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ABSTRACT
Magnetars are conjectured to be highly magnetized neutron stars (NSs). Strong internal magnetic field and elasticity in the crust
may deform the stars and lead to free precession. We study the precession dynamics of triaxially-deformed NSs incorporating
the near-field and the far-field electromagnetic torques. We obtain timing residuals for different NS geometries and torques. We
also investigate the polarized X-ray and radio signals from precessing magnetars. The modulations on the Stokes parameters
are obtained for thermal X-rays emitted from the surface of magnetars. For radio signals, we apply the simple rotating vector
model (RVM) to give the modulations on the position angle (PA) of the polarization. Our results are comprehensive, ready to
be used to search for magnetar precession with timing data and polarizations of X-ray and radio emissions. Future observations
of precessing magnetars will give us valuable information on the geometry and the strength of the strong magnetic fields, the
emission geometry, as well as the equation of state (EoS) of NSs.
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1 INTRODUCTION

The free precession of neutron stars (NSs) has been studied since
the discovery of radio pulsars. The wobbling motion caused by the
free precession is closely related to the structure of NSs, such as the
elasticity in the crust (Ushomirsky et al. 2000; Cutler et al. 2003),
the strength and the geometry of the internal and external magnetic
fields (Haskell et al. 2008; Mastrano et al. 2013), the superfluid and
superconducting states of the fluid interior (Pines 1974; Shaham
1977; Sedrakian et al. 1998; Link 2007; Glampedakis et al. 2008),
as well as the evolution of the magnetic inclination angle (Mestel &
Takhar 1972; Goldreich 1970; Melatos 2000; Lander & Jones 2018,
2020).
Although many theoretical works were devoted to this field, free

precession has not been firmly observed yet. The most probable evi-
dence of free precession comes from the radio pulsar PSRB1828−11,
which shows highly periodical variations in the pulse phase over a
period of ∼ 500 d, accompanied by correlated changes in the beam
width of pulses (Stairs et al. 2000). The data can be well fitted by
the free precession model with the precession-modulated spin-down
torque (Jones & Andersson 2001; Link & Epstein 2001; Akgun et al.
2006). Meanwhile, radio observations started to show that several
pulsars, with harmonic features in their timing residuals, including
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PSR B1828−11, undergo sudden sharp changes in pulse profiles
which, at least for PSR B1931+24, correlates with sharp changes in
spin-down torque (Kramer et al. 2006; Lyne et al. 2010; Shaw et al.
2022). Lyne et al. (2010) argued that the radio emissions switch back
and forth between two different magnetospheric states, which leads
to the harmonic timing residuals and changes in the pulse shape.
The sharpness of the transitions is thought as strong evidence that
free precession is not a viable mechanism to explain the harmonic
timing residuals in PSR B1828−11. Further analysis by Stairs et al.
(2019) also disfavored the free precession scenario. Mode switch-
ing is very appealing and reasonable to explain the harmonic timing
data and shape variations, but the physics behind the sharp changes
and the regular clock of the transitions needs more development.
Jones (2012) provided an argument as to why abrupt magnetospheric
changes can occur in precessing stars. In this regard, the free preces-
sion of PSR B1828−11 cannot be ruled out firmly yet (Ashton et al.
2016, 2017).

Different from normal pulsars, magnetars are a class of young NSs
with strong magnetic fields, typically above 1014 G, and long spin
periods, typically 2–10 s (Kaspi & Beloborodov 2017). The strong
internal magnetic fields may distort the star (Melatos 1997, 2000).
Due to the young age and energetic processes, the star may also de-
velop large elastic deformation in the crust. Glitches or crust fracture
may excite wobble angles and set the deformed magnetars into free
precession. Strong magnetic fields also indicate large external elec-
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tromagnetic torques, which include the far-field torque dissipating
the kinetic energy and the near-field torque originating from the mo-
ment of inertia of the electromagnetic field itself (Goldreich 1970;
Good & Ng 1985; Melatos 1997). The forced precession can be sig-
nificant for magnetars due to their strong electromagnetic torques,
but this effect would not affect the free precession if the object has
even stronger internal magnetic fields reaching 1016 G (Makishima
et al. 2014). We will investigate both free and forced precession in
this work.
Early observations of timing irregularities of magnetars motivated

Melatos (1997) to suggest that precession is common in AXP pop-
ulations. However, further observations from X-ray timing in the
band ∼ 1–10 keV have ruled out precession at an amplitude level
above the root-mean-square amplitude of timing noise (Kaspi et al.
1999, 2001). Small-amplitude precession that is buried in the timing
noise of magnetars is still possible. Possible evidence of magnetar
precession were found by the combined timing analysis of the hard
and soft X-rays from three magnetars, 4U 0142+61 (Makishima et al.
2014), 1E 1547.0−5408 (Makishima et al. 2021a), and SGR1900+14
(Makishima et al. 2021b). The phase modulations of hard X-ray are
observed in those magnetars, which may indicate large magnetic de-
formations on the order of ∼ 10−4 (Makishima et al. 2014, 2021a,b).
Recently, the precession of magnetars was also used to interpret the
possible periodicity found in fast radio bursts (FRBs; Levin et al.
2020; Zanazzi & Lai 2020; Wasserman et al. 2022).
All above evidences of magnetar precession come from the tim-

ing residuals, where the rotation phase is modulated by precession.
During the precession, the body itself also precesses around the de-
formation axis, which leads to the swing of the emission region. The
polarization directly maps the emission geometry. Thus it is also
promising to reveal precession from the variations of polarizations.
The soft component of the X-ray emission (∼ 1–10 keV) of mag-

netars is usually interpreted as thermal emission from the magne-
tar surface, which is reprocessed by the strongly magnetized at-
mosphere (Thompson et al. 2002; Turolla et al. 2015). Numerous
studies have been dedicated to investigate the opacities and radia-
tive transfer in strongly magnetized atmospheres, showing that the
surface emission could be highly polarized (Meszaros 1992; Pavlov
& Zavlin 2000; Ho & Lai 2003; Lai & Ho 2003; Taverna et al.
2015). Recently, the IXPE observation of 4U 0142+61 gave the first
ever measurement of polarized emission from a magnetar in the soft
X-ray band (Taverna et al. 2022). The observations provided us com-
pletely new information about theNS surface andmagnetosphere and
showed some evidence of vacuum birefringence in a strong magnetic
field.
The radio emissions from magnetars are only observed in tran-

sient magnetars after energetic bursts and the signal itself is also
transient (Camilo et al. 2006, 2007; Levin et al. 2010; Eatough et al.
2013; Lower et al. 2020). The emission is highly polarized. By apply-
ing the rotating vector model (RVM; Radhakrishnan & Cooke 1969),
useful information was obtained on the magnetic field geometry of
magnetars (Kramer et al. 2007; Levin et al. 2012; Lower et al. 2021).
In this paper, we aim to systematically study the dynamics of

precessing magnetars and model the observational consequences in
timing and polarization of electromagnetic waves. The structure of
the paper is organized as follows. In Sec. 2, we discuss the possible
deformation of magnetars. The free and forced precession dynamics
of general triaxially-deformed magnetars are studied in Sec. 3. We
give the phase modulations and timing residuals due to precession
in Sec. 4. The modulations on polarized X-ray and radio signals are
investigated in Sec. 5. We give discussions and conclusions in Sec. 6
and Sec. 7 respectively.

2 DEFORMATION OF MAGNETARS

To make the body precess, NSs must have some deformation mis-
aligned with the rotational bulge. The strains in the solid crust and
the strong internal magnetic fields are usually considered as potential
causes of the deformation. In the following, we consider the possible
sources of deformation. In the body frame, we can write the moment
of inertia tensor of a slowly rotating NS as (Jones &Andersson 2001;
Wasserman et al. 2022)

𝐼𝑖 𝑗 = 𝐼0

[
𝛿𝑖 𝑗 + 𝜖rot

(
1
3
𝛿𝑖 𝑗 − �̂�𝑖�̂� 𝑗

)
+ 𝑀𝑖 𝑗

]
. (1)

Here 𝐼0 is the spherical part of the moment of inertia. The rotational
deformation is quadrupolar that is symmetric about the spin axis
�̂�. We let 𝜖rot denote the ellipticity sourced from the centrifugal
force, while themagnetic and elastic deformations are not necessarily
axisymmetric. Thus, we use the symmetric and trace free (STF)
tensor 𝑀𝑖 𝑗 to describe the deformations sourced from the internal
magnetic field, elasticity in the crust, or the combination of both.
For magnetars, the spin period 𝑃 is on the order of several sec-

onds and 𝜖rot can be approximated as the rotational energy over the
gravitational energy

𝜖rot ≈
𝜔2𝑅3

𝐺𝑀
= 8.5 × 10−9𝑃−25 𝑅36/𝑀1.4 , (2)

where 𝜔 = 2𝜋/𝑃 is the spin angular frequency, 𝑃5 is the spin period
in units of 5 s, 𝑅6 is the NS radius 𝑅 in units of 106 cm, and 𝑀1.4
is the NS mass 𝑀 in units of 1.4𝑀� . The centrifugal deformation
is of no importance for free precession (Glampedakis & Jones 2010;
Wasserman et al. 2022), which can be understood as follows. The
angular momentum for a freely-precessing NS can be written as

𝐿𝑖 = 𝐼0

[(
1 − 2𝜖rot

3

)
𝛿𝑖 𝑗𝜔 𝑗 + 𝑀𝑖 𝑗𝜔 𝑗

]
= 𝐼 ′0

(
𝛿𝑖 𝑗 + 𝑀 ′

𝑖 𝑗

)
𝜔 𝑗 , (3)

where Einstein summation is used, 𝐼 ′0 = 𝐼0 (1 − 2𝜖rot/3), and
𝑀 ′
𝑖 𝑗

= 𝑀𝑖 𝑗/(1 − 2𝜖rot/3). Since the rotational ellipticity 𝜖rot is quite
small, we can absorb the rotational bulges into the spherical part and
approximately rewrite the moment of inertia tensor as

𝐼𝑖 𝑗 ' 𝐼0
(
𝛿𝑖 𝑗 + 𝑀𝑖 𝑗

)
. (4)

We let 𝒆1, 𝒆2, and 𝒆3 denote the three unit eigenvectors along the
principal axes of moment of inertia tensor 𝐼𝑖 𝑗 with corresponding
eigenvalues 𝐼1 ≤ 𝐼2 ≤ 𝐼3. The angular velocity is𝝎 = 𝜔1𝒆1+𝜔2𝒆2+
𝜔3𝒆3 and the angular momentum is 𝑳 = 𝐿1𝒆1 + 𝐿2𝒆2 + 𝐿3𝒆3. To
describe the motion of the body, we define

𝜖 ≡ 𝐼3 − 𝐼1
𝐼1

,

𝛿 ≡ 𝐼3 (𝐼2 − 𝐼1)
𝐼1 (𝐼3 − 𝐼2)

,

\ ≡ arccos 𝐿3
𝐿
, (5)

where 𝜖 is the ellipticity, 𝛿measures the deviation from axisymmetry,
and \ is the wobble angle between 𝒆3 and 𝑳.
Before investigating the dynamics of free precession, we first give

an estimation of 𝜖 . The shear stresses of the crystallized solid crust
can prevent a small fraction of the hydrostatic rotational bulge from
aligning with the instantaneous spin axis. We denote the elliptic-
ity sourced from elastic deformation as 𝜖c. The upper limit of 𝜖c
is approximated as (Ushomirsky et al. 2000; Haskell et al. 2006;
Johnson-McDaniel & Owen 2013; Gittins et al. 2020; Morales &
Horowitz 2022)

𝜖maxc ≈ 10−6
(
𝜎br
10−1

)
, (6)
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Precession of magnetars 3

where the breaking strain 𝜎br ∼ 0.1 is taken from the molecular dy-
namics simulations of crustal fracture in Horowitz & Kadau (2009).
The actual value of 𝜖c depends on the evolution history of the star and
is hard to estimate. It may be much smaller than 𝜖maxc since plastic
processes may relieve the strain in long time evolution.
Themagnetic fields inside the star create deformation because non-

radial field gradients can support non-radial matter-density gradients
in hydromagnetic equilibrium. However, the strength and geometry
of the internal magnetic fields are still very uncertain. The mag-
netic ellipticity 𝜖B is on the order of the magnetic energy over the
gravitational energy

𝜖B =
^𝐻�̄�𝑅4

𝑀2
≈ 1.93 × 10−6^ 𝑅46𝑀

−2
1.4𝐻15 �̄�15 , (7)

which is a crude estimation but consistent with more rigorous cal-
culations (see e.g., Haskell et al. 2008; Akgun & Wasserman 2008;
Lander & Jones 2009; Ciolfi et al. 2010; Mastrano et al. 2013). Here
�̄� is the volume average of the internal magnetic field, �̄�15 represents
the magnetic field in units of 1015 G, 𝐻 = �̄� for a normal conducting
interior while 𝐻 ' 1015 G if the core sustains protons in the type II
superconducting state (Wasserman 2003; Cutler et al. 2003). The
parameter ^ can be positive or negative depending on the relative
strength between the poloidal and toroidal components of the inter-
nal magnetic field. One can quickly notice that, magnetars with large
internal magnetic fields may cause large magnetic deformation.
Most earlier studies have been devoted to axisymmetric magnetic

field, regardless of whether the magnetic field is poloidal, toroidal
or “mixed”. The star is deformed into a biaxial shape with the de-
formation axis along the dipole field. We relax this axisymmetric
assumption and study a more general case with triaxial deformations
andmisalignment between themagnetic dipole and deformation axes.
On the one hand, the tilted poloidal-toroidal configuration is more
general and not physically forbidden (Lasky&Melatos 2013;Wasser-
man et al. 2022). For instance, Lasky & Melatos (2013) obtained a
tilted torusmagnetic field frommagnetohydrodynamic (MHD) simu-
lation, which is stable but the equilibrium state could not be specified
freely (Glampedakis & Lasky 2016). On the other hand, multipolar
magnetic fields may exist in the interior of magnetars. Mastrano et al.
(2013, 2015) found that themixed odd and evenmultipoles can create
a deformation that is misaligned with the magnetic dipole axis even if
the magnetic field is axisymmetric. Moreover, the mixture of elastic
and magnetic deformations can produce a triaxial shape (Wasserman
2003; Glampedakis & Jones 2010).
The relative strength between the poloidal and toroidal fields is also

not clear. There is no stable mixed poloidal-toroidal field in NSs for a
barotropic normal fluid (Lander & Jones 2012). According to MHD
simulations, Braithwaite (2009) argued that an axisymmetric field is
stable in stratified fluid if the poloidal field is much weaker than the
toroidal field. In this case, the deformation is prolate. Lander (2013)
presented the first self-consistent superconducting NS equilibria with
poloidal and mixed poloidal-toroidal fields. The poloidal component
was dominant in all the configurations that Lander (2013) studied.
According to the above discussions on the deformations and the

structures of the internal magnetic fields, we give following argu-
ments and assumptions.

(i) Generally, the deformed NS is in a triaxial shape. The biaxial
case is only a good approximation if the deformation is along a
specific axis.
(ii) The external magnetic axis is not necessarily aligned with any

deformation axes.
(iii) The ellipticity can be positive or negative depending on the

magnetic field geometry and possible elastic deformations.

(iv) The precession of magnetically distorted NSs differs qualita-
tively from the elastic body precession although they have the same
mathematical form. There are slow and non-rigid internal motions in
addition to the uniform rotation (Mestel & Takhar 1972; Lander &
Jones 2017). Although these non-rigid motions are important for the
evolution of the magnetic inclination angle, we ignore them in this
work since they are higher-order effects.

3 DYNAMICS OF PRECESSION

3.1 Free precession

The Euler equation of a freely-precessing body is (Landau & Lifshitz
1960)

¤𝑳 + 𝝎 × 𝑳 = 0 , (8)

where the dot denotes the derivative with respect to time 𝑡. Eq. (8) can
be solved analytically in terms of Jacobian elliptic functions (Landau
& Lifshitz 1960; Wasserman 2003; Akgun et al. 2006; Gao et al.
2020; Wasserman et al. 2022). The angular momentum 𝑳 and the
kinetic energy 𝐸 are conserved for free precession.Different branches
of the solutions are determined by the relation between 𝐿2 and 2𝐸𝐼2.
One usually sets 𝜔2 = 0 at the initial time 𝑡 = 0. Thus, the solutions
are also equivalently determined by the parameter

𝑚 = 𝛿 tan2 \0 , (9)

with \0 denoting the wobble angle \ at 𝑡 = 0.
When 𝑚 < 1 (𝐿2 > 2𝐸𝐼2), the precession is around 𝒆3 and the

components of the unit angular momentum �̂� ≡ 𝑳/𝐿 are

�̂�1 = sin \0 cn
(
𝜔p𝑡, 𝑚

)
,

�̂�2 = sin \0
√
1 + 𝛿 sn

(
𝜔p𝑡, 𝑚

)
,

�̂�3 = cos \0 dn
(
𝜔p𝑡, 𝑚

)
, (10)

where cn, sn, and dn are Jacobi elliptic functions (see Appendix A
for more details), and

𝜔p =
𝜖𝐿 cos \0
𝐼3
√
1 + 𝛿

. (11)

The time evolution of the angular frequencies in the body frame is
periodic with a period

𝑇 =
4𝐼3

𝜖𝐿 cos \0

√
1 + 𝛿 𝐾 (𝑚) , (12)

where 𝐾 (𝑚) is the complete elliptic integral of the first kind. One
can notice that 2𝜋/𝜔p is not equal to the period 𝑇 because the Jacobi
elliptic functions are not periodic in 2𝜋, but rather periodic in 4𝐾 (𝑚).
In Fig. 1, we illustrate the geometry and the motion in the corotating
body frame. The angular momentum precesses around �̂�3 with a
period 𝑇 . Following the definition in Cutler & Jones (2001), we call
𝑇 the free precession period of the deformed NS. The wobble angle
\ nutates with a period 𝑇/2.
When 𝑚 = 1, the solution is unstable and the trajectories of the

angular momentum will decay exponentially to the intermediate axis
𝒆2. The detailed solution can be found in Landau & Lifshitz (1960).
We omit this special case.
When 𝑚 > 1, the precession is around 𝒆1 and the solutions are

given in Akgun et al. (2006) and Zanazzi & Lai (2015). We want to
retain the definition of \ as the angle between �̂� and 𝒆3, which is
helpful to map the latter calculations to the 𝑚 < 1 case directly. So,

MNRAS 000, 1–18 (2022)
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Figure 1. The geometry and the motion of a deformed NS in the corotating
body frame. The NS precesses around �̂�3 with period 𝑇 , which is called the
free precession period of the NS. The wobble angle \ between �̂�3 and �̂�
nutates with a period of𝑇 /2. For the special biaxial case, the wobble angle \
is fixed. An observer views the NS in a direction �̂� fixed in the inertia frame
but rotating around �̂� in the body frame with spin angular frequency 𝝎 with
an inclination angle ]. The direction of the dipole moment �̂� is fixed in the
body frame and is described by the polar angle 𝜒 and the azimuthal angle [.

we make a redefinition of the basis vectors,

𝒆1 = 𝒆3 ,

𝒆2 = −𝒆2 ,
𝒆3 = 𝒆1 . (13)

Then the solutions of �̂� can be represented in an identical form to
the 𝑚 < 1 case, except for 𝐼1 ≥ 𝐼2 ≥ 𝐼3. Note that 𝜖 < 0 and the
precession direction is opposite to the 𝑚 < 1 case.
A biaxial body corresponds to the special cases of oblate deforma-

tion (𝛿 = 0, 𝜖 > 0) or prolate deformation (𝛿 = 0, 𝜖 < 0). Eq. (10)
degenerates into the form

�̂�1 = sin \0 cos(𝜔p𝑡) ,
�̂�2 = sin \0 sin(𝜔p𝑡) ,
�̂�3 = cos \0 , (14)

where

𝜔p = 𝜖𝐿 cos \0/𝐼3 , (15)

becomes the precession frequency, and the precession period is

𝑇 =
2𝜋
|𝜔p |

=
2𝜋𝐼3

|𝜖 |𝐿 cos \0
. (16)

In later examples, we only study the 𝑚 < 1 branch, the cases for
𝑚 > 1 can be easily obtained by redefining 𝐼1 ≥ 𝐼2 ≥ 𝐼3. Although
the precession period 𝑇 is different for distinct NS geometries, we
can roughly estimate the timescale of the precession as

𝜏p =
𝑃

𝜖
= 1.58𝑃5𝜖−17 yr , (17)

where 𝜖7 = 𝜖/10−7. The angular velocity in the body frame is

𝝎 = 𝐿

(
�̂�1
𝐼1

+ �̂�2
𝐼2

+ �̂�3
𝐼3

)
=
𝐿

𝐼3

(
𝐼3 �̂�1
𝐼1

+ 𝐼3 �̂�2
𝐼2

+ �̂�3

)
. (18)

100 101

P (s)

1013

1014

1015

1016

B
p

(G
)

10
2 yr

10
4 yr

10
6 yr

10
8 yr

1 day

0.5 month

1 yr

10 yr

102 yr

103 yr

Bc = 4.4× 1013 G

Figure 2. The relation between the spin period 𝑃 and the magnetic field
at the magnetic pole 𝐵p for magnetars with measured period and period
derivative (green). Lines of constant 𝜏rad (blue) and constant 𝜏m (brown) are
also illustrated. The horizontal gray line represents the Schwinger limit of the
magnetic field, 𝐵c = 4.4 × 1013 G.

It is obvious that the angle \ ′ between the angular momentum 𝑳
and the angular velocity 𝝎 is on the order of \ ′ ∼ 𝜖\ � 1. We
can approximate 𝑳 ‖ 𝝎 to the zeroth order of 𝜖 when we evaluate
the geometry of the NS. We denote the unit vector of the angular
frequency as �̂� ≡ 𝝎/𝜔0, where 𝜔0 is the magnitude of the angular
frequency at 𝑡 = 0. For simplicity, we also take the external magnetic
field as a dipole field. The dipole moment, 𝝁 = ` �̂�, is fixed in the
body frame and

�̂� = ˆ̀1 �̂�1 + ˆ̀2 �̂�2 + ˆ̀3 �̂�3 = (sin 𝜒 cos [ , sin 𝜒 sin [ , cos 𝜒) . (19)

Note that the angle [ is not necessarily zero in the general triaxial
case. Only in the biaxial case can one choose [ = 0 due to the
axisymmetry of the NS.

3.2 Forced precession

For magnetars, large magnetic fields also indicate large electromag-
netic torques. Generally, rotating NSs endowed with external mag-
netic fields have two kinds of electromagnetic torques acting on it.
The first one is the far-field torque (the so-called spin-down torque),
which originates from the fact that the electromagnetic emission car-
ries away angular momentum (Deutsch 1955; Davis & Goldstein
1970). For a dipole field, we express the far-field torque 𝑵rad as

𝑵rad =
𝑘1`

2𝜔3

𝑐3
[(�̂� · �̂�) �̂� − 𝑘2�̂�] , (20)

where 𝑘1 and 𝑘2 are numerical constants on the order of unity.
For the simplest vacuum dipole, 𝑘1 = 2/3, 𝑘2 = 1 (Deutsch 1955;

Davis & Goldstein 1970), and the rotational energy dissipates at a
rate

𝑵rad · 𝝎 = −2`
2𝜔4 sin2 𝛼
3𝑐3

, (21)

MNRAS 000, 1–18 (2022)



Precession of magnetars 5

where 𝛼 is the magnetic inclination angle between �̂� and �̂�. There is
no dissipation for the vacuum dipole case when the angular velocity
and the dipole moment are aligned, namely sin𝛼 = 0.
Although the vacuum magnetosphere torque predicts the spin-

down rate somehow close to the observed values for pulsars, the
magnetosphere is filled with plasma in reality. The charges and
currents in the plasma inevitably modify the structure of magne-
tosphere. There are no analytical expressions for the far-field torque
for a plasma-filled magnetosphere. Li et al. (2012) and Philippov
et al. (2014) analyzed the results of force-free MHD simulations and
found that the plasma-filled torque can be approximately parame-
terized by taking 𝑘1 ' 1 and 𝑘2 ' 2 if the weak dependence on
𝑅/𝑅LC is ignored, with 𝑅LC being the radius of the light cylinder.
This parametrization of the far-field torque was also applied to study
the precession of pulsars (Arzamasskiy et al. 2015). In this case, the
rotational energy dissipates at a rate

𝑵rad · 𝝎 = − `
2𝜔4

𝑐3
(1 + sin2 𝛼) . (22)

The energy still can be dissipated when 𝛼 = 0 compared to the
vacuum case. The form of the plasma-filled torque is equivalent to
adding a parallel component compared to the vacuum case.
The far-field torque not only dissipates the rotational energy but

changes the geometry of the star, such as the wobble angle and
the magnetic inclination angle. We define the spin-down timescale
induced by the far-field torque as

𝜏rad =
3𝑐3𝐼0
2`2𝜔2

= 3.61 × 105𝑀1.4𝑃25𝐵
−2
14 yr . (23)

The second kind of the electromagnetic torque is the near-field
torque, which arises from the inertia of the external magnetic
field (Davis & Goldstein 1970; Good & Ng 1985; Melatos 1997).
The near-field torque is denoted by 𝑵m and can be expressed as

𝑵m =
𝑘3𝜔

2`2

𝑅𝑐2
(�̂� · �̂�) (�̂� × �̂�) , (24)

where the external magnetic field is assumed to be a dipole field.
Using different methods, many authors have obtained slightly differ-
ent values of 𝑘3 (Goldreich 1970; Good & Ng 1985; Melatos 2000;
Beskin et al. 2013; Zanazzi & Lai 2015). Here, we adopt the value
𝑘3 = 3/5, which is consistent withMelatos (1997) and Zanazzi &Lai
(2015). This value can be obtained by assuming a uniform internal
magnetic field 𝑩p rotating rigidly around the spin axis, and the elec-
tric field given by 𝑬 = −(𝒗/𝑐) × 𝑩p for a perfectly conducting fluid.
Although an internal electromagnetic field is assumed, the near-field
torque in Eq. (24) only depends on the exterior electromagnetic field
of the NS (Beskin & Zheltoukhov 2014; Zanazzi & Lai 2015).
The near-field torque is perpendicular to 𝝎 and scales as 𝜔2. It

does not dissipate energy or angular momentum but affects the spin
and the wobble angle of the precessing NS in a timescale of

𝜏m =
5𝑅𝐼0𝑐2

3𝜔`2
= 16.8𝑀1.4𝑅6𝑃5𝐵−214 yr . (25)

In Fig. 2, we plot the relation between the dipole magnetic field at
the magnetic pole 𝐵p and the rotation period 𝑃 for magnetars with
measured period and period derivative (Olausen & Kaspi 2014).1
We also plot the contour lines for 𝜏m and 𝜏rad. For typical magnetars
with 𝐵p ∼ 1014–1015 G, 𝜏m is on the order of 0.1–10 yr and 𝜏rad
is on the order of 103–105 yr. It is very interesting that 𝜏m and the

1 http://www.physics.mcgill.ca/~pulsar/magnetar/main.html

free precession timescale 𝜏p could be comparable in some cases,
and if so the free precession solution will be affected substantially.
Melatos (1997, 2000) studied this effect and gave detailed numerical
solutions for different NS geometries. In our work, we adopt an
analytical method developed by Glampedakis & Jones (2010) and
Zanazzi & Lai (2015) to study the precession dynamics under the
near-field torque. Since 𝜏rad is much larger than 𝜏m and 𝜏p, we use
a perturbative method to study the forced precession under the far-
field torque following Goldreich (1970), Link & Epstein (2001),
Wasserman (2003), and Wasserman et al. (2022).

3.2.1 Near-field torque

Under the near-field torque, the Euler equation is

¤𝑳 + 𝝎 × 𝑳 =
3𝜔2`2

5𝑅𝑐2
(�̂� · �̂�) (�̂� × �̂�) . (26)

The near-field torque arises from the inertia of the electromagnetic
field, which can actually be absorbed into the moment of inertia
tensor 𝑰 of the star (Melatos 2000; Glampedakis & Jones 2010;
Zanazzi & Lai 2015). Eq. (26) can be written as
¤𝑳 + 𝝎 × (𝑳 + 𝝎 · 𝑴) = 0 , (27)

by introducing the effective deformation tensor

𝑴 = −𝐼0𝜖m ( �̂� ⊗ �̂�) , (28)

Here, 𝜖m is the effective ellipticity induced by the external magnetic
field and

𝜖m =
3`2

5𝐼0𝑅𝑐2
= 1.5 × 10−9𝑀−1

1.4𝐵
2
14𝑅

3
6 . (29)

Since 𝜖m is quite small, we can introduce an effective moment of
inertia tensor 𝑰eff = 𝑰 +𝑴 and write the Euler equations as (Zanazzi
& Lai 2015)
¤𝑳eff + 𝝎 × 𝑳eff = 0 , (30)

with the effective angular momentum 𝑳eff = 𝑰eff · 𝝎. Thus, the
forced precession under the near-field torque is transformed into
free precession by introducing a new prolate deformation along the
magnetic dipole axis with an ellipticity 𝜖m. In principle, one can
solve the forced-precession problem in Eq. (26) numerically, but the
transformation used here gives analytical solutions and more insight
into this problem. Therefore, we give the analytical solutions of the
free precession in the effective principal frame. In practice, one just
needs to substitute all the quantities in Sec. 3.1 into corresponding
effective ones.
In Sec. 3.1, we assumed 𝜔2 = 0 at 𝑡 = 0 for simplicity. The phase

of the precession is just𝜔p𝑡. For consistency, one must be cautious of
the initial phase when calculating the effective problem. For a general
triaxial star, the magnetic dipole moment does not necessarily lie in
the �̂�1-�̂�3 plane ([ ≠ 0). Thus, the effective deformation caused by
the near-field torque makes 𝜔eff,2 ≠ 0 at the initial time. So, the
precession phase of the solutions should be 𝜔p,eff 𝑡 + 𝜓0, where

𝜔p,eff =
𝜖eff𝐿eff cos \0,eff
𝐼3,eff

√︁
1 + 𝛿eff

, (31)

and the initial phase

𝜓0 = − arcsin

√√
𝐿21,eff +

𝐿22,eff
1 + 𝛿eff

. (32)

Only in the triaxial case with [ = 0 and the special biaxial case, one
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Figure 3. The fractional change of the angular frequency due to spin down
for the biaxial case (upper) and the triaxial case (lower). For comparison,
both of the vacuum torque (𝑘1 = 2/3, 𝑘2 = 1) and the plasma-filled torque
(𝑘1 = 1, 𝑘2 = 2) are illustrated. The parameters for the biaxial and triaxial
cases are shown in Case I and Case II of Table 1 respectively.

can take 𝜓0 = 0. Here, we denote the basis vectors, the eigenvalues of
the moment of inertia tensor, the components of the angular velocity,
the related geometric parameters in the effective principal frame with
a lower index “eff” based on the quantities in the original principal
frame. Generally, we find that the effects of the near-field torque can
be ignored only if 𝜖m . 0.1𝜖 .

3.2.2 Far-field torque

After absorbing the near-field torque into the effective moment of
inertia tensor, the Euler equation under the far-field torque can be
written as

¤𝑳eff + 𝝎 × 𝑳eff = 𝑵rad =
𝑘1`

2𝜔3

𝑐3
[(�̂� · �̂�) �̂� − 𝑘2�̂�] . (33)

For simplicity, we omit the “eff” notation in later equations and only
give “effective” parameters in specific examples. The far-field torque
can be decomposed into parallel and perpendicular components with
respect to the angular momentum

𝑵
‖
rad =

𝑘1`
2𝜔3

𝑐3
[
(�̂� · �̂�) ( �̂� · �̂�) − 𝑘2 ( �̂� · �̂�)

]
�̂� , (34)

𝑵⊥
rad =𝑵rad − 𝑵

‖
rad = 𝑵rad − ( �̂� · �̂�) �̂� . (35)

Taking the dot product between Eq. (33) and �̂�, we obtain

¤𝐿 = 𝑵
‖
rad · �̂� ' 3𝑘1𝐼0𝜔

2𝜏rad

(
cos2 𝛼 − 𝑘2

)
, (36)

where �̂� and �̂� have been approximated as the same direction on the
right-hand side. Eq. (36) determines the magnitude of the angular
momentum. The angle 𝛼 oscillates during the precession, which
produces variability in the spin-down rate. The perpendicular Euler
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Figure 4. Same as Fig. 3 but for a deformed magnetar with 𝐵 = 1014 G. The
parameters for the biaxial and triaxial cases are shown in Case III and Case
IV of Table 1 respectively.

equation is

𝐿 ¤̂𝑳 + 𝜔𝐿 (�̂� × �̂�) = 𝑵⊥
rad , (37)

which determines the direction of the angular momentum. The sec-
ond term on the left-hand side arises from the precession of the an-
gular momentum around �̂�3 in the body frame. The right-hand side is
the term that originates from the far-field torque, which contributes
to the secular change of \ and 𝛼.
In thiswork,we concentrate on the spin evolution on the precession

timescale. According to Eq. (37), the angles \ and 𝛼 change secularly
on the order of ∼ 𝜏p/𝜏rad � 1 under the far-field torque. Thus, we
can neglect the secular variation of 𝛼 when calculating the change of
the angular momentum with Eq. (36).
To describe the spin evolution, we introduce

𝜔(𝑡) = 𝜔0 (1 + ℓ(𝑡)) , (38)

where 𝜔0 is the angular frequency at the initial time 𝑡 = 0, and ℓ
is the fractional change of the angular frequency due to spin down.
Since 𝜏p � 𝜏rad and the spin-down rate is quite small, we can set
𝜔 = 𝜔0 on the right-hand side of Eq. (36) and write the solution of
ℓ as

ℓ = − 3𝑘1
2𝜏rad

(
𝑘2𝑡 −

∫ 𝑡

0
cos2 𝛼d𝑡

)
. (39)

By introducing 𝜏 = 𝜔p𝑡 + 𝜓0, the magnetic inclination angle 𝛼
satisfies

cos𝛼 = ˆ̀1 sin \0 cn 𝜏+ ˆ̀2 sin \0 (1+𝛿)1/2 sn 𝜏+ ˆ̀3 cos \0 dn 𝜏 , (40)

for the case of 𝑚 < 1, where the modulus 𝑚 has been omitted in the
expressions of Jacobi elliptic functions. Substituting Eq. (A5) into
Eq. (39), one gets the fractional change of the angular frequency for
different NS geometries.
In Fig. 3, we show the fractional change of the angular frequency

due to spin-down for both biaxial and triaxial cases with 𝐵p = 5 ×
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Table 1. The intrinsic and effective parameters for forced precession shown in Fig. 3-4.

Case Intrinsic parameters Effective parameters

𝑃0 (s) 𝐵 (G) 𝜖 𝛿 \0 (◦) 𝜒 (◦) [ (◦) 𝜖eff 𝛿eff \eff,0 (◦) 𝜒eff (◦) [eff (◦) 𝑇eff (yr)
I 5 5 × 1014 10−7 0 10 45 0 1.07 × 10−7 0.261 20.3 55.3 0 1.79
II 5 5 × 1014 10−7 1 10 45 45 9.99 × 10−8 1.15 20.5 60.2 36.1 2.59
III 5 1014 10−7 0 10 45 0 1.00 × 10−7 0.007 10.4 45.4 0 1.62
IV 5 1014 10−7 1 10 45 45 9.96 × 10−8 1.01 10.3 45.6 45.6 2.31

1014 G and 𝜖 = 10−7. The spin-down rate oscillates since 𝛼 varies
with the precession. The ellipticity induced by the near-field torque
is 𝜖m = 3.75 × 10−8 = 0.375𝜖 . Thus, the near-field torque affects
the precession substantially. The initial wobble angle for the motion
is amplified from 10◦ to about 20◦, which leads to large variations
of the spin-down rate. We also plot the spin-down for both of the
vacuum torque and the plasma-filled torque. The angular velocity
decreases faster for the plasma-filled torque because the radiation
power is stronger. From Eq. (39), we also notice that the second term
on the right-hand side only depends on the coefficient 𝑘1.
We also give the case with 𝐵p = 1014 G and 𝜖 = 10−7 in Fig. 4.

The ellipticity induced by the near-field torque is 𝜖m = 1.5 × 10−9 =
0.015𝜖 , which is negligible. The effective wobble angle is nearly the
same as the free precession case and the variation of the spin-down
rate is much smaller compared to the cases in Fig. 3. If 𝜖 & 10−6 for
the case with 𝐵p = 5×1014 G, the effects of the near-field torque can
be also neglected.
For the biaxial case with 𝜖m � 𝜖 or the effective biaxial case, the

parameters 𝛿 and [ can be set to zero. The angle 𝛼 satisfies

cos𝛼 = sin 𝜒 sin \0 cos𝜔p𝑡 + cos 𝜒 cos \0 , (41)

and the integration of cos𝛼 simplifies into∫ 𝑡

0
cos2 𝛼d𝑡 =

1
4𝜔p

[(
`21 + 2`

2
3

)
𝜔p𝑡 −

(
`21 − 2`

2
3

)
𝜔p𝑡 cos 2\0

+4`1`3 sin 2\0 sin𝜔p𝑡 + `21 sin
2 \0 sin 2𝜔p𝑡

]
.

(42)

where the initial phase 𝜓0 = 0. The biaxial case in Fig. 4 can be
obtained by taking Eq. (42) into Eq. (39) because 𝜖m � 𝜖 .
Our studies are similar to Melatos (1997), but we give analytical

solutions and consider different models of the far-field torques. Com-
pared to Akgun et al. (2006) and Wasserman et al. (2022), we have
considered the effects of the near-field torque.

3.3 Precession dynamics in the inertial frame

The calculations in Secs. 3.1 to 3.2 are performed in the body frame
of the NS. Before investigating the emissions from precessing mag-
netars, we give the geometry and the motion of the NS in the inertial
frame, which is related to the body frame through a rotation matrix
constructed from Euler angles 𝜙, \, and 𝜓 (Landau & Lifshitz 1960).
We take the basis of the inertial frame as �̂�X, �̂�Y, and �̂�Z with �̂�
parallel to �̂�Z. The Euler angles satisfy

cos 𝜙 = 𝑒X · �̂�,
cos \ = �̂�3 · 𝑒Z,
cos𝜓 = �̂�1 · �̂� , (43)

where �̂� = �̂�𝑍 × �̂�3. The time evolution of the Euler angles are given
by

cos \ = �̂�3 ,

tan𝜓 = �̂�1/�̂�2 ,
¤𝜙 = 𝐿/𝐼3 − ¤𝜓/�̂�3 . (44)

Substituting the evolution of the angular momentum for different
cases into Eqs. (44), one obtains the specific expressions for Euler
angles. For the general triaxial case, the precession angle 𝜓 and
the wobble angle \ evolve with free precession period 𝑇 , while the
evolution of the angle 𝜙 is not periodic. Thus, the motion for a triaxial
NS in the inertial frame is not periodic. We illustrate the geometry
and the motion of the NS in the inertial frame in Fig. 5.
The components of �̂� in the inertial frame are

ˆ̀X = ˆ̀1 (cos𝜓 cos 𝜙 − cos \ sin 𝜙 sin𝜓)
− ˆ̀2 (sin𝜓 cos 𝜙 + cos \ sin 𝜙 cos𝜓) + ˆ̀3 sin \ sin 𝜙 ,

ˆ̀Y = ˆ̀1 (cos𝜓 sin 𝜙 + cos \ cos 𝜙 sin𝜓)
+ ˆ̀2 (− sin𝜓 sin 𝜙 + cos \ cos 𝜙 cos𝜓) − ˆ̀3 sin \ cos 𝜙 ,

ˆ̀Z = ˆ̀1 sin \ sin𝜓 + ˆ̀2 sin \ cos𝜓 + ˆ̀3 cos \ , (45)

where ˆ̀1, ˆ̀2, and ˆ̀3 are the components of �̂� in the body frame
in Eq. (19). The polar angle Θ and the azimuthal angle Φ of the
magnetic dipole in the inertial frame satisfy

Φ = arctan
(
ˆ̀Y
ˆ̀X

)
,

cosΘ = ˆ̀Z . (46)

We can treatΘ as the magnetic inclination angle 𝛼 because the angle
between �̂� and �̂� is first order in 𝜖 .
The time evolution of �̂� is vital to determine the emission prop-

erties. The variations of the angle 𝛼 during free precession lead to
the swing of the emission regions and may modulate the beam shape
parameters, polarization, and flux of the emission. While the pre-
cession also affects the rotational phase and time of arrivals of the
emissions, which are closely related to the time evolution of Φ. In
the following sections, we will first investigate the phase modulations
and timing residuals buried in the time evolution ofΦ, and then study
themodulations of polarized radio/X-ray signals due to the variations
of 𝛼 during precession. Note that the calculations will be performed
in the inertial frame.

4 TIMING RESIDUALS

In this section, we investigate the timing residuals of precessing
magnetars, which may be used to search for precession from X-
ray pulsations. The main manifestation of magnetars occurs in the
X-ray energy band. Some magnetars are persistent X-ray sources
with a luminosity 𝐿X ∼ 1034–1035 erg s−1 while others are transient
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Figure 5. The geometry and the motion of a NS in the inertial frame. The NS
rotates around �̂� with angular frequency 𝝎. The NS itself rotates around �̂�3
with free precession period 𝑇 , which is clockwise in the case of 𝑚 < 1 and
counterclockwise in the case of 𝑚 > 1. The wobble angle \ between �̂�3 and
�̂� nutates with period 𝑇 /2. For the special biaxial case, the wobble angle \
is fixed. An observer in the �̂�X-�̂�Z plane views the NS in the direction �̂� with
an inclination angle ]. The magnetic dipole 𝝁 is attached on the NS and is
described by the polar angle Θ and azimuthal angle Φ.

that are much dimmer in quiescence, 𝐿X . 1032 erg s−1 (Turolla
et al. 2015; Makishima 2016; Kaspi & Beloborodov 2017). Most
magnetars show clear X-ray pulsations due to the spin. The periods
are clustered in the range 𝑃 = 2–12 s. Most of them show a large
spin-down rate in the range of ¤𝑃 = 10−13–10−10 s s−1. The timing of
radio signals are also obtained for some transient magnetars.
The rotation phase and spin rate will be modulated since the emis-

sion direction rotates around �̂�3 during the precession. For simplicity,
we assume that the emission is centered around the magnetic dipole
axis �̂�. As shown in Fig. 5, the observer sees the pulsation once the
azimuthal angle of �̂� becomes

Φ = 2𝜋𝑛, (𝑛 = 0, 1, 2, . . . ) , (47)

which is equivalent to `X > 0 and `Y = 0. Taking Eq. (45), the Euler
angle 𝜙 at this epoch can be written as (Jones & Andersson 2001;
Akgun et al. 2006)

𝜙 = 2𝜋𝑛 + 𝜋
2
+ arctan 𝜙1 , (48)

where

tan 𝜙1 =
ˆ̀1 cos𝜓 − ˆ̀2 sin𝜓

ˆ̀2 cos \ cos𝜓 − ˆ̀3 sin \ + ˆ̀1 cos \ sin𝜓
. (49)

To obtain the timing residual, we first study the effective free preces-
sion case including the near-field torque. The Euler angle 𝜙 integrat-
ing from Eq. (44) is

𝜙(𝑡) = 𝜙0 +
𝐿

𝐼3
𝑡 +

√
1 + 𝛿𝜔p
cos \0

∫ 𝑡

0

d𝑡
1 + 𝛿 sn2 𝜏

, (50)

where 𝜙0 is the initial phase of 𝜙 and 𝜏 = 𝜔p𝑡 + 𝜓0. Combining
Eq. (48) and Eq. (50), we obtain the time of arrival (TOA) 𝑡n of the
𝑛-th pulse

𝐿

𝐼3
𝑡n = 2𝜋𝑛+

𝜋

2
+arctan 𝜙1−𝜙0−

√
1 + 𝛿𝜔p
cos \0

∫ 𝑡𝑛

0

d𝑡
1 + 𝛿 sn2 𝜏

. (51)

The TOA contains all the information of the precessing timing be-
haviours. To further investigate the spin modulations, we give the
residuals of the period and the period derivatives. In practice, one
first obtains the period 𝑃0 = 2𝜋/𝜔0 at some epoch 𝑡0, and finds
the period derivative ¤𝑃0 that is attributed to the secular spin down.
Then the period residuals can be determined by subtracting the two
contributions

Δ𝑃 = 𝑃(𝑡) − 𝑃0 (𝑡0) − ¤𝑃0 (𝑡 − 𝑡0) . (52)

Since the precession timescale is much longer than the rotation
timescale, we can approximate the differences by derivatives, and

𝐿

𝐼3
𝑃 − 2𝜋 =

𝐿

𝐼3
Δ𝑃fp

=

(
d arctan 𝜙1
d𝑡

−
√
1 + 𝛿𝜔p/cos \0
1 + 𝛿 sn2 𝜏

)
d𝑡
d𝑛

=

(
d arctan 𝜙1
d𝑡

−
√
1 + 𝛿𝜔p/cos \0
1 + 𝛿 sn2 𝜏

)
𝑃 , (53)

where the period 𝑃 = 𝑡n− 𝑡n−1, and Δ𝑃fp is the period residual owing
to the free precession. By approximating 𝑃 ' 𝑃0 on the right-hand
side, we get

Δ𝑃fp =

(
d arctan 𝜙1
d𝜏

−
√
1 + 𝛿/cos \0
1 + 𝛿 sn2 𝜏

)
𝜖 cos \0𝑃0√
1 + 𝛿

. (54)

For an effectively biaxial case or a biaxial case with 𝜖𝑚 � 𝜖 , we can
set ˆ̀2 = 0 and

Δ𝑃fp = − 𝜖 sin \0𝑃0

×
[
`21 sin \0 sin

2 𝜔p𝑡 + `23 sin \0 − `1`3 cos \0 cos𝜔p𝑡(
`1 cos \0 cos𝜔p𝑡 − `3 sin \0

)2 + `21 sin2 𝜔p𝑡
]
,

(55)

where the initial phase induced by the near-field torque 𝜓0 = 0.
Because Δ𝑃fp purely originates from the geometry of the free pre-
cession, we name Δ𝑃 as the geometric term of residual in period.
The far-field torque contributes to the period residual via the spin

down
Δ𝑃sd
𝑃

' −ℓ(𝑡) , (56)

where ℓ(𝑡) has been given in Eq. (39) with the integration of cos𝛼
in Eq. (A5). For period residuals, we only care about the oscillation
terms. After subtracting the secular terms, the period residual is

Δ𝑃sd = −3𝑘1𝑃0
2𝜏rad

(∫ 𝑡

0
cos2 𝛼d𝑡 −

〈∫ 𝑡

0
cos2 𝛼d𝑡

〉
𝑡

)
≈ 3𝑘1𝑃0
2𝜏rad𝜔p

{
𝑎1 cn 𝜏 + 𝑎2 sn 𝜏 + 𝑎3 dn 𝜏

+ 𝑎4
[
𝐸 (𝑚)
𝐾 (𝑚) 𝜏 − 𝐸 (am 𝜏)

]
+ 𝐵c

}
, (57)

where 〈ℓ〉 means an average over the precession period and

𝑎1 = sin 2\0 (1 + 𝛿)
1
2 ˆ̀2 ˆ̀3 ,

𝑎2 = − sin 2\0 ˆ̀1 ˆ̀3 sn(𝜏) ,

𝑎3 =
2 cos2 \0 ˆ̀1 ˆ̀2 (1 + 𝛿)

1
2

𝛿
,

𝑎4 =
cos2 \0
𝛿

[
ˆ̀21 − (1 + 𝛿)�̂�22 + ˆ̀

2
3𝛿

]
. (58)
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Figure 6. The residuals of the period and the period derivative for biaxial
and triaxial NSs with 𝑘1 = 1 and 𝑘2 = 2. The parameters for the biaxial and
triaxial cases are shown in Case I and Case II of Table 2 respectively. The
initial period derivative is ¤𝑃0 = 8.22 × 10−13 s s−1 for the biaxial case and
¤𝑃0 = 8.82 × 10−13 s s−1 for the triaxial case.
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Figure 7. Same as Fig. 6, except for 𝜒 = 85◦. The parameters for the biaxial
and triaxial cases are shown in Case III and Case IV of Table 2 respectively.
The initial period derivative is ¤𝑃0 = 1.24 × 10−12 s s−1 for the biaxial case
and ¤𝑃0 = 1.27 × 10−12 s s−1 for the triaxial case.

The constant 𝐵c is an integration constant, which can be easily ob-
tained from Δ𝑃sd (𝑡 = 0) = 0. For the special biaxial case, we set
ˆ̀2 = 0 and

Δ𝑃sd = − 3𝑘1𝑃0
2𝜏rad𝜔p

×
(
1
2
sin 2𝜒 sin 2\0 sin(𝜔p𝑡) +

1
4
sin2 \0 sin2 𝜒 sin(2𝜔p𝑡)

)
,

(59)

which is consistent with Jones & Andersson (2001) and Link &
Epstein (2001). We name the period residual resulting from the far-
field torque as the spin-down term.
The total period residual Δ𝑃 can be expressed as

Δ𝑃 = Δ𝑃fp + Δ𝑃sd . (60)

Here the geometric term can be obtained from the effectively free
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Figure 8. Same as Fig. 6, but with 𝜖 = 10−4. The parameters for the biaxial
and triaxial cases are shown in Case V and Case VI of Table 2 respectively.
The initial period derivative is ¤𝑃0 = 8.22 × 10−13 s s−1 for the biaxial case
and ¤𝑃0 = 8.82 × 10−13 s s−1 for the triaxial case.
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Figure 9. The period residual for a biaxial case (upper) and a triaxial case
(lower) for 𝐵 = 5×1014 G. The parameters for the biaxial and triaxial cases are
shown inCaseVII andCaseVIII of Table 2 respectively. The period derivative
¤𝑃0 = 2.06 × 10−11s s−1 for the biaxial case and ¤𝑃0 = 2.20 × 10−11s s−1 for
the triaxial case.

precession problem. While the spin-down term is determined by the
far-field torque. The relative amplitude of the two terms depends on
the geometry of the star. One notices that

Δ𝑃fp
𝑃0

∼ coefficient × 𝑃0
𝜏f
,

Δ𝑃sd
𝑃0

∼ coefficient × 𝜏f
𝜏rad

, (61)

where the coefficients are some geometric factors depending on the
geometry of the deformed magnetars. When the free precession
timescale 𝜏f is sufficiently long, corresponding to small elliptici-
ties, the spin-down term dominates over the geometric term. This
is the case for the possible precession of PSR B1828−11 (Link &
Epstein 2001; Akgun et al. 2006). If the free precession timescale 𝜏f
is closer to the spin period other than the spin-down timescale 𝜏rad,
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Table 2. The intrinsic and effective parameters for the timing residuals shown in Fig. 6-10.

Case Intrinsic parameters Effective parameters

𝑃0 (s) 𝐵 (G) 𝜖 𝛿 \0 (◦) 𝜒 (◦) [ (◦) 𝜖eff 𝛿eff \eff,0 (◦) 𝜒eff (◦) [eff (◦) 𝑇eff (yr)
I 5 1014 10−7 0 15 45 0 1.00 × 10−7 7.61 × 10−3 15.4 45.4 0 1.65
II 5 1014 10−7 1 15 45 45 9.96 × 10−8 1.01 15.3 45.6 44.8 2.38
III 5 1014 10−7 0 15 85 0 1.01 × 10−7 0.0149 15.1 85.1 0 1.63
IV 5 1014 10−7 1 15 85 45 1.01 × 10−7 0.986 15.1 85.1 44.2 2.34
V 5 1014 10−4 0 15 45 0 1.00 × 10−4 7.50 × 10−6 15.0 45.0 0 0.00164
VI 5 1014 10−4 1 15 45 45 1.00 × 10−4 1.00 15.0 45.0 45.0 0.00236
VII 5 5 × 1014 10−7 0 15 45 0 1.07 × 10−7 0.261 25.3 55.3 0 1.87
VIII 5 5 × 1014 10−7 1 15 45 45 9.99 × 10−8 1.15 24.9 60.2 36.1 2.75
IX 5 1014 10−5 0 15 45 0 1.00 × 10−5 7.50 × 10−5 15.0 45.0 0 0.0164
X 5 1014 10−5 8 15 45 0 1.00 × 10−5 8.01 15.0 45.0 45.0 0.0603
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Figure 10. The residuals of the period for biaxial and triaxial NSs. The
parameters are shown in Case IX and Case X of Table 2 respectively. The
initial period derivative is ¤𝑃0 = 8.22 × 10−13 s s−1 for the biaxial case and
¤𝑃0 = 8.82 × 10−13 s s−1 for the triaxial case.

corresponding to large ellipticities, the geometric termwill dominate.
This is the case for the possible precession of 4U 0142+61 (Mak-
ishima et al. 2014).
When 𝑚 > 1, the ellipticity is negative. Thus the precession direc-

tion is opposite to the case of𝑚 < 1. If we change 𝜖 into −𝜖 and keep
the other parameters fixed, the geometric term changes sign while the
spin-down term stays the same. The amplitude of the spin-down term
is proportional to 𝑘1. So the amplitude of the period residual due to
vacuum torque is just 2/3 times that of the plasma-filled torque. In
following examples, we only study the timing residuals of the case
with 𝑘1 = 1.
To study the effects of the NS geometries and the near-field torque

separately, we first neglect the contributions of the near-field torque
by taking 𝜖 = 10−7 and 𝐵 = 1014 G, where 𝜖m = 0.015𝜖 � 𝜖 .
In Fig. 6, we give an example of Δ𝑃sd � Δ𝑃fp. The spin-down
term dominates over the geometric term by a factor of ∼ 10. The
morphologies for the biaxial case and the triaxial case are basically
the same. The main differences are the amplitude and the period of
the modulations.
Another important feature is that Δ𝑃 does not deviate much from

a single harmonic. We take the biaxial case as an example to under-
stand this point. The triaxial case can be understood in the same way
qualitatively. For the biaxial case, the spin-down term Δ𝑃sd has com-
ponents both at frequencies 𝜔p and 2𝜔p. The amplitude of Δ𝑃sd at
𝜔p is larger than the harmonics at 2𝜔p only if cot \ > tan 𝜒/8. For the
biaxial case in Fig. 6, cot \ = cot \0 = 3.73 while tan 𝜒/8 = 0.125.

The residuals at 𝜔p is about 30 times larger. Therefore, the residuals
mainly come from the term at the frequency 𝜔p of the spin-down
contribution.
For the biaxial case, the first harmonic at 2𝜔p of the spin-down

term only plays an important role when cot \ < tan 𝜒/8. So we
present an example with 𝜒 = 85◦ in Fig. 7 and keep other parameters
fixed. One can notice that the residuals are quite different from that
in Fig. 6 due to that the contribution at 2𝜔p is comparable with that
at 𝜔p. While the geometric term is still about 0.1 of the spin-down
term. The precession of PSR B1828−11 belongs to this kind.
Tomake the geometric term dominate over the spin-down term, the

ellipticity should be sufficiently large. In Fig. 8, we show an example
with 𝜖 = 10−4 and keep the other parameters the same as Fig. 6. The
geometric term is much larger than the spin-down term by a factor
∼ 105. The period residual is quite substantial and the effects of the
electromagnetic torques are negligible.
Actually, such kind ofmodulations have been possibly observed by

combined timing analysis of hard and soft X-rays for threemagnetars,
4U 0142+61 (Makishima et al. 2014), 1E 1547.0−5408 (Makishima
et al. 2021a), and SGR 1900+14 (Makishima et al. 2021b). Mak-
ishima et al. (2014, 2021a,b) gave the phase modulations of hard
X-rays, which are physically equivalent to the timing residuals. In
their model, the internal strong toroidal magnetic field creates a large
prolate deformation along the magnetic dipole. The soft X-ray emis-
sion is centered around the magnetic dipole while the hard X-ray
emission is somewhat misaligned with the magnetic dipole. This
model is different from ours but can be simply obtained by redefin-
ing �̂� as the emission direction of the hard X-rays in a direction
other than the magnetic dipole and treating the star as a biaxial one.
Thus, the period residual for 4U 0142+61 should be in the order of
𝜖𝑃 ∼ 0.001 s according to Eq. (59). For the magnetar 4U 0142+61,
Makishima et al. (2014) found that the rotation period at 8.69 s suf-
fers slow phase modulations of 0.7 s, with a period of ∼ 15 h in the
hard X-ray band (15–40 keV), indicating an internal magnetic defor-
mation 𝜖 ∼ −1.6 × 10−4 if the modulations are interpreted as free
precession.
For the examples in Figs. 6–8, the near-field torque can be ne-

glected. Thus, in Fig. 9, we show biaxial and triaxial examples with a
large near-field torque. The amplitude of the residuals becomes larger
compared to the cases without the near-field torque. The period of
the modulations turns into 𝑇eff .
In all above examples, the parameter 𝑚 is on the order of 0.1.

Although the period and amplitude of the residuals for the triaxial
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cases are different from the biaxial ones, the morphologies are basi-
cally the same. It is easier to tell whether a NS is triaxial or not from
the timing residuals if the parameter 𝑚 is much larger. In Fig. 10,
we show a triaxial example with 𝛿 = 8, \0 = 15◦, and 𝑚 = 0.574.
Since the wobble angle nutates in a wider range and the Jacobi ellip-
tic functions deviate from the harmonic functions substantially, the
morphology and period of the timing residuals for the triaxial case
are quite different from the biaxial one.

5 MODULATIONS ON POLARIZATIONS

The Stokes parameters for the polarizations directly reflect the mag-
netic field rotating around the NS and the emission geometry. The
precession leads to the swing of the emission and changes the po-
larization. In this section, we model the polarization of precessing
magnetars and study the prospects of detecting the free precession
with polarized X-ray and radio emissions.

5.1 Emission model of X-rays

We use the model developed by Ho & Lai (2003), Lai & Ho (2003),
and van Adelsberg & Lai (2006) to calculate the soft thermal X-ray
emission from the surface of a NS. We assume that the emission
comes from a hot region, which is centered around the magnetic
dipole axis, much smaller than the surface area of the star, and com-
posed of a fully ionized hydrogen atmosphere with an effective tem-
perature 𝑇eff ' 5 × 106 K. The magnetic field is also assumed to be
a dipole field, which is approximately constant and normal to the
stellar surface across the emission region.
In the highly magnetized plasma that characterizes the magneto-

sphere of NSs, X-ray photons propagate in the extraordinary mode
(X mode) and the ordinary mode (O mode). The X mode is mostly
polarized perpendicular to the 𝒌0-𝑩 plane while the ordinary mode
(O mode) is mostly polarized within the 𝒌0-𝑩 plane, where 𝒌0 is
the direction of photon propagation direction at the emission point
and 𝑩 is the external magnetic field. The opacities for each mode are
associated with the energy and the propagation direction of the X-ray
photons, as well as the strength and the direction of the magnetic
field in the magnetized plasma. The typical X mode opacity ^X is
much smaller than the O mode opacity ^O (Meszaros 1992), satis-
fying ^X ∼ (𝐸/𝐸𝐵𝑒)2 ^O, where 𝐸Be = ℏ𝑒𝐵/𝑚e𝑐 is the electron
cyclotron energy in the magnetic field. The decoupling density of the
Xmode photon 𝜌X is much larger than that of the Omode photon 𝜌O.
As a result, the X mode photons can escape from deeper and hotter
layers than the O mode photons. The emergent radiation is linearly
polarized to a high degree (Gnedin & Sunyaev 1974; Meszaros et al.
1988; Pavlov & Zavlin 2000; Ho & Lai 2003; Lai & Ho 2003).
In strong magnetic fields, it has long been predicted that the vac-

uum becomes birefringent, and the dielectric tensor describing the
atmospheric plasma of magnetars must be corrected for quantum
electrodynamics (QED) vacuum effects (Heisenberg & Euler 1936;
Tsai & Erber 1975). At the vacuum resonance, the contributions of
the plasma and the vacuum to the dielectric tensor cancel each other
(Lai & Ho 2003). When a photon with energy 𝐸 traverses through
the density gradient of the plasma, it will encounter the vacuum
resonance at the density

𝜌V = 0.96𝑌−1𝑒 𝐸21𝐵
2
14 𝑓

−2
B g cm−3 , (62)

where 𝑌𝑒 = 𝑍/𝐴 with Z and A the charge number and mass number
of the ion respectively, 𝐸1 = 𝐸/(1 keV), and 𝑓B is a slowly varying
function of 𝐵 that is on the order of unity. If the density variations of

the plasma are sufficiently gentle as the photon propagates through
the inhomogeneous plasma, an X mode (O mode) photon will be
converted into an O mode (X mode) photon when it traverses the
vacuum resonance. For the mode conversion to be effective, the
adiabatic condition 𝐸 ≥ 𝐸ad must be satisfied (Ho & Lai 2003; Lai
& Ho 2003), with

𝐸ad = 2.52
[
𝑓B tan \kB

���1 − (𝐸Bi/𝐸)2
���]2/3 (

1 cm
𝐻𝜌

)1/3
. (63)

Here \kB is the angle between the magnetic field and the photon
propagation direction, 𝐸Bi is the ion cyclotron energy, and 𝐻𝜌 is
the density scale-height along the ray. For a photon with energy
𝐸 ∼ 𝐸ad, it undergoes partial mode conversion. In general, the mode
conversion probability of a photon is (Lai & Ho 2003)

𝑃c = 1 − exp
[
−(𝜋/2) (𝐸/𝐸ad)3

]
. (64)

To obtain the emergent intensities, one needs to solve the radiative
transfer equations (RTEs) of the two modes subject to the constraints
of hydrostatic and radiative equilibria (Ho & Lai 2001, 2003). van
Adelsberg & Lai (2006) provided the fitting formulae of the tempera-
ture profile for different atmospheric models with different magnetic
fields 𝐵 and effective temperatures 𝑇eff . Once the temperature profile
is known, the emergent intensities can be obtained by a single integra-
tion of the RTEs. We use the fitted temperature profile and integrate
the RTEs including the vacuum effect following van Adelsberg & Lai
(2006). The spectral intensities for the X mode photons 𝐼X (\em) and
the O mode photons 𝐼O (\em) at different emission angles \em are
obtained. The “intrinsic” linear polarization fraction at the emission
point is defined as

Πem =
𝐼O (\em) − 𝐼X (\em)
𝐼O (\em) + 𝐼X (\em)

, (65)

where \em is the angle between the photon propagation direction and
the surface normal.
To determine the polarization state of the signals, one must con-

sider the propagation of polarized radiation in the magnetosphere of
magnetars, whose dielectric properties are dominated by the vacuum
polarization in the X-ray band (Heyl et al. 2003).When an X-ray pho-
ton propagates in the magnetosphere, its polarization state evolves
adiabatically along the varying magnetic field up to the polarization
limiting radius 𝑟pl, which is far from the surface of the NS. Thus,
the observed Stokes parameters are determined by the “frozen” po-
larization state at 𝑟pl. Adiabatic evolution of the photon modes in the
magnetosphere leads to a significant polarization fraction even when
the emission comes from extended regions on the surface (Heyl et al.
2003; Fernandez & Davis 2011; Taverna et al. 2015). In contrast, if
the polarization state is determined by the emission at the surface
, additions of the Stokes parameters from distinct regions tend to
cancel each other and lead to low polarization fraction.
The magnetic field direction that determines the polarization can

be characterized by the polar angle Θ and the azimuthal angle Ψ. As
shown in Fig. 11, the polar angle between the magnetic dipole field
and the line of sight satisfies

cosΘ = cos ] cos𝛼 + sin ] sin𝛼 cosΦ . (66)

The azimuthal angle Ψ is the position angle (PA) of the polarized
emission. To obtain the PA, we project the dipole field onto the �̂�- �̂�
plane. Introducing the polarization basis

�̂�
p
1 =

( �̂� × �̂�) × �̂�

sinΘ
,

�̂�
p
2 =

�̂� × �̂�

sinΘ
, (67)

MNRAS 000, 1–18 (2022)



12 Yong Gao et al.

Figure 11.TheX-ray emission geometry. The observer lies in the �̂�X-�̂�Z plane
at an inclination angle ]. A hotspot is located at one of the magnetic poles. An
X-ray photon emitted at an angle \em respect to the surface normal will be
received at colatitude Θ due to the light bending effect. A coordinate system
𝐼 𝐽𝐾 with the basis {𝒊, �̂� , �̂� } is introduced, where �̂� is along the line of sight,
𝒊 lies in the plane spanned by the line of sight and the angular momentum 𝑳,
and �̂� is determined by �̂� × �̂� = − �̂� sin ].

the PA measured from the projection of the spin axis onto the plane
of the sky in the counterclockwise direction is given by

cosΨ = �̂�
p
1 · �̂� =

sin ] cos𝛼 − cos ] sin𝛼 cosΦ
sinΘ

, (68)

sinΨ = �̂�
p
1 · �̂� = − sin𝛼 sinΦ

sinΘ
. (69)

Then, we obtain the expressions of PA in the RVMas (Radhakrishnan
& Cooke 1969; Lorimer & Kramer 2005)

tanΨ =
sin𝛼 sinΦ

cos ] sin𝛼 cosΦ − sin ] cos𝛼 . (70)

The rotation phase at the polarization limiting radius is Φ(𝑟pl) =

Φ(𝑅) + 𝑟pl/𝑅LC, where Φ(𝑅) is the rotation phase when the photon
is emitted at the surface. Magnetars rotate slowly, with 𝑟pl/𝑅LC � 1
and Φ(𝑟pl) ' Φ(𝑅).
In principle, one needs to evolve the polarization state along

the magnetic field to determine Ψ for different points on the ex-
tended hotspot (Heyl et al. 2003; Taverna et al. 2015). However,
we consider a hot region much smaller than the surface area of
magnetars and the magnetic field is constant across the emission re-
gion. Under this condition, the observed PA can be approximated as
Ψ(𝑟pl) ' 𝜋 + Ψ(𝑅) (Lai & Ho 2003; van Adelsberg & Lai 2006).
Therefore, the polarization state only changes with a constant phase
shift compared to the intrinsic one. The Stokes parameters 𝑄 and 𝑈
that are normalized to the total intensity 𝐼 are

𝑄/𝐼 =Πem cos 2Ψ(𝑟pl) , (71)

𝑈/𝐼 =Πem sin 2Ψ(𝑟pl) . (72)

To obtain the spectral “flux” of the Stokes parameters, the prop-
agation effects in the curved spacetime such as the light bending
and gravitational redshift need to be considered. In the 𝐼𝐽𝐾 frame
shown in Fig. 11, the points on the surface of the NS are described

by the azimuthal angle 𝜙h and polar angle \h. A photon emitted at
an angle \em with respect to the surface normal escapes to infinity
at a different angle \h due to the light bending effect in the curved
spacetime. The relation between the two angles is given by the ray
tracing function (Pechenick et al. 1983; Page 1995)

\h (\em) =
∫ 𝑅s/2𝑅

0
𝑥

[(
1 − 𝑅s

𝑅

) (
𝑅s
2𝑅

)2
− (1 − 2𝑢)𝑢2𝑥2

]−1/2
d𝑢 ,

(73)

where 𝑥 ≡ sin \em, 𝑅s ≡ 2𝐺𝑀/𝑐2 is the Schwarzschild radius. In a
flat spacetime, the visible condition is simply cos \h > 0. The strong
gravity of the NS allows the observer to see the region with negative
cos \h. The critical value of cos \h that defines the dark side of star
is determined by the condition \em = 90◦.
The differential spectral flux from the hotspot is (Pechenick et al.

1983; Beloborodov 2002)

d𝐹 𝑗 (𝐸∞,Φ) =
(
1 −

𝑟𝑔

𝑅

)1/2
𝐼 𝑗 (\em, 𝐸) cos \em

d cos \em
d cos \h

d𝑆
𝐷2

=
𝑅2

𝐷2

(
1 −

𝑟𝑔

𝑅

)1/2
𝐼 𝑗 (\em, 𝐸) sin \em d sin \em d𝜙h

=
𝑅2

𝐷2

(
1 −

𝑟𝑔

𝑅

)1/2
𝐼 𝑗 (arcsin 𝑥, 𝐸)𝑥 d𝑥 d𝜙h , (74)

where d𝑆 = 𝑅2 sin \hd\hd𝜙h is the visible surface element, 𝐷 is
the distance between the NS and the observer, 𝐼 𝑗 ( 𝑗 = X,O) are the
specific intensities of the X and O mode photons at the emission
point, and 𝐸∞ = (1− 𝑅s/𝑅)1/2𝐸 is the observed energy of the X-ray
photons. The spectral flux then can be integrated as (Page 1995)

𝐹 𝑗 (𝐸∞,Φ) = 𝑅2

𝐷2

(
1 −

𝑟𝑔

𝑅

)1/2 ∫ 1

0
𝑥𝐼 𝑗 (arcsin 𝑥, 𝐸)d𝑥

∫ 2𝜋

0
d𝜙h .

(75)

At a specific rotation phase Φ, one first obtains the angle Θ. Then
the ranges of \h and 𝜙h are determined by Θ and the opening angle
𝜌. The dependence of \h has been transformed into that of \em
by the relation in Eq. (73). Finally, the observed spectral flux for a
given mode is given by Eq. (75). Note that the integration domain
is restricted to the hot region with the intensities being zero outside
the hot region. The observed spectral flux 𝐹I, 𝐹Q, and 𝐹U that are
associated with the Stokes parameters 𝐼,𝑄, and𝑈 are (van Adelsberg
& Lai 2006; van Adelsberg & Perna 2009)

𝐹I =𝐹O + 𝐹X , (76)
𝐹Q =𝐹I Πem cos 2Ψ(𝑟pl) , (77)

𝐹U =𝐹I Πem sin 2Ψ(𝑟pl) , (78)

and the observed polarization fraction is

ΠL =
(𝐹2Q + 𝐹2U)

1/2

𝐹I
= |Πem | . (79)

The observed polarization fraction is equal to the intrinsic polariza-
tion fraction, which arises from the assumption that the magnetic
field is constant across the hot region which is much smaller than the
surface area of the star.
We give an example with a magnetic field 𝐵 = 1014 G, an

effective temperature 𝑇eff = 5 × 106 K, and a surface gravity
𝑔 = 𝐺𝑀/𝑅2

(
1 − 2𝐺𝑀/𝑅/𝑐2

)−1/2
= 2.4 × 1014 cm s−2 in Fig. 12.

The normalized 𝐹I, 𝐹Q/𝐹I, and 𝐹U/𝐹I for different photon energies
are shown. There are distinctive features that reflect the interplay
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Figure 12. The phase evolutions of the spectral flux 𝐹I (upper), the linear
polarization 𝐹Q/𝐹I (middle), and the linear polarization 𝐹U/𝐹I (lower) for
photon energies 𝐸 = 2 keV, 3 keV, and 5 keV. The parameters of the model
are the opening angle of the polar cap, 𝜌 = 5◦, the dipole magnetic field
𝐵 = 1014 G, the effective temperature 𝑇eff = 5 × 106 K, the inclination angle
of the observer ] = 45◦, and the magnetic inclination angle 𝛼 = 65◦.

between the NS geometry, the strong magnetic field, and vacuum
birefringence. Because the magnetic field 𝐵 > 𝐵𝑙 ' 7 × 1013 G,
the vacuum resonance density lies between the decoupling densities
of the X mode and O mode photons (𝜌O < 𝜌V < 𝜌X), the linear
polarization 𝐹Q/𝐹I for different photon energies coincides in phase
as the star rotates (van Adelsberg & Lai 2006).
The emergent radiation is dominated by the X mode except for

\em close to zero. The polarization degree ΠL is smaller when the
rotation phase Φ is close to 0 than for when it is close to 90◦. This
can be understood by considering the variation in X and O mode
opacities when varying the angle between the photon propagation
and magnetic field directions. In our chosen NS geometry, the emis-
sion angle \em is closer to zero for a rotation phase around ∼ 0◦
compared to other phases. The difference between the X and the O
mode opacities becomes smaller. Thus, the polarization fraction is
smaller than at other phases. In contrast, the emission angle \em is
close to ∼ 45◦ when the rotation phase is far away from 0◦ or 360◦.
At those angles, the difference between the X and O mode opacities
is maximal and the polarization fraction is larger.

5.2 Modulations on the Stokes parameters of X-rays

Since the phase evolution of the Stokes parameters are similar for dif-
ferent energies in Fig. 12, we fix 𝐸 = 3 keV to study the modulations
due to the precession. In Fig. 13, we show the phase evolution of the
normalized 𝐹I, 𝐹Q/𝐹I, and 𝐹U/𝐹I at different precession phases for
a biaxial NS. Only half of the precession period is shown because
the precession is periodic. The modulations for the triaxial case are
similar. The precession mainly causes variations at a rotation phase
close to 0◦.
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Figure 13. The phase-resolved spectral flux 𝐹I (upper), 𝐹Q/𝐹I (middle), and
𝐹U/𝐹I (lower) of 𝐸 = 3 keV at different precession phases for a biaxial NS.
The parameters are shown in Case I of Table 3.

The phase-resolved X-ray polarization is usually hard to get from
observations. Thus, we give the phase-averaged Stokes parameters
〈𝐹I〉,

〈
𝐹Q

〉
/〈𝐹I〉 and polarization degree 〈ΠL〉 in Fig. 14. The phase

averaged 𝐹U is zero and it is omitted in the figure. Both biaxial and
triaxial cases are shown and the phase-averaged spectral flux 〈𝐹I〉 is
normalized to the maximal value.
The amplitude of 〈𝐹I〉 /

〈
𝐹maxI

〉
can vary up to ∼ 40% during

the precession, which is quite substantial. Heyl & Hernquist (2002)
used free precession to explain the flux variations from the magnetar
1E 161348−5055. They modeled the hotspot emission in a similar
way to our work. The large variations of the phase-averaged flux are
partially caused by the emission model. We assume that the emission
comes from a small hot region centered around the magnetic axis.
If the emission comes from different patches or even the whole
stellar surface with temperature profiles, the large modulations on
the spectral flux might be reduced.
The phase-averaged linear polarization

〈
𝐹Q

〉
/〈𝐹I〉 and the phase-

averaged polarization fraction 〈ΠL〉 vary ∼ 10%–20% in our ex-
amples. Different from the spectral flux, the modulations on the
polarizations may not be reduced if the emission comes from dif-
ferent patches of the stellar surface. As we discussed before, when
an X-ray photon propagates in the magnetosphere, its polarization
state evolves adiabatically along the varying magnetic field up to the
polarization limiting radius 𝑟pl, which is far from the surface of the
NS. Polarization states of photons from different patches of the star
largely do not cancel. The magnetic field direction at 𝑟pl changes
during the precession and the modulations should always exist.

5.3 Modulations on polarized radio emission

We use the RVM to study the modulations on the polarized radio
emission. It may be possible to observe the swing of the emission
region and the modulations on the PA due to the precession.
We present the PA evolutions at different precession phases for a
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Table 3. The intrinsic and effective parameters for modulated polarizations of X-rays and radio signals shown in Fig. 13-17.

Case Intrinsic parameters Effective parameters

𝑃0 (s) 𝐵 (G) 𝜖 𝛿 \0 (◦) 𝜒 (◦) [ (◦) ] (◦) 𝜖eff 𝛿eff \eff,0 (◦) 𝜒eff (◦) [eff (◦) 𝑇eff (yr)
I 5 1014 10−7 0 15 65 0 45 1.01 × 10−7 0.0124 15.3 65.3 0 1.64
II 5 1014 10−7 1 15 65 45 45 1.00 × 10−7 0.993 15.2 65.5 44.4 2.35
III 5 1014 10−7 0 15 45 0 45 1.00 × 10−7 0.00761 15.4 45.4 0 1.65
IV 5 1014 10−7 1 15 45 45 45 9.96 × 10−8 1.01 15.3 45.6 44.8 2.38
V 5 5 × 1014 10−7 0 15 45 0 45 1.07 × 10−7 0.261 25.3 55.3 0 1.87
VI 5 5 × 1014 10−7 1 15 45 45 45 9.99 × 10−8 1.15 24.9 60.2 36.1 2.75
VII 5 1014 10−5 0 18 40 0 45 1.00 × 10−5 6.20 × 10−5 18.0 40.0 0 0.0167
VIII 5 1014 10−5 5 18 40 0 45 1.00 × 10−5 5.00 18.0 40.0 0 0.0490
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Figure 14. The time evolutions of the phase-averaged normalized spectral flux 〈𝐹I 〉 /
〈
𝐹maxI

〉
(upper), the phase-averaged linear polarization

〈
𝐹Q

〉
/〈𝐹I 〉

(middle), and the phase-averaged polarization fraction 〈ΠL 〉 (lower) for photon energies 𝐸 = 2 keV (left), 𝐸 = 3 keV (middle) and 𝐸 = 5 keV (right). The
parameters for the biaxial and triaxial cases are shown in Case I and Case II of Table 3 respectively.

magnetar with 𝐵 = 1014 G in the upper panel of Fig. 15. Due to the
precession, the slope of the PA will change. The steepest gradient of
the PA is

dΨ
dΦ

����
Φ=0

= − sin𝛼
sin 𝛽

. (80)

Practically, the precession of magnetars may be observed from the
variations of the steepest gradient of the PA.Aswe take the inclination
angle of the observer to be ] = 𝜋/4, the impact parameter 𝛽 =

] − 𝛼 changes sign during precession. Thus the slope of the PA can
potentially change sign. In the lower panel of Fig. 15, we show the
inverse of the steepest gradient, − sin 𝛽/sin𝛼 for a better illustration.
For comparison, we also give examples with 𝐵 = 5 × 1014 G in

Fig. 16. The effects of the near-field torque cannot be neglected. The
wobble angle varies across a much larger range and the modulations
of the steepest gradient are distinct from that in Fig. 15.Moreover, the

differences between the biaxial and triaxial cases are more obvious
than Fig. 15.

The parameter 𝑚 is on the order of 0.1 for the examples shown
in Table 3. As shown in the lower panels of Fig. 15 and Fig. 16, the
modulations for the biaxial and triaxial cases are similar. In contrast,
the triaxiality can be observed directly from polarizations if 𝑚 is
large enough. We show a triaxial case with 𝑚 = 0.528 in Fig. 17.
For the biaxial case, the wobble angle is constant, the variation of 𝛼
and − sin 𝛽/sin𝛼 is harmonic and has only one peak. In fact, these
features are true for any biaxial case according to Eq. (41). For the
triaxial case, themodulations of𝛼 and− sin 𝛽/sin𝛼 are not harmonic.
Due to the variation of the wobble angle, the time evolution of 𝛼 and
− sin 𝛽/sin𝛼 also shows a “double-peak” structure in our case.
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Figure 15. The upper panel shows the PA evolution at different precession
phases for both biaxial and triaxial cases. The lower panel shows the time
evolution of the inverse of the steepest gradient,− sin 𝛽/sin 𝛼. The parameters
for the biaxial and triaxial cases are shown in Case III and Case IV of Table 3
respectively.
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Figure 16. Same as Fig. 15 but with a larger magnetic field 𝐵 = 5 × 1014 G.
The parameters for the biaxial and triaxial cases are shown in Case V and
Case VI of Table 3 respectively.

6 DISCUSSIONS

In our work, we gave the analytical solutions to the free precession
of triaxially-deformed NSs following Landau & Lifshitz (1960), Ak-
gun et al. (2006), and Wasserman et al. (2022). We assumed that the
rotation is rigid and ignored superfluid pinning or any internal dis-
sipations. The pinning of the superfluid can lead to fast precession
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Figure 17. The time evolution of \ , 𝛼, and − sin 𝛽/sin 𝛼. The parameters for
the biaxial and triaxial cases are shown in Case VII and Case VIII of Table 3
respectively.

comparable to the spin frequency (Shaham 1977; Sedrakian et al.
1998). It is also possible that the precession is damped quickly by the
coupling of normal fluids to the superfluid core if the strong internal
magnetic field of magnetars unpairs the proton superconductor in the
stellar core (Sedrakian 2016). In this regard, our studies can serve
as a starting point to further investigate the internal couplings and
dissipative mechanisms.
The strong magnetic fields of magnetars also induce large elec-

tromagnetic torques, which are important to determine the spin and
geometry evolutions of precessing magnetars. Assuming a dipole
field, we considered both the near-field and far-field electromagnetic
torques in the forced precession problem.
For magnetars with large external magnetic fields, the near-field

torque couples to the precession solution and affects the motions
substantially. This is the central idea in the so called radiative pre-
cession advocated by Melatos (1997, 2000). The near-field torque
can be effectively absorbed into the moment of inertia tensor of
the star (Melatos 2000; Glampedakis & Jones 2010; Zanazzi & Lai
2015).We solved the forced precession problem analytically by trans-
forming the near-field torque into an effective deformation along the
magnetic axis. We found that the effects of the near-field torque can-
not be ignored in the dynamical evolution if 𝜖m & 0.1𝜖 , where 𝜖m is
the effective ellipticity induced by the external magnetic field and 𝜖
is the ellipticity sourced from the magnetic and elastic deformations.
The far-field torque leads to the spin down and secular change of

the magnetic inclination angle. Perturbation methods were used to
study the forced precession under the far-field torque. We obtained
analytical solutions of the spin evolution for general triaxial stars.
One part of the far-field torque comes from the direct emission of
electromagnetic waves due to the time-varying magnetic multipo-
lar moments of the star. Another part is caused by electromagnetic
emission from charged particles being accelerated in the magneto-
sphere. Therefore, we not only used the simple vacuum torque, but
also applied a parametrized plasma-filled torque proposed by Li et al.
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(2012) and Philippov et al. (2014) according to MHD simulations.
The form of the plasma-filled torque is equivalent to adding an align-
ment component of the far-field torque compared to the vacuum case.
Note that the near-field torque affects the spin-down rate indirectly
because it leads to the variations of the magnetic inclination angle
for a precessing magnetar.
In our calculations, we assumed that the external magnetic field

was dipolar. It is commonly believed that higher multipoles should
be considered crucially for magnetars. Zanazzi & Lai (2015) in-
vestigated the near-field torque contributed by the quadrupole field.
The effective deformation is not symmetric about a specific axis and
can be classified into two independent components. The multipoles
contributing to the near-field torque can also be absorbed into the
moment of inertia tensor of the star. The solutions in our work can
still be applied but with different effective parameters. The direct
electromagnetic emission from the magnetic multipoles is probably
dominated by the magnetic dipole. On the perspective of observa-
tions, we may leave the coefficients in the parametrized far-field
torque in Eq. (20) as free parameters to absorb the effects of higher
magnetic multipoles, as well as complex charges and currents in the
magnetosphere.
During the precession, the torques are locked in phase with the

precession, which in turn modulates the spin-down rate. We first
studied the spin evolution of triaxially-deformed magnetars and gave
the analytical timing residuals, which contained the geometric term
resulting from the phase modulations of the precession and the spin-
down term arising from the varying far-field torque.
The polarization maps out the geometry of the emission region

and can serve as a useful probe to find the precession of magnetars.
For the soft X-rays, we used the model given in Lai & Ho (2003)
and van Adelsberg & Lai (2006) to calculate the observed Stokes
parameters emitted from a hot region centered around the magnetic
dipole. The general relativistic effects and the vacuum birefringence
were considered. We investigated the modulations on the spectral
intensities, the linear polarization, and the polarization fraction for
both phase-resolved and phase-averaged scenarios. For radio signals,
we simply used the RVM to study the PA evolution for different ge-
ometries during the precession. It is possible to detect the precession
of transient magnetars through the variations of the steepest gradient
of the PA if large-amplitude precession is excited.
The polarization state of X-rays evolves adiabatically following the

varying magnetic field it experiences up to the polarization limiting
radius 𝑟pl. The polarization states of photons fromdifferent patches of
the star tend to align at 𝑟pl, and largely do not cancel (Heyl et al. 2003;
Lai&Ho 2003). Therefore, the polarizations can still bemodulated in
the precession, even when the photons come from different patches
(or even the whole stellar surface) because the inclination of the
magnetic field at 𝑟pl changes. In contrast, the modulations of the flux
and the spectrum may be reduced or even eliminated if the emission
comes from a large extended region.
From the perspective of observations, IXPE has conducted the

first observation of the polarized X-ray emissions from the magnetar
4U 0142+61 (Taverna et al. 2022). In near future, the eXTP mission
will give more accurate measurements of X-ray polarizations (Zhang
et al. 2019; in ’t Zand et al. 2019) which will give us more opportu-
nities to find the precession of magnetars via polarizations.

7 CONCLUSIONS

We gave a detailed model of precessing magnetars with triaxial de-
formation. The dynamical motion of the precession both in free

and forced conditions was studied analytically. For magnetars with
𝐵 ∼ 5 × 1014 − 1015 G, the effects of the electromagnetic torques
must be considered crucially if the ellipticity 𝜖 . 10−7.
Precession can produce observational consequences in timing and

polarization. We gave the timing residuals from both the geometric
term arising from the precession and the spin-down term arising
from the variations of the far-field torque. The relative strength of the
two terms is determined by the relative strength between the rotation
period 𝑃, the precession timescale 𝜏p, and the spin-down timescale
𝜏rad. If 𝜏p/𝜏rad � 𝑃/𝜏p, the spin-down term dominates. Otherwise,
the geometric term dominates over the spin-down term.
We also modeled the modulations on polarized X-ray and radio

signals in differentNSgeometries.Assuming the emission is centered
around one of the magnetic pole, we showed that the prospects of
detecting precession with polarization are promising if large wobble
angle is excited. Thanks to the QED effects in strongly magnetized
magnetosphere, the modulations on the polarization of X-rays may
always exist even if the emission comes from amuch extended region
or the whole star. Advanced detectors, such as IXPE and eXTP, will
give us more opportunities to find the precession of magnetars via
polarizations.
A firm detection of magnetar precession will answer many ques-

tions about the strong internal magnetic field, the emission geometry,
and the equation of state of NSs. Our timing and polarization models
can be used to search and interpret magnetar precession.
In this work, we assume that the emission comes from a small re-

gion centered around the magnetic pole and the magnetic field itself
is dipolar. However, the emission may come from a much extended
region and possibly is distorted by the scattering processes (Ca-
iazzo et al. 2022) for magnetars. The actual magnetic structures of
magnetars are likely to have a twisted magnetic field configuration
which contains contributions from higher-order multipoles, affecting
the polarization-state evolution for both radio signals from transient
magnetars (Tong et al. 2021) and X-rays (Fernandez & Davis 2011;
Taverna et al. 2015). We leave the modelling of the polarized X-rays
and radio emission from precessing magnetars with more complex
emission mechanisms and magnetic fields into future studies.
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APPENDIX A: JACOBI ELLIPTIC FUNCTIONS

The Jacobi elliptic functions are standard forms of elliptic functions.
The three basic functions are denoted as cn(𝜏, 𝑚), sn(𝜏, 𝑚), and
dn(𝜏, 𝑚), where 0 ≤ 𝑚 ≤ 1. They naturally arise from the following
integral

𝜏 =

∫ 𝑠

0

d𝑡√︁
1 − 𝑚 sin2 𝑡

, (A1)

where 𝑠 = am(𝜏, 𝑚) is called the Jacobi amplitude. Then, it follows

cos 𝑠 = cn(𝜏, 𝑚) ,
sin 𝑠 = sn(𝜏, 𝑚) ,√︁

1 − 𝑚 sin2 𝑠 = dn(𝜏, 𝑚) . (A2)

The Jacobi elliptic functions are periodic with period 𝑇 = 4𝐾 (𝑚),
where 𝐾 (𝑚) is the complete elliptic integral of the first kind.
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Figure A1. The relation between 𝑚 and 2𝐾 (𝑚)/𝜋.

The expansions of the Jacobi elliptic function in series of 𝑚 are

cn(𝜏, 𝑚) = cos 𝜏 − 1
8
𝑚 sin 𝜏(−2𝜏 + sin 2𝜏) + O(𝑚2) ,

sn(𝜏, 𝑚) = sin 𝜏 + 1
8
𝑚 cos 𝜏(−2𝜏 + sin 2𝜏) + O(𝑚2) ,

dn(𝜏, 𝑚) = 1 − 1
2
𝑚 sin2 𝜏 + O(𝑚2) . (A3)

When 𝑚 = 0, 𝐾 (0) = 𝜋/2, the variable 𝜏 equals to the Jacobi
amplitude 𝑠, and the three elliptic functions turn into

cn(𝜏, 0) = cos 𝜏 ,
sn(𝜏, 0) = sin 𝜏 ,
dn(𝜏, 0) = 1 . (A4)

The trigonometric functions are 2𝜋 periodic. In Fig. A1, we show
the relation between the parameter 𝑚 and the period of the Jacobi
elliptic functions over the period of the trigonometric functions.
The quantity cos𝛼 shown in Eq. (40) is a function of the Jacobi

elliptic functions. The integration of cos2 𝛼 is∫ 𝑡

0
cos2 𝛼d𝑡 =

cos2 \0
𝜔p𝛿

[
ˆ̀21 − (1 + 𝛿)�̂�22 + ˆ̀

2
3𝛿

]
𝐸 (am 𝜏)

+ 1
𝜔p

[
− sin 2\0 (1 + 𝛿)

1
2 ˆ̀2 ˆ̀3 cn 𝜏

]
+ 1
𝜔p
sin 2\0 ˆ̀1 ˆ̀3 sn

+ cos
2 \0

𝛿𝜔p

[
(−1 + 𝛿 tan2 \0) ˆ̀21 + (1 + 𝛿) ˆ̀22

]
𝜏

− 2 cos
2 \0 ˆ̀1 ˆ̀2 (1 + 𝛿)

1
2

𝜔p𝛿
dn 𝜏 + 𝐴c , (A5)

where 𝐸 (am 𝜏) is the Jacobi elliptic integral of the second kind,
and am 𝜏 = arcsin(sn 𝜏) is the Jacobi amplitude. The term 𝐴c is an
integration constant, which can be obtained directly by setting the
integral to be zero at the initial time 𝑡 = 0.
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