US 20200220559A1

12y Patent Application Publication o) Pub. No.: US 2020/0220559 A1

a9y United States

Maunder et al.

43) Pub. Date: Jul. 9, 2020

(54) POLAR ENCODER, COMMUNICATON UNIT, 30) Foreign Application Priority Data
INTEGRATED CIRCUIT AND METHOD
THEREFOR Jun. 15, 2017 (GB) eeveeviiiiieiiiiicivieee 1709502.7
(71) Applicants: Robert Maunder, Southampton (GB); Publication Classification
Matthew Brejza, Southampton (GB); (51) Int. CL
Taihai Chen, Southampton (GB) (52) US.CL
(72) Inventors: Robert Maunder, Southampton (GB); CPC s H03% 11 33 {)111 9111(;;)]143 ;)31/)1’ 3H024(()li3](/)4;0
Matthew Brejza, Southampton (GB); (O1); (01)
Shida Zhong, Southampton (GB);
Isaac ANDRADE, Southampton (GB); 7 ABSTRACT
Taihai Chen, Southampton (GB) A polar encoder kernel, a communication unit, an integrated
circuit and a method of polar encoding are described. The
) L. polar encoder kernal is configured to receive one or more
(73) Assignee: Accelercomm Limited, Southampton bits from a kernal information block having a kernal block
(GB) size of N; and output one or more bits from a kernal encoded
) block having a block size that matches the kernal block size
(21) Appl. No.: 16/622,894 N; wherein the polar encoder kernal comprises a decompo-
_ sition of a polar code graph having multiple columns that are
(22) PCT Filed: Jun. 12, 2018 processed by a reused single datapath, at least one of said
. multiple columns contains two or more stages and where
(86) PCTNo. PCT/EP2018/065532 ltiple col i d wh
each column of the multiple columns is further decomposed
§ 371 (c)(1), into one or more polar code sub-graphs and is configured to
(2) Date: Dec. 13, 2019 process encoded bits one polar code sub-graph at a time.
POLAR ENCODER
IN TRANSMITTER
Kernal
encoded Encoded
information block NEOGE
block 101 102 x:ix_}ii«m 103 biock
K-1 \ 105 N\ | ilj=0 .
aziai}I:O . \ Polar . ~{ k}k:O
Enforma_txpn ‘mek ¢ Encoder £ Encoded block] .
77 K§ conditioning . 5:3 Ke??hai F:d / conditioning ‘
164 N-1
w=1u% 106
Kernal
Information
block
POLAR DECODER
IN RECEIVER
Recovered kernal Soft kernal
infcg;rgagson encoded Soft
¢ block encoded
Recovered ¥ block
Information \L
bits N-1 N-1 .« M1
ﬁ:{ﬁj}j:(} Sol ﬁ*{f}}j:g bz{m{]k:@
information block p 5 ego?irer . Encoded block|,
i 1 K conditioning Ffé Kermal ;j conditioning [i 19
115
! K-1 7\)52 B "i\ﬂ e 1\20
a=[aili=g

US 2020/0220559 A1

Jul. 9,2020 Sheet 1 of 13

Patent Application Publication

L 'Ol
QQW\/%
0L bLL Zil
/ el f 124} /
601 H \M)
. § o Butuogipuoo ww . mwmwﬁ%wm , BUILORIPUOD
) . "Mool pepooulg 7 - hmmm& 4 N3O|Q UORBULIOHY
0=l[ly]=x 0=lfn}=n
b- L-N siiq
\ﬂ \m, UOIBULIC)U]
DOIBACODY
25,
UOIBULION]
[eLIoN 14os [2UIY D2ISADDSY
HIAAIZOIY Ni
4o0[Q HAA0030 HV10d
[pUUBYD Vo UOIIBULIOLU]
e [RLIaY
QHM. frvin
901 nl=n
L-N \ﬁ y0L
BUIIOIIPUOD \ m,m [ELIS} w,m Buwompuos | A
& y JOPOOUTME s ey A~
%20jq papooulg 1B10d // MOOIT UCHEBULION 0=t}
0=YDigl=q =Hlelze
LW .,\\ QHEXMHX / GOl / LA
w0 g0l 1N Z01 np ot
POPOSUT Flalelle UOHRLLIOLN|
pBpooUS
Lo

AL LINSNVEL NI
HACGOONS HV10d

Patent Application Publication Jul. 9,2020 Sheet 2 of 13 US 2020/0220559 A1

207%\8?3:38 0

0t (TN o

AN S %202
T
2 N
3 v i
i \ r
205 206
207 F®2 207 207
Stage O l Stage 1 202 Staée/é
0~§“’ 2 A . ' TR
; i/ s ; N
4 A T § Ty
| L/ ; i/
§ H
PO | L * R
ANV ! N
{
3 g { O
i ; (N
b o o s o e . % 203
4 £ £
U N
TR
5 N
T
6 N
7

205 F®3 N 206

Patent Application Publication Jul. 9,2020 Sheet 3 of 13 US 2020/0220559 A1

105 205 204 206 106
o, P
r 3 \} /(\ ¢ -
0 0 1 0 .
frozen bit \—% @ @ encoded bit 0
i 0 0~ 1 0 ;
frozen bit {+)) encoded bit 1
frozen bit Oy L @ 0 encoded bit 2
R . \!/ L L 0 encoded bit 3
o’/
frozen bit 0 () 6 @ ! 1 encoded bit 4
infobit 4] 40 \T 0/ 1 1 e od bi
info bit 4 (+) encoded bit 5
info bit o >\ O | W L 1 encoded bit 6
infobit 3| \l \r]] 1 1 encoded bit 7
N T j L - J Y J

\ L207 207 207 . 107
104 203 \3{}@
FIG. 3
609 T —
1002 601 -
olar encoder
ernal/input % £y /1003
i £
(Ne - Datapath
605 60?/6{} 4
Controller

607

g@ia? encoder
ernal/output

N ¢
600’ﬁ / e ‘\\

606

US 2020/0220559 A1

Jul. 9,2020 Sheet 4 of 13

Patent Application Publication

&N s Fen s
“m&ﬁf ~ “
7@ w
!) :
INE “
3 mx.www 3
! B :
: - =i
; mw% g8

7 LMoo | 5 > :
“ Y& ”

oy 3 » 3

m “ @W 5 w
: m@% :
m ® J |
: Bk !
“ Gt :
; m@\z ku
: f\@ o
m 5 w
“ ® -
) B & & >] !
& ® ® w
A) S, &) =
M ﬁ\@ ﬁ\me ﬁ”\mmw m“
“ @ @ & “
- A0 TN R I U T T O O U 1 1O A L U O O U T O U :

V51 Pt Pt Pt Pt Dt e !
e 1

B - (4 (s (D D e @ B4 @O B @Mw% :

IS TS ROV AU O L VAPV T R SV RO TN FE U SR U T SN TN WU SN T Y nuf .

702

700

FIG. 5

702

702

Patent Application Publication Jul. 9,2020 Sheet 5 of 13 US 2020/0220559 A1

802

804
s‘ows:max(i—'{:ﬁ?”} /

CO§3:EEOQ§(N}E
=

E—E_%-i/—g%
v
row=mod(t,rows)

cmix{fgwsj 808

B

814-\\
822 4

™ 812
load ng bits load ng bits a8
t=t+1

from poler from Memory
encoder kernal mod{col,2)

input |

v

use datapath|. 8186

to process

row of col
N

store ng bits in 818

Memory mod(col+1,2)

~ 520

VY
oad o bits from |20

Memory mod{col+1,2)

834”\&::“ g
N

output ng bits on
poler encoder kernal
output

800

Patent Application Publication Jul. 9,2020 Sheet 6 of 13 US 2020/0220559 A1

814
Ve

input

processing | Column 0| Column 1| Column 2 eee| Column C-1 //828

output A . . &H’g
I =0

N/min{N,ng)steps

FIG. 7

Patent Application Publication Jul. 9,2020 Sheet 7 of 13 US 2020/0220559 A1

stages £[1,2,3]
from controller

Decoder
1002 1001 stage 1 stage 2 1003
f<j/ enable enable
P £
PN N P
| @ ©
ooi—3 &
} 3
® @ /5'3 r T
\,{j D \T = // //
Aot w1/
@
KTJ *w”” ‘xmwwf”//f
' ne=16
P £ £y
—%
| D @
))
T
= ®
)
® +
ot A/
Q) ‘L.,,f//
T / |
T \‘.—-—"‘/ o
L,.V,,J LmeJ ! . H
stage O stage 1 stage 2
1005 1005 1005
< >
Se=3

Patent Application Publication Jul. 9,2020 Sheet 8 of 13 US 2020/0220559 A1

604
. N
1102 eSS
. width ng=4 ag 20
N N Controller
i
& Memory 0 g2
0N
ﬁ Memory 1 603 /}
v ot 7
o V4
Lo/ >
NN R RSS! /.
4
- 3—;% ;E: 3?%& datapath)
1104 stz T V{/ aia pa // A
605«\\\n 14 o
g T
o Ng=4
L
™y P
L~ ‘?? W
polar
decoder ™
kernal ~ < g € > 1
input i -
’ 1002 e 4og
606
™,
>
oy
I
o
d
e
W
polar
decoder
Ek&\ kernal
output

1100

FIG. 9

Patent Application Publication

RAM O

RAM 1

RAM O

RAM 1

RAM O

RAM 1

RAM O

RAM 1

RAM O

RAM 1

add o} O 1 2 3 bit input
add1l 4 5 6 7
add0] 8 9 10 11
add 1l 12 13 14 15
write RAM-wise {o Memory 1 data
C path
read width wise from
add o} O 2 4 6 memory 1
add1] 8 10 12 14
add 0l 1 3 5 7
add1] 9 11 13 15
write RAM-wise to Memory 0 [daia
(’WQ path
write RAM wise to
add 0} O 4 8 12 memory 1
add1] 1 5 9 13
add 01 2 6 10 14
add1] 37 1115
write RAM-wise {o Memory 1 data
C path
addo} 0 8 1 9
add 1} 2 10 3 11
add0l 4 12 5 13
add1l 6 14 7 15
write RAM-wise to Memory O [daiz
C path
aado[0 1 2 3 |—>{imony 0and ouput
add 1| 4 5 5] 7
addol 8 9 10 11 k\
add 1l 12 13 14 15 1200

width

Jul. 9,2020 Sheet 9 of 13

P

read width wise from

FIG. 10

US 2020/0220559 A1

RAM

Patent Application Publication Jul. 9,2020 Sheet 10 of 13
width ~
O 1 2 3 4 5 o 7
g§ 9 10 M 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
write RAM-wise to Memory 1 P
i path
G 4 8§ 12 16 20 24 28
1 5 g 13 117 21 25 29
2 &6 10 14 18 22 26 30
3 7 "M 15 18 23 27 31
write RAM-wise to Memory 0 data
Z path
o 16 1 17 2 18 3 19
4 20 & 21 6 22 7 23
8§ 24 9 25 10 26 11 27
12 28 13 28 14 30 15 3
write RAM-wise to Memory 1 Jata
Z path
0 2 4 6 8 10 12 14
16 18 20 22 24 26 28 30
1 3 5 7 g "M 13 15
17 19 21 23 25 27 289 31

FIG. 1

L.

US 2020/0220559 A1

read width wise from
bit input

read width wise from
Memory 1

read width wise from
Memory O

? write to
bit output

1300

Patent Application Publication Jul. 9,2020 Sheet 11 of 13 US 2020/0220559 A1

width

W

read width wise from

0 1 2 3 bit input

RAM

12 13 14 15

write RAM-wise to Memory 1 Jata

read width wise from

0 4 8 12 Memory 1

Y
data

0 1 2 3 read width wise
from Memory 0
4 5 6 7 and output

N

4300
FIG. 12

Patent Application Publication Jul. 9,2020 Sheet 12 of 13 US 2020/0220559 A1

01 read width wise from
bit input
23

RAM

XX

XX

write RAM-wise to Memory 1 data

AVEEE S

read width wise from
Memaory 1
1x
22X
3%
write RAM-wise to Memory da?a

Lo L L LT

XX

. write to
4 # bit output

13

XX

1500
FIG. 13

Patent Application Publication

1400

1402
Bus

Jul. 9,2020 Sheet 13 of 13 US 2020/0220559 A1l

b Bmm—

1404 Processor

1408 Memory

1410
Storage Devices

1412 Media Drive 4—8 1418 Media

1420 Storage Unit
interface

44— 1422 Storage Unit

interface

1424 Communications <¢hanﬂei 1428 :>

FIG. 14

US 2020/0220559 Al

POLAR ENCODER, COMMUNICATON UNIT,
INTEGRATED CIRCUIT AND METHOD
THEREFOR

FIELD OF THE INVENTION

[0001] The field of the invention relates to a polar encoder,
a communication unit, an integrated circuit and a method for
polar encoding. The invention is applicable to, but not
limited to, polar encoding for current and future generations
of communication standards.

BACKGROUND OF THE INVENTION

[0002] In accordance with the principles of Forward Error
Correction (FEC) and channel coding, polar coding [1] may
be used to protect information against the effects of trans-
mission errors within an imperfect communication channel,
which may suffer from noise and other detrimental effects.
More specifically, a polar encoder is used in the transmitter
to encode the information and a corresponding polar decoder
is used in the receiver to mitigate transmission errors and
recover the transmitted information. The polar encoder
converts an information block comprising K bits into an
encoded block comprising a greater number of bits M>K,
according to a prescribed encoding process. In this way, the
encoded block conveys the K bits of information from the
information block, together with M-K bits of redundancy.
This redundancy may be exploited in the polar decoder
according to a prescribed decoding process, in order to
estimate the values of the original K bits from the informa-
tion block. Provided that the condition of the communica-
tion channel is not too severe, the polar decoder can cor-
rectly estimate the values of the K bits from the information
block with a high probability.

[0003] The polar encoding process comprises three steps.
In a first information block conditioning step, redundant bits
are inserted into the information block in prescribed posi-
tions, in order to increase its size from K bits to N bits, where
N is a power of two. In a second polar encoding kernal step,
the N bits of the resultant kernal information block are
combined in different combinations using successive eXclu-
sive OR (XOR) operations, according to a prescribed graph
structure. This graph structure comprises n=log,(N) succes-
sive stages, each comprising N/2 XOR operations, which
combine particular pairs of bits. In a third step, encoded
block conditioning is applied to the resultant kernal encoded
block, in order to adjust its size from N bits to M bits. This
may be achieved by repeating or removing particular bits in
the kernal encoded block according to a prescribed method,
in order to produce the encoded block.

[0004] A flexible polar encoder kernal is required to
support various kernal block sizes N, each having a value
that is a power of two, up to and including a maximum
supported kernal block size N,,, ... The prior art flexible polar
encoder kernals of [7], [8] decompose the polar code graph
into several rows, which span the width of the graph. The
polar encoder kernal operation comprises several steps,
during which each successive column is processed one after
another, in order from top to bottom. However, the amount
ot hardware required and the critical path length through that
hardware depends on the maximum number of stages
n,, . =log,(N,) that must be spanned by each row. When
encoding short blocks, much of the hardware will be unused,
resulting in poor hardware efficiency.

Jul. 9, 2020

SUMMARY OF THE INVENTION

[0005] The present invention provides a polar encoder, a
communication unit and a method for polar encoding, as
described in the accompanying claims.

[0006] Specific embodiments of the invention are set forth
in the dependent claims.

[0007] These and other aspects of the invention will be
apparent from and elucidated with reference to the embodi-
ments described hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] Further details, aspects and embodiments of the
invention will be described, by way of example only, with
reference to the drawings. In the drawings, like reference
numbers are used to identify like or functionally similar
elements. Elements in the FIG’s are illustrated for simplicity
and clarity and have not necessarily been drawn to scale.
[0009] FIG. 1 illustrates an example top-level schematic
of a communication unit having a polar encoder and polar
decoder, adapted according to example embodiments of the
invention.

[0010] FIG. 2 illustrates an example graphical represen-
tation of the generator matrices F, F®? and F®?, according to
example embodiments of the invention.

[0011] FIG. 3 illustrates an example polar encoding pro-
cess, using the graphical representation of the generator
matrix F®3 illustrating the case where a particular frozen bit
pattern is used to convert the K=4 information bits a=[1001]
into the M=8 encoded bits b=[00001111], according to
example embodiments of the invention.

[0012] FIG. 4 illustrates an example schematic of the
proposed polar encoder kernal, according to example
embodiments of the invention.

[0013] FIG. 5 illustrates an example graphical represen-
tation of the generator matrix F®°, which has been grouped
into C=3 columns comprising s=[2; 2; 1] stages, which
corresponds to s,=2, according to example embodiments of
the invention.

[0014] FIG. 6 illustrates an example flow chart of the
encoding process employed by the proposed polar encoder
kernal whereby each cycle around the main loops of the flow
chart corresponds to one step of the data encoding process,
according to example embodiments of the invention.
[0015] FIG. 7 illustrates an example timing diagram for
the proposed polar encoder kernal, according to example
embodiments of the invention.

[0016] FIG. 8 illustrates an example schematic of the
datapath in the proposed polar encoder kernal, for the
example of s,=3 and n,=16, according to example embodi-
ments of the invention.

[0017] FIG. 9 illustrates an example schematic of the
interaction between the datapath, memory and controller of
the proposed polar encoder kernal, for the example of s =1
and n,=4, according to example embodiments of the inven-
tion.

[0018] FIG. 10 illustrates an example mapping of bit
indices to positions in the memory blocks in the case where
N=16, s =1 and n,=4, according to example embodiments of
the invention.

[0019] FIG. 11 illustrates an example mapping of bit
indices to positions in the memory blocks in the case where
N=32, s,=2 and n_=8, according to example embodiments of
the invention.

US 2020/0220559 Al

[0020] FIG. 12 illustrates an example mapping of bit
indices to positions in the memory blocks in the case where
N=16, s,=2 and n_=8, according to example embodiments of
the invention.

[0021] FIG. 13 illustrates an example mapping of bit
indices to positions in the memory blocks in the case where
N=4, s,=2 and n,=8, according to example embodiments of
the invention.

[0022] FIG. 14 illustrates a typical computing system that
may be employed in an electronic device or a wireless
communication unit to perform polar encoding operations in
accordance with some example embodiments of the inven-
tion.

DETAILED DESCRIPTION

[0023] In a first aspect, examples of the present invention
describe a polar encoder kernal configured to receive one or
more bits from a kernal information block having a kernal
block size of ‘N’; and output one or more bits from a kernal
encoded block having a block size that matches the kernal
block size ‘N’; wherein the polar encoder kernal comprises
a decomposition of a polar code graph into multiple col-
umns, which are further decomposed into one or more polar
code sub-graphs and is configured to perform the processing
associated with one polar code sub-graph at a time.

[0024] Although this approach requires a greater number
of steps to complete the polar encoder kernal operation than
the prior art, the amount of hardware required and the
critical path length in examples of the present invention
depends only on the maximum number of stages in a
column, rather than on the maximum number of stages in the
polar code graph, as in the prior art. This ensures that a high
utility of the hardware is maintained for all kernal block
sizes, achieving superior hardware efficiency to the prior art.
[0025] In some examples, the polar encoder kernal may
include a datapath, memory blocks and a controller, wherein
the controller is configured to, when performing the pro-
cessing associated with each polar code sub-graph read n,
bits from a first memory block of the memory or from a bit
input to the polar encoder kernal, use the datapath (601) to
process the n,, bits and write the resultant n,, bits to a second
memory block. In this manner, the processing associated
with each polar-code sub-graph may be completed within a
single step of the encoding process. Furthermore, the dat-
apath may be utilised in every step of the encoding process,
thereby maintaining a high hardware utility, irrespective of
the kernal block size.

[0026] Insome examples, the polar encoder kernal may be
configured to perform the processing associated with all of
the polar code sub-graphs within each successive column
before advancing to the next column of the polar code graph
in order, from left to right. In this manner, the data depen-
dencies of the polar encoder kernal may be satisfied without
requiring the datapath to have a large amount of hardware
with a high critical path length, which would be necessary
in order to complete the processing associated with spanning
the maximum supported number stages in the polar code
graph.

[0027] In some examples, the processing associated with
each column may be completed by reading from a first
memory block and writing into a second memory block,
with the roles of the first memory block and second memory
block alternating for successive columns. In this manner,
there is no need to copy memory contents from one memory

Jul. 9, 2020

to the other, which would be required if the datapath was
configured to always read from one memory and always
write to the other memory.

[0028] In some examples the one or more sub-graphs in
each column may be configured to span the width of the
column. In this manner, the datapath requires only a small
amount of hardware with a small critical path length, in
order to complete the processing associated with spanning
only the stages in the column.

[0029] In some examples the one or more sub-graphs
within each column are configured to span the width of the
column. In some examples, the one or more sub-graphs
within each column may be processed by the datapath one
at a time, spread over a corresponding number of successive
processing steps. In this manner, the block size of the
datapath may be configured at design-time, in order to
optimise the trade-off between the hardware requirement
and the number of clock cycles required to complete the
polar encoder kernal process.

[0030] In some examples a number of decomposed sub-
graphs in each column may be dependent on the block size
of the datapath n,, where the block size of each sub-graph is
equal to the block size of the datapath n,, such that the
datapath is able to process the sub-graph in a single step. In
some examples, a maximum number of decomposed sub-
graphs in each column is max(N/n_e,1), and when N<n,, at
least one zero-valued bit is appended onto an end of the
kernal information block to increase its length to n,. In some
examples, the at least one zero-valued bit is subsequently
removed from the end of the kernal encoded block, to return
its length to N. In this manner, the processing of longer
kernal block sizes may be spread over a greater number of
clock cycles, while the processing of shorter kernal block
sizes may be spread over a lower number of clock cycles,
maintaining a consistent hardware efficiency.

[0031] In some examples the polar code graph may be
composed of a number (n=log,(N)) of stages that are
grouped into a number (C) of columns, where each column
includes a number of consecutive stages. In some examples,
the ‘n’ stages (207) may be distributed among the (C)
columns using any combination that satisfies s_ss, for all
c€[0, C-1], where s, specifies the maximum number of
stages supported by the datapath. In some examples, the
number of columns s_=s, for all but the right-most column,
and where all remaining stages are placed into a right-most
column. In this manner, the hardware requirement of the
datapath depends on the maximum number of stages in each
column, which may be configured at design-time, in order to
optimise the trade-off between the hardware requirement
and the number of clock cycles required to complete the
polar encoder kernal process.

[0032] In some examples, the datapath and memory, may
have the same bit widths. In some examples, a bit width of
an input and a bit width of an output of the polar encoder
kernal may be selected independently from at least one of:
each other, the datapath and memory. In this manner, the
width of the interfaces between the polar encoder kernal and
other connected circuits may be selected independently of
the datapath and memory widths, which dictate the hardware
requirement of the polar encoder kernal, as well as the
number of clock cycles required to complete the polar
encoder kernal processing.

[0033] In some examples, the datapath may include at
least one of: (i) a vertical concatenation of n_/2% graphical

US 2020/0220559 Al

representations of a first generator matrix F®% having
dimensions that depend on the number of datapath stages N,
and (ii) the left-most s, stages in a graphical representation
of a second generator matrix F®[text missing or illegible
when filed?”~ having dimensions that depend on the
datapath block size n,. In some examples, the datapath may
include a total of s_n,/2 XOR gates configured to propagate
bits from a left edge of the datapath to a right edge, through
s, datapath stages to a right edge, along paths having a
critical length comprising s, XOR gates. In some examples,
a number of right-most stages in the datapath may be
disabled when performing processing associated with col-
umns in which the number of stages s. is smaller than a
number of datapath stages s_. In this manner, the processing
associated with each sub-graph in each column may be
completed within a single clock cycle.

[0034] In some examples, the processing associated with
each successive column by the polar encoder may be per-
formed by alternating between (i) reading from the first
memory block and writing into the second memory block
and (ii) reading from the second memory block and writing
into the first memory block. In this manner, the bits that are
written to one memory block during the processing of one
column may be read from the same memory block during the
processing of the next column to the right, without the
requirement to copy bits from one memory block to the
other.

[0035] In some examples the datapath may be configured
such that after writing to a first memory block during the
processing associated with a first column, it reads from that
same memory block during a subsequent processing asso-
ciated with a second column immediately to the right of the
first column. In this manner, there is no requirement to copy
bits from one memory block to the other, as would be
required if the datapath always wrote to one memory and
read from the other memory.

[0036] In some examples, an input to the datapath may be
read from the first memory block and an output of the
datapath may be written to the second memory block. In
some examples, the processing of each column by the polar
encoder may be performed in a complementary manner by
multiplexing read data ports of the first memory block with
corresponding read data ports in second memory block. In
this manner, the datapath may read from either memory
block, according to a selection made using the multiplexer
control signal.

[0037] In some examples, the controller may provide
individual write-enable signals to control whether each of
the n, bits provided by the datapath is written individually
into the first memory block or second memory block. In this
manner, the datapath may write to either memory block,
according to a select made by asserting one or other of the
write-enable signals. In some examples the write enable
signals used for the first memory block may be shared with
the second memory block, but masked alternately when
processing alternate columns. In this manner, the write
enable signals may be controlled independently of which
column is being processed, then shared and masked depend-
ing on which column is being processed.

[0038] In some examples, the information block condi-
tioning circuit may be configured to: receive one or more
bits from an information block of data, having a block size
of K to be encoded; generate redundant bits and interlace the
redundant bits into positions that are known by a polar
decoder; and output one or more bits from the kernal

Jul. 9, 2020

information block having a block size of N to the polar
encoder kernal. In some examples, the kernal information
block (105) may be a vector:

u=[u,] jZON ~! comprising N kernal information bits and where
uE{0,1}.

[0039] Insome examples, the polar encoder kernal may be
coupled to an information block conditioning circuit con-
figured to convert information bits into the kernal informa-
tion block that is input to the polar encoder kernal. In some
examples, the information block conditioning circuit may be
configured to interlace the information bits with frozen bits,
Cyclical Redundancy Check (CRC) bits, Parity Check (PC)-
frozen bits, User Equipment Identification (UE-ID) bits,
and/or hash bits, for example. In this manner, the number of
polar information bits can adopt any integer value, without
the requirement to be a power of two.

[0040] Insome examples, the polar encoder kernal may be
coupled to an encoded block conditioning circuit configured
to generate encoded bits from the kernal encoded block
output by the polar encoder kernal. In some examples, the
encoded block conditioning circuit may be configured to use
puncturing to remove a number of the ‘N’ bits in the kernel
encoded block, or shortening to remove a number of the ‘N’
bits that are guaranteed to have logic values of ‘0’ in the
kernel encoded block, or repetition to repeat a number of the
‘N’ bits in the kernel encoded block. In this manner, the
number of polar encoded bits can adopt any integer value,
without the requirement to be a power of two. In some
examples, at least one of the information block conditioning
circuit and the encoded block conditioning circuit may be
configured to perform interleaving. In some examples, the
kernal encoded block may be a vector: x:[xj]j:ON‘1 com-
prising ‘N’ kernal encoded bits, where x,£{0,1}.

[0041] In a second aspect, examples of the present inven-
tion describe a communication unit comprising a polar
encoder kernel according to the first aspect.

[0042] In a third aspect, examples of the present invention
describe an integrated circuit comprising a polar encoder
kernel according to the first aspect.

[0043] In a fourth aspect, examples of the present inven-
tion, a method of polar encoding in a communication unit is
described according to the first aspect. The method includes:
decomposing a polar code graph into multiple columns
where each column is further decomposed into one or more
polar code sub-graphs; receiving one or more bits from a
kernal information block having a kernal block size of N;
processing encoded bits one polar code sub-graph at a time;
and outputting one or more bits from a kernal encoded block
having a block size that matches the kernal block size N.

[0044] In a fifth aspect, examples of the present invention
describe a non-transitory tangible computer program prod-
uct comprising executable code stored therein for polar
encoding in a communication unit according to the fourth
aspect.

[0045] Although examples of the invention are described
with reference to an information block conditioning circuit
configured to output one or more bits from a kernal infor-
mation block having a block size of N to a polar encoder
kernel, such that successive kernal information blocks have
kernal block sizes N that can vary from block to block, it is
envisaged in other examples that the described polar encoder
kernel may operate as an inflexible encoder that only sup-
ports one block size of N.

US 2020/0220559 Al

[0046] Although examples of the invention are described
with reference to an integrated circuit implementation within
the application of a wireless communication transmitter, it is
envisaged that in other examples, the invention may be
applied in other implementations and in other applications.
For example, the circuits and concepts herein described may
be composed as a hardware implementation within an Appli-
cation Specific Integrated Circuit (ASIC), an Application
Specific Instruction Set Processor, an Application Specific
Standard Product, a Field Programmable Gate Array, a
General-Purpose Graphical Processing Unit, System on
Chip, Configurable Processor, for example. Similarly, it is
envisaged that in other examples, a software implementation
may be composed within a Central Processing Unit, a
Digital Signal Processor or a microcontroller, for example.
Besides wireless communication transmitters, the invention
may be composed into a wireless communication trans-
ceiver, or a communication device for other communication
channels, such as optical, wired or ultrasonic channels.
Furthermore, the invention may be composed into a storage
device, in order to provide FEC for data stored on optical,
magnetic, quantum or solid-state media, for example.

[0047] Examples of the present invention further provide
a method and architecture to encode information according
to the principles of polar encoding, for the purpose of
providing FEC during communication over unreliable chan-
nels or during storage in unreliable media. Examples of the
present invention further provide a method and architecture
to provide flexible support for information blocks that
comprise a number of bits that varies from block to block.

[0048] In particular, examples of the present invention
decompose a polar code graph into several columns, which
each comprise a different set of one or more consecutive
stages. The columns are processed one after another, in order
from left to right. Each column is further decomposed into
several sub-graphs, which in some examples span only the
width of the column. The processing of each column com-
prises several steps, during which the sub-graphs within the
column are processed one after another.

[0049] Some examples of the present invention are
described with reference to the New Radio (NR) standard,
which is presently being defined by the 3rd Generation
Partnership Project (3GPP) as a candidate for 5th Generation
(5G) mobile communication. Presently, polar encoding and
decoding has been selected to provide FEC in the uplink and
downlink control channels of the enhanced Mobile Broad-
Band (eMBB) applications of NR, as well as in the Physical
Broadcast Channel (PBCH). Polar encoding and decoding
has also been identified as candidates to provide FEC for the
uplink and downlink data and control channels of the Ultra
Reliable Low Latency Communication (URLLC) and mas-
sive Machine Type Communication (mMTC) applications of
NR. Alternatively, some examples of the invention are
described without reference to a particular standardised
application. More broadly, the invention may be applied in
any future communication standards that select polar encod-
ing and decoding to provide FEC. Furthermore, the inven-
tion may be applied in non-standardised communication
applications, which may use polar encoding and decoding to
provide FEC for communication over wireless, wired, opti-
cal, ultrasonic or other communication channels. Likewise,
the invention may be applied in storage applications, which
use polar encoding and decoding to provide FEC in optical,
magnetic, quantum, solid state and other storage media.

Jul. 9, 2020

[0050] Insome examples, the circuits and functions herein
described may be implemented using discrete components
and circuits, whereas in other examples the operations may
be performed in a signal processor, for example in an
integrated circuit.

[0051] Because the illustrated embodiments of the present
invention may, for the most part, be implemented using
electronic components and circuits known to those skilled in
the art, details will not be explained in any greater extent
than that considered necessary as illustrated below, for the
understanding and appreciation of the underlying concepts
of the present invention and in order not to obfuscate or
distract from the teachings of the present invention.

DETAILED DESCRIPTION OF FIGURES

[0052] Referring now to FIG. 1, a top-level schematic of
a communication unit 116 that includes a polar encoder and
polar decoder is illustrated, adapted according to examples
of the invention. In this example of a communication unit
116, a skilled artisan will appreciate that a number of other
components and circuits (such as frequency generation
circuits, controllers, amplifiers, filters, etc.) are not shown
for simplicity purposes only. In other examples, it is envis-
aged that the block 116 may take the form of an integrated
circuit comprising the polar encoder (and in some instances
the block conditioning and polar decoding processing func-
tionality) as well, for example for use in a communication
unit, storage unit or any electronic device that is designed to
use polar encoding. In other examples, it is envisaged that
the block 116 may take the form of software running on a
general purpose computation processor.

[0053] A polar encoder comprises three successive com-
ponents, namely information block conditioning 101, the
polar encoder kernal 102 and encoded block conditioning
103. These components are discussed in the following
paragraphs. In order to provide context to the present
discussion, FIG. 1 illustrates the communication or storage
channel 108, as well as the corresponding components of the
polar decoder, namely the information block conditioning
112, the polar decoder kernal 111 and the encoded block
conditioning 110, although these are operated in the reverse
order. As will be discussed in the following paragraphs, the
encoder operates on the basis of an information block 104,
kernal information block 105, kernal encoded block 106 and
encoded block 107. Correspondingly, the polar decoder
operates on the basis of a recovered information block 115,
recovered kernal information block 114, soft kernal encoded
block 113 and soft encoded block 109, although these are
processed in the reverse order.

[0054] The input to the information block conditioning
component 101 may be referred to as an information block
104, having a block size of K. More specifically, this
information block is a row vector a=[a,],_,~~* comprising K
information bits, where u{0,1}. In some alternative
examples, the information block may be a column vector.
The information block conditioning component 101 inter-
laces the K information bits with N-K redundant bits, which
may be frozen bits [1], Cyclical Redundancy Check (CRC)
bits [2], Parity Check (PC)-frozen bits [3], User Equipment
Identification (UE-ID) bits [4], or hash bits [5], for example.
Here, frozen bits may always adopt a logic value of “0’,
while CRC or PC-frozen bits or hash bits may adopt values
that are obtained as functions of the information bits, or of
redundant bits that have already been interlaced earlier in the

US 2020/0220559 Al

process. The information block conditioning component 101
generates redundant bits and interlaces them into positions
that are identified by a prescribed method, which is also
known to the polar decoder. The information block condi-
tioning component 101 may also include an interleaving
operation, which may implement a bit-reversal permutation
[1] for example. The output of the information block con-
ditioning component 101 may be referred to as a kernal
information block 105, having a block size of N. More
specifically, this kernal information block 105 is a row
vector u=[u,],_,™! comprising N kernal information bits,
where u&0,1. In some alternative examples, the kernal
information block may be a column vector. Here, the infor-
mation block conditioning must be completed such that N is
a power of 2 that is greater than K, in order to provide
compatibility with the polar encoder kernal, which operates
on the basis of a generator matrix having dimensions that are
a power of 2, as will be discussed below. The input to the
polar encoder kernal 102 is a kernal information block u 105
and the output of the polar encoder kernal 102 may be
referred to as a kernel encoded block 106, having a block
size that matches the kernal block size N. More specifically,
this example kernal encoded block 106 is a row vector:
x=[x)] jZON ~! comprising N kernal encoded bits, where u,e0,
1. In some alternative examples, the kernal encoded block
may be a column vector. In the case where row vectors are
used, the kernal encoded block 106 is obtained according to
the modulo-2 matrix multiplication x=F®”, where the
modulo-2 sum of two bit values may be obtained as their
XOR. Here, the generator matrix F®” is given by the [n=log
2(N)]th Kronecker power of the kernal

[0055] F Note that successive Kronecker powers of the
kernal matrix may be obtained recursively, where each
power F®" is obtained by replacing each logic ‘1” in the
previous power F®-1 with the kernal matrix and by
replacing each logic ‘0’ with a 2x2 zero matrix. Accordingly,
the n” Kronecker power F®” of the kernal matrix has
dimensions of 2”x2”. For example,

10000000
11000000
1000 10100000
1100 11110000
FO? = R FO3 = .
1010 10001000
1111 11001100
10101010
r1111111

Here, u=[1011] gives x=u®?=[1101] and u=[11001001]
gives x=u®*=[00110111].

[0056] A skilled artisan will appreciate that the level of
integration of circuits or components may be, in some
instances, implementation-dependent. Furthermore, it is
envisaged in some examples that a signal processor may be
included in a communication unit 116 and be adapted to
implement the encoder and decoder functionality. Alterna-

Jul. 9, 2020

tively, a single processor may be used to implement a
processing of both transmit and receive signals, as shown in
FIG. 1, as well as some or all of the baseband/digital signal
processing functions. Clearly, the various components, such
as the described polar encoder, within a wireless or wired
communication unit 116 can be realized in discrete or
integrated component form, with an ultimate structure there-
fore being an application-specific or design selection.
[0057] In some examples, the operation of the polar
encoder kernal 102 may be represented by a graphical
representation 201, 202, 203 of the generator matrix F®”,
which is exemplified in FIG. 2. Referring now to FIG. 2 an
example graphical representation 200 of the generator matri-
ces F 201, F®2 202 and F®2 203 are illustrated according to
examples of the invention.

[0058] The graphical representation of a generator matrix
F a generator ma comprises a network of N log,(N)/2
modulo-2 additions, which additions, which are connected
to each other, as well as to a set of N=2" information
connections along the height of the graphical representa-
tion’s left-hand edge and to a set of N encoded connections
along the height of its right-hand edge. From left-to-right,
the modulo-2 additions are arranged in to a series of n stages,
which each has N connections on each of its left and
right-hand edges to either another stage, or to the left or right
hand edge of the graphical representation. Each stage hori-
zontally connects each of the connections on its left-hand
edge to the corresponding horizontally-aligned connection
on its right hand edge, either directly, or via a modulo-2
addition, which is vertically connected to a horizontal con-
nection lower in the stage. Each stage comprises a total of
N/2 vertically-aligned modulo-2 additions. In the present
invention, the set of n stages is grouped into C<n columns,
where each column comprises a different non-overlapping
set of consecutive stages.

[0059] The graphical representations 201, 202, 203 of the
generator matrix F®” are examples of small polar code
graphs, whereas in general, the polar code graphs may be
much bigger and have any dimension n>0. Thus, the
example in FIG. 2 illustrates a much more simplified
arrangement than exists in practice, purely for the purpose of
explanation and not to obfuscate the description of the
invention.

[0060] Here, each modulo-2 addition ® 204 may be
implemented using a binary eXclusive-OR (XOR) opera-
tion. Note that the graph comprises ‘N’ inputs on its left edge
205 and N’ outputs on its right edge 206, corresponding to
the ‘N” kernal information bits of “u” 105 and the ‘N’ kernal
encoded bits of ‘x” 106. The graphical representations of the
generator matrices F 201, F®2 202 and F®* 203 comprise
n=log 2(N) stages 207, each of which comprises N/2 verti-
cally aligned XORs 204, giving a total of N log 2(N)=2
XORs. Note that there are data dependencies between suc-
cessive stages 207 that enforce a left to right processing
schedule. More specifically, the data dependencies prevent
the computation of the XORs in a particular stage 207 until
after the XORs in the stage 207 to its left have been
computed.

[0061] In some examples, in common with the recursive
nature of successive Kronecker powers F®”, successive
graphical representations of these generator matrices also
have recursive relationships. More specifically, the graphical
representation 200 for a polar encoding kernal operation
having a kernal block size of N=2 201 comprises a single

US 2020/0220559 Al

stage 207, containing a single XOR 204. Notably, in the
example polar encoder, the first of the N=2 kernal encoded
bits is obtained as the XOR of the N=2 kernal information
bits, while the second kernal encoded bit is equal to the
second kernal information bit. For greater kernel block sizes
‘N’, the graphical representation may be considered to be a
vertical concatenation of two graphical representations for a
kernal block size of N/2, followed by an additional stage 207
of XORs. In analogy with the N=2 kernal described above,
the first N/2 of the N kernal encoded bits are obtained as
XORs of corresponding bits from the outputs of the two N/2
kernals, while the second N/2 of the kernal encoded bits are
equal to the output of the second N/2 kernal.

[0062] In this example, the input to the encoded block
conditioning component 103 of the polar encoder is a kernal
encoded block x 106 and its output may be referred to as an
encoded block 107, having a block size of M. More spe-
cifically, this encoded block is a row vector comprising M
encoded bits b=[b,],_,"~", where b,£{0,1}. In some alter-
native examples, the encoded block may be a column vector.
[0063] Here, the resultant polar coding rate is given by
R=K/M, where the encoded block conditioning 103 must be
completed such that ‘M’ is greater than ‘K’. The encoded
block conditioning component 103 may use various tech-
niques to generate the ‘M’ encoded bits in the encoded block
b 107, where ‘M’ may be higher or lower than ‘N’. More
specifically, repetition [6] may be used to repeat some of the
‘N’ bits in the kernel encoded block ‘x’, while shortening or
puncturing techniques [6] may be used to remove some of
the ‘N’ bits in the kernel encoded block ‘x’. Note that
shortening removes bits that are guaranteed to have logic
values of ‘0’, while puncturing removes bits that may have
either of logic ‘0’ or ‘1’ values. The encoded block condi-
tioning component may also include an interleaving opera-
tion. Following polar encoding, the encoded block ‘b* 107
may be provided to a modulator, which transmits it over a
communication channel 108.

[0064] Referring now to FIG. 3 an example polar encod-
ing process, using an extension of the graphical representa-
tion 300 of the generator matrix F®* 203, illustrates the
example where a particular frozen bit pattern is used to
convert the K=4 information bits a=[1001] 104 into the M=8
encoded bits b=[00001111] 107. More specifically, informa-
tion block conditioning 101 is used to convert the K=4
information bits a=[1001] 104 into the N=8 kernal informa-
tion bits u=[00010001] 105. These are then converted into
the N=8 kernal encoded bits x=[00001111] 106 by the polar
encoder kernal 102 using the polar code graph 203. Here, the
input paths can be traced through the various XOR opera-
tions to identify the output. Finally, encoded block condi-
tioning 103 preserves all kernal encoded bits, to provide the
M=8 encoded bits b=[00001111] 107.

Encoder Architecture Example:

[0065] Referring now to FIG. 4, an example schematic of
the proposed polar encoder kernal 600 is illustrated, accord-
ing to example embodiments of the invention. The proposed
polar encoder kernal 102 comprises a datapath 601, two
memory blocks 602, 603 and a controller 604. In contrast to
known processor architectures for implementing an encoder,
examples of the present invention describe the processing of
each column by reading from one memory and writing into
the other, with the roles of the two memories alternating for
successive columns. Each column may include one or more

Jul. 9, 2020

stages of the polar code graph. Furthermore, the processing
is spread over successive clock cycles, depending on the
block size of the datapath.

[0066] In contrast to the known polar encoders, examples
of the present invention decompose the polar code graph
into several columns, which each comprise a different set of
one or more consecutive stages. The columns are processed
one after another, in order from left to right. Each column is
further decomposed into several sub-graphs, where, in some
examples, the one or more sub-graphs within each column
are each configured to span the width of the column.
[0067] Insome examples, the sub-graphs within a particu-
lar column contain mutually exclusive sets of XORs and
interconnections, where any particular XOR or interconnec-
tion within a particular sub-graph is not connected to any
XOR or interconnections in any other sub-graph in the same
column. The processing of each column comprises several
steps, during which the sub-graphs within the column are
processed one after another, one sub-graph at a time. This is
in contrast to the prior art of [7], [8], which decomposes the
polar code graph into only a single column, comprising
several rows, which are processed one after another, in order
from top to bottom.

[0068] While the present invention requires a greater
number of steps to complete the polar encoder kernal
operation, the amount of hardware required and the critical
path length depends only on the maximum number of stages
in a column, rather than on the maximum number of stages
in the polar code graph, as in the prior art. This ensures that
a high utility of the hardware is maintained for all block
sizes, achieving superior hardware efficiency to the prior art.
[0069] Under the control of the controller 604, the dat-
apath 601 is directed to process one sub-graph of one
column in each step of the polar encoder kernal operation.
More specifically, the input to the datapath 601 is read from
one of the two memory blocks 602, 603 and the output of the
datapath 601 is written to the other of the two memory
blocks 602, 603. Here, the roles of the two memory blocks
alternate during the processing of successive columns, such
that the memory block that is written to during the process-
ing of one column is read from during the processing of the
next column. The bits are arranged within these memory
blocks 602, 603 in a manner that allows the datapath 601 to
perform seamless read and write operations, without the
requirement for complex interconnection networks or com-
plex control signals.

[0070] The proposed polar encoder kernal 600 enables the
flexible encoding of one kernal information block 105 at a
time, where successive kernal information blocks can have
kernal block sizes N that can vary from block to block. More
specifically, the kernal block size N can adopt the value of
any power of two between 2 and Nmax, where Nmax is a
parameter that is fixed at design time.

[0071] At the start of the polar encoding process, the
kernal information block u=[u] jZON ~! say kernal information
block 105 from FIG. 1) is provided to the bit input 605 of
the polar encoder kernal 102, over a series of N/min(N; n,)
consecutive steps. The bit input has a width that can accept
n, bits in each step, where the parameter n, is fixed at design
time. In the example where N<n, zero-valued bits are
appended to the end of the kernal information block before
it is provided to the proposed polar encoder kernal 600, in
order to increase its length to n,. Following the completion
of the polar encoding process, a series of N/'m (N, n,)

US 2020/0220559 Al

consecutive steps is used to output one or more bits from the
kernal encoded block x=[x;],,"~" 106 on the bit output 606
of the proposed polar encoder kernal 600, which also has a
width of n, bits. In the example where N<n,, zero-valued
bits may be removed from the end of the output of the polar
encoder kernal 600. [text missing or illegible when
filed]

[0072] In a first example, the input 605 and output 606 of
the polar encoder kernal 600 may be configured to have the
same width of n, bits as the memory 602, 603 and datapath
601. In a second example, however, it is envisaged that the
input 605 and output 606 of the polar encoder kernal 600
may be configured to have different widths to the memory
602, 603 and datapath 601 components, thereby allowing the
width of the interfaces with the information and encoded
block conditioning components 101, 103 to be selected
independently of the datapath 601 width. This allows the
hardware resources and number of clock cycles consumed
by the block conditioning components 101, 103 and the
polar encoder kernal 102 to be separately optimised.

[0073] Referring now to FIG. 5, an example graphical
representation of the generator matrix F®°, which has been
grouped into C=3 columns comprising s=[2; 2; 1] stages,
which corresponds to s,=2 is illustrated, according to
example embodiments of the invention. Here, n,=8, which
results in each column being decomposed into N/n,=4
sub-graphs, providing a total of 12 sub-graphs across C=3
columns. Each column 702 is enclosed in a green box. The
first sub-graph 701 in each column is highlighted in bold.

[0074] When encoding a kernal information block 105
having a block size of N, the proposed polar encoder kernal
600 operates on the basis of a graphical representations of
the polar code generator matrix, as described above. Here,
the n=log 2(N) stages 207 within the graphical representa-
tions are grouped into a number C of columns, where each
column 702 comprises a particular number of consecutive
stages 207. Each column 702 may be referred to by its index
ce[0, C-1], where the left-most column has the index ¢=0
and the right-most column has the index c=C-1. The number
of stages 207 in each column may be expressed using the
row vector s=[s[text missing or illegible when filed]]
[text missing or illegible when filed]-0“~", where s,, is
the number of stages in the left-most column and s._, is the
number of stages in the right-most column. Here, the vector
s must be chosen such that: Z[text missing or illegible
when filed]=0“"'s[text missing or illegible when
filed]=n. To be more explicit, each stage 207 in the polar
code graph comprises N/2 XORs 204, which may be reor-
dered horizontally without changing the fundamental con-
nectivity of the graph. Each column 702 comprises one or
more horizontally consecutive stages. [text missing or
illegible when filed]

[0075] In some examples, the particular number of stages
207 in each column 702 is selected depending on the kernal
block size N, as well as the parameter s, which in some
examples is fixed at design time. Here, s, specifies the
maximum number of stages 207 that may be accommodated
in each column 702, which can adopt any value in the range
‘1’ to n,,,,=log 2(N
[0076] Inthis particular example, the graph is decomposed
into C=[n/s,| number of columns, where n=log,(N) is the
number of stages in the graph. More specifically, the first
C-1 columns each comprise s, stages 207, while the right-
most column comprises s._;=n-(C-1)s, stages, where s._;
may adopt any value in the range ‘1’ to s, depending on the

Jul. 9, 2020

kernal block size N. This is exemplified in FIG. 5, where
s=[2; 2; 1] results from s,=2 in the example where the graph
comprises n=5 stages 207.

[0077] Insome alternative examples, the n stages 207 may
be distributed among the C columns 702 using any other
combination that satisfies s_<s, for all ¢£[0, C-1]. In some
examples the graph may be decomposed into a maximum of
C,.=[n,./s.] number of columns, where the right-most col-
umn comprises a maximum of s, ,.=n . —(C, ~1)s,
stages 207 and all other columns comprise a maximum of
Se.max—5. Stages 207. The set of columns is associated with
a vector of so-called sub-code radixes r=[r[text missing or
illegible when filed]][text missing or illegible when
filed]=0“~!, where each sub-code radix is given by:

@ =200,

@ indicates text missingor illegiblewhen filed

[0078] Here, the sub-code radix r,. of a particular column
702 quantifies the kernal block size N that would result if the
graph comprised only the stages 207 in that column and in
the columns to its left. Note that the sub-code radix r,, of each
successive column 702 grows from left to right. Each
column 702 is decomposed into R=max(N/n,, 1) indepen-
dent sub-graphs 701, each having N/R=m (N, n,) horizon-
tally-aligned connections on its left- and right-hand edges,
but no connections to any other sub-graphs within the
column. Here, n, specifies the maximum sub-graph block
size, which is a parameter that is fixed at design time and
which can adopt the value of any power of two in the range
2% t0 N,,,. The connections on the left- and right-hand edges
of a sub-graph 701 in the left-most column are vertically
consecutive to each other. This is exemplified in the left-
most column of FIG. 5, where R=4 results from n_=8 in the
example where the graph comprises n=5 stages 207. As
exemplified by the middle column of FIG. 5, columns 702
having an index c¢&[1, C-1] are comprised of sub-graphs
701 with connections on the left- and right-hand edges that
are vertically offset from each other by r[text missing or
illegible when filed] positions, unless r[text missing or
illegible when filed]>R. When r[text missing or illeg-
ible when filed]>8, the sub-graph comprises N\r[text
missing or illegible when filed] groups of r[text miss-
ing or illegible when filed]/R vertically consecutive
connections, where the groups are vertically offset from each
other by r[text missing or illegible when filed] posi-
tions, as exemplified in the right-most column of FIG. 5. In
some examples, the vertical offset is used to select which
XORs and interconnections form each sub-graph.

[0079] Referring now to FIG. 6 a flow chart 800 of the
encoding process employed by the proposed polar encoder
kernal 102, 600 is illustrated according to examples of the
invention. The flowchart 800 starts at 802 and, at 804, the
number of sub-graphs in each column is set to R=max(N/n,;
1) and the number of columns has been set to C=ceil(log,
(N)/s,). At 806 the main encoding loop is initiated, with a
counter t set to ‘0’.

[0080] At 808, the current column is identified using the
index to col=floor(t/R) and the sub-graph to be processed
within the current column is identified using the index
row=mod(t, R). At 810, a determination is made as to
whether the column being processed is =0. If at 810, the
column being processed is not=0, then the flowchart moves

US 2020/0220559 Al

to 812 whereby n, bits are loaded from the memory block
602, 603 having the index mod(col, 2). However, if at 810,
the column being processed is =0, then the flowchart moves
to 814 whereby e bits are loaded from the polar encoder
kernel input. After 812 or 814, the flowchart moves to 816
whereby the datapath 601 is used to process the current
sub-graph of the selected column. At 818, n, bits are then
stored in the memory block 602, 603 having the index
mod(col+1, 2). Note that the input to the datapath 601 is read
from one of the two memory blocks 602, 603 and the output
of'the datapath 601 is written to the other of the two memory
blocks 602, 603. Here, the roles of the two memory blocks
alternate during the processing of successive columns, such
that the memory block that is written to during the process-
ing of one column is read from during the processing of the
next column. At 820, a determination is then made as to
whether col=C-1 and the row=R-1. If the col=C-1 or the
row=R-1 is not valid, then the counter is incremented
(t:=t+1) at 822. Thereafter, the flowchart loops to 808. If the
determination of col=C-1 and the row=R-1 is valid, then
the counter is reset at 824, with t=0. At 826, the n, bits are
loaded from memory block having the index mod(col+1, 2)
and at 828 the encoder outputs n, bits on the polar encoder
kernal output 606. At 832, a determination is made as to
whether the counter t has reached R-1. If the counter of t has
not reached the R-1 at 832, then the counter is incremented
at 834. If the counter t has reached R-1 at 832, then the
flowchart ends at 836 and the conversion of the kernal
information block into the kernal encoded block is complete.
[0081] Thus, in accordance with the data dependencies
described previously, the proposed polar encoder kernal 102,
600 completes the processing for each column (e.g. one of
the columns in FIG. 5) one after another, from left to right.
Within each column, the sub-graphs 701 are processed one
after another, in order from top to bottom, where the
processing of each sub-graph constitutes one step in the
proposed polar encoding process, as shown in FIG. 6. In
alternative examples, the sub-graphs 701 within each col-
umn 702 may be processed in any order, whereby such
alternative examples may require modifications to the design
described above.

[0082] This approach is in contrast to the prior art of [7],
[8], which decomposes the polar code graph into only a
single column, comprising several rows, which are pro-
cessed one after another, and specifically in order from top
to bottom. While the present invention requires a greater
number of steps to complete the polar encoder kernal
operation, the amount of datapath hardware required and the
critical path length depends only on the maximum number
of stages in a column, rather than on the maximum number
of stages n,=[text missing or illegible when filed],
(N,,) in the polar code graph, as in the prior art. This ensures
that a high utility of the hardware is maintained for all block
sizes, achieving superior hardware efficiency to the prior art.
More specifically, the proposed approach exploits all of its
parallelism in almost every step of the encoding process,
irrespective of the number of stages 207 in the graph,
resulting in maximised hardware efficiency for all block
lengths.

[0083] Referring now to FIG. 7, an example timing dia-
gram for the proposed polar encoder kernal 102, is illus-
trated according to example embodiments of the invention.
[0084] As shown in FIG. 7, the whole process comprises

a total of T=X[text missing or illegible when filed]-
1N/n[text missing or illegible when filed]=[[text

Jul. 9, 2020

missing or illegible when filed],(m (N, n,))/s,|N/m (N,
n,) steps. Note that the kernal information block 105 can be
loaded into the proposed polar encoder kernal 102 concur-
rently with the processing of the left-most column in the
graph. However, a further N/m (N, n,) steps are required to
output the kernal encoded block 106. In an alternative
example (not shown), the outputting of one or more bits
from of the kernal encoded block 106 may begin towards the
end of the processing of the right-most column, thereby
allowing some concurrency to be achieved. Each step may
correspond to a single clock cycle in a hardware implemen-
tation, depending on if, and how, pipelining is applied,
which may be used to optimise the clock frequency of the
polar encoder kernal.

Encoder Datapath Example:

[0085] The datapath 601 of the proposed polar encoder is
designed to perform the processing associated with one
sub-graph of the polar code graph in each step of the polar
encoding process. In this manner, the kernal information bits
input on the left-hand edge of the polar code graph may be
successively combined by the datapath into intermediate bits
during successive steps of the polar encoding process, until
the kernal encoded bits that are output on the right-hand
edge of the polar code graph are obtained.

[0086] The datapath 601 of the proposed polar encoder is
parameterised by s, and n_, which are referred to here as the
number of datapath stages and the datapath block size, the
number of datapath stages s, can adopt any value in the
range ‘1’ to n,,,,, while the datapath block size n, can adopt
the value of any power of two in the range 2* to N, .. As
exemplified in FIG. 8, the datapath 601 resembles a vertical
concatenation of n_/2* graph representations of the generator
matrix F®%, which also resembles the left-most s, stages 207
in a graph representation of the generator matrix F®[text
missing or illegible when filed]?*. In this manner,
having a larger n,, is similar to a processing of more than one
sub-graph at a time.

[0087] In alternative example arrangements (not shown),
the datapath 601 may resemble any ordering of s, different
stages 207 from a graphical representation of the generator
matrix F€[text missing or illegible when filed]2*
albeit with different RAM and controller designs to those
described above.

[0088] Referring now to FIG. 8 an example schematic of
the datapath 601 in the proposed polar encoder kernal 102,
is illustrated for the example of s,=3 and n_=16. As exem-
plified in FIG. 8, the datapath 601 comprises a total of s_n_/2
XOR gates 1001, which propagate bits from the left edge
1002 of the datapath to its right edge 1003, along paths
having a critical length comprising s, XOR gates. The
operation of the datapath 601 is also dictated by the number
of stages s_ in the current column 702, which may be lower
than s, in the example of the right-most column, as illus-
trated in Figure FIG. 5 and described in the accompanying
discussion. When s_<s,, the number of stages in the datapath
is reduced to match s_ by disabling the XOR gates 1001 in
the right-most stages of the datapath. In some examples, this
disabling operation may be achieved by using AND gates
1004, as shown, to mask the corresponding vertical connec-
tions in the datapath. More specifically, a vertical connection
may be enabled by providing a one-valued control input to
the corresponding AND gate, allowing the bit value carried
by the vertical connection to pass. By contrast, a vertical
connection may be disabled by providing a zero-valued
control input to the corresponding AND gate, forcing the

US 2020/0220559 Al

vertical connection to provide a zero-valued bit to the
corresponding XOR gate. In turn, this forces the XOR gate
to pass the bit value provided on its left-hand input straight
through to its output, effectively disabling the XOR gate.
[0089] In alternative example arrangements, stages 1005
(other than the right-most stages) may be disabled, in order
to reduce the number of stages from s, to s.. However, these
alternative example arrangements may require a different
controller design to that described above, as appreciated by
a skilled artisan.

[0090] In some alternative example arrangements, it is
envisaged that a designer may insert pipelining registers
between some or all of the stages 1005 in the XOR graph,
which may require a modification to the design of the
controller. Here, pipelining may be introduced to increase
the clock frequency of the polar encoder kernal, at the cost
of increasing the number of clock cycles required. By
carefully selecting if and how to apply pipelining, the
throughput and latency of the polar decoder kernal can be
optimised, such that the advantage of increased clock fre-
quency maximally outweighs the disadvantage of requiring
more clock cycles.

Encoder Memory Example:

[0091] Referring back to FIG. 4, the proposed polar
encoder kernal 102 employs two three-dimensional blocks
of memory, namely Memory ‘0’ 602 and Memory ‘1° 603.
Each of these memory blocks comprises 2° RAMs, having
widths of n,, bits and depths of m (N,,,,,./(2°n,), 1) addresses,
where the RAMs, their width and their depth represent the
three dimensions of the memory block. The total memory
requirement of the proposed polar encoder kernal 102 is
given by 2 m (N,,,., 2*n,) bits.

[0092] In some alternative example arrangements, it is
envisaged that a designer may swap the roles of the RAM
and width dimensions, instead for example by employing n,
RAMSs, having widths of 2% bits. Also, rather than accom-
modating the two memory blocks 602, 603 in the RAM
dimension using two distinct groups of RAMs, in some
example alternative arrangements it is envisaged that a
designer may accommodate the two blocks of memory
within a single group of RAMs, either by doubling their
widths or by doubling their depths, therefore accommodat-
ing the two memory blocks in the width or depth dimensions
instead. However, these alternative example arrangements
may require different datapath interfaces and a different
controller design to that described above, as appreciated by
a skilled artisan.

[0093] Referring now to FIG. 9 an example schematic of
the interaction between the datapath 601, memory 602, 603
and controller 604 of the proposed polar encoder kernal 102,
for the example of s, =1 and n_=4, is illustrated according to
example embodiments of the invention. As illustrated, each
RAM in each block of memory has an n,_-bit read port 1101.
This read port outputs the n, bits across the width of a
particular one of the m (max/(2%n,), 1) addresses across the
depth of the RAM. Here, the particular address is selected by
an input provided on an address port 1102, as shown in FIG.
9. Likewise, each RAM has a n_-bit write port 1103, as
shown in FIG. 9. This write port accepts inputs that can
update the n, bits across the width of a particular address,
which is selected by the input provided on the address port
1102. However, these n, bits are only updated if correspond-
ing write enable signals 607 are asserted. It is assumed that

Jul. 9, 2020

n, individual write enable signals can be used to control
whether each of the n, bits is written individually. If this is
not supported natively by a particular hardware RAM imple-
mentation, then the write port 1103 can be driven by n,
multiplexers 608, which can be used to multiplex the input
bits with feedback from the read port 1101. In this way, the
n, write enable signals can individually control the bits
selected by these n, multiplexers, either writing the new bit
value to the RAM, or maintaining the current bit value by
writing the corresponding bit obtained from the read port
1101. For the sake of simplicity, this mechanism is not
depicted in FIG. 9, although it is shown in FIG. 4.

[0094] During the processing of each successive column
702 in the graph from left to right, the roles of the two
memory blocks 602, 603 alternate. More specifically, for
columns having even indices ¢={0, 2, 4, . . . }, bits are read
from Memory ‘0’ 602 (or directly from the n_-bit input 605
to the proposed polar encoder kernal 102 in the example of
column 0”), provided to the datapath 601 and the resultant
bits are written to Memory ‘1’ 603. By contrast, bits are read
from Memory ‘1’ 603, provided to the datapath 601 and the
resultant bits are written to Memory ‘0 602 in the example
of columns having odd indices ¢€{1, 3, 5, . . . }. In this way,
the memory block that was written to during the processing
of a particular column 702 is read from during the process-
ing of the next column. This alternated operation of the two
memory blocks 602, 603 may be achieved by multiplexing
609 the read data ports of the RAMs in Memory ‘0’ 602 with
those of the corresponding RAMs in Memory ‘1’ 603.
Likewise, the write enable signals 608 of the RAMs in
Memory ‘0’ may be shared with those of the corresponding
RAMs in Memory ‘1°, but masked alternately. For the sake
of simplicity, these mechanisms are not depicted in FIG. 9,
although they are shown in FIG. 4.

[0095] The interfaces between the memory blocks 602,
603 and the datapath 601 are designed specifically to avoid
the requirement for complicated routing networks, which
would be required to allow any bit in the memory blocks
602, 603 to be read or written by any of the inputs or outputs
of the datapath 601. Instead, the arrangement of the bits in
the memory block is designed such that only simple routing
networks are required between the memory blocks 602, 603
and the datapath 601. Likewise, it is designed so that only a
limited number of control signals are required from the
controller 604.

[0096] This is achieved by carefully arranging the bits
within the three dimensions of the memory blocks 602, 603
in a manner that is sympathetic to the specific data depen-
dencies of a polar encoder kernal. This is necessary because
owing to the different arrangement of XORs in each column,
consecutive columns in the polar code graph must be
decomposed into sub-graphs having different arrangements,
as exemplified in FIG. 5. As a result, the bits that the
datapath 601 writes at the same time during the processing
of the sub-graphs in one column will not be read by the
datapath 601 at the same time when processing the sub-
graphs in the next column. However, irrespective of this, the
proposed arrangement of bits in the memory block allows
the datapath 601 to seamlessly read the input bits that it
requires at the same time, as well as to seamlessly write the
output bits that it generates at the same time.

[0097] More specifically, the address ports of the 2*%
RAMs within a particular memory block 602, 603 are all
tied together, only requiring the controller 604 to generate a

US 2020/0220559 Al

single address for each of the memory blocks 602, 603.
Furthermore, the bit input 1002 on the left-hand edge of the
datapath 601 reads from the memory blocks 602, 603 on a
simple width-wise basis, as detailed below. By contrast, the
bit output 1003 on the right-hand edge of the datapath 601
writes to the memory blocks 602, 603 on a simple RAM-
wise basis, as detailed below. In an alternative example
arrangement, the width-wise bit memory accesses may be
replaced with RAM-wise accesses and vice-versa, although
this would imply different datapath interfaces and controller
designs to those described below.

[0098] For both width-wise and RAM-wise interfaces
between a memory block 602, 603 and the datapath 601, the
bit having the position 1[0, n,-1] in the input 1002 or
output 1003 of the datapath 601 is read from or written to a
particular position within the width of a particular address
within the depth of a particular one of the RAMs in the
memory block. This location in the memory block 602, 603
may be identified by the width coordinate w,£[0, n,~1] the
depth coordinate &[0, m (N,,,./(2°n,), 1)-1] and the RAM
coordinate r,&£[0,2%-1]. As mentioned above, the arrange-
ment of the bits in each memory block 602, 603 and the
operation of the proposed polar encoder kernal 102 is such
that the address ports of the 2°* RAMs within a particular bit
memory block 602, 603 can all be tied together. This implies
that for both width-wise and RAM-wise interfaces, all n, of
the bits that are accessed together will all have the same
depth coordinate, which is to say that d, has the same value
for all 1€]0, n_-1]. Furthermore, the bit in the width-wise
datapath input 1002 having the position 1€[0, n_-1] only
ever reads from locations in the memory block 602, 603
having the corresponding width coordinate w,=1. However,
this bit in the datapath interface may need to read from any
of the possible RAM coordinates r&[0,2%~1] at different
times during the polar encoding process. Owing to this, a
2%:1 multiplexer 1104 is the only circuitry required to
provide the 17 bit to the width-wise datapath input 1002.
More specifically, this multiplexer 1104 selects between the
bits provided by the 1” position in the read ports 1101 of
each of the 2% RAMs, as shown in FIG. 9. Here, the
controller 604 is required to provide n, RAM read coordi-
nates to the memory block, which may be decoded in order
to provide separate control signals to each of these n,
multiplexers 1104.

[0099] Furthermore, the bit having the position 1€[0,
n,-1] in the RAM-wise output 1003 of the datapath is only
ever written to locations in the memory block 602, 603
having the corresponding RAM coordinate r~=mod(l, 2%).
However, this bit may need to be written to any of the
possible width coordinates w,=[0, n_—1] at different times
during the polar encoding process. Owing to this, a n/2%:1
multiplexer 1105 is the only circuitry required to provide
each of the n, inputs to each of the RAMs’ 2°¢ write ports
1103, as shown in FIG. 9. This is because each input of the
RAM having the RAM coordinate r, is only selected from
the sub-set of datapath output bits 1003 having positions
1[0, n_~1] that satisfy mod(l, 2*)=r,. Here, the controller
604 is required to provide n, width write coordinates to the
memory block 602, 603, which may be decoded to assert n,
of the write enable signals 607, as well as to provide control
signals for the corresponding sub-set of n, multiplexers
1105.

Jul. 9, 2020

[0100]
the memory block 602, 603 that was written to most recently

Following the completion of the decoding process,

is read over a series of steps by the bit output 606 of the
proposed polar encoder kernal 102, which has a width of n,
bits. However, these read operations are not performed
width-wise in the general case, where the number of stages
in the graph n=log 2(N) is not divisible by the number of
stages in the datapath s,. For this reason, in some examples,
a permutation network 1106 is provided to interface the
memory blocks 602, 603 with the bit output 606 of the
proposed polar encoder kernal 102, as shown in FIG. 9.

Encoder Controller Example:

[0101] As described above in FIG. 7, the proposed polar
encoding process comprises a total of:

[0102] T=X[text missing or illegible when filed]-0<-
1N/n[text missing or illegible when filed]=[log,(max
(N, n,))/s,|N/min(N, n,) steps. Here, the processing of the
sub-graphs 701 within each successive column 702 are
completed, before advancing to the next column in order,
from left to right. The controller 604 of FIG. 4 includes a
counter t, which adopts the logic value ‘0’ at the start of the
encoding process and increments towards T-1 in each
successive step. As described above, each step of the pro-
posed polar encoding process involves reading n, bits from
one memory block 602, 603 or from the bit input 605 to the
proposed polar encoder kernal 102, processing them in the
datapath 601 and then writing the resultant n, bits to the
other memory block, where the roles of the two memory
blocks 602, 603 alternate in successive columns 702. The
controller 604 is designed such that regardless of which
column 702 in the graph is being processed, each memory
read operation seamlessly provides a set of n, bits that may
be combined by the datapath 601, in order to complete a set
of XOR operations according to the connections in the
graph. Furthermore, the controller 604 is designed such that
each memory write operation seamlessly arranges the result-
ing set of n, bits in the memory blocks 602, 603, so that they
can be seamlessly read in the fashion described above when
the processing advances to the next column 702. During the
first N/m (N, n,) steps of the encoding process, the process-
ing is performed concurren}\l}y with the loading of the kernal
information block u=[u,] _;¥~* 105 from the input 605 to the
polar encoder kernal 10]2], which has a width of n, bits. In the
example where N<n,, zero-valued bits are appended to the
end of the kernal information block 105 before it is provided
to the proposed polar encoder kernal 102, in order to
increase its length to n,. Following this, the bit input of the
proposed polar encoder kernal 102 provides n, bits in each
step, in order of increasing bit index j. More specifically,
during the step in the loading process having the index 1€[0,
N/(N, n,)-1], the bit provided to the position 1[0, n-1] in
the input to the proposed polar encoder kernal 102 is u,,, ;.
During the first N/m (N, n,) steps of the encoding process,
these bits are provided directly to the corresponding bit
inputs 1002 of the datapath 601, as shown in FIG. 4. After
the first N/m (N, n,) steps in the encoding process, the input
1002 to the datapath 601 is loaded from one or other of the
memory blocks 602, 603. During the step in the encoding
process having the index t€[N/m (N, n,), [log,(max(N,
n))s,|N/m (N, n,)-1], the bit that is provided to the
position 1€[0, n_-1] in the input 1002 to the datapath 601 is
read from the depth d;, RAM r, and width w, coordinates of
the corresponding memory block, according to:

US 2020/0220559 Al

d; = m(t, m(% 1]]
2O +D2

@ :mq mN. @)

[E)!

wy =1

® indicates text missingor illegiblewhen filed

[0103] Here, it may be observed that the width coordinates
w1 that the datapath input bits 1002 are read from are
independent of the step index t and may therefore be
hardwired according to the width-wise operation. By con-
trast, the depth d; and RAM r, coordinates must be controlled
by the controller 604, as a function of the step index t. Note
that the depth coordinates dl are independent of the bit index
1, only requiring the controller 604 to provide a single read
address, which is shared by all RAMs in the memory block
602, 603. However, the RAM coordinates r; are dependent
on the bit index 1, requiring the controller 604 to generate a
separate control signal for each of the n, bits.

[0104] During the step in the polar encoding process
having the index:

1€[0,[logy(max(N,n,))/s \N/mNno)-1],
the bit that is provided by the position 1€[0, n_-1] in the
output 1003 of the datapath 601 is written to the depth d, and

RAM r, and width w, coordinates of the corresponding
memory block 602, 603, according to:

oAl At
Im(N, @) +@
5)7

@ indicates text missingor illegiblewhen filed

m(N, @)] ®]

W1=®(o)

[0105] Here, it may be observed that the RAM coordinates
r/~mod(l, 2*) that the datapath output bits 1003 are written
to are independent of the step index t and may therefore be
hardwired according to the RAM-wise operation. By con-
trast, the depth d, and width w, coordinates must be con-
trolled by the controller 604, as a function of the step index
t. Note that the depth coordinates d, are independent of the
bit index 1, only requiring the controller 604 to provide a
single write address, which is shared by all RAMs in the
memory block 602, 603. However, the width coordinates w,,
are dependent on the bit index 1, requiring the controller 604
to generate a separate control signal for each of the n, bits.
As shown in FIG. 7, a further N/'m (N, n,) steps are used
following the completion of the polar encoding process, in
order to read encoded bits from the appropriate memory
block 602, 603 and provide them to the output 606 of the
polar encoder kernal 102, which has a width of n, bits.
Collectively, these bits form the kernal encoded block x=[x;]
jZON -1 106, where zero-valued bits may be removed from the
end of the output 606 of the polar encoder kernal 102 in the
example where N<n,. The counter t is reset to a logic ‘0’
value at the start of the outputting process and is incre-
mented towards N/m (N, n_,)-1 in each successive step.

Jul. 9, 2020

[0106] During the [text missing or illegible when
filed]” step in the outputting process, the bit that is provided
to the position 1[0, n_-1] in the output 606 of the proposed
polar encoder kernal 102 is read from the depth d,, RAM r,
and width w, coordinates of the corresponding memory
block 602, 603, according to:

N
=l ol gy @ =mose s
_ (DN, D)+ RD +{D20
= { N, n)®

O] 2
an(H2) 502 |)

J, 20)

@ indicates text missingor illegiblewhen filed

[0107] where 0=2""“"[text missing or illegible when
filedp @)= Here, it may be observed that the depth d,,
RAM r,; and width w, coordinates must be controlled by the
controller 604, as a function of the step index t. Note that the
depth coordinates di are independent of the bit index 1, only
requiring the controller 604 to provide a single write
address, which is shared by all RAMs in the memory block
602, 603. However, the RAM r, and width w, coordinates are
dependent on the bit index 1, requiring the controller 604 to
generate separate control signals for each of the n, bits.
[0108] The above-described method of controlling both
memory read and memory write operations results in a
characteristic arrangement of bits within the memory blocks
602, 603. FIGS. 10 to 13 provide various examples of this
characteristic arrangement, before and after the processing
of each column 702 in the polar code graph. Each FIG.
illustrates the index j&[0, N-1] of the connection between
two adjacent columns 702 in the polar graph that provides
the bit stored at each RAM, depth and width coordinate in
the memory block 602, 603.

[0109] Referring now to FIG. 10 an example mapping of
bit indices to positions in the memory blocks 602, 603 using
a depth comprising multiple addresses in the example where
N>2%n, and in particular where N=16, s.=1 and n,=4 is
illustrated according to examples of the invention. Here,
each memory block 602, 603 comprises 2°*=2 RAMs, each
having a depth of: m (N/(2%n,), 1)=2 addresses and a width
of n,=4 bits. A total of T=[log,(max(N, n,))/s,|N/min(N,
n,)=16 steps are required to complete the processing and a
further N/m (N, n_)=4 steps are required to output the
encoded bits. Here, it may be seen that each read operation
is performed width-wise and each write operation is per-
formed RAM-wise, as described above. In the particular
example of FIG. 10, the number of stages n=log 2 (N) in the
polar code graph is divisible by the number of stages in the
datapath s,. Owing to this, the outputting process may read
the encoded bits from the corresponding memory block 602,
603 in a width-wise manner. More specifically, it may be
observed that

OW.®) |®+®
w2 % =

@ indicates text missingor illegiblewhen filed

simplifies to w,=1 in this example.

US 2020/0220559 Al

[0110] Referring now to FIG. 11, an example mapping of
bit indices to positions in the memory blocks 602, 603 in the
example where N=32, s, =2 and n_=8 is illustrated according
to examples of the invention. Here, each memory block 602,
603 comprises 2*°=4 RAMs, each having a depth of m
(N/(2°1n,), 1)=1 address and a width of n,=8 bits. A total of
T=[log,(max(N, n,))/s, |N/min(N, n,)=12 steps are required
to complete the processing and a further N/m (N, n,)=4 steps
are required to output the encoded bits. FIG. 11 corresponds
to the example provided in FIG. 5. In this example, N=2%n,
and so each memory block 602, 603 uses a depth of only a
single address. In this particular example, the width-wise
reading and the RAM-wise writing of the memory block bits
corresponds to reordering the indices in successive matrices
of FIG. 11 from a row-first, column-second ordering to a
column-first, row-second ordering. Here, it may be observed
that the highlighting of the first sub-graph in each column of
FIG. 5 corresponds to the first set of n, bits that are processed
by the datapath 601 in each of the three columns 702,
namely [01234567],[048 12 1620 24 28] and [0 16
1 17 2 18 3 19], respectively. This illustrates how the
RAM-wise writing of bits seamless enables the width-wise
reading of bits to naturally provide the correct combination
of bits for the next operation of the datapath 601. Note that
since n is not divisible by s, in this example, the outputting
process cannot be completed in a purely width-wise manner.

[0111] Referring now to FIG. 12, an example mapping of
bit indices to positions in the memory blocks 602, 603 in the
example where N<2%n_, and in particular where N=16, s =2
and n_=8 is illustrated according to examples of the inven-
tion. Here, each memory block 602, 603 requires a depth of
only a single address, but the kernal block length N is not
sufficient to fill the capacity of this single address in all
RAMs of the memory block 602, 603. Thus, each memory
block 602, 603 comprises 2°=4 RAMs, each having a depth
of m (N/(2°n,), 1)=1 address and a width of n,=8 bits. A
total of T=[log,(max(N, n,))/s, [N/min(N, n,)=4 steps are
required to complete the processing and a further N/m (N,
n,)=2 steps are required to output the encoded bits. In this
example, the width-wise read and RAM-wise write opera-
tions naturally result in a diagonal arrangement of bits
within the memory block 602, 603, as illustrated.

[0112] Referring now to FIG. 13, an example mapping of
bit indices to positions in the memory blocks 602, 603 in the
example where N=4, s =2 and n_=8 is illustrated according
to examples of the invention. Here, each memory block 602,
603 comprises 2°*=4 RAMSs, each having a depth of n
(N/(2°1n,), 1)=1 address and a width of n,=8 bits. A total of
T=[log,(max(N, n,))/s,|N/min(N, n,)=2 steps are required
to complete the processing and a further N/m (N, n,)=1 step
is required to output the encoded bits.

[0113] Referring now to FIG. 14, there is illustrated a
typical computing system 1400 that may be employed to
implement polar encoding according to some example
embodiments of the invention. Computing systems of this
type may be used in wireless communication units. Those
skilled in the relevant art will also recognize how to imple-
ment the invention using other computer systems or archi-
tectures. Computing system 1400 may represent, for
example, a desktop, laptop or notebook computer, hand-held
computing device (PDA, cell phone, palmtop, etc.), main-
frame, server, client, or any other type of special or general
purpose computing device as may be desirable or appropri-
ate for a given application or environment. Computing

Jul. 9, 2020

system 1400 can include one or more processors, such as a
processor 1404. Processor 1404 can be implemented using
a general or special-purpose processing engine such as, for
example, a microprocessor, microcontroller or other control
logic. In this example, processor 1404 is connected to a bus
1402 or other communications medium. In some examples,
computing system 1400 may be a non-transitory tangible
computer program product comprising executable code
stored therein for implementing polar encoding.

[0114] Computing system 1400 can also include a main
memory 1408, such as random access memory (RAM) or
other dynamic memory, for storing information and instruc-
tions to be executed by processor 1404. Main memory 1408
also may be used for storing temporary variables or other
intermediate information during execution of instructions to
be executed by processor 1404. Computing system 1400
may likewise include a read only memory (ROM) or other
static storage device coupled to bus 1402 for storing static
information and instructions for processor 1404.

[0115] The computing system 1400 may also include
information storage system 1410, which may include, for
example, a media drive 1412 and a removable storage
interface 1420. The media drive 1412 may include a drive or
other mechanism to support fixed or removable storage
media, such as a hard disk drive, a floppy disk drive, a
magnetic tape drive, an optical disk drive, a compact disc
(CD) or digital video drive (DVD) read or write drive (R or
RW), or other removable or fixed media drive. Storage
media 1418 may include, for example, a hard disk, floppy
disk, magnetic tape, optical disk, CD or DVD, or other fixed
or removable medium that is read by and written to by media
drive 1412. As these examples illustrate, the storage media
1418 may include a computer-readable storage medium
having particular computer software or data stored therein.

[0116] In alternative embodiments, information storage
system 1410 may include other similar components for
allowing computer programs or other instructions or data to
be loaded into computing system 1400. Such components
may include, for example, a removable storage unit 1422
and an interface 1420, such as a program cartridge and
cartridge interface, a removable memory (for example, a
flash memory or other removable memory module) and
memory slot, and other removable storage units 1422 and
interfaces 1420 that allow software and data to be trans-
ferred from the removable storage unit 1418 to computing
system 1400.

[0117] Computing system 1400 can also include a com-
munications interface 1424. Communications interface 1424
can be used to allow software and data to be transferred
between computing system 1400 and external devices.
Examples of communications interface 1424 can include a
modem, a network interface (such as an Ethernet or other
NIC card), a communications port (such as for example, a
universal serial bus (USB) port), a PCMCIA slot and card,
etc. Software and data transferred via communications inter-
face 1424 are in the form of signals which can be electronic,
electromagnetic, and optical or other signals capable of
being received by communications interface 1424. These
signals are provided to communications interface 1424 via a
channel 1428. This channel 1428 may carry signals and may
be implemented using a wireless medium, wire or cable,
fibre optics, or other communications medium. Some
examples of a channel include a phone line, a cellular phone

US 2020/0220559 Al

link, an RF link, a network interface, a local or wide area
network, and other communications channels.

[0118] In this document, the terms ‘computer program
product’, ‘computer-readable medium’ and the like may be
used generally to refer to media such as, for example,
memory 1408, storage device 1418, or storage unit 1422.
These and other forms of computer-readable media may
store one or more instructions for use by processor 1404, to
cause the processor to perform specified operations. Such
instructions, generally referred to as ‘computer program
code’ (which may be grouped in the form of computer
programs or other groupings), when executed, enable the
computing system 1400 to perform functions of embodi-
ments of the present invention. Note that the code may
directly cause the processor to perform specified operations,
be compiled to do so, and/or be combined with other
software, hardware, and/or firmware elements (e.g., libraries
for performing standard functions) to do so.

[0119] In an embodiment where the elements are imple-
mented using software, the software may be stored in a
computer-readable medium and loaded into computing sys-
tem 1400 using, for example, removable storage drive 1422,
drive 1412 or communications interface 1424. The control
logic (in this example, software instructions or computer
program code), when executed by the processor 1404,
causes the processor 1404 to perform the functions of the
invention as described herein.

[0120] In the foregoing specification, the invention has
been described with reference to specific examples of
embodiments of the invention. It will, however, be evident
that various modifications and changes may be made therein
without departing from the scope of the invention as set forth
in the appended claims and that the claims are not limited to
the specific examples described above.

[0121] The connections as discussed herein may be any
type of connection suitable to transfer signals from or to the
respective nodes, units or devices, for example via interme-
diate devices. Accordingly, unless implied or stated other-
wise, the connections may for example be direct connections
or indirect connections. The connections may be illustrated
or described in reference to being a single connection, a
plurality of connections, unidirectional connections, or bidi-
rectional connections. However, different embodiments may
vary the implementation of the connections. For example,
separate unidirectional connections may be used rather than
bidirectional connections and vice versa. Also, plurality of
connections may be replaced with a single connection that
transfers multiple signals serially or in a time multiplexed
manner. Likewise, single connections carrying multiple sig-
nals may be separated out into various different connections
carrying subsets of these signals. Therefore, many options
exist for transferring signals.

[0122] Those skilled in the art will recognize that the
architectures depicted herein are merely exemplary, and that
in fact many other architectures can be implemented which
achieve the same functionality.

[0123] Any arrangement of components to achieve the
same functionality is effectively ‘associated’ such that the
desired functionality is achieved. Hence, any two compo-
nents herein combined to achieve a particular functionality
can be seen as ‘associated with’ each other such that the
desired functionality is achieved, irrespective of architec-
tures or intermediary components. Likewise, any two com-

Jul. 9, 2020

ponents so associated can also be viewed as being ‘operably
connected,” or ‘operably coupled,” to each other to achieve
the desired functionality.

[0124] Furthermore, those skilled in the art will recognize
that boundaries between the above described operations
merely illustrative. The multiple operations may be com-
bined into a single operation, a single operation may be
distributed in additional operations and operations may be
executed at least partially overlapping in time. Moreover,
alternative embodiments may include multiple instances of
a particular operation, and the order of operations may be
altered in various other embodiments.

[0125] The present invention is herein described with
reference to an integrated circuit device comprising, say, a
microprocessor configured to perform the functionality of a
polar encoder. However, it will be appreciated that the
present invention is not limited to such integrated circuit
devices, and may equally be applied to integrated circuit
devices comprising any alternative type of operational func-
tionality. Examples of such integrated circuit device com-
prising alternative types of operational functionality may
include, by way of example only, application-specific inte-
grated circuit (ASIC) devices, field-programmable gate
array (FPGA) devices, or integrated with other components,
etc. Furthermore, because the illustrated embodiments of the
present invention may for the most part, be implemented
using electronic components and circuits known to those
skilled in the art, details have not been explained in any
greater extent than that considered necessary, for the under-
standing and appreciation of the underlying concepts of the
present invention and in order not to obfuscate or distract
from the teachings of the present invention. Alternatively,
the circuit and/or component examples may be implemented
as any number of separate integrated circuits or separate
devices interconnected with each other in a suitable manner.
[0126] Also for example, the examples, or portions
thereof, may implemented as soft or code representations of
physical circuitry or of logical representations convertible
into physical circuitry, such as in a hardware description
language of any appropriate type.

[0127] Also, the invention is not limited to physical
devices or units implemented in non-programmable hard-
ware but can also be applied in programmable devices or
units able to perform the desired polar encoding by operat-
ing in accordance with suitable program code, such as
minicomputers, personal computers, notepads, personal
digital assistants, electronic games, automotive and other
embedded systems, cell phones and various other wireless
devices, commonly denoted in this application as ‘computer
systems’.

[0128] However, other modifications, variations and alter-
natives are also possible. The specifications and drawings
are, accordingly, to be regarded in an illustrative rather than
in a restrictive sense.

[0129] In the claims, any reference signs placed between
parentheses shall not be construed as limiting the claim. The
word ‘comprising’ does not exclude the presence of other
elements or steps then those listed in a claim. Furthermore,
the terms ‘a’ or ‘an,” as used herein, are defined as one or
more than one. Also, the use of introductory phrases such as
‘at least one’ and ‘one or more’ in the claims should not be
construed to imply that the introduction of another claim
element by the indefinite articles ‘a’ or ‘an’ limits any
particular claim containing such introduced claim element to

US 2020/0220559 Al

inventions containing only one such element, even when the
same claim includes the introductory phrases ‘one or more’
or ‘at least one’ and indefinite articles such as ‘a’ or ‘an.” The
same holds true for the use of definite articles. Unless stated
otherwise, terms such as ‘first’ and ‘second’ are used to
arbitrarily distinguish between the elements such terms
describe. Thus, these terms are not necessarily intended to
indicate temporal or other prioritization of such elements.
The mere fact that certain measures are recited in mutually
different claims does not indicate that a combination of these
measures cannot be used to advantage.

REFERENCES

[0130] [1] E. Arikan, “Channel polarization: A method for
constructing capacity-achieving codes for symmetric
binary-input memoryless channels,” IEEE Transactions
on Information Theory, vol. 55, no. 7, pp. 3051-3073, July
2009.

[0131] [2] K. Niu and K. Chen, “Crc-aided decoding of
polar codes,” IEEE Communications Letters, vol. 16, no.
10, pp. 1668-1671, October 2012.

[0132] [3] Huawei, HiSilicon, “Polar code construction
for NR,” in 3GPP TSG RAN WGI1 Meeting #86bis,
Lisbon, Portugal, October 2016, R1-1608862.

[0133] [4] “Evaluation of channel coding schemes for
control channel,” in 3GPP TSG RAN WGI1 Meeting
#86bis, Lisbon, Portugal, October 2016, R1-1608863.

[0134] [5] CATT, “Polar codes design for eMBB control
channel,” in 3GPP TSG RAN WG1 AH NR Meeting,
Spokane, USA, January 2017, R1-1700242.

[0135] [6] ZTE, ZTE Microelectronics, “Rate matching of
polar codes for eMBB,” in 3GPP TSG RAN WG1 Meet-
ing #88, Athens, Greece, February 2017, R1-1701602.

[0136] [7] H. Yoo and 1. C. Park, “Partially parallel
encoder architecture for long polar codes,” IEEE Trans-
actions on Circuits and Systems II: Express Briefs, vol.
62, no. 3, pp. 306-310, March 2015.

[0137] [8] G. Sarkis, I. Tal, P. Giard, A. Vardy, C. Thi-
beault, and W. J. Gross, “Flexible and low-complexity
encoding and decoding of systematic polar codes,” IEEE
Transactions on Communications, vol. 64, no. 7, pp.
2732-2745, July 2016.

1-37. (canceled)

38. A polar encoder kernal configured to:

receive one or more bits from a kernal information block

having a kernal block size of N; and
output one or more bits from a kernal encoded block
having a block size that matches the kernal block size,
N;

wherein the polar encoder kernal comprises a decompo-
sition of a polar code graph into multiple columns that
are processed by a reused single datapath utilised in
each step of the encoding process irrespective of the
kernal block size, at least one of said multiple columns
contains two or more stages and where each column of
the multiple columns is further decomposed into one or
more polar code sub-graphs and is configured to per-
form the processing associated with one polar code
sub-graph at a time.

39. The polar encoder of claim 38, wherein the polar
encoder kernal comprises a datapath, memory blocks and a
controller wherein the controller is configured to, when
performing the processing associated with each polar code
sub-graph, read n, bits from a first memory block of the

Jul. 9, 2020

memory or from a bit input to the polar encoder kernal, use
the datapath to process the n, bits and write the resultant n,
bits to a second memory block.

40. The polar encoder of claim 38, wherein the polar
encoder kernal is configured to perform the processing
associated with all of the polar code sub-graphs within each
successive column before advancing to the next column of
the polar code graph in order, from left to right.

41. The polar encoder of claim 38, wherein the one or
more sub-graphs within each column are configured to span
the width of the column.

42. The polar encoder of claim 39, wherein the one or
more sub-graphs within each column are processed by the
datapath one at a time, spread over a corresponding number
of successive processing steps, and wherein a number of
decomposed sub-graphs in each column is dependent on the
block size of the datapath n_, where the block size of each
sub-graph is equal to the block size of the datapath n,, such
that the datapath is able to process the sub-graph in a single
step.

43. The polar encoder of claim 42, wherein a maximum
number of decomposed sub-graphs in each column is m
(N/n,, 1), and when N<n,, at least one zero-valued bit is
appended onto an end of the kernal information block to
increase its length to n,.

44. The polar encoder of claim 38, wherein the polar code
graph is composed of a number (n=log 2(N)) of stages that
are grouped into a number, C of columns, where each
column comprises a number of consecutive stages, and
wherein the ‘n’ stages are distributed among the number of
C columns using any combination that satisfies s[text
missing or illegible when filed]<s, for all c€[0, C-1],
where s, specifies the maximum number of stages supported
by the datapath.

45. The polar encoder of claim 44, wherein the number of
columns s[text missing or illegible when filed]=s, for
all but the right-most column, and where all remaining
stages are placed into a right-most column.

46. The polar encoder of claim 39, wherein the datapath
and memory have the same bit widths and wherein a bit
width of an input and a bit width of an output of the polar
encoder kernal are selected independently from at least one
of: each other, the datapath and memory.

47. The polar encoder of claim 46, wherein the datapath
comprises at least one of: (i) a vertical concatenation of
n,/2% graphical representations of a first generator matrix
F®* having dimensions that depend on the number of dat-
apath stages ‘s,” and (ii) the left-most e stages in a graphical
representation of a second generator matrix F®[text miss-
ing or illegible when filed]*? having dimensions that
depend on the datapath block size n,.

48. The polar encoder of claim 46, wherein the datapath
comprises a total of s_,n_/2 XOR gates configured to propa-
gate bits from a left edge of the datapath, through s, datapath
stages, to a right edge, along paths having a critical length
comprising s, XOR gates and wherein a number of right-
most stages in the datapath are disabled when performing
processing associated with columns in which the number of
stages s[text missing or illegible when filed] is smaller
than a number of datapath stages s..

49. The polar encoder of claim 39, wherein the processing
associated with each successive column is performed by
alternating between (i) reading from the first memory block

US 2020/0220559 Al

and writing into the second memory block; and (ii) reading
from the second memory block and writing into the first
memory block.

50. The polar encoder of claim 49, wherein the controller
provides individual write-enable signals to control whether
each of the n, bits provided by the datapath is written
individually into the first memory block or second memory
block.

51. The polar encoder of claim 50, wherein the individual
write enable signals used for the first memory block are
shared with the second memory block, but masked alter-
nately when performing the processing associated with
successive columns.

52. The polar encoder of claim 38, wherein the polar
encoder kernal is coupled to an information block condi-
tioning circuit configured to:

receive one or more bits of an information block of data,

having a block size of K to be encoded;

generate redundant bits and interlace the redundant bits

into positions that are known by a polar decoder; and
output one or more bits from the kernal information block
having a block size of N to the polar encoder kernal.

53. The polar encoder of claim 38, wherein successive
kernal information blocks have kernal block sizes N that can
vary from block to block.

54. A communication unit comprises a polar encoder
kernal configured to:

receive one or more bits from a kernal information block

having a kernal block size of N; and

output one or more bits from a kernal encoded block
having a block size that matches the kernal block size
N;

wherein the polar encoder kernal comprises a decompo-

sition of a polar code graph into multiple columns that
are processed by a reused single datapath utilised in
each step of the encoding process irrespective of the
kernal block size, at least one of said multiple columns
contains two or more stages and where each column of
the multiple columns is further decomposed into one or
more polar code sub-graphs and is configured to pro-
cess encoded bits one polar code sub-graph at a time.

55. An integrated circuit for a wireless communication
unit, the integrated circuit comprising a polar encoder kernal
configured to:

receive one or more bits from a kernal information block

having a kernal block size of N; and

Jul. 9, 2020

output one or more bits from a kernal encoded block
having a block size that matches the kernal block size
N;

wherein the polar encoder kernal comprises a decompo-
sition of a polar code graph into multiple columns that
are processed by a reused single datapath utilised in
each step of the encoding process irrespective of the
kernal block size, at least one of said multiple columns
contains two or more stages and where each column of
the multiple columns is further decomposed into one or
more polar code sub-graphs and is configured to pro-
cess encoded bits one polar code sub-graph at a time.

56. A method of polar encoding in a communication unit,
the method performed at a polar encoder kernal:

decomposing a polar code graph into multiple columns

that are processed by a reused single datapath utilised
in each step of the encoding process irrespective of the
kernal block size, at least one of said multiple columns
contains two or more stages and where each column of
the multiple columns is further decomposed into one or
more polar code sub-graphs;

receiving one or more bits from a kernal information

block having a kernal block size of N;

processing encoded bits one polar code sub-graph at a

time; and

outputting one or more bits from a kernal encoded block

having a block size that matches the kernal block size
N.

57. A non-transitory tangible computer program product
comprising executable code stored therein for polar encod-
ing in a communication unit, wherein the code is operable
for, when executed at a polar encoder kernal:

decomposing a polar code graph into multiple columns

that are processed by a reused single datapath utilised
in each step of the encoding process irrespective of the
kernal block size, at least one of said multiple columns
contains two or more stages and where each column of
the multiple columns is further decomposed into one or
more polar code sub-graphs;

receiving one or more bits from a kernal information

block having a kernal block size of N;

processing encoded bits one polar code sub-graph at a

time; and

outputting one or more bits from a kernal encoded block

having a block size that matches the kernal block size,
N.

