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Abstract. We explore the competitive influence maximisation problem
in the voter model. We extend past work by modelling real-world set-
tings where the strength of influence changes nonlinearly with external
allocations to the network. We use this approach to identify two distinct
regimes — one where optimal intervention strategies offer significant gain
in outcomes, and the other where they yield no gains. The two regimes
also vary in their sensitivity to budget availability, and we find that in
some cases, even a tenfold increase in the budget only marginally im-
proves the outcome of an intervention in a population.
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1 Introduction

Our interactions with our peers often impact our personal choices, behaviours
and opinions. Social networks have therefore attracted considerable attention
as a medium to control collective behaviours in populations through external
interventions [17]. A key challenge in this aspect is to determine the optimal al-
location of external influence on the network that can maximise the outcome of
an intervention in a population. The influence maximisation approach addresses
this problem by exploiting interpersonal ties in a social network, to maximise
the adoption of an innovation or a behaviour in a population [11]. It is typically
framed as an optimisation problem that identifies the most influential individ-
uals in a network who can maximise the spread of a desired behaviour in the

⋆ This research was sponsored by the U.S. Army Research Laboratory and the U.K.
Ministry of Defence under Agreement Number W911NF-16-3-0001. The views and
conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of
the U.S. Army Research Laboratory, the U.S. Government, the U.K. Ministry of
Defence or the U.K. Government. The U.S. and U.K. Governments are authorized
to reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation hereon. The authors would like to thank Dr. Markus Brede for
the insightful discussions. The authors acknowledge the use of the IRIDIS High Per-
formance Computing Facility at the University of Southampton for the completion
of this work.



2 S. Chakraborty et al.

rest of the population. In the past, influence maximisation has been categori-
cally studied using diffusion models [11]. While these models aptly describe how
decisions and behaviours virally spread in social systems, their representation
of individual states reflect long-term commitments such as buying a car. The
one-off, immutable nature of individual states in these models make them un-
suitable for studying settings where individual choices (or opinions) are transient
and free of abiding commitments [13]. In contrast, dynamical models are used to
study instances where individuals frequently change their states as they interact
with their social neighbourhood, and thus is a more appropriate model when
studying behaviour and opinion dynamics in social networks1.

In this paper, we consider a dynamical model known as the voter model to
capture influence flow in a population [5,9]. This paradigmatic model is charac-
terised by its simple but effective approach to study reality-based social dynam-
ics [16]. The voter model has attracted considerable attention within influence
maximisation research [12,23]. Most of this work however, mimics the traditional
setting where a limited budget is used to convert (“seed” or activate) a small
number of individuals who subsequently influence the rest of the population.
Such an approach focuses on identifying the most influential individuals in the
network and abstracts all other information about how the intervention budget
(e.g. marketing budget) should be used. In the real world, influence maximisation
efforts are typically led with resources such as time and money, and a strategy
detailing the optimal distribution of these resources would be a useful result.
With this in mind, we assume continuous allocations of resources (e.g. time and
money) on the network, where individuals are targeted with varying intensities
based on their importance in the influence spread process. We focus on studying
the influence maximisation problem in competitive settings, as dynamics in the
voter model either converge to an ordered consensus, or reach a fragmented state
at equilibrium [2], and consensus is rarely ever achieved in the real world.

It is important to note that when considering traditional methods, the in-
tervention budget constrains the number of nodes “seeded” at the start of the
dynamics. In the continuous approach however, resources are spread heteroge-
neously over the network and thus an explicit relationship between the amount
of resources allocated to a node and the strength of influence experienced by
them needs to be defined. Past work in this area has strictly assumed this re-
lationship to be linear [4,18], i.e. the amount of allocated resources is directly
proportional to the strength of influence experienced by the node. However, this
assumption may not consistently apply to all real-world settings. For instance,
some interventions take longer to be understood or adopted (e.g. adoption of
green technologies), and hence require more resources [6]. Similarly, studies from
marketing research show that more resources is not always better, and that the
duration and complexity of advertisements often have a diminishing returns ef-
fect on customer engagement and interest [7]. With this in mind, here we present
a novel model that considers nonlinear relationships between the strength of in-
fluence and external allocations. So far nonlinearity has only been considered in

1 For a comprehensive review see [2].
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the spread dynamics by introducing noise such as in the q-voter model [3] or by
adding contrarians to the network [20], and to the best of our knowledge, it has
never been studied in terms of allocations to the network.

2 Model

We consider a population of N individuals, connected via a social network. The
structure of the network is given by a graph G(V,E), where vertices V represent
individuals and edges E the relationships between them. Any vertex i ∈ V =
{1, 2, . . . , N} is connected to other individuals in the network {j ∈ V ; j ̸= i}
through a subset of E. Edges between individuals are indicated using weights
wij . Here we consider unweighted and undirected graphs, where binary weights
are used to capture the structure of the network, such that wij = 1, if i and j
have an edge between them, else wij = 0. Additionally, W here is symmetric as
we consider undirected graphs.

We explore a setting where two controllers (A and B) compete to maximise
their influence (or opinions) in the population. At any given point in time, in-
dividuals in the network strictly adhere to one of two opinions (A or B), corre-
sponding to each controller. Opinions are characterised using binary state vari-
ables σA,i(t) ∈ {0, 1}, where σA,i(t) = 1 implies node i is in state A, or in
state B (σA,i(t) = 0) at time t. From here, it follows that σB,i(t) = 1− σA,i(t).
Controllers maximise their opinion shares in the population by influencing the
network externally. Here we assume a nonlinear relation between allocations and
the strength of influence experienced by the node. For any node i, external influ-
ence from controllers A and B are pA,i and pB,i, when pγA,i and pγB,i amount of
resources are allocated to it. Influence over the entire network is described using
non-negative vectors, pA ∈ RN

+ and pB ∈ RN
+ which are nonlinearly constrained

by controller budgets BA and BB , as
∑

i p
γ
A,i = BA and

∑
i p

γ
B,i = BB .

Nodes update their opinions using voter dynamics [9], at every time step, a
node is selected uniformly at random to update their opinion state where they
copy the state of a neighbouring node j with the probability wji/(

∑
j∈Ni

wji +
pA,i + pB,i) where Ni is the immediate social neighbourhood of i, or copy the
state of an external controller (say A) with the probability pA,i/(

∑
j∈N wji +

pA,i + pB,i). As opinions are stochastic, we approximate the global behaviour in
the system by assuming that xA,i is the probability a node i is in state σA,i = 1,
which gives us the rate at which it chooses to remain in opinion state A as,

dxA,i

dt
= (1− xA,i)

∑
j wjixA,j + pA,i∑

j wji + pA,i + pB,i
− xA,i

∑
j wji(1− xA,j) + pB,i∑

j wji + pA,i + pB,i
. (1)

Here the terms
∑

j wjixA,j+pA,i∑
j wji+pA,i+pB,i

and
∑

j wji(1−xA,j)+pB,i∑
j wji+pA,i+pB,i

quantify the total

influence a node i experiences from their immediate neighbourhood and from
external controllers in favour of opinions A and B respectively. We estimate
the global behaviour of the population by estimating the total share of opinions
obtained by each controller at equilibrium. We determine steady-state conditions
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by setting
duA,i

dt = 0 in Eq. (1), which for an arbitrary network of size N yields
[L + diag(pA + pB)]xA = pA, where L is the Laplacian of the network given
by a N × N matrix with diagonal elements representing the total strength of
all edges on a node (Lii =

∑
j wji) and off-diagonal elements are Lij = −wij .

The total vote-share obtained by controller A at equilibrium is then given by
XA = 1

N 1⃗TxA = 1
N 1⃗T [L + diag(pA + pB)]

−1pA, which can be used to present
the formal optimisation problem as,

p∗A = argmax
pA∈P

X∗
A(L, pB), (2)

where P is a set of all possible allocations pA such that
N∑
i=1

pγA,i = BA.
2

3 Methods

We now propose approaches to solve the optimisation problem given in Eq. (2).
Depending on the value of γ, the constraint space changes yielding the following
two settings: (i) when γ > 1, we observe diminishing returns in terms of the
strength of influence experienced by nodes as allocations are increased, and (ii)
when 0 < γ < 1, we find that individuals take longer (or more resources) to
respond to external influence and hence illustrates a delayed influence effect.
Below we present numerical approaches for each case.

3.1 Numerical methods

Case γ > 1: We first consider the diminishing returns instance where γ > 1.
The strength of influence experienced by a node is given by the γ-th root of
allocated resources pγA,i and thus the norm of the allocation vector is constrained

by B
1/γ
A , implying that the constraint set here is convex in nature. Given that

the vote-share XA is a concave function of allocations pA [18], the problem we
have at hand is therefore a convex optimisation problem. A common approach
taken to solve this type of constrained optimisation problem uses the Lagrange
method where the objective function is maximised by iteratively stepping in the
optimal direction, within the constraint space. To employ this method in our
work we follow the approach discussed in [21] which yields the optimal direction
as,

pA,i(t+ 1)← pA,i(t) + η
∇pA(t)XA,i(t)

pγ−2
A,i (t)

, (3)

2 The total vote-share is a function of the network structure L, competitor allocations
pB and controller allocations pA. The maximum vote-share X∗

A is achieved by the
optimal allocation vector p∗A.
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where η is the step-length and ∇pA(t)XA,i(t) is the gradient of the vote-share
function wrt to allocations3. To solve the optimisation problem we first initialise
a random, feasible allocation vector which then uses Eq. (3) to iteratively update
allocations until the total vote-share can no longer be improved, or alternatively
we obtain a µ−approximation of the optimal allocation configuration. Note that
the allocation vector is also normalised by scaling the entries in pA at every time
step to satisfy the budget constraint

∑
i p

γ
A,i = BA. The step-length is adjusted

using back-tracking4 to ensure convergence, and given that the problem at hand
is a convex optimisation problem, the algorithm is guaranteed to converge to the
global maximum.

Case 0 < γ < 1: Next, we consider the delayed influence setting where
0 < γ < 1. The constraint set in this case is clearly nonconvex, and hence
the Lagrange method cannot be employed here. In general, nonconvex optimi-
sation problems are difficult to solve. In some cases however, the structure of
the objective function and the constraint function can be exploited to design
polynomial-time algorithms that yield near-optimal solutions [10]. Given that
our objective function here is similar to the one shown in [18] and the constraint
space is in the shape of an ℓp−norm ball where 0 < p < 1, we employ the
projected gradient ascent algorithm proposed in [18], and modify the projec-
tion step to meet the nonlinear budget constraint considered in our work. For
the projection method, we use the IRBP algorithm5 which is an instance of a
majorisation-minimisation algorithm, where the algorithm iteratively alternates
between a majorisation step and a minimisation step6 until it converges [22].
As this is a nonconvex problem, we do not have any theoretical guarantees of
reaching the optimal solution, and therefore we run the algorithm for multiple
initialisations of the allocation vector and consider the mean result obtained over
all simulations.

4 Results

We now use the above approaches to study the problem in synthetic and real
world networks. We also present analytical approaches in synthetic networks to
provide benchmarks for our numerical results.

4.1 Analytical benchmark

First we propose an analytical method to determine optimal allocations. An-
alytical methods typically apply to simplified network structures, and here we

3 Given by ∇pAXA = 1
N
1⃗T [L+ diag(pA + pB)]

−1(I − diag(xA)).
4 When XA(t+1) < XA(t), the solution pA(t+1) at time step (t+1) is rejected and

the allocation vector is optimised again with an updated step-length η(t+1) = η(t)
2

.
5 See https://github.com/Optimizater/Lp-ball-Projection for more details.
6 The majorisation step relaxes and linearises the ℓp ball to obtain a weighted ℓ1 ball,
and the minimisation step obtains the projection of the point on the ℓ1 ball.

https://github.com/Optimizater/Lp-ball-Projection
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consider the core-periphery network which has a core of highly connected nodes
and other sparsely connected peripheral nodes. The bimodal degree-distribution
resembles many real-world leader-follower type networks, and the simplified net-
work structure limits the degrees of freedom which allows us to apply analytical
methods to the problem at hand. We employ a degree-based mean-field approxi-
mation to determine optimal allocations analytically. The approximation method
assumes that nodes with the same degrees have similar behaviours. Nodes are
grouped based on their degrees, and the behaviour of the population is approx-
imated by averaging over the behaviours of each group of nodes. Although such
an approximation is not always effective, it has been observed to work well in
networks where there are no degree correlations [15]. We obtain a degree-based
mean-field approximation by following the approach taken in [18], and modifying
it to reflect our budget constraint as follows,

XMF =

(∑
k

Pkk

k+a
1
γ
k +b

1
γ
k

)(∑
k

Pkka
1
γ
k

k+a
1
γ
k +b

1
γ
k

)
∑

k
Pkk(a

1
γ
k +b

1
γ
k )

k+a
1
γ
k +b

1
γ
k

+
∑
k

Pka
1
γ

k

k + a
1
γ

k + b
1
γ

k

. (4)

Here Pk is the degree-distribution of the network and k is the degree of nodes
in the network. Additionally, bk is the competitor’s allocation to the group of
nodes with degree k and ak is the controller’s allocation to the same group of
nodes. The influence experienced by nodes with degree k from both controllers

are a
1/γ
k and b

1/γ
k , and are uniform across all nodes in a given group. We can now

use Eq. (4) to determine the optimal allocation patterns in any large, arbitrary
core-periphery network structure.

4.2 Core-periphery network

Core-periphery networks of size N = 1000 are considered, with a core formed by
P1 = pr = 0.25 (or 25% of the total nodes in the network). Nodes in the highly
clustered core have a degree of k1 = 30 and the sparsely connected peripheral
nodes have degree k2 = 3. We examine two settings, one where the competitor
targets the core and another where they target the peripheral nodes.

Competitor allocations to the core: We first consider the instance where B
targets the hub nodes. The competitor budget is distributed uniformly across all
nodes in the core of the network. Assuming ϵA is the fraction of the total budget
allocated to hub nodes by controller A, we obtain an expression for total vote-
share using Eq. (4), and use semi-analytical methods to determine the optimal
allocation ϵ∗A that maximise the total vote-shares. We also use the computational
methods described in Section 3.1 to determine optimal allocations numerically.
For numerical results, we consider 10 instances of core-periphery networks, each
of size N = 1000, pr = 0.25, k1 = 30 and k2 = 3. Networks are generated using
the configuration model [14]. We consider three budget scenarios: (i) insufficient
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budget BA/BB = 0.1, (ii) equal budget BA/BB = 1 and finally (iii) excess
budget BA/BB = 10. In each case, BB = N .

Fig. 1a illustrates the fraction of total resources allocated to the hub nodes
in the network, as γ is varied. Fig. 1b shows the corresponding vote-shares ob-
tained by the controller. We find a stark contrast in optimal allocations and
vote-shares between the two regimes: (i) 0 < γ < 1 and (ii) γ > 1. We find that
allocation strategies are highly sensitive to controller budgets when allocations
have a delayed effect on influence i.e. 0 < γ < 1. Whereas when allocations
yield diminishing returns on influence (γ > 1), optimal strategies do not change
significantly even when budgets differ considerably. A similar phenomenon is
also reflected in Fig. 1b, where controller budgets significantly affect vote-shares
when 0 < γ < 1, and have significantly less effect on vote-shares when γ ≫ 1.
Observe that the linear case, γ = 1, clearly acts the transition point between the
two regimes. Taking a closer look at the region where 0 < γ < 1, we find that
optimal allocations oscillate between discrete and continuous configurations (i.e.
hub nodes are exclusively targeted or entirely avoided) particularly for limited
budget. These fluctuations are more abrupt in analytical results, which maybe
due to the all-or-none strategy adopted in the mean-field approximation, i.e. all
nodes with the same degree are uniformly targeted in the analytical approach.
This assumption also results in discrepancies between the analytical and the
numerical results. For instance, when BA/BB = 0.1 we find that while the an-
alytical solution opts for a discrete strategy (targets only the hub nodes) when
0.3 ≤ γ ≤ 0.5, the numerical solution does not allocate any resources to the
hub nodes in these settings and only targets a fraction of the peripheral nodes.
Whereas from Fig. 1b we find that the numerical method yields higher vote-
shares than the analytical results in this region, thus highlighting the limita-
tions of the mean-field approximation in such instances. Finally, we also observe
inconsistencies in Fig. 1a for very high values of γ, i.e. γ > 4 likely caused by
numerical instabilities [1].

Competitor allocations to the periphery: We now consider the instance
where competitor B targets the periphery, and we illustrate our results in Fig. 1.
Once again, we find that controller budgets heavily impact optimal allocations
and vote-shares in the region where 0 < γ < 1. The variation in optimal alloca-
tions decreases as γ crosses over into the region where γ ≥ 1. We also find that,
for the most part numerical results closely replicate analytical results, with some
exceptions. As before, numerical inconsistencies are observed when γ > 4. We
also observe discrepancies between the analytical and the numerical results in
the region 0.4 ≤ γ ≤ 0.6, and argue that such disparities exist as allocations are
artificially constrained in the analytical method, whereas numerical approaches
are more flexible, thus yielding higher vote-shares.

4.3 Real-world collaboration network

Next, to explore how these results apply to the real world, we explore a col-
laboration network among network scientists consisting of N = 379 scientists
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Fig. 1: Figure showing analytical and numerical results for optimal configurations
of allocations in a core-periphery network of size N = 1000 and average degree
⟨k⟩ = 9.75. Hub nodes here have degree k1 = 30 while peripheral nodes have
degree k2 = 3. The top panel ((a) and (b)) shows results against competitor
allocations to the hub nodes. Figure (a) shows the optimal fraction ϵ∗A of the total
budget allocated to hub nodes as γ is varied. Figure (b) shows the corresponding
optimal vote-shares X∗

A obtained by the controller. The bottom panel ((c) and
(d)) shows results against competitor allocations to the periphery. Figure (c)
shows optimal allocations ϵ∗A to the hub nodes while (d) shows the corresponding
vote-shares. Numerical results obtained are a µ−approximation of the optimal
solutions where µ = 10−10. Results are averaged over 100 simulations, where
algorithms for both the convex and nonconvex optimisation problem are run 10
times with random initialisations of pA (and η(0) = 1) on 10 realisations of core-
periphery networks. Errorbars show the 95% confidence intervals. The result for
γ = 0.1 and BA = 10N is missing due to runtime errors caused by numerical
overflows.
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connected through coauthorship of papers [19,8]. Given that both competitor
allocation settings yield similar results in synthetic networks, here for the sake
of brevity we focus on the instance where B targets hub nodes. Identifying hub
nodes in a heterogeneous network is not a straight-forward process. Here for
simplicity, we use the degree centrality measure to distinguish between hubs and
peripheral nodes. Given that the average degree of the network is ⟨k⟩ = 4.8,
we assume nodes with degrees above k > 5 are hubs, and those with k ≤ 5
form the periphery of the network. We find that this method classifies nearly
30% of the network as hubs and the rest as the periphery. Since it is infea-
sible to apply analytical methods to highly heterogeneous network structures,
here we rely on numerical approaches to determine optimal allocations. Optimal
allocations are determined as the nonlinearity constraint of the allocation vec-
tor changes between 0.1 ≤ γ ≤ 10 and the controller budget is varied between
0.1 ≤ BA/BB ≤ 10, where BB = N . Results are averaged over 10 simulations,
and shown in Fig. 2.
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Fig. 2: Figure showing optimal allocations and vote-shares in a real-world net-
work depicting collaborations among network scientists (N = 379 and average
degree ⟨k⟩ = 4.8). Here the competitor B targets hubs nodes. Figure (a) illus-
trates the optimal fraction of total budget that is allocated to the hub nodes,
and Figure (b) shows the corresponding optimal vote-shares for varying γ and
BA. Numerical results obtained are a µ−approximation of the optimal solutions
where µ = 10−10. Results are averaged over 10 simulations, where algorithms
for both the convex and nonconvex optimisation problems are run 10 times with
random initialisations of pA and η(0) = 1. The missing values for γ = 0.1 and
BA = 10N across the heatmaps are due to numerical overflows.

Fig. 2a illustrates the optimal fraction of the total budget allocated to the
hub nodes when the competitor targets the hubs. Here too we observe that op-
timal allocation patterns are highly sensitive to change in budget conditions in
the region 0 < γ < 1, whereas optimal allocation patterns are more uniform
when γ > 1. Furthermore, we observe that under low budget conditions, op-
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timal allocation configurations allocate less resources to nodes targeted by the
competitor and focus more resources on nodes avoided by the competitor. As the
budget increases BA > N , we find that more resources are allocated to the nodes
targeted by the competitor. Fig. 2b illustrates the optimal vote-shares obtained
in this instance. Similar to results in Section 4.2, we find that vote-shares vary
significantly with budgets when 0 < γ < 1, but not as much when γ ≥ 1.

So far we have observed patterns of optimal allocations in settings with
nonlinear budget constraints. We now examine how much vote-share a con-
troller gains from optimally targeting a network as opposed to employing a
näıve strategy. For comparison, we consider two simple heuristics: (i) the degree-
based approach and (ii) uniform allocation. We consider the collaboration net-
work among network scientists for our simulations. We vary γ and BA, and in
each instance determine the optimal allocation and vote-shares numerically. For
comparison, we define the allocation vector for the degree-based approach as
pA,i ∝ ki, where ki is the degree of a node i, normalised to meet the budget
constraint. Additionally, the allocation vector for uniform allocation is given by
pA,i = (BA/N)1/γ , 1 ≤ i ≤ N . The corresponding vote-shares are determined

for each instance as Xdeg
A and Xuni

A respectively. Gain in vote-shares is then

measured as [X∗
A/X

deg
A − 1] and [X∗

A/X
uni
A − 1], and results are shown in Fig. 3.
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Fig. 3: Figures showing the gain in vote-shares obtained when employing opti-
mal allocation strategies in a real-world collaboration network (N = 379 and
⟨k⟩ = 4.8), as opposed to simple heuristics such as (i) degree-based targeting
or (ii) uniform allocations. The competitor targets the hub nodes. Figure (a)

shows the gain in vote-shares [X∗
A/X

deg
A − 1] when the optimal strategy is com-

pared to degree-based targeting, whereas Figure (b) shows the gain in vote-shares
[X∗

A/X
uni
A −1] when the optimal strategy is compared to uniform allocations. Nu-

merical results obtained are a µ−approximation of the optimal solutions where
µ = 10−10. Results shown are mean values obtained over 10 simulations, where
algorithms for both the convex and nonconvex optimisation problems are run
10 times with random initialisations of pA and η(0) = 1. The missing values for
γ = 0.1 and BA = 10N across the heatmaps are due to numerical overflows.
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Figs. 3a and 3b illustrate gain in vote-shares against competitor allocations
to the hub. We find that the sensitivity of gain in vote-shares to controller
budget is more in the delayed influence setting, as compared to the diminishing
returns setting. In particular, we observe that the controller can gain significant
vote-shares (≈ 1010 times) by targeting the network optimally for low values
of γ and a low budget BA. This implies that the effectiveness of the optimal
strategy in comparison to other heuristics is higher when individuals take longer
(or more resources) to experience or respond to external influence under low
budget conditions. We further observe that for larger budgets and low γ, the
strategy of targeting the network uniformly yields near-optimal results.

5 Conclusions

Here we explore the competitive influence maximisation problem with continu-
ous allocations in the voter model. Contrary to traditional methods, where nodes
are typically targeted in a binary fashion, here we consider continuous allocation
of influence to the network where an array of nodes are targeted with varying in-
tensities. We assume that two controllers compete to maximise their vote-shares
in the network. Traditionally, the influence maximisation problem has been stud-
ied in a linear setting where the cost of influence (or allocations) is analogous to
the strength of influence experienced by individuals, and thus the relationship
between the cost and effect of influence was expressed using a linear function.
However, assuming a linear cost function may be an over-simplification that may
not apply to all real-world settings. Thus, here we study the competitive influ-
ence maximisation problem for nonlinear cost functions, and we consider settings
where the effect of influence varies nonlinearly with the cost of influence. Specif-
ically, we consider two scenarios: (i) where increasing allocations diminishes the
marginal strength of influence experienced by nodes, and (ii) where nodes take
longer or more allocations to start experiencing the effect of influence (observed
as the delayed effect of influence). We find that optimal allocations and vote-
shares are highly sensitive to budget conditions where allocations have a delayed
effect on influence experienced by nodes. On the contrary, when allocations have
a diminishing effect on influence, optimal allocations and vote-shares show lim-
ited sensitivity to budget conditions. We further show that targeting the network
optimally under low budget conditions and under nonlinear budget constraints
can result in significant gain in vote-shares, when compared to more näıve ap-
proaches. Our results consider optimal allocations only for known competitor
allocations, and an interesting future direction for this work would be to study
the problem in a game-theoretic framework that assumes incomplete knowledge
of competitor allocations.
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3. Castellano, C., Muñoz, M.A., Pastor-Satorras, R.: Nonlinear q-voter model. Phys-
ical Review E 80(4), 041129 (2009)

4. Chakraborty, S., Stein, S., Brede, M., Swami, A., de Mel, G., Restocchi, V.: Com-
petitive influence maximisation using voting dynamics. In: Proceedings of the 2019
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining. pp. 978–985 (2019)

5. Clifford, P., Sudbury, A.: A model for spatial conflict. Biometrika 60(3), 581–588
(1973)

6. Darko, A., Chan, A.P.: Review of barriers to green building adoption. Sustainable
Development 25(3), 167–179 (2017)

7. Goldstein, D.G., McAfee, R.P., Suri, S.: The effects of exposure time on memory of
display advertisements. In: Proceedings of the 12th ACM conference on Electronic
commerce. pp. 49–58. ACM (2011)

8. Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar com-
munity structure in a network of human interactions. Physical review E 68(6),
065103 (2003)

9. Holley, R.A., Liggett, T.M.: Ergodic theorems for weakly interacting infinite sys-
tems and the voter model. The annals of probability pp. 643–663 (1975)

10. Jain, P., Kar, P., et al.: Non-convex optimization for machine learning. Foundations
and Trends in Machine Learning 10(3-4), 142–363 (2017)
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