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• Forward modelling of segmented TEG 
via iterative training artificial neural 
network. 

• Factors including geometrical parame-
ters, operating conditions, and contact 
resistance are considered. 

• Prediction of TEG power density with 
extremely high accuracy over 98% using 
iterative training method compared to 
94% using the traditional training 
method. 

• Capability to perform TEG design opti-
mization with much higher efficiency 
than the conventional approach.  
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A B S T R A C T   

Renewable energy technologies are central to emissions reduction and essential to achieve net-zero emission. 
Segmented thermoelectric generators (STEG) facilitate more efficient thermal energy recovery over a large 
temperature gradient. However, the additional design complexity has introduced challenges in the modelling and 
optimization of its performance. In this work, an artificial neural network (ANN) has been applied to build 
accurate and fast forward modelling of the STEG. More importantly, we adopt an iterative method in the ANN 
training process to improve accuracy without increasing the dataset size. This approach strengthens the pro-
portion of the high-power performance in the STEG training dataset. Without increasing the size of the training 
dataset, the relative prediction error over high-power STEG designs decreases from 0.06 to 0.02, representing a 
threefold improvement. Coupling with a genetic algorithm, the trained artificial neural networks can perform 
design optimization within 10 s for each operating condition. It is over 5,000 times faster than the optimization 
performed by the conventional finite element method. Such an accurate and fast modeller also allows mapping of 
the STEG power against different parameters. The modelling approach demonstrated in this work indicates its 
future application in designing and optimizing complex energy harvesting technologies.   
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1. Introduction 

Innovation in renewable technology needs to play a significant role 
in the roadmap toward net-zero emission (NZE) by 2050 [1]. Developing 
novel renewable energy technologies is key to staying on the path to 
NZE. Thermoelectric generators (TEGs) can convert thermal wasted 
energy into electricity and have also attracted tremendous attention as a 
potential renewable energy technology [2]. TEGs are based on the 
Seebeck effect. A voltage will be generated when a temperature gradient 
is applied across a thermoelectric material. By placing the n-type and 
p-type thermoelectric materials thermally in parallel and electrically in 
series, power can be generated under a solid-state operation mode with 
high reliability, low maintenance requirement, and long lifetime [3, 4]. 
Despite those advantages, TEGs suffer less efficiency than their coun-
terpart technologies (e.g., solar cells), which significantly limits their 
large-scale application. Such low efficiency originates from the limited 
material thermoelectric properties and preliminary generator design 
and optimization [5]. Over the past few decades, significant break-
throughs have been made to enhance thermoelectric materials’ perfor-
mance (evaluated by the figure-of-merit, ZT). With prominent examples 
includes SnSe [6], PbTe [7], Zn4Sb3[8] for mid-high temperature ap-
plications and Bi2Te2.7Se0.3 [9], Bi0.4Sb1.59Ge0.01Te3 [10] and 
Mg3Sb1.5Bi0.5 [11] for room-temperature applications been reported to 
reach high ZT values over 1. 

Concurrently with the development of thermoelectric materials, 
novel TEG modules have also been proposed to improve their power 
generation performance [5]. Segmented TEG (STEG) is a critical module 
concept proposed to improve efficiency when operating under a signif-
icant temperature difference [12]. STEG combines a highly efficient 
material at high temperatures with another highly efficient material at 
low temperatures. Under ideal conditions, the two materials will operate 
only in their most efficient temperature range, thereby improving 
overall performance [13]. Flueiral et al. proposed a new STEG design 
which achieved a conversion efficiency of 15% under a temperature 
difference of 675 K, 20% higher than previously achieved [14]. As ZT is 
a highly temperature-dependant parameter and each thermoelectric 
material usually has its optimum performance over a relatively small 
temperature range, the development of STEG that combines two or more 
materials with different operating temperatures in series in the TEG legs 
has been proven to be an effective way to improve the TEG efficiency 

[15]. In particular, Zhang et al. have demonstrated a record-high effi-
ciency of up to 12% by deploying STEG modules consisting of Bi2Te3--
based alloys and CoSb3-based filled skutterudites [16]. 

With the high-performance material and TEG module developed, the 
next task is to optimize the module design for higher efficiency. How-
ever, optimizing the TEG module is challenging due to the temperature 
dependence of the material properties and the inherent complexity in 
TEG designs involving several inter-dependant parameters [17]. Several 
optimization approaches, including genetic algorithms that simulate 
natural selection[18, 19], the Taguchi method [20], and the 
Hill-climbing algorithm [21], have been proposed. Nevertheless, TEG 
design optimization requires rigorous procedures and accurate TEG 
modelling approaches. In general, the modelling of TEGs can be con-
ducted through a theoretical system or numerical process. Simple 
theoretical models have been developed to investigate the optimization 
of thin-film TEGs [22]. Snyder et al. discussed the relationship between 
TEG efficiency and materials through theoretical modelling [23]. Fan 
has also modelled STEG under certain conditions through theoretical 
equations [24]. Another approach for predicting TEG performance is to 
use numerical modelling. The primary approach to numerical modelling 
is to solve the physical equations to calculate the required parameters. 
The established equations can be divided into one-dimensional models 
and three-dimensional models. Many researchers have proposed 
simplifying the three-dimensional model into a one-dimensional one to 
simplify the computational difficulties. Parameters such as the current 
and voltage of the TEG are estimated by integration in a single dimen-
sion, simplifying the calculation [25, 26]. Zhang et al. developed a 
one-dimensional model to discuss the relationship between leg ratio and 
the efficiency of segmented TEGs [23]. Zhu et al. combined a 
one-dimensional (1-D) numerical model of the STEG with a genetic al-
gorithm for optimization [18]. Despite their high modelling speed, these 
simplified 1-D models ignored the lateral thermoelectric effects and 
boundary conditions due to the limitation of their models. This limita-
tion inevitably leads to lower modelling accuracy when comparing with 
3-dimensional (3-D) numerical models. [27]. The 3-D models based on 
commercial finite element method (FEM) software such as ANSYS and 
COMSOL allow the consideration of all thermoelectric parameters and 
boundary conditions and enables high modelling accuracy. Ouyang 
et al. modelled the STEG through ANSYS [28], and Ge et al. applied a 
3-D COMSOL model in their evolutionary algorithm-based optimization 
of a STEG [29]. However, this accuracy is achieved in exchange for 
significant calculation resources and computing time. 

Artificial neural networks (ANNs), the basis of deep learning tech-
nology, have recently attracted tremendous attention for their applica-
tion in extensive data analysis [30], image recognition [31], and 
modelling [32]. Owing to its powerful fitting ability, the regression ANN 
models have also been utilized in the energy sector by modelling energy 
consumption [33] and forecasting energy demand [34, 35]. Recently, 
we have applied ANN in the forward modelling of a conventional TEG 
[36]. The ANN model can intelligently learn the non-linear relations. In 
this work, it is between the TEG inputs (i.e., geometrical parameters and 
operating conditions) and its performance (i.e., power density and ef-
ficiency) [37]. Research on artificial neural networks for thermoelectric 
generators has also included collecting data from experimental data to 
train the network and make predictions [38]. Garud et al. modelled the 
thermoelectric generators with an artificial neural network and the 
Adaptive Neuro-Fuzzy Interface System to predict the results [39]. In 
addition, Angeline et al. predicted the performance of hybrid thermo-
electric generators by artificial neural networks [40]. Also, Wang et al. 
added the selection of thermoelectric materials to the artificial neural 
network modelling [41]. Compared with theoretical and numerical ap-
proaches, ANN is much more cost-effective and capable of balancing 
accuracy and speed. It can also be coupled with a genetic algorithm to 
realize fast TEG design optimization. However, most of the ANN models 
are based on the standard bulk TEG with only one TE material for each 
leg. A more complex Segmented TEG is modelled in our article which 

Nomenclature 

ATEG Top ceramic area of STEG (cm2) 
Qin/A Heat flux density (mW/cm2) 
Ht Height of the ceramic layer 
Tc Cold-side temperature (K) 
ρct Top Contact resistivity (Ω⋅m2) 
FF Filling Factor 
αN The ratio of N-type high-temperature material height to 

the overall STEG leg height 
S Seebeck coefficient 
σ Electrical Conductivity (S/m) 
HTE Height of the STEG leg (mm) 
HIC Height of the interconnect (mm) 
Wn Widths of the n-type leg (mm) 
Wp Widths of the p-type leg (mm) 
ρcb Bottom Contact resistivity (Ω⋅m2) 
PDmax Power density (mW/cm2) 
αP The ratio of P-type high-temperature material height to 

the overall STEG leg height 
k Thermal Conductivity (W/m⋅K) 
R2 Coefficient of determination value  
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contains two TE materials for each leg in order to maximise the effi-
ciency. However, this introduces complexity in the modelling as one will 
need to consider additional parameters such as material ratios for each 
leg. In addition, a larger operating range (e.g. heat influx, temperature 
difference) needs to be considered to appreciate the advantage of STEG. 

As a data-driven approach, the performance of ANN crucially de-
pends on both the quantity and quality of the training dataset, which is 
traditionally generated via a randomized procedure. The network learns 
to interpolate the training data through gradient descent during the 
training process. However, such interpolation can be unsatisfactory. It 
sometimes happens when the training data has sharp features, or the 
network aims to model some specific features [42]. In the case of TEG 
modelling, we are particularly interested in TEG designs that could 
produce high power performance. However, such designs only consti-
tute a small fraction of the training dataset. For the ANN to accurately 
predict these high-performance designs, the dataset size needs to be 
sufficiently large, especially for complex designs that involve multiple 
parameters. A large dataset is essential for STEG due to the complexity 
introduced by additional TE materials and parameters in the design 
[43]. Nevertheless, a large dataset implies high demand for a compu-
tational resource if the dataset is generated by numerical simulations (e. 
g., FEM), which can be prohibitive for the application of ANN. It is, 
therefore, essential to develop a training approach that allows high 
modelling accuracy for high-power performance STEG designs without 
additional requirements for the dataset size. 

This work reports the forward modelling of the STEG using a fully 
connected ANN. We aim to improve the modelling accuracy on high- 
power performance designs while keeping the same training dataset 
size. Consequently, we adopted a novel iterative training strategy to 
strengthen the proportion of these designs in the dataset through an 
optimization process [44, 45]. During the iterative training process, the 
ANN is initially trained through a random, uniformly distributed data-
set. Based on this trained neural network, a new dataset is generated 
with an optimization algorithm (e.g., genetic algorithm) to contain 
high-power performance designs. This dataset is used to train a new 
neural network. After training, the ANN can predict the STEG power 
performance over 100,000 times faster than the equivalent FEM simu-
lation (under the same computing environment). More importantly, the 
iteratively trained network demonstrate significantly improved perfor-
mance when predicting high-performing STEG designs. This superior 
modelling capability in STEG analysis and design optimization by 
coupling with the genetic algorithm is also demonstrated. Under the 
same STEG optimization process, we demonstrate an improved predic-
tion accuracy from 93.0% to 99.4% by adopting this iterative training 
method. 

2. Method 

2.1. Physical model and boundary conditions 

Fig.1a shows the STEG modelled in this work. The top and bottom 
brown insulating layers in Fig. 1a are aluminium nitride ceramics with 
high thermal conductivity. Immediately adjacent to the insulation is the 
top electrode made of copper. Each TEG leg consists of a high- 
temperature (top) and a low-temperature (bottom) thermoelectric ma-
terial. Thermoelectric materials developed from past studies are 
selected. Their associated ZT values are shown in Fig 1b. For the n-type 
leg, PbTe0.998I0.002–3%Sb [46] was selected as the high-temperature 
material (dark red), and Bi2Te2.7Se0.3 [9] was selected as 
low-temperature material (light red). For the p-type leg, 
K0.02Pb0.98Te0.15Se0.8 (dark blue) [47] and Bi0.5Sb1.5Te3 (light blue) 
[48] were selected as high and low temperature materials, respectively. 
The temperature-dependant thermoelectric properties, including the 
Seebeck coefficient (S), and electrical and thermal conductivities (σ and 
k), are shown in Fig. S1. The fitting equations for each property are listed 
in Table S1. 

The model variables are divided into design parameters and oper-
ating conditions. Design parameters include the geometrical height 
(HTE) and width (WTE) of the n-type and p-type legs. In this work, the 
widths of the two legs are kept the same and can be defined by the fill 
factor (FF), which is the ratio between the cross-sectional areas of the 
two legs (W2

n + W2
p ) and the entire device (ATEG). For STEG, two addi-

tional design parameters, αN and αP, need to be defined to model the 
ratio of the n-type and p-type high-temperature material height to the 
overall leg height (HTE). The operating conditions involve the density of 
heat flux into the thermoelectric generator (Qin) as well as the electrical 
contact resistivities at the electrode and thermoelectric materials 
interface. It is worth mentioning that the STEG can also be modelled 
under the constant temerature difference conditions. However, only the 
constant heat flux conditions is considered in this work as such scenario 
is more common in the real world. Electrical contact resistivities be-
tween the upper and lower electrode to material interfaces (ρct and ρcb) 
are also included in the model as the operating conditions. In addition, 
several parameters are kept constant in the model. The insulation 
thickness (Ht) and the electrode thickness (HIC) are both fixed at 0.5 mm. 
The entire device area (ATEG) is fixed at 1 cm2 Moreover, only one 
thermocouple is investigated. In addition, the cold side temperature Tc is 
fixed at 293.15 K and convectional heat flux on all open internal surfaces 
with a heat transfer coefficient of 1 mW/(cm2⋅K) and external temper-
ature of 293.15 K to include surface heat convection to air [49]. 

Fig. 1. (a) Schematic of the singe-pair segmented thermoelectric generator modelled in this study. Temperature-dependant. (b) the ZT of the n-type and p-type 
thermoelectric materials selected for the STEG in this work [9, 46–48]. 

Y. Zhu et al.                                                                                                                                                                                                                                     



Energy and AI 12 (2023) 100225

4

2.2. Dataset generation and ANN training 

3-D FEM-based simulations using COMSOL Multiphysics® software 
were used to generate the dataset for ANN training. This commercial 
simulation tool was chosen for its robust and accurate calculation of the 
parameters associated with the complex TEG model [50]. The specific 
parameter ranges and resolutions for all variables are tabulated in 
Table 1. In the STEG COMSOL modelling, the relevant governing 
equations are: 

J = σ
(
− ∇V +Eemf

)
(1)  

Eemf = − S∇T (2)  

q = PJ − k∇T (3)  

Qth = − μthJ∇T (4)  

P = ST (5)  

ρCpu⋅∇T = ∇⋅(k∇T) + JE (6)  

where J is the current density, σ the electrical conductivity, V the 
voltage, S the Seebeck coefficient, T the temperature. Qth is the heat 
generated by the Thomson effect, and μth is Thomson coefficient. P is 
Peltier coefficient. q and k are the heat flux and thermal conductivity, 
respectively. Eq. (6) describes electromagnetic heating, where ρ is the 
density, Cp is the heat capacity and u is the velocity field. The electrical 
terminal was connected directly to a load resistance for each simulation 
and swept from 1/100 to 100 times the estimated internal resistance. 
The maximum output power was then extracted from a parabolic fit of 
the output power against the current, as shown in Fig. S2. The impact of 
mesh size on the simulation accuracy was evaluated by simulating an 
identical parameter set with varying mesh sizes, as shown in Fig. S3. The 
"Fine" mesh size with 8012 elements has been employed for all simu-
lations due to its high accuracy and reasonable computation time. 

The dataset is generated uniformly and randomly based on the range 
and resolution of Table 1 as the input dataset of ANN (HTE, FF, αN, αP,

ρct , ρcb, Qin). The resulting dataset is therefore referred to as a uniform 
dataset. These variables were subsequently simulated in COMSOL 
Multiphysics® software to obtain the corresponding output maximum 
power density (PDmax) amongst different load resistors of the STEG as 
the output dataset of ANN. As the simulation focuses on constant heat 
flux, efficiency and power density can be calculated from each other. 
Therefore, only one parameter, power density (PDmax), was selected as 
output in the dataset. 

The structure of the ANN in this work is shown in Fig. 2. The network 
contains an input layer that includes four design parameters (HTE, FF,
αN, αP) and three operating conditions (ρct , ρcb, Qin), as well as an 
output layer containing the STEG power performance (PDmax). There are 
five hidden layers between the input and output layers, with 200 

neurons per layer. The network training begins by dividing the dataset 
into three sub-datasets for training, validation, and testing. Training 
data are fed to the ANN to optimize the network by updating the weights 
and bias of each neuron through backpropagation; validation data are 
used to examine the network, serving as a check of the training and an 
indicator for any overfitting or under-fitting behaviour during the 
training process; testing data are entirely new data to the network and 
were used to test the prediction accuracy of the network after training. 
The ANN is trained by taking the input dataset and computing it in the 
neural network to produce the ANN output. The mean squared error 
(MSE), a standard loss function used in ANN training, is used to measure 
the difference between the ANN’s computational output and the data-
set’s output. The MSE is reduced by adapting the ANN parameters. All 
network training was conducted through the Python platform using the 
PyTorch module. The specific training parameters and details of the 
training process can be found in the support information. All COMSOL 
simulation and python scripts are running on the platform of Intel 
10980xe CPU with Radeon RX 6900XT graphic card. 

3. Results and discussion 

3.1. Iterative ANN training 

A conventional ANN training involves only one dataset and one step 
training process as shown in Fig. 3a. Because the dataset is randomly 
generated and only contains low-performing TEG designs, the trained 
ANN (Uni4000) is only capable of predicting low-performing TEGs. Our 
novel iterative training process has two steps as shown in Fig. 3b. An 
ANN was first trained using a dataset containing 3000 uniformly 
distributed input data (Uni3000). The uniform distribution of the input 
parameters of Uni3000 is presented in Fig. S4. The ANN training process 
details are similar to our previous work [36] and are provided in the 
Supporting Information. We then coupled Uni3000 with genetic algo-
rithm (GA), a meta-heuristic optimization algorithm, to identify the 
high-performing STEG designs at different operating conditions. The 
process of the specific genetic algorithm and the relevant parameters can 
be found in the Supporting Information. The corresponding STEG de-
signs with the best performances can be obtained by generating 1000 
different operating conditions based on Table 1. However, the maximum 
power density values generated by the neural network (Uni3000) are not 
accurate enough. This inaccuracy is especially significant in the high 
PDmax region because fewer high-performance samples in the uniform 
dataset can be used as the output for the dataset. Instead, the newly 

Table 1 
Ranges and resolutions of the geometrical parameters and operating conditions 
used in this work.  

Geometrical Parameter Value Range Resolution 

Height of the TE leg (HTE) 1–10 mm 0.1 mm 
Filling Factor (FF) 0.05–0.95 0.01 
High-Temperature n-type TE leg height 

ratio (αN) 
0.05–0.95 0.01 

High-Temperature n-type TE leg height 
ratio (αP) 

0.05–0.95 0.01 

Operating Condition Value Range Resolution 
Heat flux (Qin) 100–2000 

mW/cm2 
1 mW/cm2 

Top side contact resistivity (ρct) 10¡9–10¡7 Ω⋅m2 10¡9 Ω⋅m2 

Bottom side contact resistivity (ρcb) 10¡9–10¡7 Ω⋅m2 10¡9 Ω⋅m2  

Fig. 2. . The architecture of the forward modelling ANN for predicting the 
power density of the STEG model. The input layer contains design parameters 
(HTE, FF, αN , αP) and operating conditions (ρct , ρcb, Qin). The output layer 
contains power performance values (PDmax). 
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obtained design parameters and their operation conditions were simu-
lated in COMSOL to produce the true maximum power density values. It 
is important to note that obtaining the Uni3000 network is essential in 
this iterative training process. It enables fast modelling of the STEG 
power performance, which significantly reduces the GA optimization 
time [36]. 

The dataset generated by the genetic algorithm was found to have 
unique characteristics. Fig. 4 compares the distribution of the GA 
generated dataset with the randomly generated dataset. The GA gener-
ated one is not conformed to a uniform distribution and is therefore 
referred to as the biased dataset. This highly non-uniform dataset rep-
resents STEG designs with high power performance. For example, the 
larger HTE and smaller FF are favourable for achieving high power 
outputs (Fig. 4a and b). This trend is likely to be linked with the thermal 
conductance of the TE legs. Longer and smaller legs can result in a more 
significant temperature gradient across the TE materials under the 
constant heat flux condition. Similarly, both αN and αP also demonstrate 

biased distributions that correspond to the high-power STEG designs. 
The addition of such a biased dataset will help strengthen the proportion 
of these designs in the dataset. 

After obtaining the biased dataset, a new dataset containing the 
original 3000 uniform data and this 1000 biased data was produced and 
used to train the new ANN (referred to as Iter4000). To better evaluate the 
performance of this Iter4000 network, a separate ANN was trained using a 
uniform dataset containing the same number of 4000 data (referred to as 
Uni4000). The validation and test datasets in training two ANN were 
consistent during the training process. The specific training loss func-
tions for Iter4000 and Uni4000 are presented in Fig. S5. 

3.2. Evaluation of two ANN training processes 

We will first evaluate the prediction performance of the ANNs using a 
uniform test dataset. The uniform test dataset (Utd) was first randomly 
generated using 500 different input parameters (with operating 

Fig. 3. (a) Coventional ANN training process. (b) Iterative ANN training process.  

Fig. 4. Distribution of the design parameters (a) HTE, (b) FF, (c) αN , (d) αP in the 1000 uniform datasets (red) and biased datasets (blue).  
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conditions and geometrical parameters). Then the input dataset is fed 
into COMSOL to simulate the output data. The distribution of Utd is 
shown in Fig. S8. We define the relative error for comparison to better 
demonstrate the prediction performance. The relative error is defined as: 

Relative Error = |PCOMSOL − PANN|/PCOMSOL, where PCOMSOL is the true 
maximum power density obtained from COMSOL simulation while PANN 
is the results predicted by the ANN. On this basis, the prediction accu-
racy can be calculated as: 

Prediction accuracy = (1 − Relative Error) × 100%. 
Fig. 5 presents the distribution and average relative error for the 

Uni4000 and Iter4000 ANNs on the uniform test dataset. Both networks 
demonstrate minor relative errors of 0.021 and 0.024, corresponding to 
a high prediction accuracy of 97.9% for Uni4000 and 97.6% for Iter4000. 
This accuracy is further confirmed by plotting the true PDmax (from 
simulation) in the uniform test set against the predicted PDmax by 
Uni4000 and Iter4000, respectively (shown in Fig. 5b and c). It can be 
observed that the high prediction accuracy of our ANN prevails over the 
entire power range, producing a high coefficient of determination value 
(R2) of over 0.999 for both networks. The slightly higher accuracy for 
Uni4000 can be explained by the difference between the additional 1000 
uniform dataset and 1000 biased dataset used in their training process. 
Such a slight difference suggests that our Iter4000 ANN can also provide 
accurate predictions for random STEG designs. 

However, the critical advantage of iterative training lies in its pre-
diction over biased high-performance STEG designs. To evaluate this 
performance, we generated a new biased test dataset with the aid of 
genetic algorithm optimization to measure the performance of ANN. We 
first generated 500 different sets of operating conditions randomly and 
fed them into GA and Iter4000 to obtain the optimized geometrical pa-
rameters for each operating condition. These 500 input dataset were 
then simulated in COMSOL to achieve the true output and complete the 
dataset generation. This biased test dataset is named Btd. The distribu-
tion of Btd is presented in Fig. S8. 

When such a biased test dataset was used for evaluation, the average 
relative error for Uni4000 ANN increased three times to 0.06, as shown in 
Fig 6a. This increase is accompanied by a large proportion of errors over 
0.05, indicating that the ANN trained via the conventional approach has 
significant limitations in fitting the high-performance designs. On the 
other hand, the Iter4000 ANN maintains its superior prediction perfor-
mance with an average relative error of 0.02 and prediction accuracy of 
98%. Fig. 6b and 6c present the true PDmax (from simulation) in the 
biased test dataset (Btd) against the predicted PDmax. It is also clear that a 
higher coefficient of determination value is obtained for the Iter4000 
ANN than the Uni4000 ANN. This improvement strongly suggests the 
benefit of the iterative training process. By including a proportion of 
biased data in the training dataset, the network excels in predicting 
high-performance STEG designs while retaining its high accuracy in 
random STEG design prediction. 

We will now evaluate the prediction accuracy of the iterative ANN 
and the uniform ANN in STEG design optimization by coupling it with 
GA. GA optimization with COMSOL as the alternative forward modeller 

is conducted to obtain the genuinely optimized design and power per-
formance as a reference. Fig. 7a presents the GA optimized PDmax under 
different heat flux conditions by coupling with COMSOL (black), Uni4000 
(red), and Iter4000 (blue). The optimized design parameters from each 
approach are listed in Table S4 and S5. It can be observed that the 
Iter4000 optimized values are closer to the COMSOL optimized values 
than those optimized by Uni4000. The relative errors of the two different 
ANNs (Uni4000, Iter4000) were calculated based on the optimal PDmax 
from the COMSOL simulation assisted GA optimization. Fig. 7b shows 
the relative errors of the optimized PDmax for the Uni4000 ANN (red bar) 
and Iter4000 ANN (blue bar). The relative error for Uni4000 ANN increases 
significantly from 0.02 to over 0.1 when the input heat flux increases 
from 200 mW/cm2 to 1500 mW/cm2. Given that more considerable heat 
flux is more likely to produce a large PDmax, the poor performance of 
Uni4000 ANN is likely due to the limited high power performance data in 
the uniform training dataset. On the contrary, the relative error for 
Iter4000 ANN is significantly smaller and remains below 0.02 for all heat 
flux conditions, suggesting a high accuracy over 98%. Similarly, it 
outperforms the Uni4000 ANN under various contact resistivity condi-
tions, as shown in Fig. 7c and 7d. Over these 10 different operating 
conditions presented in Fig. 7, Iter4000 achieved an average accuracy of 
99.4% compared to the 93% accuracy obtained by Uni4000, further 
suggesting the superiority of our iterative training process. In addition, 
the high accuracy for Iter4000 also suggests it can sufficiently replace 
COMSOL simulation for STEG optimization. The average optimization 
time for ANN coupled GA is only ca. 6.3 s. In comparison, over 35,000 s 
(ca. 10 h) are required for COMSOL coupled GA under the same 
computational environment. This speed saves computational time and 
resources over 5000 times. 

3.3. STEG analysis using iterative ANN 

We have established the advantages of STEG modelling through 
iterative ANN, where its high prediction accuracy and speed ensure fast 
and accurate design optimization. Such benefits also allow the rapid 
generation of accurate parameter-performance data that are otherwise 
difficult to obtain through conventional modelling approaches. This 
large amount of data could contribute to the in-depth study of the STEG 
and unveil relations that have not been investigated before due to the 
complexity of the STEG structure. As an example, Fig. 8a presents the 
PDmax values as a function of HTE and FF, where other parameters and 
conditions remain constant. The lines are the output of iterative ANN, 
and the triangles are the corresponding COMSOL simulation results. The 
PDmax increases progressively with increasing HTE and decreasing FF,
which could be understood as an increase of the TE leg thermal resis-
tance and consequently resulting in a more considerable temperature 
difference across the device. The benefit of a more significant temper-
ature difference outweighs the increased electrical resistance, which is 
likely dominated by contact resistance. 

Fig. 8b demonstrates the dependence on different heat fluxes. As can 
be seen in Fig. 8b, the output PDmax increases as FF decreases when Qin is 

Fig. 5. Comparison of COMSOL output PDmax for two different ANNs on the uniform test dataset (Utd) (a) the histogram of the probability, (b) the average relative 
errors of Uni4000, and (c)the average relative errors of Iter4000. 

Y. Zhu et al.                                                                                                                                                                                                                                     



Energy and AI 12 (2023) 100225

7

relatively small. This tendency is because the temperature difference 
between the two ends of the STEG is not very significant. Hence, the 
benefit of the increase in thermal resistance outweighs the loss due to 
the rise in resistance. When Qin = 2000 mW/cm2, on the other hand, the 
output increases and then decreases with decreasing FF. Since the en-
ergy from Qin is so great that the temperature difference between the two 
ends of the STEG reaches the optimum operating region for high- 
temperature materials when the FF is reduced to around 0.1. The ther-
mal resistance increase caused by continuing to minimise FF does not 
exceed the losses caused by the electrical resistance at this point, so the 
output PDmax is decreased. The triangles in Fig. 8 represent the COMSOL 
simulation results, which indicates that the values predicted by the 
Iter4000 are very close to the real data and further validate the accuracy 
of the Iter4000 model. 

The relationships between the design parameters are complex when 

multiple parameters (e.g., αN and αP) vary simultaneously. Taking 
advantage of the ultra-fast computing speed, we performed a thorough 
mapping of PDmax under different αN and αP combinations as an 
example. Fig. 9 shows the PDmax of the biased ANN obtained by scanning 
αN and αP. Fig. 9a to 9c present the predicted PDmax mapping under the 
heat flux of 500, 1000, and 1500 mW/cm2, respectively. It can be 
observed that when the Qin is increased, the peak PDmax will be shifted to 
a larger αN and αP value to include more high-temperature material in 
the STEG design. Similarly, under different contact resistivity condi-
tions, the impact of αN and αP values on PDmax is somewhat similar, as 
shown in Fig. 9d to 9f. However, as the contact resistance increases, the 
output power decreases significantly. Our iterative ANN can also 
effortlessly generate similar mappings over other design parameters and 
operating conditions. 

Each mapping contains 8281 (91 × 91) modelling results and could 

Fig. 6. Comparison of COMSOL output PDmax for two different ANNs on the biased test dataset (Btd) (a) the histogram of the probability, (b) the average relative 
errors of Uni4000, and (c)the average relative errors of Iter4000. 

Fig. 7. Genetic algorithm optimized STEG PDmax using ANN Iter4000 (blue), uniform ANN Uni4000 (red), and COMSOL simulation as forwarding modellers (a), and 
the associated relative errors from Iter4000 (blue) and Uni4000 (red) compared with the COMSOL (b) as a function of different Qin; Genetic algorithm optimized 
STEG PDmax using ANN Iter4000 (blue), uniform ANN Uni4000 (red), and COMSOL simulation as forwarding modellers (c), and the associated relative errors from 
Iter4000 (blue) and Uni4000 (red) compared with the COMSOL (d) as a function of different ρc. 
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take over 330,000 s (~ 91 h) for COMSOL to simulate. The application of 
our iterative ANN will only take 3 s under the same computational 
environment, which represents over 100,000 times efficiency improve-
ment. Even adding the dataset preparation time it is also 2 times faster 
than COMSOL simulation. Moreover, this advantage will increase with 
more frequent use of the ANN. Fig. 10 shows the time required for both 
methods to perform multiple number of modelling and GA optimisations 
under the same computation conditions. The training time of the ANN is 

considered in this comparison. It is clear that the amount of time saved 
by using ANN easily recovers the up-front computational time for the 
network when more than 4000 modelling is required (Fig. 10a) or more 
than 2 GA optimisations are needed (Fig. 10b). This manifests the 
extremely high computational efficiency of our ANN approach. 

Table 2 lists a range of reported works on the modelling of STEG in 
comparison to this work. Our iteratively trained ANN can provide more 
operating conditions and parameters than those theoretical and 1-D 

Fig. 8. PDmax obtained from iterative ANN (line) and COMSOL simulation (triangles) as a function of (a) HTE and FF, (b) Qin, and FF. .  

Fig. 9. PDmax of iterative ANN obtained by scanning αN and αP at different heat flux (Qin) conditions of (a) 500 mW/cm2, (b) 500 mW/cm2, (c) 500 mW /cm2, 
respectively with other parameters fixed; PDmax of iterative ANN obtained by scanning αN and αP at different electrical conductivity (ρct = ρcb = 10− 9) conditions (d) 
10− 9Ω⋅m2(e) 5 × 10− 8Ω⋅m2 and (f) 10− 7Ω⋅m2, respectively. 

Fig. 10. The required computational time as a function of (a) the number of modelling and (b) the number of optimization for ANN (blue) and COMSOL (black).  
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numerical models. It also outperforms the 3-D numerical models with 
superior modelling speed. 

4. Conclusions 

In conclusion, this work uses an artificial neural network to report 
the forward power performance modelling for the segmented thermo-
electric generator. After training using a dataset from 3-D COMSOL 
simulations, the neural network can predict the power performance 
under varying heat flux conditions from different design parameters. 
Moreover, it can still consider the electrical contact resistance, surface 
heat transfer, and other thermoelectric effects. An iterative training 
strategy was implemented to improve the prediction accuracy of the 
high-power performance STEG designs without increasing the training 
dataset size. This prediction accuracy of the iterative trained artificial 
neural network increases from 94% to over 98% without requiring a 
larger dataset. This high accuracy is essential to ensure the correct STEG 
design optimization results. In addition to superior accuracy, the neural 
network demonstrates extremely high efficiency, which is beneficial for 
fast design optimization and parameter dependence analysis. Coupled 
with a genetic algorithm, the network can achieve one design optimi-
zation for 6.3 s, 5000 times faster than COMSOL, but with almost 
identical optimized values. Large parameter scans have also revealed the 
relationship between the STEG power output and the segment material 
ratios. Only 3 s is required for the network to conduct a parametric scan 
containing 8281 data points, representing over 100,000 times of effi-
ciency improvement. This machine learning enabled modelling 
approach demonstrated in this work indicates its future application in 
designing and optimizing complex energy harvesting technologies. 
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