.

Workload Code Size (kB) Data Size (kB)

bc 3.4 2.05
nn-gru-cmsis 7.12 8.56
matmul 4.46 4.37
fft-q31-cmsis 75.45 2.8
crc 5.17 4.03
aes 5.75 4.04
ar 3.98 2.29
qrencode 13.29 2.08

can readily repeat the presented simulations for the particular parameter values rele-
vant to their target technology. Since this work focuses on the memory system, the CPU
power consumption is modeled as a constant current.

5.3.2 Workloads

Table 5.2 lists the workloads used for evaluation, all of which are included in MEMIC’s
simulation package. These workloads were selected based on being relevant to the
domain and on having diverse code and data footprints and memory access patterns.
Two of the workloads use the Arm CMSIS5 library without modification, showing that
MEMIC is directly compatible with existing complex code-bases. All workloads except
the last are computational workloads which perform computation on data stored in
the program binary. The last workload, nn-gru-cmsis-fase, which exercises MEMIC’s
FASE support by sampling sensor data, is described in § 5.3.8.

5.3.3 Baseline

This subsection describes the baseline methods used for evaluation. In regards to in-
struction memory, MEMIC is compared to two baseline configurations, namely Exe-
cuteInPlace and LoadExecute. ExecuteInPlace executes instructions directly from MRAM,
which simplifies software and minimizes area. However, the read energy of MRAM
is much higher than that of SRAM, so it may not be the most energy efficient solu-
tion. LoadExecute, on the other hand, executes instructions from a separate instruction-
SRAM, using DMA transfers to load instructions from NVM to SRAM during boot.
Thus LoadExecute decreases read energy significantly. However, LoadExecute also in-
creases area and leakage power significantly, as the instruction SRAM must house as
many bits as the instruction MRAM. A variation on LoadExecute could be to map the
most active code to VM and the rest to NVM [70]. However, this requires the devel-
oper to statically analyze or profile the code before deployment to determine what to
allocate to VM, and thus to make assumptions about how the device will operate in the
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future. In the context of IC, execution strongly depends on energy conditions, and so
the ideal mapping found during profiling may not match conditions later on.

As the baseline for data memory, AllocatedState [9, 129] and Freezer [108] are used. Both
baselines use a data-SRAM that is loaded from NVM during boot, and checkpointed
when power fails. Note that the equivalent of an ExecuteInPlace for data is infeasible
due to the high write energy of MRAM (in addition to the complexity of rolling back
state after a failed FASE3). Similarly, methods that map certain portions of variable-
sections (stack, .data, etc.) to NVM [70] would be ineffective with MRAM, as they
increase NVM write-frequency. Increasing the write-frequency on MRAM is highly
detrimental to performance as write accesses can require several orders of magnitude
more energy than write accesses to SRAM. Note, however, that MRAM is still supe-
rior to FRAM, partly because it is compatible with more advanced process nodes, as
discussed in § 2.8.

AllocatedState is a software-based IC method based on Hibernus[9], that checkpoints
and restores all allocated volatile memory (i.e. .data, .bss, .stack) to and from NVM
when power respectively fails or recovers. Our implementation of AllocatedState trans-
fers data using DMA to improve efficiency. Freezer can be described as an optimiza-
tion of AllocatedState, where only modified data is written to NVM when suspending
state. It thus provides similar benefits to ManagedState (Chapter 3), albeit with hard-
ware support which obviates the need for software annotations and provides better
performance. Our implementation of Freezer [108] is a memory-mapped peripheral
that tracks writes to data-SRAM in order to record which 32 B blocks have been written
to. Each block’s state is represented by a single dirty bit in the write tracker’s regis-
ter file. Software then uses the dirty bits to set up DMA transfers of modified blocks
when suspending state. When there are multiple contiguous modified blocks, they get
aggregated to one large DMA transfer to reduce setup-overhead. Note that all meth-
ods evaluated in this chapter push the core CPU registers (r0-r12, lr, pc) to the stack
before the stack/data is saved to NVM.

5.3.4 Cache configuration

Caches have various parameters that affect their power, performance and area (PPA),
primarily the line width (LW), associativity (AS) and number of sets (NS). The capacity
of the cache, is calculated as LW · AS · NS.

To find optimal cache parameters, design space exploration was performed using Fused.
A total of 48 combinations of LW, AS and NS for instruction caches and 79 combinations

3FASE support for a system using only non-volatile data memory would require double buffering,
which in turn leads to greatly increased number of NVM accesses as data is copied between the buffers.
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for data caches of size 1–8 kB were simulated for all the computational workloads in Ta-
ble 5.2. Each workload was run for a number of iterations such that the total on-time
exceeded five seconds, to ensure that each workload required several power cycles to
complete. The number of power cycles to complete each workload ranged from 19 to
243 (best configuration on shortest workload to worst configuration on longest work-
load). For both the instruction and data cache, the cache configuration that yielded the
lowest geometric mean completion time across all workloads was chosen for MEMIC.

The results are presented for the instruction and data caches in the next two respective
subsections. For brevity, the presentation is focused on three distinctive workloads that
have very different combinations of instruction and data footprints. The completion
times of all workloads are shown later, in Table 5.3 (10 µF columns). Detailed results for
all workloads are available in the public dataset.

5.3.5 Instruction Cache

This subsection investigates the relative performance between two baseline methods
and different instruction cache configurations (LW, AS and NS). For consistent results,
all experiments in this subsection use the baseline AllocatedState method for data mem-
ory.

Figure 5.5 shows the energy consumption of instruction memory per executed instruc-
tion, and the workload completion time, for four different configurations along the
horizontal axis. Each plot shows the result for an individual workload. The energy
consumption of the SRAM instruction memory (baseline) and the instruction cache are
both shown as SRAM (Read/Write/Leakage). The energy consumption of ExecuteIn-
Place comprises NVM read energy and NVM leakage, as no cache or SRAM is used.
The relatively high NVM read energy leads to much higher energy consumption, and
thus longer charging time than other configurations. LoadExecute mitigates the NVM
read energy, as each instruction is only read from NVM once (during boot). The draw-
back with LoadExecute is the area and leakage introduced by the SRAM memory, as well
as the time and energy taken to load the instructions. For applications with a large in-
struction footprint, such as the fft-q31-cmsis workload, the overall time and energy
consumption is dominated by loading instructions, as indicated by the significant in-
crease in on-time and NVM read energy, as well as the increased SRAM leakage due to
more SRAM banks being active. Even though only a small portion of the program is
executed in each power cycle, LoadExecute loads the whole program.

The latter two configurations use an instruction cache in place of the instruction SRAM;
the first of them is the best cache configuration for the specific workload, and the sec-
ond is the best overall configuration (lowest geometric mean completion time across
all workloads). In addition to reducing NVM reads compared to ExecuteInPlace, the
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FIGURE 5.5: Instruction access energies per executed instruction (left bars) and work-
load completion times (right bars, normalized to ExecuteInPlace) for different instruc-
tion memory architectures. The cache configurations are denoted as “size (Line Width-

Associativity-Sets)”.
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FIGURE 5.6: Data access energies per executed instruction (left bars) and work-
load completion times (right bars, normalized to AllocatedState) for different data
memory architectures. The cache configurations are denoted as “size (Line Width-
Associativity-Sets)”. Note that runtime is dependent on total power consumption, not
just the component attributed to data access. Hence a large reduction in data access
energy leads to a proportionally smaller reduction in total runtime. All configurations

use the 4 kB (16-2-128) instruction cache.
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instruction cache solves the instruction loading issue of LoadExecute, because the cache
mechanism only reads instructions from NVM when they are needed. Additionally,
the cached systems reduce area and leakage power compared to LoadExecute, because
a small cache can cover a large instruction space.

Across all workloads, our results show that a 4 kB instruction cache, arranged as 16 B
line width, 2-way set associativity and 128 sets, reduces the workload completion time
by 60–77 % (71 % mean) and 41–70 % (49 % mean) compared to the baseline ExecuteIn-
Place and LoadExecute configurations, respectively. As these simulations were done us-
ing a constant-power supply, these time savings correspond to equal energy-savings.
Furthermore, this 4 kB cache uses 1536 b of tag and 32 768 b of data SRAM bit cells,
compared to the 1 048 576 b used by the 128 kB SRAM; a reduction of 97 %. Assuming
the cache logic has little overhead over the access logic of the large SRAM, this could
lead to a substantial area reduction.

5.3.6 Data Cache

In the previous subsection, a 4 kB instruction cache was found to be the best option.
This section now investigates the data memory to find the relative performance be-
tween AllocatedState, Freezer, and MEMIC configurations using a data cache. For fair
comparison, and to isolate the effect of data memory, all simulations use the chosen
4 kB instruction cache.

Figure 5.6 shows the energy per instruction for data accesses and the total runtime, bro-
ken into active and charging, for four configurations along the horizontal axis. Each
plot shows the result for an individual workload. The main inefficiencies of Allocated-
State are caused by the data SRAM, which needs to be large enough to fit all volatile
state, and the fact that all volatile state has to be loaded and backed up, regardless of
whether it is modified (or even used) during the current on-period. For workloads
with a small data footprint and good access locality, such as the aes workload, these
inefficiencies may be acceptable. However, the NVM write energy (caused by suspend)
grows with the data memory footprint, as seen when comparing aes and nn-gru-cmsis

in Figure 5.6. Suspend energy is explored further in § 5.3.7. For workloads with poor
access locality or a large active data set (fft-q31-cmsis and nn-gru-cmsis), leakage
energy also grows because more SRAM banks stay active. Freezer significantly reduces
the average NVM write energy by avoiding back-up of unmodified data for work-
loads with a significant data footprint where not all data is modified in every power
cycle. The worst-case NVM write energy for Freezer, however, where all data has been
modified, remains the same as for AllocatedState (in fact slightly worse due to tracking
overhead). And Freezer does not improve on the other components of the total energy
consumption, such as SRAM leakage. These inefficiencies and inconveniences are alle-
viated by using a data cache instead of data SRAM.
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The data cache has higher energy consumption per access than SRAM, due to cache
misses, the overhead of checking tags and, to some degree, loading more data than
was requested (i.e. due to the cache line granularity). It can also lead to increased NVM
leakage and access energy due to cache misses. The cache leakage energy, however, is
much lower than that of the SRAM required by AllocatedState and Freezer, due to its
smaller size.

Across all workloads, the 2 kB data cache, arranged as 32 B line width, 2-way set asso-
ciativity and 32 sets, reduced the workload completion time by 17–39 % (26 % mean)
and 13–39 % (23 % mean) compared to AllocatedState and Freezer, respectively. This
2 kB data cache uses 320 b of tag and 16 384 b of data SRAM bit cells, compared to the
262 144 b used by the 32 kB data SRAM; a reduction of 94 %.

5.3.7 Operating conditions

This section evaluates the energy required to suspend state and the workload comple-
tion times of MEMIC, AllocatedState and Freezer under different operating conditions.
Certain systems may have less energy available for suspending state, either because of
lower maximum supply voltage (hence also lower Vwarn), or because the energy buffer-
ing capacitance is lower. This evaluation is on capacitor size, but the same analysis
can also be solved for voltage. Figure 5.7 shows the suspend energy and minimum
required capacitance for three workloads. Two extra configurations are shown in the
figure; MEMIC-MM32 and MEMIC-MM16 show results for MEMIC when the number
of modified cache lines is limited to 32 and 16, respectively.

The energy consumed for suspending state, Esuspend, was calculated from simulation
results as follows:

Esuspend = Ewarn − Edone + Esupply (5.1)

= 1
2 CV2

warn − 1
2 Cv2

done + Psupplytsuspend (5.2)

where Ewarn is the stored energy when the voltage warning is issued, Edone is the stored
energy when suspend has completed, vdone is the capacitor voltage when suspend has
completed, tsuspend is the time it took to suspend, and C is the energy buffering capaci-
tance.

Based on Esuspend, the minimum required capacitance, Cmin, was calculated as follows:

Eavail = Ewarn − Emin (5.3)

= 1
2 CV2

warn − 1
2 CV2

core (5.4)

Cmin =
2Esuspend

V2
warn−V2

core
, (5.5)
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FIGURE 5.7: Energy consumption of suspend (left vertical scale), and the correspond-
ing minimum required capacitance (right vertical scale). The points show the mean
value, and the bars show the minimum and maximum values. MEMIC-MMxx de-
notes MEMIC with the limit on modified lines (MODMAX) set to xx. MEMIC is the
default configuration where MODMAX is set to the total number of lines in the cache.

TABLE 5.3: Completion times of all workloads for three capacitor sizes. All configura-
tions use the 4 kB (16-2-128) instruction cache.

AllocatedState Freezer MEMIC
Workload 2.2 uF 4.7 uF 10 uF 2.2 uF 4.7 uF 10 uF 2.2 uF 4.7 uF 10 uF

qrencode 18.95 16.92 15.93 18.95 16.93 15.95 13.51 12.82 12.19
matmul fail 10.55 9.43 fail 10.56 9.28 6.28 5.88 5.71
fft-q31-cmsis 0.26 0.21 0.18 0.26 0.21 0.18 0.49 0.17 0.14
crc fail 5.10 4.51 fail 4.52 4.31 4.97 3.91 3.59
ar 3.84 3.42 3.31 3.74 3.35 3.30 2.87 2.63 2.52
nn-gru-cmsis fail fail 1.54 1.76 1.42 1.27 1.24 1.15 1.08
aes fail 21.26 18.38 fail 18.55 17.44 14.57 13.34 12.47
bc 3.81 3.44 3.51 3.82 3.45 3.51 3.07 2.92 2.86

where Eavail is the energy available for suspending and Emin is the stored energy when
the stored voltage is equal to the minimum operating voltage for the system. Note that
the required capacitance is linear with the required energy.

Table 5.3 lists the completion time of all workloads for three capacitor values, com-
paring AllocatedState, Freezer and MEMIC. All configurations use the 4 kB (16-2-128)
instruction cache. MEMIC’s MODMAX parameter was adjusted according to capaci-
tor size. Empirically, it was found that MODMAX= 400 · C · 106/LW was a reason-
able value (i.e. 400 B/µF) in this situation. By comparing Table 5.3 and Figure 5.7, one
can see why e.g. nn-gru-cmsis fails on AllocatedState when the capacitor size is 1.0–
4.7 µF, but succeeds at 10 µF: ≈8 µF is the minimum required capacitance. In practice,
these results mean that AllocatedState needs a larger capacitor and/or a higher sus-
pend voltage threshold to run workloads with a large data footprint. This, in turn,
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shows that the application programmer has to re-evaluate the capacitor/suspend volt-
age threshold whenever the application changes; for a complicated end-device, this
dependency between application and electrical properties can substantially complicate
development. This also applies for Freezer, because, in the worst case where all data has
been modified (e.g. a power failure after a long on-period), Freezer saves as much data
as AllocatedState. MEMIC, on the other hand, never holds more modified state than is
permitted by MODMAX, up to a maximum of the size of the data cache, regardless
of the application. MODMAX enables the end-device to run with a smaller capaci-
tor and/or a lower suspend voltage threshold; both of which can have several other
benefits, such as improving the energy efficiency of the energy harvester and reducing
conversion loss. As expected, reducing MODMAX can result in performance degrada-
tion, because the cache’s ability to buffer writes is reduced. Compared to MEMIC, this
performance degradation resulted in less than 2 % increased completion time for most
workloads under the MM32 and MM16 configurations. For fft-q31-cmsis, however,
the increase was 66 % and 212 % for MM32 and MM16, respectively. The sharp degra-
dation in fft-q31-cmsis is caused by frequent data writes with poor locality.

5.3.8 Case study: Solar-powered sensor node

To evaluate MEMIC under realistic conditions, the base simulation model was ex-
tended with a PV-cell, a boost regulator, and an accelerometer, as shown in Figure 5.8,
and implemented a realistic IoT workload. In each simulation time step, the single-
diode PV-cell model [126] takes as input the luminance and the stored voltage vin, to
calculate its output current, which charges the 10 µF input capacitor Cin. vin is then
boosted up to 1.8 V by the boost regulator, with an efficiency of 80 %. The boost regu-
lator is loosely modeled after the Texas Instruments BQ25570 energy harvesting power
management module. When vin exceeds 1.4 V and the boost regulator’s OOK (output
OK) signal is high, the supply voltage supervisor (SVS) connects the microcontroller
and accelerometer to the 1 µF output capacitor Cout. Later, when vin discharges be-
low 0.3 V, SVS issues a voltage warning (WARN) which triggers a checkpoint (or FASE
abort) in the microcontroller.

The sensing workload, nn-gru-cmsis-logger, records a window of 100 three-axis ac-
celerometer values sampled at 1 kHz and uses the sampled data as input to a Gated Re-
current Unit neural network. The accelerometer is a Fused model of the Bosch BMA280.
It communicates over SPI, and implements a 1 kB internal FIFO buffer. Its function
and power consumption is modeled based on the device data sheet. The sample win-
dow is recorded within a FASE, so that the samples within a window are guaranteed
to be continuous. While sampling, the accelerometer buffers data, and the CPU sleeps.
When 100 samples (700 B4) have been buffered, the accelerometer requests an interrupt

4Each sample comprises 6 B of data and a 1 B header.
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FIGURE 5.8: Simulation model of a solar-powered IC device.

via GPIO, causing the CPU to wake up and read the data into memory; this concludes
the FASE. The workload then proceeds to run the neural network intermittently over
several power cycles.

Figure 5.9 shows the average completion time of the workload under different lighting
conditions (across 20− 120 iterations), divided into the time spent charging, actively
executing, and sensing while the CPU sleeps. Compared to the baselines, MEMIC is
able to complete the workload under lower light conditions, and is the only workload
to succeed at 800 lux. In the range of 1000–1600 lux, MEMIC completes the workload
6–27 % (21 % mean) and 10–31 % (22 % mean) faster than AllocatedState and Freezer, re-
spectively. At 1600 lux and above, MEMIC stops power cycling, as the power input is
higher than active power. The same applies for the baseline methods at 1800 lux and
above, thus at high light levels all methods complete the workload in approximately
the same amount of time (within 1 %).

By further analyzing the simulation data from the PV-cell case study, the overhead and
efficacy of the undo-logger under realistic conditions can be evaluated. Across all simu-
lations, up to 0.19 % of all write accesses during FASE execution were logged by the undo
logger. When not using the unsafe zone, this grew to 0.65 %, albeit with insignificant
performance overhead (completion time was within 1 %). Despite providing small im-
provements in this workload, the unsafe zone is an easy optimization to use, and can
be important in particular workloads that write a large amount of data (approaching
the data cache size) inside a FASE.

5.3.9 Endurance

Current MRAMs are limited in endurance, i.e. may fail after a specified number of
writes to the same bit-cells. To assess whether MEMIC has an impact on NVM en-
durance, Fused’s memory model was instrumented to record the maximum total num-
ber of writes to a single location (byte) in data-MRAM. On average, MEMIC had 2 %
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FIGURE 5.9: Average completion time of the nn-gru-cmsis-logger workload on the
solar-powered IC device (Figure 5.8) under different lighting conditions. The two

baseline configurations use the same instruction cache as MEMIC.

more writes to the same location per completion of each workload, and thus does not
significantly impact write endurance.

5.4 Discussion

Addressing Q2 by leveraging Fused, the simulator proposed in Chapter 4, this chapter
proposed a memory architecture for IC with hardware support to optimize the core
operations of IC without compromising programmability or robustness. Table 5.4 sum-
marizes the evaluation of MEMIC against the correctness criteria, performance goals,
and scaling goals from § 2.4. The following paragraphs discusses MEMIC in detail.

Instruction caching substantially improves energy efficiency and performance under
intermittent operation: partially by reducing access and leakage energy, but also by
avoiding unnecessary loading of the entire program during boot, when energy is scarce
and on-periods are short. By simulating 48 instruction cache configurations on eight
workloads running intermittently, it was found that a 4 kB instruction cache arranged
as 16 B line width, 2-way set associativity and 128 sets, reduces workload completion
time by 60–77 % (71 % mean) and 41–70 % (49 % mean) compared to the baseline Exe-
cuteInPlace and LoadExecute configurations, respectively.

By similarly simulating 79 data cache configurations, it was found that a 2 kB data cache
arranged as 32 B line width, 2-way set associativity and 32 sets, provided a further re-
duction of completion time by 17–39 % (26 % mean) and 13–39 % (23 % mean) compared
to the relevant baselines AllocatedState and Freezer, respectively.
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TABLE 5.4: MEMIC evaluated on the correctness criteria, performance goals, and scal-
ability goals from § 2.4.

Objective/Requirement MEMIC

C1: Comp. progress ✓

C2: Consistent memory ✓

C3: FASE support ✓

C4: Avoid sisyph. tasks ✓1

P1: Forward progress Fast
P2: Reactive to events ✓1

P3: Memory overhead Checkpoint, undo-log
S1: Required IC expertise Minor
S2: Software compatibility ✓

S3: Hardware portable ✓

1As long as user-created atomic sections do not require more energy than the device can muster in one on-period.

As these simulations were carried out using a constant-power supply, these time sav-
ings correspond to equal energy savings. Both caches also present a substantial de-
crease in area, as they reduce the number of SRAM bit cells by over 90 % as compared
to the SRAMs needed by the baseline methods.

Naively using a data cache while operating intermittently, however, would cause idem-
potency violations and other bugs related to re-execution, because write-backs from the
cache could corrupt NVM. MEMIC solves this by using a hardware undo-logger that
is activated during failure-atomic sections. Our results show that cache write-backs
are rare during failure-atomic sections because the cache is flushed immediately before
executing them, so the undo-logger is unlikely to need large capacity.

Experiments running the eight workloads with three different capacitor sizes showed
that the baseline methods failed to complete some workloads when the capacitor size
was smaller than 10 µF, because their operation is conditional on the application’s
memory usage. In contrast, MEMIC successfully ran all workloads for the tested ca-
pacitor sizes by using MODMAX to adapt to operating conditions. Similarly, when
modelling a solar powered IC device, running a realistic logging workload, MEMIC
was able to complete the workload under lower light conditions, and with better per-
formance (6–31 %) across light conditions ranging from 1000 lux to 1600 lux.
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Chapter 6

Conclusions and future work

6.1 Conclusions

Supporting IC on COTS hardware (Q1) is important to lower the barrier to entry.
Through a systematic review of IC literature, in Chapter 2, reactive IC was found to be
the most promising method because of its performance and compatibility with existing
software. However, a significant inefficiency in current methods was found. These ex-
isting approaches save and restore all allocated state in every power cycle, even though
a majority of data can be left unchanged, or even unused, in short on-periods. To alle-
viate this shortcoming, Chapter 3 presented ManagedState, a page-based memory man-
agement software layer that provided substantial (26.8–86.9 %) reduction in suspend
and restore time for reactive IC on a COTS microcontroller. This, in conjunction with
its dynamic suspend and restore voltage thresholds, led to up to 5.3× faster execu-
tion of the benchmarks tested, when on an intermittent supply with short on-periods.
However, ManagedState requires program annotations to indicate used and modified,
and tracking memory usage in software introduces overheads. A better way to gain the
benefits of ManagedState could be to use hardware support that tracks use and modifi-
cation without requiring annotations.

Before researching memory architectures and hardware support for IC (Q2), however,
an appropriate modeling methodology was needed; the thesis therefore addressed
Q3 before Q2. Existing modeling tools are inadequate for modeling IC because they
lack flexibility (RTL), accuracy (gem5), and closed-loop power-performance simulation
(both). To address this gap, i.e. Q3, Fused, a full-system simulator for energy-driven
computers was presented in Chapter 4. Its focus is on accuracy and closed-loop power-
performance simulation as well as flexibility to explore new designs to improve IC,
and energy-driven computers in general. Experimental results, comparing Fused to
real hardware, showed that Fused can execute real application binaries correctly on a
simulated intermittent supply. Across a set of 61 workloads, Fused modeled the COTS
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microcontroller used in Chapter 3 with a geometric mean error of 3.4 % in power es-
timation and a maximum execution time error of 1.16 %. More importantly for this
thesis, which focuses on IC, Fused was able to model a state-of-the art IC method (Man-
agedState from Chapter 3) running a workload intermittently on real hardware. Across
an input current limit of 0.2–2 mA, Fused’s simulated completion time of the workload
was within 6.8 % of the value measured experimentally on real hardware. Fused thus
closes a gap in the modeling and development tools available for IC: prior works have
provided methods for power source emulation [47, 58], PCB-level hardware prototyp-
ing [61] and online debugging [27], now Fused introduces virtual prototyping to en-
able efficient hardware-software co-design and better introspection. It should be noted
though, that Fused was developed and tested with the aim of being used to research Q2,
so if Fused is to be used for research beyond this, it’s functional and power models must
be reviewed and likely extended to support such research. For example, Fused was eval-
uated at constant (room) temperature – studies related to thermal effects would have
to expand on Fuseds models to correctly model the effect of temperature changes.

Using Fused for modeling and evaluation, Chapter 5 proposed novel memory system
support for IC to address Q2. Instruction caching substantially improves energy effi-
ciency and performance under intermittent operation: partially by reducing access and
leakage energy, but also by avoiding unnecessarily loading the entire program during
boot, when energy is scarce and on-periods are short. By simulating 48 instruction
cache configurations on eight workloads running intermittently, it was found that a
4 kB instruction cache arranged as 16 B line width, 2-way set associativity and 128 sets,
reduces workload completion time by 60–77 % (71 % mean) and 41–70 % (49 % mean)
compared to the baseline ExecuteInPlace and LoadExecute configurations, respectively.

By similarly simulating 79 data cache configurations, it was found that a 2 kB data cache
arranged as 32 B line width, 2-way set associativity and 32 sets, provided a further re-
duction of completion time by 17–39 % (26 % mean) and 13–39 % (23 % mean) compared
to the relevant baselines AllocatedState and Freezer, respectively.

As these simulations were carried out using a constant-power supply, these time sav-
ings correspond to equal energy savings. Each of the caches also present a substantial
decrease in area, as they reduce the number of SRAM bit cells by over 90 % as compared
to the SRAMs needed by the state-of-the-art baseline methods.

Experiments running the eight workloads with three different capacitor sizes showed
that the baseline methods failed to complete some workloads when the capacitor size
was smaller than 10 µF, because their operation is conditional on the application’s us-
age of code and data memory. As a consequence, the programmer must carefully con-
sider electrical components when modifying software, or over-provision energy stor-
age and voltage thresholds to account for the worst-case scenario. In contrast, MEMIC
can adapt to operating conditions by using its software-configurable limit on modified
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volatile state, MODMAX, and thus successfully ran all workloads for the tested capac-
itor sizes.

Similarly, when modelling a solar powered IC device, running a realistic logging work-
load, MEMIC was able to complete the workload under lower light conditions, and
with better performance (6–31 %) across light conditions ranging from 1000 lux to 1600 lux.

Naively using a data cache while operating intermittently, however, would cause idem-
potency violations and other bugs related to re-execution, because write-backs from the
cache could corrupt NVM. MEMIC solves this by using a hardware undo-logger that
is activated during failure-atomic sections. The results showed that cache write-backs
are rare during failure-atomic sections because the cache is flushed immediately be-
fore executing them, so the undo-logger does not need large buffering capacity. The
evaluation of MEMIC used a set of workloads chosen to be diverse in memory access
patters. It can, however, not be excluded that workloads exist for which MEMICs per-
formance is degraded; hardware architects that consider implementing MEMIC should
therefore evaluate MEMIC on their specific use cases first; for example by running their
workloads on the publicly available MEMIC implementation in Fused.

6.2 Future work

There are several interesting and important areas of research in which the work pre-
sented herein can be utilized and extended.

The Fused simulator proposed in Chapter 4 can be used as a tool for further IC re-
search in many directions not pursued herein. Researchers exploring energy harvest-
ing, power conditioning and energy management could use it to evaluate the effect of
improved energy harvesters and associated power conversion, energy storage and en-
ergy provisioning strategies. For example, Fused could be used to explore better ways
of predicting or profiling energy usage and then provision energy to specific FASEs (or
tasks in task-based IC) and thus reduce energy wasted on re-executing aborted FASEs.

Researchers working on wireless communication could use Fused to enhance their sim-
ulation frameworks with better simulation of the application and processing side of
each node in a wireless sensor network. Aspects such as the processing cost of their
routing protocols, on top of the application and sensing tasks of the node, could be
simulated in conjunction with a network simulator such as OMNet++ [147]. Alterna-
tively, Fused could be used in a profiling step to obtain parameters for simulation of
wireless sensor networks.

Similarly, researchers working on energy harvesting, power management, power con-
version, and more, could use Fused to obtain tangible results for how their proposed
designs affect the end-application’s performance under different specified conditions.
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In Chapter 5, the MEMIC architecture was proposed. It targeted, and was evaluated on,
single-threaded reactive IC applications. However, MEMIC accelerates several func-
tions that are fundamental to most IC methods. Functions like saving only modified
data when saving state, data versioning (undo-logging in the case of MEMIC) and pro-
viding guarantees for successful state saving, could be useful to many other proposed
IC methods which have until now only been implemented using software and com-
piler techniques. For example, task-based IC methods rely on executing the applica-
tion as a series of back-to-back FASEs, and could thus benefit greatly from hardware-
implemented undo-logging.

Together with the MEMIC architecture and hardware support, researchers could also
use Fused to evaluate novel applications of IC for IoT and monitoring applications.
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