
Original research

Macrophage migration inhibitory factor promotes 
glucocorticoid resistance of neutrophilic inflammation 
in a murine model of severe asthma
Venkata Sita Rama Raju Allam,1,2 Stelios Pavlidis,3,4 Gang Liu,5 
Nazanin Zounemat Kermani,3 Jennifer Simpson,6 Joyce To,7 Sheila Donnelly,7 
Yi-Ke Guo,3 Philip M Hansbro,5 Simon Phipps,6 Eric F Morand,8 Ratko Djukanovic,9 
Peter Sterk,10 Kian Fan Chung,11,12 Ian Adcock,11,12 James Harris,8 Maria B Sukkar1

Asthma

To cite: Allam VSRR, 
Pavlidis S, Liu G, et al. Thorax 
Epub ahead of print: [please 
include Day Month Year]. 
doi:10.1136/
thoraxjnl-2021-218555

	► Additional supplemental 
material is published online 
only. To view, please visit the 
journal online (http://​dx.​doi.​
org/​10.​1136/​thorax-​2021-​
218555).

For numbered affiliations see 
end of article.

Correspondence to
Associate Professor Maria 
B Sukkar, Graduate School 
of Health, Faculty of Health, 
University of Technology Sydney, 
Sydney, New South Wales, 
Australia;  
​maria.​sukkar@​outlook.​com

JH and MBS contributed equally.

Received 3 December 2021
Accepted 15 July 2022

© Author(s) (or their 
employer(s)) 2022. No 
commercial re-use. See rights 
and permissions. Published 
by BMJ.

ABSTRACT
Background  Severe neutrophilic asthma is resistant to 
treatment with glucocorticoids. The immunomodulatory 
protein macrophage migration inhibitory factor 
(MIF) promotes neutrophil recruitment to the lung 
and antagonises responses to glucocorticoids. We 
hypothesised that MIF promotes glucocorticoid resistance 
of neutrophilic inflammation in severe asthma.
Methods  We examined whether sputum MIF protein 
correlated with clinical and molecular characteristics of 
severe neutrophilic asthma in the Unbiased Biomarkers 
for the Prediction of Respiratory Disease Outcomes 
(U-BIOPRED) cohort. We also investigated whether MIF 
regulates neutrophilic inflammation and glucocorticoid 
responsiveness in a murine model of severe asthma in 
vivo.
Results  MIF protein levels positively correlated 
with the number of exacerbations in the previous 
year, sputum neutrophils and oral corticosteroid use 
across all U-BIOPRED subjects. Further analysis of 
MIF protein expression according to U-BIOPRED-
defined transcriptomic-associated clusters (TACs) 
revealed increased MIF protein and a corresponding 
decrease in annexin-A1 protein in TAC2, which is 
most closely associated with airway neutrophilia and 
NLRP3 inflammasome activation. In a murine model 
of severe asthma, treatment with the MIF antagonist 
ISO-1 significantly inhibited neutrophilic inflammation 
and increased glucocorticoid responsiveness. 
Coimmunoprecipitation studies using lung tissue lysates 
demonstrated that MIF directly interacts with and cleaves 
annexin-A1, potentially reducing its biological activity.
Conclusion  Our data suggest that MIF promotes 
glucocorticoid-resistance of neutrophilic inflammation by 
reducing the biological activity of annexin-A1, a potent 
glucocorticoid-regulated protein that inhibits neutrophil 
accumulation at sites of inflammation. This represents 
a previously unrecognised role for MIF in the regulation 
of inflammation and points to MIF as a potential 
therapeutic target for the management of severe 
neutrophilic asthma.

INTRODUCTION
Asthma is a heterogeneous disorder associated with 
discrete endotypes that arise from distinct patho-
biological mechanisms. Although the cellular and 

molecular pathways that underpin asthma endo-
types are still emerging, several observable clinical 
phenotypes are evident. Patients with eosinophil-
dominant airway inflammation respond well to 
treatment with glucocorticoids or monoclonal anti-
bodies directed against type-2 cytokines.1 However, 
approximately half of patients with asthma have 
non-eosinophilic disease that is not adequately 
managed with current therapies. Hence, there is an 
unmet treatment need for this subgroup of patients, 
particularly those with severe, non-eosinophilic 
asthma.1–3

Non-eosinophilic asthma is often associated with 
persistent neutrophilic inflammation, increased 
disease severity and resistance to treatment with 
glucocorticoids.1–3 In clinical trials, the antibiotic 
azithromycin reduces asthma exacerbations and 
improves quality of life in those with severe non-
eosinophilic disease.4 It also reduces severity in a 
mouse model of severe asthma.5 However, this 
therapy is associated with increased antibiotic 
resistance in respiratory bacteria, emphasising the 
need for alternative approaches.1–3 While several 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Macrophage migration inhibitory factor (MIF) is 
an immunomodulatory molecule that promotes 
neutrophil recruitment to the lung. It also acts 
as an endogenous inhibitor of glucocorticoid 
activity.

WHAT THIS STUDY ADDS
	⇒ Data from the U-BIOPRED cohort and 
experimental severe asthma suggest that MIF 
reduces the biological activity of annexin-A1, a 
glucocorticoid-regulated protein that potently 
inhibits neutrophil accumulation at sites of 
inflammation.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ MIF represents a promising therapeutic target 
for the management of glucocorticoid-resistant 
neutrophilic inflammation in severe asthma. 
Further investigation of MIF activity in this 
context warrants further study.
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neutrophil-directed therapies have been developed and trialled 
in asthmatic subjects,6 none have progressed to clinical use due 
to limited efficacy.1 2 Incomplete understanding of the mecha-
nisms that regulate neutrophil recruitment and clearance from 
the lung is arguably the most significant barrier to the develop-
ment of effective therapies for non-eosinophilic asthma.

Macrophage migration inhibitory factor (MIF) is an immu-
nomodulatory molecule that promotes neutrophil recruitment 
to the lung.7–10 Importantly, MIF also acts as an endogenous 
inhibitor of glucocorticoid activity and is thought to diminish 
the clinical response to glucocorticoid treatment in a number 
of rheumatic diseases.11 12 Moreover, we and others have 
shown that MIF can mediate activation of the NLRP3 inflam-
masome,13 14 a molecular complex that regulates the processing 
and secretion of interleukin (IL)-1 family cytokines implicated in 
severe glucocorticoid-resistant neutrophilic asthma.15–18 Accord-
ingly, we hypothesised that MIF promotes the development 
of neutrophilic inflammation and glucocorticoid resistance by 
augmenting NLRP3/IL-1β signalling and simultaneously antag-
onising the anti-inflammatory and/or proresolving effects of 
glucocorticoids in asthmatic subjects.

In this study, we examined the relationship between MIF 
protein abundance, neutrophilic inflammation, NLRP3 inflam-
masome activation and the expression of several glucocorticoid-
inducible genes in the U-BIOPRED severe asthma cohort.18 We 
also examined whether MIF inhibition protects against airway 
neutrophilia and IL-1β release and concomitantly increases 
glucocorticoid responsiveness in a murine model of severe 
asthma.19

METHODS
Analysis of U-BIOPRED data
The U-BIOPRED project was established to identify multidi-
mensional phenotypes of asthma and new treatment targets 
using a combination of omics technologies and systems biology 
approaches.20 We analysed data across all subjects in the U-BI-
OPRED adult cohort who provided sputum samples (n=120 
subjects). Based on hierarchical clustering of differentially 
expressed genes between eosinophilic and non-eosinophilic 
subjects, three transcriptomic-associated clusters (TACs) were 
described.18 These were divided in to 30 TAC1 subjects, 22 TAC2 
subjects and 52 TAC3 subjects divided across 84 severe asth-
matics and 20 mild–moderate asthmatics. All asthmatics were 
on >800 µg (fluticasone propionate equivalents) inhaled corti-
costeroid with 57% of TAC1 subjects; 36% of TAC2 subjects; 
and 25% of TAC3 subjects on oral or injectable corticosteroids. 
Protein expression in sputum samples was measured using the 
SOMAscan proteomic assay (SomaLogic, Boulder, Colorado, 
USA). Analysis of genes in sputum samples was performed using 
Array Studio software (Accession number: GSE76262, Omicsoft 
Corporation, Research Triangle Park, North Carolina, USA). 
Detailed methodology for protein and gene expression analysis 
has been described previously.18

Murine model of severe asthma
Female C57BL/6 mice (8 weeks of age) were purchased from the 
Australian Resource Centre (Perth, Australia) and housed under 
specific pathogen-free conditions. Mice were acclimatised for 
1 week prior to the start of the experiment. On day 0, mice were 
sensitised to house dust mite (HDM) allergen (100 µg) (Dermato-
phagoides pteronyssinus; Citeq Biologics, Groningen, Nether-
lands) emulsified with an equal volume of complete Freund’s 
adjuvant (CFA) (Sigma-Aldrich, St Louis, Missouri, USA) via 

subcutaneous injection. On day 14, mice were challenged with 
HDM (100 µg) via the intranasal route. Control mice were sensi-
tised and challenged with phosphate buffered saline (PBS) only. 
Previous studies have shown that a single administration of the 
MIF inhibitor ISO-1 (4,5-dihydro-3-(4-hydroxyphenyl)-5-isoxaz
oleacetic acid methyl ester) at a dose of 35 mg/kg inhibits airway 
neutrophilia induced by intratracheal administration of recombi-
nant MIF in naïve mice.8 We tested two dosing regimens. In the 
first, ISO-1 (35 mg/kg, Tocris Bioscience) or its vehicle (VEH, 5% 
dimethyl sulfoxide in PBS) were administered via intraperitoneal 
injection 30 min before HDM challenge (denoted HDM+ISO-1 
and HDM+VEH, respectively), while in the second, it was 
administered 30 min before and 6 hours after HDM challenge 
(denoted HDM+ISO-1 bid). Dexamethasone (DEX, 9α-fluoro-
16α-methyl-11β,17α,21-trihydroxy-1,4-pregnadiene-3,20-
dione, 1 mg/kg, Sigma Aldrich) was administered 30 min prior to 
HDM challenge via oral gavage either alone or in combination 
with ISO-1 (denoted HDM+DEX and HDM+ISO-1+DEX, 
respectively). Randomisation was not used to allocate mice to 
control or treatment groups nor were potential confounders 
controlled for. A total of 96 mice were used with the following 
numbers of mice allocated to each treatment group: n=17 
(PBS), n=17 (HDM), n=15 (HDM+VEH), n=18 (HDM+I-
SO-1), n=9 (HDM+ISO-1 bid), n=10 (HDM+DEX) and 
n=10 (HDM+ISO-1+DEX). Measurement of airway hyper-
reactivity (AHR) and analysis of tissue samples for all experi-
mental endpoints is described in the online supplemental data.

A single researcher (VSRRA) was responsible for conducting 
all experimental procedures, outcome measurements (except 
histological analysis and immunoprecipitation studies) and data 
analysis: this person was aware of group allocation during all 
stages of the experiment. The researcher who performed the 
histological analysis (JS) was blind to group allocation. An a 
priori decision was made to exclude mice from experiments if 
they experienced  >10% decrease in body weight during the 
course of the experiment. Prior studies using a similar murine 
model of experimental severe asthma indicated that a minimum 
sample size of four mice per group would be sufficient to achieve 
statistical significance for the primary outcome of neutrophil 
numbers in the airway lumen.16

This work was conducted in accordance with the ARRIVE 
guidelines.

Statistical analysis
The Shapiro-Wilk test was used to assess the normality of the 
distribution of gene of interest expression in U-BIOPRED data. 
To determine the association of gene of interest expression with 
categorical variables, Kruskal-Wallis test with Dunn’s posthoc 
multiple comparison analysis was used for non-normally distrib-
uted data, and pairwise Student’s t-test was used for normally 
distributed data. P values were adjusted for multiple testing using 
the false discovery rate (FDR). Spearman’s rank-order correla-
tion was used to measure and test the association between gene 
of interest expression and numerical variables.

For studies in mice, all data were expressed as mean±95% CI, 
except for lung function measurments which were expressed as 
mean±SEM, and analysed using GraphPad Prism V.7. Normality 
of distribution of outcomes measured was examined by the 
Shapiro-Wilk test. For normally distributed data, between group 
differences were compared using one-way analysis of variance 
(ANOVA) with Bonferroni post hoc multiple comparison anal-
ysis. For non-normally distributed data, between-group differ-
ences were compared using the Kruskal-Wallis test with Dunn’s 
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post hoc multiple comparison analysis. Two-way ANOVA was 
conducted to compare in vivo methacholine (MCh) dose–
response relationships with Bonferroni post hoc analysis of 
individual doses. Outliers in the data were identified using the 
outlier test in GraphPad Prism and excluded from the analysis.

RESULTS
MIF protein abundance correlates with airway neutrophilia 
and oral corticosteroid use in the U-BIOPRED cohort
We examined whether MIF protein abundance in sputum 
correlated with clinical characteristics of the U-BIOPRED 
cohort, a well-characterised cohort consisting of healthy volun-
teers, mild–moderate asthmatics, non-smokers with severe 
asthma and smokers with severe asthma.16 18 MIF protein levels 

were positively correlated with the number of exacerbations in 
the previous year and sputum neutrophils and were negatively 
correlated with lung function impairment (forced expiratory 
volume in 1 s (FEV1 % predicted) and sputum macrophages 
(figure  1A–D and online supplemental table S1). When each 
of these correlations were examined within individual subject 
groups, MIF protein levels were negatively correlated with 
sputum macrophages in non-smokers with severe asthma only 
(online supplemental figure S1A–D). Notably, oral corticoste-
roid use across all U-BIOPRED subjects was associated with 
significantly higher levels of MIF protein (figure 1E and online 
supplemental table S1), but this relationship was not observed 
when examined within the severe asthma groups individually 
(online supplemental figure S2A).

Figure 1  Correlations between MIF protein and selected clinical characteristics across all U-BIOPRED subjects. Associations were measured and 
tested using Spearman’s rank-order correlation. P values were corrected for multiple comparisons using Benjamini-Hochberg false discovery rate 
(FDR) procedure. MIF, macrophage migration inhibitory factor; RFU, relative fluorescent unit; Rho, Spearman’s correlation coefficient.
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MIF is constitutively expressed and stored in intracellular 
pools and therefore does not require de novo synthesis for secre-
tion, necessitating studies at the protein level to understand its 
function. Nevertheless, for completeness, we report that MIF 
mRNA negatively correlated with the degree of lung function 
impairment (FEV1 % predicted) and sputum neutrophils across 
all U-BIOPRED subjects (online supplemental table S1). Within 
individual subject groups, MIF mRNA was positively correlated 
with FEV1 % predicted in healthy volunteers and mild-moderate 
asthmatics. There was no significant correlation between MIF 
mRNA, the number of exacerbations in the previous year, 
sputum neutrophils or sputum macrophages within each of the 
U-BIOPRED subject groups (online supplemental figure S1E–H). 
Further, MIF mRNA was not associated with oral corticosteroid 
use across all U-BIOPRED subjects (online supplemental table 
S1) nor within the severe asthma groups (online supplemental 
figure S2B).

MIF protein abundance is increased in U-BIOPRED molecular 
phenotypes characterised by neutrophilic inflammation and 
NLRP3 inflammasome activation
Previous analyses from U-BIOPRED identified three TACs 
based on unsupervised hierarchical clustering of sputum mRNA 

expression data. Compared with TAC1 and TAC3, TAC2 is 
associated with neutrophilia and inflammasome activation.18 In 
neutrophils, MIF colocalises with the S100A8/A9 heterodimeric 
complex which makes up ~40% of the cytosolic content.21 Thus, 
to determine whether there is an association between neutrophilic 
inflammation and MIF expression, we examined sputum protein 
abundance of MIF and S100A9 measured by the SOMAscan 
Assay platform across the three TACs. S100A8 is not available 
on this platform. Compared with TAC1 and TAC3, subjects in 
TAC2 had significantly elevated levels of MIF and S100A9 protein 
(figure 2A,B). Analysis of gene expression data also revealed signifi-
cantly higher levels of S100A8 and S100A9 in TAC2 compared 
with TAC1 and TAC3 (figure 2C,D). However, subjects in TAC2 
had similar levels of MIF mRNA compared with subjects in TAC1 
and significantly lower levels compared with TAC3 (online supple-
mental figure S3). MIF positively regulates the expression of the 
pattern-recognition receptor toll-like receptor 4 (TLR4),22 which 
lies upstream of NLRP3 inflammasome activation.23 Consistent 
with our previous analysis demonstrating a highly significant posi-
tive correlation between NLRP3 and sputum neutrophil counts 
in U-BIOPRED and other subjects,16 TLR4 and NLRP3 (CIAS1) 
mRNA were also significantly higher in TAC2 compared with 
TAC1 and TAC3 (figure 2E,F).

Figure 2  Expression of innate immune mediators in sputum according to TAC status. Protein levels of MIF (A) and S100A9 (B) measured by 
SOMAscan in log2 RFUs. Gene expression levels of S100A8 (C), S100A9 (D), TLR4 (E) and NLR family pyrin domain containing 3 (NLRP3) (F) 
measured by microarray and presented as log2 signal intensity values. Note: there was no complete overlap between sputum samples used for 
protein and mRNA measurements. *P<0.05, **P<0.01, ***P<0.001. MIF, macrophage migration inhibitory factor; RFU, relative fluorescent unit; TAC, 
transcriptomic-associated cluster; TLR4, toll-like receptor 4.
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To corroborate these findings, we examined correlations 
between MIF protein abundance and molecular markers of 
neutrophilic inflammation and NLRP3 inflammasome activa-
tion across all U-BIOPRED subjects (online supplemental table 
S2). MIF protein levels significantly positively correlated with 
S100A9 protein, NLRP3 mRNA expression and IL-1β gene and 
protein expression (online supplemental table S2). For complete-
ness, we also report that MIF mRNA expression significantly 
negatively correlated with TLR4 and IL1B gene expression 
(online supplemental table S2). Collectively, these data suggest 
an underlying role for MIF in the development of neutrophilic 
responses in a subgroup of asthmatic individuals represented by 
the TAC2 molecular phenotype. However, there was no signif-
icant correlation between MIF protein abundance and sputum 
neutrophils in TAC2, possibly due to the small sample size 
(online supplemental figure S4A).

Increased MIF protein abundance is associated with reduced 
expression of the glucocorticoid-inducible proresolving 
mediator annexin-A1
To examine the relationship between MIF, airway neutrophilia 
and the glucocorticoid response at a molecular level, we compared 

the expression of three important glucocorticoid-regulated 
anti-inflammatory genes across the three TACs, namely, dual-
specificity phosphatase 1 (DUSP1), the glucocorticoid-inducible 
leucine zipper (GILZ, encoded by TSC22D3) and annexin-A1. 
Compared with TAC1 and TAC3, subjects in TAC2 expressed 
significantly higher levels of DUSP1 mRNA (figure 3A). TSC22D3 
was similarly expressed in TAC1 and TAC2, which had signifi-
cantly higher levels compared with TAC3 (figure 3B). However, 
compared with TAC1 and TAC3, subjects in TAC2 expressed 
significantly lower levels of annexin-A1 mRNA and protein 
(figure  3C,D). Annexin-A1 is a potent proresolving mediator 
that limits neutrophil accumulation at sites of inflammation24; 
thus, lower levels of annexin-A1 in TAC2 might contribute 
to persistence of the neutrophilic response in this molecular 
subgroup. We therefore examined correlations between annex-
in-A1 gene and protein expression and sputum neutrophils 
within each of the three TACs. Annexin-A1 protein expression 
was negatively correlated with sputum neutrophils in both TAC1 
and TAC2, while ANXA1 mRNA was negatively correlated with 
sputum neutrophils in TAC1 only (online supplemental figure 
S4B, C).

Figure 3  Expression of glucocorticoid-regulated genes and other mediators in sputum according to TAC status. Gene expression levels of DUSP1 
(A), TSC22D3 (B), ANXA1 (C) and FPR2 (E) measured by microarray and presented as log2 signal intensity values. Protein levels of annexin-A1 (D) 
measured by SOMAscan in log2 RFUs. The level of LTB4 (F) was determined by ELISA and is presented as picogram per millilitre in each patient 
sample. Note: there was no complete overlap between sputum samples used for protein, mRNA and lipid measurements. *P<0.05, **P<0.01, 
***P<0.001. ANXA1, denotes annexin A1 gene; DUSP1, dual-specificity phosphatase 1; FPR2, formyl peptide receptor 2; RFU, relative fluorescent unit; 
TAC, transcriptomic-associated cluster; TSC22D3, TSC22 domain family protein 3.
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Annexin-A1 signals via formyl peptide receptor 2 (FPR2), 
which is also the proresolving receptor for lipoxin A4. Notably, 
FPR2 is reportedly expressed at lower levels in people with 
severe asthma25; thus, we also examined FPR2 expression 
across the three TACs. Compared with TAC1 and TAC3, TAC2 
had significantly higher levels of FPR2 mRNA, indicating that 
reduced annexin-A1 expression, rather than reduced signalling 
via this receptor is more likely to explain enhanced neutrophil 
infiltration in this molecular subgroup (figure  3E). Moreover, 
annexin-A1 mediates its anti-inflammatory effects, in part, by 
inhibiting the activation of cytosolic phospholipase A2, a rate 
limiting enzyme in eicosanoid synthesis. However, sputum 
levels of the potent neutrophil chemoattractant LTB4 were 
similar across TAC2 and TAC3, arguing against a specific role 
for this eicosanoid in mediating neutrophilic responses in TAC2 
(figure 3F).

MIF acts as an endogenous inhibitor of glucocorticoid activity. 
Thus, lower levels of annexin-A1 coupled with evidence of 
increased MIF protein abundance in TAC2 could suggest that 
MIF sustains the neutrophilic response through inhibitory effects 
on glucocorticoid-regulated production of annexin-A1. Indeed, 
although numbers were small, ANXA1 mRNA expression tended 
to be lower, while MIF protein levels tended to be higher in 
TAC2 subjects using oral corticosteroids compared with those 
who were not (online supplemental figure S5). Thus, we exam-
ined correlations between glucocorticoid-regulated genes and 
molecular markers of neutrophilic inflammation, as identified 
in TAC2, across all U-BIOPRED subjects. Consistent with the 
TAC-based analysis, ANXA1 mRNA levels negatively correlated 
with MIF and S100A9 protein, TLR4 and NLRP3 mRNA and 
IL-1βmRNA and protein expression. Annexin-A1 protein 
expression negatively correlated with NLRP3 mRNA and IL-1β 
protein only (online supplemental table S2). In contrast and as 
expected based on the TAC analysis, DUSP1 mRNA levels posi-
tively correlated with MIF and S100A9 protein, TLR4 mRNA 
and molecular markers of inflammasome activation. Similarly, 
TSC22D3 positively correlated with MIF and S100A9 protein, 
NLRP3 mRNA and IL-1β protein. Moreover, DUSP1 and 
TSC22D3 mRNA positively correlated with each other, while 
expression of each of these genes negatively correlated with 
either annexin-A1 mRNA or protein expression or both (online 
supplemental table S2).

Lower levels of annexin-A1 are associated with airway 
neutrophilia and oral corticosteroid use in U-BIOPRED 
subjects with severe asthma
Collectively, our aforementioned findings indicate that lower 
levels of annexin-A1 might potentially underlie airway neutro-
philia and glucocorticoid resistance in severe asthma. Thus, we 
examined correlations between glucocorticoid-regulated genes 
and clinical characteristics of all U-BIOPRED subjects. Consis-
tent with the TAC-based analysis, annexin-A1 gene and protein 
expression negatively correlated with sputum neutrophils. They 
were also negatively correlated with blood eosinophils and other 
markers of eosinophilic inflammation, including FeNO and 
serum periostin. Annexin-A1 gene and protein expression posi-
tively correlated with sputum macrophages (online supplemental 
table S1). In contrast to annexin-A1, DUSP1 and TSC22D3 
mRNA both positively correlated with sputum and blood 
neutrophils, again reflecting outcomes of the TAC-based anal-
ysis. There were also positive correlations between both DUSP1 
and TSC22D3 mRNA with sputum and blood eosinophils and 
total IgE, although both were negatively correlated with sputum 

macrophages. Of note, both DUSP1 and TSC22D3 mRNA were 
associated with severe asthma and features of severe disease, 
including oral corticosteroid use, the number of exacerbations 
in the previous year and the degree of lung function impairment 
(online supplemental table S1).

Finally, to extend the aforementioned findings, we sought to 
investigate correlations between annexin-A1 gene and protein 
expression and selected clinical characteristics within individual 
U-BIOPRED subject groups (online supplemental figures S6 
and S7). Notably, annexin-A1 protein was negatively correlated 
with sputum neutrophils in the severe asthma groups only, 
while ANXA1 mRNA was negatively correlated with sputum 
neutrophils in mild–moderate asthmatics and non-smokers 
with severe asthma (online supplemental figure S6B,F). On the 
other hand, annexin-A1 protein was positively correlated with 
sputum macrophages in both smokers and non-smokers with 
severe asthma, while ANXA1 mRNA was positively correlated 
with sputum macrophages in non-smokers with severe asthma 
only (online supplemental figure S6D,H). Significantly, in the 
group of smokers with severe asthma, compared with those who 
were not using oral corticosteroids, those who were using oral 
corticosteroids had lower levels of annexin-A1 protein (online 
supplemental figure S7B).

MIF inhibition abrogates airway neutrophilia and increases 
glucocorticoid responsiveness in experimental severe asthma
Considering our aforementioned findings, we investigated 
whether MIF inhibition attenuates neutrophilic responses and 
increases glucocorticoid responsiveness in a murine model of 
experimental severe asthma. C57BL/6 mice were sensitised with 
HDM in the presence of CFA, then 14 days later challenged with 
HDM.19 This protocol elicited a mixed granulocytic response 
without significantly modulating macrophage numbers in the 
bronchoalveolar lavage fluid (BALF) (figures  4A and 5A and 
online supplemental figure S8). A single dose of the MIF inhib-
itor ISO-1 given 30 min prior to HDM challenge had no signif-
icant effect on the numbers of total cells infiltrating the airway 
lumen, including eosinophils and neutrophils (figure 4A). It also 
had no significant effect on allergen-induced increases in airway 
contraction to methacholine (referred to as AHR, figure  4B). 
However, when given 30 min prior to and 6 hours post HDM 
challenge, ISO-1 significantly decreased airway neutrophil 
numbers and AHR (figure 4A,B). Meanwhile, a single dose of 
the glucocorticoid dexamethasone (1 mg/kg) given 30 min prior 
to HDM challenge reduced eosinophil infiltration and AHR 
but had no significant effect on neutrophil infiltration, indi-
cating glucocorticoid resistance of the neutrophilic response 
(figure 5A,B). However, combined administration of dexameth-
asone and ISO-1 30 min prior to HDM challenge was associ-
ated with a striking reduction in airway neutrophil numbers 
and further inhibition of AHR, indicating that MIF inhibition 
increases sensitivity to the anti-inflammatory effects of glucocor-
ticoids (figure 5A,B).

To further evaluate the airway inflammatory response, we 
examined cellular tissue infiltration by H&E staining and airway 
mucus production by periodic acid–Schiff staining. Consistent 
with the aforementioned findings, a single dose of ISO-1 given 
30 min prior to allergen challenge had no effect on lung inflam-
mation scores, while two doses significantly reduced lung inflam-
mation scores. Similarly, treatment with dexamethasone alone 
had no effect on lung inflammation scores, whereas combined 
treatment with dexamethasone and ISO-1 significantly inhib-
ited lung inflammation scores (figure 6A). While we observed 
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a significant increase in airway mucus production following 
allergen challenge in this model, airway mucus scores were 
not significantly altered under any of the treatment conditions 
tested, likely reflecting the variability in these data (figure 6B).

MIF inhibition synergises with glucocorticoid-mediated 
suppression of inflammatory protein expression in 
experimental severe asthma
Recent studies have shown that MIF promotes NLRP3 inflam-
masome assembly and IL-1β secretion in macrophages,13 14 
which is potentially corroborated by our findings demonstrating 
increased MIF protein abundance in TAC2 subjects, character-
ised by NLRP3 inflammasome activation (figure 2F). Thus, we 
investigated whether the protective effects of MIF inhibition in 
experimental severe asthma were associated with concomitant 
inhibition of IL-1β secretion. Treatment of mice with ISO-1 at 
the dose which inhibited airway neutrophilia and AHR had no 
effect on lung NLRP3 protein levels or IL-1β release in BALF 
(figure 7A,B). To identify other potential pathways that might 
be impacted by MIF inhibition, we measured 21 analytes in the 
BALF, including type 1, type 2 and type 17 mediators. Treatment 
of mice with ISO-1 alone 30 min prior to HDM challenge had no 

modulatory effect on mediator release (figure 8A–I and online 
supplemental table S3). In contrast, treatment with ISO-1 30 min 
prior to and 6 hours post allergen challenge led to a significant 
reduction in the concentrations of S100A8 and CCL11 (eotax-
in-1), consistent with the observed reduction in neutrophil and 
eosinophil numbers at this dose, respectively (figure 8A,B and 
online supplemental table S3). However, this treatment regimen 
had no significant effect on the secretion of other mediators 
measured (figure 8C–I and online supplemental table S3).

Treatment of mice with dexamethasone alone had no 
significant effect on NLRP3 protein levels or IL-1β release 
(figure  7A,B), suggesting glucocorticoid resistance of NLRP3 
inflammasome signalling in experimental severe asthma, as 
previously demonstrated.16 17 Moreover, with the exception of 
S100A8 and IL-1α (figure 8A,D) treatment of mice with dexa-
methasone alone had no effect on the secretion of all other medi-
ators measured (figure 8B,C,E–I, online supplemental table S3). 
However, combined treatment with dexamethasone and ISO-1 
30 min prior to HDM challenge led to significant inhibition of 
NLRP3 protein levels and IL-1β secretion (figure  7A,B) and 
several additional mediators, including CCL11, CCL3, TNF-α, 
IFN-γ, IL-33 and granulocyte macrophage-colony stimulating 

Figure 4  ISO-1 inhibits neutrophilic inflammation and AHR in experimental severe asthma. Mice were treated with VEH or with ISO-1 30 min prior 
to HDM challenge (HDM+VEH and HDM+ISO-1, respectively). Alternatively, mice were treated with two doses of ISO-1 given 30 min prior to and 
6 hours post HDM challenge (HDM+ISO-1 bid). Control mice were treated with PBS only. (A) Total cells, neutrophils and eosinophils were measured in 
BALF. (B) Total respiratory system resistance (Rrs), compliance (Crs) and elastance (Ers), proximal airway resistance (Rn) and distal tissue dampening 
(G) and elastance (H) were measured using forced oscillation technique. Data represent mean±95% CI (A) or mean±SEM (B). *P<0.05, **P<0.01 vs 
PBS group. #P<0.05, ##P<0.01 vs HDM group. n=7–18 mice per group. AHR, airway hyper-reactivity; BALF, bronchoalveolar lavage fluid;HDM, 
house dust mite; MCh, methacholine; PBS, phosphate buffered saline; VEH, vehicle.
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factor (GM-CSF) (figure  8B,C,E–H and online supplemental 
table S3), further indicating that MIF antagonism increases 
sensitivity to the anti-inflammatory effects of glucocorticoids in 
experimental severe asthma. Importantly, while allergen chal-
lenge in this model was associated with significant release of MIF 
in BALF, treatment of mice with dexamethasone either alone or 
together with ISO-1 had no effect on BALF MIF concentrations 
(figure  8I and online supplemental table S3), indicating that 
enhanced glucocorticoid efficacy in the context of MIF inhibi-
tion was not due to an inhibitory effect of dexamethasone on 
MIF secretion.

MIF inhibition protects against annexin-A1 cleavage in 
experimental severe asthma
Subjects in TAC2 presented with higher levels of MIF and lower 
levels of annexin-1 mRNA and protein. Thus, we examined 
whether MIF augments the neutrophilic response by inhib-
iting the expression and/or activity of annexin-A1. Following 
cellular activation, annexin-A1 is externalised on the cell 
surface. However, within this microenvironment, annexin-A1 is 
cleaved at its N-terminal region by neutrophil-derived proteases, 
resulting in a loss of potency.26 27Consequently, we used immuno-
blotting to examine expression levels of both the full-length and 
cleaved protein. We detected robust levels of full-length 37 kDa 

annexin-A1 protein in lung tissue lysates under basal conditions. 
There was no change in its abundance following allergen chal-
lenge or treatment with ISO-1 and/or dexamethasone (figure 9A). 
In the BALF, full-length annexin-A1 was not detected; however, 
we detected a protein band at  ~33 and  ~28 kDa in allergen-
challenged but not PBS-challenged mice, indicating that annex-
in-A1 externalisation and cleavage predominantly occurs in 
the airway lumen (figure 9A). Thus, we quantified the overall 
extent of annexin-A1 cleavage in BALF under all experimental 
conditions (figure 9B). To do this, we performed densitometric 
analysis on each of the  ~33 kDa and  ~28 kDa protein bands 
separately and added the values together. This analysis revealed 
a significant increase in the total amount of cleaved annexin-A1 
in BALF following HDM challenge. Strikingly, administration 
of ISO-1 30 min prior to and 6 hours post allergen was associ-
ated with a significant reduction in the total amount of cleaved 
annexin-A1. Moreover, while administration of either ISO-1 or 
dexamethasone alone 30 min prior to allergen challenge did not 
significantly alter the total amount of cleaved annexin-A1, the 
combined administration of ISO-1 and dexamethasone ablated 
the presence of cleaved annexin-A1 products (figure 9B).

These findings suggest that MIF contributes to the external-
isation and/or cleavage of annexin-A1 in experimental severe 
asthma. To determine if this occurred through a direct interaction, 

Figure 5  ISO-1 renders glucocorticoid-insensitive neutrophilic inflammation sensitive to the anti-inflammatory effects of glucocorticoids in 
experimental severe asthma. Mice were treated with VEH, ISO-1, DEX, or ISO-1 and DEX 30 min prior to HDM challenge. Control mice were treated 
with PBS only. (A) Total cells, neutrophils and eosinophils were measured in BALF. (B) Total respiratory system resistance (Rrs), compliance (Crs) and 
elastance (Ers), proximal airway resistance (Rn) and distal tissue dampening (G) and elastance (H) were measured using forced oscillation technique. 
Data represent mean±95% CI (A) or mean±SEM (B). *P<0.05, **P<0.01 vs PBS group. #P<0.05, ##P<0 .01 vs HDM group. δP<0.05 vs HDM+DEX 
group. n=7–18 mice per group. BALF, bronchoalveolar lavage fluid; DEX, dexamethasone; HDM, house dust mite; MCh, methacholine; PBS, phosphate 
buffered saline; VEH, vehicle.
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we immunoprecipitated MIF from lung tissue lysates of PBS and 
HDM treated mice and performed an immunoblot to determine 
whether MIF and annexin-A1 were components of the same 
protein complex. We detected a single protein band at ~12 kDa 
in PBS and HDM challenged mice, but not IgG control samples, 
confirming successful immunoprecipitation of MIF protein 
(figure  9C and online supplemental figure S9). Moreover, we 
detected the presence of a~37 kDa annexin-A1 protein band 

in these samples, indicating that MIF and annexin-A1 directly 
interact. Notably, there was a marked increase in the intensity of 
the 28 kDa band, relative to the 37 kDa band, in HDM but not 
PBS treated mice, indicating that MIF promotes the cleavage of 
annexin-A1 in experimental severe asthma. Finally, to examine 
whether MIF inhibition protects against annexin-A1 cleavage 
by interfering with the MIF–annexin-A1 interaction, we immu-
noprecipitated MIF from lung tissue lysates of mice treated 

Figure 6  ISO-1 renders glucocorticoid-insensitive tissue inflammation sensitive to the anti-inflammatory effects of glucocorticoids in experimental 
severe asthma. Mice were treated with VEH, ISO-1, DEX or ISO-1 and DEX 30 min prior to HDM challenge. Alternatively, mice were treated with two 
doses of ISO-1 given 30 min prior to and 6 hours post HDM challenge (HDM+ISO-1 bid). Control mice were treated with PBS only. Lung inflammation 
(A) and mucus production (B) were assessed by H&E and PAS staining, respectively. Data represent mean±95% CI. *P<0.05, **P<0.01 vs PBS group. 
#P<0.05, ##P<0.01 vs HDM group. n=5–6 mice per group. Representative images for H&E (×10 original magnification) and PAS (×40 magnification) 
are shown. Scale bars, 60 µm. DEX, dexamethasone; HDM, house dust mite; H&E, hematoxylin and eosin; PAS, periodic acid–Schiff;PBS, phosphate 
buffered saline; VEH, vehicle.

Figure 7  ISO-1 renders glucocorticoid-insensitive NLRP3 inflammasome activation sensitive to the anti-inflammatory effects of glucocorticoids 
in experimental severe asthma. Mice were treated with VEH, ISO-1, DEX or ISO-1 and DEX 30 min prior to HDM challenge. Alternatively, mice were 
treated with two doses of ISO-1 given 30 min prior to and 6 hours post HDM challenge (HDM+ISO-1 bid). Control mice were treated with PBS only. 
(A) NLRP3 protein measured in lung tissue lysates by immunoblotting. Data were normalised to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
and expressed as fold change relative to the PBS group. (B) IL-1β protein measured in BALF by immunoblotting. Data represent mean±95% CI. 
**P<0.01 vs PBS group. #P<0.05 vs HDM group. n=6–8 mice per group. BALF, bronchoalveolar lavage fluid; DEX, dexamethasone; HDM, house dust 
mite; IL, interleukin; PBS, phosphate buffered saline; VEH, vehicle.
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with a single dose of ISO-1 or dexamethasone alone or their 
combination 30 min prior to HDM challenge. Treatment with 
either dexamethasone, ISO-1 or the combination of ISO-1 and 
dexamethasone ablated annexin-A1 cleavage at the tissue level 
(figure 9D and online supplemental figure S10).

DISCUSSION
We provide evidence of increased MIF protein abundance 
and reduced annexin-A1 gene and protein expression in the 
neutrophil-associated TAC2 molecular phenotype of asthmatic 
subjects in the U-BIOPRED cohort. We also demonstrated that 
MIF promotes lung neutrophil recruitment and proteolytic 
cleavage of annexin-A1, potentially attenuating its biological 
activity in a mouse model of severe asthma in vivo. Further-
more, MIF inhibition rendered the neutrophilic response sensi-
tive to glucocorticoid inhibition in this model. Together, our 
findings suggest that MIF promotes glucocorticoid resistance of 
the neutrophilic response by limiting the anti-inflammatory and 
proresolving functions of the glucocorticoid-regulated protein 
annexin-A1. While this mechanism may potentially be most 

relevant to the TAC2 molecular phenotype, further studies are 
needed to establish whether this mechanism underpins, or is 
associated with, one or more molecular phenotypes (or endo-
types) of severe asthma.

The MIF inhibitor ISO-1 (35 mg/kg) inhibits lung neutrophil 
recruitment induced by intratracheal administration of recom-
binant MIF in naïve mice.8 This was associated with reduced 
lung CXCL1 and CXCL2 levels, indicating that MIF induces the 
release of proneutrophilic chemokines.8 In contrast, in experi-
mental severe asthma, administration of ISO-1 (35 mg/kg) 30 min 
prior to and 6 hours post allergen challenge protected against 
airway neutrophilia and AHR without significantly affecting the 
levels of CXCL1 and other mediators including IL-1β, IL-1α, 
IL-6, TNF-α and IL-17A involved in lung neutrophil recruit-
ment. However, ISO-1 inhibits NLRP3 activation, IL-1β, IL-6 
and TNF-α secretion at 10-fold lower doses in other experi-
mental models.28 We previously reported that sputum levels 
of IL-1β in patients with severe asthma correlate with NLRP3, 
NLRP1 and NLRC4.16 We have demonstrated a highly specific 
role for MIF in activating the NLRP3 inflammasome13 and the 

Figure 8  ISO-1 renders glucocorticoid-insensitive inflammatory mediator release sensitive to the anti-inflammatory effects of glucocorticoids in 
experimental severe asthma. Mice were treated with VEH, ISO-1, DEX or ISO-1 and DEX 30 min prior to HDM challenge. Alternatively, mice were 
treated with two doses of ISO-1 given 30 min prior to and 6 hours post HDM challenge (HDM+ISO-1 bid). Control mice were treated with PBS only. 
The concentration of cytokines and chemokines in BALF were determined using a customised Magnetic Luminex assay using the MAGPIX System. 
Data represent mean±95% CI. *P<0.05, **P<0.01 vs PBS and #P<0.05 vs HDM. n=7–10 mice per group. BALF, bronchoalveolar lavage fluid; DEX, 
dexamethasone; HDM, house dust mite; PBS, phosphate buffered saline; VEH, vehicle.
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lack of effect of ISO-1 on IL-1β release in our model may suggest 
that other inflammasomes mediate IL-1β secretion. Further 
studies with different dosing regimens for ISO-1, different MIF 
inhibitors and/or Mif−/− mice are warranted to confirm this.

In line with our findings, endothelial cell-specific deletion 
of MIF significantly protects against lipopolysaccaride-induced 
airway neutrophilia in mice without impacting airway levels of 
CXCL1, IL-1α and IL-1β. Inhibition of airway neutrophilia was 
due to reduced relaxation of perivascular pericytes and reduced 
neutrophil transmigration across the vessel wall.10 Inhibition of 
airway neutrophilia by ISO-1 in our study was associated with 
relatively selective inhibition of S100A8. Since the S100A8/A9 
heterocomplex regulates neutrophil rolling and adhesion to 
the vessel wall via autocrine activation of TLR4 signalling29, 
increased MIF, S100A8/A9 and TLR4 expression in patients 
with TAC2 asthma point to the existence of a previously unrec-
ognised MIF-S100A8A/9-TLR4 inflammatory axis that may play 
a crucial role in the development of the airway neutrophilic 
response in severe asthma.

Airway neutrophilia in severe asthma may be due to impair-
ments in the active resolution of inflammation.30–32 Annexin-A1 
is a mediator of the resolution of inflammation and inhibits 
neutrophil transmigration across the endothelium, and promotes 
neutrophil clearance from tissues by inducing apoptosis and 

macrophage efferocytosis.24 Under basal conditions, annexin-A1 
is predominantly intracellular; however, on cell activation, it 
is externalised onto the cell surface where it is susceptible to 
proteolytic cleavage by neutrophil-derived proteinase 3 (PR3).33 
Two cleavage products are seen in the BALF 24 hours post 
allergen challenge in experimental severe asthma, the clas-
sical ~33 kDa product and an additional ~28 kDa product.34 35 
The latter may reflect additional proteolysis under conditions 
of severe inflammation, as it is not detected in a model of mild–
moderate ovalbumin-induced asthma.36 PR3-resistant mutants 
induce longer lasting anti-inflammatory effects and more rapid 
disease resolution in experimental models of inflammation, 
indicating that proteolytic cleavage terminates the proresolving 
activities of annexin-1.26 27 Moreover, annexin-A1 proteolysis by 
specific proteases generates proteolytic fragments that promote 
neutrophil transendothelial migration.37 In our study, inhibition 
of airway neutrophilia in response to ISO-1 was associated with 
a concomitant reduction in the overall extent of annexin-A1 
cleavage, indicating an active role for annexin-A1 cleavage in 
the neutrophilic response.

We identify a previously unknown role for MIF in annexin-A1 
cleavage involving direct protein–protein interactions. MIF is 
a molecular chaperone14 that may potentially induce confor-
mational changes promoting annexin-A1 externalisation and 

Figure 9  ISO-1 protects annexin-A1 against proteolytic cleavage in experimental severe asthma. Mice were treated with VEH, ISO-1, DEX or ISO-1 
and DEX 30 min prior to HDM challenge. Alternatively, mice were treated with two doses of ISO-1 given 30 min prior and 6 hours post HDM challenge 
(HDM+ISO-1 bid). Control mice were treated with PBS only. (A) Annexin A1 protein expression was measured by immunoblotting in lung tissue 
lysate (lanes 1–7) and BALF (lanes 8 and 9). Lanes 1 and 8: PBS, lanes 2 and 9: HDM, lane 3: HDM+VEH, lane 4: HDM+ISO-1 bid, lane 5: HDM+ISO-1, 
lane 6: HDM+DEX, lane 7: HDM+ISO-1+DEX. Image representative of data from four mice. (B) Sum total of annexin-A1 cleavage products (33 and 
28 kDa) measured in BALF by immunoblotting. Ponceau S staining was used to confirm equal protein loading for measurements made in cell-free 
BALF. Data represent mean±95% CI. (C,D) Immunoblots demonstrating MIF, full-length ~37 kDa annexin-A1 and cleaved ~28 kDa annexin-A1 
protein bands in immunoprecipitated MIF–protein complexes from lung tissue lysates. MIF and annexin-A1 were not detected in protein complexes 
immunoprecipitated with an isotype control antibody confirming antibody specificity, as seen in (C).β-actin was used to confirm equal protein 
loading. *P<0.05, **P<0.01 vs PBS group. #P<0.05, ##P<0.01 vs HDM group. n=7 mice per group. DEX, dexamethasone; HDM, house dust mite; MIF, 
macrophage migration inhibitory factor; PBS, phosphate buffered saline; VEH, vehicle.
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susceptibility to proteolytic cleavage. Patients with severe asthma 
have raised levels of IFN-γ and lower levels of secretory leuco-
cyte protease inhibitor (SLPI) in their airway epithelium. IFN-γ 
augments AHR through inhibition of SLPI,38 and SLPI protects 
annexin-A1 from proteolysis.39 These data support increased 
annexin-A1 cleavage in severe asthma and our proposed 
mechanism.

Although there were greater numbers of airway neutrophils in 
severe asthma versus non-severe asthma, there was no difference 
in BALF annexin-A1 protein levels between these two groups in 
the SARP-3 cohort.31 The differences in findings may be due to 
the different methods used to measure annexin-A1. However, 
reduced annexin-A1 expression at both the gene and protein 
level in TAC2 and overall negative correlation between annex-
in-A1 protein and sputum neutrophils in patients with severe 
asthma suggest it is unlikely to be a spurious finding. Moreover, 
while our experimental findings indicate that MIF acts at the 
level of annexin-A1 cleavage, evidence of reduced annexin-A1 
gene and protein expression in TAC2 suggests that MIF may 
also inhibit annexin-A1 gene and protein expression. In support, 
exogenous MIF downregulates annexin-A1 protein in RAW 
264.7 macrophages.40 Further studies should examine effects of 
MIF on annexin-A1 mRNA and protein expression and post-
translational modifications in the context of the airway inflam-
matory response.

MIF also inhibits glucocorticoid-induced expression of annex-
in-A140 and other glucocorticoid-regulated genes, namely, 
GILZ41 and DUSP-1,41 42 in certain cell types in vitro. We previ-
ously reported that annexin-A1 is required for glucocorticoid-
mediated upregulation of GILZ and DUSP-1 in macrophages 
and fibroblasts, respectively, indicating that annexin-A1 activa-
tion lies upstream of these proteins.43–45 Consistent with this, 
mice deficient in GILZ respond to glucocorticoids and resolve 
lung neutrophilic inflammation due to endogenous annexin-A1 
activity.46 Our findings from U-BIOPRED, however, provide 
clear evidence of divergent regulation of annexin-A1 and GILZ/
DUSP1 in asthma. In addition, contrary to evidence that MIF 
inhibits GILZ and DUSP1 expression in specific cell types in 
vitro, we observed significant positive correlations between 
MIF protein abundance and these genes in asthmatic subjects. 
Expression levels of TSC22D3 and DUSP1 were also positively 
correlated with oral corticosteroid use, suggesting these path-
ways are most likely intact. These findings highlight the need 
for further investigation of the molecular interactions between 
MIF and major effectors of the glucocorticoid response in severe 
asthma.

In conclusion, we demonstrate that reduced glucocorti-
coid responsiveness is related to endogenous mechanisms that 
potentially impair the proresolving activities of glucocorticoids. 
Thus, MIF impairs glucocorticoid-mediated resolution of the 
neutrophilic response by inhibiting the expression and activity 
of annexin-A1 (figure 10). Complete characterisation of annex-
in-A1 cleavage and its functional significance is an important 
area for further investigation as this will establish whether exces-
sive and/or dysregulated annexin-A1 cleavage is significant in the 
persistence of airway neutrophilia in severe asthma.
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