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FIG. 4

(57) Abstract: An electronic device configured to perform polar 
coding is described. The electronic device includes a bit pattern 
generator (3403) configured to successively perform a bit pattern 
generation process over a series (/ = [n/wj) of clock cycles; and 
a counter (c, 4203), operably coupled to the bit pattern generator 
(3403) and configured to count a number of successive bit pattern 
generation sub-processes over the series (/ = [n/w]) of clock cy
cles. The bit pattern generator (3403) is configured to: provide a 
successive sub-set of (w) bits from a bit pattern vector (b|, n) in each 
successive t = [n/w] clock cycle; where the bit pattern vector com
prises n bits, of which 'k' bits adopt a first binary value and n-k bits 
adopt a complementary binary value.
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Title: BLOCKWISE PARALLEL FROZEN BIT GENERATION FOR POLAR CODES

Description

Field of the invention

The field of the invention relates to an electronic device configured to perform polar coding 

and a method for bit pattern generation. The invention is applicable to, but not limited to, a bit 

pattern generation for a polar encoder and a polar decoder for current and future generations of 

communication standards.

Background of the invention

In accordance with the principles of Forward Error Correction (FEC) and channel coding, 

polar coding [1] may be used to protect information against the effects of transmission errors within 

an imperfect communication channel, which may suffer from noise and other detrimental effects. 

More specifically, a polar encoder is used in the transmitter to encode the information and a 

corresponding polar decoder is used in the receiver to mitigate transmission errors and recover the 

transmitted information. The polar encoder converts an information block comprising K bits into an 

encoded block comprising a greater number of bits M>K, according to a prescribed encoding 

process. In this way, the encoded block conveys the K bits of information from the information 

block, together with M-K bits of redundancy. This redundancy may be exploited in the polar 

decoder according to a prescribed decoding process, in order to estimate the values of the original 

K bits from the information block. Provided that the condition of the communication channel is not 

too severe, the polar decoder can correctly estimate the values of the K bits from the information 

block with a high probability.

The polar encoding process comprises three steps. In a first information block conditioning 

step, redundant bits are inserted into the information block in prescribed positions, in order to 

increase its size from K bits to N bits, where N is a power of two. In a second polar encoding kernal 

step, the N bits of the resultant kernal information block are combined in different combinations 

using successive exclusive OR (XOR) operations, according to a prescribed graph structure. This 

graph structure comprises n=log2(N) successive stages, each comprising N/2 XOR operations, 

which combine particular pairs of bits. In a third step, encoded block conditioning is applied to the 

resultant kernal encoded block, in order to adjust its size from N bits to M bits. This may be 

achieved by repeating or removing particular bits in the kernal encoded block according to a 

prescribed method, in order to produce the encoded block, which is transmitted over a channel or 

stored in a storage media.

A soft encoded block is received from the channel or retrieved from the storage media. The 

polar decoding process comprises three steps, which correspond to the three steps in the polar
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encoding process, but in a reverse order. In a first encoded block conditioning step, redundant soft 

bits are inserted or combined into the soft encoded block in prescribed positions, in order to adjust 

its size from M soft bits to N soft bits, where N is a power of two. In a second polar decoding kernal 

step, the N soft bits of the resultant kernal encoded block are combined in different combinations 

using a Successive Cancellation (SC) [1] or Successive Cancellation List (SCL) [7] process, which 

operates on the basis of the prescribed graph structure. In a third step, information block 

conditioning is applied to the resultant recovered kernal information block, in order to reduce its 

size from N bits to K bits. This may be achieved by removing particular bits in the recovered kernal 

information block according to a prescribed method, in order to produce the recovered information 

block.

In a context of a polar encoder, the information block conditioning component 101 

interlaces the K information bits with N - K redundant bits, which may be frozen bits [1], Cyclical 

Redundancy Check (CRC) bits [2], Parity Check (PC)-frozen bits [3], User Equipment Identification 

(UE-ID) bits [4], or hash bits [5], for example. Here, frozen bits may always adopt a logic value of 

O’, while CRC or PC-frozen bits or hash bits may adopt values that are obtained as functions of the 

information bits, or of redundant bits that have already been interlaced earlier in the process. The 

information block conditioning component 101 generates redundant bits and interlaces them into 

positions that are identified by a prescribed method, which is also known to the polar decoder. The 

information block conditioning component 101 may also include an interleaving operation, which 

may implement a bit-reversal permutation [1] for example.

In a context of a polar encoder, the encoded block conditioning component 103 may use 

various techniques to generate the ‘M’ encoded bits in the encoded block 107, where ‘M’ may be 

higher or lower than ‘Ν’. More specifically, repetition [6] may be used to repeat some of the ‘N’ bits 

in the kernel encoded block, while shortening or puncturing techniques [6] may be used to remove 

some of the ‘N’ bits in the kernel encoded block. Note that shortening removes bits that are 

guaranteed to have logic values of O’, while puncturing removes bits that may have either of logic 

Ό’ or ‘T values. The encoded block conditioning component may also include an interleaving 

operation.

The input to the encoded block conditioning component 110 of the polar decoder is a soft 

encoded block. In order to convert the M encoded LLRs into ‘N’ kernal encoded LLRs, infinite

valued LLRs may be interlaced with the soft encoded block 109, to occupy the positions within the 

soft kernal encoded block that correspond to the Ό’-valued kernal encoded bits that were removed 

by shortening in the polar encoder. Likewise, Ό’-valued LLRs may be interlaced with the soft 

encoded block 109, to occupy the positions where kernal encoded bits were removed by 

puncturing. In the case of repetition, the LLRs that correspond to replicas of a particular kernal 

encoded bit may be summed and placed in the corresponding position within the soft kernal 

encoded block 109. A corresponding deinterleaving operation may also be performed, if 

interleaving was employed within the encoded block conditioning component 103 of the polar 

encoder.
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The input to the information block conditioning component 112 of the polar decoder is a 

recovered kernal information block 114. The recovered information block may be obtained by 

removing all redundant bits from the recovered kernal information block 114. A corresponding 

deinterleaving operation may also be performed, if interleaving was employed within the 

information block conditioning component 101 of the polar encoder.

During the implementation of the four block conditioning components, it is challenging to 

achieve the flexibility that is required to enable bits or soft bits (which may be represented in the 

form of LLRs) to be inserted into or removed from arbitrary positions within the corresponding 

blocks, where these positions vary depending on the particular combination of K, N and M. This is 

particularly challenging in the implementation of flexible polar encoders and decoders, which allow 

K, N and M to vary from block to block, during run-time. It is particularly challenging to implement 

these flexible block conditioning components with a low hardware usage and the ability to complete 

the block conditioning processes within a low number of clock cycles. Owing to this challenge, all 

previous implementations [14, 15] of the block conditioning components have only processed one 

bit or soft bit per clock cycle, requiring a total of N clock cycles to complete the process.

Summary of the invention

The present invention provides an electronic device configured to perform polar coding using 

block conditioning circuits, an integrated circuit and a method for block conditioning, as described 

in the accompanying claims.

Specific embodiments of the invention are set forth in the dependent claims.

These and other aspects of the invention will be apparent from and elucidated with reference 

to the embodiments described hereinafter.

Brief description of the drawings

Further details, aspects and embodiments of the invention will be described, by way of 

example only, with reference to the drawings. In the drawings, like reference numbers are used to 

identify like or functionally similar elements. Elements in the FIG’s are illustrated for simplicity and 

clarity and have not necessarily been drawn to scale.

FIG. 1 illustrates an example top-level schematic of a communication unit having a polar 

encoder and polar decoder, adapted according to example embodiments of the invention.

FIG. 2 illustrates an example graphical representation of the generator matrices F, F 2 and 

F 3, according to example embodiments of the invention.

FIG. 3 illustrates an example polar encoding process, using the graphical representation of 

the generator matrix F 3, illustrating the case where a particular frozen bit pattern is used to 

convert the K = 4 information bits a = [1001] into the M = 8 encoded bits b = [00001111], according 

to example embodiments of the invention.



WO 2019/011555 PCT/EP2018/065554
PCT/EP2018/065554 - 04.07.2018

5

10

15

20

25

30

35

FIG. 4 illustrates an example block diagram of an interlacer architecture, according to some 

example embodiments of the invention.
FIG. 5 illustrates a more detailed example of an interlacer architecture for the case of w = 4, 

according to some example embodiments of the invention.

FIG. 6 illustrates an example table to operate an interlacer, where: w=4, for the case 

where the k = 9 input elements [9, 8, 7, 6, 5, 4, 3, 2, 1] are interlaced from right-to-left with 0-valued 

interlacing elements, according to the n = 16-bit pattern [1100011010110101] , according to some 

example embodiments of the invention.
FIG. 7 illustrates a naive bit pattern generator, for the case where w = 4, according to some 

example embodiments of the invention.
FIG. 8 illustrates an example table of contents of a bit pattern ROM, when using a 

Polarization Weight (PW) bit pattern construction of [8] for all combinations of n e {2, 4, 8, 16} and 

k e {1, 2, 3........n - 1}, according to some example embodiments of the invention.

FIG. 9 illustrates an example contents of the rank ROM 3801, when using the PW bit pattern 

construction of [8] for all n e {2, 4, 8, 16, 32}, according to some example embodiments of the 

invention.
FIG. 10 illustrates a bit pattern generator exploiting the nested property, for the case where 

w = 4, according to some example embodiments of the invention.
FIG. 11 illustrates a bit pattern generator exploiting the nested and symmetric properties, for 

the case where w = 4, according to some example embodiments of the invention.
FIG. 12 illustrates a bit pattern generator exploiting the nested, recursive and arithmetic 

properties, for the case where w = 4, according to some example embodiments of the invention.

FIG. 13 illustrates circuits for generating w bits from a particular bit pattern in each step of 

the encoded block conditioning process: (a) Block puncturing; (b) Block shortening; (c) Bit reversal 

puncturing; and (d) Bit reversal shortening, according to some example embodiments of the 

invention.
FIG. 14 illustrates a high-level flowchart of a polar coder operations performed by a bit 

pattern generator in accordance with some example embodiments of the invention.
FIG. 15 illustrates a typical computing system that may be employed in an electronic device 

or a wireless communication unit to perform polar encoding operations in accordance with some 

example embodiments of the invention.
FIG. 16 provides a schematic of the proposed hardware implementations for frozen bit 

insertion and removal, in accordance with some example embodiments of the invention.

FIG. 17 exemplifies elements of the reversed sequence Read Only Memory

(ROM) for N — 64 and where IP’ — and c IP’1], 

in accordance with some example embodiments of the invention.
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FIG. 4 illustrates an example block diagram of an interlacer architecture, according to some 

example embodiments of the invention.

FIG. 5 illustrates a more detailed example of an interlacer architecture for the case of w = 4, 

according to some example embodiments of the invention.

FIG. 6 illustrates an example table to operate an interlacer, where: w=4, for the case 

where the k = 9 input elements [9, 8, 7, 6, 5, 4, 3, 2, 1] are interlaced from right-to-left with 0-valued 

interlacing elements, according to the n = 16-bit pattern [1100011010110101] , according to some 

example embodiments of the invention.

FIG. 7 illustrates a naive bit pattern generator, for the case where w = 4, according to some 

example embodiments of the invention.

FIG. 8 illustrates an example table of contents of a bit pattern ROM, when using a 

Polarization Weight (PW) bit pattern construction of [8] for all combinations of n {2, 4, 8, 16} and 

k e {1,2, 3, . . . , n - 1}, according to some example embodiments of the invention.

FIG. 9 illustrates an example contents of the rank ROM 3801, when using the PW bit pattern 

construction of [8] for all n e {2, 4, 8, 16, 32}, according to some example embodiments of the 

invention.

FIG. 10 illustrates a bit pattern generator exploiting the nested property, for the case where 

w = 4, according to some example embodiments of the invention.

FIG. 11 illustrates a bit pattern generator exploiting the nested and symmetric properties, for 

the case where w = 4, according to some example embodiments of the invention.

FIG. 12 illustrates a bit pattern generator exploiting the nested, recursive and arithmetic 

properties, for the case where w = 4, according to some example embodiments of the invention.

FIG. 13 illustrates circuits for generating w bits from a particular bit pattern in each step of 

the encoded block conditioning process: (a) Block puncturing; (b) Block shortening; (c) Bit reversal 

puncturing; and (d) Bit reversal shortening, according to some example embodiments of the 

invention.

FIG. 14 illustrates a high-level flowchart of a polar coder operations performed by a bit 

pattern generator in accordance with some example embodiments of the invention.

FIG. 15 illustrates a typical computing system that may be employed in an electronic device 

or a wireless communication unit to perform polar encoding operations in accordance with some 

example embodiments of the invention.

FIG. 16 provides a schematic of the proposed hardware implementations for frozen bit 

insertion and removal, in accordance with some example embodiments of the invention.

FIG. 17 exemplifies elements _________  of the reversed sequence Read Only Memory

(ROM) for I ~~ and , where and

in accordance with some example embodiments of the invention.
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FIG. 20 exemplifies elements

FIG. 18 exemplifies elements Qn?'] of the interleaved sequence ROM for N —r 64 
and where * ^[O^Wq —·· 1] and C ξ. [0,TV/ jn accordance with

some example embodiments ofthe invention.

FIG. 19 exemplifies elements TT/v of the deinterleaver ROM for TV =i.64and 

Wr?— 4, where and G [θ? -^V/u/R — jn accordance with some

example embodiments of the invention.

[ej .^] of the rank ROM for 'N. 7= 64 and *W'R··— '4
where and G [Oi’TV/’WR 1], jn accordance with some example

embodiments of the invention.
FIG. 21 provides a flow chart of the proposed hardware implementations for frozen bit 

insertion and removal, in accordance with some example embodiments of the invention.

FIG. 22 exemplifies elements of the bit pattern generated in each of the 2V/wr 16 
clock cycles of a second sub-process (identified as 4702) for IK =f=32, Ai.-.=.:.68., TV == 64 
and Wr == 4 in accordance with some example embodiments of the invention. In this case, 

repetition is used and ife =# 32. Since Af’CTVis not satisfied, no clock cycles are used to 

complete the first sub-process (identified as 4701), irrespective of Φ-Q.
FIG. 23 exemplifies elements of the bit pattern generated in each of the TV/wr; — 16 

clock cycles of the second sub-process for IK == 32, Αί = 56, TV =F 64 and '&R —? 4·, in 

accordance with some example embodiments of the invention. In this case, shortening is used and 

jg?±=’.i40. When = 8, five clock cycles are used to complete the first sub-process.

FIG. 24 exemplifies elements of the bit pattern generated in each of the TV/w_r — 16 
clock cycles ofthe second sub-process forijK" =: 24, Af == 56, TV = 64 and &R — 4:, jn 

accordance with some example embodiments of the invention. In this case, puncturing is used and 

— 25. When WQ = 8 four c(ock CyC|es are usec| f0 complete the first sub-process 4701.

FIG. 25 an example of a number of clock cycles required by the first sub-process 4701 as a 

function of [17,:1024] and IK <E [ [A#/.&], AV ·-* ij for the worst case where

■ : 1 jn accordance with some example embodiments of the invention. When adopts 

the value of a higher power of two, these numbers of clock cycles may be linearly scaled down and 

then rounded up to the nearest integer.
FIG. 26 plots an example of a number of clock cycles required by the second sub-process as 

a function of [17,1024] and € [ [Af/8] , A-f — 1], for the worst case where 

Wr t== 1 jn accordance with some example embodiments of the invention. When adopts 
the value of a higher power of two, these numbers of clock cycles may be linearly scaled down and 

then rounded up to the nearest integer.
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FIG. 19 exemplifies elements of the deinterleaver ROM for land
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example embodiments of the invention.

FIG. 20 exemplifies elements of the rank ROM for ~ ~ η ~ ~ q^

where and _____________________I, in accordance with some example

embodiments of the invention.

FIG. 21 provides a flow chart of the proposed hardware implementations for frozen bit 

insertion and removal, in accordance with some example embodiments of the invention.

FIG. 22 exemplifies elements of the bit pattern generated in each of the______________

clock cycles of a second sub-process (identified as 4702) for 1, ~ ~~ ~Ί, I Ί

and ~ ~~ 1 in accordance with some example embodiments of the invention. In this case, 

repetition is used and ~ ~ I. Since lis not satisfied, no clock cycles are used to 

complete the first sub-process (identified as 4701), irrespective of

FIG. 23 exemplifies elements of the bit pattern generated in each of the______________

clock cycles of the second sub-process for ~ ~~ Ί, ~ ~~ Π, ~ ~ ~ 1 and I 1, in 

accordance with some example embodiments of the invention. In this case, shortening is used and

]. When , five clock cycles are used to complete the first sub-process.

FIG. 24 exemplifies elements of the bit pattern generated in each of the______________

clock cycles of the second sub-process for ~ ~~ Ί, ~ ~~ Π, ~ ~ ~ 1 and 1, in 

accordance with some example embodiments of the invention. In this case, puncturing is used and

1 When , four clock cycles are used to complete the first sub-process 4701.

FIG. 25 an example of a number of clock cycles required by the first sub-process 4701 as a

function of and , for the worst case where

, in accordance with some example embodiments of the invention. When adopts

the value of a higher power of two, these numbers of clock cycles may be linearly scaled down and 

then rounded up to the nearest integer.

FIG. 26 plots an example of a number of clock cycles required by the second sub-process as 

a function of_________________  and ________________________ I, for the worst case where

1, in accordance with some example embodiments of the invention. When [‘'“"Ί adopts 

the value of a higher power of two, these numbers of clock cycles may be linearly scaled down and 

then rounded up to the nearest integer.
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Detailed description

Several sequences have been proposed for the selection of information bits during 

information block conditioning within a polar encoder [8 - 12]. These sequences may be used to 

obtain a bit pattern vector ^k>n, in which k out of n bits have the value Ί’, where n is a power of two 

greater than k. These 1-valued bits identify the positions where the k information bits should be 

inserted into the n-bit kernal information block. The process of generating the bit pattern may be 

completed over a series of |« « clock cycles at the start of the polar encoding process, 

where a sub-process of the bit pattern generation process is completed in each successive clock 

cycle. Here, successive sub-sets of w bits from the bit pattern vector may be used to control 

the insertion of information bits into successive sub-sets of w bits for the kernal information block. 

Throughout this process, these successive w-bit sub-sets of the kernal information block may be 

simultaneously funnelled into a polar encoder kernal having a corresponding input width of w, such 

as the design of [13], which has demonstrated w=32. In this way, the insertion of the k information 

bits into the n-bit kernal information block may impose no additional latency upon the polar 

encoding process. Likewise, similar benefits can be obtained in the polar decoder, when extracting 

the k recovered information bits from the recovered kernal information block. Note that the 

proposed approach processes w pattern bits in each step, which is in contrast to the block 

conditioning modules of previous efforts [14, 15], which are only capable of processing a single 

pattern bit in each step.

In a first aspect, examples of the present invention an electronic device configured to 

perform polar coding is described. The electronic device includes a bit pattern generator configured 

to successively perform a bit pattern generation process over a series (** " ["/"‘I ) of clock cycles; 

and a counter, operably coupled to the bit pattern generator and configured to count a number of 

successive bit pattern generation sub-processes over the series (* = ) of clock cycles. The

bit pattern generator is configured to: provide a successive sub-set of (w) bits from a bit pattern 

vector in each successive I"/"' clock cycle; where the bit pattern vector comprises n 

bits, of which ‘k’ bits adopt a first binary value and n-k bits adopt a complementary binary value.

In this manner, parallel processing may be used to reduce the number of clock cycles 

required to complete the bit pattern generation process.

In some examples, the bit pattern generator circuit may include a bank of (w) comparators, 

and wherein each of «< bit pattern bits may be obtained from a corresponding

comparator in the bank of comparators. In this manner, w bit patterns bits may be generated in 

each clock cycle, using only low complexity hardware.

In some examples, the bit pattern generator is configured to perform the bit pattern 

generation process as a part of at least one of: an information block conditioning circuit in an 
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encoder that receives an information block as the input data block and outputs an n-bit kernal 

information block; an encoded block conditioning circuit in an encoder that receives an n-bit kernal 

encoded block as the input data block and outputs an encoded block; an encoded block 

conditioning circuit in a decoder that receives a soft encoded block as the input data block and 

outputs an n-soft-bit soft kernal encoded block; an information block conditioning circuit in a 

decoder that receives an n-bit recovered kernal information block as the input data block and 

outputs a recovered information block. In some examples, the bit pattern generator may be 

configured to perform in at least one of: an interlacer whereby successive w-bit sub-sets of the 

kernel information block are funnelled into a polar encoder kernal) having a corresponding input 

width of ‘w’ bits; and an interlacer whereby successive w-soft-bit sub-sets of the soft kernal 

encoded block are funnelled into a polar decoder kernal having a corresponding input width of ‘w’ 

soft bits. In this manner, parallel processing may be used to reduce the number of clock cycles 

required to complete the block conditioning and interlacing processes.

In some examples, the bit pattern generator may be configured to obtain the bit pattern 

vector (^ ") in which ‘k’ out of ‘n’ bits has the first binary value and 'n-k' out of 'n' bits has the 

complementary binary value, where n is a power of two greater than k. In this manner, compatibility 

is ensured with the polar coding kernal process, which operates on blocks having a length which is 

a power of two.

In some examples, the bit pattern generator circuit may be operably coupled to a bit pattern 

Read Only Memory, ROM, and configured to store therein a set of supported bit pattern vectors ( 

in this manner, any arbitrary set of bit patterns may be supported, even if there are no 

nested relationships between them. In some examples, the set of supported bit pattern vectors, 

bk.n, may be generated in an off-line pre-computation process and stored in the bit pattern ROM 

for reading from during an on-line bit pattern generation process. In this manner, no on-line 

computation is required, reducing the on-line complexity of the bit pattern generator. In some 

examples, the bit pattern ROM may have a width of ‘w’ bits and each bit pattern vector (bk.n) may 

be stored across a number fwM of consecutive addresses, wherein for some examples, for n < 

w, the bit pattern vector (^-^) may be appended with a number, w - n, of dummy bits, such that bit 

pattern vector (bfcjn) occupies a width of a single address in the bit pattern ROM. In this manner, 

'w' bit pattern bits may be read in each clock cycle, reducing the number of clock cycles required to 

obtain the complete bit pattern vector. Furthermore, the special case of very short bit pattern 

vectors can be accommodated naturally, without the requirement for a separate solution.

In some examples, the bit pattern ROM may be operably coupled to a first look-up table, 

wherein the values of ‘k’ and ‘n’ are used as an input to as well as to index the first look-up table in 

order to identify a start address of each respective bit pattern vector (^^). In this manner, each bit 

pattern vector can be located within the bit pattern ROM without the requirement for any on-line 

computation, for example. In some examples, the counter may be operably coupled to the bit 

pattern ROM, and configured to increment a counter value from Ό’ to ‘t—1 ’ wherein the counter
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value may be used as an offset from a start address of the bit pattern ROM in order to read 

successive w-element sub-sets (b0, b-,, b2, . . . , bw_-i) of the bit pattern vector (^·Β). In this manner, 

the bit pattern vector may be read from the bit pattern ROM using only low complexity addressing 

hardware.

In some examples, the bit pattern generator may include a rank ROM configured to store 

information sufficient to obtain a rank vector (^n)for each supported length of the bit pattern, ‘ri. 

In this manner, the ROM capacity may be significantly reduced relative to storing each supported 

bit pattern vector separately. Furthermore, the rank vector Rn may be used to generate the bit 

pattern vector bk,n without the requirement for a complex sort or interleaving operation, as is 

required when using the index vector Qn as the basis of the bit pattern generation process. In some 

examples, the rank vector (R») for a particular length of the bit pattern, ‘ri, may include integers in 

a range of Ό’ to ‘n - T, permuted in an order that corresponds to a rank of each bit position. In 

some examples, a rank may indicate a maximum value for the number 'k' out of ‘ri bits in the bit 

pattern adopting the first binary value, for which a corresponding bit in the bit pattern vector (^-°) 

has the complementary binary value. In this manner, the rank vector contains all information 

necessary to generate all bit pattern vectors having the length of 'ri bits, when the bit pattern 

vectors obey the nested property.

In some examples, a length of the bit pattern n may be used to index a second look-up table, 

in order to identify the start address of each particular rank vector (®n). In this manner, each bit 

pattern vector can be located within the bit pattern ROM without the requirement for any on-line 

computation, for example. In some examples, the rank ROM may include multiple multiplexed rank 

ROMs, wherein one multiplexed rank ROM may be configured to store the rank vector (Rn) 

corresponding to each supported value of the length of the bit pattern ‘ri. In this manner, each 

separate multiplexed rank ROM may adopt a different bit width for the stored fixed point numbers. 

Also, the requirement for a look up table to store the start addresses is eliminated. In some 

examples, the bit pattern vector (*^®) may be generated for a respective combination of the 

number, k, of bits in the bit pattern adopting the first binary value and the length of the bit pattern ‘ri 

using the bank of (w) comparators that may be configured to compare each element of the rank 

vector (Rn) with ‘k’. In some examples, each comparison of the element of the rank vector (R®) 

with ‘k’ may be performed to determine whether the element is less than 'k'. In this manner, w bits 

of the bit pattern vector may be generated in each clock cycle, using only low complexity hardware. 

In some examples, all entries in the rank ROM may be stored using fixed point numbers having a 

width of Iog2(nmax) bits, where nmax is a maximum of the supported bit pattern lengths. In this 

manner, a common fixed point number width is used throughout the bit pattern generator, avoiding 

the requirement to convert between fixed point number widths. In some examples, all entries in the 

rank ROM for particular values of n may be stored using fixed point numbers having a width of 

log2(n) bits. In some examples, each address of the rank ROM may be configured to store w fixed- 

point numbers. In this manner, the ROM capacity may be reduced relative to using a constant fixed 

point number width for all value of n. In some examples, the rank ROM, in cases where n < w, may
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be configured to append the rank vector (B«) with w-n dummy elements, such that the rank vector 

(Hn) occupies a width of a single address in the rank ROM. In this manner, the special case of 

very short bit pattern vectors can be accommodated naturally, without the requirement for a 

separate solution.

In some examples, the rank ROM may be operably coupled to the counter, such that during 

each successive sub-process of the bit pattern generation process, the counter may be configured 

to increment a counter value from Ό’ to ‘t—1’ wherein the counter value may be used as an offset 

from a start address of the rank ROM in order to read successive w-element sub-sets of the rank 

vector (Rn). In this manner, the bit pattern vector may be read from the bit pattern ROM using only 

low complexity addressing hardware. In some examples, a bit pattern bit of the bit pattern vector 

may be obtained by representing both a rank value and k using a two’s complement fixed- 

point number representation, and the bit pattern generator circuit may perform a twos complement 

subtraction of ‘k’ from the rank value and then use a most significant bit, MSB, as a value of the bit 

pattern bit. In this manner, the bit pattern bit may be obtained using only low complexity hardware.

In some examples, the rank ROM may be configured to store a first half of each rank vector ( 

®n), when the bit pattern vectors (^k«n) follow a symmetric property. In some examples,the 

symmetric property may be satisfied if any pair of elements in the rank vector (®™) having the 

indices » and - 1 sum to “ _ l, for all « and for all * € p.n - M. |n some examples, the 

rank ROM may include a width of ‘w’ ranks, such that only a first half of each rank vector (B-n) is 

stored across ίΗ/(2«')ι consecutive addresses, where n is a bit pattern length supported by the 

rank vector ). In this manner, the capacity of the rank ROM may be reduced by 50% relative to 

storing the entirety of each rank vector.

In some examples, for n/2 < w, the rank vector (Bn) may be appended with ‘w - n’ dummy 

elements and stored across a width of a single address in the rank ROM. In this manner, the 

special case of very short bit pattern vectors can be accommodated naturally, without the 

requirement for a separate solution.

In some examples, during a first half of successive operations of the bit pattern generation 

process when c < ["1-«/ , successive w-element sub-sets of the rank vector (Ba) may be 

obtained from incremental addresses in the rank ROM 3801, where the offset from the start 

address of the rank ROM may be given by c. In this manner, the bit pattern vector may be read 

from the bit pattern ROM using only low complexity addressing hardware. In some examples, the 

electronic device may further include a bank of w multiplexers operably coupled to the rank ROM, 

wherein during a first half of successive operations of the bit pattern generation process the bank of 

w multiplexers may maintain the order of the w pattern bits {b0, b·,, b2, . . . , bw_-i}. In some 

examples, a bit pattern bit of the bit pattern vector may be obtained by representing both a 

rank value and k using a two’s complement fixed-point number representation, and the bit pattern 

generator circuit perform a subtraction of ‘k’ from the rank value and then uses a most significant
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bit, MSB, as a value of the bit pattern bit. In this manner, the bit pattern bit may be obtained using 

only low complexity hardware.

In some examples, the electronic device may further include a multiplexer operably coupled 

to the rank ROM, wherein during a second half of successive operations of the bit pattern 

generation process when ~ f « I [ successive w-element sub-sets of the rank vector (R®)

may be obtained from decremental addresses in the rank ROM in a reverse order, where the offset 

from the start address of the rank ROM may be given by the multiplexer and may be derived from 

the counter value ‘c’ as (in/a’l “ c - Π. In this manner, the bit pattern vector may be read from the 

bit pattern ROM using only low complexity addressing hardware.

In some examples, the bit pattern vector may be generated for a respective 

combination of ‘k’ and ‘n’ using the bank of (w) comparators that may be configured to compare 

each element of the rank vector (®«) with ‘n-k’. In some examples, each comparison of the 

element of the rank vector (R®) with ‘n-k’ may be performed to determine whether the element of 

the rank vector (R®) is greater than or equal to ‘n - k’. In some examples, each comparison of the 

element of the rank vector (R®) with ‘n-k’ may be performed to determine whether the element of 

the rank vector (Rn) is less than ‘n - k’ and the result may be passed through a NOT logic gate. In 

this manner, the bit pattern bit may be obtained using only low complexity hardware. In some 

examples, the bit pattern bit may be obtained by representing both a rank value and n-k using a 

two’s complement fixed-point number representation, and the bit pattern generator circuit may 

perform a subtraction of n-k from the rank value and then passes a most significant bit, MSB, of a 

result through a NOT gate. In some examples, the electronic device may further include a bank of 

w multiplexers operably coupled to the rank ROM, wherein during a second half of successive 

operations of the bit pattern generation process the bank of w multiplexers may reverse the order 

of the w pattern bits {b0, b·,, b2, . . . , bw_i}. In this manner, the bit pattern bits may be generated in 

the correct order, using only low complexity hardware.

In some examples, elements of the rank vector (R®), for a particular value of the length of 

the bit pattern ‘n’ may be stored in rank ROM in a native form or subtracted from ‘n - 1’ and stored 

in rank ROM in a subtracted form. In some examples, each comparison to determine if a rank of 

the rank vector (R®) may be less than 'k' may be performed by using a comparator to determine if 

the rank in subtracted form may be greater than or equal to 'n-k' and each comparison to determine 

if a rank of the rank vector (R®) may be greater than or equal to than 'n-k' may be performed by 

using a comparator to determine if the rank in subtracted form is less than 'k'.

In some examples, the bank of w comparators may be used during both a first half of 

successive operations of the bit pattern generation process and a second half of successive 

operations of the bit pattern generation process. In some examples, the bank of w 

comparators may be implemented using twos complement subtractions.

In some examples, the electronic device may further include a multiplexer operably 

coupled to the bank of w comparators and configured to select between ‘k’ or ‘n-k’ as an input to
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the bank of w comparators; and a bank of w NOT logic gates operably coupled to an output of the 

bank of w comparators and configured to invert an output of the comparators bank of w 

comparators. In some examples, the electronic device may further include a bank of w multiplexers 

operably coupled to the rank ROM, wherein during a second half of successive operations of the bit 

5 pattern generation process the bank of w multiplexers may reverse the order of the w pattern bits 

{b0, b-ι, b2, . . . , bw-i}. In this manner, the same low complexity hardware may be reduced in both 

the first and second halves of the bit pattern generation process.

In some examples, the bit pattern generator may be configured to exploit a nested, 

recursive and arithmetic property of the bit patterns vectors. In this manner, the ROM storage 

10 required to generate the bit pattern vector may be reduced relative to approaches that store the 

supported bit pattern vectors or the rank vectors in ROM. In some examples, a recursive circuit 

may be used to convert a value of n-k into an index Qn(n-k) of a bit having an (n-k)th highest bit 

reliability. In this manner, the index of the bit having the threshold bit reliability may be identified 

with a low complexity. In some examples, the recursive circuit may be further configured to unpack 

15 compressed information, in order to obtain the index Qn(n - k). In this manner, the decompression 

process may be configured to unpack only the single index Qn(n - k), rather than the entire index 

vector Qn, reducing the associated complexity.

In some examples, the electronic device may further include an arithmetic circuit operably 

coupled to a recursive circuit and configured to use an arithmetic property that may be satisfied if a 

bit reliability metric can be obtained for each of the « bits in the bit pattern vector based only on its 

index in the range ‘0’ to - 1 ’ to convert the index (Qn(n - k)) of the bit having the (n - k)th rank 

into a bit reliability metric ($(Qn(n - k))). In this manner, the threshold bit reliability may be 

obtained with a low complexity. In some examples, in a Polarization Weight, PW, sequence, the 

recursive property of the bit pattern vector (^-°) may be used to determine relationships between 

bits in the kernal information block. In some examples, the bit pattern generator circuit may 

determine: (i) in response to the recursive property of the bit pattern vector (^-°) being a frozen 

bit, that other selected bits will also be frozen bits; or (ii) in response to the recursive property of the 

bit pattern vector (being an information bit, that other selected bits will also be information 

bits. In some examples, in response to the bit pattern generator circuit determining that a 

relationship between bits in the kernal information block exists, the bit pattern generator circuit may 

be configured to disable at least one arithmetic circuit. In this manner, the arithmetic calculations of 

bit reliability may be skipped if the corresponding bits have already been determined as being 

frozen or information bits, reducing the power consumption of the bit pattern generator.

In some examples, the electronic device may further include a register operably coupled to 

the arithmetic circuit and configured to store the bit reliability metric ( $(Qn(n - k))) that may be 

used in the process of generating the bit pattern vector ***. In this manner, the threshold bit 

reliability metric may be stored and used throughout the bit pattern generation process, eliminating 

the requirement to recalculate this threshold in each successive clock cycle.
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In some examples, the electronic device may further include a multiplier and a bank of w - 1 

adders operably coupled to the counter, wherein, during each successive performance of the bit 

pattern generation process over a series (*= I«/®1 ) of clock cycles, the counter may be 

configured to increment a counter value, c, from 0 to t - 1 to obtain bit indices {cw, cw + 1, cw + 2, . 

. . , cw + w - 1} for successive w-element sub-sets (b0, b·,, b2, . . . , bw_-i) of the bit pattern vector

In some examples, the electronic device may further include a bank of ‘w’ replicas of the 

arithmetic circuit that may be configured to compute a corresponding sequence of bit reliabilities, $ 

[cw], f (cw + 1], (cw + 2], . . . , < (cw + w - 1]. In some examples, the bank of (w) comparators 

may be configured to compare the computed corresponding bit reliabilities

’ ; '1 ' ■ 1 ‘ ·■' . wjf|-| {|-|θ bit reliability metric ( " ), in order

to obtain the corresponding uj elements of the bit pattern vector·” by determining whether the 

corresponding bit reliabilities vJ'l· (’*·"' 1 U- ·» ----- ’ «'-!]} are greater than or

equal to ~ .In this manner, the bit reliability metrics associated with w bit pattern bits 

may be compared with the threshold bit reliability metric in each clock cycle, with a low complexity.

In some examples, the electronic device may further include a bank of ‘w’ reverse modules 

operably coupled via the multiplier and the bank of w - 1 adders to the counter, and configured to 

reverse an order of bits in a log2(n)-bit binary representation of each bit index, in order to produce 

reversed bit indices. In some examples, the electronic device may further include a bank of w 

comparators operably coupled bank of ‘w’ reverse modules and configured to compare either the 

bit indices or the reversed bit indices with either ‘k’ or ‘n - k’. In some examples, in response to the 

polar coder implementing a shortening scheme, the bank of w comparators may be configured to 

set bit pattern bits {b0, b·,, b2, . . . , bw_-i} to the first binary value if the corresponding bit indices or 

reversed bit indices are less than ‘k’ and other bits to the complementary binary value. In some 

examples, the bank of w comparators may be configured to set bit pattern bits {b0, b-ι, b2, . . . , 

bw_-i} to the first binary value if the corresponding bit indices or reversed bit indices are greater than 

or equal to ‘n-k’ in a puncturing scheme and other bits to the complementary binary value. In this 

manner, bit patterns for bit reversed shortening, bit reversed puncturing, natural shortening and 

natural puncturing may be generated.

In some examples, frozen bit insertion or frozen bit removal within the polar coding is 

performed by the electronic device and comprises at least two sub-processes and the bit pattern 

generator is configured to provide the successive sub-set of (w) bits from the bit pattern vector ( 

bk.n) jn each successive = fWM clock cycle that spans a duration of a second sub-process that 

is preceded by a first sub-process that spans a series of zero or more clock cycles. In this manner, 

the first sub-process can initialise the second sub-process, such that it can select the K most 

reliable bits that are not frozen by rate-matching.



WO 2019/011555 PCT/EP2018/065554

5

10

15

20

25

30

35

- 13-

In some examples, a first logic circuit is arranged to provide during the first sub-process a 

reliability threshold, k, to an input of the bit pattern generator for use in the second sub-process. In 

this manner, it can be guaranteed that there will be K bits that are not frozen by rate matching 

among the bits selected by the second sub-process having reliabilities greater than the reliability 

threshold.

In some examples, the electronic device is configured to support at least two modes of 

operation, where a respective mode of operation is employed in response to whether a number, M, 

of encoded bits is less than a kernal block size, N. In this manner, the bits that are frozen by rate 

matching can be identified with consideration of the rate matching mode.

In some examples, the at least two modes of operation comprise at least two from: a 

repetition mode of operation when M is not less than N, a shortening mode of operation when M < 

N, a puncturing mode of operation when Μ < N. In this manner, repetition, shortening and 

puncturing modes of rate matching can be supported.

In some examples, the first sub-process has zero clock cycles when M is not less than N, 

and the second sub-process is performed with the threshold reliability number, k, set to a number 

of K bits that adopt the first binary value in a final output bit sequence. In this manner, support is 

provided for the repetition mode of operation, which does not freeze any bits.

In some examples, a controller operably coupled to a second counter is arranged to count a 

number of clock cycles under control of the controller in the first sub-process when M is less than 

N, and the first sub-process determines the rank threshold, k, that indicates a number of bits having 

a first binary value contained in an intermediate value for the bit pattern vector (^k·") output by the 

bit pattern generator circuit. In this manner, it can be guaranteed that there will be K bits that are 

not frozen by rate matching among these bits selected by the second sub-process having ranks 

greater than the rank threshold.

In some examples, a second logic circuit is configured to successively perform a binary flag 

generation process over the series (* = fn/M ) of clock cycles that comprise the second sub

process and configured to provide a successive sub-set of (w) binary flags in each successive 

t = [»/w] clock cycle. In this manner, bits that are not frozen by rate matching can be identified.

In some examples, a binary flag is set in the binary flag generation process if a 

corresponding bit in the bit pattern vector (^k-n) is not frozen by rate matching. In this manner, bits 

that are not frozen by rate matching can be signaled.

In some examples, a third logic circuit is configured to receive at least a first input from the 

second logic circuit and a second input from the bit pattern generator circuit wherein the third logic 

circuit is configured to provide an output of a first binary value when a bit in the subset of w bits of 

the intermediate bit pattern vector (*Jk ") from the bit pattern generator circuit adopts the first binary 

value and a corresponding flag from the plurality of binary flags from the second logic circuit is set,
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thereby adjusting a bit pattern vector (^·Β) of the intermediate bit pattern based on the at least first 

and second inputs. In this manner, bits that are frozen by rate matching can be removed from the 

bit pattern.

In some examples, the first logic circuit is arranged to identify the reliability threshold, k, for

5 use in the second sub-process by determining whether each uncoded bit is frozen by rate matching 

and the first logic circuit comprises a non-frozen bit counter arranged to count a number of 

uncoded bits that are not frozen by rate matching in order of decreasing reliability during the first 

sub-process, and once the count reaches the number of final value bits in a final output bit 

sequence, K, whereupon the rank of the Kth most reliable unfrozen bit is determined as the rank

10 threshold, k, and the first logic circuit provides the rank threshold k as an input to the bit pattern 

generator. In this manner, the bit pattern generator can identify the set of most reliable bits, in 

which there are guaranteed to be K bits that are not frozen by rate matching.

In some examples, the electronic device further comprises at least one of: a set of reversed 

sequence read only memories, ROMs, located in the first logic circuit configured to store sets of 

reversed sequences where each successive element of the reversed sequence indicates a position 

of each successive uncoded bit arranged in order of decreasing reliability; a set of deinterleaver 

ROMs located in the first logic circuit configured to store a set of deinterleaver patterns, where 

each element of the deinterleaver pattern indicates an interleaved position of a polar encoded bit 

during rate matching; a set of interleaved sequence ROMs located in the first logic circuit 

configured to store a set of interleaved sequences; a second counter (c1), incremented in 

successive clock cycles of the first sub-process, wherein successive addresses of a reversed 

sequence ROM and successive addresses of an interleaved sequence ROM, corresponding to a 

particular value of N are indexed; a rank ROM located in the bit pattern generator configured to 

store information sufficient to obtain a rank vector (Β-») for each supported length of the bit pattern, 

‘n’; a first set of functional logic, f1, located in the first logic circuit and configured to obtain a set of 

binary flags based on received successive sets of elements read from the set of reversed 

sequence ROMs and the set of interleaved sequence ROMs in each successive clock cycle; and 

an accumulator logic circuit located in the first logic circuit and configured to receive and count the 

set of binary flags up to a number, K, of uncoded bits that are not frozen by rate matching in a final 

output bit sequence, and the threshold reliability number, k, is set to complete the first sub-process. 

In this manner, the generation of the bit pattern can be completed several bits at a time, reducing 

the number of clock cycles required.

In some examples, the logic circuit is configured to identify a frozen bit as the 

complementary binary value in the bit pattern vector ) and identify using the first binary value 

in the bit pattern vector (^*) a bit that comprises one from a group of: an information bit, a cyclic 

redundancy check, CRC, bit, a parity-check frozen bit, a user equipment identifier, UE-ID, bit, a 
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hash bit. In this manner, non-frozen bits can be treated separately from frozen-bits during the 

processes of interlacing and deinterlacing.

In some examples, the electronic device may include at least one of: a transmitter 

comprising an encoder configured to perform the bit pattern generation process, a receiver 

comprising a decoder configured to perform the bit pattern generation process.

In a second aspect, examples of the present invention describe an integrated circuit for an 

electronic device comprising the bit pattern generator and the counter according to the first aspect.

In a third aspect, examples of the present invention, a method of method of polar coding is 

described. The method includes successively performing a bit pattern generation process over a 

series (1 ~ Fn/'r I ) of clock cycles by a bit pattern generator; and counting a number of successive 

bit pattern generation sub-processes over the series ~ I °i ) of clock cycles. The method 

further includes providing a successive sub-set of (w) bits from a bit pattern vector (^k·") in each 

successive * ‘ I”. clock cycle; where the bit pattern vector comprises ‘n’ bits, of which ‘k’ bits 

adopt a first binary value and n-k bits adopt a complementary binary value.

In a fourth aspect, examples of the present invention describe a non-transitory tangible 

computer program product comprising executable code stored therein for bit pattern generation 

according to the third aspect.

Although examples of the invention are described with reference to an electronic device and 

at least one integrated circuit implementation, it is envisaged that in other examples, the invention 

may be applied in other implementations and in other applications, such as a wireless 

communication having a transmitter with a polar encoder and/or a receiver with a polar decoder. 

For example, the circuits and concepts herein described may be composed as a hardware 

implementation within an Application Specific Integrated Circuit, an Application Specific Instruction 

Set Processor, an Application Specific Standard Product, a Field Programmable Gate Array, a 

General Purpose Graphical Processing Unit, System on Chip, Configurable Processor, for 

example. Similarly, it is envisaged that in other examples, a software implementation may be 

composed within a Central Processing Unit, a Digital Signal Processor or a microcontroller, for 

example. Besides wireless communication transmitters and receivers, the invention may be 

composed into a wireless communication transceiver, or a communication device for other 

communication channels, such as optical, wired or ultrasonic channels. Furthermore, the invention 

may be composed into a storage device, in order to provide FEC for data recovered from optical, 

magnetic, quantum or solid-state media, for example.

Some examples of the present invention are described with reference to the New Radio (NR) 

standard, which is presently being defined by the 3rd Generation Partnership Project (3GPP) as a 

candidate for 5th Generation (5G) mobile communication. Presently, polar encoding and decoding 

has been selected to provide FEC in the uplink and downlink control channels of the enhanced 



WO 2019/011555 PCT/EP2018/065554

5

10

15

20

25

30

35

40

- 16-

Mobile BroadBand (eMBB) applications of NR, as well as in the Physical Broadcast Channel 

(PBCH). Polar encoding and decoding has also been identified as candidates to provide FEC for 

the uplink and downlink data and control channels of the Ultra Reliable Low Latency 

Communication (URLLC) and massive Machine Type Communication (mMTC) applications of NR. 

Alternatively, some examples of the invention are described without reference to a particular 

standardised application. More broadly, the invention may be applied in any future communication 

standards that select polar encoding and decoding to provide FEC. Furthermore, the invention may 

be applied in non-standardised communication applications, which may use polar encoding and 

decoding to provide FEC for communication over wireless, wired, optical, ultrasonic or other 

communication channels. Likewise, the invention may be applied in storage applications, which use 

polar encoding and decoding to provide FEC in optical, magnetic, quantum, solid state and other 

storage media.

In some examples, the circuits and functions herein described may be implemented using 

discrete components and circuits, whereas in other examples the operations may be performed in 

a signal processor, for example in an integrated circuit.

Because the illustrated embodiments of the present invention may, for the most part, be 

implemented using electronic components and circuits known to those skilled in the art, details will 

not be explained in any greater extent than that considered necessary as illustrated below, for the 

understanding and appreciation of the underlying concepts of the present invention and in order not 

to obfuscate or distract from the teachings of the present invention.

Detailed description of Figures

Referring now to FIG. 1, a top-level schematic of a communication unit 116 that includes a 

polar encoder and polar decoder is illustrated, adapted according to examples of the invention. In 

this example of a communication unit 116, a skilled artisan will appreciate that a number of other 

components and circuits (such as frequency generation circuits, controllers, amplifiers, filters, etc.) 

are not shown for simplicity purposes only. In other examples, it is envisaged that the associated 

circuitry in the communication unit 116 may take the form of an integrated circuit comprising block 

conditioning in a polar encoder or polar decoder as well as, for example, for use in a storage unit or 

any electronic device that is designed to use polar encoding or polar decoding. In other examples, 

it is envisaged that the communication unit 116 may take the form of software running on a general 

purpose computation processor.

A polar encoder comprises three successive components, namely information block 

conditioning 101, the polar encoder kernal 102 and encoded block conditioning 103. These 

components are discussed in the following paragraphs. In order to provide context to the present 

discussion, FIG. 1 illustrates the communication or storage channel 108, as well as the 

corresponding components of the polar decoder, namely the information block conditioning 112, 

the polar decoder kernal 111 and the encoded block conditioning 110, although these are operated 

in the reverse order.
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As will be discussed in the following paragraphs, the polar encoder operates on the basis 

of an information block 104, kernal information block 105, kernal encoded block 106 and encoded 

block 107. Correspondingly, the polar decoder operates on the basis of a recovered information 

block 115, recovered kernal information block 114, soft kernal encoded block 113 and soft encoded 

block 109, although these are processed in the reverse order.

Therefore, hereinafter throughout the description, claims and drawings, the expression 

'polar coding' is intended to encompass polar encoding and/or polar decoding, unless specifically 

referenced otherwise.

In a context of a polar encoder, the input to the information block conditioning component 

101 may be referred to as an information block 104, having a block size of K. More specifically, this 

information block is a row vector '* comprising K information bits, where .

The information block conditioning component 101 interlaces the K information bits with N - K 

redundant bits, which may be frozen bits [1], Cyclical Redundancy Check (CRC) bits [2], Parity 

Check (PC)-frozen bits [3], User Equipment Identification (UE-ID) bits [4], or hash bits [5], for 

example.

Here, frozen bits may always adopt a logic value of O’, while CRC or PC-frozen bits or 

hash bits may adopt values that are obtained as functions of the information bits, or of redundant 

bits that have already been interlaced earlier in the process. The information block conditioning 

component 101 generates redundant bits and interlaces them into positions that are identified by a 

prescribed method, which is also known to the polar decoder. The information block conditioning 

component 101 may also include an interleaving operation, which may implement a bit-reversal 

permutation [1] for example. The output of the information block conditioning component 101 may 

be referred to as a kernal information block 105, having a block size of N. More specifically, this

ii ·<
kernal information block 105 is a row vector comprising N kernal information bits,

< !" ii
where . Here, the information block conditioning must be completed such that N is a

power of 2 that is greater than K, in order to provide compatibility with the polar encoder kernal, 

which operates on the basis of a generator matrix having dimensions that are a power of 2, as will 

be discussed below. The input to the polar encoder kernal 102 is a kernal information block u 105 

and the output of the polar encoder kernal 102 may be referred to as a kernel encoded block 106, 

having a block size that matches the kernal block size N. More specifically, this kernal encoded

X -./ 1'
block 106 is a row vector: comprising N kernal encoded bits, where

' ~ 1 ’ U Here, the kernal encoded block 106 is obtained according to the modulo-2 matrix 

multiplication x = uF n, where the modulo-2 sum of two bit values may be obtained as their XOR. 

Here, the generator matrix F n is given by the [n = log2(N)]th Kronecker power of the kernal 

matrix:
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Note that successive Kronecker powers of the kernal matrix may be obtained recursively, 

where each power F n is obtained by replacing each logic ‘1’ in the previous power F <n _1) with 

the kernal matrix and by replacing each logic ‘0’ with a 2 x 2 zero matrix. Accordingly, the nth 

Kronecker power F n of the kernal matrix has dimensions of 2n x 2n. For example,

[1 : i i i i ; ij

Here, u = [1011] gives x = uF 2 = [1101] and u = [11001001] gives x = uF 3 = [00110111],

A skilled artisan will appreciate that the level of integration of circuits or components may be, 

in some instances, implementation-dependent. Furthermore, it is envisaged in some examples that 

a signal processor may be included in a communication unit 116 and be adapted to implement the 

encoder and decoder functionality. Alternatively, a single processor may be used to implement a 

processing of both transmit and receive signals, as shown in FIG. 1, as well as some or all of the 

baseband/digital signal processing functions. Clearly, the various components, such as the 

described polar encoder, within a wireless or wired communication unit 116 can be realized in 

discrete or integrated component form, with an ultimate structure therefore being an application

specific or design selection.

In this example, the input to the encoded block conditioning component 103 of the polar 

encoder is a kernal encoded block x 106 and its output may be referred to as an encoded block 

107, having a block size of M. More specifically, this encoded block is a row vector comprising M

1 & - ~ fi H J /,. (i | .
encoded bits , where ' .

Γ» _ 1'
Here, the resultant polar coding rate is given by ’ ‘ , where the encoded block

conditioning 103 must be completed such that ‘M’ is greater than ‘K’. The encoded block 

conditioning component 103 may use various techniques to generate the ‘M’ encoded bits in the 

encoded block b 107, where ‘M’ may be higher or lower than ‘Ν’. More specifically, repetition [6] 

may be used to repeat some of the ‘N’ bits in the kernel encoded block ‘x’, while shortening or
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puncturing techniques [6] may be used to remove some of the ‘N’

‘x’. Note that shortening removes bits that are guaranteed to 

puncturing removes bits that may have either of logic Ό’ or

conditioning component may also include an interleaving operation. Following polar encoding, the 

encoded block ‘b’ 107 may be provided to a modulator, which transmits it over a communication 

channel 108.

Referring now to FIG. 2 and FIG. 3 an example polar encoding process, using an 

extension of the graphical representation 300 of the generator matrix F 3 203, illustrates the 

example where a particular frozen bit pattern is used to convert the K = 4 information bits a = 

[1001] 104 into the M = 8 encoded bits b = [00001111] 107. More specifically, information block 

conditioning 101 is used to convert the K = 4 information bits a = [1001] 104 into the N = 8 kernal 

information bits u = [00010001] 105. These are then converted into the N = 8 kernal encoded bits x 

= [00001111] 106 by the polar encoder kernal 102 using the polar code graph 203. Here, the input 

paths can be traced through the various XOR operations to identify the output. Finally, encoded 

block conditioning 103 preserves all kernal encoded bits, to provide the M = 8 encoded bits b = 

[00001111] 107.

In the receiver, the demodulator’s role is to recover information pertaining to the encoded 

block. However, the demodulator is typically unable to obtain absolute confidence about the value 

of the M bits in the encoded block 107, owing to the random nature of the noise in the 

communication channel 108. The demodulator may express its confidence about the values of the 

bits in the encoded block 107 by generating a soft encoded block 109, having a block size of M. 

More specifically, this soft encoded block 109 is a row vector comprising M encoded soft bits 

li _ >■'+ :
• * ,J' . Each soft bit may be represented in the form of a Logarithmic Likelihood Ratio 

(LLR):

where Pr(bk = O’) and Pr(bk = T) are probabilities that sum to Ί’.

Here, a positive LLR indicates that the demodulator has greater confidence that the 

corresponding bit bk has a value of O’, while a negative LLR indicates greater confidence in the bit 

value Ί’. The magnitude of the LLR expresses how much confidence, where an infinite magnitude 

corresponds to absolute confidence in this bit value, while a magnitude of Ό’ indicates that the 

demodulator has no information about whether the bit value of Ό’ or Ί’ is more likely.

In an alternative approach, each soft bit may be represented by a pair of Logarithmic 

Likelihoods (LLs):

bk(fi) = ln[Pr(tifc = 0)]

5fc(l) = ln[Pr(tifc = 1)]
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A polar decoder comprises three successive components, namely encoded block 

conditioning 110, the polar decoder kernal 111 and information block conditioning 112, as shown in 

FIG. 1. These components are discussed in the following paragraphs.

The input to the encoded block conditioning component 110 of the polar decoder is a soft 

encoded block b 109 and its output may be referred to as a soft kernal encoded block 113, having 

a block size of N. More specifically, this soft kernal encoded block 113 is a row vector comprising
- ; \ 1

‘N’ kernal encoded LLRs ’ 11' . In order to convert the M encoded LLRs into ‘N’ kernal

encoded LLRs, infinite-valued LLRs may be interlaced with the soft encoded block 109, to occupy 

the positions within the soft kernal encoded block that correspond to the Ό’-valued kernal encoded 

bits that were removed by shortening in the polar encoder. Likewise, Ό’-valued LLRs may be 

interlaced with the soft encoded block 109, to occupy the positions where kernal encoded bits were 

removed by puncturing. In the case of repetition, the LLRs that correspond to replicas of a 

particular kernal encoded bit may be summed and placed in the corresponding position within the 

soft kernal encoded block 109. A corresponding deinterleaving operation may also be performed, if 

interleaving was employed within the encoded block conditioning component 103 of the polar 

encoder.

The input to the polar decoder kernal 111 is a soft kernal encoded block 113 and its 

output may be referred to as a recovered kernal information block 114, having a block size of ‘Ν’. 

More specifically, this recovered kernal information block 114 is a row vector comprising ‘N’ 
’ 1 I I Η 1

recovered kernal information bits ” , where ' . In some examples, he

polar decoder kernal 111 may operate using various different algorithms, including Successive 

Cancellation (SC) decoding [1] and Successive Cancellation List (SCL) decoding [7].

The input to the information block conditioning component 112 of the polar decoder is a 

recovered kernal information block 114 and its output may be referred to as a recovered 

information block 115, having a block size of ‘K’. More specifically, this recovered information block 

115 is a row vector ' 1 comprising ‘K’ recovered information bits, where ' 1 ‘ .

The recovered information block may be obtained by removing all redundant bits from the 

recovered kernal information block 11 114. A corresponding deinterleaving operation may also be 

performed, if interleaving was employed within the information block conditioning component 101 of 

the polar encoder.

Proposed block conditioning units

As shown in the top-level schematic of FIG. 1, a polar encoder and polar decoder pair 

includes the four block conditioning modules 101, 103, 110, 112.

The information block conditioning module 101 of the polar encoder and the encoded block 

conditioning module 110 of the decoder may both convert a shorter input into a longer output. More 
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specifically, the input to the information block conditioning module 101 of the polar encoder 

comprises A* information bits 104. In some examples, the A" information bits 104 may be 

interlaced with N -K redundant bits, in order to produce /V > A' kernal information bits 105. 

Likewise, the input to the encoded block conditioning module 110 of the polar decoder comprises 

A/ soft encoded LLRs 109. In some examples, the M soft encoded LLRs 109 may be interlaced 

with A - M punctured or shortened LLRs, in order to produce A’ > Ai soft kernal encoded 

LLRs 113.

In accordance with example embodiments of the invention, an interlacer (for example as 

illustrated in, and described with reference to FIG. 4 and FIG. 5) has been designed to implement 

these interlacing operations that are performed in the information block conditioning module 101 of 

the polar encoder and the encoded block conditioning module 110 of the decoder.

By contrast, the encoded block conditioning circuit 103 of the polar encoder and the 

information block conditioning module 112 of the decoder both convert a longer input into a shorter 

output More specifically, the input to the encoded block conditioning circuit 103 of the polar 

encoder comprises A’ kernal encoded bits 106. In some examples, Ar -M of these bits may be 

punctured or shortened, in order to produce Af < N encoded bits 107. Likewise, the input to the 

information block conditioning module 112 of the polar decoder comprises Ar recovered kernal 

information bits 114. In some examples, N - A of these bits may be redundant bits and may thus 

be removed, in order to produce A < A' recovered information bits 115.

In accordance with examples of the invention the block conditioning circuits operate on the 

basis of bit patterns. More specifically, an information bit pattern is used in the information block 

conditioning modules of the polar encoder and decoder, in order to specify how the corresponding 

interlacing and deinterlacing operations may be performed. Likewise, an encoded bit pattern is 

used in the encoded block conditioning modules of the polar encoder and decoder, in order to 

specify how the corresponding deinterlacing and interlacing operations may be performed. In some 

examples, bit pattern generators 3403 (as illustrated in FIG’s 4, 5, 7, 10, 11, 12 and 13) may be 

employed by the interlacer to control the interlacing operations.

Interlacer

Referring now to FIG. 4, an example block diagram of an interlacer 3400 is illustrated, 

according to some example embodiments of the invention. In some examples, the interlacer 3400 

may be capable of flexibly converting -element input vectors into corresponding «-element 

output vectors, where k and « may vary from use to use. More specifically, the interlacer 3400 

may perform interlacing for each input vector according to a bit pattern, which may be selected 

from a predefined set of supported bit patterns, having various combinations of and « . The 

interlacer 3400 may be used to implement a flexible information block conditioning circuit, such as 

information block conditioning circuit 101 of FIG. 1, for a polar encoder. In this case, the flexible 

information block conditioning circuit 101 may be capable of converting one k = K -bit information
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block 104 into the corresponding « = TV-bit kernal information block 105 at a time, where the block 

sizes < and Λ' may vary from block-to-block. Additionally, the interlacer 3400 may be used to 

implement a flexible encoded block conditioning circuit 110 for a polar decoder. In this case, the 

flexible encoded block conditioning circuit 110 may be capable of converting one k = M -LLR soft 

encoded block 109 into the corresponding « -V-LLR soft kernal encoded block 113 at a time, 

where the block sizes Λί and -Y may vary from block-to-block. Note than in both the polar encoder 

and polar decoder examples, the kernal block size N is a power of two.

In some examples, the interlacing process is completed over a series of * = lw/wl steps, 

where «? is a power of two that is referred to as the width of the proposed interlacer’s input port 

3401 and output port 3402 (with the input port 3401 and output port 3402 of FIG. 4 carrying 

multiple signals as illustrated in FIG. 5). This quantifies the number of elements that the respective 

ports may consume from the input vector or generate for the output vector in each step. Here, the 

output port 3402 generates w elements for the output vector in every step, while the input 

port 3401 only consumes elements from the input vector in ft/M < of the steps, which may 

be distributed across the i steps, as detailed below.

The first in each set of ® elements of the input and output vectors are mapped to the right

most of the m elements of the input port 3401 and output port 3402, with successive elements of 

the vectors mapped to successive elements of the input port 3401 and output port 3402 from right 

to left. Depending on if and how pipelining is applied, each step of the interlacing process may 

correspond to one clock cycle in a hardware implementation. Here, each LLR may be represented 

using the two’s complement number representation having a same bit-width as the LLR input to a 

polar decoder kernal, such as the polar decoder kernal 111 of FIG. 1. It is noteworthy that the 

proposed approach processes w pattern bits in each step, which is in contrast to the block 

conditioning modules of known designs [14, 15], which are only capable of processing a single 

pattern bit in each step.

The interlacer 3400 also comprises bit pattern generator 3403, buffer 3404, shifter 3405, 

controller 3406 and insertion 3407 circuits (or logic or software-based operations). In some 

examples, each of the w bits 3409 output by the bit pattern generator 3403 in a particular step of 

the interlacing process corresponds to the element in the corresponding position among the w 

elements generated by the output of the proposed interlacer in that step. If the bit has a value Ί’, 

then the corresponding output element is supplied by the next element provided by the input of the 

interlacer 3400, as will be detailed below. By contrast, if the bit has the value O’, then the 

corresponding output element 3402 is provided by an interlaced element (such as interlaced 

element 3501 in FIG. 5). It is noteworthy that, in the case, where: «<«’, the bit pattern 

generator 3403 may append e: ~ ft dummy bits to the end of the bit pattern, in order to increase its 

length to ®.

In the case of the information block conditioning circuit 101 of the polar encoder, the 

interlaced element may be a frozen bit having the value O’, a cyclic redundancy check (CRC) bit, a 

parity check (PC)-frozen bit, a user equipment identifier (UE-ID) bit or a hash bit, for example. In
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the case of the encoded block conditioning circuit 110 of the polar decoder, the interlaced element 

may be a punctured LLR having the value O’, or a shortened LLR having a maximum positive value 

supported by the two’s complement fixed-point number representation [6], for example. Note that in 

some applications, more than one type of interlaced element may be required, where the 

information bits may be interlaced with both frozen bits and CRC bits, for example. In this case, 

separate bit patterns may be used for each type of interlaced element. Alternatively, the bit pattern 

may use bits for each element of the bit pattern, where the combination of the ^2(2)

bits may identify which one of z different types of element is used. For example, the bit pairings 10, 

01 and 11 may be used to represent the z = 3 options of frozen bit, CRC bit and information bit, 

respectively. In this case, a decoder circuit may be used to extract the separate bit patterns for 

each type of interlaced element.

In each step of the interlacing process, the controller 3406 may count the

number R of 1-valued bits among the w bits 3409 provided by the bit pattern generator 3403, as 

described herein. This number of elements is compiled for the output of the proposed interlacing 

process, by drawing upon two sources of elements: firstly, any elements that reside within the

-element buffer 3404 and secondly, the input port 3401 of the interlacer 3400. The 

controller 3406 keeps track of the number € [0, w- 1] of va|jc] elements that are stored in the 

buffer 3404 at the beginning of each step of the interlacing process, where the buffer 3404 is 

initially empty at the start of the interlacing process, giving =®. In any steps where the number 

of valid elements in the buffer Λ is less than the number required , the controller 3406 may 

cause elements to be drawn from the input 3401, on an on-demand basis.

Referring now to FIG. 5, a more detailed example of an interlacer 3500 for the case of w = 

4 is illustrated, according to some example embodiments of the invention. As exemplified in FIG. 5, 

a bit-shifter circuit 3405 is used to combine elements drawn from the '«’-element input port 3401 

and the (w - l)-element buffer 3404, producing a (2w - l)-element output containing at least -R 

valid elements. In cases where -¾ < A , the -element input port 3401 of the proposed interlacer 

is appended to the left of the elements from the buffer 3404. However, only -¾ e iff® “ M of the 

w1 elements from the buffer 3404 will be valid, so the controller 3406 directs a bit-shifter 

circuit 3405 to shift the w-element input port 3401 of the proposed interlacer 3500 by 

Cj = w -1 - Ri positions to the right, before multiplexing it with the -ft elements from the 

buffer 3404. The bit-shifter circuit 3405 may be implemented using rows of multiplexers,

where each row 3503 uses ®-l multiplexers to implement a different power-of-two shift. As 

shown in FIG. 5, the control signal for each multiplexer row 3503 may be obtained from the 

corresponding bit of the binary representation of U , where the Most Significant Bit (MSB) drives 

the row implementing the largest power-of-two shift and the Least Significant Bit (LSB) drives the 

row implementing the shift of one position. In some examples, it is noted that the rows may be 

permuted in any order. A further w~ 1 multiplexers 3502 are required to multiplex the shifted input 
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with the contents of the buffer 3404, where the right-most -ft elements are selected from the 

buffer 3404 and the remaining elements are selected from the output of the bit-shifter circuit 3405. 

It is envisaged that in an alternative architecture, the further ® ~ I multiplexers may be arranged 

within the same rows of the bit-shifter circuit 3405, reducing the critical path length of the interlacer 

3500. In cases where: 'ft < ft, the above described approach results in valid elements for the 

right-most ft + ®’ of the 2« - 1 outputs of the bit-shifter circuit 3405. By contrast, when ft > ft , 

no input is taken from the input of the interlacer 3500 and the bit-shifter circuit 3405 is disabled. 

This results in the ft valid elements from the buffer 3404 providing the right-most ft; of the 

2w - 1 outputs of the bit-shifter circuit 3405.

The (2® ~ 0-element output of the bit-shifter circuit 3405 is provided to the insertion 

circuit 3407, which extracts ft elements in positions dictated by the bit pattern and places all 

remaining elements into the buffer 3404, ready for use in the next step of the interlacing process. 

The insertion circuit 3407 comprises rows of multiplexers, where the top-most row comprises 

2w - 2 multiplexers and each successive row below it contains one fewer multiplexer than the last. 

In this manner, each row of multiplexers forms a shifting circuit, which is controlled by the value of 

the corresponding bit from the bit pattern. More specifically, if the corresponding bit from the bit 

pattern is a 'T, then the right most element at the input to the row is extracted for the output of the 

interlacer 3500 and all other elements at the input to the row are shifted to the right by one position, 

as shown in Figure 5. The bits of the bit pattern are also used to control a set of « 

multiplexers 3504, which multiplex the elements extracted from the insertion circuit 3407 with the 

corresponding interlaced elements 3501, which may be redundant bits in the case of the 

information block conditioning module 101 of the polar encoder or punctured or shortened LLRs in 

the case of the encoded block conditioning module 110 of the polar decoder. In cases where 

different interlaced elements 3501 have different values, replicas of the interlacer 3500 may be 

operated on the basis of the complementary bit patterns described above. The outputs of these 

interlacers may then be multiplexed together, using the set of w multiplexers 3504 described 

above.

Following a completion of each step of the interlacing process, the elements

output by the bottom row of the insertion circuit 3407 are stored in the buffer 3404. In steps where 

Λ» < ft t the number of these elements that are valid will be given by -ft+J = ft* + w “ ft , while 

ll,, i -- ft P of ti-,θ elements will be valid in steps where ft' - ft . The buffer 3404 then makes 

these valid elements available to the next step of the interlacing process, as described above.

The total number of multiplexers required for the interlacer 3500 is given by 

| «'/2 - - 1 The critica| path comprises w + lofaW multiplexers, in

the case where all multiplexers of the bit-shifting circuit 3405 are accommodated within the same 

log2(/r} rows
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FIG. 6 illustrates an example table to operate interlacer 3400 or 3500 where «»’ = 4, for the 

case where the & = 9 input elements [9, 8, 7, 6, 5, 4, 3, 2, 1] are interlaced from right-to-left with 

Ό’-valued interlacing elements, according to the n = 16-bit pattern [1100011010110101], In step 

‘0’ Fo = 2 elements are required, but the buffer (for example buffer 3404 of FIG. 4 or FIG. 5) 

contains valid elements, so ‘u? = 4 elements are consumed from the input port 3401. Of the 

®? = 4 elements, ft = 2 contribute to the output in positions dictated by the bit pattern, with the 

remaining ft = 2 elements being stored in the buffer 3404. In step 'T, ft =3 elements are 

required, but the buffer 3404 contains only Rj = 2 valid elements, so w = 4 elements are 

consumed from the input port 3401. Of the ft + w — 6 elements, ft = 3 contribute to the output in 

positions dictated by the bit pattern, with the remaining ft = 3 elements being stored in the 

buffer 3404. In step ‘2’, ft = 2 elements are required and the buffer 3404 contains ft = 3 yaifo 

elements, so no elements are consumed from the input port 3401. Of the ft = 3 elements, ft = 2 

contribute to the output in positions dictated by the bit pattern, with the remaining ft = 1 element 

being stored in the buffer 3404. In step ‘3’, ft = 2 elements are required, but the buffer 3404 

contains only ft = * valid element, so the remaining element is consumed from the input 3401, 

but padded with zeros in order to make up a width of ® = <4. Both of the ft +1 = 2 elements 

contribute to the output in positions dictated by the bit pattern.

Bit pattern generator

In examples of the invention, a number of alternative designs for the bit pattern 

generator 3403 are proposed herein, any of which may be used to generate the information bit 

pattern used by the interlacer 3400 or 3500 in order to implement the information block conditioning 

circuit 101 of the polar encoder. Furthermore, these example designs may be used to generate the 

encoded bit pattern used by the interlacers 3400, 3500 in order to implement the encoded block 

conditioning circuit 110 of a polar decoder.

The following sections propose alternative bit pattern generator designs that may exploit 

various different combinations of the bit pattern properties.

1) Naive bit pattern generator:

Referring now to FIG. 7, a naive bit pattern generator 4200, for the case where w = 4, is 

illustrated according to some example embodiments of the invention. In a naive implementation, 

the bit pattern generator 4200 may be implemented using a bit pattern Read Only Memory 

(ROM) 4201, which may store a set of supported bit pattern vectors ft ”, each corresponding to a 

particular combination of input and output vector lengths k and « . In some examples, an off-line 

pre-computation process may be used to generate this set of supported bit pattern vectors ft·» for 
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all supported bit patterns, which may be read from the bit pattern ROM 4201 as required during the 

on-line block conditioning process.

Referring now to FIG. 8, an example table of contents 3700 of the bit pattern ROM, when 

using the Polarization Weight (PW) bit pattern construction of [8] for all combinations of n {2, 4, 

8, 16} and k e {1,2, 3, . . . , n - 1}, is illustrated according to some example embodiments of the 

invention. In the example table of FIG. 8, a set of information bit pattern vectors ^kn is generated 

for all combinations of ® € {2,4,8,16) and fc € {1,2,3,...,« — 1} . Here, a '1 ’-valued element in 

the information bit pattern vector ^k n indicates that the corresponding bit in the kernal information 

block, say kernal information block 105 of FIG. 1, should be an information bit. Meanwhile, a O'

valued element in the information bit pattern vector ^k··* corresponds to a redundant bit, which may 

be a frozen bit, CRC bit, PC-frozen bit, UE-ID bit, or hash bit, for example. Note that in alternative 

arrangements, a T-valued element in the information bit pattern vector *>k’ri indicates that the 

corresponding bit in the kernal information block should be a non-frozen bit, which may be an 

information bit, CRC bit, PC-frozen bit or UE-ID bit or hash bit, for example. Meanwhile, a O'

valued element in the information bit pattern vector may correspond to a frozen bit. 

Alternatively, separate bit pattern vectors may be used to indicate whether each bit belongs to each 

type of bit.

Referring back to FIG. 7, in order to support all combinations of " (2.4,8,.... η,,,,,,Π and 

I- - {L2.3...................., the total capacity requirement of the bit pattern ROM 4201 is given by

Σ,ι€(2,4,β,.„ΛΜίΙΜι.>(Λ; : ~ Λ) _ whjc^ corresponds to 1.33 Mbit in the case where “«m = W24 _ γήθ 

pattern ROM 4201 has a width of w bits and each bit pattern vector ^k n is stored across P1/®-’] 

consecutive addresses, where n is the output vector length supported by the bit pattern vector 

. In some examples, in cases where: « < the bit pattern vector bk,n may be appended with 

w -it dummy bits, such that it occupies the width of a single address in the bit pattern ROM 4201. 

As shown in FIG. 7, k and « may be used to index a look-up table 4202, in order to identify the 

start address of each particular bit pattern vector ^k.n During each of the * = I11/®! successive 

steps of the block conditioning process, a counter 4203 « may be incremented from 0 to “ 1 and 

used as an offset from the start address of the bit pattern ROM 4201, in order to read successive 

w-element sub-sets 4204 of the bit pattern vector In examples of the

invention, the counter 4203 c is configured to count a number of clock cycles up to ΓΜ/®1 .

2) Bit pattern generator that exploits a nested property:

The amount of ROM required for the generation of bit pattern vectors ^kn may be 

significantly reduced in cases where the bit pattern vectors ^k«" obey the nested property. Here, 

the nested property is satisfied if the Ί’-valued bits in a bit pattern vector ^kn for a particular 

combination of k and n always form a sub-set of the ‘T-valued bits in a bit pattern vector ^k n for
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any combination of a greater k and the same n . For example, the nested property is satisfied by 

the information bit pattern vectors n that are generated by the PW technique, as well as by the 

FRActally eNhanced Kernel (FRANK) technique of [9], Rather than storing a bit pattern vector 

for each supported combination of k and «, a rank ROM 3801 according to example 

embodiments of the invention may be used to store a rank vector for each supported n . The 

rank vector for a particular value of « comprises the integers in the range 0 to « ~ I, permuted 

in an order that corresponds to the rank of each bit position, where a particular rank indicates the 

maximum k for which the corresponding bit in the bit pattern vector n has the value 0.

Referring now to FIG. 9 an example table of the contents of a Rank ROM (such as rank 

ROM 3801 of FIG. 10), for a set of rank vectors generated using a PW bit pattern construction 

of [8] for all n e {2, 4, 8, 16, 32}, is illustrated according to some example embodiments of the 

invention. Here, lower ranks correspond to more reliable bits within the kernai information block, 

such as kernai information block 105 of FIG. 1.

Referring now to FIG. 10, a bit pattern generator exploiting the nested property, for the case 

where w = 4, is illustrated according to some example embodiments of the invention. Here, the bit 

pattern vector n may be generated for a particular combination of k and « by using a bank of 

m comparators 3802, in order to compare each element of the rank vector Rn with fc . If a rank is 

less than k , then the corresponding bit pattern vector bit is set to T, otherwise the 

corresponding bit pattern bit is set to O’. Here, the bit pattern bit may be obtained by representing 

the rank and k using the two’s complement fixed-point number representation, performing a 

subtraction, and then retaining the MSB of the result.

In some examples, and assuming that all entries in the rank ROM 3801 are stored using 

fixed point numbers having a width of bits, fota| capacity required for the rank

ROM 3801 to store all rank vectors for may be given by

(Sttwax - 2)log2(«ioax) bits. In this way, the rank ROM stores information sufficient to obtain a rank 

vector Rn for each supported length of the bit pattern 'n'. This corresponds to 19.98 kbit in a case 

where = 1024 representing a 98.5% reduction compared to the total capacity required for the 

bit pattern ROM in the aforementioned naive bit pattern generator.

Alternatively, the total capacity required can be reduced to «■-(-·’-«,. ,,| bits,

if different widths of bits are used to store the fixed-point numbers for different values of w , 

corresponding to 18.00 kbit for "·<>·χ ~ 1024.

In some examples, the rank ROM 3801 has a width of bits or "'Im-’JhJ bits,

depending on whether the fixed-point number representation for each rank comprises A

bits or bits. Here, each rank vector R» is stored across [n/u’l consecutive addresses, 

where « is the output vector length supported by the rank vector It is noteworthy that in cases 
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where n < w, the rank vector R® may be appended with w-n dummy elements, such that it 

occupies the width of a single address in the rank ROM 3801.

In some examples, n may be used to index a look-up table 3803, in order to identify the 

start address of each particular rank vector R®. Alternatively, a separate multiplexed rank 

ROM 3801 may be used to store the rank vector R® corresponding to each supported value of « , 

in which case each may employ a start address of O’.

During each of the ~ [w/w] successive steps of the block conditioning process, a 

counter 4203 c may be incremented from O' fo ‘ / - 1 ’ and used as an offset from the start address 

of the rank ROM 3801, in order to read successive ®-element sub-sets of the rank vector 

These sub-sets of the rank vector may then be converted into »· pattern bits 

(% 1>ϊ· fo· ■ · - · - i} 4204 using the bank of vj comparators 3802, as described above.

In some examples, it is envisaged that a counter 4203 c configured to count from 0 to t-1 

may be used for this example circuit and approach, as well as the example circuit of the previous 

approach.

It is noteworthy that the rank vector R® described above is different to the index vector 

described in [8, 9]. More specifically, the rank vector R® ranks the reliabilities of the bits within the 

kernal information block 105, where the rank of the first bit in the kernai information block 105 

appears at one of the vector and the rank of the last bit appears at the other end of the vector. By 

contrast, the index vector Q»> provides the indices of the bits within the kernal information 

block 105 sorted in order of reliability, where the index of the most reliable bit appears at one end 

of the vector and the index of the least reliable bit appears at the other end of the vector. However, 

an approach based on storing the index vector Qn may require the use of an interleaver or other 

complex circuitry to interpret the index vector Qn and produce the bit pattern vector By 

contrast, the proposed approach relies only on simple comparators 3802 to interpret the rank 

vector Rn and produce the bit pattern vector Uk-", as described above.

It is envisaged in alternative examples that the elements of the rank vectors R" described 

above may be subtracted from n~ 1 and stored instead in this adjusted form. In this way, the rank 

ROM stores information sufficient to obtain a rank vector R® for each supported length of the bit 

pattern 'n'. In the examples of the information bit pattern vectors ^·η generated using the PW and 

FRANK techniques, this adjustment would cause bits within the kernal information block 105 

having higher reliabilities to correspond to adjusted ranks having higher values, rather than lower 

values as in the non-adjusted approach. Note that this adjustment is equivalent to reversing the 

order of the non-adjusted ranks shown in FIG. 9, owing to the symmetric property of the PW 

technique. In the descriptions above, each comparison to determine if a non-adjusted rank is less 

than k may be replaced by a comparison to determine if an adjusted rank is greater than or equal 
to n — fc

3) Bit pattern generator exploiting nested and symmetric properties:
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ln this bit pattern generator example, the total capacity required for the rank ROM 3801 

described above may be reduced by 50% in cases where the bit pattern vectors obey the 

nested property and the symmetric property. Here, the symmetric property is satisfied if any pair of 

elements in the rank vector Bn having the indices i and M — f - 1 sum |0 n - 1 for a|| « anq for 

all i \ 1] por examp|ei the symmetric property is satisfied by the information bit pattern

vectors that are generated by the PW technique, but not those generated by the FRANK 

technique of [9] in general.

In some examples, when the symmetric property is satisfied, the rank ROM 3801 may only 

need to store the first half of each rank vector R». In the case where fixed point numbers having a 

constant width of bits are used, this reduces the total capacity required for the rank

ROM 3801 to store all rank vectors Bn for *f f- {2.1.-S,... ,11,,,.,4 to bits,

which corresponds to 9.99 kbit in the case where ’Wx = 1024. |n this way, the rank ROM stores 

information sufficient to obtain a rank vector Bn for each supported length of the bit pattern 'n'.

Alternatively, this reduces the total capacity required to «1οι2(μ)/2

in the case where fixed point numbers having varying widths of ^‘+*-4’>i bits are used. The rank 

ROM 3801 has a width of w ranks and each rank vector B® is stored across 

consecutive addresses, where n is the output vector length supported by the rank vector Re.

It is noteworthy that in cases where ®w t the rank vector Β» may be appended with 

«,· -11 dummy elements and stored across the width of a single address in the rank ROM 3801.

Referring now to FIG. 11, a bit pattern generator 4000 exploiting the nested and symmetric 

properties, for the case where w = 4, is illustrated according to some example embodiments of the 

invention. Here, « may be used to index a look-up table 3803, in order to identify the start address 

of each particular rank vector Bn Alternatively, a separate multiplexed rank ROM 3801 may be 

used to store the rank vector Bn corresponding to each supported value of «, in which case each 

may employ a start address of O’.

In some examples, the bit pattern generator 4000 may be used to interface with the 

reduced-capacity rank ROM 3801 and generate the bit pattern vectors During each of the 

i = [n/w] successive steps of the block conditioning process, a counter 4203 « may be 

incremented from O' to -1 ’ and used to generate an offset from the start address of the rank 

ROM 3801. During the first half of the * - [«/«' successive steps of the block conditioning 

process when c , successive «'-element sub-sets of the rank vector R„ are read from

incremental addresses in the rank ROM 3801, where the offset from the start address is given by β

Referring back to the example of FIG. 10, the bank of1U comparators 3802 may be used to 

convert these sub-sets of the rank vector Bn jnfo w pattern bitsl^»^^»· · · 4204. In this
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example, during the second half of the process when c - , ^-element sub-sets of the

rank vector Rn are read from decremental addresses in the rank ROM 3801, the offset from the 

start address may be given by ((«>] - e -1). | n this way, the same addresses are read as during 

the first half of the block conditioning process, but in reverse order. In this example, a 

multiplexer 4004 may be used to provide rather than c as the offset from the start

address of the rank ROM 3801. During this second half of the process, if a rank is greater than or 

equal to « - &, then the corresponding bit pattern bit is set to T, otherwise it is set to O’. This may 

be implemented by using a multiplexer 4001 in order to provide « - k as the input to the bank of 

m comparators 3802, rather than k t as well as by using a bank of ® NOT gates 4002 to invert the 

output of the comparators 3802. Furthermore, a bank of «; multiplexers 4003 may be used to 

reverse the order of the w pattern bits .·. 4204 during the second half of the

process, as shown in FIG. 11.

It is envisaged that in alternative examples, the elements of the rank vectors Rn described 

above may be subtracted from « - 1 and stored in this adjusted form instead. In this way, the rank 

ROM stores information sufficient to obtain a rank vector Ro for each supported length of the bit 

pattern 'n'. Here, each comparison to determine if a non-adjusted rank is less than k may be 

replaced by a comparison to determine if an adjusted rank is greater than or equal to n — k . 
Likewise, each comparison to determine if a non-adjusted rank is greater than or equal to “ ~ k 
may be replaced by a comparison to determine if an adjusted rank is less than k .

4) Bit pattern generator exploiting the nested, recursive and arithmetic properties:

In some examples, in cases where the bit pattern vectors obey nested, recursive and 

arithmetic properties, the amount of ROM required for the generation of bit pattern vectors ^ΐτ,η 

can be significantly further reduced. Here, the recursive property is satisfied if the index vectors 

associated with successive values of n {2. IN.......can be generated by performing

simple operations upon the preceding index vector . For example, in the PW sequence of [8], 

the index vector can be obtained by interlacing ^”/a with +n/2, according to a 

particular interlacing pattern R>. The arithmetic property is satisfied if a bit reliability metric can be 

obtained for each of the « bits in the output vector based only on its index in the range Ό’ to - I 

’. In the PW sequence of [8], the reliability of each kernal information bit may be determined by 

calculating a expansion upon the binary representation of each bit index in the range Ό’ to ‘ 

w - 1 ’ The elements in a corresponding vector of these bit reliabilities fin may be sorted in order 

to obtain the index vector Q„ , or may be ranked in order to obtain the rank vector

Referring now to FIG. 12, a bit pattern generator 4400 exploiting the nested, recursive and 

arithmetic properties, for the case where w = 4, is illustrated according to some example
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embodiments of the invention. In some examples, in cases where the bit pattern vectors n obey 

nested, recursive and arithmetic properties, the example bit pattern generator 4400 may obtain the 

bit pattern vector " for a particular combination of & and « . Here, a recursive circuit 4401 may 

be used to convert the value of «- k into the index &) of the bit having the """ 

highest bit reliability. This recursive circuit 4401 may exploit the recursive property to obtain 

Qm(«. - k) based on a recursive combination of elements from the preceding index vectors 

f· Qn ·ι<λ I, <?,« MU - ■·}, In some examples, it is noteworthy that rather than unpacking the 

entirety of each successive index vector, the unpacking may target only the particular elements that 

are required to obtain Q«(n — . In the case of the PW sequence, the module may include a 

circuit for performing interlacing, as well as a ROM for storing some or all of the interlacing patterns 

{PliPaj Pi, - · · } .

In some examples, it is also noteworthy that by also exploiting the symmetric property, this 

ROM may have a total capacity requirement of 1 kbit. To provide a reference for this significant 

improvement, let us consider the explanation in [8], whereby a vector Pn is defined, together with a 

technique for generating Qn based on {P2, P4, ... Pn}. Here, Pn is a binary vector that satisfies the 

symmetric property. Since n can vary between {2, 4, 8, ... 1024} at run time, the capability to 

generate {Q2, Q4, Qs, ..., Q1024} is required. As a result, the capability to generate all of {P2, P4, P8, 

■■■ P1024} is needed. In accordance with example embodiments of the present invention, and by 

exploiting the symmetric property of Pn, the Pn vectors can be generated by storing only the first 

half of each of {P2, P4, P8, ... P1024}. Here, n/2 bits are required to store the first half of Pn, giving a 

total of 1023 bits for all of {P2, P4, P8, ... P1024}· In this way, the recursive circuit may be considered 

to unpack compressed information, in order to obtain Qn(n-k).

Following this, an arithmetic circuit 4402 may use the arithmetic property to convert the index 

--kt of the bit having the rank into a bit reliability metric Τΐ/Μ'1 ■’ This value

may then be stored in a register 4403 and used throughout the process of generating the bit 

pattern vector

More specifically, during each of the * = lil/w I successive steps of the block conditioning 

process, a counter c 4203 may be incremented from ‘0’ to 7 - 1’ and used to obtain bit indices 

(<·«*,<«' i - 2. - 1} for successjve w-element sub-sets of the bit pattern vector

bk.n |n SOme examples, this may be achieved using the arrangement of a multiplier 4404 and a 

bank of ®’ - 1 adders 4405, as shown in FIG. 12. Following this, a bank of replicas 4406 of the 

arithmetic circuit may be used to compute corresponding bit reliabilities

'' . , which may then be compared with ’' · : ■' ’

using a bank of «' comparators 4407, in order to obtain the corresponding «·’ elements of the bit 

pattern vector bk,n . In the PW sequence, greater & expansion values imply greater bit reliabilities 

and so the bank of comparators 4407 obtains the bit pattern bits {fithEtAz; ■ - ·Λ»-ι} 4204 by
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determining whether the corresponding bit reliabilities

i Uw11. ι\<·«· 4-«· - IJ are greater than or equal to ~

It is noteworthy that it may be possible to achieve a power saving by exploiting the 

recursive property of the bit pattern vector . For example, in the case of a PW sequence the

recursive properties may be used to determine relationships between bits in the kernal information 

block. More specifically, it may be determined that if a particular bit is chosen as a frozen bit, then 

this guarantees that particular other bits will also be chosen as frozen bits. Likewise, it may be 

determined that if a particular bit is chosen as an information bit, then this guarantees that 

particular other bits will also be chosen as information bits. This may be exploited in the bit pattern 

generator 4400 of FIG. 12, to disable particular arithmetic circuits during particular steps in the 

process, whenever the corresponding bit pattern bit can be determined based on decisions that 

have been made in earlier steps of the process.

In some examples, it is envisaged that the approach of FIG. 12 may be simplified further in 

the case of encoded block conditioning, where the bit reliabilities are simple functions of the bit 

indices. Here, during each of the * ” fu·,r successive steps of the encoded block conditioning 

process, a counter c 4203 may be incremented from ‘0’ to ‘t- 1’ and used to control a circuit that 

provides successive «-element sub-sets of the bit pattern vector depending on the values of 

« and k.

Referring now to FIG. 13 circuits for generating w bits from a particular bit pattern in each 

step of the encoded block conditioning process are illustrated, according to examples of the 

invention. For example the illustrated circuits include: (a) Block puncturing; (b) Block shortening; (c) 

Bit reversal puncturing; and (d) Bit reversal shortening, according to some example embodiments 

of the invention. Suitable circuits for block puncturing, block shortening, bit reversal puncturing and 

bit reversal shortening [16] are illustrated in FIG’s 13a - 13d. Here, a multiplier 4101 and a bank of 

w- 1 adders 4102 are used to convert the counter « 4203 into the indices of the bits in the 

current sub-set of the bit pattern vector l,ew?+ 2,.,.,«»+«- 1} _ |n bit-reversal

schemes of FIG’s 13c and 13d, a bank of w reverse modules 4103 is used to reverse the order of 

the bits in the Ug2(n)_bit binary representation of each bit index, in order to produce the reversed 

bit indices U®»+ 1» + - · - s + « - 1) _ Finally, a bank of « comparators is used to 

compare either the bit indices or the reversed bit indices with either k Or « — k . More specifically, 

the bit pattern bits {^»»^1^2,... rift—i} are se| t0 one jf the corresponding bit indices or reversed 

bit indices are less than k in the shortening schemes of FIG’s 13b and 13d. By contrast, the bit 

pattern bits are set to one if the corresponding bit indices or reversed bit

indices are greater than or equal to n-k jn the puncturing schemes of FIG’s 13a and 13c. 

Compared to Figure 12, it may be observed that the arithmetic module 4401 and the recursive 

module 4402 cancel each other out in all cases shown in FIG’s 13a - 13d. In the case of FIG’s 13c 
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and 13d, the functionality of the arithmetic modules 4406 is performed by the bit reversal 

operations 4103.

Examples of proposed hardware implementations for frozen bit insertion and removal
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Several polar code sequences were proposed and compared in [17] and the Huawei 

sequence was selected for the 3GPP New Radio polar code at 3GPP TSG RAN WG1 Meeting #90 
[18, Al 6.1.4.2.2]. The Huawei sequence from [17] is defined for a maximum mother code block 

length of ^rdaix·'—-1024 anc| sequence Qa< for a shorter power-of-two mother block

length IV can be extracted by exploiting the sequence’s nested property. For example, the 

sequence for AT ~ 64 is ^64 ~ [0, 1, 2, 4, 8, 16, 32, 3, 5, 9, 6, 17, 10, 18, 12, 33, 20, 34, 24, 

36, 7, 11, 40, 19, 13, 48, 14, 21, 35, 26, 37, 25, 22, 38, 41, 28, 42, 49, 44, 50, 15, 52, 23, 56, 27,

39, 29, 43, 30, 45, 51, 46, 53, 54, 57, 58, 60, 31, 47, 55, 59, 61, 62, 63]. Here, each successive 
element (where 1]) of the sequence Qa* indicates the position (in the

range [θ, “ -1^ of neXf more reliable uncoded bit of the polar code, where [θ] and

~ 1] give the positions of the least and most reliable bits, respectively. For example, 

^indicates the that bit in position 16 is more reliable than the bits in positions 

ζ?64 [0] to but less reliable than the bits in positions ^64^] to

Two polar code rate matching schemes were proposed and compared in [19] and Option 2 

was selected at 3GPP TSG RAN WG1 Meeting #90 [18, Al 6.1.4.2.3]. Option 2 from [19] defines a 

sub-block interleaver, which decomposes the polar encoded bits into 32 equal-length sub-blocks, 

which are reordered according to the interleaver pattern 7Γ = [0, 1, 2, 4, 3, 5, 6, 7, 8, 16, 9, 17, 
10, 18, 11, 19, 12, 20, 13, 21, 14, 22, 15, 23, 24, 25, 26, 28, 27, 29, 30, 31]. Here, each element 

(where € [Q, 31]) of the interleaver pattern 7Γ indicates the position (in the range 

[0/31]) that the interleaved sub-block in position m is sourced from. For example, 

indicates that the interleaved sub-block in position 9 is sourced from the sub-block that was in 
position 16 before interleaving. Furthermore, dependent on the uncoded block length A and the 

encoded block length M, Option 2 from [19] defines rules which govern the selection of the 

mother code block length N and the selection of puncturing, shortening or repetition. Crucially, 
Option 2 from [19] also defines rules which govern the selection of frozen bits, which depends on

all of the other aspects of this rate matching scheme.
More specifically, the rate matching scheme influences which of the JV uncoded bits are 

provided by the ,'K information and Cyclical Redundancy Check (CRC) bits. The remaining 

JV ~ /< uncoded bits are provided by frozen bits, which may be scrambled by User Equipment 

Identification (UE-ID) bits. In the absence of rate matching, the positions of the K information and 
CRC bits would be selected by using the sequence Qw to identify the Λ uncoded bits having 
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Several polar code sequences were proposed and compared in [17] and the Huawei 

sequence was selected for the 3GPP New Radio polar code at 3GPP TSG RAN WG1 Meeting #90 

[18, Al 6.1.4.2.2]. The Huawei sequence from [17] is defined for a maximum mother code block 

length of I I bits and the sequence ~ for a shorter power-of-two mother block

length can be extracted by exploiting the sequence’s nested property. For example, the 

sequence for Γ    is I     [0, 1, 2, 4, 8, 16, 32, 3, 5, 9, 6, 17, 10, 18, 12, 33, 20, 34, 24,

36, 7, 11, 40, 19, 13, 48, 14, 21, 35, 26, 37, 25, 22, 38, 41, 28, 42, 49, 44, 50, 15, 52, 23, 56, 27, 

39, 29, 43, 30, 45, 51, 46, 53, 54, 57, 58, 60, 31, 47, 55, 59, 61, 62, 63], Here, each successive

element (where________________ I) of the sequence I____ I indicates the position (in the

range___________ I) of the next more reliable uncoded bit of the polar code, where_______ and

give the positions of the least and most reliable bits, respectively. For example, 

indicates the that bit in position 16 is more reliable than the bits in positions

to but less reliable than the bits in positions_______ to

Two polar code rate matching schemes were proposed and compared in [19] and Option 2 

was selected at 3GPP TSG RAN WG1 Meeting #90 [18, Al 6.1.4.2.3]. Option 2 from [19] defines a 

sub-block interleaver, which decomposes the polar encoded bits into 32 equal-length sub-blocks, 

which are reordered according to the interleaver pattern " [0, 1, 2, 4, 3, 5, 6, 7, 8, 16, 9, 17,

10, 18, 11, 19, 12, 20, 13, 21, 14, 22, 15, 23, 24, 25, 26, 28, 27, 29, 30, 31], Here, each element 

_____ (where____________ I) of the interleaver pattern β indicates the position (in the range 

____ I) that the interleaved sub-block in position β is sourced from. For example,___________ 

indicates that the interleaved sub-block in position 9 is sourced from the sub-block that was in 

position 16 before interleaving. Furthermore, dependent on the uncoded block length and the 

encoded block length ί”Ί, Option 2 from [19] defines rules which govern the selection of the 

mother code block length and the selection of puncturing, shortening or repetition. Crucially, 

Option 2 from [19] also defines rules which govern the selection of frozen bits, which depends on 

all of the other aspects of this rate matching scheme.

More specifically, the rate matching scheme influences which of the H uncoded bits are 

provided by the information and Cyclical Redundancy Check (CRC) bits. The remaining 

Ί uncoded bits are provided by frozen bits, which may be scrambled by User Equipment 

Identification (UE-ID) bits. In the absence of rate matching, the positions of the information and 

CRC bits would be selected by using the sequence ~ to identify the H uncoded bits having
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the highest reliability, with all other uncoded bits becoming frozen. However, when rate matching is 

employed, this requires a set of frozen bits to be identified independently of and before applying the 

sequence. Following this, the K information and CRC bits are positioned within the remaining 
uncoded bits by using the sequence Q1Y to identify those having the highest reliability, with all 

other remaining uncoded bits becoming frozen.

This section proposes examples of hardware implementations that can perform the frozen bit 

insertion and removal processes for several bits at a time, allowing them to be completed using a 

small number of clock cycles. More specifically, this allows frozen bits to be interlaced with 

information bits and CRC bits, before polar encoding. Likewise, this allows the frozen bits to be 

deinterlaced from the information and CRC bits, following polar decoding. Examples of the 

proposed approach may also be adapted to interlace and deinterlace Parity Check (PC) bits. 
Examples of the proposed hardware implementations do not require circuits for sorting, interleaving 

or performing other complex operations, nor do they require an excessive amount of ROM for 

storing pre-computed frozen bit positions or intermediate variables. Some envisaged examples of 

the proposed hardware implementations are detailed below.
During a first sub-process 4701, as identified in FIG’s 16, 21, and 25, some examples of the 

proposed hardware implementations consider uncoded bit positions at a time in order of 

decreasing reliability, considering whether each successive uncoded bit is frozen by rate matching. 
This continues until If number of bits that are not frozen by rate matching have been found, 

whereupon the reliability of the If th-most reliable unfrozen bit is determined and referred to as the 

threshold reliability 3804. During a second sub-process 4702, as identified in FIG’s 16, 21-24 and 

26, uncoded bit positions are considered at a time in their natural order. Each of the 

uncoded bit positions is determined to be an information or CRC bit if its reliability is no less than 

the threshold reliability 3804 and if it is not frozen by rate matching, otherwise it is determined to be 

a frozen bit. In this way, a bit pattern is generated WR bits at a time 3409 throughout the second 

sub-process 4702, which identifies whether each uncoded bit is an information or CRC bit, or if it is 

a frozen bit. At the same time, the bit pattern may be used to interlace 101 or deinterlace 112 

uncoded bits at a time in their natural order. More specifically, the information and CRC bits may be 
interlaced with the frozen bits throughout the second sub-process 4702, in order to implement 

frozen bit insertion 101 during polar encoding. Likewise, the information and CRC bits may be 

deinterlaced from the frozen bits throughout the second sub-process 4702, in order to implement 

frozen bit removal 112 during polar decoding.

Some examples of the proposed hardware implementations for frozen bit insertion and 

removal are detailed in the schematic of FIG. 16, where the top and bottom halves correspond to 

the first and second sub-processes 4701 and 4702, respectively. This schematic includes four sets 

of ROMs 4202, 3801, 4203, 4204, as detailed below. The operation of these ROMs and the logic 

shown in FIG. 16 is coordinated by the controller 4201, as detailed below.

1) ROMs
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the highest reliability, with all other uncoded bits becoming frozen. However, when rate matching is 

employed, this requires a set of frozen bits to be identified independently of and before applying the 

sequence. Following this, the information and CRC bits are positioned within the remaining 

uncoded bits by using the sequence to identify those having the highest reliability, with all 

other remaining uncoded bits becoming frozen.

This section proposes examples of hardware implementations that can perform the frozen bit 

insertion and removal processes for several bits at a time, allowing them to be completed using a 

small number of clock cycles. More specifically, this allows frozen bits to be interlaced with 

information bits and CRC bits, before polar encoding. Likewise, this allows the frozen bits to be 

deinterlaced from the information and CRC bits, following polar decoding. Examples of the 

proposed approach may also be adapted to interlace and deinterlace Parity Check (PC) bits. 

Examples of the proposed hardware implementations do not require circuits for sorting, interleaving 

or performing other complex operations, nor do they require an excessive amount of ROM for 

storing pre-computed frozen bit positions or intermediate variables. Some envisaged examples of 

the proposed hardware implementations are detailed below.

During a first sub-process 4701, as identified in FIG’s 16, 21, and 25, some examples of the 

proposed hardware implementations consider '"* uncoded bit positions at a time in order of 

decreasing reliability, considering whether each successive uncoded bit is frozen by rate matching. 

This continues until H number of bits that are not frozen by rate matching have been found, 

whereupon the reliability of the -most reliable unfrozen bit is determined and referred to as the 

threshold reliability 3804. During a second sub-process 4702, as identified in FIG’s 16, 21-24 and 

26, ί’****! uncoded bit positions are considered at a time in their natural order. Each of the Γ"*'~Ί 

uncoded bit positions is determined to be an information or CRC bit if its reliability is no less than 

the threshold reliability 3804 and if it is not frozen by rate matching, otherwise it is determined to be 

a frozen bit. In this way, a bit pattern is generated bits at a time 3409 throughout the second 

sub-process 4702, which identifies whether each uncoded bit is an information or CRC bit, or if it is 

a frozen bit. At the same time, the bit pattern may be used to interlace 101 or deinterlace 112 Γ"""Ί 

uncoded bits at a time in their natural order. More specifically, the information and CRC bits may be 

interlaced with the frozen bits throughout the second sub-process 4702, in order to implement 

frozen bit insertion 101 during polar encoding. Likewise, the information and CRC bits may be 

deinterlaced from the frozen bits throughout the second sub-process 4702, in order to implement 

frozen bit removal 112 during polar decoding.

Some examples of the proposed hardware implementations for frozen bit insertion and 

removal are detailed in the schematic of FIG. 16, where the top and bottom halves correspond to 

the first and second sub-processes 4701 and 4702, respectively. This schematic includes four sets 

of ROMs 4202, 3801, 4203, 4204, as detailed below. The operation of these ROMs and the logic 

shown in FIG. 16 is coordinated by the controller 4201, as detailed below.

1) ROMs
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As shown in FIG. 16, some examples of the proposed hardware implementations employ

four sets of ROMs, as follows.
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• A set of reversed sequence ROMs 4202 stores the set of reversed sequences 

{^3^5 ^64> ^128’ ’ · · +^1024/}. Here, -each successive element 

Qts/M = Φλγ[Α” —~ 1] (where u [0jTV —l]j Of the reversed sequence

Qwi indicates the position (in the range [θ? “ ^]) of the next less reliable uncoded

bit of the polar code, where Qk101 and l]give the positions of the most

and least reliable bits, respectively.

indicates a higher reliability. For examplevalue

A set of rank ROMs 3801 stores a set of rank sequences

J - ■;· i ®^1024^. Here, each element ^A?'M (where

[Pi.® of the rank sequence indicates the reliability ranking (in the 

range [Pi'®' ? ^1.) of the corresponding uncoded bit of the polar code, where a lower 

i θ and

'® indicate that the uncoded bits and are the most and least 

reliable bits, respectively. The relationship between the reversed sequence Qw and the 

rank sequence H1V is such that Ml. 7
A set of deinterleaver ROMs 4203 stores a set of deinterleaver patterns 

■;· Here, each element ?FXcM (where

u fe [0, ® — i]j Of the deinterleaver pattern ^Xf indicates the position (in the range 

[Pi® — that the polar encoded bit in_position Uis interleaved to, during rate 

matching. The relationship between the deinterleaver pattern ^'Xr and the interleaver 

pattern 7Γ is such that M = W'PP/®!

elements M

I. Furthermore, all

1 in that evaluate to the same value of M J 

7Γ ”L - -
appear in consecutive positions within Ar , in ascending order.

• A set of interleaved sequence ROMs 4204 stores a set of interleaved sequences 
'Μ Here, each element Φίν M of the interleaved

sequence QjV is obtained as QwM ^Xi [Φίν Ml

Each address in each reversed sequence ROM 4202 and each interleaved sequence ROM 

4204 stores elements of the respective sequences, where WQ is a power of two. More 
specifically, each successive group of consecutive elements of each reversed sequence QXc 

are stored in successive addresses of the corresponding reversed sequence ROM 4202, as
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A set of reversed sequence ROMs 4202 stores the set of reversed sequences

Here, each successive element
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(where ) of the reversed sequence

indicates the position (in the range ) of the next less reliable uncoded

bit of the polar code, where ____

and least reliable bits, respectively.

A set of rank ROMs 3801

and give the positions of the most

stores a set of rank sequences

Here, each element

) of the rank sequence

(where

] indicates the reliability ranking (in the

range ) of the corresponding uncoded bit of the polar code, where a lower

value indicates a higher reliability. For example, and

indicate that the uncoded bits E and Γ~Ί are the most and least

reliable bits, respectively. The relationship between the reversed sequence____ and the

rank sequence I____ I is such that

A set of deinterleaver ROMs 4203 stores a set of deinterleaver patterns

Here, each element _______ (where

) of the deinterleaver pattern____  indicates the position (in the range

) that the polar encoded bit in position ‘is interleaved to, during rate

matching. The relationship between the deinterleaver pattern ____  and the interleaver

pattern H is such that . Furthermore, all

elements that evaluate to the same value of

appear in consecutive positions within____ I, in ascending order.

• A set of interleaved sequence ROMs 4204 stores a set of interleaved sequences

. Here, each element of the interleaved

sequence is obtained as

Each address in each reversed sequence ROM 4202 and each interleaved sequence ROM

4204 stores l___ I elements of the respective sequences, where l___ I is a power of two. More

specifically, each successive group of LI_ I consecutive elements of each reversed sequence 

are stored in successive addresses of the corresponding reversed sequence ROM 4202, as 
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exemplified for AT' = 64 and $ in FIG. 17. Likewise, each successive group of

n~
consecutive elements of each interleaved sequence are stored in successive addresses of 

. .:.. '■ "·■■ ___O
the corresponding interleaved sequence ROM 4204, as exemplified for iV = 64 and ~

in FIG. 18. More specifically, each element in these ROMs 4202, 4204 is obtained according to 
and Qa'[cU'] where

G [θ’'“ Mis the corresponding address and [θ’ -s jn(jex of

element within that address.
By contrast, each address in each deinterleaver ROM 4203 and each rank ROM 3801 stores 

W elements of the respective sequences, where is a power of two that may be selected 

independently of More specifically, each successive group of W'R. consecutive elements of 
_-i

each deinterleaver pattern W/' are stored in successive addresses of the corresponding 

deinterleaver ROM 4203, as exemplified for AT =4 64 and ~ 4 jn FIG. 19. Likewise, each 
successive group of Wftconsecutive elements of each rank sequence R-TV are stored in 

successive addresses of the corresponding rank ROM 3801, as exemplified for AT 4=:64 and

4 in FIG. 20. More specifically, each element in these ROMs 4203, 3801 is obtained 

according to M and * W where

C £ [0, A/wr 1] |S fhe corresponding address and [θ’ is the index of 

the element within that address.

Note that in cases where < Bq or AT < 41/¾ each sequence stored in a 

corresponding ROM 4202, 3801, 4203, 4204 may be appended with or Br.·^-· AF
dummy elements having the value AT ~ 1, in order to fill a single address of the ROM. Note that 

rather than storing sequences of the same type in separate ROMs corresponding to each 

supported value of N, these sequences could be stored within different address spaces of a single 

larger ROM. In this case, the value of AT may be used to index a lookup table 3803, which 

identifies the start address of the corresponding sequence.
Assuming that all entries in the ROMs 4202, 3801, 4203, 4204 are stored using fixed point 

numbers having a width of (Mnax) “ 1θ bits, the total capacity required for the ROMs 

to store all sequences 'Q», πN and R-/V for 64j:12Sj;· · ; , J024} is
78.75 kbit. Alternatively, the total capacity required can be reduced to 71.62 kbit, if different widths 

of bits are used to store the fixed-point numbers for different values of AT.

2) Logic and controller
As shown in FIG. 16, some examples of the proposed hardware implementations for frozen 

bit insertion and removal comprise four sets of ROMs 4202, 3801, 4203, 4204 and various logic
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exemplified for [ ] and in FIG. 17. Likewise, each successive group of

consecutive elements of each interleaved sequence are stored in successive addresses of

] andthe corresponding interleaved sequence ROM 4204, as exemplified for [

in FIG. 18. More specifically, each element in these ROMs 4202, 4204 is obtained according to

and where

is the corresponding address and is the index of the

element within that address.

By contrast, each address in each deinterleaver ROM 4203 and each rank ROM 3801 stores

Γ" T elements of the respective sequences, where Γ~T is a power of two that may be selected

independently of I. More specifically, each successive group of ί°~~Ί consecutive elements of

each deinterleaver pattern 

deinterleaver ROM 4203, as exemplified for [ 

successive group of consecutive elements of each rank sequence E

are stored in successive addresses of the corresponding 

] and I Ί in FIG. 19. Likewise, each 

are stored in 

successive addresses of the corresponding rank ROM 3801, as exemplified for Ί and

1 in FIG. 20. More specifically, each element in these ROMs 4203, 3801 is obtained

according to and , where

____________________  is the corresponding address and 

the element within that address.

is the index of

Note that in cases where or [ ], each sequence stored in a

or F~~—corresponding ROM 4202, 3801, 4203, 4204 may be appended with

dummy elements having the value ~ I, in order to fill a single address of the ROM. Note that 

rather than storing sequences of the same type in separate ROMs corresponding to each 

supported value of H, these sequences could be stored within different address spaces of a single 

larger ROM. In this case, the value of may be used to index a lookup table 3803, which 

identifies the start address of the corresponding sequence.

Assuming that all entries in the ROMs 4202, 3801, 4203, 4204 are stored using fixed point

numbers having a width of bits, the total capacity required for the ROMs

to store all sequences and for is

78.75 kbit. Alternatively, the total capacity required can be reduced to 71.62 kbit, if different widths

of_________  bits are used to store the fixed-point numbers for different values of H.

2) Logic and controller

As shown in FIG. 16, some examples of the proposed hardware implementations for frozen 

bit insertion and removal comprise four sets of ROMs 4202, 3801, 4203, 4204 and various logic 
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circuits. These operate under the coordination ofthe controller 4201 shown in FIG. 16, according to 

the flowchart of FIG. 21. As described above, some examples of the proposed hardware 

implementations complete the processes of frozen bit insertion or removal using two sub

processes 4701 and 4702, which correspond to the left and right halves of FIG. 21.
At the beginning of the first sub-process 4701, the TV logic 4205 of FIG. 16 is used to 

compute the mother code block size TV, as a function of the number K of information and CRC 
bits, as well as of the number Af of polar encoded bits that remain after rate matching. As shown 

in FIG. 21, if M'K N is not satisfied 4703, then the first suti-process 4701 can be immediately 

concluded by setting the rank threshold k equal to K 4704, where k implements the reliability 

threshold 3804 mentioned above. Otherwise, the first sub-process 4701 must use further 

computations in order to determine the rank threshold k3804.
In this case, the controller 4201 resets the counters G1 and G2 shown in FIG. 16 to zero 

4705. In successive clock cycles, successive addresses of the reversed sequence ROM 4202 and 
the interleaved sequence ROM 4204 corresponding to the particular value of TV are indexed using 

the counter G1 4206, which is incremented in each clock cycle 4706. As shown in Figures 16 and 
21, the consecutive elements 01 to ~ M and ®] to

of the reversed sequence QlV and the interleaved sequence N are 

read 4707, 4708 from the reversed sequence ROM 4202 and the interleaved sequence ROM 4204,

respectively.
Each successive set of elements read from the reversed sequence and interleaved

sequence ROMs 4202, 4204 in each successive clock cycle is provided to the first set of J logic 

4207 shown in FIG. 16. As shown in FIG. 21, this / logic 4207 obtains a set of WQ binary flags by 

computing = FFj:^.j\r[GTj ^U*Sw[GU©l) for each value of

θ [0i 1] in parallel 4709, where

/ K 7 ,, ,
M > N OR — > AND u < ■ - 16 n

,V < + ANDr->|>.V-.W

AND u >

M <^- AND u >
< 4

OR

AND

OR

. '3N
: "Τ’"I- J 

■97V _ ΜΊ\γ
16 " 4 JJ,

The binary flags [0! to - 1] obtained in each clock cycle are provided to the 

accumulator logic 4208 shown in FIG. 16. As shown in FIG. 21, this uses an index i which is 

initially set to 0 (4710) and is incremented (4711) towards WQ ^(4712), in order to consider the 

binary flags in order from [01 to - i], At the same time, the counter G2 4209 is 

incremented once (4713) for each of the binary flags having the value ‘1’ (4714). When the counter 
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circuits. These operate under the coordination of the controller 4201 shown in FIG. 16, according to 

the flowchart of FIG. 21. As described above, some examples of the proposed hardware 

implementations complete the processes of frozen bit insertion or removal using two sub

processes 4701 and 4702, which correspond to the left and right halves of FIG. 21.

At the beginning of the first sub-process 4701, the logic 4205 of FIG. 16 is used to 

compute the mother code block size B, as a function of the number of information and CRC 

bits, as well as of the number of polar encoded bits that remain after rate matching. As shown 

in FIG. 21, if I ~ ~~ I is not satisfied 4703, then the first sub-process 4701 can be immediately 

concluded by setting the rank threshold E equal to H 4704, where E implements the reliability 

threshold 3804 mentioned above. Otherwise, the first sub-process 4701 must use further 

computations in order to determine the rank threshold 3804.

In this case, the controller 4201 resets the counters B and B shown in FIG. 16 to zero

4705. In successive clock cycles, successive addresses of the reversed sequence ROM 4202 and 

the interleaved sequence ROM 4204 corresponding to the particular value of H are indexed using 

the counter B 4206, which is incremented in each clock cycle 4706. As shown in Figures 16 and

21, the consecutive elements to and to

of the reversed sequence and the interleaved sequence are

read 4707, 4708 from the reversed sequence ROM 4202 and the interleaved sequence ROM 4204, 

respectively.

Each successive set of elements read from the reversed sequence and interleaved 

sequence ROMs 4202, 4204 in each successive clock cycle is provided to the first set of H logic 

4207 shown in FIG. 16. As shown in FIG. 21, this H logic 4207 obtains a set of I binary flags by

computing for each value of

in parallel 4709, where

The binary flags to obtained in each clock cycle are provided to the 

accumulator logic 4208 shown in FIG. 16. As shown in FIG. 21, this uses an index 1 which is

initially set to 0 (4710) and is incremented (4711) towards (4712), in order to consider the

to . At the same time, the counter B 4209 isbinary flags in order from

incremented once (4713) for each of the binary flags having the value T (4714). When the counter
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Gg reaches the value JT(4715), the threshold rank fc 3804 is set equal to

(4716), whereupon the first sub-process 4701 is completed. More specifically, the first sub-process 

4701 continues through successive clock cycles until G2K jS satisfied (4717), which will 

typically occur before reaches the index of the final address of the reversed sequence and
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interleaved sequence ROMs 4202, 4204.

As shown in Figures 16 and 21, the threshold rank k 3804 is stored in a register 4210, so 

that it can be used throughout the second sub-process 4702. At the start of the second sub

process 4702, the controller 4201 resets the counter Gg 4203 shown in FIG. 16 to zero 4718. In 

successive clock cycles, successive addresses of the deinterleaver ROM 4203 and the rank ROM 
3801 corresponding to the particular value of /V are indexed using the counter G3. which is 

incremented in each clock cycle 4721, until S

Figures 16 and 21, the MJr consecutive elements

[c3: 0] to — X] of the deinterleaver pattern 'WU and the rank sequence

Bw are read 4719, 4720 from the deinterleaver ROM 4203 and the rank ROM 3801,

is satisfied 4729. As shown in 

to [C3, ™R “ 1] and

respectively.
Each successive set of elements read from the deinterleaver ROM 4203 in each successive 

clock cycle is provided to the second set of/ logic 4211 shown in FIG. 16. Note that since the first 

and second sets of f logic are not used simultaneously, they may share the same hardware by 

multiplexing between the inputs provided in the first sub-process 4701 and those provided in the 

second sub-process 4702. As shown in FIG. 21, this f logic obtains a set of WjR binary flags by 

computing ^2 H f C3WR + ύ [c3, ^]) of (-jj 4722 for each value of

* S |0,,;Wr -r- 1] 4726, 4727, 4728 in parallel. At the same time, each successive set of 

elements read from the rank ROM 3801 in each successive clock cycle is provided to the set of 
'Wit comparators 3802 shown in FIG. 16. As shown in FIG. 21, these comparators obtain a set of 

MTfj binary flags 4204 by computing ^[ί] Ϊ] "C k for each va|ue of

i ¢:-Ιθ; 1] jn parallel 4723. Then, the binary flags to X} and

to are provided to a set of AND gates 4212, which obtain a set of WR binary
flags 3409 by computing for each value of S 1]

in parallel 4724, as shown in FIG. 21. Tables 22 to 24 illustrate the bit patterns ^I^Jto

3409 that are generated in each clock cycle of the second sub-process 4702, for 

examples in which repetition, shortening and puncturing are used.
In each successive clock cycle of the second sub-process 4702, the bit pattern ^ΐ[θ] to 

1] may |je usej t0 interlace 101 or deinterlace 112 each successive set of WR 
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(4716), whereupon the first sub-process 4701 is completed. More specifically, the first sub-process 

4701 continues through successive clock cycles until Ί is satisfied (4717), which will

typically occur before B reaches the index of the final address of the reversed sequence and 

interleaved sequence ROMs 4202, 4204.

As shown in Figures 16 and 21, the threshold rank [1 3804 is stored in a register 4210, so 

that it can be used throughout the second sub-process 4702. At the start of the second sub

process 4702, the controller 4201 resets the counter " 4203 shown in FIG. 16 to zero 4718. In 

successive clock cycles, successive addresses of the deinterleaver ROM 4203 and the rank ROM 

3801 corresponding to the particular value of B are indexed using the counter B, which is

incremented in each clock cycle 4721, until is satisfied 4729. As shown in

Figures 16 and 21, the BE consecutive elements to and

to of the deinterleaver pattern and the rank sequence

~ are read 4719, 4720 from the deinterleaver ROM 4203 and the rank ROM 3801, 

respectively.

Each successive set of elements read from the deinterleaver ROM 4203 in each successive 

clock cycle is provided to the second set of H logic 4211 shown in FIG. 16. Note that since the first 

and second sets of H logic are not used simultaneously, they may share the same hardware by 

multiplexing between the inputs provided in the first sub-process 4701 and those provided in the 

second sub-process 4702. As shown in FIG. 21, this [1 logic obtains a set of binary flags by

computing of (1) 4722 for each value of

_________________ 4726, 4727, 4728 in parallel. At the same time, each successive set of 

elements read from the rank ROM 3801 in each successive clock cycle is provided to the set of 

BE comparators 3802 shown in FIG. 16. As shown in FIG. 21, these comparators obtain a set of

binary flags 4204 by computing for each value of

to

in parallel 4723. Then, the binary flags to and

are provided to a set of Γ~~"Ί AND gates 4212, which obtain a set of Γ~' Ί binary

flags 3409 by computing for each value of

in parallel 4724, as shown in FIG. 21. Tables 22 to 24 illustrate the bit patterns to

____________  3409 that are generated in each clock cycle of the second sub-process 4702, for 

examples in which repetition, shortening and puncturing are used.

In each successive clock cycle of the second sub-process 4702, the bit pattern

may be used to interlace 101 or deinterlace 112 each successive set of

to
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uncoded bits in parallel 4725, as shown in FIGs 16 and 21. Each of the bits in the bit pattern 
to — i] having the value ‘1’ indicates that the corresponding uncoded bit is provided by 

an information or CRC bit. Likewise, each of the bit pattern bits having the value 0 indicates that 
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the corresponding uncoded bit is a frozen bit, which may be scrambled by the UE-ID. During polar 

encoding, the interlacer of FIG. 16 operates on the basis of First-In First-Out (FIFO) buffering. In 

each clock cycle, an input FIFO buffer supplies a number of information and CRC bits equal to the 

number of 1s in the corresponding bit pattern. Meanwhile, a second input FIFO buffer supplies a 

number of UE-ID scrambled frozen bits equal to the number of 0s in the bit pattern. Alternatively, if 

UE-ID scrambling is not used and all frozen bits adopt a value of O’, then the second FIFO buffer 

can be replaced with a circuit that supplies the corresponding number of 0-valued bits. The 

interlacer 101 of FIG. 16 may then interlace the information, CRC and frozen bits according to the 

corresponding bit pattern, producing 411R number of uncoded bits in parallel, in each clock cycle of 

the second sub-process 4702. Likewise, during polar decoding, the deinterlacer 112 of FIG. 16 

may perform the reverse operation for WH number of uncoded bits in each clock cycle, where the 

information and CRC bits are provided to an output FIFO buffer.
The total number of clock cycles required to complete the frozen bit insertion and removal 

processes is given by the sum of the number used in each of the first and second sub-processes

4701 and 4702. FIG. 25 characterises the number of clock cycles required to complete the first

sub-process 4701 as a function of li’ and , for the worst case where ~ . When 

adopts the value of a higher power of two, the number of clock cycles required may be obtained by 

linearly scaling down those of FIG. 25 and taking the ceiling. It may be observed that greater 
numbers of clock cycles are required at coding rates of 7/16 where shortening is

employed. This is because shortening uses some of the most reliable uncoded bit positions for 

frozen bits. A smaller number of clock cycles is required when employing puncturing, since this 

typically uses the least reliable bit positions for frozen bits. More specifically, the number of clock 
cycles used in the first sub-process 4701 with 1 is equal to & 3804 in the case of

shortening or puncturing. By contrast, no clock cycles are required when employing repetition, as 
described above. Note however that the first sub-process 4701 may be completed in parallel with 

CRC generation and interleaving during polar encoding and in parallel with channel interleaving 

during polar decoding. Owing to this, the first sub-process 4701 does not necessarily impose 

additional latency. The number of clock cycles required to complete the second sub-process 4702 

is given by as characterised in FIG. 26, for the worst case where 1. When

Wr adopts the value of a higher power of two, the number of clock cycles required may be 

obtained by linearly scaling down those of FIG. 26 and taking the ceiling. The second sub-process
4702 can stream uncoded bits into a polar encoder kernal or stream uncoded bits out of a polar 

decoder kernal alongside their operation, without imposing additional latency.
This section has proposed some examples of hardware implementations that can perform 

the frozen bit insertion and removal processes for several bits at a time, allowing them to be 
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having the value ‘T indicates that the corresponding uncoded bit is provided by 

an information or CRC bit. Likewise, each of the bit pattern bits having the value 0 indicates that 

the corresponding uncoded bit is a frozen bit, which may be scrambled by the UE-ID. During polar 

encoding, the interlacer of FIG. 16 operates on the basis of First-In First-Out (FIFO) buffering. In 

each clock cycle, an input FIFO buffer supplies a number of information and CRC bits equal to the 

number of 1s in the corresponding bit pattern. Meanwhile, a second input FIFO buffer supplies a 

number of UE-ID scrambled frozen bits equal to the number of 0s in the bit pattern. Alternatively, if 

UE-ID scrambling is not used and all frozen bits adopt a value of O’, then the second FIFO buffer 

can be replaced with a circuit that supplies the corresponding number of 0-valued bits. The 

interlacer 101 of FIG. 16 may then interlace the information, CRC and frozen bits according to the 

corresponding bit pattern, producing I"'**'! number of uncoded bits in parallel, in each clock cycle of 

the second sub-process 4702. Likewise, during polar decoding, the deinterlacer 112 of FIG. 16 

may perform the reverse operation for I"'*""’/ number of uncoded bits in each clock cycle, where the 

information and CRC bits are provided to an output FIFO buffer.

The total number of clock cycles required to complete the frozen bit insertion and removal 

processes is given by the sum of the number used in each of the first and second sub-processes 

4701 and 4702. FIG. 25 characterises the number of clock cycles required to complete the first

. Whensub-process 4701 as a function of H and for the worst case where

adopts the value of a higher power of two, the number of clock cycles required may be obtained by 

linearly scaling down those of FIG. 25 and taking the ceiling. It may be observed that greater

, where shortening isnumbers of clock cycles are required at coding rates of

employed. This is because shortening uses some of the most reliable uncoded bit positions for 

frozen bits. A smaller number of clock cycles is required when employing puncturing, since this 

typically uses the least reliable bit positions for frozen bits. More specifically, the number of clock 

is equal to [f 3804 in the case ofcycles used in the first sub-process 4701 with

shortening or puncturing. By contrast, no clock cycles are required when employing repetition, as 

described above. Note however that the first sub-process 4701 may be completed in parallel with 

CRC generation and interleaving during polar encoding and in parallel with channel interleaving 

during polar decoding. Owing to this, the first sub-process 4701 does not necessarily impose 

additional latency. The number of clock cycles required to complete the second sub-process 4702 

, as characterised in FIG. 26, for the worst case where Ί. When is given by

adopts the value of a higher power of two, the number of clock cycles required may be 

obtained by linearly scaling down those of FIG. 26 and taking the ceiling. The second sub-process 

4702 can stream uncoded bits into a polar encoder kernal or stream uncoded bits out of a polar 

decoder kernal alongside their operation, without imposing additional latency.

This section has proposed some examples of hardware implementations that can perform

the frozen bit insertion and removal processes for several bits at a time, allowing them to be
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completed using a small number of clock cycles. More specifically, this allows frozen bits (which 

may be scrambled using UE-ID bits) to be interlaced with information bits and CRC bits, before 

polar encoding. Likewise, this allow the frozen bits to be deinterlaced from the information and 

CRC bits, following polar decoding. Some examples of the proposed hardware implementations do 

not require circuits for sorting, interleaving or performing other complex operations, nor do they 

require an excessive amount of ROM for storing pre-computed frozen bit positions or intermediate 

variables. Some, and in some instances all, operations of the proposed hardware implementations 

can be performed alongside other polar encoding or decoding operations and so they do not 

impose any additional latency.

Referring now to FIG. 14, a high-level flowchart 1400 of a polar coder operation performed 

by a bit pattern generator is illustrated in accordance with some example embodiments of the 

invention. The flowchart comprises, at 1402, successively performing a bit pattern generation 

process over a series (^ = [M/a?] ) of clock cycles by a bit pattern generator (3403). At 1404, the 

flowchart moves to counting a number of successive bit pattern generation sub-processes over the 

series (^ = [H/w] ) of clock cycles. At 1406, a successive sub-set of (w) bits from a bit pattern 

vector (^k·") in each successive ~ clock cycle is provided; where the bit pattern vector 

comprises ‘n’ bits, of which ‘k’ bits adopt a first binary value and n-k bits adopt a complementary 

binary value.

Referring now to FIG. 15, there is illustrated a typical computing system 1500 that may be 

employed to implement polar encoding according to some example embodiments of the invention. 

Computing systems of this type may be used in wireless communication units. Those skilled in the 

relevant art will also recognize how to implement the invention using other computer systems or 

architectures. Computing system 1500 may represent, for example, a desktop, laptop or notebook 

computer, hand-held computing device (PDA, cell phone, palmtop, etc.), mainframe, server, client, 

or any other type of special or general purpose computing device as may be desirable or 

appropriate for a given application or environment. Computing system 1500 can include one or 

more processors, such as a processor 1504. Processor 1504 can be implemented using a general 

or special-purpose processing engine such as, for example, a microprocessor, microcontroller or 

other control logic. In this example, processor 1504 is connected to a bus 1502 or other 

communications medium. In some examples, computing system 1500 may be a non-transitory 

tangible computer program product comprising executable code stored therein for implementing 

polar encoding.

Computing system 1500 can also include a main memory 1508, such as random access 

memory (RAM) or other dynamic memory, for storing information and instructions to be executed 

by processor 1504. Main memory 1508 also may be used for storing temporary variables or other 

intermediate information during execution of instructions to be executed by processor 1504.



WO 2019/011555 PCT/EP2018/065554

5

10

15

20

25

30

35

40

-41 - 

Computing system 1500 may likewise include a read only memory (ROM) or other static storage 

device coupled to bus 1502 for storing static information and instructions for processor 1504.

The computing system 1500 may also include information storage system 1510, which may 

include, for example, a media drive 1512 and a removable storage interface 1520. The media 

drive 1512 may include a drive or other mechanism to support fixed or removable storage media, 

such as a hard disk drive, a floppy disk drive, a magnetic tape drive, an optical disk drive, a 

compact disc (CD) or digital video drive (DVD) read or write drive (R or RW), or other removable or 

fixed media drive. Storage media 1518 may include, for example, a hard disk, floppy disk, 

magnetic tape, optical disk, CD or DVD, or other fixed or removable medium that is read by and 

written to by media drive 1512. As these examples illustrate, the storage media 1518 may include 

a computer-readable storage medium having particular computer software or data stored therein.

In alternative embodiments, information storage system 1510 may include other similar 

components for allowing computer programs or other instructions or data to be loaded into 

computing system 1500. Such components may include, for example, a removable storage unit 

1522 and an interface 1520, such as a program cartridge and cartridge interface, a removable 

memory (for example, a flash memory or other removable memory module) and memory slot, and 

other removable storage units 1522 and interfaces 1520 that allow software and data to be 

transferred from the removable storage unit 1518 to computing system 1500.

Computing system 1500 can also include a communications interface 1524. 

Communications interface 1524 can be used to allow software and data to be transferred between 

computing system 1500 and external devices. Examples of communications interface 1524 can 

include a modem, a network interface (such as an Ethernet or other NIC card), a communications 

port (such as for example, a universal serial bus (USB) port), a PCMCIA slot and card, etc. 

Software and data transferred via communications interface 1524 are in the form of signals which 

can be electronic, electromagnetic, and optical or other signals capable of being received by 

communications interface 1524. These signals are provided to communications interface 1524 via 

a channel 1528. This channel 1528 may carry signals and may be implemented using a wireless 

medium, wire or cable, fibre optics, or other communications medium. Some examples of a 

channel include a phone line, a cellular phone link, an RF link, a network interface, a local or wide 

area network, and other communications channels.

In this document, the terms ‘computer program product’, ‘computer-readable medium’ and 

the like may be used generally to refer to media such as, for example, memory 1508, storage 

device 1518, or storage unit 1522. These and other forms of computer-readable media may store 

one or more instructions for use by processor 1504, to cause the processor to perform specified 

operations. Such instructions, generally referred to as ‘computer program code’ (which may be 

grouped in the form of computer programs or other groupings), when executed, enable the 

computing system 1500 to perform functions of embodiments of the present invention. Note that 

the code may directly cause the processor to perform specified operations, be compiled to do so, 

and/or be combined with other software, hardware, and/or firmware elements (e.g., libraries for 

performing standard functions) to do so.
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ln an embodiment where the elements are implemented using software, the software may be 

stored in a computer-readable medium and loaded into computing system 1500 using, for example, 

removable storage drive 1522, drive 1512 or communications interface 1524. The control logic (in 

this example, software instructions or computer program code), when executed by the processor 

1504, causes the processor 1504 to perform the functions of the invention as described herein.

In the foregoing specification, the invention has been described with reference to specific 

examples of embodiments of the invention. It will, however, be evident that various modifications 

and changes may be made therein without departing from the scope of the invention as set forth in 

the appended claims and that the claims are not limited to the specific examples described above.

The connections as discussed herein may be any type of connection suitable to transfer 

signals from or to the respective nodes, units or devices, for example via intermediate devices. 

Accordingly, unless implied or stated otherwise, the connections may for example be direct 

connections or indirect connections. The connections may be illustrated or described in reference 

to being a single connection, a plurality of connections, unidirectional connections, or bidirectional 

connections. However, different embodiments may vary the implementation of the connections. 

For example, separate unidirectional connections may be used rather than bidirectional 

connections and vice versa. Also, plurality of connections may be replaced with a single connection 

that transfers multiple signals serially or in a time multiplexed manner. Likewise, single connections 

carrying multiple signals may be separated out into various different connections carrying subsets 

of these signals. Therefore, many options exist for transferring signals.

Those skilled in the art will recognize that the architectures depicted herein are merely 

exemplary, and that in fact many other architectures can be implemented which achieve the same 

functionality.

Any arrangement of components to achieve the same functionality is effectively ‘associated’ 

such that the desired functionality is achieved. Hence, any two components herein combined to 

achieve a particular functionality can be seen as ‘associated with’ each other such that the desired 

functionality is achieved, irrespective of architectures or intermediary components. Likewise, any 

two components so associated can also be viewed as being ‘operably connected,’ or Operably 

coupled,’ to each other to achieve the desired functionality.

Furthermore, those skilled in the art will recognize that boundaries between the above 

described operations merely illustrative. The multiple operations may be combined into a single 

operation, a single operation may be distributed in additional operations and operations may be 

executed at least partially overlapping in time. Moreover, alternative embodiments may include 

multiple instances of a particular operation, and the order of operations may be altered in various 

other embodiments.

The present invention is herein described with reference to an integrated circuit device 

comprising, say, a microprocessor configured to perform the functionality of a polar decoder. 

However, it will be appreciated that the present invention is not limited to such integrated circuit 

devices, and may equally be applied to integrated circuit devices comprising any alternative type of
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operational functionality. Examples of such integrated circuit device comprising alternative types of 

operational functionality may include, by way of example only, application-specific integrated circuit 

(ASIC) devices, field-programmable gate array (FPGA) devices, or integrated with other 

components, etc. Furthermore, because the illustrated embodiments of the present invention may 

for the most part, be implemented using electronic components and circuits known to those skilled 

in the art, details have not been explained in any greater extent than that considered necessary, for 

the understanding and appreciation of the underlying concepts of the present invention and in order 

not to obfuscate or distract from the teachings of the present invention. Alternatively, the circuit 

and/or component examples may be implemented as any number of separate integrated circuits or 

separate devices interconnected with each other in a suitable manner.

Also for example, the examples, or portions thereof, may implemented as soft or code 

representations of physical circuitry or of logical representations convertible into physical circuitry, 

such as in a hardware description language of any appropriate type.

Also, the invention is not limited to physical devices or units implemented in non

programmable hardware but can also be applied in programmable devices or units able to perform 

the desired polar encoding by operating in accordance with suitable program code, such as 

minicomputers, personal computers, notepads, personal digital assistants, electronic games, 

automotive and other embedded systems, cell phones and various other wireless devices, 

commonly denoted in this application as ‘computer systems’.

However, other modifications, variations and alternatives are also possible. The 

specifications and drawings are, accordingly, to be regarded in an illustrative rather than in a 

restrictive sense.

In the claims, any reference signs placed between parentheses shall not be construed as 

limiting the claim. The word ‘comprising’ does not exclude the presence of other elements or steps 

then those listed in a claim. Furthermore, the terms ‘a’ or ‘an,’ as used herein, are defined as one 

or more than one. Also, the use of introductory phrases such as ‘at least one’ and ‘one or more’ in 

the claims should not be construed to imply that the introduction of another claim element by the 

indefinite articles ‘a’ or ‘an’ limits any particular claim containing such introduced claim element to 

inventions containing only one such element, even when the same claim includes the introductory 

phrases ‘one or more’ or ‘at least one’ and indefinite articles such as ‘a’ or ‘an.’ The same holds 

true for the use of definite articles. Unless stated otherwise, terms such as ‘first’ and ‘second’ are 

used to arbitrarily distinguish between the elements such terms describe. Thus, these terms are 

not necessarily intended to indicate temporal or other prioritization of such elements. The mere fact 

that certain measures are recited in mutually different claims does not indicate that a combination 

of these measures cannot be used to advantage.
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Claims

1. An electronic device configured to perform polar coding, the electronic device comprising:

a bit pattern generator (3403) configured to successively perform a bit pattern generation 

process over a series ~ I’1/"'1 ) of clock cycles; and

a counter (c, 4203), operably coupled to the bit pattern generator (3403) and configured to 

count a number of successive bit pattern generation sub-processes over the series (e — l«/«l ) of 

clock cycles,

wherein the electronic device (100) is characterised in that the bit pattern generator (3403) is 

configured to:

provide a successive sub-set of (w) bits (4204) from a bit pattern vector (^®n) in each 

successive = (Λ/®Ί clock cycle; where the bit pattern vector comprises n bits, of which ‘k’ (3804) 

bits adopt a first binary value and n-k bits adopt a complementary binary value.

2. The electronic device of Claim 1 wherein the bit pattern generator circuit (3403) comprises a

bank of (w) comparators (3802), and wherein the sub-set of (w) bits (4204) from a bit pattern vector 

is such that each of «' bit pattern bits · - A—»} js obtained from a corresponding

comparator in the bank of «· comparators (3802).

3. The electronic device of Claim 1 wherein the bit pattern generator (3403) is configured to 

perform the bit pattern generation process as a part of at least one of:

an information block conditioning circuit (101) in an encoder that receives an information 

block (104) as the input data block and outputs an n-bit kernal information block (105);

an encoded block conditioning circuit (103) in an encoder that receives an n-bit kernal 

encoded block (106) as the input data block and outputs an encoded block (107);

an encoded block conditioning circuit (110) in a decoder that receives a soft encoded block 

(109) as the input data block and outputs an n-soft-bit soft kernal encoded block (113);

an information block conditioning circuit (112) in a decoder that receives an n-bit recovered 

kernal information block (114) as the input data block and outputs a recovered information block 

(115).

4. The electronic device of Claim 3, wherein the bit pattern generator (3403) is configured to 

perform in at least one of:

an interlacer whereby successive w-bit sub-sets of the kernel information block (105) are 

funnelled into a polar encoder kernal (102) having a corresponding input width of ‘w’ bits; and
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an interlacer whereby successive w-soft-bit sub-sets of the soft kernal encoded block (113) 

are funnelled into a polar decoder kernal (111) having a corresponding input width of ‘w’ soft bits.

5. The electronic device of any preceding Claim wherein the bit pattern generator is configured 

to obtain the bit pattern vector (^k>n) in which ‘k’ (3804) out of ‘n’ bits has the first binary value and 

'n-k' out of 'n' bits has the complementary binary value, where n is a power of two greater than k.

6. The electronic device of any preceding Claim wherein the bit pattern generator circuit (3403) 

is operably coupled to a bit pattern Read Only Memory, ROM, (4201) and configured to store 

therein a set of supported bit pattern vectors (bk,n).

7. The electronic device of Claim 6 wherein the set of supported bit pattern vectors, bk.n, js 

generated in an off-line pre-computation process and stored in the bit pattern ROM (4201) for 

reading from during an on-line bit pattern generation process.

8. The electronic device of Claim 6 or Claim 7 wherein the bit pattern ROM (4201) has a width 

of ‘w’ bits and each bit pattern vector (ft.») is stored across a number of consecutive 

addresses.

9. The electronic device of Claim 8 wherein for n < w, the bit pattern vector (^^) is appended 

with a number, w - n, of dummy bits, such that bit pattern vector (^k*) occupies a width of a single 

address in the bit pattern ROM (4201).

10. The electronic device of any of preceding Claims 6 to 9 wherein the bit pattern ROM (4201) 

is operably coupled to a first look-up table (4202), wherein the values of ‘k’ and ‘n’ are used as an 

input to as well as to index the first look-up table (4202) in order to identify a start address of each 

respective bit pattern vector (^k «).

11. The electronic device of any of preceding Claims 6 to 9 wherein the counter (c, 4203) is 

operably coupled to the bit pattern ROM (4201), and configured to increment a counter value from 

Ό’ to ‘t-T wherein the counter value is used as an offset from a start address of the bit pattern 

ROM (4201) in order to read successive w-element sub-sets (b0, b-ι, b2, . . . , bw_-i) of the bit pattern 

vector (^-°).
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12. The electronic device of any of preceding Claims 1 to 4 wherein the bit pattern generator 

(3403) comprises a rank ROM (3801) configured to store information sufficient to obtain a rank 

vector (Rn)for each supported length of the bit pattern, ‘n’.

13. The electronic device of Claim 12 wherein the rank vector (R«) for a particular length of the 

bit pattern, ‘n’, comprises integers in a range of Ό’ to ‘n - T, permuted in an order that corresponds 

to a rank of each bit position.

14. The electronic device of Claim 13 wherein a rank indicates a maximum value for the number 

'k' (3804) out of ‘n’ bits in the bit pattern adopting the first binary value, for which a corresponding 

bit in the bit pattern vector (^·”) has the complementary binary value.

15. The electronic device of any of preceding Claims 12 to 14 wherein a length of the bit pattern 

n is used to index a second look-up table (3803), in order to identify the start address of each 

particular rank vector (®»).

16. The electronic device of any of preceding Claims 12 to 15 wherein the rank ROM (3801) 

comprises multiple multiplexed rank ROMs, wherein one multiplexed rank ROM is configured to 

store the rank vector (H®) corresponding to each supported value of the length of the bit pattern 

‘n’.

17. The electronic device of any of preceding Claims 15 to 16 wherein the bit pattern vector ( 

bfc*) is generated for a respective combination of the number, k (3804), of bits in the bit pattern 

adopting the first binary value and the length of the bit pattern ‘n’ using the bank of (w) comparators 

(3802) that is configured to compare each element of the rank vector (R®) with ‘k’ (3804).

18. The electronic device of Claim 17 wherein each comparison of the element of the rank vector 

(Rn) with ‘k’ (3804) is performed to determine whether the element is less than 'k' (3804).

19. The electronic device of any of preceding Claims 12 to 18 wherein all entries in the rank 

ROM (3801) are stored using fixed point numbers having a width of Iog2(nmax) bits, where nmax is a 

maximum of the supported bit pattern lengths.

20. The electronic device of any of preceding Claims 12 to 18 wherein all entries in the rank 

ROM (3801) for particular values of n are stored using fixed point numbers having a width of log2(n) 

bits.
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21. The electronic device of any of preceding Claims 12 to 20 wherein each address of the rank 

ROM (3801) is configured to store w fixed-point numbers.

22. The electronic device of Claim 21 wherein the rank ROM (3801), in cases where n < w, is 

configured to append the rank vector (®n) with w-n dummy elements, such that the rank vector ( 

R®>) occupies a width of a single address in the rank ROM (3801).

23. The electronic device of any of preceding Claims 12 to 22 wherein the rank ROM (3801) is 

operably coupled to the counter (c, 4203), such that during each successive sub-process of the bit 

pattern generation process, the counter (c, 4203) is configured to increment a counter value from 

Ό’ to ‘t-T wherein the counter value is used as an offset from a start address of the rank ROM 

(3801) in order to read successive w-element sub-sets of the rank vector (R®).

24. The electronic device of any of preceding Claims 12 to 23 wherein a bit pattern bit of the bit 

pattern vector b*'·’1 is obtained by representing both a rank value and k using a two’s complement 

fixed-point number representation, and the bit pattern generator circuit (3403) performs a twos 

complement subtraction of ‘k’ (3804) from the rank value and then uses a most significant bit, MSB, 

as a value of the bit pattern bit.

25. The electronic device of any of preceding Claims 12 to 24 wherein the rank ROM (3801) is 

configured to store a first half of each rank vector (Rn), when the bit pattern vectors (^·η) follow a 

symmetric property.

26. The electronic device of Claim 25 wherein the symmetric property is satisfied if any pair of 

elements in the rank vector (®«) having the indices * and « - ί - 1 sum to » - 1, for all » and 

fQr a|| i € JOj ® — 1]

27. The electronic device of any of preceding Claims 12 to 21 wherein the rank ROM (3801) 

comprises a width of ‘w’ ranks, such that only a first half of each rank vector (R®) is stored across 

| ιι/(2/γ I consecutive addresses, where n is a bit pattern length supported by the rank vector (R® 

)■

28. The electronic device of Claim 27 wherein, for n/2 < w, the rank vector (R-n) is appended 

with ‘w - n’ dummy elements and stored across a width of a single address in the rank ROM 

(3801).

29. The electronic device of Claim 27 or Claim 28 wherein, during a first half of successive 

operations of the bit pattern generation process when c < [«/('Ml , successive w-element sub
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sets of the rank vector (R«) are obtained from incremental addresses in the rank ROM 3801, 

where the offset from the start address of the rank ROM (3801) is given by c.

30. The electronic device of any of preceding Claims 27 to 29 further comprising a bank of w 

multiplexers (4003) operably coupled to the rank ROM (3801), wherein during a first half of 

successive operations of the bit pattern generation process the bank of w multiplexers (4003) 

maintain the order of the w pattern bits {b0, bq, b2, . . . , bw-ft.

31. The electronic device of any of preceding Claims 29 to 30 wherein a bit pattern bit of the bit 

pattern vector is obtained by representing both a rank value and k using a two’s complement 

fixed-point number representation, and the bit pattern generator circuit (3403) performs a 

subtraction of ‘k’ from the rank value and then uses a most significant bit, MSB, as a value of the bit 

pattern bit.

32. The electronic device of Claim 27 or Claim 28 further comprising a multiplexer (4004)

operably coupled to the rank ROM (3801), wherein during a second half of successive operations 

of the bit pattern generation process when e / I ·'. 1 *! , successive w-element sub-sets of the

rank vector (Rn) are obtained from decremental addresses in the rank ROM (3801) in a reverse 

order, where the offset from the start address of the rank ROM (3801) is given by the multiplexer 

(4004) and is derived from the counter value ‘c’ as (i". ~ e ~ 1 ’.

33. The electronic device of Claim 32 wherein the bit pattern vector (b*'·’») is generated for a 

respective combination of ‘k’ and ‘n’ using the bank of (w) comparators (3802) that is configured to 

compare each element of the rank vector (Rn) with ‘n-k’.

34. The electronic device of Claim 33 wherein each comparison of the element of the rank vector 

(Rn) with ‘n-k’ is performed to determine whether the element of the rank vector (Rn) is greater 

than or equal to ‘n - k’.

35. The electronic device of Claim 34 wherein each comparison of the element of the rank vector 

(Rn) with ‘n-k’ is performed to determine whether the element of the rank vector (R») is less than 

‘n - k’ and the result is passed through a NOT gate.

36. The electronic device of any of preceding Claims 32 to 35 wherein the bit pattern bit is 

obtained by representing both a rank value and n-k using a two’s complement fixed-point number 

representation, and the bit pattern generator circuit (3403) performs a subtraction of n-k from the 

rank value and then passes a most significant bit, MSB, of a result through a NOT gate.
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37. The electronic device of any of preceding Claims 32 to 36 further comprising a bank of w 

multiplexers (4003) operably coupled to the rank ROM (3801), wherein during a second half of 

successive operations of the bit pattern generation process the bank of w multiplexers (4003) 

reverse the order of the w pattern bits {b0, b·,, b2, . . . , bw-i}.

38. The electronic device of Claim 18 wherein elements of the rank vector (R»), for a particular 

value of the length of the bit pattern ‘n’ are stored in rank ROM (3801) in a native form or 

subtracted from ‘n - T and stored in rank ROM (3801) in a subtracted form.

39. The electronic device of Claim 38 wherein each comparison to determine if a rank of the 

rank vector (Rn) is less than 'k' is performed by using a comparator to determine if the rank in 

subtracted form is greater than or equal to 'n-k' and each comparison to determine if a rank of the 

rank vector (Rn) is greater than or equal to than 'n-k' is performed by using a comparator to 

determine if the rank in subtracted form is less than 'k'.

40. The electronic device of Claim 27 or Claim 28 wherein the bank of w comparators (3802) 

are used during both a first half of successive operations of the bit pattern generation process and 

a second half of successive operations of the bit pattern generation process.

41. The electronic device of Claim 40 wherein the bank of «? comparators (3802) is 

implemented using twos complement subtractions.

42. The electronic device of Claim 30 or Claim 31 further comprising:

a multiplexer (4001) operably coupled to the bank of w comparators (3802) and 

configured to select between ‘k’ or ‘n-k’ as an input to the bank of w comparators (3802); and

a bank of w NOT logic gates (4002) operably coupled to an output of the bank of w 

comparators (3802) and configured to invert an output of the comparators bank of «-■ 

comparators (3802).

43. The electronic device of Claim 42 further comprising a bank of w multiplexers (4003) 

operably coupled to the rank ROM (3801), wherein during a second half of successive operations 

of the bit pattern generation process the bank of w multiplexers (4003) reverse the order of the w 

pattern bits {b0, b·,, b2, . . . , bw-i}·

44. The electronic device of any of preceding Claims 1 to 4 wherein the bit pattern generator 

(3403) is configured to exploit a nested, recursive and arithmetic property of the bit patterns 

vectors.
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45. The electronic device of Claim 44, wherein a recursive circuit (4401) is used to convert a 

value of n-k into an index Qn(n-k) of a bit having an (n-k)th highest bit reliability.

46. The electronic device of Claim 45 wherein the recursive circuit (4401) is further configured to 

unpack compressed information, in order to obtain the index Qn(n - k).

47. The electronic device of any of preceding Claims 44 to 46 further comprising an arithmetic 

circuit (4402) operably coupled to a recursive circuit (4401) and configured to use an arithmetic 

property that is satisfied if a bit reliability metric can be obtained for each of the « bits in the bit 

pattern vector based only on its index in the range ‘0’ to - 1 ’ to convert the index (Qn(n - k)) of 

the bit having the (n - k)th rank into a bit reliability metric (^ (Qn(n - k))).

48. The electronic device of any of preceding Claims 43 to 47 wherein, in a Polarization Weight, 

PW, sequence, the recursive property of the bit pattern vector (^λ) is used to determine 

relationships between bits in the kernal information block (105).

49. The electronic device of Claim 48 wherein, the bit pattern generator circuit (3403) 

determines:

(i) in response to the recursive property of the bit pattern vector (^^) being a frozen bit, 

that other selected bits will also be frozen bits; or

(ii) in response to the recursive property of the bit pattern vector being an 

information bit, that other selected bits will also be information bits.

50. The electronic device of Claim 48 wherein, in response to the bit pattern generator circuit 

(3403) determining that a relationship between bits in the kernal information block (105) exists, the 

bit pattern generator circuit (3403) is configured to disable at least one arithmetic circuit (4402).

51. The electronic device of Claim 46 further comprising a register (4403) operably coupled to 

the arithmetic circuit (4402) and configured to store the bit reliability metric (fJ (Qn(n - k))) that is 

used in the process of generating the bit pattern vector .

52. The electronic device of any of preceding Claims 44 to 51 further comprising a multiplier 

(4404) and a bank of w - 1 adders (4405) operably coupled to the counter (c, 4203), wherein, 

during each successive performance of the bit pattern generation process over a series (

t = | o <<·, ) of dock cycles, the counter is configured to increment a counter value, c, from 0 to t - 
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1 to obtain bit indices {cw, cw + 1, cw + 2, . . . , cw + w - 1} for successive w-element sub-sets (b0, 

b-ι, b2, . . . , tv-i) of the bit pattern vector ^k·".

53. The electronic device of Claim 43 to 52 further comprising a bank (4406) of ‘w’ replicas of the 

arithmetic circuit (4402) that is configured to compute a corresponding sequence of bit reliabilities, 

β [cw], $ [cw + 1], $ [cw + 2], . . . , $ [cw + w - 1],

54. The electronic device of Claim 53, wherein the bank of (w) comparators (3802, 4407) is 

configured to compare the computed corresponding bit reliabilities

■ ' ■ .' ' ' ‘ -· with the bit reliability metric ( ■'?■■■' '), inorder

to obtain the corresponding «’ elements of the bit pattern vector n by determining whether the 

corresponding bit reliabilities { -hni' *■ 13 •’’pr < 2j.. ...τ[<7ί' i~ <*' are greater than or 

equal to .

55. The electronic device of any of preceding Claims 1 to 5 further comprising a bank of ‘w’ 

reverse modules (4103) operably coupled via the multiplier (4404) and the bank of w - 1 adders 

(4405) to the counter, (c, 4203) and configured to reverse an order of bits in a log2(n)-bit binary 

representation of each bit index, in order to produce reversed bit indices.

56. The electronic device of any of preceding Claims 53 to 55 further comprising a bank of w 

comparators (4104) operably coupled bank of ‘w’ reverse modules (4103) and configured to 

compare either the bit indices or the reversed bit indices with either ‘k’ or ‘n - k’.

57. The electronic device of Claim 56 wherein, in response to the polar coder implementing a 

shortening scheme, the bank of w comparators (4104) is configured to set bit pattern bits {b0, b-i, 

b2, . . . , bw-fl to the first binary value if the corresponding bit indices or reversed bit indices are less 

than ‘k’ and other bits to the complementary binary value.

58. The electronic device of Claim 56 wherein the bank of w comparators (3802) is configured 

to set bit pattern bits {b0, b·,, b2, . . . , bw_-i} to the first binary value if the corresponding bit indices or 

reversed bit indices are greater than or equal to ‘n-k’ in a puncturing scheme and other bits to the 

complementary binary value.

59. The electronic device of any of preceding Claims 1 to 5 wherein frozen bit insertion or frozen 

bit removal within the polar coding is performed by the electronic device and comprises at least two 

sub-processes and the bit pattern generator (3403) is configured to provide the successive sub-set 
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of (w) bits (4204) from the bit pattern vector (^k®) in each successive * = clock cycle that 

spans a duration of a second sub-process that is preceded by a first sub-process that spans a 

series of zero or more clock cycles.

60. The electronic device of Claim 59 further comprising a first logic circuit arranged to provide 

during the first sub-process a reliability threshold, k (3804), to an input of the bit pattern generator 

(3403) for use in the second sub-process.

61. The electronic device of any of preceding Claims 59 to 60 wherein the electronic device is 

configured to support at least two modes of operation, where a respective mode of operation is 

employed in response to whether a number, M, of encoded bits is less than a kernal block size, N.

62. The electronic device of Claim 61 wherein the at least two modes of operation comprise at 

least two from: a repetition mode of operation when M is not less than N, a shortening mode of 

operation when Μ < N, a puncturing mode of operation when Μ < N.

63. The electronic device of any of preceding Claims 60 to 62 wherein the first sub-process has 

zero clock cycles, and the second sub-process is performed when M is not less than N, and the 

threshold reliability number, k, is set to a number of K bits that adopt the first binary value in a final 

output bit sequence (3409).

64. The electronic device of Claim 62 or Claim 63 further comprising a controller operably 

coupled to a second counter arranged to count a number of clock cycles under control of the 

controller in the first sub-process when M is less than N, and the first sub-process determines the 

rank threshold, k, that indicates a number of bits having a first binary value contained in an 

intermediate value for the bit pattern vector (^k®) (4204) output by the bit pattern generator circuit 

(3403).

65. The electronic device of Claim 64 further comprising a second logic circuit (4211) configured 

to successively perform a binary flag generation process over the series Q = FwM ) of clock 

cycles that comprise the second sub-process and configured to provide a successive sub-set of (w) 

binary flags in each successive f ' clock cycle.

66. The electronic device of Claim 65 wherein a binary flag is set in the binary flag generation 

process if a corresponding bit in the bit pattern vector (^k®) is not frozen by rate matching.

67. The electronic device of any of preceding Claims 64 to 66 further comprising a third logic 

circuit (4212) configured to receive at least a first input from the second logic circuit (4211) and a 
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second input from the bit pattern generator circuit (3403) wherein the third logic circuit is configured 

to provide an output (3409) of a first binary value when a bit in the subset of w bits of the 

intermediate bit pattern vector (^k»n) (4204) from the bit pattern generator circuit (3403) adopts the 

first binary value and a corresponding flag from the plurality of binary flags from the second logic 

circuit is set, thereby adjusting a bit pattern vector (^k-n) of the intermediate bit pattern based on 

the at least first and second inputs.

68. The electronic device of any of preceding Claims 60 to 67 wherein the first logic circuit is 

arranged to identify the reliability threshold, k, for use in the second sub-process by determining 

whether each uncoded bit is frozen by rate matching and the first logic circuit comprises a non

frozen bit counter arranged to count a number of uncoded bits that are not frozen by rate matching 

in order of decreasing reliability during the first sub-process, and once the count reaches the 

number of final value bits in a final output bit sequence, K, whereupon the rank of the Kth most 

reliable unfrozen bit is determined as the rank threshold, k (3804), and the first logic circuit provides 

the rank threshold k (3804) as an input to the bit pattern generator (3403).

69. The electronic device of any of preceding Claims 59 to 68 wherein the electronic device 

further comprises at least one of:

a set of reversed sequence read only memories, ROMs, (4202) located in the first logic 

circuit configured to store sets of reversed sequences where each successive element of the 

reversed sequence indicates a position of each successive uncoded bit arranged in order of 

decreasing reliability;

a set of deinterleaver ROMs (4203) located in the first logic circuit configured to store a set 

of deinterleaver patterns, where each element of the deinterleaver pattern indicates an interleaved 

position of a polar encoded bit during rate matching;

a set of interleaved sequence ROMs (4204) located in the first logic circuit configured to 

store a set of interleaved sequences;

a second counter (c1 4206), incremented in successive clock cycles of the first sub

process, wherein successive addresses of a reversed sequence ROM and successive addresses 

of an interleaved sequence ROM, corresponding to a particular value of N are indexed;

a rank ROM (3801) located in the bit pattern generator (3403) configured to store 

information sufficient to obtain a rank vector (R») for each supported length of the bit pattern, ‘ri

a first set of functional logic, f1 (4207), located in the first logic circuit and configured to 

obtain a set of binary flags based on received successive sets of elements read from the set of 

reversed sequence ROMs and the set of interleaved sequence ROMs in each successive clock 

cycle; and



WO 2019/011555 PCT/EP2018/065554
-56-

an accumulator logic circuit (4208) located in the first logic circuit and configured to receive 

and count the set of binary flags up to a number, K, of uncoded bits that are not frozen by rate 

matching in a final output bit sequence, and the threshold reliability number, k (3804), is set to 

complete the first sub-process.

70. The electronic device of any of preceding Claims 59 to 69 wherein the logic circuit is 

configured to identify a frozen bit as the complementary binary value in the bit pattern vector (^k·®) 

and identify using the first binary value in the bit pattern vector (^k·») a bit that comprises one from 

a group of: an information bit, a cyclic redundancy check, CRC, bit, a parity-check frozen bit, a user 

equipment identifier, UE-ID, bit, a hash bit.

71. The electronic device of any preceding claim wherein the electronic device comprises at 

least one of: a transmitter comprising an encoder configured to perform the bit pattern generation 

process, a receiver comprising a decoder configured to perform the bit pattern generation process.

72. An integrated circuit (3408) for an electronic device configured to perform polar coding, the 

integrated circuit comprising:

a bit pattern generator (3403) configured to successively perform a bit pattern generation 

process over a series (^ = ) of clock cycles; and

a counter (c, 4203), operably coupled to the bit pattern generator (3403) and configured to 

count a number of successive bit pattern generation sub-processes over the series (^ I".'"': ) of 

clock cycles,

wherein the integrated circuit (3408) is characterised in that the bit pattern generator (3403) is 

configured to:

provide a successive sub-set of (w) bits from a bit pattern vector in each successive 

' ' clock cycle; where the bit pattern vector comprises n bits, of which‘k’bits adopt a first

binary value and n-k bits adopt a complementary binary value.

73. A method of polar coding, wherein the method comprises:

successively performing a bit pattern generation process over a series (* = Γη/®] ) of clock 

cycles by a bit pattern generator (3403); and

counting a number of successive bit pattern generation sub-processes over the series (

i - |m rri ) of clock cycles,

wherein the method is characterised by:
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providing a successive sub-set of (w) bits from a bit pattern vector (bfc.n) jn each successive 

1 * i0-f,r i clock cycle; where the bit pattern vector comprises ‘ri bits, of which ‘k’ bits adopt a first 

binary value and n-k bits adopt a complementary binary value.

74. A non-transitory tangible computer program product comprising executable code stored 

therein for polar encoding, wherein the code is characterised in that it is operable for, when 

executed at a bit pattern generator (3403):

successively performing a bit pattern generation process over a series (* = ) of clock

cycles by a bit pattern generator (3403); and

counting a number of successive bit pattern generation sub-processes over the series ( 

/ |n/F" ) of clock cycles,

providing a successive sub-set of (w) bits from a bit pattern vector (^k-n) in each successive 

t [»/«'■ c|ock cycle; where the bit pattern vector comprises ‘ri bits, of which ‘k’ bits adopt a first 

binary value and n-k bits adopt a complementary binary value.
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step ROM shifter input Pi Ci insert input output buffer

0 0101 4321000 2 0 3 0004321 0201 043

1 1011 8765043 3 2 1 0876543 5043 876

2 0110 xxxx876 2 3 0 0000876 0760 008

3 1100 0009008 2 1 2 0000098 9800 000

3600
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k n bit pattern vector b k ,n

1 2 01

1 4 0001

2 4 0011

3 4 0111

1 8 00000001

2 8 00000011

3 8 00000111

4 8 00010111

5 8 00011111

6 8 00111111

7 8 01111111

1 16 0000000000000001

2 16 0000000000000011

3 16 0000000000000111

4 16 0000000000010111

5 16 0000000100010111

6 16 0000000100011111

7 16 0000000100111111

8 16 0000000101111111

9 16 0000001101111111

10 16 0000011101111111

11 16 0001011101111111

12 16 0001011111111111

13 16 0001111111111111

14 16 0011111111111111

15 16 0111111111111111
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FIG. 8
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n rank vector Rn

2 [10]

4 [3210]

8 [76 5 34 21 0]

16 [15 14 13 1012 9 8411 7 6 3 52 1 0]

32 [31 30 29 25 28 24 23 16 27 22 21 14 19 13 11 5 26 20 18 12 17 109415 8736210]
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FIG. 9
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address c
index /

6 70 1 2 3 4 5
0 63 62 61 59 55 47 31 60
1 58 57 54 53 46 51 45 30
2 43 29 39 27 56 23 52 15
3 50 44 49 42 28 41 38 22
4 25 37 26 35 21 14 48 13
5 19 40 11 7 36 24 34 20
6 33 12 18 10 17 6 9 5
7 3 32 16 8 4 2 1 0

4300

FIG. 17

address c
index /

6 70 1 2 3 4 5
0 63 62 61 59 57 47 45 60
1 58 55 56 53 46 51 43 44
2 39 41 31 37 54 29 52 15
3 50 42 49 38 40 35 30 28
4 33 27 36 23 25 14 48 13
5 21 34 11 9 26 32 22 24
6 19 12 20 10 17 8 7 5
7 3 18 16 6 4 2 1 0

4400

FIG. 18

^4500

address c
index /
0 1 2 3

0 0 1 2 3
1 4 5 8 9
2 6 7 10 11
3 12 13 14 15
4 16 17 20 21
5 24 25 28 29
6 32 33 36 37
7 40 41 44 45
8 18 19 22 23
9 26 27 30 31
10 34 35 38 39
11 42 43 46 47
12 48 49 50 51
13 52 53 56 57
14 54 55 58 59
15 60 61 62 63 FIG. 19
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address c
index /
0 1 2 3

0 63 62 61 56
1 60 55 53 43
2 59 54 51 42
3 49 39 37 23
4 58 52 50 40
5 47 36 31 21
6 45 32 34 19
7 28 17 15 6
8 57 48 46 35
9 44 33 30 18
10 41 29 27 16
11 25 14 12 5
12 38 26 24 13
13 22 11 10 4
14 20 9 8 3
15 7 2 1 0
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FIG. 20
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FIG. 21
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Use K and M to determine N

4703
4700

4705
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continued
on sheet 20

4707 Read 0] to Q^[ch wQ - 1 ] 
from address Ci of reversed sequence ROM for N

4708 Read [CiQ] to Qfi [c1; wQ -1 ]
from address q of interleaved sequence ROM for/V

4710

4709

4713

4714
false

true

4716

4715

true

false
c2 = K

4711 4712
false

4706

k t-c^WQ +/ + 1

true
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I = Wq - 1

471
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FIG. 21 continued 4700
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clock 
cycle c3

bit pattern
b4 [0] b4U] b4 [2] b4[3]

0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 1
4 Q 0 0 0
5 0 0 1 1
6 0 0 0 1
7 1 1 1 1
8 0 0 0 0
9 0 0 1 1
10 0 1 1 1
11 1 1 1 1
12 0 1 1 1
13 1 1 1 1
14 1 1 1 1
15 1 1 1 1

^4800

FIG. 22

^4900

clock 
cycle c3

bit pattern
b4[0] b4[1] b4[2] b4 [3]

Q 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 1 1 1
4 0 0 0 0
5 0 1 1 1
6 0 1 1 1
7 1 1 1 1
8 0 0 0 1
9 0 1 1 1
10 0 1 1 1
11 1 1 1 1
12 1 1 1 1
13 1 1 0 0
14 1 1 0 0
15 0 0 0 0 FIG. 23
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^5000

clock
cycle c3

bit pattern
b4[0] b4m b4[2] b4[3]

0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 1
6 0 0 0 1
7 0 1 1 1
8 0 0 Q 0
9 0 0 0 1
10 0 0 Q 1
11 0 1 1 1
12 0 0 1 1
13 1 1 1 1
14 1 1 1 1
15 1 1 1 1

FIG. 24
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