Nano-opto-mechanical Nonlinearity in Metamaterials

Jinxiang Li¹, Dimitrios Papas¹, Jun-Yu Ou¹, Eric Plum¹ Kevin F. MacDonald^{1*}, and Nikolay I. Zheludev^{1, 2}

¹ Optoelectronics Research Centre & Centre for Photonic Metamaterials, University of Southampton, UK

² Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences & The Photonics Institute, Nanyang Technological University, Singapore

Strong opto-mechanical nonlinearity can be achieved through the coupling of optical and mechanical resonances in dynamically reconfigurable nanostructured materials. Such media offer a highly adaptable platform for the engineering of profound electro-, magneto- and acousto-optic switching coefficients. Here, we present all-dielectric and plasmonic metamaterial systems manifesting, respectively, optomechanically asymmetric transmission underpinned by the action of ponderomotive optical forces, and acoustically-/optically-controlled bistability. Both provide for near-infrared transmission/reflection modulation at low (μ W/ μ m²) intensities in a structure <¹/₃ of a wavelength thick.