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Connected vehicle technology can provide traffic signal controllers with abundant types of data 

resources, e.g., vehicle occupancy data, etc. The provided data can be used to improve the 

performance of signal control methods and enable conversion from vehicle-based controls to 

person-based controls, which focus on optimizing person-related objective values, such as 

minimising average person delay. However, so far research in relevant fields has not fully 

exploited potential paradigms and benefits of person-based controls. In respect of such, this study 

has provided a better understanding about the impacts of occupancy information collected from 

connected vehicles (CVs) on urban signal controls and potential benefits to person-related 

performance that those information can bring. 

The contributions of this study include:  1) development of a three-layered DP person-based 

signal control mechanism (PerSiCon-Junction) in a fully CV environment at an isolated junction 

with a signal phase transition exploration mechanism and car-following updating theories; 2) 

development of a person-based control mechanism (PerSiCon-Bus) with completely flexible signal 

plans to apply the PerSiCon-Junction to more complex vehicle mixtures of cars and buses in a 

generalized 8-phases options junction; 3) proposal of a coordinated paradigm PerSiCon-Network 

to better understand how PerSiCon-Bus with flexible phase combinations and stage sequences 

should be implemented in multiple junctions; 4) realistic case and scenarios studies that assess 

the performance of the proposed method against benchmarking models involving vehicle-based 

controls using CV data; and 5) proposal of a EUVO algorithm to estimate status of unequipped 

vehicles with occupancy so as to improve the behaviour of PerSiCon-Network under imperfect CV 

penetration rate environments.
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Chapter 1 Introduction 

1.1 Problems and challenges in urban roads 

Due to rapid growth of urban population, car ownerships and passenger vehicle miles travelled, 

traffic delay and congestion has been increasing in urban areas. In the UK in 2019, motor vehicle 

and passenger miles travelled have reached record high of 357 billion vehicle miles and 873 billion 

passenger-kilometres, respectively, or 186% and 117% increment over the past 50 years, 

respectively (UK Govt. Dept. Transport, 2019a). In 2020, vehicle and passenger miles travelled 

decreased by 21% and 33% from one year ago, respectively, owing to the COVID-19 pandemic 

starting in March 2020 (UK Govt. Dept. Transport, 2020). However, it is unclear whether such 

decrease will remain for long time. As a matter of fact, congestions at UK city centres in 2021 have 

shown signs of recovery back to 2019 levels along with ease of lockdown policies (INRIX, 2021). 

Traffic delays and congestions often lead to excessive waste of time for vehicle users and 

passengers and costs of economic activities. According to statistics from INRIX, each British driver 

and passenger lost 73 hours in traffic on average in 2021, which is lower than the 115 hours in 

2019 pre-COVID but significantly higher than the 37 hours in 2020 (INRIX, 2021). For each Brits, 

the average time spent by sat in traffic in 2021 equals to £595 of traffic cost or £8 billion 

nationwide (INRIX, 2021). Table 1.1 lists the 10 most congested urban areas in the UK in 2021. It 

indicates that congestion circumstances in London are most serious. London is also one of the 

most congested cities in the world in 2021. Drivers in Paris and New York lost an average of 140 

and 102 hours due to traffic congestion in 2021, respectively (INRIX, 2021). 

Urban delay and congestion is expected to worsen in the future. There is no forecast on 

congestion cost in recent years, but it can still be roughly calculated from the forecast of vehicle 

miles and fuel prices. The world’s population is predicted to increase by 147% from 2019 to 2050 

(United Nations, 2019). Traffic volume levels and congestion in England and Wales are also 

expected to increase by 17% to 51% and 8% to 16% from 2015 to 2050, respectively (UK Govt. 

Dept. Transport, 2018a). In addition, the petrol and dispel fuel prices in the UK in November 2021 

has reached 150 pence per litre, the highest level over the past five years (Department for 

Business, Energy and Industrial Strategy, 2021). Therefore, urban congestion will result in 

increasing transportation-related costs for people living in big cities. Conventional approaches, 

such as constructing new roads and lanes, are not feasible solutions in most urban cities due to 

political and environmental concerns along with limited lane resources and infrastructure 

construction restrictions (Baskar et al., 2011). Instead, efficient traffic management on existing 
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infrastructures has become increasingly essential to reduce traffic congestion, travel time loss and 

related costs. For example, the UK Department for Transport (DfT) has recently highlighted the 

challenges for future urban person mobility and proposed to utilise data sensing technology (UK 

Govt. Dept. Transport, 2019b). If person-based signal controls can improve person mobility 

significantly over vehicle-based signal controls, lots of benefits such as people travel time loss 

saving, congestion cost reduction and traffic demand reduction can be achieved. 

 

Table 1. 1 10 most congested urban areas in the U.K.  (INRIX, 2021) 

2021 UK Rank Urban Area Average Delay 2021 (hours) 2021 Driver Cost 2021 City Cost 

1 London 148 £1,211 £5.1B 

2 Cambridge 75 £618 £11M 

3 Bristol 66 £542 £28M 

4 Exeter 71 £578 £36M 

5 Cheltenham 71 £576 £140M 

6 Manchester 62 £502 £35M 

7 Belfast 60 £487 £32M 

8 Birmingham 53 £434 £123M 

9 Nottingham 58 £469 £65M 

10 Hull 56 £459 £226M 

 

1.2 Existing urban traffic control system and limitations 

Traffic signal junctions are essential components of urban road network. Traffic signal control 

system is one of major traffic management approaches to control vehicle flows by scheduling 

traffic light schemes for competing flows and allowing vehicles to share the junction spaces 

without collision (Gordon and Tighe, 2005). Urban Traffic Control (UTC) systems has developed 

rapidly with improved hardware and control strategies. Current UTC systems formulate signal 

timing plans based on either historic data (fixed-time signals) or real-time data collected by 

sensors (inductive loops, radar, infrared) at fixed locations. The below are three major UTC 

strategies (Feng et al., 2015):   

1. Fixed-time control strategies do not change phase durations and cycle lengths. The phase 

sequence and phase durations of fixed-time control are pre-determined by local historical 

traffic data for different times of a day (Jing et al., 2017). Therefore, fixed-time control 

methods do not require any further infrastructures to measure traffic demand. The 

infrastructure construction and maintenance costs can be saved. Nevertheless, fixed-time 

strategies have poor flexibility and are insensitive to traffic flow fluctuations during the day 
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(Maslekar et al., 2013), leading to frequent traffic congestion and disturbance to high-priority 

vehicles such as emergency vehicles.   

2. Actuated signal control strategies collect real-time traffic data using sensors, such as loop 

detectors, radar and video detectors. They adjust signal cycle lengths, phase durations and 

signal sequences by applying simple logic-like extending unit green time (Feng et al, 2015). 

Actuated signal controls have a better response to real-time traffic flows than fixed-time 

control. Apart from that, simple signal logics can also save computational expenses. However, 

the availability of real-time detection is limited at traffic flows on green phase roads, despite 

those lanes on red phase with vehicle information. Moreover, actuated traffic signals rely on a 

set of pre-defined static parameters, such as unit extension time, minimum and maximum 

green time to transform collected data into traffic control strategies (Jing et al., 2017). 

Furthermore, the coverage of infrastructure-based detectors is low due to high installation 

and maintenance costs.  

3. Adaptive signal controls strategies use similar information resources as actuated control to 

acquire data (e.g., speed and acceleration) from the upstream urban road. They are 

advantageous in respect of estimating short period incoming traffic flows and able to reach 

maximum or minimum objective functions by optimizing timing strategies. Current well-

known adaptive control strategies include SCATS (Besley et al., 1998), OPAC (Gartner, 1983), 

SCOOT (Bing and Carter, 1995), RHODES (Mirchandani and Head, 2001), PRODYN (Henry et al., 

1984) and MOTION (Brilon and Wietholt, 2013). 

Traditional actuated and adaptive signal strategies currently can only partially adjust their 

decisions to variable demand (Guler et al., 2014). With rapid technological developments, the 

performance of UTC systems can be improved. However, there are still two major limitations 

preventing UTC systems from tackling urban congestion and cost issues: 

The first limitation of UTC systems is inadequate traffic data collected from inductive loop 

detectors and other existing sensors. Traffic data collection sensors (e.g. inductive loops 

embedded under roads) in most commonly used UTC systems are point detectors, which can only 

provide a brief snapshot of vehicles (Box and Waterson, 2010). It is thus challenging for UTC 

systems to understand accurately the state of vehicular environments and accordingly make 

signal timing decisions. This issue can be addressed by the advancement in wireless 

communication technologies. With the developments of Vehicle-to-Infrastructure (V2I) and 

Vehicle-to-Vehicle (V2V) communication systems (Qu et al, 2010), new data sources are available 

for signal control optimization by accessing to road and vehicle states. New data stream that is 

continuously that is continuously provided by Connected Vehicles (CVs) can deliver information 
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such as vehicle locations, speeds and accelerations to traffic signal controllers. This area has 

become the focus of current research where great improvements have been achieved. 

The second limitation of existing UTC systems is they are all vehicle-based but not person-

oriented. In other words, the optimization objectives of these signal controls are to reduce total 

vehicle delays, vehicle travel time, and number of stops or increase vehicle throughput. Thus the 

importance of personal mobility in urban networks has been ignored (Vilarinho et al., 2017). But 

most of the cost caused by urban road congestions are measured by how much time a person has 

spent rather than a vehicle. Those vehicle-based signal control optimizations tend to cause unfair 

treatment of vehicles with high occupancy level. Therefore, development of person-based 

controls is more useful with respects to reducing delays, congestion and related costs. The 

person-based controls optimize signal timing plans using CV data and occupancy data of CV. 

However, fixed point detectors used by UTC systems can only count the number of arrival vehicles 

at a certain time. It is difficult for them to obtain vehicle occupancy data. This issue has been 

addressed by application of advanced CV communication technology, detailed in Sections 1.3.3 

and 2.4.  

1.3 Motivations of this research 

As mentioned above in Section 1.2, existing UTC systems have some limitations which can be 

addressed by CV technology and sufficient data resources. The connected vehicle technologies 

can potentially reduce congestion on the entire road network by providing real-time vehicle 

trajectory data to signal control systems. Moreover, they collect the occupancy information of 

every vehicle connected as a prerequisite of proposing person-based control. The state-of-the-art 

researches only focus on improving the first limitations at present.   

  

This section investigates the importance of implementing person-based signal control systems, 

the introduction of CV technology for technical realization, what progress has been achieved by 

researchers in this field and the potential benefits of developing person-based signal control 

systems.   

1.3.1 Time loss savings and cost reduction 

The major motivation for researching person-based signal control systems is the potential 

benefits of time loss savings and cost reductions for passengers. INRIX (2018) research estimated 

that the total congestion cost across US, UK and Germany almost reaches 461 billion dollars. The 

direct cost accounts for a great proportion of the total costs of congestion, which is mainly a 
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result of the needlessly time wasted by drivers and passengers in congestion. The calculation of 

direct costs of congestion is associated with time loss of average drivers, different values of time 

and different vehicle occupancy rates among three countries (INRIX, 2018). In other words, the 

direct costs of congestion largely depend on the time loss and related costs of all people in one 

vehicle rather than the vehicle itself. The situation of a high occupancy vehicle (e.g. 4 people in a 

vehicle) suffering from heavy congestion is worse than a low occupancy vehicle (e.g. 1 person in a 

vehicle) under that case as the time losses of all people in high occupancy vehicle will increase. On 

the contrary, reducing delay of the vehicles with more people can significantly save the time loss 

and cost reduction.  

However, notably that improving urban mobility and reducing total passenger delay in the current 

level of congestion is not a straightforward task. The global average time loss of every person in 

urban areas due to congestion is predicted to be 106 hours per year in 2050, three times higher 

than the value in 2018 (Lerner, 2018). The costs of urban mobility are estimated to be 829 billion 

euros, which are four times greater than those costs in 1990 worldwide.   

A study for vehicle-based adaptive signal control based on wireless communication (Wang et al., 

2018) suggested great flexibility than the existing UTC system as more detailed data sources were 

provided for the signal decision-making process. The utilisation of cheaper detectors in V2V and 

V2I communication systems, such as On-board Units (OBU), Dedicated Short-Range 

Communication (DSRC), and satellite navigation systems, also significantly reduces costs. 

However, additional spaces can be further explored to reduce total people time losses and costs 

by transferring adaptive vehicle-based signal controls to adaptive person-based controls. This is 

because the objectives and metrics of vehicle-based systems are measured by vehicles and do not 

consistent with the costs of congestion measured by people. Although there is no exact statistics 

for vehicle occupancy level distributions, the reasonable estimates for different ratios of vehicle 

occupancy based on average occupancy statistics in Section 2.3 indicate that vehicle occupancy is 

not a constant. While vehicle-based control systems regard all vehicles on the road as the same 

occupancy level.  

Some policies in transport have realized the importance of reducing person delay or providing 

more delay reduction chances to those vehicles with high occupancies. Bus priority schemes are 

critical strategies to protect bus services with a great level of priority and to improve the reliability 

of buses, thus enhancing the levels of services to bus passengers (Ahmed, 2014). Bus priority plays 

an important role in public transport and is advocated by most cities and towns worldwide due to 

its large passenger capacity and applicability in limited urban road spaces (Cheney, 1992). 

Supposing that the delay of bus significantly reduces through bus priority strategy, travel time of 
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the mass amount of passengers would also be reduced so that it contributes greater to savings of 

people time losses and related costs than passenger vehicles. This priority idea has expanded to 

high occupancy private cars through implementing High Occupancy Vehicle (HOV) lanes (Stamos 

et al., 2012) in some cities to ensure faster, more reliable travel of those vehicles with high 

occupancies.  

Owing to this, one of the principles proposed by DfT for improving urban people's mobility is to 

reduce urban congestion through more efficient use of limited road space and innovative 

approaches, such as increasing vehicle occupancy rates or car consolidating. However, 

implementing HOV lanes is a conventional method to respond to this principle like constructing 

new roads, which do not fit with efficient utilisation of limited land resources. The person-based 

signal control systems have potential benefits to reduce personal costs and improve urban 

mobility, which is worthy to research.  

1.3.2 Pressures on increasing traffic demand 

The values of average occupancy for cars and vans in England fluctuated between 1.55 and 1.6 

from 2002 to 2019 (seen in Figure 1.1). In 2020, the average car occupancy in England decreases 

to 1.49 affected by the COVID-19 pandemic, as a result of trip restrictions imposed by authorities 

and fear of infection by individuals. Based on this level, the UK Department of Transport (DfT) 

forecasted traffic growth of approximately 35% over the 2015 and 2050 period due to increasing 

car ownership and vehicle miles travelled with the assumption of a 1.5 average car occupancy 

rate. DfT also carried out sensitivity tests to observe the influences of changing car occupancy to 

traffic demand. The average car occupancy rate is assumed to be 1.3 and 1.7 in 2050 in the 

private travel test and ride-sharing test respectively to represent changes in average car 

occupancy in different modes. As a result, road traffic is estimated to grow 55% between 2015 

and 2050 in case of average vehicle occupancy rate decreases from 1.5 to 1.3 (UK Govt. Dept. 

Transport, 2019b). Contrarily, if the average vehicle occupancy value rises from 1.5 to 1.7, the 

increment of traffic demand during the same period will only be 5%. The results indicate big 

differences in traffic demand increment even if there are only slight changes in average car 

occupancy. The increasing rate of low occupancy vehicles possibly caused by private travel will 

deteriorate the increasing traffic level demand in future. However, a bit higher average car 

occupancy rate could dramatically relieve pressures on future traffic demand. Ride-sharing is one 

way to potentially increase the average car occupancy level. The person-based signal controls may 

also contribute to increasing the vehicle occupancy levels from the perspective of urban signal 

control if it can assign higher priority to high occupancy vehicles, enabling them to suffer less 

delay and congestion on urban roads.  
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Figure 1. 1 Average car and van occupancy in England from 2002 to 2020 (UK Govt. Dept. Transport, 2021a)  

1.3.3 Connected vehicle technology  

Connected Vehicle (CV) technology (see details in Chapter 2) emerges promptly in to response the 

urgent requirement of improving traffic congestion and delays. Intelligent Transportation Systems 

(ITS) have demonstrated the potential of absorbing technologies from multiple disciplines to 

improve current transport conditions for CVs (Qu et al., 2010). Meanwhile, CVs are expected to 

deliver enormous mobile data demand flow in transport-related applications (Lu et al., 2014).  CVs 

equipped with on-board devices and sensors enable the acquisition of self-vehicular data. By 

means of powerful, interoperable networked wireless communications, connected vehicles create 

a communication environment with other road elements.  

Within a definite network communication scope, CVs achieve information exchange to other 

connected vehicles (V2V), roadside infrastructure (V2I), as well as on-board sensors (V2S). Those 

interactions combine several developing network technologies such as cellular, Wi-Fi, satellite 

radio, or DSRC into wireless communications to provide an enriched information platform. For 

instance, advanced vehicle sensors are used for collecting real-time vehicle and driver status. On-

board computer processing system copes with data streamed from V2I and V2I communications 

in coordination with mobile smart devices (Olia et al., 2016). GPS navigations also provide more 

accurate vehicle positions and other vehicular parameters (Faezipour et al., 2012). Hence, the 

connected vehicle system makes multiple levels of data sensing, gathering, sharing, computing 

and releasing to be possible through two-way connectivity (shown in Figure 1.2). Thus 
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complicated information broadcast and multiple events can be realized simultaneously (Qu et al., 

2010). 

 

Figure 1. 2 Overview sketch map of connected vehicle (Faezipour et al., 2012) 

Due to the powerful data handing capacity and wide applicability, CV has been developed and 

deployed in many transport areas (Chang et al., 2015). The main aspects include driver safety, 

infotainment, dealer services, location-based services, quality & reliability and customer 

experience (SAS Institute GmbH, 2016). Not like the traditional methods adopted to alleviate the 

damages and destroy when accidents occur, such as airbags or sudden deceleration manoeuvres, 

safety applications aim to avoid vehicle crashes. Safety applications are designed to process high 

hazard awareness towards surrounding environments (Uhlemann, 2015). The collision avoidance 

system warns when it is too near to surrounding vehicles and adjust the vehicle speed 

automatically (Qu et al., 2010). While mobile applications enhance the travel ability of vehicles by 

warning drivers of the upcoming flow and recommending the corresponding speed (UK Govt. 

Dept. Transport, 2019b). As for environment applications, they provide more information about 

signal timings and phases to help drivers adjust the speed to pass through the junction when the 

lights are green (Zlotchenko, 2017), and thus reaching the targets of reducing stops or 

decelerations frequency in a more eco-friend way. 

Connected cars also have extremely promising prospects for development. The numbers of new 

produced connected vehicles meet a booming surge in a future short period. The size of the 

globally connected car fleet on the road in 2021 is estimated to be 237 million units. European 

Union accounts for almost 30% of the globally connected car fleet with 76 million units (Martin 
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Placek, 2021). In 2035, the size of the connected car fleet in the European Union is predicted to be 

261 million units. In terms of the UK, 71% of all newly registered vehicles on road in 2019 are 

estimated to be connected vehicles (Statista Research Department, 2022). From the statistics 

forecasted by Statista Research Department, all of the new vehicles registered on road in the UK 

would be connected starting from 2026. 

The significantly demands for CVs in the future result in great development and profits in the CV 

devices market. According to the statistics in 2020, the total value of the global connected cars 

market was USD 55.56 billion, while it would be expected to account for USD 191.83 billion by 

2028 (Fortune Business Insights, 2022). Moreover, the generated revenue of the globally 

connected car market in 2025 will reach USD 198 billion, which is almost triple that of value in 

2019 (USD 72 billion) (P&S Intelligence, 2020). As for Europe and UK, Europe’s connected car 

market is expected to reach USD 37.15 billion in 2026, with a 7% compound annual growth rate 

(Market Data Forecast, 2022). The market for Connected and Autonomous Vehicles (CAVs) in the 

UK is forecasted to be worth £41.7 billion in 2035, accounting for 6.4% of the global market 

(Connected Places Catapult, 2020). These statistics indicate that the CVs, in terms of passenger 

cars, will be mainstream in the future road network. However, they still need a process to transit 

from a low CV penetration rate in the current stage. These statistics highlight the rapidly growing 

tendency of CVs on roads with a mass amount of available real-time data. Understanding how to 

utilise this connected information on improving urban mobility and reducing congestion and costs 

is very important. 

1.3.4 Proposed urban signal controls in connected vehicle environment 

There is a great number of researches being carried out to explore the future possibilities of new 

urban signal control paradigms with more powerful effectiveness over UTC systems due to 

restrictions of constructing new roads and principles of efficiently making use of limited land 

resources. The decision-making processes of existing UTC systems completely do not incorporate 

available new data from rising numbers of CVs. The development of connected vehicle 

technologies brings unique opportunities for the improvement of urban signal controls as they 

can help junction control realize the state of road environments by delivering vehicular detailed 

information (e.g. positions, speeds, accelerations). A study made by Olia et al. (2016) has 

suggested that CVs have the potential of reducing 37% of corridor travel time by providing more 

route information to drivers. A High Bid control algorithm was also proposed on the basis of 

position and speed additional data and outperformed the MOVA control system as a baseline, in 

terms of 25% delay reduction achieved (He et al., 2012). These researches highlight the potential 

benefits of utilising CV information in traffic signal controls, hence why the state-of-the-art 
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researches and this project concentrates on developing new urban signal control systems by 

incorporating connected data sources as inputs. 

A series of urban signal control algorithms have been developed to solve road congestion 

problems under connected vehicle environments. As discussed in Section 1.3.3, the number of 

CVs is dramatically rising and a great amount of data can be collected from CVs to provide a 

better realization of road networks. Therefore, the state-of-the-art urban signal control systems 

are reviewed in this project (see details in Chapter 2) to understand what has been achieved in 

this field, also which kind of connected data could be useful, how to use connected information in 

the urban signal control paradigm and what are benefits of using such information. 

Adaptive urban signal controls using CV data can be mainly divided into three roughly directions. 

(1) paying attention to fully connected and autonomous vehicles' trajectory and incorporating 

them into signal control schemes (Li and Wang, 2006); (2) central signal controllers optimize the 

signal timing phases according to positions and speeds information of connected vehicles (He et 

al., 2012); (3) considering different discharge sequences for each individual vehicle; providing 

prepared reservations for them at junctions in advance, or optimizing vehicle platoon sequence of 

departures (Guler et al., 2016). They took into account connected vehicle information, such as 

current speeds, positions, and headings used for describing trajectories and movements of CVs as 

inputs of the proposed signal control algorithm. A variety of vehicle-based objective functions 

were established as aims of developing control methods, for instance, reducing vehicle delays, 

number of vehicle stops, queuing lengths, maximum vehicle throughputs and junction capacities.  

The analysing results of a number of signal control researches indicated that the connected 

vehicle signal control method significantly improves the performance of vehicle-based objectives 

against benchmarking existing control strategies. For instance, a study found a proposed junction 

signal control algorithm minimising vehicle delay using information from CVs can decrease 

average delay per vehicle by up to 60% compared to fixed time control (Guler et al., 2016). 

However, in the latest years, researchers focused on testing the connected vehicle model in more 

realistic scenarios and attempted to identify the possibilities of implementing these models in 

real-world road networks. There are parts of researches that applied proposed models in more 

authentic road environments, like different traffic demand levels and various connected vehicle 

penetration rates. However, only a small group of researchers attempted to consider vehicle 

priorities at different levels given different vehicle occupancies. 
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1.3.5 Potential benefits of adaptive person-based urban signal controls 

In recent years, few studies introduced the concept of person-based signal controls. Person-based 

signal controls change the objective function for optimization from vehicle-related metrics in 

vehicle-based controls to person-related metrics and assign corresponding weights to CVs 

according to their individual occupancy data. Optimal signal plans in person-based controls are 

expected to reduce travel times, delays and the number of stops of all people in vehicular 

environments (drivers and passengers) and perform more powerful than vehicle-based controls in 

this subject area. If this target could be achieved, the outlined problems above, such as enhancing 

time loss savings of people, cost reduction, and improving person mobility are possible to be 

improved. The pressures of increasing traffic demands in future can also be significantly relieved 

by assigning more priorities to those high-occupancy vehicles to encourage car-sharing 

behaviours. 

It is important to recognize the potential benefits that could be achieved if person-based urban 

signal controls are developed so as to determine whether the study of exploring person-based 

signal controls is worthy. Although there are no completely ready-made person-based urban 

controls, the performance and effects of bus priority strategies can be taken as references due to 

their similar principles of providing different priority levels to different occupancy vehicles (buses 

and passenger cars) accordingly.  

Daniel et al. (2004) conducted a survey of the impacts and benefits of signal priority for buses 

through accessing a number of bus priority schemes in USA cities. The bus priority plans in Los 

Angeles decreased 20-27% of overall bus travel time over no priority strategy. Similarly, a 34% of 

average bus delay reduction was found in Seattle when a bus was eligible for priority treatment. 

These statistics highlight that the travel time and delay of buses could be reduced with higher 

priority treatments. In this case, a relatively large number of passengers on buses can save their 

travel time; total time losses and congestion cost savings will be higher than those of low 

occupancy vehicles. Therefore, exploring person-based signal controls has the potential of 

reducing travel time losses and related costs for urban people, responding to urban mobility 

strategy in future. 

The connected vehicle technology is also considered to be applied to Transit Signal Priority (TSP) 

as real passenger numbers in buses are not incorporated in traditional bus priority schemes. 

Various public transport priority systems give priority to public transport (e.g. buses) in case of 

priorities request (more details can be found in Section 2.1.2) by signal timing adjustments (e.g., 

green extension, recall, stage skipping) (Diakaki et al., 2013). With the introduction of Connected 

Vehicles (CVs), TSP researches assumed that detailed occupancy information, which is a necessary 
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data input in person-based controls, can be collected from both connected passenger cars and 

connected buses in the system. This makes the transit priority system better react to the arrival 

statuses of public transits and it can be used to improve the performance of traditional TSP 

strategies. Based on this, the research problems of person-based control become: if relevant 

connected vehicle data is available in signal controls, what the decision algorithm would look like 

to be, what are roles of these connected data and what kinds of benefits could be achieved by 

person-based signal controls over vehicle-based controls. This research will be carried out to 

answer these problems.    

1.4 Unanswered questions for urban signal controls under CV environment  

A number of connected vehicle-based urban junction control managements have been developed 

to identify the improvements brought by real-time data from connected vehicles. However, the 

majority of current research about urban signal control methods under the CV environment only 

exploited a small part of available connected information. Meanwhile, they regarded all of the 

vehicles on the road as are same and focused on vehicle delay rather than person delay. While the 

connected TSP approaches, which provide higher priority to public transport vehicles, inspire the 

urban signal control strategies that connected vehicles on road should be treated differently. 

Besides, they attempted to insert or remove specific stages and breaking the fixed stage 

sequences in order to make give the highest priority to transits. There are some TSP-related 

papers that considered the occupancy levels in passenger cars and developed person-based delay 

signal control methods. Few person-based approaches also attempted to achieve person-related 

objectives by incorporating occupancy data into their methods, but only changed the objective 

function value to optimize the signal plans. 

However, there is no research that attempts to thoroughly investigate how person-based traffic 

signal timing schemes and traffic vehicular systems would be if only considering the passenger 

cars but different occupancy levels in urban junctions. The vehicular environments are 

complicated in different areas and person-based controls should be well-embedded in both 

vehicle situations with/without buses. There is also no research exploring the traffic signal control 

paradigms by predicting the person-based performance of different signal timing choices without 

the constraints of fixed stage sequences and non-conflicting phase combinations at every decision 

inspired by public transport approaches. Besides, current researches do not account for how the 

junction control method will work if considering more realistic scenarios, such as coordinated 

junction control managements, imperfect CV penetration rates and different traffic demand 

levels, and also, supporting the control algorithms for better performance and stabilities in 

various situations. 
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1.5 Aims and objectives  

The state-of-the-art urban signal control systems were developed using connected vehicle 

information (e.g. instantaneous positions and speeds) while the person-based controls require 

additional vehicle occupancy data. In CV environments, the occupancy data of each CV can be 

obtained by cameras installed in vehicles or on roadsides. Vehicle occupancy detection 

technology using cameras has been developed in most recent years and some researches are 

proposed (see details in Section 2.3). TSP researches inspire the transformation from adaptive 

vehicle-based signal control to person-based signal control. The objective of reducing person 

delay or travel time is possible to be accomplished by fairly assigning priority levels to all vehicles 

for the purpose of reducing more person delay, congestion and related costs over vehicle-based 

signal controls. However, there is no research to understand how exactly the person-based signal 

control paradigm would be, how to use CV data in more complicated situations such as large road 

networks, and imperfect CV penetration rates and what are their benefits of them in a real-world 

case study. Three key research questions are outlined: 

1. How exactly the person-based signal control paradigm would be? 

2. Which kinds of data can be used and how to use them in person-based signal controls? 

3. Are there any benefits to use the data in person-based signal controls? 

Aims: to better understand the impacts of occupancy information from connected vehicles (CVs) 

on urban signal controls and the potential benefits of adopting them, in terms of person-related 

performance.  

Objectives: 1) Investigating the relationships between vehicle-based and person-based signal 

controls; understanding the current state-of-the-art signal controls using connected vehicle data; 

2) Proposing an Adaptive Person-based Signal Control Algorithm (PerSiCon-Junction) to reduce 

person average delay in isolated urban junction under 100% CV penetration rate;  

3) Developing an Adaptive Person-based Signal Control Algorithm with Buses (PerSiCon-Bus) 

which integrates bus mode into vehicular environments of person-based control; constructing 

real-world case study to validate the performance of the proposed control method in isolated 

junction;  

4) Developing Coordinated Person-based Control (PerSiCon-Network) to extend algorithm from 

isolated junction to multiple road networks and evaluating its performances in road network case 

study; 
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5) Proposing an Estimation status of Unequipped Vehicle with Occupancy (EUVO) algorithm to 

improve the behaviours of PerSiCon-Network under imperfect CV penetration rate environments. 

1.6 Thesis structure 

This section provides a descriptive summary of seven chapters in this thesis below: 

Chapter 1: Introduction 

Chapter 1 presents the background and motivation if this research, points out the main 

limitations of current urban signal controls and outlines the research aims and objectives, and the 

structure of this thesis. 

Chapter 2: General background 

Chapter 2 reviews traditional vehicle-based controls and signal priority strategies to identify their 

relationships and differences of them. The review of connected vehicle technology and data types 

provides opportunities to improve the performance and transitions of signal controls. The chapter 

also reviews state-of-the-art vehicle-based junction control strategies. The chapter points out that 

most of the urban signal controls in CV environments are vehicle-based controls and it is 

important to develop person-based controls. 

Chapter 3: Person-based adaptive signal control background and concept 

This chapter reviews the state-of-the-art researches in person-based junction control strategies 

and signal controls with flexible signal plans. The discussion of the reviews indicates where the 

present challenges in person-based controls are, and what the critical gaps in the knowledge are. 

The chapter firstly introduces the solutions of this research to fulfil the objectives, and to make 

contributions to the study area. The harmonised evaluation and validation frameworks for 

proposed person-based control algorithms are also clarified in this chapter. 

 

Chapter 4: The detailed methodologies of proposed person-based control algorithms 

Chapter 4 proposes an innovative person-based adaptive control algorithm (PerSiCon-Junction) in 

all passenger cars environments in isolated junction. PerSiCon-Junction is developed with a three-

layered dynamic programming system to minimise total passenger delay over specific prediction 

periods. The approach is novel, as flexible phase combinations and stage sequences signal 

schemes are adopted to explore optimal solutions for reducing passenger delay of passenger cars 

from all feasible signal plan possibilities in a certain period. 
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This chapter then modifies the paradigm of PerSiCon-Junction to be a Person-Based Adaptive 

Control Algorithm with Buses (PerSiCon-Bus) and extends its scope of application into more 

complicated vehicular environments containing both buses and passenger cars. PerSiCon-Bus is a 

scalable framework which can join different vehicle modes into the algorithm as it calculates and 

estimates the possible discharging time of each vehicle with their respective parameters during 

the optimization process. 

This chapter also proposes a Coordinated Person-based signal Control algorithm (PerSiCon-

Network) to extend PerSiCon-Bus to coordinated paradigms with flexible phase combinations and 

stage sequences that would be implemented in multiple junctions. The CV information from both 

surrounding CVs and adjacent junctions can be acquired to enable junction controllers to know 

vehicular situations within further range. To incorporate further information properly for 

controllers to make adaptive signal timing decisions to all surrounding vehicles with different 

occupancies, the data from the adjacent junction will be utilised as a supplement form of 

predictive vehicle arrival time list according to vehicle trajectory data and signal strategy. 

Chapter 5: Experiments and evaluations of person-based controls in isolated junction and road 

networks 

Chapter 5 reproduces an isolated junction and a road network real-world case study in 

Birmingham, UK in SUMO simulation to validate the performance of PerSiCon-Bus and PerSiCon-

Network in more realistic situations respectively. Section 5.1 lists the assumptions and limitations 

of evaluation frameworks in simulation. Section 5.2 introduces the location and geometry of the 

case study area. Section 5.3 describes the traffic flow data sources for the case study area 

obtained from manual traffic surveys and an online data portal. Section 5.4 elaborates on the 

traffic flow data treatment process from the online portal collected by inductive loops to the O-D 

matrix to generate traffic flows from different zones. Sections 5.5 and 5.6 describe the model 

calibration and validation process, junction settings and vehicle parameters for simulation 

experiments. Section 5.7 provides passenger count estimation for passenger cars and buses to 

determine their occupancy ratios. Section 5.8 clarifies the general simulation operations. Sections 

5.9 and 5.10 discuss the results of PerSiCon-Bus/PerSiCon-Network operation and performance 

changes to CV penetration rates, accumulation time weighted factors, predictive horizons and bus 

occupancy levels. 

Chapter 6 Improving the performance of person-based control under imperfect connected 

vehicle penetration rate 
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Chapter 6 develops an Estimation status of Unequipped Vehicle with Occupancy (EUVO) algorithm 

to estimate the vehicle statuses of those unequipped vehicles based on several data types 

collected from CVs, inductive loops and cameras. EUVO algorithm is proposed to improve the 

behaviours of PerSiCon-Network under imperfect CV penetration rate environments. To validate 

the effectiveness of the EUVO algorithm, the enhanced PerSiCon- Network augmented by the 

EUVO algorithm is evaluated in the case study and its person-based performance are compared to 

those of PerSiCon-Network illustrated in Chapter 5. 

Chapter 7 Conclusions and future works 

Chapter 7 summarises how the research works to achieve the objectives of the research, the 

implementation procedure of proposed person-based control and discusses the opportunities for 

future work. 
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Chapter 2 General background 

2.1 Introduction 

The growing traffic demands caused by increasing automobile fleets bring severe congestion and 

mobility problems to urban road networks. Developing efficient urban signal controls is a major 

way to mitigate the delay conditions on urban roads and manage growing traffic volumes. 

Therefore, this chapter provides a general background about the urban signal controls, CV 

technology and their combinations. This chapter reviews a number of existing urban signal control 

systems that have been implemented throughout the world; summarises key characteristics of 

every control system before highlighting their limitations resulting from inaccurate real-time data 

collection infrastructures. In addition, existing urban signal controls focus on vehicle-based 

optimization objectives rather than person-based metrics. The chapter thus justifies the practical 

meanings of setting person-based policy goals for urban signal controls and gets inspiration from 

the reviews of existing transit priority strategies. These two limitations need to be solved in 

follow-up researches.  

More adaptive and person-based urban signal controls need the support of greater detail levels of 

real-time vehicle information as data inputs. Connected vehicle technology brings unique 

opportunities for the improvements of urban signal controls. The chapter then reviews the 

technical principles of connected vehicle communication technology, involving which kind of data 

they can provide and how they transmit real-time messages to corroborate that how to 

potentially improve the limitations of existing control methods. 

After that, the chapter provides a comprehensive review of state-of-the-art vehicle-based new 

adaptive urban signal control paradigms designed for the near future, in which connected vehicle 

data are incorporated. The chapter points out at which levels the urban signal controls have been 

improved, and what are the remaining problems of the majority of state-of-the-art vehicle-based 

signal controls in CV environments.  

The state-of-the-art transit signal priority strategies combined with connected vehicle information 

are also reviewed. The review highlights that the research problems from adaptive person-based 

urban signal controls are still not solved. Therefore, the chapter justifies the gap in knowledge of 

current researches for adaptive urban signal controls, aim, objectives and the contributions of this 

project in terms of person-based controls and realistic situations. 

The structure of this chapter is as follows: Section 2.2 provides a review of current prevailing 

signal control strategies. Section 2.3 justifies the importance of person-based control and a review 
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of bus priority strategies. It points out the potential paradigms of person-based controls inspired 

by the review of bus priority strategies. Section 2.4.1 provides an overview of those advanced 

technologies which have been integrated into CV and ITS applications. The roadside infrastructure 

data and on-board vehicular data determine the degree of junction control performance and 

which data types are available to be adopted in signal control strategies. Sections 2.4.2 and 2.4.3 

introduce the wireless communication channel and massage sending formats to realize how the 

various data sources can be transferred between junction infrastructures and CVs. Section 2.5 

then looks into the state-of-the-art adaptive signal controls and reviews how connected vehicle 

technologies optimize and broaden the control algorithm with diverse forms of input data, control 

objectives, Key Performance Indicators (KPIs) and control decision styles. Section 2.6 makes a 

summary of general literature and highlights their main limitations.  

2. 2 Existing urban signal control systems  

The development of signal control strategies can be traced back to 1868, when the prototype 

coloured traffic light was utilised in Westminster, England (Webster and Cobbe, 1966). After that 

signal traffic lights experienced numerous changes including their hardware and design strategies. 

The traffic control managements can be classed into three stages: fixed-time, actuated, and 

traditional adaptive. Fixed-time controls decide signal timings based on historically recorded data 

and cannot react to fluctuating flow demands. Actuated methods and traditional adaptive control 

strategies are developed to make responsive to traffic flow demands by real-time data collected 

from loop detectors. This section reviews the existing urban signal control strategies in the world 

in four categories: Fixed-time isolated control, fixed-time coordinated control, traffic-response 

isolated control and traffic-response coordinated control.  

As the main junction control means in urban roads, signal control systems with traffic signals in 

different directions guarantee insurance for all road users (e.g., drivers, passengers, cyclists, 

pedestrians) from conflicting traffic streams. However, it was also found later that the occurrence 

of traffic signals led to severe delays and lower efficiency in the road network because of rule 

restrictions on red traffic lights. Hence, the optimal traffic signal control strategies have been 

developed to seek the best solutions with the targets of reducing the total time vehicle remaining 

in the junction.  

Regardless of the design instructions and theories, the modelling junction layouts of urban traffic 

signal strategies are quite similar: 1) one junction or road network which are comprised of a series 

of successive junctions; 2) a number of approaches which are represented different road 

directions and a certain range of crossing area; 3) one or several lanes in each approach with 
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vehicle queues and traffic flows (Papageorgiou et al, 2003). Under such circumstances, the basic 

parameters and factors of traffic lights that may affect the performance of control strategies are 

listed as follows: 

• Cycle length: The total time required by operating a complete specific sequence of stages, 

expressed by seconds. The cycle length is added by the durations of each stage and a 

certain total loss time (Younes and Boukerche, 2016). The longer cycle length will cause a 

higher traffic flow capacity in the junction due to the lower proportion of losses time 

(Papageorgiou et al, 2003). While the total delay of vehicles will ascend as the long 

waiting time for vehicles without green times.  

• Phase: Set of conditions that fix the pattern of movement and schedule for one or more 

traffic streams during the signalling cycle (UK Govt. Dept. Transport, 2006). In general, 

green light represents the acquisition of right-of-way priority and red light means stop.  

• Stage: Indication by traffic signals during a period of the signalling cycle that gives the 

right of way to one or more particular traffic movements at the same time (UK Govt. 

Dept. Transport, 2006). The reasonable design of optimal numbers and specified order of 

stages is the core of signal schemes, which can greatly improve the transport efficiency of 

the junction.   

• Split: The green time proportion is proposed by the signal control system for individual 

stage (Younes and Boukerche, 2016). Those stages with right-of-way for larger traffic flow 

demand should be rendered more duration. 

• Offset: The time difference between a defined point and a reference point in the cycles 

for two successive junctions (Younes and Boukerche, 2016). Offset is an important factor 

to result in ‘green waves’ when deciding plans for multiple junctions, which make the 

traffic lights turn green along serval junctions in the same direction.  

Before reviewing the urban signal control methods, objective functions for signal controls and 

KPIs need to be first introduced as they are essential components to decide the signal control 

optimization targets and evaluation standards. The most commonly used objective functions and 

KPIs for vehicle-based signal controls are introduced in Sections 2.2.1 and 2.2.2 respectively. 

2.2.1 Objective functions for vehicle-based urban adaptive signal controls  

As the main purpose of the adaptive signal control strategies, the different objective functions will 

result in different behaviours of signal timing decisions. The objective function attributes under 

the CV environment could be improving junction efficiency (minimising vehicle delay, minimising 

queue length, minimising number of stops, minimising travel time), increasing junction capacity 
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(maximum junction throughput) or environmental economy (minimising fuel consumption and 

emission rate). In each proposed method the objective function adopted could be either one or 

multiple (e.g. minimising vehicle delay and number of stops with different weighted ratios 

(Goodall et al, 2013), minimising the weighted sum of total fuel consumption and travel time of 

the vehicle in (Li and Ban, 2017). The common used objective functions and requisite data inputs 

will be listed. 

2.2.1.1 Minimising vehicle delay 

Minimising vehicle delay in junction is one point to guarantee junction efficiency through 

eliminating the travel time expense of waiting for avoiding collision as much as possible. The total 

delay of a sequence of vehicles in set N can be calculated by supposing every possible departure 

time 𝐷𝐶 for each vehicle c in this set minus the virtual departure time 𝑉𝐶  (cross time without 

other vehicles and traffic signal) and then finding the distinctive control state to reach minimum 

vehicle delay value taking vehicle sequences in all phases in junction into account (Yang et al., 

2016), shown as: 

𝑚𝑖𝑛∑(𝐷𝐶 − 𝑉𝐶
𝑐∈𝑁

) (2-1) 

Alternatively, the total delays of vehicles are counted by the summation of queue lengths of all 

phases during one optimizing horizon (one or two cycle lengths) (Feng et al., 2015). The proper 

state variables and control variables are allocated to form the minimum delay. Therefore, the 

calculation of total delay needs previous testing free flow travel time for each route and possible 

departure time of single vehicle, or queue length at various time steps, which can be measured by 

CVs mentioned in Section 2.4.1. 

2.2.1.2 Minimising vehicle queue length 

The optimal control methods based on minimising queue length objective are developed by either 

using current situations of queue length or future situations as references. The current situation 

queue length method calculates the queue length for all phases in the junction at the moment 

and selects the phase with the max combined queue length as the next phase (Kari et al., 2014; 

Tiaprasert et al., 2015). The future method compares the vehicle queue length conditions over 

different optimization strategies, and then implements the one with the minimum metric (Feng et 

al., 2015; Islam and Hajbabaie, 2017). 
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2.2.1.3 Minimising vehicle number of stops 

Minimising vehicle stops, as a kind of channel to improve steady steam and save fuel 

consumption, is reckoned by reducing the sum of all vehicles in a phase combination that switch 

speed to 0 and then accelerate to pass through the junction (Guler et al, 2014). The number of 

stops 𝑆𝑊𝐶  for individual vehicle c in set N equals the number of green light time that switch to the 

current lane between its arrival time and departure time due to every vehicle suffering from one 

stop if failure to cross the junction (Guler et al, 2014). Thus the minimising total number of stops 

of each combination is simplified to the sum of all cars considered, shown as (Guler et al, 2014): 

𝑚𝑖𝑛∑(𝑆𝑊𝐶 − 𝑆𝑊𝐶′′)

𝑐∈𝑁

 (2-2) 

Where 𝐶′′ is the smallest index of car departing after the arrival of car c. 

2.2.1.4 Minimising vehicle travel time 

As the travel time can be detected and recorded by inductive loops located at different positions 

or CVs, the cumulative total travel time for vehicles in each lane is calculated. The vehicle 

movement lanes with the highest combined travel time for possible combination phases (i.e., 

NEMA phases 2 & 6 or 4 & 8 in (Lee et al., 2013)) were then selected for the next decision stage. 

Or models based on travel time consider total summation of vehicle 𝑛𝑝 travel time 𝑇𝑛𝑝,𝑡(𝑠𝑝, 𝑥𝑝) 

as a function in terms of state variables 𝑠𝑝 and decision variables 𝑥𝑝 at time t  within range of time 

step 𝑠𝑝−1to 𝑠𝑝 (Li and Ban, 2017), minimise it as: 

𝑚𝑖𝑛∑ ∑ 𝑇𝑛𝑝,𝑡(𝑠𝑝, 𝑥𝑝)
𝑠𝑝

𝑠𝑝−1

𝑁𝑝

𝑛𝑝

 (2-3) 

2.2.1.5 Maximum vehicle junction throughput 

The capacity maximum models intend to improve the average number of vehicles left the road 

network per unit time, which is also called throughput. In Islam and Hajbabaie (2017) this target is 

calculated by the number of vehicles 𝑛𝑖
𝑡 leaving the approach lane i in all movements lanes M in 

one phase at time step t ∈ T, filtering the phase with the highest value as the next control 

variable, which is represented by: 

max∑∑𝑛𝑖
𝑡

i∈Mt∈T

 (2-4) 

Sun et al. also improve the junction throughput by selecting maximum flow demand in combined 

lanes divided by corresponding lane numbers as evaluation criteria (Sun et al., 2018). 
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The objective of traditional signal control methods concentrates on maximising the throughput or 

reducing vehicle delay limited by original data sources. The connected vehicle technology brings 

diverse objective functions, being able to optimize the junction from multiple standards. 

Meanwhile, high precision connected vehicle delay estimation and vehicle number identification 

make adaptive signal control better performance. 

2.2.2 Key performance indicators for vehicle-based urban adaptive signal controls 

KPIs are measurable, calculable values to demonstrate how effectively models achieve their key 

objectives. KPIs in adaptive signal control under connected vehicle technology are defined to 

weigh the effectiveness of junction control strategies, moreover, comparing against the 

benchmarking models, for instance, fixed time control and actuated control. KPIs also supply 

researchers with ways to validate and calibrate the validity and reliability of their models and to 

what degree they achieve the cost functions. Table 2.1 outlines a description of the most common 

KPIs adopted in adaptive signal controls and procedures of how to collect those data. Besides, 

Table 2.1 lists those KPIs selected by researchers to measure the effectiveness of their algorithm. 

 

Table 2. 1 Descriptions and measurements of common KPIs in vehicle-based signal controls 

KPI Description Measurement 

Average vehicle travel time 

The time a vehicle spends to 

move from the original point 

to the destination point 

The time step end at 

destination minus the time 

start from origin 

Average vehicle delay 

The excess time one vehicle 

spends to complete its journey 

than free flow travel time 

Travel time of individual 

vehicle – free flow time on the 

same route 

Queue length 

The number of vehicle stopped 

behind the cross line waiting 

for discharging 

Count the number of vehicles 

with speed 0 in each lane at 

special time step 

Throughput 

The number of vehicle clear 

from the junction or road 

network per unit time 

Count the number of vehicles 

disappear from the simulation 

per unit time 
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Flow 

The number of vehicle enter 

the junction or travel along the 

specific road point per unit 

time 

Count the number of vehicles 

enter the simulation per unit 

time 

Fuel consumption 

The volume of fuel 

consumption (e.g. gasoline) 

vehicle cost per kilometer 

The fuel consumption model 

adopted for each vehicle and 

add up 

Emissions 

The volume of emission (e.g. 

FC, CO2, CO, HC, NOx) 

produced by vehicles per 

kilometer 

Use instantaneous emission 

model to calculate the 

emissions each vehicle and add 

up 

 

Average vehicle number of 

stop 

The number of travelling 

vehicle switch its speed to 0 

and acceleration 

Count the number of stop by 

tracking each vehicle and 

judging stop by speed variation 

Robustness to errors 

The observation of how robust 

the model algorithm are 

effected to different 

errors(arrival patterns, 

demand ratio, information 

level and others) 

Measure the coefficient of 

variation between the 

performance of any above and 

designated error type 

The KPIs mentioned in Table 2.1 are representative factors in the road traffic environment due to 

validation of algorithm effectiveness towards the objectives of the model and are widely 

acknowledged in signal control papers. The required data collection for calculating KPIs are 

automated processes, for instance, GPS, speedometers, and accelerometers mentioned in Section 

2.4. Those data are gathered in a specified way at the regular transmission interval within an 

acceptable well-defined error margin. In contrast to manual data collection, electronic data 

collection pattern by connected vehicle eliminates the affection of human error. Therefore, KPI 

data in this research can be regarded as both more accurate and reliable than the traditional 

method. Remarkably, the improvements of KPI for one algorithm model are not only restricted to 

its objective. In other words, even though there is only one objective function in control strategies 

the benefits could be various aspects. For instance, the CTT algorithm proposed by Lee et al 

(2013) also found enhancement to average speed, throughput, emission and fuel consumption.  
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2.2.3 Review of existing urban signal controls  

Current urban signal control methods are generally classified into four categories according to 

two parallel elements: 1) isolated or coordinated control decided by the scales of planning 

objects; and 2) fixed-time or traffic-response control due to different attitudes toward arterial 

traffic flow (Papageorgiou et al, 2003).  

• Isolated control: Each junction is considered as an independent individual for signal 

control systems, which is applicable for sparsely distributed junctions. 

• Coordinated control: The signal control regards a large zone road network involving 

multiple junctions as a whole. The usual method is to achieve ‘green waves’ phenomena, 

which let one or more streams in lanes in the same direction pass through several 

junctions smoothly without stop-and-go to reach maximum vehicle throughput. 

• Fixed-time control: The patterns, sequences and splits of each stage in the cycle are 

determined by offline historical constant demands data beforehand. The values of stage 

timings are variable, depending on a different given time of day (e.g. peak hour). 

• Traffic-response control: Traffic response strategies decide the stage settings and signal 

timings online by acquiring real-time traffic demand data (usually measured by one or 

two inductive loops in each lane). 

Thus, four types of signal controls combined with these features are formed: fixed-time isolated 

control, fixed-time coordination control, traffic-response isolated control and traffic-response 

coordination control will be introduced in the following sub-sections. 

2.2.3.1 Fixed-time isolated control 

Pre-timed control assigns the right of way at a junction according to a predetermined schedule. 

The length of the time interval for each signal indication in the cycle is fixed, based on historic 

traffic patterns. The timing is repeated over and over regardless of the presence or absence of 

traffic demand. As a result, it is critical to determine the values of a cycle and split in fixed time 

control.  

There are different ways to determine the cycle length. Webster (1958) developed a relatively 

simple expression to determine the optimal cycle length 𝐶0, based on total lost time 𝐿 and the 

sum of 𝑞𝑖/𝑠𝑖 ratios 𝑌 at all junction phases. The optimal cycle length 𝐶0 is calculated as: 

𝐶0 =
1.5𝐿 + 5

1 − 𝑌
 (2-5) 

The sum of 𝑞𝑖/𝑠𝑖 ratios 𝑌 is calculated as:  
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𝑌 =∑(𝑞𝑖/𝑠𝑖 )

𝑝

𝑖=1

 (2-6) 

Recall that 𝑞𝑖/𝑠𝑖 is the maximum ratio of the arrival flow rate 𝑞𝑖 to the saturation flow rate 𝑠𝑖 at 

all approaches at phase 𝑖). After the calculation of the optimal cycle length, the splits of all phases 

can be determined. For instance, the green time split 𝐺𝑖  at phase 𝑖 can be determined by: 

𝐺𝑖 = (𝐶0 − 𝐿)
𝑞𝑖/𝑠𝑖
𝑌

 (2-7) 

Besides the general description of fixed-time control provided above, there are also 

some advanced fixed-time controls developed to optimize some specific objective values 

in two groups: stage-based strategies and phase-based strategies: 

 

a) One type of fixed-time isolated strategy reaches the maximum traffic flow capacity or minimum 

total vehicle delay through optimizing the cycle and split timings, which are called stage-based 

strategies. SIGSET (Allsop, 1971a) and SIGCAP (Allsop, 1976) are two well-known methods in this 

category. The former aims to reduce the stream delay while SIGCAP attempts to maximise the 

capacity for an isolated junction. Assuming that both of the strategies predetermine 𝑝 phases for 

one cycle and they divide the splits for each stage, known as 𝜆1, … , 𝜆𝑝. Then have 

𝜆0 + 𝜆1 +⋯+ 𝜆𝑝 = 1 (2-8) 

where 𝜆0 = 𝐿 𝑐⁄ , L is the total lost time in the cycle and c is the cycle length. To avoid vehicle 

queue generation in each approach, the average arrival rate or demand 𝑞𝑗 of stream j should be 

constrained by the following inequality: 

𝑠𝑗∑𝛼𝑖𝑗𝜆𝑖

𝑝

𝑖=1

≥ 𝑞𝑗 (2-9) 

note that  𝑠𝑗 is the saturation flow of stream j, which means the average flow rate crossing the 

stop line during the effective green time. 𝛼𝑖𝑗  is a binary value and equals to 1 if stream j has right 

of way in phase i, otherwise the value is 0. This formula reflects that the flow demand should be 

no more than the maximum possible saturation flow to prevent congestion according to the split 

assigned for this approach. Other constraints such as minimum green time and maximum cycle 

length are introduced in (Allsop, 1971b). The Webster average delay estimation method 

(Webster, 1958) under saturated conditions is adopted by SIGSET as an objective function, which 

is shown as: 
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𝑑𝑗 =
9

10
{
𝑐(1 − 𝑔𝑗 𝑐⁄ )

2

2(1 − 𝑞𝑗𝑠𝑗)
+

𝑥𝑗
2

2𝑞𝑗(1 − 𝑥𝑗)
} (2-10) 

where 𝑑𝑗 is the average delay for each vehicle in stream j, 𝑔𝑗represents the effective green 

duration for approach j and 𝑥𝑗 = 𝑞𝑗𝑐 𝑠𝑗⁄ 𝑔𝑗. Therefore, SIGSET treats the objective as a linearly 

constrained nonlinear programming problem by combining constraints with vehicle average 

delay.  As for SIGCAP, it replaced 𝑞𝑗 by μ𝑞𝑗 (μ ≥ 1) so that the maximum value μ will contribute to 

maximum flow capacity. Thus SIGCAP would find solutions by solving a linear programming 

problem. It should be noticed that both SIGSET and SIGCAP are only suitable for under-saturated 

situations because of the capacity constraint. 

b) Another class, phase-based strategies, considers optimal cycles and splits, as well as the 

compatibility of stages. The phase-based method (Improta and Cantarella, 1984) adopted a binary 

mixed-integer linear programming methodology to test the stage specifications. In this way, 

different combinations of stages are calculated by adding variety of binary variables. The flexibility 

and result of phase-based strategies are inarguable better than stage-based strategies. While the 

computation and difficulty degree of phase-based strategies step up to another level. However, 

the off-line predetermined characteristic of isolated signal control makes it non-significant. 

2.2.3.2 Fixed-time coordinated control 

Similar to the principles of fixed-time isolated junction schemes, fixed-time coordinated strategies 

also predetermine the settings of phase and stage based on historical data but apply them to 

larger scale road networks with several successive junctions. The main design concepts of fixed-

time coordinated control seek a solution for the maximum number of crossing vehicles in streams 

without stopping. Therefore, the coordination of traffic lights is required to satisfy that the bands 

formed by all vehicles in one stream are covered by green time on two opposite arterials. The 

illustration is shown in Figure 2.1. 
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Figure 2. 1 Time-distance diagram for traffic signal coordination on a fixed time plan (Hunt et al., 1981) 

As a representative of bandwidth-based fixed time coordinated control, MAXBAND was first 

formulated by Little on a two-way arterial for the sake of maximum total progression bandwidths 

(Little, 1966). A Mixed Integer Linear Programming (MILP) formulation is adopted by MAXBAND to 

specify the corresponding offsets of signals for their separate junctions so that several decision 

variables are integer. Little et al. (1981) then extended the original MAXBAND model to a new 

vision for a triangle network with three arterials and a closed loop, which was also based on MILP 

formulation. Corresponding to a more rigorous mathematical problem, MAXBAND is designed for 

an offline computer program so that it can automatically calculate the appropriate offset, cycle 

length, split and left-turn phase sequence values for arterials. The MAXBAND determines the 

weighted combinations of bandwidths as a globally optimal solution.  

Later, MAXBAND applies to grid networks with multiple arterials and closed loops to maximise the 

progression bandwidths, which is called MAXBAND 86 (Chaudhary et al., 1991). MAXBAND 86 is 

the first attempt of fixed-time coordinated control at multi-arterials networks. However, 

MAXBAND 86 is regarded as an extremely simple assumption model without considering green 

split optimization (Chaudhary et al., 1991). The tremendous computations of MAXBAND 86 also 

cause the system inefficient. PASSER II is another bandwidth optimization program by using a 

heuristic optimization procedure to decide the best combination of offsets with the widest bands 

(Messer et al., 1973). While PASSER II cannot be implemented in multiple arterials compared to 
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MAXBAND 86. Due to the insensitive variations toward actual traffic flow limitations that existed 

in these bandwidth-based models, the MULTIBAND model is created by incorporating a traffic-

dependent criterion into progression calculated procedures (Gartner et al., 1991). The 

MULTIBAND figures out the individual bandwidth for each special link, as well as maintains the 

platoon of the vehicle stream.  The flexible individual bandwidths along with varying traffic flow 

make MULTIBAND perform better, specifically reflecting on the significant decrease in vehicle 

delays, number of stops, and fuel consumption over traditional models. Referring to the sensitive 

traffic pattern matching characteristic of MULTIBAND, The MULTIBAND-96 is then generated by 

absorbing this advantage and optimizing crossing arterial signal control variables simultaneously 

(Stamatiadis and Gartner, 1996). Therefore, MULTIBAND acquires better measurements than 

MAXBAND 86 when operating models into multi-arterials road networks. PASSER IV is also a good 

attempt to optimize signal timings for closed grid multi-arterial networks by combining multiband 

and green splits (Chaudhary and Messer, 1993). 

Different to the above bandwidth-based models, the delay-based fixed time coordinated control 

method Traffic Network Study Tool (TRANSYT) minimises the delay of the whole road network. 

The TRANSYT model is contribute to selecting suitable offsets to allow the interactions of traffic 

flows and continuous road sections (Robertson, 1969). The TRANSYT included a heuristic 

optimization algorithm that leads to a simple but efficient method to find the minimum vehicle 

delays as a representative of platoon dispersion and flow control. As an improvement of 

TRANSYT, TRANSYT-7F calculates the performance index of variables in the road network to 

achieve delay minimisation, given quantities of traffic parameters, such as splits, offsets and cycle 

time (Li and Gan, 1999).  

TRANSYT-7F models have been commonly adopted in North America. However, the delay-based 

fixed time coordinated controls reveal poorer ability to optimize phasing sequence than 

bandwidth-based controls (Gartner et al., 1991). 

LinSig is another widely used fixed-time coordinated control which can be operated in either an 

isolated junction or road network comprising successive junctions (Moore and Cheng, 2010). It 

optimizes the signal timing plans to reduce delay or maximum reserve capacity. Different from 

TRANSYT which is predominantly useful for modelling large networks, LinSig is more suitable to be 

adopted in detailed modelling of junctions. Cyclic flow profiles are used in LinSig to represent the 

patterns of traffic and queues for each cycle period and model the signal timing plans. The stage 

lengths and offset can also be adjusted in LinSig to minimise delay for the whole network. As a 

result, the LinSig outputs are deterministic and relatively stable. 
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2.2.3.3 Traffic-response isolated control 

Traffic-response strategies can detect whether a vehicle passes through the specified point at a 

certain time utilising the flag change function of buried inductive loops. The flag signal will 

transfer if lanes are occupied by vehicles and the short-time cruise speed of vehicles can also be 

measured. Thus the real-time vehicle flow will be a key parameter to arrange signal controls. 

Microprocessor Optimised Vehicle Actuation (MOVA) is a real-time self-optimization isolated 

junction control system with the target of reducing vehicle stops and delays, or maximum 

capacity throughput during oversaturate periods (Peirce and Webb, 1990). Two loop detectors 

are placed 40m and 100m upstream from the stop line respectively in the design of MOVA, which 

are estimated to leave about 3.5 and 8.0 times vehicle cruise time from loops to cross lines 

(Vincent and Peirce, 1988). More sophisticated vehicle actuation logic were then applied in 

MOVA. The minimum green durations are assigned for every phase so that each lane has 

sufficient time to discharge the remaining queue in front of 40m upstream detectors (Lu et al., 

2014). If there is no vehicle detected from the related detectors, the control system will proceed 

to the next determined stage. Otherwise, a critical interval of several seconds will be created to 

extend the green durations of the current stage, clearing the vehicle at the full saturation rate. 

The detection and additional interval step will be repeated until the green duration reaches the 

maximum green time or no vehicle is detected. Miller (1963) proposed a more complicated vision 

of MOVA, considering the opportunity to switch to the next stage (takes place at once or 

postpone). The optimizing process solution balances the benefits of extending the green phase 

against the losses of a vehicle stopped in red lanes. 

System D vehicle actuation is another traffic responsive control in the isolated junction (UK Govt. 

Dept. Transport, 2006). As illustrated in Figure 2.2, three inductive loops are used in System D 

vehicle actuation to replace pneumatic detectors. The furthest inductive loop is normally 

distributed at 39 meters from the stop line. A green extension can be scheduled for the current 

approach if a vehicle passes through the buried inductive loop or Above Ground Detectors (AGDs). 

Otherwise, the traffic signal will be switched from green to red light if no vehicle is detected in a 

gap duration. The next two inductive loops are used for extending green duration.  
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Figure 2. 2 Illustration of System D vehicle actuation (UK Govt. Dept. Transport, 2006) 

2.2.3.4 Traffic-response coordinated control 

Traffic response coordinated strategies developed the isolated controls into network-wide 

applications, which provide more practical significance than the latter. The characteristics of 

widely used strategies in this category are summarized in Table 2.2.  Split Cycle and Offset 

Optimisation Technique (SCOOT) (Hunt et al., 1981) and Sydney Coordinated Adaptive Traffic 

Signals (SCAT) (Lowrie, 1990) are two first famous traffic response versions which can be applied 

in urban network scale coordinated junctions. SCOOT can be regarded as an improvement of 

TRANSYT with similar principles. While the vehicle flow and occupancy measured and stored by 

loop detectors are adopted to replace the historical data used in TRANSYT (Hunt et al., 1981). A 

central online network model is selected in SCOOT to predict the traffic queues, delays and stops 

repeatedly by every few seconds with the updated latest real-time measurements as input. The 

consecutive alternations would be approved and implemented by local signal controls once they 

are estimated to bring positive effects to the junction operation, particularly the prescribed 

performance index. The structure of SCAT is a two-level approach. The upper level predetermines 

the network-wide signal plan for centre control and the decentralised level adjusts the signal 

control strategies so that they can fit with major traffic situations (Lowrie, 1990). However, in the 

initial trials towards more than one junction, the limited effects of subtle alternations in answer to 

changeable adjacent upstream flow against the fixed time plan cannot satisfy the rapid flow 

changes.  

After that, a series of model-based traffic response methods are proposed to better visualize 

urban control challenges as combinative optimizations without demonstrably splits, cycles and 

offsets. Optimisation Policies for Adaptive Control (OPAC) (Gartner, 1983) provided a feasible and 

promising complete enumeration method for considering all possible integer switching times. 

While PROgramme DYNamique (PRODYN) (Henry et al., 1984) adopted a bi-level signal setting 

approach which places decomposition coordination at the upper level and dynamic programming 
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hierarchical algorithm at the lower level. Dynamic programming is also applied in Real-time 

Hierarchical Optimised Distributed Effective System (RHODES) (Mirchandani and Head, 2001), 

responding to predicted real-time vehicle arrivals, platoon arrivals, traffic flow rates and queues in 

each junction. Current road capacities, vehicle travel times and network disruptions can be 

measured from loop detectors and videos as inputs of a hierarchical architecture in RHODES to 

activate traffic signal behaviours. REALBAND (Dell’Olmo and Mirchandani, 1995) also followed 

similar hierarchical control architecture to identify the variety of vehicle platoons and predict 

their movements.  

An approximate traffic model developed from the theory of MAXBAND boosted the throughputs 

of the detected platoons in networks, as well as balanced the benefits of two conflicting 

movements to decide which one is awarded priority. ALLONS-D (Porche and Lafortune, 1997) is a 

traffic response decentralized method combining dynamic programming and rolling horizon, 

carrying out the signal timing results in a short roll period decided by a larger horizon plan. The 

plan decision is updated every few seconds based on real-time measurements. MOTION (Brilon 

and Wietholt, 2013) also executed separated local junction network signal controls second by 

second in a three-level optimization system to promote operational efficiency than SCOOT and 

SCAT.  

However, all of the above model-based methods solved the urban coordinated signal control in a 

perspective of global network minimum, resulting in exponential complexity of algorithms so that 

they are barely applicable to more than one junction in actual operation. On the contrary, 

CRONOS (Boillot et al, 2006) built a polynomial complexity algorithm heuristic achieving local 

minimum so that the optimization solutions would be founded faster. Video sensors are used in 

CRONOS to seize vehicle spatial position, density and queue length on the road for simultaneous 

working out strategies under several junctions. One common challenge of those model-based 

approaches is that they do not consider the downstream vehicles for each junction, hence they 

are not suitable in saturated flow conditions (Papageorgiou et al., 2003).   

The store-and-forward models are designed for various urban road traffic controls to provide a 

more efficient and feasible approach than model-based strategies (Diakaki et al., 2002). By 

abandoning discrete variables as parameters inside traffic flow demand descriptive mathematical 

models, store-and-forward methods opened a new era for coordinated dynamic strategies. A 

crowd of high-efficiency optimization programming methods are frequent occurrences. The 

examples include linear programming, multivariable regulators, nonlinear programming and 

quadratic programming. Bi-level programming (Yang and Yagar, 1995) and mixed integer linear 
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programming (Lo et al., 2001) approaches have also been explored to be available in over-

saturated traffic flows. 

2.2.3.5 Discussion and conclusion for existing urban signal control  

The main drawbacks of fixed-time strategies are highlighted in several aspects. The most obvious 

feature of fixed time controls is the predefined off-line signal timing schemes according to local 

historical observed data. This data collection mode makes them cannot respond to the temporal 

and spatial variations of traffic flows. In actual circumstances, traffic demands are inconstant both 

at a time of day and on different days because of special events, festivals, and week attributes. 

The long-term traffic demands and turning movements are also unfixed. The unpredictable 

disturbances will cause heavy interference in traffic conditions. All of those situations indicate 

that the effects of fixed time controls will be poor, which becomes a major problem to provide 

junction efficiency. Moreover, the optimizations of fixed-time signal controls are only developed 

under saturated flow conditions, which fail to consider the oversaturated situations.  

Isolated response signal controls (e.g. MOVA) change the operation way from fixed time controls. 

However, they still fail to exploit the full characteristics and potentials of urban signal junctions, 

for the reason that they ignore the correlations among modelling junctions and surrounding 

junctions. The signal control managements need to be coordinated within a region of related 

junctions, guaranteeing the delay reduction in the urban transport network rather than a 

particular space.  

Coordinated response urban signal controls have evolved from fixed time and isolated signal 

controls with better operationally treatment of traffic volumes and network scales. Therefore, 

they are the most powerful signal control method among these four categories due to their 

practicability in larger-scale road networks. In addition, they make responses to dynamic flow 

demands to a certain degree. Table 2.2 summarises the prevailing traditional adaptive 

coordinated control strategies and their key characteristics.  

Coordinated response urban signal controls provide additional sensors for signalized operators, 

enabling them to sense the state of the road network and approaching vehicles. The data they 

collected is processed by control algorithms and made real-time signal decisions corresponding to 

dynamic traffic volumes. However, from Table 2.2 most of the data collection sensors used by 

coordinated traffic response control strategies are inductive loops or camera/video sensors. From 

the perspective of cost and stability, the loop detectors' expense of installation and maintenance 

is considerable. Thus the loop detectors were only installed upstream and downstream of the 

road links (Hunt et al., 1981) and cannot cover the whole network. Moreover, once robustness 
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errors occur to loop detectors, the data collection and control behaviour of coordinated traffic 

response would heavily degrade (Feng et al., 2015). 

On top of that, all of those sensors collect data at fixed points, which can detect the numbers of 

vehicles when they pass through the places where inductive loops are embedded (Younes and 

Boukerche, 2016). These census data only provide a snapshot of the state of the road network, 

being less capable of describing detailed information. More concretely, the SCATS and SCOOT 

models can only provide slightly alternations against the fixed cycle plans with limited effects. 

Although OPAC and PRODYN introduce queue length as new data resources in their models, 

advanced knowledge of queue length and vehicle arrivals are challenging to be obtained in the 

circumstances (Gartner, 1983). The predictions of vehicle movements (e.g. arrival time, vehicle 

size and vehicle speeds (Dell’Olmo and Mirchandani, 1995)) by loop detectors implemented in 

RHODES and REALBAND are also not so accurate because of the stochastic nature of vehicular 

movements (Lee et al., 2013). To improve these limitations, new detection and communication 

technology is required to support urban signal controls to have a better understanding of 

vehicular and road network states. Connected vehicle technology is such a choice to provide 

abundant data resources for the signalized controller, which is presented in Section 2.4.  

Another limitation of traditional urban signal control can be observed from Table 2.2 that all of 

the policies adopted are vehicle-based signalized optimization (e.g. minimising total vehicle 

delay). In other words, these strategies regard all of the vehicles on road at the same priority 

level. Such vehicle-based objectives result in unfairness to those vehicles with high occupancy 

vehicles and passengers inside vehicles, which is also not consistent with the future city 

development target of enhancing person mobility projected by UK DfT and European Commission. 

It is more valuable and realistic to apply person-based optimization approaches. Concerning this, 

Section 2.3 justifies person-based policies and performance indicators for urban signal controls. 

 

Table 2. 2 Key features of current coordinated traffic response control strategies 

Control 
strategy 

Objectives 
Means of 
collecting 

data 

Types of Data 
collected 

System 
Case 
Study 

Benefits compared to 
fix-time plan 

SCATS  

Improving 
vehicular 

throughput, 
reducing 

congestion 

Loop 
detectors 

Vehicle flow, 
Road occupancy 

3-level 
hierarchical 
architecture  

Sydney, 
Australia 

Travel time, accident, 
fuel consumption, 

air pollution reduction 

OPAC 
Minimise total  
vehicle delay  

Loop 
detectors 

Queue length 
(assumed), 
vehicle flow 

Dynamic 
programming 

______ 
Delay reduction, speed 

improvement 
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SCOOT  
Minimise 
average  

vehicle delay  

Loop 
detectors 

Vehicle flow, 
Occupancy 

On-line 
computer 

Glasgow, 
UK 

Delay, fuel, pollutant  
accident reduction 

RHODES 
Minimise 
average 

vehicle delay  

Loop 
detectors 

Traffic flow  
3-level 

hierarchical 
architecture 

Arizona, 
USA 

Delay reduction, 
throughput 

improvement 

PRODYN 
Minimise total 
vehicle delay  

Loop 
detectors 

Vehicle presence 
time, queue 

length 
(assumed) 

Dynamic 
programming  

______ Delay reduction 

MOTION 
Improve 

traffic flow 
performance  

GPS  Traffic volumes  

Adaptive 
Signal 

Control 
Technique 

Muenster, 
Germany 

Traffic flow 
performance 
improvement 

ALLONS-D 
Minimise 
average 

vehicle delay 

Loop 
detectors 

Vehicle arrivals 
Branch and 

Bound 
algorithm 

______ Delay reduction 

REALBAND 
Minimise total 
vehicle delay 

Loop 
detectors 

Traffic flow 
3-level 

hierarchical 
architecture 

______ Delay reduction 

CRONOS 
Minimise total 
vehicle delay 

Video 
sensors 

Queue length, 
number of 

stopped vehicles 

CRONOS 
algorithm 

Paris, 
French 

Delay and number of 
stops reduction 

2. 3 Transform urban signal controls to person-based paradigm: reasons 

and inspirations  

The review of existing urban signal controls in Section 2.2 concludes that all of the systems 

operating throughout the world are vehicle-based optimization policies and take into account that 

all vehicles on road are the same. This section elaborates on the motivations of selecting person-

based objectives and performance measurements. However, the transition from vehicle-based 

signal controls to person-based approaches is a challenging task. Both new kinds of data sources 

and new signal control algorithm paradigms are required. The urban signal-control-based priority 

methods, which are most commonly incorporated in urban junction managements, award high 

priority levels to public transport so that they can pass through the road sections and junctions as 

quickly. By reviewing these strategies, the different treatments of public transport vehicles and 

passenger cars\vans may provide inspiration to the ways how urban person-based signal controls 

should be and related potential challenging problems. 

2.3.1 The meanings of person-based urban signal controls 

Over the past 50 years, personal transport, which was dominated by private vehicles, has been 

rapidly developed to provide users with a high degree of freedom by enabling them to arrive to 

any location they want. However, the massive adoption of private vehicles in urban areas also 

leads to heavy congestion and related negative economic and environmental impacts (European 

Commission, 2020). Therefore, addressing future person mobility challenges in cities has been a 

critical subject area in Science for Policy report by the Joint Research Centre (JRC) to support the 
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European policymaking process ((European Commission, 2020). With the signal control system 

widely deployed in urban networks, one of the most efficient ways to enhance person mobility is 

developing person-based signal controls to provide preferential treatment to those vehicles with 

high occupancy (Christofa et al, 2013a). Several people in one vehicle with high priority have 

chances to greatly enhance the people mobility compared to one person in the same vehicle as 

the former one achieves multiple travelling with one vehicle.  

The report “Future of Mobility: Urban Strategy” was published by Department for Transport (DfT) 

of the UK government in 2019, discussing the challenges and opportunities of urban transport in 

future and strategies that may improve transport mobility (UK Govt. Dept. Transport, 2019b). 

Reducing congestion and better utilisation of limited urban road spaces is one of the important 

targets for future transport innovation in this report. The traffic volumes in England and Wales are 

forecasted to increase by 55% between 2015 and 2050 if the vehicle occupancy level decreases 

from 1.5 to 1.3 (UK Govt. Dept. Transport, 2019b). This prediction value is far beyond a 5% 

increment of traffic volumes if average vehicle occupancy increase to a level of 1.7. It is worth 

mentioning that the forecasts are made before the COVID-19 pandemic and could not have 

foreseen the influence of the extraordinary circumstances on the traffic volumes and vehicle 

occupancy on road. In 2020, the average car occupancy in the UK decreased to 1.49 and total 

vehicle miles decreased 21% compared to that in 2019 (UK Govt. Dept. Transport, 2021a). Travel 

demand and mode preferences (from public transport to private vehicles) have shifted during 

COVID-19 pandemic situations compared to normal situations due to trip restrictions imposed by 

authorities and fear of infection by individuals (Abdullah et al., 2020). However, as discussed in 

Section 1.1, this unusual trend will not last for long period. Overall, the occupancy levels of 

vehicles in the network still seriously affect the urban road traffic conditions. Therefore, one of 

the urban strategy innovation principles which are expected to be underpinned by the 

government is described as follows: 

 

     “Mobility innovation must help to reduce congestion through more efficient use of limited 

road space, for example through sharing rides, increasing occupancy or consolidating 

freight. 

There is finite road and pavement space in our towns and cities, many of which were laid out 

long before the advent of motorised transport. The lower running costs enabled by new 

technologies and business models could worsen congestion if vehicle occupancy and load 

factors remain low.” 
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Person-based urban signal control is such a conceptual framework that intends to offer higher 

priority levels to high occupancy vehicles in the urban road network. Person-based signal controls 

are designed to put more emphasis on person-related values and provide better strategies to 

improve average person delay. Besides, the promotion and implementation of these strategies 

are advantageous for car-sharing policy realization. Those people who are willing to share cars 

with others would be more likely to cross the urban junctions quicker. Therefore, the researches 

for person-based urban signal controls are consistent with the future strategic target of urban 

transport mobility. 

Public transport priority system is operated in such circumstances where bus occupancy is higher 

than passenger cars in most cases. The measures for qualities and capabilities of public transport 

modes and tools are determined based on passengers' load capacities in the same situation, not 

merely departure frequency. For public transport modes, the higher vehicle carrying capacities 

are transited by seat numbers multiplying respective load factors, considering carriage sizes, seats 

and well as standees (MacKechnie, 2017). So that the capacities of bus transit, light rail and 

subway can be regarded as 90, 90 and 100 passengers per vehicle per grade separately 

(MacKechnie, 2017). Passenger capacity is one of the most important factors to measure the 

performance of public transit modes (MacKechnie, 2017), which refers to how many passengers 

can be carried by one mode per hour. This index is calculated by passenger number of one mode 

and operation frequency, indicating the importance of considering people in the vehicle. In 

addition, high occupancy vehicle (HOV) lanes are designed to provide a dedicated passageway for 

those vehicles with high occupancy (minimum occupants of 2 or 3) and prohibit low occupancy 

vehicle (Institute for Transport Studies, 2018). HOV lanes are a road strategy to award higher 

priority to portion vehicles based on numbers of people and have been applied in Leeds, South 

Gloucestershire and other cities (Institute for Transport Studies, 2018). 

Most of the current signal control researchers set their goals as minimising vehicular delays and 

attempting to offer more vehicles to pass through the junction at the same time in the absence of 

passenger information consideration. In some ways, reducing vehicle delays is equivalent to 

reducing person delays if identical number of people in each car. However, the average value of 

car occupancy is 1.6 according to statistics from UK DfT (UK Govt. Dept. Transport, 2019a). 

Although there are no specific distribution proportions of different car occupancies released from 

UK DfT, the distribution of car occupancies (excluding drivers so that the value can start from 0) 

can be estimated in this project with proper assumptions. Poisson distribution is a proper model 

that helps to describe the discrete probability distribution of the number of events occurring in a 

given period/space interval and having a known constant mean value. In this case, a thing that 
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happens in a period/space interval is replaced by a passenger sitting in a vehicle. The Poisson can 

be used once all of the criteria are satisfied:  

 The number of independent trials is large: in this project, the number of vehicles on road 

in the UK is a large value; 

 The probability of occurrence in one experiment is very small: for individual passenger, 

the person can only be inside one of the vehicles and the probability of a person in a 

specific vehicle is very small; 

 The events are independent: for any two passengers, a passenger in a vehicle is 

independent of another person in a vehicle. The relationships between two passengers, 

(e.g. family members, friends) are not considered for simplification. 

From the analysis above, the probability of car occupancy (excluding drivers) in a vehicle can be 

assumed to follow the Poisson distribution. Thus the distributions of different car occupancies are 

calculated in Table 2.3. As a typical passenger vehicle can load at most 3 passengers, the 

probability of 3 car occupancy in a vehicle in Table 2.3 is the summation of the probabilities of 3 

and more passengers in a vehicle.  

Table 2. 3 Different probabilities of cars occupancies from 1 to 4 in a vehicle assumed Poisson distribution 

with a mean of 1.6 

Car occupancy 0 1 2 3 

Probability 54% 33% 10% 3% 

 

In Table 2.3 it can be found that the probability of a car with high occupants (2 or more occupants 

in a car) is around 46% of the total amount with a mean occupancy value of 1.6. The person-based 

control could be properly proposed to reduce delays of those HOVs to achieve person-related 

objectives. In addition, the statistics of average car occupancies sorted by different time of days 

and vehicle types are also released by UK DfT, which can be seen in Tables 2.4 and 2.5 

respectively. 
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Table 2. 4 Average car occupancies sorted by time of days and journey purposes in UK in 2010 (UK Govt. 

Dept. Transport, 2021b) 

 
Journey Purpose 

Weekday 

Weekend 
Average 

All 
Week 

Average 

7am 
– 

10am 

10am 
– 

4pm 

4pm 
– 

7pm 

7pm 
– 

7am 

Average 
Weekday 

Occupancy per Vehicle Kilometre travelled  

Work  1.13 1.16 1.15 1.17 1.15 1.31 1.16 

Commuting  1.13 1.15 1.14 1.15 1.14 1.21 1.15 

Other  1.71 1.82 1.79 1.79 1.79 2.12 1.91 

Average Car  1.35 1.63 1.43 1.45 1.48 2.01 1.61 

  Occupancy per Trip  

Work  1.20 1.19 1.17 1.18 1.19 1.26 1.20 

Commuting  1.17 1.15 1.16 1.18 1.17 1.24 1.18 

Other  1.68 1.65 1.71 1.66 1.67 1.90 1.73 

Average Car  1.43 1.55 1.48 1.48 1.49 1.81 1.57 

 

 

 

Table 2. 5 Average vehicle occupancies sorted by vehicle types and journey purposes in UK in 2000 (UK 

Govt. Dept. Transport, 2021b) 

Vehicle Type 

Journey Purpose 

Weekday 
Average 

Weekend 
Average 

All Week 
Average 

Occupancy per Vehicle Kilometre travelled 

LGV 

Work  (freight) 
Non Work 

1.20 1.26 1.20 

1.46 2.03 1.59 

Average LGV 1.23 1.35 1.25 

OGV1 
OGV2 

Work only 
Work only 

1.00 1.00 1.00 

1.00 1.00 1.00 

PSV 
Driver 

Passenger 

1.00 1.00 1.00 

12.20 12.20 12.20 

 

From Table 2.4, the average car occupancy values during the weekday are lower than those 

during the weekend. The average numbers of passengers travelling with the purpose of work and 

commuting are compared to be less than the numbers of passengers with other purposes. 

Comparing the values in different time-of-day periods, the average car occupancies at morning 

peak hours are slightly lower while the car occupancies at inter-peak periods are relatively higher 

than those in other periods. From Table 2.5, the average occupancies of Light Goods Vehicles 

(LGV) and Other Goods Vehicles (OGV) during weekdays are also less than those values during 

weekends. The occupancies of Public Service Vehicles (PSV), for instance, buses, are considerable. 

In summary, UK car occupancies fluctuated between 1.1 and 2.2, depending on the various 

variables of travelling purposes, vehicle types and different periods of the day. Moreover, 
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supposing that car occupancy is a constant value, the car occupancy sequences arriving from 

different lanes and approaches to the junction in a short time also have large quantities of 

combinations. The vehicular situations and potential varying traffic demands for person-based 

controls are much more complicated than vehicle-based controls and TSP approaches. The 

person-based control paradigms therefore should be designed to be more adaptive to different 

vehicular situations, and flexible to consider different possibilities of signal timing plans and their 

function values. Even if the HOVs on road are extremely low proportion and almost all vehicles 

are under the same priority levels, the optimal strategy adopted by vehicle-based control is one of 

the potential solutions which should be considered in the person-based control design to ensure 

its performance.   

2.3.2 Traditional transit signal priority 

Public transport priority strategies and other forms of priority methods are dominant to be 

implemented in many cities in several decades, proceeding from better making use of limited 

road space with the larger capacity tool. All forms of bus lanes and HOV lanes are designed to 

segregate those priority needed vehicles and normal cars. Compared to those dedicated priority 

methods resorted to facilities, giving priority to traffic signal situations is more universal due to 

unavailable facility-based systems and most cases existing traffic lights (Diakaki et al., 2015). 

Under urban traffic lights network circumstances, approaching vehicle priority (e.g. bus) is quite 

realistic and achieved by adjusting signal timing settings.  

A series of traffic response control strategies mentioned in Section 2.2 alter their signal timings to 

give priority to public transport without severe disadvantages to other traffic, such as bus priority 

in SCOOT (Hunt et al., 1981). Many priority methods at urban traffic lights are flexibly utilised. The 

green time extension is applied for those approaches which detect the public transport upon 

lanes and request to clear beyond the normal green time. The recall method shortens green time 

of the phases without detecting public transport and move them to the phases with bus routes. 

The stage skipping method directly cancels one or more stages against the prior setup sequence 

to provide service for priority vehicles. Stage re-ordering also disturbs the signal timing ranks and 

selects the activate stage as well as later stages according to bus information. Green wave 

strategies are frequently served for emergency vehicles to allow them to pass through several 

junctions with all green signals to reach high-level priority. All green for bus method helps bus 

arrive at the lane stop line with green lights anytime. Compensation methods will recover the 

normal signal control operation once the priority vehicle is detected disappearing from the lane. 

Current signal control-based priority methods select several options from the above skills to 

achieve their method, which can be classified into passive priority and active priority methods. 
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2.3.2.1 Passive priority method 

The passive priority method acquires the public transport vehicle information and timetable to 

consider which flow streams will contain more priority vehicles. Higher green times towards those 

flows are weighted and allocated in advance. TRANSYT method also formulates a fixed-time plan 

for the whole network corresponding to public transport (Robertson, 1969). This coordinated plan 

makes use of rough buses and tram lines' arrival information and their frequencies without 

detecting approaching priority vehicles. VISGAOST is another program determining appropriate 

signal light parameters including cycle, offsets and stage sequences with an off-line genetic 

algorithm (Stevanovic et al., 2008). Green extension or stage recall signal priority optimization 

limited by maximum green will be operated in case of priority request, and then signal settings 

beforehand will be recovered. However, passive priority methods appeared to be inefficient, 

which attributes to the high accuracy degree of priority vehicle streams forecasting and 

information acquisition. The inappropriate signal timing arrangement for actual missing or 

unpredictable priority vehicles brings even more negative effects than normal signal controls. 

2.3.2.2 Active priority method 

Owing to bus loops, public transport receivers or other detectors, active priority methods attempt 

to overcome the shortcoming of passive methods by sensing each public priority vehicle arriving 

on the road. Higher priority schemes are only assigned for buses once they are detected. 

Therefore, the minimum requirements of active methods are Selective Vehicle Detectors (SVD) to 

gather real-time public transport approaching data. The SCOOT system installed a variety of 

facilities to provide priority to public transport vehicles (Hunt et al., 1981). Besides this, the 

system also implemented active strategies such as preventing red light stopping, stage recall and 

stage skipping for individual heavy delay buses, which are widely applied in London, Glasgow, 

Southampton, York and many other UK cities (Oliveira-Neto et al., 2009).  

SCATS system, which is mainly appeared in Australia, Canada, and Brazil around the globe, also 

adopted green extension, stage recall, stage skipping, special stage, and stage reordering as 

means of serving late priority vehicles (TCRP, 1998). While it treated different kinds of vehicles as 

three layers: highest priority for trams, medium layer for buses forbidden stage skipping, and low 

priority for other vehicles. Different levels of priority framework from no priority to absolute 

priority also performed in the lower layer of the two-layer BALANCE system, making it responsive 

to the lateness degree of public transport and traffic demand (Fox et al., 1998). BCC-RAPID made 

decisions on whether the buses are out of the green schedule and worthy to provide priority via 

green extension or stage recall (Fox et al., 1998). Upon separation of buses from other vehicles by 

SDVs, MOVA gave general priority means to a bus (Fox et al., 1998). Similarly, SPRINT also sought 
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the earliest possible chances to clear the buses selective from the junction when individual buses 

were detected (Fox et al., 1998). Different from the above strategies, PRIBUSS developed flexible 

priority programming based on First-In-First-Out (FIFO) theory which enabled engineers to select 

the traffic situations, procedures, limitations and other parameters (Wahlstedt, 2011). This 

system can be available in isolated junction or coordinated signal control, becoming the main 

public transport priority method in Sweden. 

Another sort of active method relies on optimization techniques rather than explicitly 

consideration of signal timings. The vehicle priority part of PRODYN took into account public 

transport equivalent to a single vehicle platoon comprised of several normal vehicles to reach 

minimum delay in the junction (TCRP, 1998). Quite similar to PRODYN by leaving off traditional 

cycle length and green splits, SPPORT considered whether to terminate the current stage or not 

and which phase could be awarded the next green duration at every decision point (Dion and 

Hellinga, 2001). BUSBAND priority system can either transfer buses into ordinary cars with 

weighted values or add a constraint to the network control logic thus providing bus priority (TCRP, 

1998). As an updated version of BUSBAND system, CAPRI operated quite similar logic to the 

former one via additional predicted public transport, at-grade rails and trains arrivals 

(Mirchandani and Lucas, 2004). DARVIN also predicted vehicle movement conditions and 

identified network quality upon integration of buses and other vehicles to perform instantaneous 

signal control settings adaptively (Duerr, 2000). The bi-level priority optimization systems, SPOT 

(TCRP, 1998) and MOTION (Gardner et al., 2009), decided on the central component signal setting 

optimization at the upper level and provided local parameter adjustments calculated by the cost 

function at the lower level. 

Urban junction priority systems were then improved by more advanced detections which are 

capable of accessing more detailed and accurate public transport-related data than SDVs. The 

instances include Automatic Vehicle Location (AVL) and Global Positioning Systems (GPS), which 

make multiple detections points feasible. iBus system in London is such a representative (Wong 

and Hounsell, 2010). Instead of costly physical hardware detections installed on urban road fixed 

places, AVL and GPS improve the flexibility of iBus system with locations and other information. 

The system is also cost-saving by replacing the installation and maintaining cost of those 

numerous bus detections on street.  

2.3.3 Discussions and conclusions 

The priority schemes for public transport vehicles are applied to respond to the government 

policies of promoting public transport operation. The detectors and sensors such as SVD or AVL 
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are capable of detecting the locations of public transport vehicles approaching the junctions, 

delivering the information to the decision-making algorithm and adjusting signal schemes to be 

biased towards buses with higher occupancies. Through the review in this section, traditional TSP 

strategies are challenging to be considered intelligent and adaptive since the special detectors 

dedicated to public transport vehicles can only provide location information and not be adequate 

to predict accurate arrival times for buses. Those schemes also only take into account whether 

the public transport vehicles are approaching, neglecting the real occupancies in them and 

passenger cars. Most importantly, public transport priority systems are designed merely for 

providing priority to limited buses and are hard to be implemented in person-based urban signal 

controls where different occupancy levels of all vehicles should be fairly modified.  

However, there are still two inspirations from the review of existing urban signal control-based 

priority schemes for person-based urban signal controls. The priority methods treat differently 

public transport vehicles and passenger cars, as public transport vehicles can load a great number 

of passengers far beyond those in cars. The occupancy level differences make the signal control 

system provide different priority levels to them. Servings for public transport vehicles first are 

accessible to support more travellers less suffering from junction delay and congestion to achieve 

people mobility target. Some studies investigated the travel time and delay benefits of TSP. An 

early field experiment of TSP in Louisville, Kentucky reported 9% - 17% time savings for buses 

compared to those without TSP (Capelle et al., 1976). Another trial in Virginia found 2.3% - 2.5% 

travel time savings for express buses, 4.8% time savings for local buses and an 18% increase in 

average travel time for all traffic when unconditional TSP is executed. Hounsell et al. (1996) 

reported a 20% - 30% bus delay reduction with TSP in SCOOT. Wahlstedt (2011) reported an 

overall 6% travel time improvement for buses from two directions but up to 13% and 6% travel 

time increment of other vehicles on the cross street and main street respectively. From these 

researches, traditional TSP methods were found to improve the travel time and delay of buses 

compared to the cases without bus priority. However, they also made impacts on other vehicles 

on road and even negative impacts like the results reported by Wahlstedt (2011). One of the 

challenges of the person-based control paradigm is how to achieve the objectives of reducing the 

person delay of all vehicles with and without the presence of buses.  

Another inspiration is that the stage sequences of person-based urban signal controls may not be 

as fixed as a vehicle-based system. The fixed stage sequences applied in existing signal controls 

make them only decide the duration of the separate stage for the convenience of 

implementation. This will not significantly disrupt the performance of signal controls when all 

vehicles are assumed to be the same. Since high priorities are occupied by public transport 

vehicles and their common arrivals conflict with current green active stages, priority signal 
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systems take a series of measures, such as stage recall, stage skipping, and stage reordering to 

avoid these circumstances. The measures break the stage sequences, allowing public transport 

vehicles to pass as fast as possible. The person-based signal controls can also adopt complete 

flexible stage sequences to make sure of passages of those high occupancy vehicles. 

Notably, the realizations of person-based urban signal controls need not only detailed information 

on the state of vehicles and road networks, but the occupancy information from all vehicles as 

well for a better understanding of priority levels. The fixed point detections for existing urban 

systems discussed in Section 2.2 are not capable of collecting such an abundant level of data. New 

connected vehicle technology offers opportunities to shift existing urban signal controls to be 

more adaptive and correspond to variable traffic situations. In Section 2.4 connected vehicle 

technology will be introduced to reveal the opportunities it brings to widen the affordability, 

availability and accessibility of urban signal controls. 

2.4 Review of connected vehicle technology  

High levels of detailed and accurate real-time information are the prerequisites for the innovation 

of urban signal controls. Connected vehicle technology enables all of the vehicles and junction 

controllers in a certain range to be connectivity. It absorbs the variety of current mature data 

collection and wireless communication technologies, fundamentally changing the ways how 

traditional sensors monitor the state of roads. This section provides a detailed survey for 

connected vehicle technology, including the data collection technologies it adopts, data type 

available, wireless communication standards dedicated used for transport mobility and related 

standardized message sets designed for information delivering efficiency.  

2.4.1 Main data types and sources for connected vehicle communication 

Collecting traffic environment-related data is positively the first step to constructing a new 

adaptive signal control paradigm. ITS technologies are combinations of advanced vehicle sensors, 

smart infrastructure, GPS navigation and other advanced modules to provide an information-rich 

platform for junction management. Available data information participants and devices include 

pedestrians, vehicles, road infrastructures, sensors, as well as management centres (Qu et al., 

2010). In general, the data source collection system is comprised of vehicle on-board units and 

roadside infrastructures (Olia et al., 2016). On-board units utilise different components (as shown 

in Figure 2.3) installed on the body of CV to acquire individual vehicular parameters. While road 

infrastructures gather the road conditions and vehicle flow or tracking information. This chapter 

summarizes common acquisition devices and data sources respectively for on-board units and 
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roadside infrastructures, which are relevant to this project.  Comprehensive descriptions of 

available technologies in connected vehicle communication systems for both vehicular and 

roadside data are outlined in Table 2.5 and Table 2.6.  

 

Figure 2. 3 On-board units on connected vehicle (Diakaki et al., 2015) 

On-board unit data sources 

The on-board unit equipment can be roughly divided into five classifications: GPS device, 

vehicular camera and video, various vehicle sensors and seat pressure system. The data 

contributions they can provide are concluded in Table 2.6. 

• Global position system (GPS) is a U.S.-owned technology to provide positioning, 

navigation and timing functions to the user by 24 operating satellites (Hofmann-

Wellenhof et al., 2012). The main compositions of GPS are space, control and user 

segment. If the user segment is equipped with connected vehicles, the GPS generic 

receiver will receive the signals from satellites and then calculate three-dimensional 

position and time by antenna (Hofmann-Wellenhof et al., 2012). The final navigation 

outputs contain position, velocity, heading and time fault information (Grewal et al., 

2001). To ensure the signal is accurate, 35-55 dB of gain and 20MHz nominal bandwidth 

are provided for radio frequency amplification and two GPS signals (Grewal et al., 2001). 

One or two antennae on GPS can also use for detecting road grades by obtaining the ratio 

of vertical to horizontal vehicle velocity (Hofmann-Wellenhof et al., 2012). 
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• Numerous on-board sensors distribute in different locations of internal vehicle spaces to 

perceive vehicle status and parameters in multivariate travelling phases. Collecting single-

vehicle data is relatively easy if integrating observation values from different sensors (SAE, 

2012). Wheel encoder can obtain vehicle speed, while steering and brake sensors collect 

vehicle heading and state (SAE, 2012). Similarly, vehicle acceleration and deceleration 

from the accelerometer can be measured, even turning intention from the turn signal on 

the vehicle. 

• Seat pressure system is a kind of on-board sensor installed under car seats to obtain car 

occupancy data. Electronic, pneumatic and electro-pneumatic are three main types of 

sensors used for measuring seat-buttock interface pressure (Gyi et al, 1998). In the first 

type, a deformable component consists of Electronic transducers to connect sensors 

which can electorally measure variations in resistance caused by applied force (Cooper et 

al, 1986). The pneumatic sensor is connected to an air reservoir. The volume of air in the 

sensor will increase suddenly when an inflation pressure rises, resulting in an abrupt drop 

in a pressure increase rate. The value changed is recorded as interface pressure (Eckrich 

and Patterson, 1991). Electro-pneumatic sensors have electronic components on the 

inner surface of a flexible sac, which balances the internal and external pressure when air 

is pumped into it. The pressure value at this moment is recorded as interface pressure for 

occupancy detection (Robertson et al, 1980). 

• Different from the seat pressure system or camera used for measuring car occupancy, bus 

occupancy is acquired from the Automated Passenger Counting (APC) system. APC is an 

electronic counting device which can counts and record the number of passengers 

boarding and disembarking at every bus stop (Sojol et al, 2018). The APC system consists 

of two sensors, which are typically installed at the same height level of the front and rear 

doors of a bus. When passengers get on or get off a bus, they break the infrared beam 

between the corresponding sensor and the value is recorded. The computer then 

calculates the passenger information according to the order in which the beam was 

broken.  

• Camera and video installed inside the CVs (Figure 2.4 provides a location of the installed 

infrared camera) can also capture the figures of passengers so that car occupancy can be 

distinguished by recent technology of occupancy detection system (details provided in 

sub section below). 

Table 2. 6 On-board unit connected vehicle data type relevant to the research 

Available technology and equipment Data contribution for connected vehicle 

GPS Position, velocity, heading 
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On-board sensors (steering, speed, brake) State, velocity, acceleration, heading, route, type 

Seat pressure system Car occupancy 

Automatic passenger counting system Bus occupancy 

Camera/video Car occupancy 

 

 

Figure 2. 4 Thermal camera and its location for data capture (Nowruzi et al. 2019) 

Roadside infrastructures data sources 

Roadside infrastructures data is generally collected by inductive loops, junction infrastructures 

and infrared cameras placed on road surfaces or roadside in advance. Their common feature is 

stationary rather than moving with the vehicles; hence data sources they produced are fixed 

regions, which can be seen in Table 2.7. 

• Inductive loops are installed on the entire road surface, each of them supervising the lanes they 

are located. When vehicles surpass the loop detectors, the weights of vehicles and durations will 

transfer to special electrical signals in the management section. The detection flags will form to 

judge the number and types of vehicles that pass through this place in a certain period (Cheung et 

al., 2004). Based on this information, inductive loops can conduct vehicle flow and occupancy 

data, which are also used for vehicle classification at the measurement zone (Gajda et al., 2001). 

• Junction management system is a special existing to represent signal control operation 

strategies and junction geographical information. Signal phases and timing (SPaT) and Map data 

elements describes those junction situations and are remained to delivery and communicate with 

connected vehicles. Dataset includes four fundamental sections: 1) SPaT (describes the signal 

state and duration of the junction); 2) Map data (describes physical geometry of one or more 
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junctions); 3) Signal Request Message (current signal pre-emption and priority status); 4) Signal 

Status Messages (California PATH Program, 2011). The final part contains the information of lane 

set or movements, current signal state and rest time to switch the signal. 

• As illustrated in Figure 2.5, the cameras installed at the roadside can also capture images of 

vehicles when they cross the photo-shoot locations to detect the car occupancy information. 

Table 2. 7 Roadside infrastructure connected vehicle data type 

Available technology and equipment Data contribution for connected vehicle 

Inductive loops 
Vehicle classification, vehicle flow, road occupancy, 

number of turns 

Junction system 
Signal phases and timing (SPaT), the geometry of the 

junction, 

Roadside cameras Car occupancy 

 

 

Figure 2. 5  Overview of the image acquisition system for vehicle occupancy detection. (a) Rear view. (b) 

Side view (Lee et al, 2020) 

The variety of vehicular data and roadside infrastructure data that can be supplied by connected 

vehicles are reviewed in this section. The scale of vehicular data providing multiple dimensions is 

proportional to the number of CVs presented in the road network, with a high rate of information 

conversion among moving vehicle agents and junction agents. The potential enormous data size 

supplies the opportunity and possibility for more intelligent adaptive signal control towards 

dynamic traffic. Moreover, although the data size of roadside technologies is inferior to vehicular 

information, they indeed provide additional helpful data for signal control such as vehicle flows 

and SPaT information from the whole road situation. All of the available data collected by those 

technologies are possible to be utilised in designing signal control algorithms. 
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Vehicle occupancy detection technology 

The technical systems that can be used to get vehicle occupancy data from CV environments have 

been summarized in Figure 2.6. The sensors in the seat pressure system and APC system are 

connected to a computer and therefore the passenger occupancy can be displayed on board. 

However, the CV-equipped cameras and roadside cameras can only take images and there is still a 

need for a process to transfer the image information to car occupancy data. 

 

 

Figure 2. 6 The technical mechanisms for capturing vehicle occupancy data in CV environments 

The most recent researches attempted to develop vehicle occupancy detection technology to 

solve this problem. The initial purpose of proposing vehicle occupancy detection system is to 

enforce HOV lane monitoring policies, which encourage carpooling and the use of public 

transport. The traditional manual method to count for vehicle occupancy is labour-intensive, has 

low operational efficiency, and increases labour costs (Schijns and Mathews, 2005). The various 

studies were conducted to fast and automatically achieve the vehicle occupancy estimation 

process in two groups: using in-vehicle sensors and using roadside cameras. The detection 

accuracy of occupancy estimation from in-vehicle cameras is generally high (Owechko et al, 2003). 

Infrared cameras are also used in some studies to replace general cameras to protect the privacy 

of passengers (Nowruzi et al, 2019). However, cameras or sensors are required to be equipped 

inside vehicles. The occupancy detection system using roadside cameras had limited scopes for 

detecting occupancy and some of them can only detect the passengers in the front seat (Hao et 

al, 2006; Artan et al, 2014). A new study in recent two years improved the limitations of previous 

research and it reached a 99% detection accuracy for two-sided roadside cameras and 87% 
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detection accuracy for one-sided roadside cameras. In this project, the car occupancy data from 

CVs are assumed to be obtained from in-vehicle cameras as the literature on detecting car 

occupancy from in-vehicle cameras indicated high levels of detection accuracy. The occupancy 

detection system for one-side roadside cameras will be used in an unequipped vehicle status 

estimation algorithm to capture the occupancy of all crossing vehicles (see details in Section 6). 

This subsection lists the available data sources that can be collected by on-board units from CVs, 

which are related to this project. Notably, not all of the CVs are equipped with the full data 

collection devices mentioned at present. However, this is not a critical thing as the aim of this 

subsection is to realize which kinds of data can be collected and how can they be collected from 

CVs so that the assumptions and methodologies adopted in this project can be made. The 

sensitivity tests for different sorts of CV penetration rates are also carried out in the following 

sections to explore the performance of proposed signal controls in different situations.  

2.4.2 Dedicated Short-Range Communication (DSRC) 

In Section 2.4.1 it has been shown that a quantity amount of data resources collected 

electronically are available via connected vehicle enabling technologies. IEEE 802.11p is found the 

most suitable standard for data transmission among CV environments (Qiao et al., 2011). On the 

basis of IEEE 802.11p, dedicated short-range communication (DSRC) is specially designed to 

support vehicular ITS applications under V2V and V2I connectivity. Federal Communications 

Commission (FCC) specially allocated 75MHz bandwidth at 5.9 GHz licensed spectrum for DSRC 

(Lee et al., 2013). The dedicated 5.9 GHz spectrum is divided into seven 10MHz bands used to 

exchange information among vehicles and infrastructures (Lee et al., 2013). IEEE Wireless Access 

in Vehicular Environments (WAVE) defines the specifications and version of DSRC (Kenney, 2011). 

IEEE 802.11p decides the PHY and MAC layers of DSRC while IEEE 1609 family determine the 

upper layer (Kenney, 2011). The DSRC/WAVE system consists of on-board unit (OBU) and Road-

Side Unit (RSU), which are equivalent to serving as mobile stations and base stations in cellular 

networks (Kenney, 2011). IEEE 802.11p-based DSRC enables wireless communication in CV 

environments, and can potentially meet various requirements for road messaging and control. 

2.4.3 SAE_J2735 message sets 

From section 2.4.1 it has been found that a variety of data collected by enabling current ITS 

equipment are available. From section 2.4.2 the wireless standard for connected vehicles has also 

been identified. However, how to use an established format to send the message can be quickly 

recognized by connected vehicle elements and identifying which kinds of data are more useful and 
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crucial to ensure efficient and sustainable communication. In general, there are two most common 

message sets designed for connected vehicle environments by the US and the EU. The Society of 

Automotive Engineers (SAE) in the US defines the message sets in the SAE J2735 standard. While 

European Telecommunications Standards Institute (ETSI) in the EU defines two kinds of message 

types Cooperative Awareness Message (CAM) and the Decentralized Environmental Notification 

Message (DENM). 

 

SAE standard attempts to support the collaborations among those connected vehicle segments in 

a means of DSRC applications, in terms of the standardized message set aspects. Therefore, SAE 

specifically designed a special message set focused on the 5.9 GHz DSRC/WAVE communication 

system, named SAE J2735 standard (SAE, 2016). SAE J2735 message set has its data frames and 

data elements covering a quantity of useful connected vehicle data in different types (shown in 

Table 2.8). The purpose and all contained data of each kind of message type are described in Table 

2.8. SAE J2735 message set belongs to both awareness-based messages and event-based messages. 

The awareness-based message implies SAE J2735 can timely send pieces of messages describing 

the status information of a vehicle in a short interval (SAE, 2016). Each piece of the SAE J2735 

message includes DSRC message ID corresponding to a separate message framework and other 

information, which make it easy to be recognized (SAE, 2016). Meanwhile, event flags contained in 

SAE J2735 represent different vehicle failures (e.g. hard braking, disabled). 

Table 2. 8 Summary of the SAE J2735 Message Sets 

DSRC 
message ID 

Message set type 
Typical 

use 
Descriptions 

 Message Frame V2X Fixed form to send flexible contexts 

2 Basic Safety Message V2V 
Exchange vehicle state information data for V2X 

applications 

3 
Common Safety 

Request 
I2V, V2V 

Request vehicle state information data from 
another vehicle 

4 
Emergency Vehicle 

Alert 
Message 

I2V, V2V 
Broadcast emergency vehicle warning messages 

to surrounding vehicles 

5 
Junction Collision 

Avoidance 
V2X 

Broadcast potential collision warning messages 
to other devices 

6 Map Data I2V Convey geographic road information 

7 NMEA Corrections I2V NMEA 183 style differential corrections 

8 
Personal Safety 

Message 
 

Broadcast safety data regarding vulnerable road 
users 

9 
Probe Data 

Management 
I2V 

Sent by RSU to control the type of vehicle probe 
data collected 

10 Probe Vehicle Data V2I Exchange vehicle status along road segments 

11 Roadside Alert I2V, V2V 
Send alerts for nearby hazards to passing 

vehicles 

12 RTCM Corrections I2V RTCM differential corrections for GPS 

13 Signal Phase and I2V Convey the current status of one or more 



Chapter 2 

51 

Timing 
Message 

signalized junctions 

14 
Signal Request 

Message 
V2I 

Request a priority signal or a preemption signal 
by vehicle 

15 Signal Status Message I2V 
Sent by the RSU to convey the status of signal 

requests 

16 
Traveler Information 

Message 
I2V Send various types of advisory information 

240-255 Test Message  
Support the development new message for 

local and regional deployment use 

 

Basic safety message (BSM) is an important and most widely used component in SAE J2735 Message 

Sets. BSM can broadcast at most 10 times per second and is comprised of two parts. The first part 

contains core elements connected to vehicle data, including vehicle size, position, speed, heading 

acceleration, and brake system status (Cronin, 2012). While part 2 can choose optional data to 

supply part 1 of BSM according to the needs, such as weather data, and vehicle data (Cronin, 2012). 

The details of all possible data type in BSM and those not including vehicle status are summarized 

in Table 2.9. Other frequencies used message sets in signal control applications are Signal Phase 

and Timing Message, Map Data and Probe Vehicle Data. 

 

Table 2. 9 Data contexts in Basic Safety Message set (Cronin, 2012) 

BSM part High priority Medium priority Data not in BSM 

BSM part 1 data 
elements 

Timestamp; 
Position; 

Speed and heading; 
Acceleration; 

Brake system status; 
Vehicle size 

Steering Wheel Angle; 
Positional Accuracy 

Fuel type; 
Fuel consumption; 

Emissions; 
Fuel level; 

Road grade; 
Engine drive cycle; 
Operating mode; 

Engine temperature 
BSM part 1 data 

elements 2 

Recent braking; 
Path prediction; 

Throttle position; 
Vehicle mass; 
Trailer weight; 
Vehicle type; 

Vehicle description 

ABS, Traction status; 
Stability control; 
Differential GPS; 

Lights status; 
Wiper status; 
Brake level; 

Coefficient of friction; 
Rain type; 

Air temperature; 
Air pressure; 

Vehicle identification 
Cargo weight 

GPS status 

 

Cooperative Awareness Message and Decentralized Environmental Notification Message 

CAMs are broadcasted periodically by each vehicle to its neighbours to communicate information. 

Both sending and receiving devices are specific ITS agents, which need to be compliant with the 

ETSI standard (Santa et al., 2013). The context of CAM contains the presence, position, temperature, 
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and basic status of the vehicle. CAM is an awareness-based message and needs to receive more 

than one message if tracking needs. The CAM will be produced only need to meet one of the 

requirements as follows (ETSI, 2011): 

• Maximum CAM generated interval is less than 1s. 

• Minimum CAM generated interval is greater than 0.1s. 

• Vehicle heading angle value is larger than 4° compared to last CAM. 

• Vehicle positon distance is larger than 5m compared to last CAM. 

• Vehicle speed changes more than 1m/s compared to last CAM. 

DENMs belong to event-based messages. Therefore, they are generated once hazardous events 

happen to alert road users (Santa et al., 2013). The message structure of DENM is more complex 

than those of CAM. The body of the DENM structure contains more details. The decentralized 

situation management in the DENM body includes general information about the event. While the 

second part claims the detailed context about what the event wants to be reported. The final 

situation group gives location data about the event (Santa et al., 2013). 

There are significant differences exist in data definition formats and application cases by 

comparing SAE J2735, CAM and DENM. However, all of them have similar data types so they can 

be matched mutually. Apart from that, the message broadcasting intervals and type of messages 

of BSM and CAM are not similar. The BSM prefer to be generated more periodically fixed, but 

CAM will be generated when one of the requirements meet. The corresponding message types of 

CAM will be several options. That means the contexts and sending frequency of BSM are more 

stable. Another difference is SAE J2735 can provide Signal Phase and Timing and map data 

information with DSRC message IDs 13 and 6, while CAM/DENM cannot. In most cases of adaptive 

control models, for instance, in Feng et al. (2015), BSM in J2735 DSRC Message Set Dictionary 

based on IEEE 802.11p is used.  

The introduction of connected vehicle communication proves that connected vehicles can 

broadcast Basic Safety Message (BSM) to both other connected vehicles and infrastructures. 

Society of Automotive Engineers (SAE) J2735 Dedicated Short Range Communications (DSRC) 

Message Set Dictionary regulates a variety of specialized transmission data types for V2V and V2I 

communication, also called BSM (Goodall et al., 2013). Each piece of BSM can provide vehicle ID 

location, speed, heading, acceleration, size, and infrastructure system information (Feng et al., 

2015). Moreover, the broadcasting frequency of BSM can reach to 10Hz along the DSRC radio 

(Feng et al., 2015). In other words, the BSM can be received by Junction Management Agent 

(IMA) and Vehicle Agents (VA) connected in Vehicular Ad-Hoc Networks (VANET) every 0.1 

seconds. The optimization decision algorithm for signal control is typically discretized into 1s 
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intervals (Li and Ban, 2017). Therefore, for every decision point, the signal centre infrastructure is 

capable of obtaining affluent real-time connected vehicle data. 

The message sets currently contain the most useful information to be transmitted for modelling 

new adaptive urban signal controls. The message sets are designed to be concise enough to be 

launched and received efficiently and minimise the occupation of channel use. From Table 2.9 

some essential data sources for monitoring the road state, such as locations, and speeds of 

connected vehicles have been incorporated. Also, there is no standardization for the collection of 

vehicle occupancy data at present, the APC system has been implemented to count for the 

passenger numbers in transit. The bearing loading sensors installed on vehicles and 

videos/cameras on road sections offer potential ways to check out the occupancy in the 

passenger car. It is not difficult to combine the occupancy level information of vehicles into 

message sets if they are found to have the potential to improve the development of person-based 

urban signal controls. 

2.4.4 Connected vehicle data sources and processions for new urban adaptive signal controls 

Given available data sources can be collected in Section 2.4.1, the connected vehicle data 

selection as inputs of respective state-of-the-art urban signal control strategies are listed in this 

section. The instantaneous speeds and positions of each connected vehicle in VANET ranges are 

commonplace and entire in most models, due to they are the most possible information to 

describe the traffic situations surrounding the junction. Thus, a number of vehicle and traffic 

parameters with regard to model objective functions have access to be precisely predicted or 

calculated, for instance, vehicle arrival time, vehicle trajectories, queue length, vehicle stopping 

times, arrival rates and so on. 

a. Vehicle arrival time 

Given the locations and speeds of those vehicles detected by the communication system, the 

vehicle arrival time from the current space to the possible spaces towards the stop line (consider 

queue exist) can be predicted. Arrival time information is used commonly in situations of multi-

agent interaction. After obtaining arrival time information, the junction contributes to planning 

the vehicle motion, holding a future place for the vehicle to pass through the junction with the 

maximum speed, as well as smoothing vehicle trajectories (Jin et al., 2012). The time-of-arrival 

information can be calculated by considering all the possible conditions according to the distance 

from the vehicle to the stop line, current speed and maximum speed of the vehicle (Jin et al., 

2012). More directly, the vehicle agents predict their own arrival time based on the proposed 

model and inform infrastructure (Kari et al., 2014). In the traditional method, arrival time 
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information is unavailable because the loop detectors cannot detect the speed of vehicles 

crossing them.  

b. Arrival flow/ Departure flow 

As an important parameter to represent the vehicle flow demand coming to the junction or 

measure the vehicle queue length, arrival flow can be acquired directly from connected vehicle 

technology (Feng et al., 2015). In some cases the vehicle flow is set to follow the Poisson 

distribution (Chang and Park, 2013), therefore (Chandan et al., 2017) use the Poisson distribution 

to estimate the number of arrival vehicles entering in a certain period to represent the arrival 

flows. The departure flow is relatively counted by the number of vehicles leaving the cross line 

during the period. The queue calculation at the decisive moment and ratio flow estimation cannot 

be separated from the departure flow value. Cumulative departure flow numbers are obtained by 

estimating the vehicle departure time from the car-following model and then checking the 

numbers of vehicle passing through (Chandan et al., 2017). Similarly but not the same, loop 

detectors have limited effects to measure the number of vehicles passing through a certain point 

in a given period. Compared to this, the connected vehicle can provide arrival or departure rates 

at any point within the network transmission range.  

c. Departure time 

Departure time describes the duration spent for vehicles from the waiting status to the moment 

they cross the stop line under traffic light states. This value is a key factor to estimate the delay 

vehicle may suffer corresponding to different traffic light operations to decide the most suitable 

case to assign green light for each lane as a whole (Guler et al., 2014). The departure time of 

vehicle 𝐷𝐶 is influenced by many factors depending on whether it exists in a queue or not, which 

is calculated as follows (Box and Waterson, 2010; Yang et al., 2016): 

𝐷𝐶 = 𝑚𝑎𝑥 {𝑉𝐶;  𝐷𝐶′ +
1

𝑆𝑚
+ 𝑃𝐶} (2-11) 

Where 𝑉𝐶 represents the duration of vehicle travel to the downstream end of the junction under 

the situation that there is no queue exists. 𝐷𝐶′ means the departure time of the previous vehicle 

and 𝑆𝑚 is the value of the saturation flow in this lane. 𝑃𝐶  is the delay penalty of this vehicle 

related to its initial speed and acceleration. For the situation when a queue exists, the vehicle 

departure time can also be simplified in (Younes and Boukerche, 2014; Younes and Boukerche, 

2016) like this: 

𝐷𝐶 = 𝛼 +
𝐹𝑑
𝑆𝑡𝑓

 (2-12) 
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Where 𝛼 refers to the start-up lost time of the first vehicle when the green light is awarded. 𝐹𝑑 is 

the distance from the furthest vehicle in this queue to the stop line and 𝑆𝑡𝑓 is the vehicle speed of 

traffic flow. In traditional real-time signal control strategies departure time of the vehicle still 

cannot be measured for the reason that the vehicle location and how many vehicles are ahead of 

it are unknown to the loop detectors. 

d. Vehicle queue length 

Vehicle queue length is a critical factor to measure the traffic congestion conditions in a specific 

lane. Part of the proposed strategies adopted minimum vehicle queue length as their objective 

function. In most cases, the queue length taking a vehicle as a unit is represented by the number 

of vehicles idling behind the cross line and waiting for discharge at one time. Considering those 

vehicles approaching the existing vehicle queue with deceleration, the method to capture such a 

constant under a dynamic vehicle stream environment is not unique. A method which is similar to 

regarding the arrival flow and departure flow as intake and discharge was mentioned in (Feng et 

al., 2015) with available arrival flow and departure flow data collected by connected vehicles. This 

queue measurement method is shown as:  

𝑙(𝑛) = 𝑙(𝑛 − 1) + 𝑞𝑎(𝑛) − 𝑞𝑑(𝑛) (2-13) 

Where 𝑙(𝑛) and 𝑙(𝑛 − 1) mean the queue length for the specific lane at time n and time n-1 

respectively. 𝑞𝑎(𝑛) is the arrival flow and 𝑞𝑑(𝑛) represents the departure flow at time n. Another 

proposed method in (Tiaprasert et al., 2015) discriminated the three kinds of queue length 

situations in terms of connected vehicle speeds and positions. The vehicle would be determined 

to be stopped if its speed was lower than the pre-defined stopped speed. Thus 1) the vehicle 

queue is estimated to 0 if no stopped vehicle is detected at all; 2) if stopped vehicles are found 

but no moving connected vehicle detected, the queue length equals the furthest stopped vehicle 

distance to the cross line divided by effective vehicle length; 3) if both stopped vehicle and 

moving vehicle detected, the vehicle length is decided between the rank number of the furthest 

stopped vehicle and the nearest moving vehicle. The alternative format by using meters as a unit 

to present queue length is also acceptable in Yang et al. (2016), which also account for the 

number of stopped vehicles N in formula (2-7): 

𝑙(𝑛) =  ∑𝑉𝐿𝑖 + 𝐴𝐷𝐵𝑉 ∗ (𝑁 − 1)

𝑁

𝑖=0

 (2-14) 

Where 𝑉𝐿𝑖 is the individual vehicle length for vehicle i in stopped sequence and 𝐴𝐷𝐵𝑉 represents 

the average gap between vehicles. All of the above cases to calculate queue length require instant 

speeds and positions of vehicles to judge vehicle stopped or moving status, which are impossible 

to achieve in traditional methods without that information.  
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e. Travel time 

The Cumulative Travel Time (CTT) for individual vehicles still not passed the junction could be also 

a major aim for the designed model (Lee et al., 2013; Kari et al., 2014) or as part of process 

variables to determine vehicle delay (Yang et al., 2016). One of the feasible methods for 

calculating travel time is to count the elapsed time from when the vehicle enters the 

communication range of the approach link to the current position (Lee et al., 2013). While 

aggregating the separate vehicle position and speed information with the traffic light, the queue 

message provides an alternative solution for predicting vehicle travel time in four cases (Li and 

Ban, 2017): directly pass through; arrivals during green and queue exists; arrivals during red; 

arrival during red and queue exists.  

f. Vehicle trajectories management 

Besides gathering vehicle information for junction centres by V2I communication, the connected 

vehicle technology enables the guidance from the signal controller for every connected vehicle 

with better trajectories by I2V communication, definitely beyond traditional methods. Vehicle 

efficiency-based models expect to plan the trajectories for identified vehicle platoons recognized 

by mutual distances to let the vehicle pass through the junction at the maximum possible speed 

at a certain time and avoid stopping at all possible ((Yang et al., 2016; Feng et al, 2018; 

Pourmehrab et al., 2017). The future trajectories of the leader vehicle in the platoon and the 

behaviours of following vehicles will be predicted by optimal control using the car-following 

model (Feng et al, 2018; Pourmehrab et al., 2017). Thus the departure time of the leader vehicle 

controlled by the optimal trajectories model will cater to the green light switch for reducing 

vehicle travel delay. Eco-driving models also optimize the target velocity for connected vehicles 

and suggest advisory velocity for drivers or automatic operation systems based on model 

predictive control (Du et al., 2017) for the sake of improving fuel economy and reducing 

emissions. Therefore, those connected vehicles followed by the trajectories information from the 

optimal model would be more smooth and energy economy.  

g. Vehicle occupancy  

The vehicle occupancy level is a unique data type required in person-based control. For each 

vehicle, the vehicle occupancy is a constant value at a certain time. In most person-based control 

researches, perfect occupancy data are assumed to be available without claiming access to them 

(Christofa et al, 2013b; Yu et al., 2017; Yang et al, 2018). Vehicle occupancy can be used for 

calculating person-related objective values. For instance, the person delay can be calculated by 
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vehicle delay scaled by occupancy data of this vehicle. The passenger travel time equals vehicle 

travel time multiples occupancy data. 

2.5 The state-of-the-art vehicle-based urban signal controls in connected 

vehicle environments  

In Section 2.4 connected vehicle communication technology is introduced to enable junction 

infrastructure to acquire more detailed connected vehicle information, providing a good prospect 

for adaptive signal control. The new data sources from connected vehicle technology are 

preparing for the innovation of urban transport mobility and potentially remedy the limitations of 

existing urban signal controls with better knowledge of the road environment. However, whether 

formations or quantities of connected data are fundamentally different from the data inputs 

collected from point detectors (e.g. inductive loops). Therefore it is very important to develop 

new urban signal control systems, exploring how will these sorts of connected vehicle data will be 

boosted and incorporated into the urban signal control paradigm.  

This section reviews the state-of-the-art vehicle-based urban adaptive signal controls in 

connected vehicle environments, investigating the progress they have made and the limitations 

for future researches. A comprehensive review has been made in survey papers by Wu and 

Waterson (2021) and Wang et al (2021a). Given the inputs of connected vehicle real-time 

information and objective functions, the decision algorithms are introduced in this section, as well 

as their pros, cons, applicable conditions and case studies. The generic frameworks of adaptive 

signal control and the detailed aspects which are worthy to be noticed are also explained in this 

section. It is a critical step to justify what is the main limitation of vehicle-based urban signal 

controls in connected vehicle environments and then focus on more specific researches to 

enhance this limitation in the next chapter.  

The core of the adaptive signal control systems, known as the road traffic information from the CV 

dataset (Section 2.4.1), is how to take action to optimize the strategies so that more responsive to 

objective functions (Section 2.2.1). The actions implemented by the junction could be either signal 

timing parameters adjustments (phase sequences, durations and cycle length), or optimum 

connected vehicle trajectories (speed, acceleration, headway suggestions). Hence, the adaptive 

signal control process can be viewed as incorporating the current state (vehicle delay, queue 

length, travel time and other situations) and decision variables (different signal timing control 

strategies) to decide the best solution (max or min objective functions) which make vehicles 

perform better (validate and calibrate by KPIs in section 2.2.2 with benchmarking models). This 

section will review the state-of-the-art decision algorithms to see how the junction works under 
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connected vehicle technology, including comments and discussions, which are summarized in 

Table 2.10. 

2.5.1 Integer programming and solution algorithms 

Mathematical programming model is the most commonly used method to solve junction control 

optimization, which is dedicated to the optimization problems. Objective function z, constraints 

like Equation (2-15) and decision variables x are three fundamental components of mathematical 

programming, the canonical form of which can be presented as: 

min(or max) z = f(𝑥𝑖),   𝑥𝑖 = [𝑥1, … , 𝑥𝑛]
𝑇 (2-15) 

𝑠. 𝑡.                                  𝐺𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝐺𝑚𝑎𝑥 (2-16) 

As part or all of the decision variables are only possible integers (e.g. number of vehicles in lane 

cells (Islam and Hajbabaie, 2017), green time duration for one phase (Feng et al., 2017)), the 

mathematical programming models for signal control methods are classified as integer 

programming. The range of the decision variables is limited by traffic control constraints, such as 

the restrictions of minimum and maximum green time (Feng et al., 2017), and red or green signal 

state (Islam and Hajbabaie, 2017). In other words, the possible optional decision schemes which 

are feasible for the junctions are finite in a given operating time horizon. Different decision 

variables will cause a variety of vehicle delays, queue lengths and others for different lanes 

concerning which phase is prioritized with green and how long duration it lasts. Countable 

decision variables will result in the exclusive optimum solution, which is predicted or calculated as 

the best objective value performance after junction control management executes this decision, 

which can be found by integer programming. For instance, a Mixed Integer Linear Program (MILP) 

was adopted by Islam and Hajbabaie (2017) to maximise the junction throughput while also 

minimising the queue length within 2 junctions with 14 two-lane links and 9 junctions with 48 

two-lane links. A mixed-integer non-linear programming with multi-objectives of maximising the 

capacity and minimising number of vehicles crossing the centreline of the road are also tested in 

numerical examples with different demand compositions (Sun et al., 2018).  

The most basic approach to solving the integer programming problem is enumeration, which lists 

all the possible decisions made by junction controllers and yields respective function value results. 

The solution leading to the max or min value will be optimum. The enumeration method using CV 

was initially proposed to find the longest queue length and minimum delay by considering 5 

optional phase transition decisions in a real road network in Hannover, Germany, consisting of 9 

signalized junctions (Cai et al., 2013). Afterwards, the algorithms explore the highest cumulative 

vehicle travel time for the next green phase (Lee et al., 2013), the next vehicle departure 
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sequence to minimise delay and number of stops (one junction) (Younes and Boukerche, 2014), 

and largest vehicle density from defined phase combinations (a 4-legs simulated junction) (Younes 

and Boukerche, 2016), the current longest queue length (isolated junction) (Tiaprasert et al., 

2015) were all successfully enumerated and performed better than calibrated models. In order to 

absorb more updated recent connected vehicle data to prevent unforeseen changes in dynamic 

traffic (Feng et al., 2017) and decrease the complexity of integer programming, the proposed 

models collect data at the current time step, predicting future traffic states in certain time horizon 

to find optimal solutions, then execute in next several time steps (Islam and Hajbabaie, 2017), 

which is called as rolling horizon approach. The rolling horizon circle will be continued once the 

last horizon has been run out with a variety of cycle lengths in their methods (15s in (Goodall et 

al., 2013), 80s in (Feng et al., 2017) and 2s in (Feng et al., 2018)).  

The enumeration algorithm for integer programming visits all the possibilities but has operational 

efficiency difficulties due to exponentially increasing complexity when a number of cars increase 

in the algorithm (Yang et al., 2016). A branch and bound algorithm were therefore adopted by 

(Yang et al., 2016) to directly cut down those unnecessary nodes in a tree search problem. A total 

of 1896 cases were tested in contrast to the enumeration method, and the computational 

efficiency of branch and bound algorithm was found significantly improved (Yang et al., 2016). 

Moreover, dynamic programming algorithm divides the whole optimization problem into sub-

problems, attempting to seek optimum solutions for each sub-problem by recursion (Feng et al., 

2015). The sub-optimum solutions will finally form together to the whole and avoid repetition 

when going through the specified parts. A dynamic programming algorithm has been completed 

to test in an isolated junction in Gavilan Peak and Daisy Mountain in Arizona Connected Vehicle 

Test Bed (Feng et al., 2015) and coordination signals (Li and Ban, 2017) toward large dimension 

and no-linear problem. Approximate dynamic programming was then developed to overcome the 

complete set of connected vehicle information required in dynamic programming by function 

approximation techniques in numerical experiments of one and two junctions (Cai et al., 2013).  

In most recent years, signal-trajectory joint control is designed for vehicle environments 

transferring from CVs to mixtures of Connected and Autonomous Vehicles (CAVs) and 

conventional vehicles. Signal-trajectory joint control receives vehicular information from CVs and 

Autonomous Vehicles (AVs) to optimize the signal timing plans by integer programming to reduce 

vehicle delay. AVs are regarded as leaders of vehicle platoons, with the signal controller adjusting 

the trajectories of whole vehicle platoons by sending commands to AVs (the trajectories of 

following vehicles can be predicted based on car-following models) to enable the platoons to 

enter the junction with the desired speed at the beginning of the green light. 
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Xu et al. (2018) propose a two-level method, in which the upper level optimizes the signals and 

vehicle arrival time, and the lower level optimizes engine power and brake force. Yu et al. (2018) 

proposed a comprehensive framework for the cooperative driving problem, which considered 

detailed signal parameters and vehicle trajectories with lane-changing behaviour at an isolated 

junction. Feng et al (2018) proposed a two-stage optimization problem is formulated, in which 

traffic signal is optimized with dynamic programming, and vehicle trajectory is controlled based 

on the optimal control theory. Yu et al., (2019) then extended the integrated control to a corridor 

level to coordinate control of the CAV trajectories in a centralized formulation. An integrated 

optimization in mixed traffic conditions is proposed by Guo et al. (2019) considered the mixed 

traffic of CAVs and RVs and develop a two-step control framework, in which the first layer 

optimized the signal timing plan accounting for vehicle trajectories, and the second layer designed 

optimal trajectories for CAVs. The study by Liu et al. (2019) prioritized CACC platoons at junctions 

to maximise the throughput of the junction. Information on conventional vehicles was estimated 

by the location and speed of CACC vehicles. A coordinated work proposed by Wang et al. (2020) 

tried to optimize both signal timing plans and vehicle trajectories at an arterial level. Yang et al. 

(2021) developed a hierarchical and implementation-ready cooperative driving framework with a 

mixed traffic composition of CAVs in a coordinated distributed way in corridors.  

Integer programming is a well-performed method to work out the optimum solution gaining max 

benefits or min expense with multivariate constraint conditions (limited green light resources). 

Integer programming has a unified algorithm to deal with junction control problems, which is 

another advantage. While integer programming sometimes cannot be solved analytically and 

needs great computational requirement (Li and Ban, 2017) because of exponential order to the 

large dimensions size of state and complexity of the non-linear model (Cai et al., 2013), which 

leads to integer programming model too complicated to implement in a real network. Extremely 

accurate road traffic input data and predicted vehicle performance are also required in integer 

programming so that controller can ensure their optimum solution will bring the greatest 

objective value in case study testing. At this point, the CV-based methods will prominently 

perform better than the traditional method due to their more detailed and accurate information.  

2.5.2 Traditional theory based method 

The optimal cycle length C of traditional fixed time models is formulated by modifying Webster’s 

model for isolated signalized critical junction, which is derived from computer simulation and field 

observation under Federal Highways Administration Signal Timing Manual (STM) (Koonce et al., 

2008), shown in Equation (2-17): 
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C = 
1.5𝐿𝑡 + 5

1 − ∑ 𝑧𝑖
𝑀
𝑖=1

 (2-17) 

Where 𝐿𝑡 is the total lost time per cycle (usually the sum of inter-green periods), 𝑧𝑖  is the flow 

ratio (observed flow/adjusted saturated flow) of lane index i for each lane with a number of M in 

junction, which also represents the ratio of density to length in the cluster in (Maslekar et al., 

2013; Shaghaghi et al., 2017). Then the green time 𝐺𝑇𝑖 for each lane i is described in Equation (2-

18): 

𝐺𝑇𝑖 = 
𝑧𝑖

∑ 𝑧𝑖
𝑀
𝑖=1

 (𝐶 −  𝐿𝑡) (2-18) 

The traditional theory-based method of using CV was initially researched by Gradinescu et al. 

(2007) on the basis of Webster’s model in a junction in Iuliu Maniu / Vasile Milea streets in 

downtown Bucharest. Then it was tested in one simulated junction for 2000 cycles and repeated 

10 times (Chang and Park, 2013). Tomescu et al developed this method in consecutive junctions 

by including new parameters (weather, vehicle type, minor events) to decide offset coefficients 

adopting fuzzy logic function (Tomescu et al., 2012). The ratio of density and length (replacing the 

flow ratio) formatted by density information from CVs gathered by clustering algorithm was also 

successfully implemented in 7 junctions (Maslekar et al., 2013) and 36 junctions in a central urban 

area from Open-Street Map (Shaghaghi et al., 2017). Similarly, the traditional theory proposed 

method followed junction green time flow ratio profile regular and defined the lanes with the 

highest flow ratio as the next stage were simulated in one isolated junction along Castle Downs 

Road and 97 Street, Edmonton, Canada (Chandan et al., 2017) and a bidirectional crossroads (Nafi 

and Khan, 2012) respectively.  

Webster’s model cannot be directly adopted in the traditional proposed method due to the flow 

ratio for each lane in each cycle is various. Hence, the traditional fixed-time method computed 

flow ratio parameters based on historic recorded data, which failed to be adapted to varying flow 

demand (Maslekar et al., 2013). The green durations decided by the traditional method were thus 

viewed as inaccurate and unreliable. Whilst traditional theory-based methods are capable of 

gathering the real-time flow demand or density information every time step by means of CVs, 

making the signal control more efficient. The most outstanding benefit of traditional theory-based 

methods is they are easy to be implemented and have almost no computation (Chandan et al., 

2017). Nevertheless, this kind of method is hard to reach the optimum solution because of 

stochastic nature of vehicular movements still existed during the green time. The control schemes 

are not flexible enough, such as without stage skipping in integer programming. Unclear objective 

functions and lack of future vehicle performance prediction also cause this method more 

inefficiency than the integer programming method. 
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2.5.3 Reinforcement learning method 

As a kind of machine learning paradigm, reinforcement learning has been widely adopted in 

various fields as artificial intelligence technology, such as Alpha Go broad games (Silver et al., 

2016), computer games (Mnih et al., 2015) and helicopter control (Ng et al., 2006), letting systems 

themselves optimize their policies through trial-and-error interactions react to dynamic 

environments. Adaptive signal control strategies are such a general process: make a series of 

decisions to optimize the junction signal timing reacting to dynamic traffic demands, which is 

extremely following the pattern of reinforcement learning. A schematic operation process of 

reinforcement learning is illustrated in Figure 2.7. 

 

Figure 2. 7 Schematic figure for reinforcement learning 

The working principle of reinforcement learning adopted in adaptive signal control is like this: the 

junction signal controller is considered as an agent, who needs to adjust the management aiming 

to the environment (dynamic road traffic circumstances). The algorithm starts with an 

initialisation randomly (Yang, 2017) or on the basis of historical data and experience (Xiang and 

Chen, 2016) of the action value function (mapping from correlations of state-action pair to the 

expected value) and improves it iteratively in discrete time steps. The algorithm, at every time 

step t, captures the proper information from CVs as representative as the state 𝑠𝑡(e.g. queue 

length and queue waiting time (Liu et al., 2017), positions and speeds of vehicles at a junction 

(Xiang et al., 2018)) of the environment. The controller then decides its action (determines green 

and red light state for each lane in the next period (Yang, 2017; Xiang and Chen, 2016), selects a 

pair of non-conflicting phases (Liu et al., 2017), and durations of every phase (Xiang et al., 2018)) 

from a set of finite actions according to its policy, which represent the probabilities of taking 

different actions for a particular state. The controller at the current stage prefers to select those 

state-action pairs mapping to the higher expected return value (objectives, e.g. min queue length, 
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min average waiting time) developed by the reward accumulations up to the current reward 𝑅𝑡 

(the change of the cumulative waiting time between two cycles (Xiang et al., 2018), the negative 

sum of the squared delays of all vehicles (Yang, 2017), the sum of vehicle queue length and 

waiting time of queue (Liu et al., 2017)) given by the environment. Then the action selected at the 

current state will result in a transition to the new state 𝑠𝑡+1 and new reward 𝑅𝑡+1, which 

contribute to correcting the parameters of mapping state-action pair with a more accurate 

objective value for reproducing updated policy (Yang, 2017). The positive rewards will reinforce 

the algorithm selection of this action while negative rewards are on the contrary. The optimal 

policy is pursued by the algorithm with an ultimate aim to reach the highest excepted objective 

value through continuous iterations. 

The reinforcement learning method using CVs for adaptive signal control was primarily developed 

in a bi-directional junction with only two phases (Yang, 2017), but met with difficulties due to the 

exponentially increasing complexity of the neural network (input states, actions and export 

rewards) as vehicle number increases. A dynamic clustering algorithm (Liu et al., 2017) and deep 

learning algorithm (Xiang et al., 2018) were then associated with reinforcement learning by 

researchers for the sake of achieving a relatively stable connected vehicle data structure from 

mass communication loads and reliving exponential complexity of traditional reinforcement 

learning. Their algorithms have been implemented in 78 road segments with 96 junctions in 

Changsha, China (Liu et al., 2017) and simply isolated junction separately. In addition, a neuro-

fuzzy network was adopted to evaluate both fairness and average waiting time of grouping 

vehicles, considering the benefit levels of each grouping vehicle by gathering group size, the 

difference in size and average waiting for time information as inputs (Cheng et al., 2017). 

Preliminary processing of connected data by a neuro-fuzzy network declined the complexity of 

reinforcement learning violently, tested in a junction (Cheng et al., 2017). The co-learning 

algorithm was also combined with reinforcement learning for providing the recommended 

shortest time paths for vehicles beyond signal timing control in 22 junctions in Xiaogan, China 

(Xiang and Chen, 2016). Wang et al. (2021b) then proposed a deep reinforcement learning 

method for the effective rewarding mechanism that takes into account the impact of the 

detouring on the network traffic to improve efficiency. 

As a model-free algorithm, reinforcement learning is unnecessary to establish complicated traffic 

flow models like integer programming method (Xiang and Chen, 2016)and prior information to 

the road network as well (Liu et al., 2017). In contrast to integer programming, reinforcement 

learning methods incrementally optimize their management policies by experiencing trial and 

error interactions with the environment, without the constraint of being computationally 

expensive (Xiang et al., 2018) and sensitive to noisy errors (Yang, 2017; Xiang and Chen, 2016). 
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However, in addition to the great complexity of the action-value function, explicit rules about 

signal control principles are not expected to be perceived from reinforcement learning (Brooks 

and Dahlke, 2017). Reinforcement learning will not choose explicit actions even if meets the same 

states inspired by the mechanism of exploiting new actions (Brooks and Dahlke, 2017). Large 

capacity input data are required to form proper rewards and give feedback to the current 

mechanism (Brooks and Dahlke, 2017), meanwhile, the updating process for reproducing more 

perfect policies and parameters will cause delay when new actions are ready to be selected (Xiang 

et al., 2018). 

2.5.4 Multi-agent junction management 

Autonomous vehicles (AV), which process the functions of connected vehicles and intelligent 

autopilot without drivers at the same time, are expected to dominate road traffic in future and 

significantly reduce the accident number mainly ascribed to human error (Jin et al., 2012). 

Dresner and Stone firstly proposed a reservation-based cooperative junction management system 

for completely all autonomous vehicles in the isolated no-turn junction (Dresner and Stone, 

2005). They regarded the junction controller and each autonomous vehicle as an individual agent, 

which opened a new era for multi-agent (system comprised of Junction Management Agent (IMA) 

and Vehicle Agents (VA) (Li and Ban, 2017)) junction control management. 

The multi-agent management method needs communications and collaboration among agents 

(infrastructure to vehicle, vehicle to vehicle, vehicle to infrastructure). Autonomous vehicles send 

their parameters (e.g. time of arrival predicted (Kari et al., 2014)) to other vehicles and junctions, 

who also receive the connection information to adjust their driving behaviours. The multi-agent 

method was then developed into two categories: reservation-based method and trajectory-based 

algorithm. In reservation-based method, IMA allocates the finite temporal and spatial junction 

right-of-way to certain VAs permitted in fixed-time slot according to pre-defined policies (e.g. 

request ever cancelled priority, with lane-based policy, first come first serve (Jin et al., 2012), no 

conflicts policy (Webster, 1958)) by IMA. If VA attempts to cross the junction, they need to send a 

request for junction and “booking” a junction space possession at one point in the future (Jin et 

al., 2012). The junctions balance their policies and then grant the permissions for those eligible 

vehicles; requests for other vehicles will be rejected to wait until proper opportunities. 

Reservation-based method has been tested in the isolated junction (Jin et al., 2012) and a grid of 

4 junctions with 9000 veh/h flow demand (Hausknecht et al., 2011). Trajectories-based method 

coordinates vehicle trajectories by an invisible junction management unit, which attempts to seek 

optimal sufficient safe gaps for those vehicles approaching from conflicting directions (Lee and 

Park, 2012). Hence vehicles are capable of searching for a safe gap between the opposite vehicle 
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flow and going through the junction without stopping in a suitable case (like situation (a) in Figure 

2.8), as well as collision avoidance. A unique feature of trajectories-based methods is that they 

removed traffic lights in the junction because of inessential when tested in an isolated junction 

(Kamal et al., 2015; Budan et al., 2018).   

 

Figure 2. 8 Illustration of the collision avoidance concept around a cross collision point: (a) safe situation 

and (b) unsafe situation (Kamal et al., 2015) 

Multi-agent control methods break through traditional cognitions of signal timing control, such as 

vehicles participating in junction management as subjects rather than merely confined to report 

information for infrastructure, signal control at the non-signalized junction (Budan et al., 2018), 

vehicles travelling from conflicting phases without collision (Kamal et al., 2015). Multi-agent 

methods also provide new ideas for autonomous vehicles managements in the future. However, 

the over-idealized assumptions of multi-agent methods restrict their applicable range. All of the 

multi-agent methods require 100% well-equipped connected vehicles or autonomous vehicles (Li 

and Ban, 2017), which is impossible to achieve in the current stage, as well as assuming the best 

manoeuvres for all vehicles (Lee and Park, 2012). Communication and connected data 

performance of junction centres are also required to be perfect (e.g. no packet drops and 

transmission delays (Lee and Park, 2012)). High-precision vehicle speed and position data have to 

be gathered, which is far beyond the accuracy connected vehicle data needed; otherwise 

frequently accidents due to vulnerability in no traffic light junctions. 



Chapter 2 

66 

2.5.5 Analogy method 

Besides the aforementioned adaptive control method, a subclass of models draws lessons from 

the knowledge and architectures of other areas. An artificial immune network (Darmoul et al., 

2017; Louati et al., 2017) was implemented for controlling signalized junctions. The current traffic 

situations such as queue length and average queue delay (Louati et al., 2018) obtained by CVs 

were treated as antigens and control decisions like phase sequences with separate durations were 

considered to be antibodies. By detecting affinity between an antibody and a pathogen by 

rewards and penalties the mechanism found the control strategies corresponding to variable 

traffic states (Louati et al., 2018). The artificial immune network model was tested in an isolated 

junction (Louati et al., 2017) and six junctions ((Darmoul et al., 2017) with several scenarios and 

compared with fixed-time, actuated time and longest queue selection algorithms (Louati et al., 

2017). The job schedule model recognized each vehicle group as a job, operating the junction 

control by the oldest job first (OJF) algorithm (Pandit et al., 2013). The first arrival vehicle platoons 

would be served at the first chance. The method is distributed in an isolated junction with four 

typical approaches. The ideas of applying the Petri Nets model (Ahmane et al., 2013) and 

weighted backpressure model (Wu et al., 2018) to manage traffic networks were also presented.  

The novelty solutions to address traffic signal control represent innovative strategies for 

connected vehicle signal methods. Whilst the alignments of mechanisms they proposed towards 

traffic road characteristics and effects are required to calibrate rigorously. The models established 

by small group researchers merely refer to their comprehensions of adaptive junction control, 

which still lacks widely acknowledgment. 

Table 2. 10 Summary of vehicle-based adaptive signal controls using connected vehicle technology 

Main author and 

year 
Model name 

Case study 

Scale 

Objectives of the 

model 

Decision 

making 

algorithm 

Data 

Resources 

Key 

Performance 

Indicator 

Simulation 

Platform 

Benchmarking 

model 

Lee and Park (2012) 

 

Cooperative Vehicle 

Junction 

Control System 

Isolated 

Junction 

Minimising total 

length of 

overlapped 

trajectories 

Multi-agent 

junction 

management 

Vehicle speeds 

and positions 

Total stopped 

delay; 

Total travel 

time; 

Throughput; 

Fuel 

consumption; 

CO2 emissions 

VISSIM-

COM 

Actuated Control 

System 

Goodall et al. (2013)  

Predictive microscopic 

simulation 

algorithm (PMSA) 

4 Junctions 
Minimising total 

delay 

Integer 

programming 

Vehicle speeds 

and positions 

Average 

Velocity; 

Average delay; 

Number of 

stops; 

Stopped delay 

VISSIM-

COM 

Coordinated-

actuated timing 

plan 

Islam et al. (2020) 

A network-level traffic 

signal control with partial 

CV information 

3 junctions 

Maximising the 

total number of 

completed trips 

Integer 

programming 

Vehicle 

speeds, 

accelerations 

and positions 

Number of 

completed 

trips, total 

travel time 

VISSIM 

Fixed time 

optimized by 

VISTRO 

Jin et al. (2012)  

Multi-agent advanced 

traffic management 

system 

Isolated 

Junction 

Increase junction 

throughput, 

reduce energy 

consumption and 

pollutant emissions 

Multi-agent 

junction 

management 

Vehicle speed, 

acceleration, 

turning angle, 

position, road 

map 

Average travel 

time; 

Fuel 

consumption; 

CO2 emissions 

SUMO —— 
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Liang et al. (2020) 
A flexible, real-time traffic 

signal control algorithm 

Isolated 

Junction 

Minimising total 

vehicle delay 

Integer 

programming 

Vehicle speeds 

and positions 

Average 

vehicle delay; 

computational 

effort 

micro-

simulation 

program 

written in 

Java 

Complete 

enumeration 

Feng et al. (2015) 
Real-time adaptive traffic 

control algorithm 

Isolated 

Junction 

Minimising total 

vehicle delay, 

total queue length 

Integer 

programming 

Vehicle speeds 

and positions 

Average 

vehicle delay 

VISSIM-

COM 

Fully actuated 

control 

Wang et al. (2020) 

A joint control model for 

CV platoon and arterial 

signal coordination 

5 junctions 

Minimising the 

travel time and 

improve passing 

speed 

Integer 

programming 

Vehicle speeds 

and positions 

Average 

vehicle delay; 

average stop 

time; average 

number of 

stops 

VISSIM MAXBAND 

Lee et al. (2013)  

Cumulative travel-time 

responsive(CTR) real-time 

control algorithm 

Isolated 

junction 

Minimising total 

delay time, average 

speed 

Integer 

programming 

Cumulative 

travel-time 

Average delay; 

Average 

velocity; 

CTT; 

Mean queuing 

time; 

Throughput; 

Fuel 

consumption; 

CO2 emissions 

VISSIM-

COM 
Actuated control 

Guler et al. (2014)  
Junction traffic control 

algorithm 

Isolated 

junction 

Minimising total 

delay, the total 

number of stop 

Integer 

programming 

Vehicle speeds 

and positions 

Average 

vehicle delay 
MATLAB 

FIFO strategy, 

fixed-time traffic 

signal, actuated 

signal 

Wang et al. (2021b) 
Joint traffic signal and 

connected vehicle control 

Isolated 

junction 

Maximise 

the cumulative 

reward of travel 

time and waiting 

time 

Reinforcement 

learning 

method 

Vehicle speeds 

and positions 

Average 

vehicle travel 

time; 

accumulated 

waiting time 

SUMO 

Greedy method, 

fixed time and 

conventional DRL 

method 

Yang et al. (2016)  
A bi-level optimization 

model 

Isolated 

junction 

Minimising 

the total delay 

Integer 

programming 

Vehicle speeds 

and positions 

Average delay; 

Number of 

stops; 

Stopped delay 

micro-

simulation 

platform 

Java 

Actuated signal 

control 

Guo et al. (2019) 

An efficient dynamic 

programming with 

shooting heuristic 

algorithm 

Isolated 

junction 

Minimising 

total vehicle delay 

Integer 

programming 

Vehicle 

speeds, 

accelerations 

and positions 

Average 

vehicle delay; 

Fuel 

consumption 

VISSIM 
Adaptive signal 

control 

Pandit et al. (2013)  
Oldest arrival first 

algorithm 

Isolated 

junction 

Minimising average 

delay per 

vehicle 

Analogy 

method 

Vehicle speeds 

and positions 

Average 

vehicle delay 

SUMO 

OMNET++ 

Venis 

Vehicle-actuated 

traffic signal 

control, Webster’s 

algorithm, fixed-

time control 

Kamal et al. (2015)  

Vehicle-junction 

coordination 

scheme (VICS) 

Isolated 

junction 

Maximising 

capacity, fuel 

consumption, and 

minimising travel 

time 

Multi-agent 

junction 

management 

Vehicle 

speeds, 

positions and 

destination 

Average travel 

time; Average 

idling time; 

Average fuel 

consumption 

Matlab 

Actuated 

signalized 

junction scheme 

Younes and 

Boukerche (2014)  

Intelligent Traffic Light 

Controlling 

algorithm 

Isolated 

junction 

Minimising average 

delay waiting time, 

maximising 

throughput 

Integer 

programming 

Vehicle speeds 

and positions 

Average 

vehicle delay; 

Throughput 

SUMO, NS-2 

Adaptive traffic 

signal control 

mechanism (OAF) 

Chandan et al. 

(2017)  

Connected vehicle signal 

control (CVSC) 

Isolated 

junction 

Minimising travel 

time delay, average 

number of stops 

per vehicle 

Traditional 

theory based 

method 

Vehicle speeds 

and positions 

Travel time 

delay; Average 

number of 

stops 

VISSIM 

COM 

EPICS’s adaptive 

signal control, 

Webster’s fixed-

time signal control 

Pourmehrab et al. 

(2017)  

Trajectory-based 

optimization algorithm 

Isolated 

junction 

Minimising average 

travel time and 

average delay 

Multi-agent 

junction 

management 

Vehicle 

positions 

Average 

vehicle delay; 

Average travel 

time; 

Throughput 

Matlab 
Fully actuated 

control strategy 

Liu et al. (2019) 

A cooperative signal 

control algorithm by 

leveraging the CACC 

capabilities 

Isolated 

junction 

Minimising of the 

total queue length 

Integer 

programming 

Vehicle 

speeds, 

accelerations 

and positions 

Average fuel 

economy; 

Average 

speed; 

Average queue 

length 

—— 0% CACC cass 

Xiang and Chen 

(2016)  

Multi-agent based control 

method 
22 junctions 

Minimising total 

travel time 

Reinforcement 

learning 

method 

Vehicle 

positions 

Average travel 

time; Average 

vehicle delay; 

Throughput; 

Number of 

stops 

VISSIM 

Fixed-time control 

and actuated 

controlmethod 

Yao et al. (2020) 

A dynamic optimization 

method for adaptive signal 

control 

Isolated 

junction 

Minimising average 

vehicle delay 

Traditional 

theory based 

method 

Vehicle speeds 

and positions 

Average 

vehicle delay; 

Queue length 

VISSIM COP algorithm 
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Tiaprasert et al. 

(2015)  

Queue-based adaptive 

signal control 

Isolated 

junction 

Minimising the 

queue length 

Integer 

programming 

Vehicle speeds 

and positions 
Queue length VISSIM Actuated Signal 

Yang et al. (2017)  
Reinforcement learning 

based methods 

Isolated 

junction 

Minimising the 

vehicle delay 

Reinforcement 

learning 

method 

Vehicle speeds 

and positions 

Average 

vehicle delay 
SUMO Fixed time control 

Islam et al. (2017)  
Distributed-Coordinated 

(DC) approach 

2 and 9 

junctions 

Maximising 

throughput, 

minimising queue 

length 

Integer 

programming 

Vehicle speeds 

and positions 

Average travel 

time; Average 

delay; Number 

of stops; 

Average speed 

VISSIM 

Fixed-time 

Coordinated, 

Actuated 

Coordinated 

Darmoul et al. 

(2017) 

distributed, intelligent and 

adaptive traffic signal 

control system 

3 and 6 

junctions 

Minimising of 

vehicle delays, and 

vehicle queue 

lengths 

Analogy 

method 

Queue length, 

average queue 

delay 

Average 

vehicle delay; 

Average queue 

length 

VISSIM 
MAS-LQF-MWM, 

fixed-time control 

Kamal et al. (2019) 

A novel adaptive traffic 

signal in a mixed manual-

automated traffic 

Isolated 

junction 

Minimising 

total crossing times 

of all vehicles 

Integer 

programming 

Vehicle speeds 

and positions 

Average 

speed; 

Average 

passing time; 

Fuel efficiency; 

CO2 emission 

MATLAB 
Fixed-time and 

actuated control 

Liu et al. (2017)  

Cooperative RL-based 

signal 

control algorithm 

3 junctions 

Improving traffic 

throughput and 

reducing average 

waiting time 

Reinforcement 

learning 

method 

Vehicle speeds 

and positions 

Average 

vehicle delay; 

Average 

waiting time; 

Total waiting 

queue length 

SUMO 

NS-3 
—— 

Rafter et al. (2020) 
Multi-mode 

adaptive traffic signals 
12 junctions 

Reduce vehicle 

delay 

Traditional 

theory based 

method 

Position from 

CVs and 

inductive loops 

Average 

vehicle delay; 

Number of 

stops; 

SUMO Fixed time control 

Ahmane et al. 

(2013)  

Timed Petri Nets 

with Multipliers based 

signal control 

Isolated 

junction 

Minimising queue 

length 

Analogy 

method 

Vehicle 

positions 

Average 

waiting time; 

Average queue 

length 

Video 2 
ML-FCFS, Traffic 

lights 

Maslekar et al. 

(2013)  

car-to-car communication 

based adaptive traffic 

signal system 

7 junctions 

Reducing the 

average waiting 

time, the queue 

length 

Traditional 

theory based 

method 

Vehicle 

directions and 

positions 

Average 

waiting time; 

Queue length 

NCTUns C-DRIVE 

Yang et al. (2021) 

cooperative driving 

framework for arterial 

corridors in a mixed traffic 

condition 

6 junctions 

Optimizing traffic 

flow and improving 

mobility 

Integer 

programming 

Vehicle 

trajectory data 

from BSM and 

detector 

Total vehicle 

delay; number 

of stops; CO2 

emissions 

VISSIM 

Fixed time 

optimized by 

VISTRO 

Cheng et al. (2017)  

fuzzy group-based 

junction 

control 

Isolated 

junction 

Reducing the 

average waiting 

time 

Reinforcement 

learning 

method 

Vehicle speeds 

and positions 

Average 

waiting time 
NS-3 

Adaptive light, no 

group, fuzzy group 

Chang and Park 

(2013)  

queue length 

estimation model control 

Isolated 

junction 

Minimising average 

junction 

waiting time, the 

total queue length 

Traditional 

theory based 

method 

Vehicle speeds 

and positions 

Total waiting 

queue 

length 

GLD 
random control, 

best-first control 

Cai et al. (2013)  

approximate 

dynamic programming 

(ADP) control algorithm 

Isolated 

junction 

Reducing travel 

time 

Integer 

programming 

Vehicle speeds 

and positions 

Mean travel 

time; Number 

of stops 

Commuter 
benchmark 

methods 

Younes and 

Boukerche (2016)  

an intelligent traffic light 

controlling algorithm and 

an 

arterial traffic light 

controlling 

algorithm 

Isolated 

junction 

Reducing the 

expected queuing 

delay, increasing 

the throughput 

Integer 

programming 

Vehicle speeds 

and positions 

Total delay; 

Average 

vehicle delay; 

Throughput 

SUMO 

NS-2 
OAF mechanism 

Gradinescu et al. 

(2007)  

Modified Webster’s 

formula 

Isolated 

Junction 

Minimising the 

average delay 

Traditional 

theory based 

method 

Vehicle speeds 

and positions 

Average 

vehicle delay; 

Fuel 

consumption; 

Emissions 

Ns-2, 

Jist/SWANS 

VISSIM 

Fix timed 

Kari et al. (2014)  

An agent-based online 

adaptive 

signal control (ASC) 

strategy 

Isolated 

Junction 

Reducing the travel 

delay and the fuel 

consumption 

Multi-agent 

junction 

management 

Vehicle speeds 

and positions 

Average travel 

time; Fuel 

consumption 

SUMO 
QEM/HCM based 

strategy 

Nafi and Khan 

(2012)  

Intelligent Road Traffic 

Signaling System 

Isolated 

junction 

Reducing the 

average waiting 

time 

Traditional 

theory based 

method 

Vehicle speeds 

and positions 

Average 

waiting time; 

Throughput 

OPNET 

Modeler 
Fixed time 

Shaghaghi et al. 

(2017)  

Adaptive green traffic 

signal 

controlling using vehicular 

communications (AGTSC-

VC) 

36 junctions 

Decreasing the 

vehicle waiting 

time and 

pollutant emission 

Traditional 

theory based 

method 

Vehicle 

directions and 

positions 

Average 

waiting time; 

Throughput 

Veins 

VANET-based 

adaptive TSCSs 

(MC-DRIVE), 

Traditional ATSCS 

Yu et al. (2019) 

A MILP model to 

cooperatively optimize 

CAV trajectories 

4 junctions 
Minimising total 

vehicle delay 

Integer 

programming 

Vehicle 

speeds, 

Average 

vehicle delay; 

Throughput 

SUMO 
Coordinated fixed-

time control 
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accelerations 

and positions 

Priemer and 

Friedrich (2009)  

Decentralized adaptive 

traffic 

signal control 

Signalized 

and 

unsignalized 

junctions 

Reducing the total 

queue length 

Integer 

programming 

Vehicle speeds 

and positions 

Average 

vehicle delay; 

Average 

vehicle speed 

AIMSUN NG 
DP&CE without ql-

estimation 

Yu et al. (2018) 

An MILP model to 

optimize traffic signals and 

vehicle trajectories 

Isolated 

junction 

Minimise fuel 

consumption and 

emission 

Integer 

programming 

Vehicle 

speeds, 

accelerations 

and positions 

Average 

vehicle delay; 

Throughput; 

CO2 emission 

—— Actuated control 

Wu et al. (2018)  
Delay-based backpressure 

traffic signal control 

Isolated 

junction 

Reduce queue 

Lengths, 

throughput 

optimal 

Analogy 

method 

Vehicle speeds 

and positions 

Average queue 

length 
—— 

Queue-based 

Back- 

Pressure Control, 

Delay-based Back 

Pressure 

Liang et al. (2018)  
Deep reinforcement 

learning model 

Isolated 

junction 

Minimising delay, 

reducing average 

waiting time 

Reinforcement 

learning 

method 

Vehicle speeds 

and positions 

Average 

waiting time; 

Cumulative 

vehicle delay 

SUMO Fixed time 

Feng et al. (2018)  
An integrated framework 

for joint control 

Isolated 

junction 

Minimise vehicle 

travel time delay 

Integer 

programming 

Vehicle 

speeds, 

accelerations 

and positions 

Vehicle delay; 

CO2 emission; 

Execution time 

—— Fixed time control 

Sun et al. (2018)  

Maximum capacity 

junction operation scheme 

for CAVs 

Isolated 

junction 

Maximum 

capacity ;Minimise 

vehicle numbers 

crossing centreline 

Integer 

programming 

Vehicle 

positions 
Capacity —— 

Conventional 

signal operation 

scheme 

  

2.5.6 Discussions and conclusions  

The state-of-the-art adaptive signal control models in connected vehicle environments are 

summarized in Table 2.10. The diversity of model objective selections, data sources and KPIs are 

all originally derived from connected vehicle technology, which is far beyond those of traditional 

proposed methods. The adaptive connected vehicle methods also presented significant 

improvements in various aspects compared to the benchmarking models they selected (generally 

fixed time and actuated control method), for instance, 48% average travel time reduction against 

benchmarking models in Islam and Hajbabaie (2017) in coordinated junctions under saturated 

flows, 34% total travel time reduction, 36% average speed and 4% throughput increase in Lee et 

al. (2013) in isolated junction under saturated flows. The results shown by researchers prove that 

connected vehicle data have great potential to support the development of new adaptive urban 

signal controls in future by offering detailed information about the state of junctions. From the 

perspective of flow conditions, most researches improved the performance of urban signal 

controls under saturated flow situations (Feng et al., 2018; Guler et al., 2016; Yang et al., 2016). 

Few papers attempted to improve the effectiveness of their control methods in oversaturated 

flows (He et al., 2012; Rafter et al., 2020). The majority of researches selected an isolated junction 

as a research object (Feng et al., 2015, Lee et al., 2013; Yang et al.). Part of the studies achieved 

the optimized goal of coordinated control in an arterial or a network with the coordination 

considerations of all controllers (Xiang and Chen, 2016; Wang et al., 2020) 
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However, several limitations are found in the most advanced researches. From Table 2.10 and 

reviews in Sections 2.2.1 and 2.2.2, the signal schemes determined by connected vehicle urban 

signal controls are all optimized by vehicle-based objectives (e.g. minimising average vehicle 

delays, minimising vehicle number of stops, minimising vehicle queue lengths). Besides, the 

measures of their proposed signal decision algorithms are vehicle performance indicators. These 

policies and measurement methods mean that they treat all of the vehicles on road are same and 

prevent them from exploring the person-based signal control styles. However, Section 2.3 justify 

that the development of person-based urban signal controls is essential in future and more 

meaningful than vehicle-based models to accelerate the progress of urban mobility. The vehicle-

based models can result in unfair treatment of those vehicles with high occupancy levels. 

Another limitation in current researches is unrealistic experiment assumptions used to test the 

effectiveness of proposed models. The existing urban control systems have been successfully 

implemented in complex real-world scenes. The testing factors include large road network scales 

consisting of coordinated junctions, and different levels of traffic volumes during peak and off-

peak periods in the local area. Further, the transitions from conventional vehicles with neither 

connectivity nor autonomy in current situations to the deployments of 95% or higher connected 

vehicles on road are estimated to be long-term (Feng et al., 2015). Therefore, it is very essential to 

understand the new paradigms of urban junction managements under the presence of connected 

vehicles, notably, the different adoption levels of connected vehicles and conventional vehicles.  

Up to now, the whole publications on urban junction controls with CAVs use simulation to 

approach their researches. Examples of simulation platforms include VISSIM (PTV Group, 2011), 

SUMO (Krajzewicz et al., 2006), Veins (Sommer et al., 2010), NCTUns (Wang and Lin, 2008), NS-2, 

etc. This on its own is not a problem, because the practical approach requires quantities of high-

expense connected vehicles and great network scales for trials, which is quite difficult to prepare 

in the current stage. Contrarily, mathematical analytical approaches are also infeasible to be 

applied as the complexity of combinations of junction controls, increasing number of vehicles, and 

various incoming lanes. However, it is notably that simulations for junction operation are 

necessary to be as realistic as real-world traffic situations so that these junction controls will make 

sense when they are implemented in the field. Only mathematical programming and part of other 

optimization-based methods are aware to evaluate their models in realistic scenarios but not 

adequate. The rest of the methods make ideal or even unpractical assumptions for their proposed 

algorithms. As for person-based urban signal controls, things would be more complex as the 

information absence of occupancy levels of vehicles at different rates also need to be considered. 

Therefore, another research gap here is how to develop coordinated paradigms for person-based 

signal control in multiple junctions, test and ensure the performance of person-based models in 
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realistic situations, including dynamic traffic volumes, mixture vehicular environments 

with/without buses imperfect connected information from under 100% connected vehicle 

environments. 

2.6 Summary  

This section summarizes literature on vehicle-based signal controls, discusses their relationships 

and points out research gaps in this area. The overview summary is graphed in Figure 2.9. 

Traditional UTCs have evolved significantly from fixed time control to infrastructure-based traffic 

responsive control to better respond to dynamic road traffic so that reducing urban road 

congestion and delay, which have been reviewed in Section 2.2. However, the performance of 

current UTC coordinated signal controls are still limited by the availability of data sources from 

fixed point detectors such as inductive loops, which cannot describe the detailed state of the road 

network. There are still promoting spaces for UTC systems if they are provided with abundant 

road information enabling accurate vehicular predictions. The UTC systems are vehicle-based 

signal controls, not fitting with encouraged policies of urban people congestion reduction and 

mobility improvement.  

The review of bus priority schemes in Section 2.3.2 indicates that the development of person-

based signal controls is more realistic and meaningful than vehicle-based controls from the 

perspectives of urban mobility improvement, direct travel time costs reduction and social 

management. However, the review also finds that the transition from vehicle-based controls to 

person-based controls is not a straightforward task. The person-based controls require occupancy 

information from every vehicle and more complicated signal control paradigms assigning different 

priority levels to vehicles according to their occupancy levels and resulting in flexible phase 

combinations and stage sequences, which is difficult to implement by UTC systems due to 

detection technology.    

The review of state-of-the-art detection and communication technology in Section 2.4 presents 

that new communication technology collected road information from various most advanced 

equipment (e.g. GPS, on-board sensors, infrared camera) are available to support urban signal 

control systems. They create a communication network among junction controllers and 

connected vehicles (V2V, V2I) through wirelessly communication technology (e.g. IEEE 802.11p, 

DSRC). Abundant and detailed real-time information (e.g. speeds, positions, accelerations) 

become available for the next generation of urban signal controls. As an essential data source for 

implementing person-based approaches, vehicle occupancy can also be collected from several 

sensors, such as in-vehicle cameras, roadside cameras, and AVL. Therefore, the signal control 
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paradigms need to be changed to accommodate those new data sources to conduct new decision 

optimization processes. 

The state-of-the-art vehicle-based adaptive signal control systems in connected vehicle 

environments are then reviewed in Section 2.5. A number of new signal control decision 

algorithms are developed and great improvements are found against benchmarking models (e.g. 

reducing vehicle travel time, reducing vehicle delay, reducing vehicle number of stops), which 

highlights the potential benefits and opportunities of adopting connected information into urban 

signal controls as data sources. The utilisation of CV technology improves the performance of 

vehicle-based signal controls compared to existing urban signal controls. However, the majority of 

adaptive signal controls in Section 2.5 still do not take into account occupancy levels of 

information and they are still vehicle-based signal controls by assuming all vehicles on road are 

the same except for their IDs. Meanwhile, simulations are found to be the most common method 

to reproduce the proposed adaptive signal controls and evaluate their performance. And part of 

vehicle-based signal controls considers realistic environments (e.g. coordinated junctions, not 

perfect penetration rates, and varying traffic flow demands) to extend their models and 

simulation experiments to make them realistic in real-world implementations.  

From Section 2.4, the connected vehicle information supports the improvements of transit signal 

priority by realizing real occupancy levels of buses. The available occupancy data from CV also 

enables the transition from vehicle-based to person-based control to be realizable. Up to now, 

there are few researches developed person-based controls by incorporating vehicle occupancy 

data. In next chapter, few researches focus more on person-based control and flexible signal 

timing plans are reviewed. The chapter discusses their limitations and points out the research 

gaps, aim and objectives of this project. The challenging and requirements of the new 

methodology that need to be adopted to fill in the research gaps are also elaborated in next 

chapter as well as a general harmonised evaluation framework to validate the performance of the 

proposed algorithm. 
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Chapter 3 Person-based adaptive signal control 

background and concept 

Chapter 2 reviews the general literature related to vehicle-based signal controls in CV 

environments, pointing out the main limitation of the majority of state-of-the-art research in 

Section 2.6. The connected vehicle also supports vehicle occupancy data, which makes the 

transmission from vehicle-based controls to person-based controls to be possible. This chapter is 

divided into three parts. The first part reviews the state-of-the-art person-based controls in CV 

environments and signal controls with flexible signal timing plans and highlights their limitations 

and the critical research gaps in urban signal control areas in Sections 3.1 and 3.2.  

The second part of this chapter claims research gaps based on the literature and tries to make 

contributions to the study area by achieving objectives in Section 3.3. To fulfil the objectives of 

the research area. Section 3.4 discusses and decides the general methodology for this project by 

analysing the potential challenges and requirements of developing new person-based algorithms. 

The rest of this chapter in Section 3.5 structures the evaluation framework to validate the 

performance of proposed person-based algorithms. The selections of evaluation tools, car-

following model, benchmarking signal control algorithms, experiment scenarios and KPIs are 

elaborated to ensure that all of the algorithms are tested in a fair and consistent evaluation 

framework.  

3.1 The state-of-the-art person-based urban signal controls in connected 

vehicle environments  

Most junction management papers proposed vehicle-based signal control models with small parts 

of all kinds of connected vehicle data mentioned in Section 2.4 such as vehicle speeds and 

positions, signal phase and timing information, which are shown in Table 2.10. These researches 

are out of consideration the occupancy level diverges of vehicles on road.  

However, some researchers have noticed the importance of considering passenger delay by 

incorporating passenger occupancies of transits and cars into their optimization algorithms and 

frameworks. Different from vehicle-based controls, person-based signal controls are optimized 

and evaluated by unique person-related objective functions (minimising person delay and 

minimising person number of stop) and KPIs (average person delay and average person number of 

stop), which are described below: 
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 Minimising person delay is the most commonly used objective indicator to measure the 

effectiveness of person-based controls (Christofa et al, 2013b; Yu et al., 2017; Yang et al., 

2018). All of the passengers and drivers inside a vehicle suffer the same vehicle delay. 

Therefore, the calculation of objective value is extended from the calculation of vehicle 

delay, which is represented by: 

𝑚𝑖𝑛∑𝑉𝑂(𝐷𝐶 − 𝑉𝐶
𝑐∈𝑁

) (3-1) 

Where 𝑉𝑂 is the occupancy value of a specific vehicle.  

 Minimising person stop is an indicator used in part of person-based controls to measure 

the travelling experiences of all people in vehicles (Christofa et al, 2013a). Similar to 

minimising vehicle delay, minimising person number of stop is calculated by vehicle 

number of stop scaled by occupancy data of this vehicle, which is shown as: 

𝑚𝑖𝑛∑𝑉𝑂(𝑆𝑊𝐶 − 𝑆𝑊𝐶′′)

𝑐∈𝑁

 (3-2) 

 

 Average person delay is the excess times of all people in one vehicle spend to complete its 

journey than free flow travel time, its value equals to average vehicle delay multiples its 

occupancy data. 

 Average person number of stop is the number of people in a vehicle who switch their 

speed to 0 and acceleration, which can be calculated by average vehicle number of stop 

multiples its occupancy data. 

Some studies developed TSP strategies in CV environments to assign high priority to buses with 

more passengers to reduce passenger delay with more attention on buses than on passenger cars 

(Christofa et al, 2011; Wu et al, 2017). The extension works include investigating the 

implementation locations of TSP strategies at arterial levels (Guler et al, 2018; Bagherian et al, 

2015; Bayrak and Guler, 2020), considering the bus stops (Yang et al, 2018), bus dwell time (Lin et 

al, 2019; Kim et al 2019), bus requests from conflicting directions (Xu et al, 2018) and bus arrival 

numbers (Lian et al, 2020). These papers put more emphasis on improving the prediction time of 

arrival buses or considering more details of bus routes and bus facilities. 

Other studies focused more on reducing person-based metrics in car and bus mixture 

environments and have been summarized in Table 3.1. The person-based controls assumed that 

occupancy data of buses and cars were known information. A person-based signal control system 

proposed by Christofa et al. (2013a) attempted to minimise total passenger delay by accounting 
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for cars and buses number in an isolated junction. The arrival times of vehicle platoon were 

predicted using auto delay estimation theory.  

However, this paper adopted fixed cycle length, phase sequence and stage combinations. The 

simulations indicated the best result of 4.5% person delay reduction achieved in cross streets 

compared to vehicle-based optimization during evening peak duration. The system was then 

extended to be implemented in successive junctions along signalized arterial corridors, which 

found up to 7.9% person delay reduction in Main Arterial Southbound compared to TRANSYT-7F 

(Christofa et al, 2016).  

Yu et al., (2019) broke through the assumption of fixed cycle lengths in previous works by 

accommodating flexible cycle lengths. The approach also improved the system to better deal with 

the uncertain arrival time of buses, but it was implemented in a fixed three-stages isolated 

junction. The algorithm extended green time using available green time from the next cycle to 

serve arriving buses. The study found a 25% delay reduction for all passengers compared to 

person-based strategy with fixed cycle length. 

Vilarinho et al. (2017) developed a bid-based total passenger delay reduction approach beyond 

public transport priority, aiming for assigning different priorities to passenger vehicles with 

different occupancy levels under 100% car environments, but it only used a traditional experience 

formula to estimate the number of pedestrians. The data sources used in this study were vehicle 

arrival flows rather than explicit vehicle trajectory information. The optimized signal plans were 

also constrained in a three-stage junction with fixed phase combinations. 

A user-based signal optimization algorithm was then designed to maximise user throughput 

rather than minimising passenger delay in a four-leg isolated junction using fixed phase sequence 

and stage combination settings (Mohammadi et al, 2019). This paper assumed a vehicular 

environment without the presence of buses and used a similar vehicle trajectories theory adopted 

in Christofa et al (2013b) to estimate the arrival times of vehicles in a platoon under different 

statuses. Phase sequence settings are adopted according to National Marine Electronics 

Association (NEMA) Standard ring-and-barrier. Results showed a significant increase in user 

throughput compared to vehicle-based optimization with the same algorithm. 

Hu et al. (2015) developed a person delay-based optimization method that enables bus/signal 

cooperation and coordination among a pair of junctions under connected vehicle technology. The 

proposed method is an extension work of transit signal priority (TSP) logic by using binary mixed 

integer linear programs. The advanced connected vehicle data are capable of providing more 

accurate bus locations and counting passenger numbers in each bus to decide the coordination 
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strategies against conventional TSP. The numerical experiments of TSP combined with connected 

vehicles found great bus delay reduction than the traditional method.  

He et al. (2012) proposed a platoon-based arteria signal control method considering multiple 

modes (buses, pedestrians, cars) in V2I communications. This actuated coordinated method 

identified the vehicle stream platoon by connected vehicle. The priority phase will be determined 

by the priority levels of each platoon and choose whether extend a green actuation time or switch 

to next phase. The case study tested in a pair of junctions with public transport facilities (bus 

routes and bus stops). The proposed method was strengthened later by He et al. (2014) to better 

performance in low levels of communications penetration.  

Another research attempted to maximise the weighted passenger number through the junction 

for the disposal of both demands of private vehicles and buses (Polgar et al., 2013). The study 

divided the available green time among the signal stages of the junction in order to maximise the 

number of passengers crossing the stop line with fixed cycle time and stage order in a two-stage 

junction. The scheme which can acquire a maximum number of weight passengers was adopted 

as the optimal strategy to assign green duration for two stages. 

Table 3. 1 Summary of person-based adaptive signal controls using connected vehicle technology  

Main author and 

year 
Model name 

Case study 

Scale 

Objectives of the 

model 

Signal phase 

settings 

Data 

Resources 

Key 

Performance 

Indicator 

Simulation 

Platform 

Benchmarking 

model 

Christofa et al. 

(2013a) 

A person-based traffic 

responsive 

signal control system 

Isolated 

junction 

Minimising total 

person delay 

Fixed phase 

sequence and 

cycle length 

Demand, 

turning ratios, 

vehicle 

occupancies, 

bus speed and 

location 

Total 

passenger 

delay; Number 

of stops and 

emissions of 

buses 

AIMSUN TRANSYT-7F 

Christofa et al. 

(2013b) 

A person-based traffic 

responsive signal control 

system 

Isolated 

junction 

Minimising total 

person delay 

Fixed phase 

sequence and 

cycle length 

Demand, 

travel times, 

and 

turning ratios, 

vehicle 

occupancies, 

bus speed and 

location 

Total 

passenger 

delay 

AIMSUN 

Vehicle-based 

optimization with 

same algorithm 

He et al. (2012)  
Unified platoon-based 

mathematical formulation 
8 junctions 

Minimising the 

total weighted 

delay 

Fixed phase 

sequence, 

offset and 

cycle length 

Travel mode, 

Vehicle speeds 

and positions, 

vehicle 

occupancies 

Average 

vehicle delay; 

Average bus 

delay; 

Throughput 

VISSIM-

COM 

Coordinated-

actuated control 

optimized by 

SYNCHRO, 

PAMSCOD 

He et al. (2014)  
Multi-modal traffic signal 

control 
2 junctions 

Minimising the 

total weighted 

delay 

Fixed phase 

sequence, 

offset and 

cycle length 

Travel mode, 

Vehicle speeds 

and positions, 

vehicle 

occupancies 

Average 

vehicle delay; 

Average bus 

delay 

VISSIM-

COM 

Coordinated-

actuated traffic 

signal control 

Christofa et al. 

(2016) 

A person-based traffic 

signal control system on 

arterials 

4 junctions 
Minimising total 

person delay 

Fixed phase 

sequence and 

cycle length 

Demand, 

travel times, 

and 

turning ratios, 

vehicle 

occupancies, 

bus speed and 

location 

Total 

passenger 

delay 

AIMSUN TRANSYT-7F 

Hu et al. (2015)  

A person-delay-based 

optimization method for 

TSP 

2 consecutive 

junctions 

Minimising total 

person delay 

Fixed phase 

sequence and 

cycle length 

Vehicle 

speeds, 

locations and 

occupancies 

Bus delay; 

Total person 

delay 

VISSIM-

COM 

TSPCV, 

Conventional TSP, 

No TSP 
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Polgar et al. (2013) 

Passenger number 

dependent traffic 

control 

Isolated 

junction 

Maximising 

number 

of weighted 

passenger  

Fixed cycle 

length in a 

two-stage 

junction 

Vehicle 

positions and 

occupancies 

Number 

of weighted 

passenger 

VISSIM Fixed-time control 

Yu et al. (2019) 

A f person-based 

frameworks for 

traffic signal timing 

optimization 

Isolated 

junction 

Minimising total 

person delay 

Fixed phase 

sequence and 

cycle length 

Vehicle 

positions and 

occupancies 

Bus delay; 

Total person 

delay 

—— 

No uncertainty, 

deterministic, 

robust 

optimization, and 

blended strategy 

Vilarinho et al. 

(2017) 

A person-based traffic 

signal control strategy 

Isolated 

junction 

Minimising total 

person delay 

Flexible phase 

sequence and 

cycle length, 

fixed phase 

combination in 

a three-stage 

junction 

Vehicle 

occupancies, 

queue length 

and traffic 

arrivals  

Average 

person delay 
AIMSUN Fixed-time control 

Mohammadi et al. 

(2019) 

A user-based signal timing 

strategy 

Isolated 

junction 

Maximising user 

throughput 

Fixed phase 

sequence and 

combinations, 

flexible cycle 

length 

Vehicle 

speeds, 

locations and 

occupancies 

Average 

junction 

throughput 

VISSIM 

Vehicle-based 

optimization with 

same algorithm 

3.2 Flexible signal plans in connected vehicle environments 

The majority of vehicle-based control (reviewed in Section 2.5) and person-based control 

(reviewed in Section 3.1) optimized their signal plans in several limited criteria (e.g. fixed cycle 

length, phase sequence, phase combinations). Table 3.2 provides a summary review of signal 

controls using CV data with at least flexible cycle length and flexible phase durations. The 

flexibility degrees (whether phase sequence, phase combinations and cycle length are flexible or 

not) and the number of phase options of traffic signals they assumed to adopt their methods are 

also summarized in Table 3.2.   

Table 3. 2 Summary of signal controls with flexible signal plans in connected vehicle environments 

Main author 
and year 

Methodology Phase 
sequence 
flexible? 

Cycle length 
flexible? 

Flexible phase 
combinations? 

No. of 
phase 

options 

Vehicle-
based/ 
Person-
based 

Vilarinho et al. 
(2017) 

Two-stage bid 
mechanism 

Yes Yes No 3 Person-
based 

Mohammadi 
et al. (2019) 

Mixed-integer 
nonlinear program 

Limited by 
NEMA 

dual-ring 

Yes No 8 Person-
based 

Liang et al. 
(2018) 

Complete enumeration Yes Yes No 4 Vehicle-
based 

Beak et al. 
(2017) 

Dynamic Programming Limited by 
NEMA 

dual-ring 

Yes No 8 Vehicle-
based 

He et al. 
(2012) 

Mixed-integer nlinear 
program 

Limited by 
NEMA 

dual-ring 

Yes No 8 Vehicle-
based 

Lee et al. 
(2013) 

Complete enumeration Yes Yes No 8 Vehicle-
based 

Priemer and 
Friedrich 

(2009) 

Complete enumeration 
and DP 

Yes Yes No 3 Vehicle-
based 

Feng et al. 
(2015) 

Dynamic programming Limited by 
NEMA 

dual-ring 

Yes No 8 Vehicle-
based 

Guo et al. 
(2019) 

Dynamic programming 
with shooting heuristic 

Yes Yes No 4 Vehicle-
based 
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Liang et al. 
(2020) 

Heuristic method Yes Yes Yes 8 Vehicle-
based 

Only a few existing papers adopted flexible phase sequence and cycle length in their proposed 

approaches (Vilarinho et al., 2017; Liang et al., 2018, Priemer and Friedrich, 2009; Guo et al., 

2019). However, the algorithms employed in these studies either consider a simplified junction 

with two one-way streets or only three or four-phase options for a three/four approach junction. 

The simplified assumptions of junction layouts limit their methods to be applied in real-world case 

studies or scenarios with unbalanced and fluctuating traffic demands, which cannot be regarded 

as completely flexible. 

Some other studies offered limited phase sequencing options by using the NEMA dual-ring signal 

phase structure, which does not allow flexible signal strategies, such as phase skipping, between 

two barrier groups (Feng et al, 2015; Beak et al., 2017; He et al, 2012; Mohammadi et al, 2019). 

The signal plans in these studies operated with a fixed phase sequence order and a phase to have 

zero duration due to minimum green times are also not allowed. This simplification reduces the 

number of phase sequence options but limits the flexibility degree of signal plans adapting to 

varying traffic flows. 

Lee et al. (2013) determined the next optimal signal phase by minimising the CTT of vehicles with 

flexible phase sequences in an 8-phases junction. However, the algorithm used fixed phase 

combinations and it only optimized the first phase without consideration for the impacts on 

future phases. This caused the decision-making process only get a sub-optimal solution rather 

than an optimal signal plan for the whole period.  

To the best knowledge of the author, there is only one vehicle-based control study that developed 

a complete flexible signal plan approach in the generalized 8-phases junction (Liang et al., 2020). 

However, the flexible signal plans in this paper were operated to serve the departure sequence of 

the first platoon to reduce vehicle delay. Completely flexible signal plans are more valuable and 

sensible in person-based controls than those in vehicle-based controls due to various priority 

levels of car and bus sequences. As different signal plan decisions will result in different statuses 

of vehicles, the prediction departure time of vehicles will also need to be changed. Therefore, 

there is a critical research gap that more flexible signal plans should be optimized for person-

based signal controls to better react to passenger cars and buses with various occupancy levels 

from different directions and arrival lanes. The new vehicle trajectory and car-following updating 

theories need to be developed to predict the departure time of cars and buses under different 

potential signal timing plans as well. 
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3.3 Research gaps and contributions 

3.3.1 Research gaps 

There are a few papers summarized in Table 3.1 that developed person-based controls focusing 

on passenger delays including public transport, some of which extended the person-based 

objectives towards a regular junction environment with/without the interpretation of public 

vehicles. This enables signal control transitions from vehicle-based systems to person-based 

systems utilising CV data. From the experiences of TSP strategies, flexible signal timing 

approaches were adopted for buses with more passengers than cars to award higher priorities, 

e.g., stage skipping, green extension, and stage recall (Anderson et al, 2020). However, the 

vehicular environments of different occupancy passenger vehicles with/without buses are even 

further complicated for controllers to reach the total passenger delay objective as it is hard to 

predict the arriving distributions of passenger vehicles, which lane they will arrive and related 

occupancy sequences. Inspired by TSP strategies, complete flexible signal plans should be adopted 

for person-based controls with flexible stage sequences, specific phase combinations and phase 

durations. However, from Table 3.2 the state-of-the-art researches do not adopt completely 

flexible signal plans in person-based approaches. They also do not understand how different 

possible signal plans will impact the vehicle trajectories, departure times of vehicles in different 

occupancies and the decision-making process of person-based approaches. Those researches lay 

particular emphasis on adjusting signal schemes to provide priorities to transits rather than 

vehicles and still do not answer how to react to different priority levels of passenger cars on 

normal urban roads. 

On the other side, small groups of the signal control plans adopted in person-based controls in 

Section 3.1 are not completely flexible and they do not explore the impacts of different possible 

signal strategies on vehicle trajectories and departure times. 

While no research understands how person-based signal control paradigms would be and what 

are their potential benefits for urban mobility and person congestion reduction over adaptive 

signal controls. More specifically, how would person-based control be in realistic scenarios? As 

can be seen in Figure 3.1, the research gaps are found in the literature: 

• There is no research developing person-based signal controls with completely flexible 

signal plans in CV environments in a generalized 8-phases options isolated junction. It is 

unknown how the trajectories and predictive departure times of vehicles from different 

lanes with different occupancies will be changed with possible signal plans, and how these 

changes impact the person-based will signal control paradigms. More concisely, what 
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person-based control paradigm would exactly be, which sort of data could be used in 

person-based control and how to use them. 

• There is no research developing coordinated paradigms for person-based controls with 

completely flexible signal plans implemented in multiple junctions. How to utilise the 

information from adjacent junctions and how to achieve coordination for person-based 

control are unknown. 

• It also needs to figure out how to develop person-based signal controls with completely 

flexible signal plans in vehicle mixtures of cars and buses, and how to implement person-

based controls in real word case studies with more realistic scenarios including varying 

traffic flow demands, CV penetration rates, planning durations and other variables and 

what are benefits in these different scenarios. 

• There is no research answering how to develop person-based signal controls with 

mixtures of CVs and conventional vehicles in the case that not all of the vehicles are 

connected. How to improve the performance of person-based controls when part of 

vehicle trajectory and occupancy data cannot be acquired.  

 

 

Figure 3. 1 Overview of literature review and research gaps 

3.3.2 Contributions of this research 

Aim and objectives in Section 1.5 try to fill in the research gaps. The contributions of this project 

are: 
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• A three-layered DP person-based signal control mechanism PerSicon-Junction is 

developed in isolated junction and CV environments. This signal control system searches 

for the most suitable signal timing plans to reach the minimum person delay in the 

defined planning horizon. The possible signal plans and corresponding delay reduction 

benefits are considered here. Inside PerSicon-Junction, a signal phase transition 

exploration mechanism is developed to efficiently explore all possible signal timing plans 

for every next planning step according to non-conflicting phase rules. The vehicle 

trajectory and car-following updating theories are proposed and used for predicting 

discharging time of all vehicles from incoming lanes under different cases. 

• A person-based control PerSicon-Bus with completely flexible signal plans is developed to 

apply PerSicon-Junction in more complex vehicle mixtures of cars and buses in 

generalized 8-phases options isolated junction. Buses are considered to be a special 

vehicle mode which can be incorporated into the algorithm of PerSicon-Junction. A 

realistic isolated junction and a number of scenarios are constructed to investigate the 

performance of the proposed method against benchmarking models involving vehicle-

based controls using CV data. The performance are evaluated under car and bus mixtures 

under varying flow demands, as well as other sensitivity analysis factors such as CV 

penetration rates and bus occupancies. 

• The proposed PerSicon-Network extends PerSicon-Bus to coordinated paradigms to 

better understand how person-based signal control with flexible phase combinations and 

stage sequences would be implemented in multiple junctions. The CV information from 

both surrounding CVs and adjacent junctions can be acquired to enable junction 

controllers to have knowledge of vehicular situations within further range. In order to 

incorporate further information properly for controllers to make adaptive signal timing 

decisions to all surrounding vehicles with different occupancies, the data from the 

adjacent junction will be utilised as a supplement form of predictive vehicle arrival time 

list according to vehicle trajectory data and signal strategy. A real-world road network is 

built to evaluate the performance of PerSicon-Network. 

• Estimation status of Unequipped Vehicle with Occupancy (EUVO) algorithm is proposed to 

improve the behaviours of PerSicon-Network under imperfect CV penetration rate 

environments. The EUVO algorithm collects vehicle data from roadside cameras and 

inductive loops to support the data inputs and performance of PerSicon-Network. 

It is worth noting the relationships between different proposed person-based algorithms. 

PerSicon-Junction is the initial version which only considers passenger cars in isolated junction. 

PerSicon-Bus is an evolution of PerSicon-Junction, which incorporates bus mode with higher 
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occupancy levels against passenger cars in isolated junction. PerSicon-Network is an upgraded 

version of PerSicon-Bus, extending the junction scales from isolated junction to road networks. 

The EUVO algorithm enhances the data inputs of PerSicon-Bus to improve its performance in 

imperfect CV penetration rates. 

3.4 Challenges for modelling adaptive person-based signal controls in 

urban isolated junction 

In contrast to the vehicle-based approach, there should be an additional vehicle occupancy level 

state variable to be considered in the person-based signal control paradigm due to occupancy 

levels in passenger cars are different. The signal control design and signal timing strategies, in 

person-based control, may make different choices to guarantee the right-of-ways of all 

passengers in junction surrounding vehicles with real-time information from CVs. The design of 

person-based signal control algorithm is not an easy task as constant vehicle flow demands, 

irregular vehicle and inside passenger arrival distributions, varying traffic state parameters and 

the influence of signal plan decisions on vehicular environments cause the traffic situations more 

complex than the vehicle-based approach. In order to develop a fair passenger occupancy priority 

assigning system that specifically reacts to the real-time road network environment, several 

challenges need to be considered: 

Special person-based signal optimization mechanism: The most common adaptive vehicle-based 

signal controls follow fixed, or dual ring (Feng et al., 2015) phase sequences, and provide green 

durations to specific stages according to vehicle queues or vehicle trajectories. It is suitable when 

vehicle numbers are only determinable for signal planning decisions as all vehicles account for the 

same proportions of weights with a slight impact on vehicle delay. While the public transport 

priority-based strategies apply different signal timing priorities to detecting public transport 

vehicles, such as stage skipping, green extension, and stage recall (Diakaki et al., 2013), which 

breaks the current stage ordering sequence for the aim of assigning higher priority to those 

vehicles with a mass amount of passengers. This is because public transport vehicles with more 

passengers are more susceptible to be suffered from delays than passenger vehicles from the 

perspective of reducing person delays. The flexible stage schemes could also be implemented in 

person-based signal control in urban junctions for all passenger vehicles. However, this leads to a 

more complicated signal optimization mechanism for a person-based approach since flexible 

stage schemes would be extra determination factors for signal timing design.  

The person-based approach controller should select the priority green stage rather than the pre-

defined stage sequence for next stage to better reduce person delay. While various patterns of 
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unpredicted passenger occupancy levels in queuing or arriving make signal controller challenging 

to identify which lane and how many vehicles should be awarded junction crossing priority. In the 

public transport priority-based approach the green time priority will be given for detecting public 

transport vehicles and related lanes it belongs. In vehicle-based approaches, if flexible stages 

adopt, those lanes with higher queuing vehicles might be promised priority as more vehicles will 

be discharged before stage switches. However, neither of them can apply to the person-based 

urban signal control approach. A basic example illustrated in Figure 3.2 can describe this situation. 

Without the consideration of passenger number, the queuing platoon with four vehicles in a 

vertical lane in Figure 3.2 is more efficient to be provided with priority than two queuing vehicles 

in conflicting lanes, taking into account the average vehicle discharging rate and start-up time loss 

caused by stage switching. However, if comprehensively considering the influence of passenger 

numbers in each of the vehicles in Figure 3.2, the horizontal lane will acquire green pre-emption 

first due to higher occupancy rates in two vehicles in the horizontal lane. This situation will 

become more complex if more combinations of different passenger occupancy levels occur. The 

circumstances in Figure 3.2 or more complex traffic situations indicate that the person-based 

signal controller cannot assign priority to those lanes with the highest occupancy level vehicle, or 

decide the priority according to vehicle number in a separate lane. The person-based signal 

control should develop a special innovation signal optimization mechanism to manage the global 

maximum benefits and travelling experience through properly deciding the priority of vehicles 

from different lanes.  
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Figure 3. 2 A basic example: priority should be provided for which lane in person-based approach? 

Stochastic passenger level distributions among different lanes: There is typically more than one 

lane per incoming approach serving all vehicle movements (left turn, straight, right turn) in one 

junction. Two or three of those non-conflicting phases could be operated with green lights at the 

same time to share the limited junction spaces more efficiently. The non-conflicting phase 

combinations in the vehicle-based approach are fixed; loop executing one stage after another. 

The signal timing plan for bus priority also follows this trend, only switching to the specific stage 

when it involves a high priority arriving bus at the current time. However, notably, the proportion 

of buses in the total vehicle number coming towards the junction is rather low and buses are 

moving along relatively regular routes. As for passenger vehicles in the situations of the person-

based signal control approach, those high occupancy vehicles (typically 3 or 4 people in each 

vehicle) occupy a considerable part of the total amount of vehicles and their arrival patterns are 

stochastic. The distributions of vehicle occupancy are varying, unpredictable and irregular among 

all possible lanes approaching the junction. The vehicle groups with high occupancy level 

combinations may appear in non-conflicting phases out of pre-defined stage settings and 

situations may be changeable in the following stages. The present vehicle-based signal control 

algorithms are hard to satisfy the requirements of reacting to such dynamic network situations 

and reducing passenger delay. The flexibility of the person-based signal design paradigm needs to 
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be significantly extended to explore the most appropriate signal timing possibility to react to 

various occupancy level distributions and improve passenger mobility on the premise of ensuring 

junction user safety. 

Constant vehicle flow demand towards junction: The person-based signal control optimization is 

a dynamic planning process. The constant vehicle flow demands travel towards the junction from 

different directions at every time step, with varying passenger occupancy levels. The incoming 

vehicles continuously bring variables to junction environments and vehicular status and thus 

influence the priority strategy judgement made by the person-based signal controller. Vehicles 

with a high number of passengers may arrive in the following time and step out of the detection 

region of the current junction; join the lane regarded as a low priority to reform junction priority 

situations. The adaptive signal control system using connected vehicle data can merely capture a 

snapshot of current localization traffic conditions, based on which predicts the short-term future 

traffic state and optimize signal timing parameters (Islam and Hajbabaie, 2017). Signal controllers 

need to figure out real-time signal timing plans that yield the highest person-based objective 

functions over the prediction horizon period in isolated urban junction, eliminating the 

unforeseen changes in constant traffic demand as possible toward global optimal solutions. 

Influence of signal decision to next state: The principle of reinforcement learning approach of 

stochastic approaches introduced in Chapter 2 indicates that controller decision in the next state 

is a consequence of vehicle states, junction actions and rewards in the current step. Vehicle-based 

controls assign green time for each stage according to queuing vehicle numbers or real-time 

vehicle flows in the current lane and it does not need to explicitly consider the influence of the 

controller decision. This is because the general objective of the vehicle-based approach is to 

discharge more vehicles with the same priority weights at the same time. Ensuring green time 

assignments for saturated flows is rather effective. However, the person-based approach needs to 

take into account passenger vehicles at different priority levels and it is more likely to switch 

active traffic lights to other stages with higher priority vehicle groups. In this case, the role of the 

current signal timing decision is critical to affecting the signal timing optimization process over 

prediction duration. The signal decision of the junction controller made in the current time step 

(extending green stage time or switching to any possible next stage) have effects to unblock or 

obstruct all vehicles and passengers inside them in all approaching lanes. 

The value of predicted crossing times of those high occupancy level vehicles and lane state in the 

next time step partial depend on immediate signal stage arrangements. The estimated high-

priority vehicle group crossing time will be postponed if the current lane is inactive with the red 

traffic light. This may lead to different person-based objective function values in the next time 
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step as the priority centre probably shifts to other lanes or postponed prediction crossing time. 

Therefore, formulating the environmental state every time step to explore all the possibilities for 

person-based function values is important. 

3. 5 Requirements for modelling adaptive person-based signal controls in 

urban isolated junction 

Person-based signal controls in urban isolated junction is a rarely implemented design concept, 

which makes it challenging to determine the format of the signal timing optimization paradigm. It 

is not the first time to propose the person-based signal control approach for an urban isolated 

junction. In Vilarinho et al. (2017) the proposed control system attempted to consider the 

occupation of any vehicle and fairly treat vehicles and their passengers. The system should bring 

up the benefits of stage designs and phase change as needed to replace the fixed paradigm. The 

paper also discusses how a person-based approach would look like to be to react to unexpected 

traffic events including varying occupancy levels. Combining with the challenges of the person-

based approach against vehicle-based signal control need to be addressed mentioned above, the 

characteristics of expected paradigm formation of the person-based approach are: 

Delay predictions for every vehicle in any junction approaching lane: The first challenge of the 

person-based approach claims that a new signal optimization mechanism should be developed to 

ensure the urban junction discharges people in passenger vehicles at the highest rates. The 

distributions of vehicle occupancy levels are varied in dynamic environment states so it is hard to 

calculate how many vehicles in which lane should be prioritized directly. For instance, the signal 

timing duration awarded based on queuing vehicles in person-based approaches or stage 

resetting for arriving buses and its prediction of crossing time in the bus priority approach are not 

suitable in these complex situations. The vehicles waiting for departure in incoming lanes are 

separable into different vehicle groups with different discharging opportunities. Providing more 

green active duration for one crowded lane means more queuing vehicles are expected to be 

discharged in the following time, but may not be the optimal discharging rate. In the proposed 

person-based approach, it is essential to predict explicit crossing time corresponding to every 

passenger vehicle in any incoming lane in an isolated junction. Only in this way junction controller 

is capable of figuring out which kind of signal timing strategy should be adopted, how many 

vehicles in which lane could be released as predicted, and whether it is the most efficient solution 

to reducing person delay, improving people's mobility and person-based performance. 

Traffic states update for every stage: The crossing time prediction for every vehicle relies on the 

newest traffic states in the approach lane, more specifically, how many vehicles are in front of it, 
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what are their statuses and whether the junction controller assigns lasting green time priority to 

this lane. The last challenge mentioned above presents that the current traffic state is affected by 

the traffic state and signal timing strategy last time. It also becomes recursive to be a critical 

factor to determine various junction states in the next stage with different controller actions. Any 

one of the feasible signal timing schemes is possible to achieve the underlying person-based 

objectives, part of which may significantly be different from signal strategy in vehicle-based 

controls and result in different traffic states. It is challenging to figure out which signal plan should 

be executed unless all of the possible schemes are judged by a new person-based mechanism at 

the end of the prediction period. The person-based signal optimization approach should be able 

to identify the relationships between traffic states in the current time step and last time step. 

Moreover, the traffic states in every time step need to be updated and recorded for the sake of 

exploring vehicle crossing opportunities and their benefits for passenger mobility. 

Flexible stage sequences and phase combinations: The most common vehicle-based adaptive CV 

signal controls are constrained to follow a pre-determined stage order. Dual ring-and-barrier 

diagram (shown in Figure 3.3) is a standard formation of fixed stage sequence adapted in many 

vehicle-based approaches such as (Li and Ban, 2017). The traffic signal in an isolated junction 

successively executes two non-conflicting phases in their separate rings (for instance, phase 1 & 5 

in the first stage, phase 2 and 6 in the second stage in Figure 3.3) and repeats the cycle. Given the 

fact that passenger vehicles with higher passenger occupancies may instantaneously arrive at the 

final place of fixed stage order to cause heavier person congestions, the proposed person-based 

approach provides the possibility of no pre-defined stage order. The next signal timing stage 

scheme can be assumed any phase combinations (e.g. phase 1 & 5 or phase 1 & 6 in Figure 3.3) or 

any flexible stage sequences (e.g. executing phases 4 & 8 as the first stage in Figure 3.3) within 

permitted ranges. Therefore, the person-based signal controller has capable of selecting any 

possible but permissible stage on the basis of the most beneficial stage plan for person-based 

objectives at any prediction period for solving the second challenge, considering all vehicle users 

present and expected in junction. 
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Figure 3. 3 Standard ring-and-barrier diagram (Koonce et al., 2008) 

Different from sequential signal timing plans in vehicle-based signal controls, flexible signal 

planning in person-based control may result in uncertain stop-and-go behavioural adaptation in 

drivers as they cannot learn the dynamic decision-making mechanism of the controller rather 

than the repetitive structure. As a result, the expected performance of person-based controls may 

be reduced if drivers hesitate to cross the junction at the earliest chance. However, the CV 

technology allows two-way communication between junction controllers and CVs, which has the 

chance to solve this matter. After determining the signal plans for person-based controls, the 

junction controller can inform timing opportunity for each driver in CV to cross the junction by 

wireless communication to make them have mental preparation in advance. 

No constraints of cycle length; minimum green time and maximum green time in another 

version: Minimum green time, maximum green time and cycle length are typical traffic signal 

parameters used in the vehicle-based approach. Minimum green time is adopted as the first 

portion of the green interval and is set for the consideration of satisfying driver expectancy and 

clearing storage of vehicles between the detectors and the stop line that cannot be detected in 

the presence of inductive loops (Koonce et al., 2008). The minimum green time setting has 

appeared in another version. This is because in the person-based approach, the signal transitions 

are more flexible (e.g. phase 1 & 5 or phase 1 & 6), and the vehicle clear time is calculated by the 

person-based signal optimization mechanism and traffic states obtained by CVs. This person-

based mechanism can determine the signal timing assignments more precise according to the 

benefits to all passengers in vehicles while meeting the requirements of minimum green time by 

using CV communication systems.  
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The maximum green time and cycle length are produced to prevent one of the approaching lanes 

from operating overlong duration and excessive waiting time of vehicles in other lanes. In a 

person-based approach, the cycle length and maximum green time are hard to be defined due to 

flexible phase combinations and stage reorder. Therefore, the fixed cycle length is not adopted 

and maximum green time appears in another version. Instead, the person-based control agent 

evaluates whether it is worthy and favourable to continue the green time or turn into another 

stage with the highest benefits to people's mobility. The green duration can be assumed at any 

value without constraints of cycle length. To replicate the negative effects of serving one lane for 

a too long time, the person-based approach introduces the accumulated waiting time of 

passengers in any vehicle detected as a factor into person-based objective functions. Moreover, 

the green time for a specific lane will be terminated if it serves too long and the signal plans 

related to it are excluded in the next step from the list of all possible signal schemes.  

Rolling horizon approach: As discussed in the third challenge, CV communication allows junction 

controllers a detailed snapshot of dynamic networks and a person-based approach need to figure 

out the optimal solutions for the future period. To avoid unforeseen changes in dynamic traffic 

demand, and occupancy level distributions and reduce the complexity of the problem formulation 

as possible, a rolling horizon solution technique is developed. The proposed approach collects 

data at the moment time step and predicts the traffic state for certain time steps up to the 

prediction period. The person-based approach then figures out optimal signal timing parameters 

that yield the highest objective function values at the isolated junction over the prediction period. 

The decisions for signal timing schemes will be implemented from the next time step until the 

prediction period ends. The optimization process is triggered again and repeats the same works.  

3. 6 Methodology consideration for person-based signal control approach 

in isolated junction 

The characteristics of the person-based signal control approach should have are presented in 

Section 3.5 to solve all of the challenges for the transformation from vehicle-based approaches. 

This project reviews the state-of-the-art vehicle-based adaptive CV signal control systems in 

Chapter 2. The review of vehicle-based signal control decision algorithms indicates that there are 

five alternative options for developing a new person-based paradigm: integer programming and 

solution algorithms, traditional theory-based methods, stochastic approaches, multi-agent 

junction managements and analogy methods.  

Other methods except integer programming are not suitable for person-based control with 

completely flexible signal plans. The traditional theory-based methods determine the signal 
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timing parameters such as green duration split, cycle length, and offset based on real-time flow 

demands or the number of vehicles in a certain section collected by CVs. It is not suitable to be 

adopted in person-based control as those flow demands which indicate regional vehicle counts 

cannot shift to explicit traffic states in every stage. Hence, the traditional theory-based methods 

also fail to predict the crossing time of every passenger vehicle and compute the different 

occupancy level priorities of any vehicle group. The stochastic approaches are effective in small 

traffic networks and they have good performance when traffic signal timing selections are limited 

such as in some cases in vehicle-based approaches (Hu et al., 2014). However, as discussed in 

Section 3.5, there have potentially plenty of traffic signal choices in person-based approaches to 

find out the most appropriate to reduce passenger delays. The number of traffic state patterns in 

a person-based approach is also greater than in vehicle-based approaches due to additional 

occupancy level distributions in different incoming lanes. The matching of state patterns and 

junction controller action patterns is much more difficult and complex for stochastic approaches 

such as reinforcement learning methods and neural networks, also resulting in severe time 

consumption for model structure construction. The performance of stochastic approaches are 

also very sensitive to changes in traffic state parameters and susceptible when traffic volumes and 

road network scales increase. Multi-agent junction managements are more appropriate for traffic 

vehicular environments in the presence of autonomous vehicles. This research only focuses on 

the person-based approach in connected vehicle environments. Besides, they emphasise the 

vehicle platoon trajectory planning negotiated by junction agents and vehicle agents, which may 

be hard to calculate the highest person-based objective function values in a person-based 

approach. Analogy methods are not prevailing vehicle-based approaches, and lack validation of 

signal control principles and performance.  

Therefore, integer programming is chosen for modelling the person-based signal control approach 

due to its optimization capability to formulate person-based objective functions (e.g. minimising 

average person delay) mathematically and figure out the optimal signal timing parameters with 

the highest objective values under finite available signal scheme options over prediction period. 

The integer programming can increase the number of constraints for describing the vehicle's free-

slow or queuing status, maximum vehicle discharging rates and lowest crossing time, and 

available signal strategies considering collision avoidance conditions and their respective 

passenger proceeds. Modelling constraints for integer programming contribute to finding out all 

eligible signal timing options and computers are sufficiently fast to model the person-based 

outcomes of different junction choices. Therefore, it is applicable to be formulated in complicated 

traffic situations and execute the optimization process in real-time signal approach 

implementation.  
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Integer programming solution algorithms have been reviewed in Chapter 2 and dynamic 

programming is selected as the methodology for the proposed person-based approach. The 

reason to choose dynamic programming is it is a powerful technique to solve a particular class of 

problems and able to characterize the optimal decision based on partial solved solutions, and 

thus, more efficient than other solution algorithms (e.g. enumeration approach, branch and 

bound approach) avoid duplication of same traffic situations. It is also more reasonable than part 

of solution algorithms such as greedy algorithms to calculate the optimal solutions for the whole 

prediction period rather than one stage, emphasizing the relationships between two consecutive 

time stages. Nevertheless, the usage of dynamic programming requires a recursive structure for 

solving problem and it is only applicable to those problems which have several properties: 

• The given problem can be partitioned into smaller sub-problems. 

• Each of the sub-problems can be solved independently. 

• Optimal solutions to the sub-problems contribute to the optimal solution of the given 

problem. 

• Sub-problems should have the same optimal substructure property. 

The person-based approach in isolated urban junction follows all of the requirements for 

developing a dynamic programming method. As for a certain prediction period, the signal timing 

optimization problem for this duration can be broken up into sub-problem, for instance, figuring 

out signal timing optimal solutions in a shorter prediction term. The estimation process of 

junction traffic states can be regarded as a recursive structure, those of which in every step are 

results of traffic states and junction actions in the last step and can be part of references for the 

next step. All of the sub-problem that have been solved would not take effect in the junction 

states in the following step. In the first step, the person-based algorithm attempts to find optimal 

traffic signal plans for the current step as an outcome of the smallest sub-problem. The recorded 

sub-optimal solution can be directly quoted to calculate the benefits for passengers in the next 

step without over-lapping optimization from the very beginning. Moreover, the algorithm only 

remains and records the signal plan with the highest value results reacting to the same situation 

at the current step to avoid the unnecessary re-calculation of the rest of the possible signal plans 

to reduce time complexity; repeats the same optimization process until the final step.  

The initial adoptions of dynamic programming methods in adaptive CV vehicle-based signal 

control systems, such as (Feng et al., 2015; Priemer and Friedrich, 2009), only consider the explicit 

green duration for a specific stage or limited stage selections available for junction controller. In 

the proposed signal control approach, the dynamic programming method is used to explore the 

optimal signal timing solutions for the greatest person-based objective values based on all 
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possibilities of flexible stage sequences and phase combinations for every time step efficiently. 

Two ways of dynamic programming approaches are considered: 

Forward recursion dynamic programming: the problem is solved by starting from the first step 

and proceeding toward the last step. The value function of the initial state is set to zero. The 

result obtained at a step is used as a consideration of the decision modifiers of the states in the 

next step. This recursive optimization process will continue until the last step. The optimal policy 

with minimum cost or maximum benefits will be adopted at the final step. 

Backward recursion dynamic programming: in a backward recursion case, the optimal decision is 

computed starting from each state recursively, beginning at the last period. The value function for 

a state represents the cost of an optimal decision sequence beginning from the given state. In the 

last step, there are no decisions left to be made and therefore the value function for all states is 

set to zero. When the decision space left is adequate to execute a policy, its corresponding value 

will be recorded to find the optimal solution with the greatest value function until the first step. 

The backward recursion dynamic programming needs to realize all of the passenger mobility 

benefits when the junction controller takes any signal timing plan in any step from the last state in 

the first step. As for the person-based approach, the benefit values to passengers in vehicles are 

not identified at the very beginning as the dynamic traffic state determined benefit value in the 

next step cannot be figured out until the junction state and action in the last step are obtained. 

Therefore, in this project, the forward recursion dynamic programming will be used to model the 

core part of the person-based signal control algorithm to find the highest objective value for 

passengers. 

3.7 General evaluation framework for proposed person-based controls  

Signal control evaluation is a critical part to validate the performance of proposed algorithms. In 

this section, the simulation tool and car-following model used for operating signal controls and 

imitating vehicle behaviours are discussed and selected. The benchmarking signal controls are 

also described to compare and validate the effectiveness of the proposed algorithm. It is 

important to ensure that the benchmarking models and proposed algorithm are operated in the 

same vehicular and traffic dynamic environments and evaluated under a consistent and fair 

evaluation framework. Therefore, the developed evaluation framework is consistently applied for 

all of the signal control algorithms and key points of the evaluation framework are summarized in 

summary. 
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3.7.1 Microsimulation tool selection for this research 

The methodology to validate the performance of the proposed algorithm PerSiCon-Junction needs 

to be considered and selected. There are three frequently used methods in transport research: 

analytical computation (e.g. developing car-following models (Krauß, 1998), simulation and field 

trials. Considering large amounts of CV and wireless communication devices are required in this 

research to achieve PerSiCon-Junction, the field trial approach would be difficult to implement 

such researches logically due to the heavy cost of CVs and wireless communication devices and 

large scaled test sites for trials. Meanwhile, the performance indicators in real trials for the CV 

technology approach are complicated to be collected. The directly analytical computation 

approach also appears to be unrealistic for this research because the junction control system and 

performance involving large numbers of vehicles, communication systems and controller agents 

are too complex to be measured. Microscopic simulation is found the most suitable way to 

approach this research compared to other main research approaches due to the low cost and 

efficient KPI collection process with high-performance computation of computer.  

There are three types of simulation which can be used to evaluate road network performance: 

microscopic, mesoscopic and macroscopic simulations. Microscopic simulations collect the 

behaviours of individual vehicles in the road network, such as speeds, and locations. Macroscopic 

simulations collect the performance of the road network or a zone as a whole area, for instance, 

vehicle flows and average speed for a road section. Mesoscopic simulations consider the small 

groups of traffic elements with similar traffic behaviours, such as flows and average speed of 

vehicles from one lane. Mesoscopic simulations are relatively less computationally intensive than 

microscopic simulations while providing more detail than macroscopic. In this project, the 

microscopic simulations allow large quantities of detailed vehicle information to be collected with 

different characteristics (e.g. vehicle occupancy levels) to be compared among models. Detailed 

information on the individual vehicle is also necessary for PB-AVA as data sources, which cannot 

be captured from mesoscopic and macroscopic simulations. Therefore, signal control models are 

applied in microscopic simulation to test the performance of the proposed algorithm with 

benchmarking models. 

The microscopic simulations available for this project should satisfy several criteria: 

• The simulation software should have accessible documentation. 

• The simulation software should support CV as a user case. 

• The simulation software should contain a scripting function though which the traffic 

models and traffic signals could be controlled. 
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Three microscopic simulations were found to meet the several criteria mentioned above: Aimsun 

(Barceló and Casas, 2005), SUMO (Krajzewicz et al., 2006), and VISSIM (Fellendorf, 1994). Some 

key features of the three microscopic simulations used to identify which one is most suitable for 

this project have been reviewed in Table 3.3. 

Table 3. 3 Comparisons of microscopic simulations 

 VISSIM SUMO Aimsun 

License Commercial Open-source Commercial 

Visualization 2D/3D 2D 2D/3D 

Vehicle types Car, bus, truck Any types Car, bus, truck 

Scope City/Region City/Region Regional/Country 

Parallel operation 4 instances With multi-scripts With extra cost 

CPU usage 50 – 60%(2D), 60 – 70%(3D), 30 – 40% 30 – 40% 

RAM usage 720MB(2D), 

780 - 800MB(3D) 

12-16MB 300 - 400MB(2D), 

1GB(3D) 

 

VISSIM is a commercial microsimulation package based on the Windows system which uses the 

Wiedemann car-following model (Wiedemann and Reiter, 1992). It only supports the simulations 

of cars, buses and trucks. VISSIM has a link to TRANSYT which can be reproduced as a 

benchmarking model. VISSIM also integrates travel demand modelling tools to assist road 

network buildings. Vissim has the best graphical representation which supports a two/three-

dimensional preview of road networks and it provides more realistic vehicles, pedestrians and 

even static city buildings. However, the scripts can only interface with VISSIM after the 

simulations have been operated. The CPU and memory usage of VISSIM is the highest among the 

three microsimulation software. 

Simulator of Urban Mobility (SUMO) is an open-source microsimulation package which supports 

Windows and Linux operating systems based on car-following models of Krauß (Krauß, 1998), IDM 

(Treiber et al., 2000), or Wiedemann (Wiedemann and Reiter, 1992). Unlike VISSIM and Aimsun, 

SUMO does not provide visualization details of vehicles and surrounding buildings. It also does not 

have links with other traffic signal controllers due to its open-source licence. SUMO supports 

parallel simulations with different scripts so that there is no extra cost. The CPU/memory usage of 
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SUMO is the lowest and the simulation in SUMO can be operated starting from its scripts, which 

ensures that SUMO simulation is more efficient than the other two simulations. 

Aimsun is a commercial microsimulation package based on a Windows system with Gipps car-

following model (Gipps, 1981). Aimsun has the largest simulation scope from the regional level to 

the country level. It also has built-in demand modelling tools to simplify road network modelling. 

Similar to VISSIM, the simulation in Aimsun needs to be running before the scripts can be used to 

interface with signal controls. 

The overview of three microsimulation software find that the script operation property of SUMO 

is superior to VISSIM and Aimsun as it supports parallel simulation without extra cost and the 

scripts can be operated to interface with the simulation. These benefits can save simulation 

operation time in performance evaluations of proposed PerSiCon-Junction and benchmarking 

models with the number of experiments. Moreover, the algorithm mechanism of PerSiCon-

Junction is rather complicated and it requires more computation complexity than traditional UTC 

systems. The last memory storage and CPU occupation in SUMO enable the proposed algorithm 

to be implemented smoother. SUMO also supports more vehicle types than VISSIM and Aimsun, 

which can make PerSiCon-Junction scalable to more complicated vehicular situations in future 

research. Therefore, SUMO is selected as the most appropriate software to simulate models in 

this research. 

3.7.2 Car-following model consideration 

Section 3.7.1 identifies that SUMO is the most appropriate software to simulate the proposed 

signal control algorithm. SUMO implements a few well-validated car-following models, namely 

Krauß, IDM, or Wiedemann. Pourabdollah et al. (2017) evaluated the performance of three car-

following models using real-world vehicle data. The results indicated that IDM car-following 

model replicated better driving behaviours than the other two models in the case of high driver 

imperfection parameter. IDM car-following model is more suitable to be applied when driver 

reactions are almost perfect or in vehicular environments with AVs. The performance of Krauß 

improved significantly with optimized parameters and time delay. Another research found that 

Krauß car-following model performed better than the other two models in mixed traffic scenarios 

with passenger cars and buses (Mathew and Ravishankar, 2011). 

This study develops the person-based signal controls with CVs and conventional vehicles. The 

proposed algorithm could be scalable to incorporate buses with higher passenger volume in 

Chapter 4 and other vehicle types (e.g. emergency vehicles) with different priority levels in future 

research. These vehicle types have different parameters including vehicle length, saturated flow 
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and acceleration rates. In addition, Krauß can generate stable and collision-free traffic flow, which 

has been validated (Krauß, 1998). Therefore, Krauß car-following model is considered to be most 

appropriate for this research. 

3.7.3 Benchmarking models for validation 

3.7.3.1 TRANSYT fixed-time control 

Fixed-time control uses historical traffic demand data as inputs and deploys an offline 

optimization process to generate predetermined signal plans. The junction controller operates 

through the stages sequentially and repeats the cycle. Figure 3.4 illustrates a flowchart for a fixed 

time control mechanism.  

 

Figure 3. 4 Flowchart overview of TRANSYT 

 

As introduced in Section 2.2, TRANSYT (Robertson, 1969) is one of the most widely adopted fixed-

time control. TRANSYT can calculate the optimized fixed time signal plans using historical flow 

measurements for both isolated junction and coordinated junctions. Although open-source 
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microsimulation software SUMO does not have a link to incorporate TRANSYT into simulation 

operation, the TRANSYT 16 software (Binning, 2019) license can be accessible from Transportation 

Research Laboratory (TRL). The signal timing optimization process can be conducted in TRANSYT 

and applied in SUMO with the flowchart in Figure 3.4. The details of TRANSYT parameters are 

introduced in Chapter 5. 

  
Besides the fixed-time optimization function in isolated junction, TRANSYT also provides the 

coordination version to operate fixed-time controls in road networks by optimizing the offsets 

between one cycle start time and another cycle start time. In this project, the coordination 

version of TRANSYT is called TRANSYT-network to distinguish that it is a coordination signal plan 

for the road network. 

3.7.3.2 Inductive loop based actuated signal control (ILACA) 

Due to open-source license of SUMO, the MOVA traffic signal actuated control in isolated junction 

does not provide a link to be incorporated into SUMO simulation. In this research, an Inductive 

Loop Actuated Control Algorithm (ILACA) which can detect traffic situations and correspondingly 

adjust the flexible durations for each stage by means of loop detectors (Papageorgiou et al., 2003) 

is proposed. A fully-actuated junction control strategy is introduced here in Figure 3.5 as a 

benchmarking model from Federal Highways Administration Signal Timing Manual guidelines 

(Koonce et al., 2008). A maximum green time and minimum green time are pre-determined for 

ILACA, which are illustrated in Chapter 5 with their specific values. The junction will be operated 

following pre-defined stage sequences. When the junction control switches to the new stage, it 

will run out the minimum green time and judge whether the current flow exceeds the flow 

threshold at the end of the duration. The stage duration will be extended to an extension unit 

time in response to the vehicle flow approximated saturated flow of this lane (typically 80% of the 

saturated flow of this lane). This circle will last until the detected flow does not reach this 

threshold or the cumulated stage duration exceeds the limitation of maximum green time. The 

ILACA will then transfer to the next stage and experience the same process. The parameters of 

ILACA are described in Chapter 5. 

  
In fully-actuated control, each junction controller makes signal timing decisions based on data 

received from all approaches to the junction. The junction controller operates without a common 

background cycle (Koonce et al., 2008). As a result, there is no coordination version for fully-

actuated control ILACA. To maintain the consistency of the evaluation framework, ILACA-network 

is defined as the ILACA operation in the road network in this research. Each junction controller 

makes its signal timing decisions independently in ILACA-network with data from inductive loops 

installed surrounding it. 
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Figure 3. 5 Flowchart overview of ILACA 

3.7.3.3 Vehicle-based signal control using data from CVs (VehSiCon) 

The performance of proposed PerSiCon-Junction optimize signal timing plans with person-based 

objectives using CV data is meaningful to compare with the performance of algorithms with 

vehicle-based objectives using CV data. The state-of-the-art researches are difficult to be 

reproduced and compared in this project because of their complex algorithm paradigms and 

different modelling objects. This research proposes a vehicle-based signal control using CV data, 

namely VehSiCon, as a benchmarking model. The VehSiCon use the same initial vehicle departure 

time prediction theory to put more emphasis on investigating the impacts on complete flexible 

signal plans, vehicle trajectory update theory and person-based objective optimizations. Figure 

3.6 provides an overview flowchart for VehSiCon. 
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The VehSiCon adopts fixed stage sequences and phase combinations to minimise vehicle delay in 

a certain planning horizon. When the vehicle-based control triggers, it collects speed and location 

information of CVs and predicts the departure time of every arriving vehicle from green light lanes 

using theories in Section 4.3.2. The core part of the optimization process is to determine how long 

the green time durations should be assigned for different stages, in other words, when the most 

appropriate cases switch the traffic light to the next stage. A possible switch point appears when a 

vehicle discharges from the lane in the last time step to avoid wasting the green light.  

  

From the initial time step to the planning horizon, each vehicle's initial prediction discharging time 

step in the current stage forms a possible point to switch to the next stage. For instance, the 

vehicle's initial departure time list for the current stage (phase 1&5) is predicted to be [3s, 5s, 7s, 

9s], and each element in this list is regarded as a case to switch the traffic light (green light for 

phase 1&5 will last for 3, 5, 7 and 9 seconds respectively for four different cases and switch to 

next phase 2&6 after an intergreen duration). The departure times of vehicles in the next stage 

are also predicted using the vehicle updating theories from Section 4.3.5 based on when it is 

activated. For instance, assuming intergreen duration is 3 seconds, 6, 8, 10, and 12 seconds red 

light durations are considered in vehicle updating predictions for phases 2&6 to calculate switch 

points according to the departure times of vehicles in this stage. This circle repeats in Figure 3.6 

until the end of the horizon duration. After all of the stage switch points and their corresponding 

cases are founded, the optimal signal timing plan can be found within the time horizon to achieve 

the objective of minimising vehicle delay using Equation (4-2) without the presence of vehicle 

occupancy and be executed until the start of next horizon. The green duration for each stage in 

VehSiCon should also follow the constraints of minimum green time and maximum green time. 

  

The coordination version of VehSiCon, namely VehSiCon-Network, has the same coordination 

optimization structure as PerSiCon-Network. As claimed in Section 4.5, the decentralized 

coordination structure predicts the arrival time of vehicles which are out of the communication 

range, to enhance the data inputs of the three-layered person-based optimization algorithm. 

VehSiCon-Network also adopts the enhancement of optimization algorithm data inputs to realize 

the further vehicle arriving information. The main differences between VehSiCon-Network and 

PerSiCon-Network are their optimization algorithm mechanisms and objective functions. 
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Figure 3. 6 Flowchart overview of VehSiCon 

3.7.4 Simulation experiment scenarios and performance indicators (KPIs) 

The evaluation framework needs to carry out a variety of simulation experiment scenarios for 

validating the performance of the proposed algorithm and benchmarking models with different 

sensitivity analysis factors. There are two different situations about sensitivity analysis factor 

choice. The first case is that the optimal values for some parameters in PerSiCon and related 
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algorithms are not decided yet. For instance, although rolling horizon approach has been applied 

in vehicle-based adaptive signal control, there is no conclusion about the optimal value for 

planning duration. Therefore, different planning duration values will be adopted in PerSiCon-

Junction evaluation, which is incremented from 10s to 60s with a step of 10s to test the influences 

of the planning horizon towards PerSiCon-Junction. The different values of weighted factor 𝛿 from 

0 to 1 in Equation (4-2) should also be tested in PerSiCon-Junction.  

Another case is that different situations happen in the real world traffic dynamics and all signal 

control algorithms are essential to be tested in these scenarios to observe the changes in their 

performance. For instance, the traffic flows fluctuate at different times of days and on different 

dates. Therefore, simulation scenarios with different flow levels are carried out in the evaluation 

framework. The penetration rate of CV also changes over the years as the value is predicted 

higher in future. The proposed algorithm is tested in different CV penetration rate evaluation 

scenarios. Similarly, various bus occupancy levels are considered in different evaluation scenarios. 

The most commonly used KPIs in vehicle-based controls and person-based controls are 

summarized in Table 2.1 and Section 3.1 respectively. In this research, average vehicle delay, 

average vehicle number of stop, average person delay and average person number of stop are 

selected to evaluate the algorithms in each scenario based on the following considerations:  

 Average vehicle delays and number of stop are primary optimization components in fixed-

time calibrated signal plans TRANSYT to execute the signal timing plans; 

 The objective function of VehSiCon is to minimise average vehicle delay; 

 PerSiCon is proposed to minimise average person delay; 

 Average person delay and average person number of stop can reflect the performance of 

person-based controls and are widely adopted in related researches. Average person 

delay can measure the delay suffered by each passenger in the vehicle. The average 

number of stop is not merely a KPI to measure the fuel consumption and fuel emissions, it 

can also reflect the passenger travelling experiences in vehicles. Fewer average person 

number of stop can improve the travelling experience of each person. 

Delay is described as the excess time one vehicle takes to complete its travelling routes compared 

to the free-flow travel time. The free-flow travel time is defined as the time vehicle takes to finish 

its journey by free travelling status under road speed limits, without the disturbances of external 

factors such as signalized junctions, surrounding vehicles or traffic infrastructures. The free-flow 

travel time can be tested by implementing a series of vehicles travelling in a non-signalized 

junction, recording time spent and calculating the average value. The actual travel time of one 

vehicle equals to time step it leaves the simulation minus the time step it appears in the 
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simulation. The delay of one vehicle equals actual travel time minus free-flow travel time. The 

delays of all passengers inside the vehicle are the same as the value of vehicle delay. Therefore, 

the total delay of passengers in one vehicle equals the number of passengers multiply vehicle 

delay. The number of stops for one vehicle during the entire journey is recorded by simulation. 

The passenger number of stops in one vehicle equals the number of passengers multiply vehicle 

number of stops. 

3. 8 Summary 

This chapter highlights the research gaps in urban signal controls by reviewing the most relevant 

state-of-the-art person-based controls and flexible signal timing literature and lists the 

contributions of this project to respond to the aim and objectives. To fill in the gaps, the chapter 

elaborates on the general methodologies that should be adopted for the new proposed person-

based algorithm by analysing its challenges and requirements. Moreover, the evaluation 

framework for validating the performance of the proposed algorithm by comparing it with 

reference algorithms is constructed, which has been summarized in Table 3.4. All of the signal 

control algorithms are evaluated in the same vehicle environments and criteria. Both vehicle-

based metrics and person-based metrics are adopted in Table 3.4 to ensure the fairness of the 

evaluation. Next chapter provides detailed descriptions of the proposed person-based algorithm 

PerSiCon-Junction, PerSiCon-Bus and PerSiCon-Network to respond to objectives. 

Table 3. 4 Key points in harmonised evaluation and validation framework 

Junction scale Isolated 

junction 

Multiple junctions 

Evaluation signal 

control 

algorithms 

TRANSYT, 

ILACA, 

VehSiCon, 

PerSiCon-Bus 

TRANSYT-Network, 

ILACA-Network, 

VehSiCon-Network, 

PerSiCon-Network 

PerSiCon-Network with EUVO 

algorithm 

Performance 

indicators 

Average vehicle delay, average vehicle number of stop, average person delay, 

average person number of stop 

Sensitivity 

analysis factors 

Traffic flow level, CV penetration rate, 

planning horizon, weighted factor 𝛿, bus 

occupancy level 

CV penetration rate, distance from 

detection area to cross line, loops 

and cameras activation interval 
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Chapter 4 The detailed methodologies of proposed 

person-based control algorithms 

Chapter 3 briefly introduces the proposed person-based algorithms PerSiCon-Junction, PerSiCon-

Bus, and PerSiCon-Network and their evaluation framework. This chapter describes the detailed 

methodology of these three algorithms. Section 4.1 lists the simplifying assumptions made for 

three algorithms to point out their limitations and constraints, which are expected to be improved 

in future works. Section 4.2 lists definitions of all sets, variables and parameters used in this 

chapter. Section 4.3 provides the details for the adaptive person-based signal control approach 

PerSiCon-Junction proposed to minimise average person delay in an urban isolated junction, to 

correspond to objective 2 of this project. It describes the controller decision-making operational 

mechanism of associating traffic signal plans with corresponding person-based performance 

measures, considering the occupancy level of each vehicle according to real-time information 

from the interaction of junction controller and connected vehicles through wireless 

communication. Dynamic programming is an efficient and powerful technique for integer 

programming solution algorithms, applied when signal optimization problems can divide into sub-

problem with recursive structures. An innovative three-level dynamic programming signal 

optimization algorithm is developed in this project as the core of PerSiCon-Junction after 

collecting and processing connected vehicle data, which can explore all of the possible signal 

timing strategies in a certain planning horizon, predict the vehicle-based controls and efficiently 

figure out their person-based value function for determining optimal solutions. In this way, 

PerSiCon-Junction can implement in an urban isolated junction with passenger vehicles for the 

person-based signal control system.  

The vehicle constitution is assumed to be all passenger vehicles on road in Section 4.3. However, 

road traffic consists of different vehicle types in some cases. PerSiCon-Junction is a scalable 

framework which can join different vehicle modes into the algorithm as it calculates and 

estimates the possible discharging time of each vehicle during the optimization process. In Section 

4.4, buses are incorporated into modelling situations as a representative of special vehicle modes 

because it is most widely considered as a vehicle type with more passenger capacity in TSP 

strategies and other person-based methods. The proposed method is called an Adaptive Person-

based Signal Control Algorithm with Buses (PerSiCon-Bus), which uses the same optimization 

framework as PerSiCon-Junction, but more specific treatments are distinguished by passenger 

cars and buses in some equations. Section 4.5 develops PerSiCon-Network to understand how 

adaptive person-based control formulates and implements in multiple junctions and how it affects 

junction performance in terms of average person delay and number of stops. 
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4. 1 Assumptions and limitations of proposed algorithms  

Traffic signal control optimization is a complicated problem and it is proper to make some 

assumptions to simplify the optimization model. This chapter describes three person-based 

controls PerSiCon-Junction, PerSiCon-Bus and PerSiCon-Network. Their respective assumptions 

and limitations are listed below. 

For PerSiCon-Junction in Section 4.3, the assumptions and limitations include: 

 The vehicle compositions on road are assumed to be consisted of conventional vehicles 

and CVs, without the presence of AVs. AVs can send vehicular data to junction controllers 

and receive trajectory recommendations from controllers. Their changeable trajectories 

have minor influence on the vehicle arrival predictions and person-related performance, 

however, result in more complicated vehicle trajectory planning to reduce fuel 

consumption and emissions. Future works should take into account AVs in vehicular 

environments to achieve multiple objective function targets. 

 Vehicle lane-changing behaviours are assumed to be perfect in this project. Vehicles are 

assumed to change to their targeted lanes at the earliest chance once they enter the 

discharging lanes to the junction. In vehicle arrival prediction theories lane-changing 

behaviours are not considered and it is assumed that all of the vehicles would be 

discharged from their detected lane by default. In the real world, the vehicle may change 

its lanes after the data collection and signal timing optimization process. This 

phenomenon makes disturbance to the vehicle arrival sequence and number of vehicle 

predictions, which degrades the prediction accuracy and person-based performance. 

Future works should consider the impacts of vehicle lane-changing behaviours in signal 

control optimization. 

 To simplify the CV data collection process, it is assumed that there is no communication 

delay and data measurement error from CVs to junction controllers. The packet loss of CV 

data message is assumed to be 0%. In reality, the communication delay, data 

measurement error and packet loss will affect the quality of data inputs and degrade the 

performance of the proposed algorithm. Future works should develop enhanced signal 

control algorithms in more realistic scenarios. 

 Pedestrians and other vehicle modes are not considered in vehicle environments. 

Pedestrians have their special lanes to cross the junction and they will increase the 

computational complexity of flexible signal plan exploration. The individual car-following 

models and vehicle travelling behaviours of special vehicle modes may also cause 
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inaccurate vehicle arrival predictions. Future works can incorporate more vehicle modes 

into person-based controls.  

For PerSiCon-Bus in Section 4.4, the additional assumptions and limitations include: 

 The bus dwell time at the bus stop, bus lane-changing behaviours, and acceleration and 

deceleration process to approach and leave the bus stop are not considered in this 

research, assuming any bus stop near the junction area. The factors mentioned above will 

cause higher delays for buses and bus lane-changing behaviours will also disrupt the 

travelling of other vehicles. The improvement measurements to these influences should 

be solved in future works. 

 The calculation of headway between two vehicles is assumed to be only decided by the 

saturated flow of the former vehicle. This simplification is justified by the calculation of 

headway only relying on the front vehicle, so does not significantly degrade the results 

(Yang et al, 2018).  

For PerSiCon-Network in Section 4.5, the additional assumptions and limitations include: 

 The communication range of the junction controller to receive CV data is defined as 250m 

in this research. The communication range is typically 250 – 300m. The shorter the 

distance communication range is, the fewer CV data can be received by the junction 

controller. The data transmissions of those CVs which are out of the communication range 

suffer heavier delay if considering data transmission latencies from CV to junction 

controller then to adjacent controller. In addition, the arrival times of those vehicles 

which are out of the communication ranges of two junction centres need to be predicted 

by former information. Although data transmission latency is not considered in this 

research, the 250m communication range is adopted as the worst scenario to develop 

PerSiCon-Network. 

 PerSiCon-Network assumes there is no data transmission between two adjacent 

junctions. Similar to the communication delay between CVs and junction controllers, the 

communication delay between two adjacent junctions will affect the quality of data 

inputs and degrade the performance of the proposed algorithm, which should be 

considered in future research. 

4. 2 Definitions of sets, decision variables and parameters  

This section provides all of the sets, variables and parameters used in three new proposed person-

based controls in Table 4.1. 



Chapter 4 

106 

Table 4. 1 Definitions of sets, decision variables and parameters for PerSiCon-Junction, PerSiCon-Bus and 

PerSiCon-Network 

Sets Description Unit  

𝑇 Set of all steps in the planning horizon, expressed in form of time step. __ 

𝑃 Set of all phases in an isolated junction. __ 

𝐷 Set of all possible traffic signal plans in a junction (assign green traffic light to which phase). __ 

𝐷𝑡(𝑠𝑡) Set of feasible control decisions at time step 𝑡, given state variable 𝑠𝑡. __ 

𝑆𝑡 Set of possible traffic light phase states at step step 𝑡. __ 

𝐿 Set of state transition linkage allowing junction state transfer from last step to current step. __ 

𝐸(𝑝) Set of all compatible phases given phase index 𝑡 in isolated junction. __ 

Sets   

𝑝 Index of phases in phase set 𝑃. __  

𝑡 Planning time step index in time step set 𝑇, expressed in form of time step. __  

𝑖 Index of a vehicle (car or bus) in a specific lane at a specific time step, counting from the 

vehicle nearest stop line. 

__  

𝑔𝑝 Total number of constantly green traffic lights time steps given for phase p before initial time 

step 0, 0 if red light. 

s  

𝑚𝑡
𝑝

 Traffic light state in phase 𝑝 at time step 𝑡, represented by binary variables. 0 if red and 1 if 

green. 

__  

𝐷𝑉(𝑖, 𝑝) Virtual arrival time of vehicle 𝑖 in phase 𝑝 to the junction with free flow speed. s  

𝐷𝐶(𝑖, 𝑝) Actual departure time of vehicle 𝑖 in phase 𝑝 from the junction. s  

𝑇𝐴𝐶𝐶(𝑖, 𝑝) Accumulative waiting time of vehicles from the first time it detected by junction controller to 

start of current planning time step 0.  

s  

𝑇𝑐(𝑖, 𝑝) Time spent for vehicle 𝑖 in phase 𝑝 from beginning time step to when it crosses the stop line.  s  

𝐴(𝑖, 𝑝) Occupancy level of vehicle i in phase p at beginning time step. More specifically, it is also 

written as a(i, t, p, s𝑡) which refers to occupancy level of vehicle i in phase p at time step t, 

given state variable s𝑡  in detailed formulas. 

per  

𝐴𝑐(𝑖, 𝑝) Occupancy level of vehicle 𝑖 in phase 𝑝 at beginning time step if it is a car. More specifically, 

it is also written as 𝑎𝑐(𝑖, 𝑡, 𝑝, 𝑠𝑡) which refers to occupancy level of car 𝑖 in phase 𝑝 at time 

step 𝑡, given state variable 𝑠𝑡 in detailed formulas to reflect the update of index of vehicle 

with occupancy due to different discharging states. 

per 

𝐴𝑏(𝑖, 𝑝) Occupancy level of vehicle i in phase p at beginning time step if it is a bus. More specifically, 

it is also written as 𝑎𝑏(𝑖, 𝑡, 𝑝, 𝑠𝑡) which refers to occupancy level of bus 𝑖 in phase 𝑝 at time 

step 𝑡, given state variable 𝑠𝑡 in detailed formulas to reflect the update of index of vehicle 

with occupancy due to different discharging states. 

per 

𝑣0
𝑝(𝑖) Instantaneous speed of vehicle 𝑖 from stop line to its location in phase p at initial time step 0 

in meters per second. 

m/s  

𝑆𝑛+𝑖 The distance from cross line of planning junction 𝐴 to (𝑛 + 𝑖)th vehicle 𝑆𝑛+𝑖. m  

𝑃𝑛+𝑖 The distance from cross line of adjacent junction 𝐵 to (𝑛 + 𝑖)th vehicle 𝑆𝑛+𝑖. m  

𝐷(𝐴, 𝐵) The distance between junction 𝐴 and junction 𝐵. m  
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𝑄(𝑡) Vehicle queue length at time step 𝑡 veh 

𝐶(𝑛 + 𝑖) Time needed for (𝑛 + 𝑖)th vehicle to be discharged from adjacent junction B at the initial 

time step if it is not on link road. 

s 

𝑇𝑛+𝑖 The initial predictive time of (𝑛 + 𝑖)th vehicle s 

𝑓(𝑡) Vehicle arrival rate at time step 𝑡 veh/s 

𝑔(𝑡) Vehicle discharging rate at time step 𝑡 veh/s 

Decision variables  

𝑑𝑡  Control variable denoting traffic control decision made by junction controller, transferring 

from state 𝑠𝑡−1 at time step 𝑡 − 1 to state 𝑠𝑡 at time step 𝑡. Also written as ⟨𝑠𝑡−1, 𝑠𝑡⟩. 

__ 

𝑠𝑡 State variable denoting current state of traffic light phase at time step t, which value is 

represented by (𝑝𝑡
1, 𝑝𝑡

2. 𝑝𝑡
1, 𝑝𝑡

2 represents phase index given green traffic lights in phase 

group (1,3,6,8) and (2,4,5,7) respectively in state 𝑠𝑡. If all of phases in phase group (1,3,6,8) 

or (2,4,5,7) are given red light, 𝑝𝑡
1 = 𝑟𝑗  or 𝑝𝑡

2 = 𝑟𝑗 . 𝑗 means total time step has been lasting 

for all red state.   

__ 

𝑉𝑐𝑡
𝑝
(𝑖, 𝑠𝑡) Predictive departure time of vehicle 𝑖 in phase 𝑝 at time step 𝑡, given state variable 𝑠𝑡 

assuming constant green light given for the phase in following steps. 

s   

𝑆𝑐𝑡
𝑝
(𝑖, 𝑠𝑡) A binary variable represents predictive status of vehicle 𝑖 in phase p when it cross stop line 

at time step 𝑡, given state variable 𝑠𝑡, 1 represents free travelling status and 0 represents 

queuing/slow-down status. 

__   

𝑐𝑡(𝑠𝑡, 𝑑𝑡) Performance measure for passenger delay at time step 𝑡, given state variable 𝑠𝑡 and control 

variable 𝑑𝑡. 

s  

𝑓(𝑡, 𝑠𝑡) Function value at time step 𝑡 which represents the accumulated person-based performance 

measure for current step and all of the previous step, given state variable 𝑠𝑡. 

s  

Constants 

𝐹 Intergreen time interval in seconds. s   

𝛼 Start-up lost time in seconds. s   

𝛿 Coefficient of accumulative waiting time of vehicles __   

ℎ𝑠 Saturation headway in seconds. s   

𝑇′ Planning duration in seconds. s   

𝑖𝑝 Number of vehicles in phase 𝑝 at the beginning of planning. veh   

𝑝′ Total number of phases in junction. __   

𝑆𝑐  Saturation flow rate if all vehicles are cars. veh/h 

𝑆𝑏 Saturation flow rate if all vehicles are buses. veh/h 

𝐴0 Occupancy limit of passenger vehicles. per 

𝐴𝐶 Occupancy limit of passenger cars. per 

𝐴𝐵 Occupancy limit of buses. per 

𝑣𝑠 Speed of vehicles discharging from queue.  m/s 

𝑣𝑐𝑎𝑟 Speed of cars discharging from queue. m/s 

𝑣𝑏𝑢𝑠 Speed of buses discharging from queue. m/s 
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𝑅 CV communication range. m 

𝑉𝑑 Vehicle free-flow travelling velocity. m/s 

a Vehicle constant acceleration.  m/s2 

𝑡𝑎 The time needed for vehicle acceleration process. s  

𝐷𝑎 The distance vehicle travelled throughout the acceleration process. m  

𝑄0 Initial queue length. veh  

𝑄max Queue length maximum constraint. veh  

 

4. 3 Detail description of signal control algorithm PerSiCon-Junction  

This section describes the proposed algorithm PerSiCon-Junction to optimize signal timing plans 

using information from CVs.  A signalized junction with approaches from four directions is 

considered, which is shown in Figure 4.1. Each approach contains a dedicated left-turning lane 

which exclusively serves conflicting left-turning vehicles and a right-turning and through lane for 

those right-turning vehicles or vehicles that go straight. The phase number allocated for each lane 

and phase conflicting map are also illustrated in Figure 4.1 to indicate the vehicle movements at 

the junction. 

 

Figure 4. 1 (a) Junction layout and signal phase number (b) Phase conflicting map adopted in this section 

The PerSiCon-Junction integrates real-time vehicular-related data with junction control 

information for optimization. The position, speed, occupancy and ID of every CV received by 

PerSiCon-Junction originated from the BSM data framework under the SAE J2735 message set, 

which broadcasts at 10HZ frequency (USGAO, 2015). BSMs are through IEEE 802.11p 

communication protocol which describes the hierarchy of DSRC designing for high-speed vehicular 

movements. The time step of the proposed adaptive signal timing approach is set as 1s. The 
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connected junction control region is defined as 250m as a far enough reliable communication 

range in a four-leg isolated junction, where the messages can be received accurately under IEEE 

802.11p DSRC networks (He et al., 2012). 

A three-layered dynamic programming optimization procedure is developed to find out the 

maximum performance values and corresponding signal plans at a certain time. As shown in 

Figure 4.2, the algorithm receives vehicle ID, position, speed and road occupancy level, and 

processes them to produce the vehicle state list and initial departure time list as inputs for the 

first layer in Section 4.3.2. The first layer then calculates sub-performance values for different 

possible signal strategies at every time step (1 s) using Dynamic Programming (DP). The minimum 

performance value is recorded for the current step after figuring out all nodes of a certain step. 

The details of DP structure in the first layer are described in Section 4.3.3. To search all branches 

at each node when operating the DP algorithm, a signal phase transition exploration algorithm is 

developed to explore any potential traffic signal timing strategies in the middle layer (see Section 

4.3.4). The vehicle trajectory and car-following theories are also adopted to understand vehicle 

trajectory influences caused by different signal plan selections and related costs/benefits on every 

branch are determined (see Section 4.3.5). In the third layer in Section 4.3.6, the algorithm finds 

the maximum person-based performance measure benefits at the end of the planning horizon 

and uses a backward recursion DP to search for an optimal signal timing plan. The rolling horizon 

procedure repeats to execute the optimization framework when the arranged signal plans are 

implemented. 

 

Figure 4. 2 CV data collecting process and contents of BSM 

4.3.1 Model formulation 

The algorithm aims to minimise average passenger delay in an urban isolated junction without 

following any strict phase sequence and phase duration. PerSiCon-Junction describes the 

controller decision-making operational mechanism of associating traffic signal plans with 
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corresponding person-based performance measures, considering the occupancy level of each 

vehicle according to real-time information from the interaction of junction controller and CVs. All 

sets, variables and parameters used to formulate PerSiCon-Junction are listed in Table 4.1: 

The objective of the PerSiCon-Junction is to minimise the total passenger delay of vehicles which 

can be detected by CV technology around the junction. The passenger delay is calculated by the 

product of vehicle delay and the number of people in vehicles separately. The vehicle delay equals 

the difference value of the vehicle predicted departure time from the junction and virtual arrival 

time to the junction with free flow speed, which is shown in Equation (4-1): 

𝑚𝑖𝑛∑∑𝐴(𝑖, 𝑝)[𝐷𝐶(𝑖, 𝑝) − 𝐷𝑉(𝑖, 𝑝)]

𝑖𝑝

𝑖=1

𝑃′

𝑝=1

 (4-1) 

However, the summation of delays of all detected vehicles is difficult to be measured in signal 

optimization procedure as not all the vehicles from upcoming lanes can be discharged in a limited 

planning duration 𝑇. The departure times of those vehicles that failed to be discharged are 

unknown in the current optimization horizon. Therefore, the increment of total people time 

savings is adopted in this paper to replace the summation of people delay reduction. A mixed 

integer linear program is developed in PerSiCon-Junction to maximise the total number of people 

discharging time savings. As minimum green time is satisfied in flexible signal plans, the 

accumulated waiting time of the vehicle, from the first time it is detected to the initial step of the 

current optimization process with coefficient, is added to the objective function to guarantee the 

weight of low occupancy vehicle queuing for a longer time. The occupancy level factor is 

incorporated into the objective function to assign fairly priorities to different occupancy vehicles. 

The person-based objective function is formulated in Equation (4-2).  

𝑚𝑎𝑥∑∑𝐴(𝑖, 𝑝)[𝑇′ + 1 − 𝑇𝑐(𝑖, 𝑝) + 𝛿𝑇𝐴𝐶𝐶(𝑖, 𝑝)]

𝑖𝑝

𝑖=1

𝑃′

𝑝=1

 (4-2) 

  

𝑠. 𝑡. 

0 ≤ 𝐴(𝑖, 𝑝) ≤  𝐴0,   𝑖 = 1, 2,… , 𝑖𝑝, ∀𝑝 ∈ 𝑃 (4-3) 

0 ≤ 𝑇𝑐(𝑖, 𝑝) ≤ 𝑇′ + 1, 𝑖 = 1,2,… , 𝑖𝑝, ∀𝑝 ∈ 𝑃 (4-4) 

0 ≤∑𝑚𝑡
𝑝

𝑝′

𝑝=1

≤ 2, ∀𝑡 ∈ 𝑇 (4-5) 

𝑉𝑐𝑡
𝑝
(𝑖, 𝑠𝑡) < 𝑉𝑐𝑡

𝑝
(𝑖 + 1, 𝑠𝑡)𝑖 = 1,2,… , 𝑖𝑝 − 1, ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇, ∀𝑠𝑡 ∈ 𝑆𝑡 (4-6) 

𝑑𝑡 ∈ 𝐷𝑡(𝑠𝑡), 𝑠𝑡 ∈ 𝑆𝑡, ∀𝑡 ∈ 𝑇 (4-7) 
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Constraint (4-3) limits the value range of occupancy level parameter in each vehicle. Constraint (4-

4) limits the value of time spent on the departure time of a specific vehicle starting from time step 

0. This value equals 𝑇′ + 1 if the vehicle fails to cross in planning duration. Equation (4-5) 

constrains the number of green traffic light phases 𝑚𝑡
𝑝

 available to be assigned at the same time, 

which should be no more than 2 to obey the rules of non-conflicting phases in a standard 8-

phases isolated junction to avoid vehicle collision. Constraint (4-6) sets out the relationships of 

predictive departure time among those vehicles in the same lane assuming no lane-changing 

behaviours near the junction.  

Constraint (4-7) claims that all of the state variables 𝑠𝑡and decision variables 𝑑𝑡 need to be 

selected from their separate sets at time 𝑡. The determinations of state set and control decision 

set depend on phase transition regulation and state set in last step 𝑡 − 1, which are represented 

in Equations (4-8) and (4-9) respectively. The details are described in Sections 4.3.3 – 4.3.6. 

𝑆𝑡 = {𝑠𝑡 ∨ ⟨𝑠𝑡−1, 𝑠𝑡⟩ ∈ 𝐿, 𝑠𝑡−1 ∈ 𝑆𝑡−1}∀𝑡 ∈ 𝑇 (4-8) 

  

𝐷𝑡(𝑠𝑡) = {⟨𝑠𝑡−1, 𝑠𝑡⟩ ∨ ⟨𝑠𝑡−1, 𝑠𝑡⟩ ∈ 𝐿, 𝑠𝑡−1 ∈ 𝑆𝑡−1}∀𝑡 ∈ 𝑇 (4-9) 

4.3.2 PerSiCon-Junction overview and data source processing  

PerSiCon-Junction is developed to provide a method for solving the optimization problem 

formulated, finding out the maximum performance values and corresponding signal plans over a 

certain period. The system overview of PerSiCon-Junction is presented in Figure 4.3. As shown in 

Figure 4.3, the algorithm receives vehicle ID, position, speed and road occupancy level, and 

processes them to produce the vehicle state list and initial departure time list as inputs at t = 0 

using Equations (4-10) – (4-13). A three-layered DP algorithm is the core part of PerSiCon-Junction 

to figure out the optimal solution with DP structure. Dynamic programming is adopted to divide 

the whole optimization problem into sub-problem in every time step with recursive structure. The 

optimal solution for the substructure is recorded and can be retrieved in the following 

optimization process to avoid repetitive calculations, which is more effective than the 

enumeration method. The three-layered DP algorithm (as seen in Figure 4.3) is constructed by a 

forward recursion algorithm (Algorithm 1) at the upper and middle layers and a backward 

recursion algorithm (Algorithm 3) at the lower layer. Algorithm 1 describes the upper and middle 

layers of PerSiCon-Junction with a forward recursion DP structure. Algorithm 2 is a phase 

transition algorithm operating every step inside Algorithm 1, to explore all of the possible signal 

plans in the next step based on the signal plan in the current step. After determining the 

maximum objective function value, Algorithm 3 performs a backward recursion DP structure to 

figure out the optimal solution. 
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Figure 4. 3 Conceptual framework flowchart of PerSiCon-Junction 

Before the operation of the optimal solution algorithm, all pieces of BSM from CVs are managed 

to form vehicle information lists sorted by phase index. The purpose of this process is to generate 

initial predictive departure time lists for the fleet based on the vehicle trajectory theories shown 

in Figure 4.4.  
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Every CV can only send real-time information about its individual characteristics and trajectories 

to the junction management infrastructure. The distances from those CVs travelling within range 

of the detection region and approaching towards the junction centre to the cross line of each lane 

can be calculated with location information. The location lists are then sorted CVs by their 

distance to the cross line from nearest one to furthest in detection range. The instantaneous 

speed and occupancy level lists are produced by recording fleet information by following the 

order of distances.   

Given positions and speeds of vehicle 𝑖 in phase 𝑝, the initial departure time for vehicles in queue 

and arrivals can be predicted at the start of optimization supposing that the next step for this lane 

will be constantly activated with green lights, which are expressed in Equations (4-10) and (4-11). 

The prediction method is originated from the kinematic wave theory principles adopted in 

person-based control (Christofa et al, 2016) and (Mohammadi et al, 2019), which is used for 

describing vehicle trajectories in the fleet with the influence of adjacent vehicles. In this paper, 

the acceleration and deceleration process of vehicles when they merge into queues or start-up for 

discharging are simplified to reduce the operational complexity of algorithm optimization. Four 

cases of different fleet trajectory patterns (see Figure 4.4) are considered in this method in the 

case of no less than three vehicles in arriving fleet: 

1. All vehicles are discharged with free-flow speed 

2. All vehicles are discharged from queue 

3. Following vehicles with free-flow speed arrive before the queue has been discharged 

4. Following vehicles with free-flow speed arrive after the queue has been discharged.   
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Figure 4. 4 Different cases of fleet trajectory representations assuming constantly green light given  

The different departing cases in Figure 4.4 analyse vehicle trajectories and statuses with the 

knowledge of speeds and distances to junction cross line. The horizontal axis represents different 

time steps. Red, yellow and green colours on the horizontal axis are junction signal timing plans at 

different time steps in the individual lane. The vertical axis represents the distance of a vehicle to 

the cross line. The negative values in the vertical axis mean that vehicles are in the approaching 

lane and positive values mean that vehicles have crossed the junction. Each line represents the 

trajectory of a vehicle, in other words, the relationships between time steps and positions of a 

vehicle. The blue lines represent vehicles travelling under free-flow speed with a slop of vehicle 
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free-flow travelling speed 𝑣0
𝑝(𝑖). The brown lines represent vehicles in queues or slow-down 

processes if the slope of a vehicle 𝑣0
𝑝(𝑖) is less than the threshold value 𝑣𝑠. At the initial time step 

t = 0, the position of each vehicle 𝑙0
𝑝(𝑖) represents the distance from it to the cross line. Given 

constant green time after the initial time step, the time needed for a vehicle to cross the junction 

𝑉𝑐𝑡
𝑝
(𝑖, 𝑠𝑡) equals to its vertical axis value when 𝑙0

𝑝(𝑖) = 0. If there is no queue, the vehicle can 

cross the junction with the free-flow speed as shown in case 1 in Figure 4.4. If a queue exists, as 

illustrated in cases 2, 3 and 4 in Figure 4.4, each vehicle in queue discharges with a discharging 

speed 𝑣𝑠 saturated headway ℎ𝑠 and start-up time loss for first vehicle α due to driver reaction and 

vehicle platoon acceleration. The rate of backward recovery shock wave starting from congestion 

occurred equals to a slope of 𝑣𝑓. 

The first difference of scenarios is to judge whether there is a queue exists at the junction at the 

moment of the green light is given or not. If the speed of the first vehicle in approach fleet 𝑣0
𝑝(𝑖) 

is higher than the threshold speed parameter 𝑣𝑠, it can be regarded as a free-flow status vehicle, 

whose departure time equals the distance to the junction cross line divided by instantaneous 

speed. The following vehicles also cross the junction without stop and delay, which is shown in 

case 1 in Figure 4.4. If the speed of the first vehicle in the platoon is detected as 0, it stops at the 

junction to form a queue. When the green light is awarded to this lane, the vehicle suffers a start-

up loss time 𝛼 due to driver reaction time and acceleration time lost, then crosses the junction 

with saturated flow speed 𝑣𝑠. All queuing vehicles (see case 2 in Figure 4.4) successively 

accelerate to speed 𝑣𝑠 and discharge keeping a saturation time headway ℎ𝑠with the adjacent 

front vehicle for the sake of avoiding collision. If a free travelling vehicle is detected approaching 

the end of the queue, it will either merge into the queue before the front vehicles have been 

discharged (see case 3 in Figure 4.4) or cross the junction with free-flow speed after the queue 

has been eliminated when it is far away enough (see case 4 in Figure 4.4). The challenge is to 

compare the value of free speed discharging time with the predictive departure time of previous 

vehicles plus the saturation headway. Case 3 occurs if the summation of predictive departure time 

of previous vehicles plus the saturation headway is greater than discharging time under free-flow 

speed, otherwise the vehicle will drive without the disruption of the queue in case 4.  

According to the theories explained above in Figure 4.4, the initial departure time of the first 

vehicle in the fleet is formulated separately, which is shown in Equation (4-10). This is because the 

trajectory of the first vehicle is not affected by any following vehicles and start-up loss time 

should be taken into account. The initial departure times of the following vehicles are calculated 

by Equation (4-11) sequentially.   
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𝑉𝑐0
𝑝
(1, 𝑠0) = {

𝛼 + ℎ𝑠 − 𝑔𝑝, 𝑖𝑓𝑣0
𝑝(1) = 0 ∧ 𝑔𝑝 < 𝛼 + ℎ𝑠

𝑚𝑖𝑛 [𝛼 + ℎ𝑠 − 𝑔𝑝, 𝑙0
𝑝 (1) 𝑣0

𝑝⁄ (1)], 𝑖𝑓0 ≤ 𝑣0
𝑝(1) ≤ 𝑣𝑠

𝑙0
𝑝 (1) 𝑣0

𝑝⁄ (1), 𝑖𝑓𝑣0
𝑝(1) > 𝑣𝑠 ∨ 𝑔𝑝 ≥ 𝛼 + ℎ𝑠

∧ 𝑔𝑝 < 𝛼 + ℎ𝑠∀𝑝 ∈ 𝑃 (4-10) 

  

           𝑉𝑐0
p
(𝑖, s0) =  {

 Vc0
𝑝
(𝑖 − 1, s0)  + ℎ𝑠,                 𝑖𝑓 𝑣0

𝑝(𝑖)  ≤  𝑣𝑠 

max[ 𝑙0
𝑝(𝑖)/𝑣0

𝑝
(𝑖),  Vc0

𝑝
(𝑖 − 1, s0)  + ℎ𝑠],   𝑖𝑓 𝑣0

𝑝(𝑖)  >  𝑣𝑠
  ∀𝑝 ∈ 𝑃, 𝑖 ≥ 2  (4-11) 

  

The travelling status of each vehicle when it leaves the approaching lane is defined by binary 

variables. This variable is judged after the initial departure time is determined for the convenience 

of updating the departure time of the vehicle in the following steps. The transition of two status 

modes is an irreversible process. Once a vehicle driving at free flow speed changes to queuing 

status, this status will stay constant until it is discharged. The statuses of the first vehicle and 

following vehicles in the lane counted from the stop line are expressed in Formulas (4-12) and (4-

13) respectively.  

𝑆𝑐0
𝑝
(1, 𝑠0) = {

1, 𝑖𝑓𝑣0
𝑝(1) > 𝑣𝑠

0, 𝑖𝑓𝑣0
𝑝(1) ≤ 𝑣𝑠

∀𝑝 ∈ 𝑃          (4-12) 

  

                                    𝑆𝑐0
𝑝
(𝑖, 𝑠0) =  {

1, 𝑖𝑓 𝑣0
𝑝(1)  >  𝑣𝑠 𝑎𝑛𝑑  𝑉𝑐0

𝑝
(𝑖, 𝑠0)  > 𝑙0

𝑝(𝑖)/𝑣0
𝑝(𝑖)

0,                                𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠
   ∀𝑝 ∈ 𝑃 ,   𝑖 ≥ 2 (4-13) 

3.4.3 Three-layered DP and forward recursion algorithm 

This sub-section introduces the proposed three-layered DP algorithm and Algorithm 1 applied at 

the upper and middle layers in PerSiCon-Junction. Figure 4.5 presents a sketch illustration of a 

three-layered DP algorithm. This multi-step DP applies a forward recursion and a backward 

recursion algorithm to solve the signal timing optimization problem on a certain planning horizon. 

The upper layer calculates sub-performance values for different possible signal strategies at every 

time step (1 s) based on the state variables and decisions using Equation (4-14) in Algorithm 1. 

The sub-optimal performance value is then recorded for the current step after figuring out all 

nodes of a certain step. The details of the DP structure in the upper layer are described in this 

Section. In order to search all branches at each node when operating the DP algorithm, a signal 

phase transition exploration algorithm (Algorithm 2) is developed to explore any potential traffic 

signal timing strategies in the middle layer (see Section 4.3.4). The vehicle trajectory and car-

following theories are also adopted to match vehicle trajectory influences caused by different 

signal plan selections and related costs/benefits on every branch are determined by Equations (4-

15) - (4-22) in Algorithm 1 (see Section 4.3.5).  In the bottom layer, the algorithm finds the 

maximum person-based performance measure benefits at the end of the planning horizon and 
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uses a backward recursion DP in Algorithm 3 (see Section 4.3.6) to search for an optimal signal 

timing plan. The rolling horizon procedure repeats to execute the optimization framework when 

the arranged signal plans are implemented. 

 

 

Figure 4. 5 Multi-steps sketch for three-layered dynamic programming algorithm constituted by Algorithm 

1, 2 and 3 

In Figure 4.5, the signal timing optimization algorithm triggers at step 0 and collects state 

information from CVs. There are several available choices (e.g. 𝑑1,1,𝑑1,2,𝑑1,3in step 1 in Figure 4.5) 

for the junction controller to implement as different phase allocation schemes, transferring 

vehicle environments and signal phases to different states (e.g. 𝑠1,1,𝑠1,2,𝑠1,3in step 1 in Figure 4.5) 

with varying passenger discharging benefits. The signal optimization algorithm accumulates this 

performance measure in every step and figures out the optimal solutions at the final step based 

on the performance value function. The three-layered DP optimization algorithm assigns flexible 

signal phase sequences and durations to achieve maximum value of performance value function 

based on predictive vehicle departure time. Step represents time step in the algorithm and is 

discretized to 1 s intervals in order to enable the algorithm to identify all of the possibilities and 

relative benefits of signal plan transition in every step. The junction controller determines the 

phase allocation in every step at the final step by performing the optimization over a 

predetermined planning horizon. 
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All of the feasible states 𝑠𝑡 and junction decisions 𝑑𝑡 at time step 𝑡 are derived from the sets of 

possible states 𝑆𝑡 and control decisions 𝐷𝑡(𝑠𝑡) in equation (4-8) and (4-9). The details of forward 

recursion are described as follows: 

Algorithm 1 Forward recursion dynamic programming algorithm in the upper and middle layer 
of PerSiCon-Junction 

Input: Speed, location, vehicle ID and occupancy data of vehicle (car or bus) 𝑖 = 1,2,… , 𝑖𝑝, ∀𝑝 ∈

𝑃. Junction signal information 𝑠0 at initial time step 0. 

Output: Optimal solution for signal timing state 𝑠𝑇′
∗  at final time step 𝑇′ with maximum 

accumulated function value 𝑓(𝑇′, 𝑠𝑇′); dictionary with sub optimal solution path 𝑂∗. 

1:  predict the initial departure time 𝑉𝑐0
𝑝
(𝑖, 𝑠0) initial vehicle statue 𝑆𝑐0

𝑝
(𝑖, 𝑠0)  of vehicle 

   (car or bus) 𝑖 = 1,2, … , 𝑖𝑝, ∀𝑝 ∈ 𝑃 at time step 0 using Equation (4-10) – (4-13) 

2:  set 𝑡 ← 1, 𝑓(0, 𝑠0) ← 0, 𝑂∗ ←  empty dictionary 

3:  while 𝑡 ≤ 𝑇′ do: 

4:      for each 𝑠𝑡−1 ∈ 𝑆𝑡−1:  

5:           get state variable set 𝑆𝑡 and decision variable set 𝐷𝑡(𝑠𝑡) at time step 𝑡 using Algorithm 
2 and Table 4.2          

6:      for each 𝑠𝑡 ∈ 𝑆𝑡 and 𝑑𝑡 ∈ 𝐷𝑡(𝑠𝑡): 

7:           calculate sub performance measure 𝑐𝑡(𝑠𝑡, 𝑑𝑡) using Equation (4-14)  

8:           𝑓(𝑡 , 𝑠𝑡) ← 𝑚𝑎𝑥𝑠𝑡  

9:           record 𝑠𝑡−1
∗ ← 𝑂∗[𝑡, 𝑠𝑡] as sub optimal solution if  𝑐𝑡(𝑠𝑡, 𝑑𝑡) + 𝑓(𝑡 − 1 , 𝑠𝑡−1) =

𝑓(𝑡 , 𝑠𝑡) 

10:          while 𝑡 < 𝑇′ do:   

10:               for each 𝑝 ∈ 𝑃: 

11:                   if 𝑝 == 𝑝𝑡
1 or 𝑝 == 𝑝𝑡

2: 

12:                        update 𝑉𝑐𝑡
𝑝
(𝑖, 𝑠𝑡), 𝑆𝑐𝑡

𝑝
(𝑖, 𝑠𝑡) and 𝑎(𝑖, 𝑡, 𝑝, 𝑠𝑡) using Equation (4-15) – (4-17) 

13:                   else: 

14:                        update 𝑉𝑐𝑡
𝑝
(𝑖, 𝑠𝑡), 𝑆𝑐𝑡

𝑝
(𝑖, 𝑠𝑡) and 𝑎(𝑖, 𝑡, 𝑝, 𝑠𝑡) using Equation (4-18) – (4-22) 

15:     𝑡 ← 𝑡 + 1 

16: 𝑓(𝑇′, s𝑇′
∗ ) = 𝑚𝑎𝑥 

The forward recursion in the upper layer starts the optimization at step 1 by assigning cumulative 

value representing the person-based objective function to 0. For each step, the upper layer of DP 

calculates the performance measure of passenger discharging benefits, determining and 

recording the optimal solution 𝑂∗𝑑𝑡(𝑠𝑡) combining with the cumulative value function in the last 

step for each state variable 𝑠𝑡. At the final step, the optimization algorithm compares function 

values of different states to decide the optimal signal timing plans with the highest objective 

function value. 

A series of phase allocations for each step reaching to the optimal state are searched by a 

backward recursion in the lower layer in Section 4.3.6. The performance measure 𝑐𝑡(𝑠𝑡, 𝑑𝑡) of 

passenger benefits from the last step to the current step is a function of state variables and 

control decisions. The performance measure is calculated in response to the person-based 

objective function by judging whether the first index vehicle after the stop line in lanes given 
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green traffic light in state 𝑠𝑡 is able to cross the stop line or not. The value 𝑐𝑡(𝑠𝑡, 𝑑𝑡) is calculated 

in Equation (4-14): 

𝑐𝑡(𝑠𝑡, 𝑑𝑡) =  

{
 
 
 
 
 

 
 
 
 
 [𝑎(1, 𝑡 − 1, 𝑝𝑡

1, 𝑠𝑡−1) + 𝑎(1, 𝑡 − 1, 𝑝𝑡
2, 𝑠𝑡−1)] (𝑇

′ + 1 − 𝑡 + 𝛿𝑇𝐴𝐶𝐶(1, 𝑝𝑡
1) + 𝛿𝑇𝐴𝐶𝐶(1, 𝑝𝑡

2)) ,

𝑖𝑓 𝑝𝑡
1 ∈ {1,3,6,8}, 𝑝𝑡

2 ∈ {2,4,5,7}, 0 < 𝑉𝑐𝑡−1
 𝑝𝑡
1

(1, 𝑠𝑡−1) ≤ 1,0 < 𝑉𝑐𝑡−1
 𝑝𝑡
2

(1, 𝑠𝑡−1) ≤ 1

[𝑎(1, 𝑡 − 1, 𝑝𝑡
1, 𝑠𝑡−1)] (𝑇

′ + 1 − 𝑡 + 𝛿𝑇𝐴𝐶𝐶(1, 𝑝𝑡
1)) ,

𝑖𝑓 𝑝𝑡
1 ∈ {1,3,6,8} 𝑎𝑛𝑑 0 < 𝑉𝑐𝑡−1

 𝑝𝑡
1

(1, 𝑠𝑡−1) ≤ 1, 𝑝𝑡
2 ∉ {2,4,5,7} 𝑜𝑟 𝑉𝑐𝑡−1

 𝑝𝑡
2

(1, 𝑠𝑡−1) > 1

[𝑎(1, 𝑡 − 1, 𝑝𝑡
2, 𝑠𝑡−1)] (𝑇

′ + 1 − 𝑡 + 𝛿𝑇𝐴𝐶𝐶(1, 𝑝𝑡
2)) ,

𝑖𝑓𝑝𝑡
2 ∈ {2,4,5,7} 𝑎𝑛𝑑 0 < 𝑉𝑐𝑡−1

 𝑝𝑡
2

(1, 𝑠𝑡−1) ≤ 1, 𝑝𝑡
1 ∉ {1,3,6,8} 𝑜𝑟 𝑉𝑐𝑡−1

 𝑝𝑡
1

(1, 𝑠𝑡−1) > 1

0, 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠

       ∀𝑡 ∈ 𝑇 (4-14) 

Cars and buses are constantly discharging from the approaching lanes and vehicle environments 

are dynamic as the proceeds of optimization. The predictive departure time, travelling status and 

occupancy level of vehicles in each lane determining the value of 𝑐𝑡(𝑠𝑡, 𝑑𝑡) need to be updated in 

the middle layer after the calculation of performance measure in the upper layer in every step, 

and returned them to the upper layer for calculation in next step. 

4.3.4 Signal phase transition and exploration algorithm 

The four-leg isolated junction layout and phase allocations are used in this paper and the phase 

conflicting map illustrating which phases are conflicted is graphed in Figure 4.1. A dual-ring 

controller follows fixed pre-determined phase sequences, which cannot be adopted in person-

based signal control to explore the flexibility of signal timing plans (Improta and Cantarella, 1984). 

A flexible signal phase sequence and combinations machine are proposed in PerSiCon-Junction to 

solve this problem. In the middle layer of the DP optimization algorithm, the set for all feasible 

traffic signal phase states is produced in each step depending on the signal state set in the last 

step and phase transition linkages allowing junction state transfer from the last step to the 

current step in Equation (4-9). The phase set is originated from real-time phase information 

collected by traffic light infrastructure as the phase set at the initial step. Inspired by the 

theoretical flexible traffic light state machine proposed in (Li and Wang, 2006), the phase 

transition linkage and exploration algorithm is adopted in this research. It allows the efficient 

exploration of all flexible phase transition linkage situations by obeying the rules of avoiding 

conflicting vehicle flow collisions based on the phase conflicting map (Guler et al., 2016) and 

eliminating unnecessary linkages. Figure 4.6 shows an example. In the phase conflicting map, the 

number in the first row represents the subject phase index and the number in the first column 

represents the compatible or conflicting phase. Value 1 means the two phases are compatible and 

0 means the two phases are conflicting. To elaborate on the feasible adjacent relationships, 

several criteria need to be satisfied meanwhile to ensure junction travelling safety and limited 

green time resource utilisation: 
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Figure 4. 6 An example of signal phase transition and exploration mechanism 

 At any state in isolated junction, the junction controller assigns green traffic lights to at most 

two non-conflicting phases to ensure the vehicle flow can safely cross the junction centre area 

without collision. The non-conflicting relationships between any of two phases in the isolated 

junction have been expressed in Table 3.2. For every phase, there are two other compatible 

phases that allow them to proceed with vehicle flows at the same time. More specifically, given 

phase 𝑝𝑡
1 ∈ 𝑃, at state 𝑠𝑡, compatible phase 𝑝𝑡

2 ∈ 𝐸(𝑝𝑡
1). For example, if the index of the first 

phase is 1, the non-conflicting phase of it belongs to set {2,5}. 

 The transitions between two states need to experience complete intergreen interval duration, 

each of which incorporates two non-conflicting phases with green light and all of them are 

completely different. However, if one of the green light phases in one state is the same as one of 

those green light phases in another state, this phase should keep green lights during the 

intergreen time. This is because the green light phase exists in two different states and the red 

light is unnecessary to operate to obstruct the vehicle flows. For example, phase 1 will keep the 

green light during state transition (1,2) to (1,5). 

 The traffic signal phase state with two non-conflicting phases cannot transfer to itself after an 

intergreen duration. This criterion is to ensure maximising the use of green resources. For 

instance, state (1,2) cannot transfer to (1,2) by intergreen duration. 

According to these rules, the steps of signal phase transition and exploration mechanism are 

described in Algorithm 2 as follows: 
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Algorithm 2 Signal phase transition and exploration algorithm 

Input: Signal timing state 𝑠𝑡−1 at time step 𝑡 − 1; dictionary with sub optimal solution path 𝑂∗ 
from Algorithm 1. 

Output: Signal timing state set 𝑆𝑡 and decision set 𝐷𝑡(𝑠𝑡) at time step 𝑡. 

1:  𝑆𝑡 ← [ ], 𝐷𝑡(𝑠𝑡)  ← [ ] 

2:  explore all possible 𝑠𝑡 = (𝑝𝑡
1, 𝑝𝑡

2) based on 𝑠𝑡−1 = (𝑝𝑡−1
1 , 𝑝𝑡−1

2 )  and Table 4.2, insert each 𝑠𝑡 
into list 𝑆𝑡 

3:  if 𝑡 ≥ 𝐹 + 1: 

4:      for each 𝑠𝑡 ∈ 𝑆𝑡:  

5:          if  𝑝𝑡−1
1 ∈ {1,2,3,4,5,6,7,8} and 𝑝𝑡−1

2 = 𝑟𝐹: 

6:               retrieve 𝑠𝑡−𝐹−1 (𝑝𝑡−𝐹−1
1 , 𝑝𝑡−𝐹−1

2 )  from 𝑂∗ 

7:                   remove 𝑠𝑡 from 𝑆𝑡 if 𝑝𝑡−𝐹−1
2 = 𝑝𝑡

2: 

8:          elif 𝑝𝑡−1
1 = 𝑟𝐹 ∧ 𝑝𝑡−1

2 = 𝑟𝐹: 

9:               retrieve 𝑠𝑡−𝐹−1 (𝑝𝑡−𝐹−1
1 , 𝑝𝑡−𝐹−1

2 )  from 𝑂∗ 

10:              remove 𝑠𝑡 from 𝑆𝑡 if 𝑝𝑡−𝐹−1
1 = 𝑝𝑡

1 and 𝑝𝑡−𝐹−1
2 = 𝑝𝑡

2 

11:         else: 

12:              pass 

13: for each 𝑠𝑡 ∈ 𝑆𝑡: 

14:     𝑑𝑡 ← ⟨𝑠𝑡−1, 𝑠𝑡⟩ 

15:     insert 𝑑𝑡 into 𝐷𝑡(𝑠𝑡)  

The middle layer of the DP optimization algorithm reproduces the flexible signal phase algorithm 

which satisfies all of the requirements above and modifies it as a form of an adjacent list in Table 

4.2. Given the form of the traffic phase state at the last step, all feasible forms of the state at this 

step are listed in Table 4.2. These possible phase states constitute the set of planned steps and 

enable the DP to calculate different performance measures by visiting all of the elements in the 

set. 

 

Table 4. 2 Set for possible traffic phase states given state in last step 

The form of given state 𝑠𝑡−1 = (𝑝𝑡−1
1 , 𝑝𝑡−1

2 ) at step 

𝑡 − 1 

The form of possible states 𝑠𝑡 = (𝑝𝑡
1, 𝑝𝑡

2) at 

step 𝑡  

𝑝𝑡−1
1 ∈ {1,3,6,8} ∧ 𝑝𝑡−1

2 ∈ {2,4,5,7} 1𝑝𝑡
1 = 𝑝𝑡−1

1 , 𝑝𝑡
2 = 𝑝𝑡−1

2  

2𝑝𝑡
1 = 𝑝𝑡−1

1 , 𝑝𝑡
2 = 𝑟1 

3𝑝𝑡
1 = 𝑟1, 𝑝𝑡

2 = 𝑟1 

𝑝𝑡−1
1 ∈ {1,2,3,4,5,6,7,8} ∧ 𝑝𝑡−1

2 = 𝑟𝑗 , 1 ≤ 𝑗 < 𝐹 𝑝𝑡
1 = 𝑝𝑡−1

1 , 𝑝𝑡
2 = 𝑟𝑗+1 

𝑝𝑡−1
1 ∈ {1,2,3,4,5,6,7,8} ∧ 𝑝𝑡−1

2 = 𝑟𝐹  𝑝𝑡
1 = 𝑝𝑡−1

1 , 𝑝𝑡
2 ∈ 𝐸(𝑝𝑡−1

1 ) ∧ 𝑝𝑡
2 ≠ 𝑝𝑡−𝐹−1

2  

𝑝𝑡−1
1 = 𝑟𝑗 ∧ 𝑝𝑡−1

2 = 𝑟𝑗 , 1 ≤ 𝑗 < 𝐹 𝑝𝑡
1 = 𝑟𝑗+1, 𝑝𝑡

2 = 𝑟𝑗+1 

𝑝𝑡−1
1 = 𝑟𝐹 ∧ 𝑝𝑡−1

2 = 𝑟𝐹  𝑝𝑡−1
1 ∈ {1,3,6,8} ∧ 𝑝𝑡−1

2

∈ {2,4,5,7}, 𝑝𝑡
1 ≠ 𝑝𝑡−𝐹−1

1 , 𝑝𝑡
2

≠ 𝑝𝑡−𝐹−1
2  
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4.3.5 Vehicle departure time updating theory 

In the middle layer of PerSiCon-Junction, the initial departure time list is updated and combined 

with the decision of the junction signal controller for lane 𝑖 to calculate the partial fragments of 

passenger delay reduction. The initial departure time list of the fleet for one lane is predicted in 

Section 4.3.2 assuming the green light is always given for the current phase in the following steps. 

However, this assumption in standard isolated junctions is a special situation and not suitable for 

all cases as there are only two phases that can be given with right of way at the same step at most 

to avoid vehicle collision of flows from conflicting vehicles. The different traffic phase sequences 

and combinations in varying states will result in different vehicle statuses, affecting the time spent 

arriving at the stop line. The vehicle environments are essential to be updated at every step 

corresponding to every generated state in the state set given green or red traffic light. 

If the traffic light for phase 𝑝 is green at time step 𝑡, the recalculation of predictive departure 

time, travelling status and occupancy level for each vehicle in each lane are expressed in 

Equations (4-15) - (4-17): 

𝐼𝑓𝑚𝑡
𝑝
= 1: 

𝑉𝑐𝑡
𝑝
(𝑖, 𝑠𝑡) =  {

𝑉𝑐𝑡−1
𝑝
(𝑖, 𝑠𝑡−1) − 1,             𝑖𝑓  𝑉𝑐𝑡−1

𝑝
(1, 𝑠𝑡−1) > 1, 𝑖 = 1, 2,… , 𝑖𝑝

𝑉𝑐𝑡−1
𝑝
(𝑖 + 1, 𝑠𝑡−1) − 1, 𝑖𝑓 0 < 𝑉𝑐𝑡−1

𝑝
(1, 𝑠𝑡−1) ≤ 1, 𝑖 = 1, 2,… , 𝑖𝑝 − 1

  ∀𝑝 

∈ 𝑃, ∀𝑡 ∈ 𝑇 

(4-15) 

 

𝑆𝑐𝑡
𝑝
(𝑖, 𝑠𝑡) =  {

𝑆𝑐𝑡−1
𝑝
(𝑖, 𝑠𝑡−1),             𝑖𝑓  𝑉𝑐𝑡−1

𝑝
(1, 𝑠𝑡−1) > 1, 𝑖 = 1, 2,… , 𝑖𝑝

𝑆𝑐𝑡−1
𝑝
(𝑖 + 1, 𝑠𝑡−1), 𝑖𝑓 0 < 𝑉𝑐𝑡−1

𝑝
(1, 𝑠𝑡−1) ≤ 1, 𝑖 = 1, 2,… , 𝑖𝑝 − 1

    ∀𝑝 

∈ 𝑃, ∀𝑡 ∈ 𝑇 

(4-16) 

 

𝑎(𝑖, 𝑡, 𝑝, 𝑠𝑡) =  {
𝑎(𝑖, 𝑡 − 1, 𝑝, 𝑠𝑡−1),             𝑖𝑓  𝑉𝑐𝑡−1

𝑝
(1, 𝑠𝑡−1) > 1, 𝑖 = 1, 2,… , 𝑖𝑝

𝑎(𝑖 + 1, 𝑡 − 1, 𝑝, 𝑠𝑡−1), 𝑖𝑓 0 < 𝑉𝑐𝑡−1
𝑝
(1, 𝑠𝑡−1) ≤ 1, 𝑖 = 1, 2,… , 𝑖𝑝 − 1

 ∀𝑝 

∈ 𝑃, ∀𝑡 ∈ 𝑇 

(4-17) 

The predictive departure time of every vehicle in this lane is shortened according to Figure 4.4 

assuming constant green light in Equation (4-15). If the algorithm determines that the first vehicle 

has crossed the lane, the vehicle state list and occupancy level list are updated to remove the 

information of the vehicle being discharged in Equations (4-16) and (4-17) respectively.  

However, if the junction controller allocates a red traffic light to the planned phase in the current 

time step, the procession of vehicles discharging will be obstructed and none of the vehicles in 

this lane are able to leave. Therefore, vehicle trajectory and car-following updating theories are 
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proposed in this paper. Four different cases of fleet trajectories need to be updated to cases in 

Figure 4.7, each of which corresponds to the relative case in Figure 4.4. 

 

Figure 4. 7 Update for different cases of fleet trajectory representations assuming red light for next step 

Figure 4.7 updates the different cases of vehicle trajectories in Figure 4.4 assuming red light is 

given by the junction controller. The meanings of each parameter and general principles of cases 

have been explained in Figure 4.4. The main difference in Figure 4.7 is that the junction controller 

assigns a ∆𝑡 period red light after the initial time step. The blue and brown dashed lines in four 

cases represent the original vehicle position changed by time step. The blue and brown full lines 
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are updated vehicle trajectories, considering that the expected discharging vehicles during ∆𝑡 

period are obstructed by red lights.  

In case 1 in Figure 4.7, the key point is to judge whether vehicle fleets with free speed trajectories 

in green light given situations switch to queuing mode or not. The initial departure time for the 

first vehicle in fleet 𝑉𝑐𝑡
𝑝
(1, 𝑠𝑡) minus time step spent 1 is compared with the departure time of 

queuing vehicle involving start-up time loss 𝛼. The maximum value is adopted as an updated 

departure time for the first vehicle because once the red light is given, it will last for at least an 

intergreen duration. The departure times and statuses of the following vehicles are successively 

decided by taking maximum value. The situation in case 2 stay unchanged as the queues have 

formed. The red light postpones the departure time of all vehicles as seen in case 2 in Figure 4.4. 

The situation of case 3 is extremely similar to case 2 in Figure 4.7, as the statuses of approaching 

vehicles to the end of the queue are judged to be queued before the front vehicles’ departure. In 

case 4, the departure times of those vehicles with free flow speed are compared again with their 

queuing departure time after ∆𝑡 time left is given a red light. 

𝐼𝑓𝑚𝑡
𝑝
= 0: 

𝑉𝑐𝑡
𝑝
(1, 𝑠𝑡) =  {

𝑚𝑎𝑥[𝑉𝑐𝑡−1
𝑝
(1, 𝑠𝑡−1) − 1, 𝛼 + ℎ𝑠], 𝑖𝑓 𝑆𝑐𝑡−1

𝑝
(1, 𝑠𝑡−1) = 1

𝑉𝑐𝑡−1
𝑝
(1, 𝑠𝑡−1),             𝑖𝑓 𝑆𝑐𝑡−1

𝑝
(1, 𝑠𝑡−1) = 0

 ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇 (4-18) 

  

𝑉𝑐𝑡
𝑝
(𝑖, 𝑠𝑡) =  {

𝑚𝑎𝑥[𝑉𝑐𝑡−1
𝑝
(𝑖, 𝑠𝑡−1) − 1,  𝑉𝑐𝑡−1

𝑝
(𝑖 − 1, 𝑠𝑡−1)  + ℎ𝑠], 𝑖𝑓  𝑆𝑐𝑡−1

𝑝
(𝑖, 𝑠𝑡−1) = 1

𝑉𝑐𝑡−1
𝑝
(𝑖, 𝑠𝑡−1),           𝑖𝑓 𝑆𝑐𝑡−1

𝑝
(𝑖, 𝑠𝑡−1) = 0

  𝑖

≥ 2, ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇 

(4-19) 

  

Equations (4-18) and (4-19) update of vehicle predictive departure times for the first index and 

others consider different criteria in Figure 4.7. The departure time of those vehicles recognized 

as queuing or slowing-down vehicles remains unchanged until the green traffic light is given in 

the following steps. The thresholds of different vehicles’ travelling statuses are set for vehicles in 

each lane to judge the vehicle status in this step. If vehicles are determined to be discharged 

following the saturated flow, the vehicle departure time and travelling status will be adjusted 

accordingly. Otherwise, the vehicle still travels towards the end of the vehicle queue at free 

travelling speeds. 

𝑆𝑐𝑡
𝑝
(𝑖, 𝑠𝑡) =  {

0,   𝑖𝑓  𝑉𝑐𝑡
𝑝
(𝑖, 𝑠𝑡) =   Vct−1

𝑝
(𝑖 − 1, st−1)  + ℎ𝑠

1,    𝑖𝑓 𝑉𝑐𝑡
𝑝
(𝑖, 𝑠𝑡) ≠   Vct−1

𝑝
(𝑖 − 1, st−1)  + ℎ𝑠

    𝑖 ≥ 2, ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇 (4-20) 
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𝑆𝑐𝑡
𝑝
(1, 𝑠𝑡) =  {

0,       𝑖𝑓  𝑉𝑐𝑡
𝑝
(1, 𝑠𝑡) =  α + ℎ𝑠

1,        𝑖𝑓 𝑉𝑐𝑡
𝑝
(1, 𝑠𝑡) ≠  α + ℎ𝑠

    ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇 (4-21) 

  

𝑎(𝑖, 𝑡, 𝑝, 𝑠𝑡) =  𝑎(𝑖, 𝑡 − 1, 𝑝, 𝑠𝑡−1)       𝑖 = 1, 2,… , 𝑖𝑝, ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇 (4-22) 

The adjustments for vehicle travelling status are represented in Equations (4-20) and (4-21). As 

red traffic lights cause obstacles for all of the vehicles in the lane, the number of vehicles and their 

respective occupancy levels keep the same value during the planning step, which is shown in 

Equation (4-22). These traffic parameters are then updated and passed to the upper layer to 

calculate the performance measure for the next step. 

4.3.6 Backward recursion algorithm at lower layer 

The upper layer and middle layer execute the DP algorithm to the final step and find the optimal 

solution with the highest person-based objective function in PerSiCon-Junction. In the lower layer, 

a backward recursion is applied to retrieve the optimal policy for the whole planning duration 

starting from the final step and operating backwards. After all optimal decisions reacting to every 

state made in all steps are calculated, the optimal decision of each step can be retrieved by 

backward recursion described in Algorithm 3 as follows: 

 

Algorithm 3 Backward recursion algorithm in the lower layer of PerSiCon-Junction when 𝑡 = 𝑇′ 

Input: Signal timing state 𝑠𝑇′
∗  at final time step 𝑇′ with maximum accumulated function value 

𝑓(𝑇′, 𝑠𝑇′); dictionary with sub optimal solution path 𝑂∗ from Algorithm 1. 

Output: Optimal signal timing plan list 𝑆𝑖𝑔∗ reaching to signal timing state 𝑠𝑇′
∗  

1:  optimal signal timing plan list 𝑆𝑖𝑔∗ ← [ ], insert s𝑇′
∗  into 𝑆𝑖𝑔∗, 𝑡 ← 𝑇′ 

2:  while 𝑡 ≥ 2 do: 

3:       retrieve 𝑠𝑡−1
∗  from 𝑂∗[𝑡, 𝑠𝑡

∗] 
4:       insert 𝑠𝑡−1

∗  as first element in 𝑆𝑖𝑔∗ 

5:       𝑡 ← 𝑡 − 1 

The optimal plan with a series of junction controller decision choices in every step is recorded 

after the backward algorithm. A rolling-horizon approach is applied for PerSiCon-Junction where 

the problem is solved again when one stage (barrier group) is executed to include more recent 

vehicle data from CVs. The proposed approach collects data at a certain time step, predicts traffic 

state for a certain planning duration constituted by a number of time steps, and finds optimal 

signal timing parameters with the highest objective function values, implementing it in the 

isolated junction over the prediction period. At the end of implementation, the data collection 

system and three-layered optimization algorithm will be triggered again to repeat the commands. 
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4.4 Detail description of signal control algorithm PerSiCon-Bus 

This subsection describes PerSiCon-Bus modified from PerSiCon-Junction which is adopted in 

vehicle states of all passenger cars. Two vehicle modes (cars and buses) are considered in this 

chapter. The buses are assumed to be travelled on the mixed lanes with cars. Notably, the 

proposed algorithm can be extended to incorporate other vehicle modes. However, this person-

based approach focuses on buses due to their unique occupancy number against passenger cars. 

To simplify the proposed algorithm, the bus stops and vehicle lane-changing behaviours are not 

considered in this research. 

As the optimization process of PerSiCon-Junction introduced in Section 4.3 estimates and updates 

each vehicle departure time for every time step, the framework of PerSiCon-Bus can also be 

achieved by using Figure 4.3 and Algorithms 1-3. Buses are considered a kind of special vehicle 

mode over passenger vehicles, with unique mechanics for determining occupancy, saturated flow, 

queuing discharging speed and headway. The development of PerSiCon-Bus is proper and 

important because there are minor changes to the optimization algorithm and the statuses and 

departure times of buses can be estimated under different signal plans for person delay 

reduction, resulting in the enhancement of proposed person-based control adaptability in variety 

mixture vehicle situations. In this way, the algorithm and framework of PerSiCon-Bus are almost 

the same as PerSiCon-Junction described in Section 4.3. However, the parameters of buses are 

different from passenger cars, which needs to be treated differently in some equations. In this 

section, parts of the equations are clarified more specifically to update the theoretical method 

and other equations which are not mentioned keep unchanged. The rest sets, variables and 

parameters for PerSiCon-Bus are also supplied in Table 4.1. 

The objective of PerSiCon-Bus is to minimise the total passenger delay of cars and buses which 

can be detected by CV technology around the junction. The passenger delay is calculated by the 

product of vehicle delay and the number of people in cars and buses separately. The occupancy 

level factor is incorporated into the objective function to assign fairly priorities to different 

occupancy vehicles. The person-based objective function is formulated in Equation (4-23). More 

specifically, the occupancy level of cars and buses are expressed respectively in Equation (4-24). 

Therefore, Equation (4-2) in PerSiCon-Junction is modified to Equations (4-23) and (4-24) in 

PerSiCon-Bus. 

𝑚𝑎𝑥∑∑𝐴(𝑖, 𝑝)[𝑇′ + 1 − 𝑇𝑐(𝑖, 𝑝) + 𝛿𝑇𝐴𝐶𝐶(𝑖, 𝑝)]

𝑖𝑝

𝑖=1

𝑃′

𝑝=1

 (4-23) 

𝐴(𝑖, 𝑝) = {
𝐴𝑐(𝑖, 𝑝), 𝑖𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 ∈ 𝑝ℎ𝑎𝑠𝑒 𝑝 𝑖𝑠 𝑎 𝑐𝑎𝑟

𝐴𝑏(𝑖, 𝑝), 𝑖𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 ∈ 𝑝ℎ𝑎𝑠𝑒 𝑝 𝑖𝑠 𝑎 𝑏𝑢𝑠
𝑖 = 1,2,… , 𝑖𝑝, ∀𝑝 ∈ 𝑃 (4-24) 
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Constraints (4-25) and (4-26) replace the original Constraint (4-3) in PerSiCon-Junction to limit the 

value range of occupancy level parameter in each car or bus because passenger cars and buses 

have different occupancy capacities 𝐴𝐶  and 𝐴𝐵. 

0 ≤ 𝐴𝑐(𝑖, 𝑝) ≤ 𝐴𝐶  𝑖 = 1,2,… , 𝑖𝑝, ∀𝑝 ∈ 𝑃 (4-25) 

0 ≤ 𝐴𝑏(𝑖, 𝑝) ≤ 𝐴𝐵 𝑖 = 1,2,… , 𝑖𝑝, ∀𝑝 ∈ 𝑃 (4-26) 

 

In PerSiCon-Junction, the initial departure time estimation of vehicles in a lane in Equations (3-10) 

and (3-11) relies on saturated flow headway ℎ𝑠 between two vehicles, which is a constant when 

both vehicles are passenger vehicles. However, the saturated flow headway of buses is different 

because buses have different acceleration rates, vehicle lengths and saturated flow speeds than 

passenger cars. Therefore, Equations (4-27) and (4-27) are inserted behind Equations (4-10) and 

(4-11) in PerSiCon-Bus to consider the different cases of saturated flows headway ℎ𝑠 and speed of 

vehicles discharging from queue 𝑣𝑠. 

 

ℎ𝑠 = {
3600 𝑆𝑐⁄ , 𝑖𝑓𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑖 − 1(𝑖 ≥ 2) ∨ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒1𝑖𝑠𝑎𝑐𝑎𝑟

3600 𝑆𝐵⁄ , 𝑖𝑓𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑖 − 1(𝑖 ≥ 2) ∨ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒1𝑖𝑠𝑎𝑏𝑢𝑠
∀𝑝 ∈ 𝑃 (4-27) 

  

𝑣𝑠 = {
𝑣𝑐𝑎𝑟 , 𝑖𝑓𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑖𝑖𝑠𝑎𝑐𝑎𝑟
𝑣𝑏𝑢𝑠, 𝑖𝑓𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑖𝑖𝑠𝑎𝑏𝑢𝑠

𝑖 = 1,2,… , 𝑖𝑝, ∀𝑝 ∈ 𝑃 (4-28) 

 

Equation (4-27) represents that buses and cars have different saturated flows and the headways 

between two vehicles are decided by the saturation flow of the front vehicle. This simplification is 

justified by the calculation of headway only relying on the front vehicle, so does not significantly 

degrade the results (Yang et al, 2018). Equation (4-28) indicates that the speeds of cars and buses 

discharging from the queue, which are used for judging vehicle status, are also different. 

 

In PerSiCon-Bus, the performance measure 𝑐𝑡(𝑠𝑡, 𝑑𝑡) of passenger benefits from the last step to 

the current step is also a function of state variables and control decisions. Therefore, the value 

𝑐𝑡(𝑠𝑡, 𝑑𝑡) is calculated by Equations (4-14) and (4-29) with different car and bus occupancy levels. 

Equation (4-29) is inserted behind (4-14) as follows: 

𝑎(𝑖, 𝑡, 𝑝, 𝑠𝑡) =  {
𝑎𝑐(𝑖, 𝑡, 𝑝, 𝑠𝑡),     𝑖𝑓  𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑖𝑠 𝑎 𝑐𝑎𝑟 
𝑎𝑏(𝑖, 𝑡, 𝑝, 𝑠𝑡),    𝑖𝑓  𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑖𝑠 𝑎 𝑏𝑢𝑠

  𝑖 = 1, 2,… , 𝑖𝑝, ∀𝑝 ∈ 𝑃 (4-29) 
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4.5 Detail description of signal control algorithm PerSiCon-Network 

4.5.1 The coordinated control in traditional and state-of-the-art urban signal controls 

The person-based signal control designed for multiple junctions is more meaningful than isolated 

junctions as vehicle travel is defined as movement from origin to a destination within a certain 

range over one junction. The vehicle leaving information from one junction can inform another 

junction in advance through connected vehicle technology to achieve junction coordination. 

Signal control coordination can provide efficient movements for vehicle platoons passing through 

proximal junctions. Vehicles leaving out of the current junction will appear in approaching lanes of 

one of its neighbours, all of whose trajectories and passenger delays are possible to be planned by 

coordinated signal controls. However, it is noted that not all of the signal controls are worthy of 

coordination. The distance between two proximal junctions should be close enough and traffic 

flow demands coming from upstream are not random and substantial. The Federal Highway 

Administration reported that junction coordination could be considered when the distance 

between two proximal junctions is less than 0.75 miles (Henry, 2005).  

The existing coordinated urban signal controls and state-of-the-art CV adaptive vehicle-based 

signal control reviewed in Chapter 2, which has shown that a lot of researches have been done to 

develop coordinated signal control in urban road networks. The relevant coordinated signal 

control systems are classified into three categories based on their objective optimization 

architectures and optimal solution levels: central, hierarchal, and decentralized signal control 

approaches. 

4.5.1.1 Central coordinated signal control approach 

The majority of signal timing approaches applied in multiple junctions adopt central junction 

coordination. The vehicle state and optimization objective in central approaches are formulated 

into a global-level mathematical program. All of the signal timing parameters, such as cycle 

length, phase duration and offset are determined through central optimization algorithms. SCOOT 

is an example of central coordination approach operated in a few proximal junctions. The central 

computer program in SCOOT calculated the optimal solutions for fixed cycle, offsets and green 

durations in order to reduce the total vehicle delays and stops on the basis of value prediction by 

implementing different signal timing parameters. However, notably that signal control 

coordination is a Non-deterministic Polynomial (NP) problem (Hajbabaie, 2012) and it is 

challenging to find globally optimal solutions for junction control objectives when the scales of 

road networks expand. Those central approaches are not scalable to be implemented in multiple 

junctions if network scales increase. 
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4.5.1.2 Hierarchal coordinated signal control approach 

Hierarchal approaches decompose the signal control optimization problem in multiple junctions 

into several levels and try to solve the different objectives in separate levels. The core principle of 

most hierarchal approaches is to make slow-varying and wide-area-level decisions in the upper 

network layer and execute the junction area and real-time optimization in the lower level. The 

sub-optimal problems at the junction level are interconnected through a central control unit. 

SCATS (Lowrie, 1990) is such a hierarchal approach adopting two-level signal control composition. 

The strategic control is carried out by a regional computer to determine the signal timing 

parameters and offsets according to average prevailing traffic conditions. The local controllers at 

the tactical level can adjust the green time of one junction, making it flexible to correspond to the 

fluctuating real-time flow demand. Other cases of hierarchal approaches, such as OPAC, UTOPIA, 

and RHODES, have been detailed in Chapter 2. The hierarchal approaches are able to find the 

optimal solution more efficient than central approaches in the amount of time. However, the 

connections among central control units and sub-optimal computers in hierarchal approaches 

require a considerable cost on infrastructures. Moreover, the central objective controls in the 

upper level are slow-varying processes, difficult to be accomplished in real-time and compete with 

distinct objectives in the junction control level. 

4.5.1.3 Decentralized signal control approach 

The decentralized approaches decompose the planning network into varying regions, involving a 

single junction in each of them. The connected controller infrastructures gather vehicular 

information surrounding the local target junction and optimize vehicle objectives to calculate sub-

optimal solutions. This sort of approach can be extended on large network scales and operate in a 

real-time environment. More recently, adaptive vehicle-based CV adaptive signal controls have 

developed in multiple junctions. An adaptive signal control algorithm aiming at minimising total 

queue length at each junction was proposed by Priemer and Friedrich (2009), separating road 

network areas with a number of junctions into individual junctions. While there is no coordinated 

information exchange among the junctions thus the signal control is not coordinated. Similarly, 

the predictive microscopic simulation algorithm (PMSA) proposed by Goodall et al. (2013) also 

lacks considering coordination among adjacent junctions. A cumulative Travel-Time Responsive 

(CTR) junction control algorithm was proposed by Lee et al. (2013) to ensure the smooth 

trajectory of vehicle platoons on major streets with the introduction of weighting factors. 

However, not test the performance of the approach. More recently, a novel DC technical signal 

timing optimization is presented to decide the green time termination or continuation at junction 

level, also make them be coordinated by informing information from adjacent junctions to make 
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them towards global optimality. Compared to the above two sorts of approaches, the 

decentralized approaches are more convenient to be applied in larger network case studies as 

they consider less about the coordination among proximal junctions. The challenge of 

decentralized approaches is that their signal timing policies are more inclined to explore local 

solutions and sub-optimal solutions rather than global objectives. 

4.5.1.4 Coordination paradigm consideration for this research 

The central approaches and hierarchal approaches are not scalable as the extension of road 

network scales and are difficult to be real-time. In terms of the proposed person-based signal 

control approach, it adopts flexible stage sequences and phase combinations to explore a better 

way of optimizing person-based measures. The central approaches and hierarchal approaches are 

not suitable in this case as greater computational complexity caused by flexible signal timing 

options makes it challenging to calculate global optimal solutions. The decentralized approaches 

will be considered to be more appropriate to implement person-based adaptive CV signal control 

in urban large scales with a varying number of junctions. However, the developed DC signal timing 

optimization inspires that the approaching vehicle number and flow information from 

neighbouring junctions may be useful for individual junctions, to make them coordinated towards 

global optimality.  

This project will develop decentralized coordinated person-based CV adaptive signal controls, 

making use of arrival and leaving vehicle information from proximally connected junctions. The 

inadequately connected vehicle detection region of isolated junction controllers can be 

complemented by infrastructures of neighbouring junctions. The vehicles leaving out of current 

junctions will also be captured by a signal controller to predict the travel time it will approach the 

departure lane of the proximal junction and inform through wireless communication. In this way, 

the proximal junctions will be coordinated to reduce person delay and improve passenger 

travelling experience. The holding back problem (Doan and Ukkusuri, 2012) probably occurs in 

multiple junctions where overhanging queues accumulated in departure lanes obstruct 

subsequent vehicles from joining into the end of the queues. To avoid this phenomenon, the 

maximum number of queuing vehicles one lane can have will be modelled in the following 

constraints. Once the vehicles have reached the limit value, the green duration for this phase will 

be provided regardless of the person's delays in other lanes. 

A Coordinated Person-based signal Control algorithm (PerSiCon-Network) to extend PerSiCon-

Junction from isolated junction to multiple junctions. With the implementation of the proposed 

algorithm, every junction controller updates the vehicle occupancy list and departure predictive 

list by making use of information received from adjacent junctions. To evaluate its influence, the 
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coordinated signal control algorithm will be tested under varieties of scenarios with different CV 

penetration rates, traffic flow demands and prediction horizons. The indicator results will be 

compared to those in benchmarking models including fixed-time coordinated control and vehicle-

based control in multiple junctions to analyse the performance of the proposed algorithm. 

4.5.2 Approach proposed for PerSiCon-Network 

PerSiCon-Network assumes that the local controller at every junction operates PerSiCon-Junction 

described in Chapter 3 based on CVs data within its wireless communication range to optimize 

person-based signal plans. The proposed algorithm figures out signal timing plans for a given 

horizon period and will be triggered to carry out for the next period when the scheme has been 

completely executed. The general procedure of it can be summarized in five steps below: 

Step 1: Collecting information from every CV near junction 𝐴 and arranging them according to 

their approaching lanes, the location list  𝑆(𝐴) = [𝑆1, 𝑆2, … , 𝑆𝑛], instantaneous speed list 𝑉(𝐴) =

[𝑉1, 𝑉2, … , 𝑉𝑛] and occupancy level lists 𝑂(𝐴) = 𝑂1, 𝑂2, … , 𝑂𝑛] at every lane are generated 

assuming there are 𝑛 vehicles detected. The elements in those lists are sorted by their distances 

to the cross line from nearest one to furthest within detection range. 

Step 2: Given the position list and speed list of each lane, the initial departure time list for vehicles 

𝑇(𝐴) = [𝑇1, 𝑇2, … , 𝑇𝑛]  can be predicted at the start of optimization supposing that the next step 

for this lane will be constantly activated with green lights. 

Step 3: The upper layer of the three-layer DP optimization algorithm captures a sub-optimal 

function value for a special traffic situation by the proposed DP framework and removes any 

other strategies to avoid recalculation from the initial step. 

Step 4: In order to calculate performance measures, the middle layer of three-layer DP 

optimization algorithm updates the vehicle departure time list in every step, which also explores 

all kinds of possible signal plans based on a flexible traffic light state machine. 

Step 5: At the lower layer, the algorithm finds the optimal person-based performance measure at 

the end of the planning horizon and uses a backward recursion DP to search for a signal timing 

plan resulting in this value function. 

According to Section 4.5.1, the central architecture and hierarchical structure make junction 

controllers more complex or less flexible to implement real-time signal control under CV 

environments. Therefore, the decentralized structure is chosen as a general coordination 

framework in this paper to enable local controllers to operate their adaptive signal control 
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algorithms. Compared to signal controls in multiple junctions without coordination, it receives 

more comprehensive real-time vehicular data to realize surrounding environments. Meanwhile, 

as shown in Step 1 and 2 in Section 4.3, the objective benefits of PerSiCon-Junction in the 

previous study is calculated based on vehicle arrival prediction and explicit occupancy level as 

data inputs. To make less interruption to local algorithm operation and provide more CV data to 

adjacent junctions to promote decision, PerSiCon-Network is adopted by combing decentralized 

structure and vehicle trajectories estimation approach from upstream. The occupancy level and 

trajectory information of undetected vehicles will be processed as inputs of the trajectories 

estimation approach to predict their arrival time for local controllers. Another reason for 

proposing PerSiCon-Network is that it can predict queue lengths of connected lanes at any 

optimizing time steps to prevent the holding-back phenomenon of a high-demand vehicle 

platoon. The model formulation and operating algorithms of PerSiCon-Network are described in 

Section 4.5.3 and Section 4.5.4 respectively. 

4.5.3 PerSiCon-Network model formulation 

The distributions of local controllers and surrounding vehicles in multiple junctions are illustrated 

in Figure 4.8. It can be seen that the communication range 𝑅 of junction 𝐴 cannot completely 

cover the link road between junction 𝐴 and B. However, those undetected vehicles on the link 

road, especially for vehicle platoon with high occupancy levels, have chances to cross junction 𝐴 if 

the adequate green time is given under person-based delay reduction strategy to save travel time 

for more passengers. While junction B is capable of learning data of these vehicles and delivering 

them to junction 𝐴 with the assumption of no transmission packet loss and communication delay. 

In order to provide a comprehensive vehicular environment for the person-based algorithm and 

reduce interference to local signal decisions, the coordinated model formulation will make 

changes to Steps 1 and 2 of PerSiCon-Junction to update vehicle location, speed, occupancy level 

and initial prediction time list. 
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Figure 4. 8 Diagram illustrating coordinated control and vehicle distributions at multiple junctions 

As is seen in Figure 4.8, junction 𝐴 can detect 𝑛 vehicles and additionally 𝑚 vehicles have the 

potentials to cross the junction during planning horizon. 𝐷(𝐴, 𝐵) represents the distance between 

two junctions and 𝑄𝑛+𝑖 is the distance from the cross line of junction 𝐵 to (𝑛 + 𝑖)th undetected 

vehicle. For distance from the cross line of junction 𝐴 to (𝑛 + 𝑖)th undetected vehicle 𝑆𝑛+𝑖 on link 

road, there is: 

𝑆𝑛+𝑖 =  𝐷(𝐴, 𝐵)− 𝑄𝑛+𝑖 ,       1 ≤ 𝑖 ≤ 𝑚 (4-30) 

  

Otherwise if undetected vehicle 𝑆𝑛+𝑖 is not on link road, it should satisfies: 

 

𝑆𝑛+𝑖 =  𝐷(𝐴, 𝐵)+ 𝑄𝑛+𝑖 ,       1 ≤ 𝑖 ≤ 𝑚 (4-31) 

The distance between two junctions 𝐷(𝐴, 𝐵) is a constant value. Figure 4.9 illustrates four cases 

of relationships between junction distance and communication range, which are: 

a. The distance of junction 𝐷(𝐴, 𝐵) is no higher than the communication range 𝑅. 

b. The distance of junction 𝐷(𝐴, 𝐵) is higher than the communication range 𝑅 but no higher 

than 2𝑅.  

c. The distance of junction 𝐷(𝐴, 𝐵) is higher than the double communication range 2𝑅 but 

no higher than the coordination distance recommendation value 0.75 miles. 

d. The distance of junction 𝐷(𝐴, 𝐵) is higher than 0.75 miles.  
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Figure 4. 9 Four cases of relationships of distance between two junctions 𝐷(𝐴, 𝐵) and communication 

range 𝑅 

In different cases, the distance from the cross line of junction 𝐵 to (𝑛 + 𝑖)th undetected vehicle 

𝑄𝑛+𝑖 is determined in different ways. When implementing PerSiCon-Network in a new location, 

the distance between two junctions 𝐷(𝐴, 𝐵) needs to be measured first and the flowchart in 

Figure 4.10 is used to judge how to acquire the value 𝑄𝑛+𝑖 to calculate 𝑆𝑛+𝑖 using Equations (4-30) 

and (4-31). 
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Figure 4. 10 Flowchart of determining 𝑄𝑛+𝑖  in different relationships of 𝐷(𝐴, 𝐵) and 𝑅 

The vehicle location can be directly determined by junction 𝐴 if 𝐷(𝐴, 𝐵) satisfies the criteria in 

case a, or calculated by junction 𝐵 in case b. If 𝐷(𝐴, 𝐵) satisfies the criteria in case c, junction 𝐵 

need to detect the vehicle travelling from 𝐵 to 𝐴 with several time steps before the optimization. 

The value of the time step from detection to optimization equals to gap distance 𝐷(𝐴, 𝐵) − 2𝑅 

divided by free-flow travelling speed 𝑉𝑑. Then those vehicles in the gap between two 

communication ranges can be estimated by the distances between them at the detection time 

step. If 𝐷(𝐴, 𝐵) exceeds than coordination recommendation distance value, there would be no 

coordination for the link.  In such a way, vehicle location, speed, and occupancy level list can be 

updated as 𝑆(𝐴) = [𝑆1, 𝑆2, … , 𝑆𝑛, 𝑆𝑛+1, … 𝑆𝑛+𝑚], 𝑉(𝐴) = [𝑉1, 𝑉2, … , 𝑉𝑛, 𝑉𝑛+1, … 𝑉𝑛+𝑚], 𝑂(𝐴) =

𝑂1, 𝑂2, … , 𝑂𝑛𝑂𝑛+1, … 𝑂𝑛+𝑚] separately.  

If vehicle queue forms at the approaching lane in junction 𝐵 (such as situation (a) in Figure 4.11) 

due to red light, the undetected vehicle will first try to discharge from junction 𝐵 with time 𝑇(𝑙) 

on the green. It then experiences an acceleration process, from the initial discharging velocity at 

saturated flow 𝑉0 to free-flow travelling velocity 𝑉𝑑, with constant acceleration a. The time 

needed for the acceleration process 𝑡𝑎 satisfies: 

𝑡𝑎 = 
𝑉𝑑 − 𝑉0
𝑎

 (4-32) 
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The distance vehicle travelled throughout the acceleration process 𝐷𝑎 can be calculated as 

follows: 

𝐷𝑎 = 
𝑉𝑑

2 − 𝑉0
2

2𝑎
 (4-33) 

The vehicle will then approach with constant speed 𝑉𝑑 to cross junction A on the green, or stop at 

the end of queue formed on the link road to wait for discharge. Therefore, the initial predictive 

time of (𝑛 + 𝑖)th vehicle 𝑇𝑛+𝑖 takes the maximum value of two cases, which is calculated as: 

 

𝑇𝑛+𝑖 = max (𝑇𝑛+𝑖−1 + ℎ𝑠, 𝑇(𝑙) + 𝐷𝑎 +
𝐷(𝐴,𝐵)− 𝐷𝑎

𝑉𝑑
),       1 ≤ 𝑖 ≤ 𝑚  (4-34) 

Where 𝑇𝑛+𝑖−1 is the predictive discharging time of the previous vehicle and ℎ𝑠 is saturated 

headway of discharging queue. In case (b) of Figure 4.11, the (𝑛 + 𝑖)th vehicle crosses junction 𝐵 

with free-flow travelling velocity 𝑉𝑑. It will also keep this status to cross junction 𝐴 unless existing 

vehicle queue on link road blocks its trajectory. To judge this, the predictive time of the vehicle 

𝑇𝑛+𝑖 can be calculated as follows: 

 

𝑇𝑛+𝑖 = max (𝑇𝑛+𝑖−1 + ℎ𝑠,
 𝑆𝑛+𝑖
𝑉𝑑

),       1 ≤ 𝑖 ≤ 𝑚  (4-35) 

To ensure that the (𝑛 + 𝑖)th vehicle of both two cases in Figure 4.11 are possible to be discharged 

within planning horizon 𝑇, the time predictions under free-flow travelling status are constrained 

as: 

0 <
 𝑆𝑛+𝑖
𝑉𝑑

< 𝑇(𝑙) + 𝐷𝑎 +
𝐷(𝐴,𝐵)− 𝐷𝑎

𝑉𝑑
≤ 𝑇,       1 ≤ 𝑖 ≤ 𝑚  (4-36) 

 

 



Chapter 4 

137 

 

 

Figure 4. 11 Vehicle situations on link road between junction 𝐴 and B in case (a) red light and case (b) green 

light at junction B 

To avoid the potential flow holding back problems (Doan and Ukkusuri 2012) in coordinated 

junctions, the maximum queue length is defined as 𝑄𝑚𝑎𝑥 on the link road that at any time step 𝑡 

in the planning horizon 𝑇, queue length 𝑄(𝑡) cannot exceed the maximum queue length 𝑄𝑚𝑎𝑥. 

The constraint is presented as follows:  

 

𝑄(𝑡) < 𝑄𝑚𝑎𝑥,       0 ≤ 𝑡 ≤ 𝑇  (4-37) 

The queue length 𝑄(𝑡) at time step 𝑡 is determined by: 
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𝑄(𝑡) = {
𝑄0, 𝑡 = 0

𝑄(𝑡 − 1) + 𝑓(𝑡) − 𝑔(𝑡), 0 < 𝑡 ≤ 𝑇   
  (4-38) 

Where 𝑄0 is the initial queue length at time step 0 by counting the number of vehicles with 

stopped status on link road. 𝑓(𝑡) and 𝑔(𝑡) refer to vehicle arrival rate and the discharging rate at 

time step 𝑡. Suppose that queue length equals to 𝑖 − 1, and the arrival rate is judged by whether 

𝑖th vehicle will be stopped at the end of the queue or not, which is presented as: 

 

𝑓(𝑡) = {
1,   𝑇𝑖 = 𝑇𝑖−1 + ℎ𝑠
0,  𝑇𝑖 > 𝑇𝑖−1 + ℎ𝑠   

  (4-39) 

As for discharging rate 𝑔(𝑡) at time step 𝑡, its value determines on the basis of the predictive time 

of the first vehicle 𝑇1 and signal plans 𝑆𝑖𝑔(𝑡) at junction 𝐴. The criterion is presented as follows:  

 

𝑔(𝑡) = {
1, 𝑖𝑓 0 < 𝑇1 ≤ 1 and 𝑆𝑖𝑔(𝑡) = green

0,      𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠   
  (4-40) 

  

4.5.4 Description of coordinated control algorithm 

By incorporating the formulated model above at a coordinated level, PerSiCon-Junction aims to 

have enhanced performance in multiple junctions. As part of the coordinated person-based 

control algorithm, Algorithm 4, the coordinated data supplement algorithm, was developed to 

supply extra data sources to the local controller with received information from the adjacent 

junction. The essential location list, velocity list, occupancy level list and time prediction list are 

firstly created by following steps 1 and 2 in PerSiCon-Junction. The locations of those undetected 

vehicles are calculated and appended to the location list, combined with information from 

junction B and Equations (4-30) and (4-31). After updating the velocity list and occupancy level 

list, the initial prediction times of undetected vehicles are calculated using Equations (4-32) – (4-

36) and appended to the prediction time list. The new lists will replace the original ones as data 

inputs for the local controller to implement the person-based optimization algorithm (Algorithm 

5). 
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Algorithm 4 Coordinated data supplement algorithm 

1:    Data collection and processing procedure (ID, location, speed, occupancy, lane ID of CVs): 

2:         For each approaching lane 𝑖 of junction 𝐴: 

3:              Generate location list 𝑆(𝑖, 𝐴) based on lane ID 

4:              Generate velocity list 𝑉(𝑖, 𝐴), occupancy level list 𝑂(𝑖, 𝐴) according to sequence of 
CV’s ID in location list 

5:              Generate initial time prediction list 𝑇(𝑖, 𝐴) based on 𝑆(𝑖, 𝐴) and 𝑉(𝑖, 𝐴) 

6:              If lane 𝑖 is road link between junction 𝐴 and 𝐵: 

7:                  Generate location list 𝑇(𝑖, 𝐵), velocity list 𝑉(𝑖, 𝐵), occupancy level list 𝑂(𝑖, 𝐵) 

8:                  Update 𝑆(𝑖, 𝐴), 𝑉(𝑖, 𝐴), 𝑂(𝑖, 𝐴) based on Equation (4-30) 

9:                  For each approaching lane of junction 𝐵 except link road: 

10:                    Update 𝑆(𝑖, 𝐴), 𝑉(𝑖, 𝐴), 𝑂(𝑖, 𝐴) based on Equation (4-31) 

11:                Update 𝑇(𝑖, 𝐴) based on 𝑆(𝑖, 𝐴), 𝑉(𝑖, 𝐴) and Equation (4-32) - (4-35) 

12:                Remove the following elements in 𝑇(𝑖, 𝐴) if their values exceed planning horizon 𝑇 
based on equation (4-36) 

13:                Remove relative elements in 𝑆(𝑖, 𝐴), 𝑉(𝑖, 𝐴), 𝑂(𝑖, 𝐴) 

14:            Else: 

15:                Pass 

16:   End procedure 

 

Algorithm 5 operates the three-layer DP optimization algorithm developed in PerSiCon-Junction 

by incorporating dynamic queue length check and flow holding back prevention procedure. The 

algorithm keeps calculating queue length on the link road at any time step after assigning the 

signal plan for the current step. If queue length exceeds the maximum value, the weight of 

discharging vehicles on this lane dramatically increases and the signal controller will intend to 

switch the traffic light to green. Once the time step reaches to planning horizon, Algorithm 5 will 

search out a strategy achieving minimum objective value and retrieve it ready for 

implementation. The pseudocode of Algorithm 5 is presented below. 

Algorithm 5 Coordinated control optimization algorithm 

1:    Coordinated person-based control optimization procedure: 
2:        Generate 𝑆(𝑖, 𝐴), 𝑉(𝑖, 𝐴), 𝑂(𝑖, 𝐴), 𝑇(𝑖, 𝐴)  for approaching lane 𝑖 of junction 𝐴 based on 
algorithm 1, get current phase 𝑃0 at time step 0 

3:        For time step 𝑡 from 1 to T: 

4:            Create possible signal plan set in next step based on signal adjacent list and 𝑃𝑡−1 

5:            For each in signal plan set: 
6:                Calculate queue length based on Equation (4-38), (4-39) and (4-40) 

7:                If queue length reaches to maximum constraint based on Equation (4-37)  

8:                    Switch green light to light  

9:                Else: 

10:                  Pass 
11:              Calculate sub-optimal performance value to minimum person delay based on 
𝑇(𝑖, 𝐴) from PerSiCon-Junction 

12:              Update time predictive list 𝑇(𝑖, 𝐴) and 𝑂(𝑖, 𝐴) 
13:              Record signal plan path to sub-optimal value 

14:       Find out optimal performance value from all possible strategies at time T 

15:       Retrieve signal plans reaching to optimal performance value 
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16:   End procedure 

4.6 Summary  

This chapter clarifies the detailed methodology for developing a person-based signal control 

approach PerSiCon-Junction in an urban isolated junction transferring from the vehicle-based 

approach. In order to solve those challenges and implement the person-based approach in CV 

environments, PerSiCon-Junction with a three-level signal optimization algorithm is introduced 

with the realization of its conceptual framework. The details of PerSiCon-Junction are also 

explained to understand how the proposed algorithm figures out the optimal signal timing plan to 

achieve person-based objectives with completely flexible signal plans and an update of vehicle 

departure time prediction.  PerSiCon-Bus and PerSiCon-Network are then developed to 

incorporate person-based control with bus mode and extend to network scales. 
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Chapter 5 Experiments and evaluations of person-based 

controls in isolated junction and road networks 

Chapter 4 provides the details of proposed algorithms to explore the new paradigm of adaptive 

signal control for person-based controls using CV data. To initially validate the performance of 

person-based controls, real-world case studies including isolated junction and road networks 

need to be constructed in microscopic simulation to test whether the person-based controls offer 

improved measures compared to benchmarking models. A case study located in Birmingham, UK 

is selected where the isolated junction and road networks can be reproduced in microsimulation 

and traffic flow demand data for this place can be acquired to imitate the traffic operation 

conditions for different periods. As bus routes exist in both isolated junction and road networks 

case study, PerSiCon-Bus and PerSiCon-Network are correspondingly evaluated in isolated 

junction and road networks in vehicular environments mixture by passenger cars and buses. This 

chapter describes the junction layouts, flow demands, signal phase settings and vehicle 

parameters of two case studies to implement the control algorithm in evaluation experiments. 

The results from simulation experiments in various scenarios are also presented to analyse the 

performance of PerSiCon-Bus and PerSiCon-Network in different cases compared to fixed-time 

control, actuated control and vehicle-based control in CV environments.  

5.1 Assumptions and limitations 

Chapter 3 discusses that the simulation tool is the most appropriate selection to evaluate the 

performance of urban signal controls. This research builds simulation environments with 

observed traffic flow demands and operates all of the signal controls in simulation to imitate their 

practical performance in the real-world case study. However, the simulation experiments cannot 

completely simulate and replace real-world operations. Some assumptions are made in this 

section to acknowledge the limitations of the evaluation framework as follows: 

The number of passengers in passenger cars and buses is assumed to follow the Poisson 

distribution. The assumptions of passenger number distributions have been justified in Chapter 2 

given the mean value of vehicle occupancy. The Poisson distribution probabilities are used in 

simulation to decide the number of passengers in each car and bus. The actual state may not be 

the same as this assumption, resulting in different vehicle occupancy rates and affecting the 

performance of person-based controls. 
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Vehicle generation distribution departed from the entrance of the simulation road network is 

assumed to be uniform. The O-D matrix determines the number of vehicles that enter the 

simulation road network in a certain period. From the perspective of simulation traffic flow 

generation, in each simulation time step, there is at most one vehicle entering the road network 

from one lane. Poisson distribution is not suitable to be adopted in this case as it is more used to 

estimate the number of vehicles in a certain time interval and two or more vehicles are possible 

to be generated in one second, which is conflicted with the traffic flow generation mechanism. 

Therefore, uniformed distribution is assumed to imitate the vehicle generation distribution and 

decide whether there is a departing vehicle in every time step. 

Krauß car-following model adopted in experiments is assumed to represent the actual behaviours 

of vehicles on road. The actual states of vehicles may be different from the behaviours simulated 

in the car-following model. This results in inaccurate vehicle arrival prediction to degrade the 

performance of person-based control. The performance generated by simulation may also not 

reflect real-world conditions. 

The rates of the bus in vehicle types are assumed to be the same at different times of day, which 

is equal to the statistics of bus rates in different vehicle types. In the real world, the rate of the 

bus would be higher during peak periods. This is because the bus operation frequency increases 

with higher traffic demand during peak periods. The different rates of the bus at different times of 

day may affect the performance of person-based control. 

The vehicle flows and their routes from originations and destinations in the case study area are 

assumed to be consistent with the real states. Besides the planning networks, there are also some 

branches distributed around the main road and share a part of traffic demands. However, the 

traffic flow across these branches cannot be collected. The road network in simulation 

experiments is simplified and O-D matrixes are constructed to ensure that the traffic flows 

travelling through the detectors are consistent with the recorded data. In real states, the vehicle 

routes are more complicated than those in simulation experiments and traffic flows have various 

originations and destinations, which cannot reflect the real traffic dynamics. This is a limitation of 

the evaluation framework. 

0.01m/s speed threshold is assumed to judge whether a vehicle is stopped or not. The 

reorganization of a stopped vehicle is an important component in person-based control 

algorithms and the number of stop measurements. A strict speed threshold value contributes to 

accurately detecting a vehicle stop event. In SUMO simulation the speed of all stopped vehicles is 

observed to be lower than 0.01m/s. Therefore, 0.01m/s is taken as a threshold. In practice, the 

speed of a vehicle can be measured by a speed odometer and data measurement errors need to 
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be considered to take the speed threshold. The data measurement error may cause the speed of 

a stopped vehicle is illustrated to be higher than the strict threshold and detection fail. The speed 

threshold taken should relatively higher in practice to satisfy that the speed measurements of 

most of the stopped vehicles (e.g. 95% or 99% of the vehicles in experiments) are below this 

value. 

5.2 Location of case study and junction layout 

To validate the performance of the proposed person-based algorithm and other traffic signal 

controls, realistic real-world case study models need to be constructed. As discussed in Chapter 3, 

microsimulation is the most suitable way to model the signal control experiments in the current 

stage. To reproduce the traffic behaviours on road networks and urban junctions, both junction 

and road network geometry layouts and traffic flow recorded data surrounding the junctions are 

required. At the time stage of this research, Birmingham City Council provides great quantities of 

recorded traffic data in the areas of Birmingham and West Midlands, covering a large number of 

inductive loop stations and urban junctions (Birmingham City Council, 2019). The dataset can be 

accessed online to generate the traffic demands for the urban area to model the road networks. 

After comparison, a road network consisting of 5 signalized junctions in the Newtown area of 

Birmingham is selected as a realistic case study to validate the proposed method, which is shown 

in Figure 5.1. 

 

Figure 5. 1 Map of the case study location in the Newtown area of Birmingham. The locations of inductive 

loops are marked with yellow probes. The lane approaches are represented by red lines 
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The case study is considered as the most appropriate place to evaluate the proposed PerSiCon-

Network for the following reasons: 

1.  The area covers a long route corridor (around 2km) with 5 successive urban junctions and 36 

inductive loops. The ratio of the number of loops and junctions is highest in this area. The high 

coverage of inductive loops ensures traffic flows in this area can be reproduced in simulation with 

adequate accuracy.  

2.  The distance between two junctions is suitable to adopt coordinated person-based control, 

neither too long nor too narrow.   

3. The area contains large residential areas, and key educational and sports points such as 

Nishkam high school, JD Gyms Birmingham and the University of Law, Birmingham to produce and 

attract trips so that a great number of traffic flows can be observed.  

4. The geometry layout of crossroad junctions is standard to implement signals, rather than 

providing roundabouts and dedicated left turn lane for vehicles before the approach to the 

junction area, with sufficient phases to make person-based control to be feasible to implement.  

As different versions of person-based controls are proposed in Chapter 4, the selected case study 

area is used to construct isolated junction and road networks to evaluate the person-based 

controls. As buses exist in both isolated junction and road networks, PerSiCon-Bus and PerSiCon-

Network are operated to test their performance in two cases respectively. The junction layouts of 

the two case studies are introduced below. 

5.2.1 Isolated junction case study 

The isolated junction case study is adopted to test the isolated junction version of person-based 

control PerSiCon-Bus. It is one of the junctions in the selected case study area. An isolated 

junction located at New John Street West & A34 junction in the Newtown area of Birmingham is 

modelled in the open-source microscopic simulation package SUMO. Figure 5.2 (a) illustrates the 

junction layouts and 8-options signal phase diagram. Figure 5.2 (b) presents the planned origin 

and destination zones of traffic flows travelling through this junction. The junction is selected for 

the isolated junction case study as the highest traffic volumes travel across this junction and the 

8-options signal phase diagram is flexible to apply person-based control.  
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Figure 5. 2 (a) Geometry and signal phase diagram; (b) origin and destination zones of isolated junction at 

New John Street West & A34 junction 

5.2.1 Road network case study 

The modelled urban corridor consisting of 5 successive junctions is illustrated in Figure 5.3 with 

red lines where the surrounding inductive loops are distributed to collect traffic flow data. The 

interlocking part of roads B4100 and A4540 at the top left corner of the map is an overpass 

without a turning lane rather than a signalized junction. The geometry road map data for this area 

from Open Street Map (OSM) are used to reproduce the road network with 5 signalized junctions 

(represented by traffic light icons in Figure 5.3) in SUMO (OSM, 2019). Figure 5.3 illustrates the 

simulated road network. 
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Figure 5. 3 Simulated road network in SUMO. The signalized junctions are marked with traffic light icons 

5.3 Traffic flow data for case study 

To generate the traffic flow demands for the modelling road network, two types of datasets are 

collected from the case study: manual traffic survey and recorded flow data from inductive loops. 

The manual traffic data are used to ensure that the dataset from the online database matches the 

data in the real site. The traffic demands from the online dataset are collected and processed to 

generate the traffic flows crossing the case study area. The procedures are described in this 

section. 

5.3.1 Manual traffic survey 

A manual traffic survey of the selected case study has been carried out over two days in October 

2020. A manual traffic survey aims to observe the traffic data from real site locations of the case 

study to ensure that the traffic dataset used online is consistent with the actual state of vehicular 

situations. The contents of the manual traffic survey include: 

1. 15 minutes of traffic flow counts for each approach at 5 junctions in the selected case study 

area; 

2. Signal stage patterns and sequence at each signalized junction; 

3. The proportions of different vehicle types. 

The detailed collected results of the manual traffic survey are placed in Appendix B-D. The traffic 

flow counts are observed to compare with the traffic data from the online dataset. The signal 

stage observations are used to determine the stage patterns and sequences for benchmarking 

models in simulation. The vehicle type constitution is to make sure that the vehicle type ratio 

statistics from DfT are reliable to be used to estimate the bus numbers in Chapter 7. 

5.3.2 Traffic dataset from Birmingham City Council 

Birmingham City Council provides the Birmingham and West Midlands with real-time traffic data 

which can be accessible for public use (Birmingham City Council). The datasets include traffic 

counts, vehicle speed, ID and geometry locations of inductive loops over the past 10 years until 

2018. In this project, the traffic flow counts from inductive loops illustrated in Figure 5.1 between 

2017 and 2018 are used to generate the traffic flow volumes for the case study area. The traffic 

flow counts from each inductive loop are recorded at a frequency of 5-minutes intervals. The data 
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files for these inductive loops are downloaded and aggregated from 5-minute interval traffic 

counts to 1-hour interval traffic counts over 24 hours each day as the daily flow patterns can be 

formed and observed to decide which part of the data is used to reproduce the traffic flows.  

Three types of traffic flow counts are considered to be adopted as data for traffic volume 

generation: average flow for weekdays excluding public holidays, average flow for public holidays 

and weekends, and average flow for all dates. An example of traffic flow daily patterns of three 

types in an inductive loop coded with N51131R is shown in Figure 5.4. 

 

Figure 5. 4 An example of the daily flow patterns in weekdays, weekends and total average flow for 

inductive loop detector N51131R 

Figure 5.4 illustrates that the average daily flow profile on weekdays has two peak hour periods, 

the inter-peak period from 7 a.m. to 7 p.m. and the off-peak period from 8 p.m. to 6 a.m. the next 

day. This allows the signal control to be evaluated at different traffic flow levels including peak 

periods and off-peak periods. However, there is no obvious traffic flow characteristic from the 

weekend daily flow profile like peak hour periods. The mean flow profile combined weekdays and 

weekends also has no such characteristic. The traffic counts from weekdays are selected to use as 

they conduct various traffic flow levels to make traffic signal control evaluations challenging and 

meaningful to understand how the proposed method works in different traffic states. As a result, 

the traffic flow data for weekends and public holidays are removed from the dataset for 2017 to 

2018 to generate the average traffic volumes crossing through these inductive loops during 

weekdays. 
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In order to test the performance variances of PerSiCon-Bus and PerSiCon-Network to the changes 

in traffic flow demands, different traffic flow level scenarios are arranged in simulation 

experiments according to the daily flow profile of average flow. The grey lines in Figure 5.5 

present separate daily flow patterns of an example inductive loops on weekdays. Figure 5.5 

illustrates that the range surrounded by low and high (±25% of average flow) daily flow patterns 

covers the majority of daily flows experienced by inductive loop N51131R on the weekdays of the 

whole year. +25% of the average flow is also an empirical limit value to prevent heavy traffic 

congestion to occur in TRANSYT fixed-time controls. Therefore, ±25% of the average flow is 

defined to be high and low traffic levels in simulation experiment scenarios. 

 

Figure 5. 5 An example of the daily flow patterns on weekdays and average flow profile in low, average and 

high levels. The grey lines represent separate daily flow patterns on weekdays. The yellow, red and green 

lines represent the daily flow profile in low (-25% average), average and high (+25% average) levels 

respectively 

5.4 Convert flow data from inductive loops to O-D matrix 

In this project, hourly traffic volumes are generated to imitate traffic flows crossing case study 

area over 24 hours as a comprehensive consideration of balancing daily flow pattern formation 

(compared to examples like 2-hours traffic flows) and massive statistical work like traffic counts in 

5/15-minutes intervals. Hourly flow volumes experienced by inductive loops need to be processed 

to form O-D matrix, which is a critical data input to product traffic volumes for the case study 

(examples illustrated in Table 4.1 and 5.1). The most widely used approach to model traffic 

demand is Four-Step Model (FSM) (De Dios Ortúzar and Willumsen, 2011) with inputs of user 
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activity data and geometry layouts of road networks. The steps of FSM include trip generation, 

trip distribution, mode choice and route choice, which are briefly described in following sub 

sections combing real states of case study. 

5.4.1 Trip generation 

The traditional trip generation method estimates traffic volumes produced and attracted by each 

zone by a wide range of surveys involving trip categories, number of households, number of 

dwelling units, etc. In this research, as traffic volumes counted by inductive loops are given, the 

locations of zones are defined at the far side of inductive loop sites so that all of the traffic 

travelling from and to the dedicated zone can be detected by corresponding inductive loops. The 

origin and destination zones with numbers A to D for the isolated junction are allocated in Figure 

5.2(b). The locations of zones with numbers A to K for producing and attracting traffic flows in the 

road network area are allocated in Figure 5.6. 

 

Figure 5. 6 The locations of zones with numbers A to K in the sketch of case study junctions 

The traffic volume values detected by inductive loops located at upcoming approaching lanes 

from zones to junctions are equal to the trip generation summation of related zones. The traffic 

values from inductive loops at discharging lanes from junctions to zones represent the trip 

attraction summation. The hourly summation of trips generated and attracted by zones A to K can 

be realized from the corresponding inductive loops over 24 hours on weekdays. 
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5.4.2 Trip distribution 

Trip distribution aims to sort the summation of trip production/attraction from each zone to other 

origin/destination zones to form an O-D matrix. As no prior travel survey information and vehicle 

turning counts data can be available, an initial trip assignment needs to be carried out to 

proportional assign the trips based on the weighted factor before the calibration with values from 

trip generation (De Dios Ortúzar and Willumsen, 2011). The weighted factor used for assigning 

summation production/attraction trips in this research is defined as a product of the number of 

lanes and speed limit of lanes from each approach, which is regarded as an index of road capacity.  

The initial trip assignment estimates the values of the O-D matrix. However, as both origin and 

destination trip summation are known in this research, double proportional assignments would 

result in the trips being over or under-assigned and not consistent with one of the 

origin/destination values. The O-D matrix needs to be calibrated after assignments. The Furness 

model (Furness, 1965) is considered to be the most suitable method in this study to calibrate the 

O-D matrix values. The Furness model is a double-constrained growth factor method so that it can 

execute trip distribution calibration without other information requirements (such as expansion 

ratio in the growth factor model) and the summation of trips can be adjusted to fit both origin 

and destination values (compared to single-constrained model). In this way, the traffic flow 

counts from inductive loops are converted to hourly O-D matrix over 24 hours on weekdays. For 

the isolated junction, 4 zones located in 4 different directions in Figure 5.2(b) are assumed to 

generate and attract traffic volumes to consist of vehicles arriving and discharging from different 

routes. An example of an hourly O-D matrix of 4 zones for the isolated junction is presented in 

Table 5.1. Table 5.2 provides an example of road network O-D matrix results after iterations of 

calibration. 

Table 5. 1 An example of O-D matrix assignment during morning peak period for isolated junction 

Hourly flow demand (pcu) Destination zone 

A B C D 

 

Origin zone 

A - 135 137 244 

B 130 - 205 364 

C 133 207 - 374 

D 222 365 393 - 
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Table 5. 2 An example of O-D matrix assignment during morning peak period for road network after Furness 

model calibration 

Hourly flow demand (pcu) Destination zone 

A B C D E F G H I J K 

 

 

 

 

 

 

Origin zone 

A - 135 137 20 33 20 26 27 16 28 73 

B 130 - 205 30 49 31 39 40 24 42 109 

C 133 207 - 30 50 31 40 41 25 43 112 

D 21 33 34 - 8 5 7 7 4 7 18 

E 30 47 48 7 - 7 9 9 6 9 25 

F 15 25 26 4 6 - 5 5 3 5 14 

G 21 34 35 5 9 5 - 7 4 7 18 

H 30 48 50 7 11 7 9 - 6 9 26 

I 26 40 43 6 11 6 8 8 - 8 22 

J 30 47 47 7 11 7 9 9 6 - 26 

K 57 90 93 13 22 14 18 18 11 19 - 

5.4.3 Mode choice 

The mode choice is to determine the vehicle volumes from the O-D matrix in different vehicle 

types. The UK Department for Transport provides statistics about the ratios of different vehicle 

types in the VEH0104 dataset in 2018 (UK Govt. Dept. Transport, 2018b). The vehicle type 

distributions were also counted from the manual survey to ensure that the statistics are 

consistent with the real vehicular situations in the case study area, which can be found in 

Appendix C. The vehicle types from datasets include passenger cars, buses, LGV, Heavy Goods 

Vehicle (HGV) and Motorcycle (MC). In this section, the evaluation experiments put more 

emphasis on understanding the benefits of person-related indicators from the proposed method 

under passenger car circumstances with different occupancies. The simulation scenarios assume 

that all vehicles on road are passenger vehicles. In the next chapter, bus mode is incorporated 

into the vehicle fleets. Other vehicle types can also be considered with different vehicle models 

and priority levels in future research. 
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5.4.4 Route choice 

In the traditional FSM model, if few alternative routes allow vehicles to travel from origin to 

destination point, the vehicle volume needs to be assigned on these routes following the rules 

such as the shortest path principle. Although there is not only one route that can be found from 

defined origin zones to destination zones in Figure 5.1, the traffic volumes from those branches 

cannot be detected as no inductive loop site locates. In this research, the sketch of isolated 

junction in Figure 5.2 and multiple junctions in Figure 5.6 is adapted to provide the optional 

routes from origin to destination as these approaches are distributed with inductive loops. As a 

result, there are limited ways can be chosen from each origin-destination pair. The traffic volumes 

allocated in each route may not reflect the real states of traffic situations in this area but they are 

the best way to make the traffic flows generated by simulation to be consistent with recorded 

traffic count information from inductive loops. 

5.5 Model calibration and validation 

Traffic modelling guidelines version 4.0 published by DfT (DfT, 2021) suggest GEH values are used 

to calibrate and validate the traffic flows within the model simulation to match traffic counts to an 

acceptable level of accuracy. The GEH statistic is calculated as follows:  

𝐺𝐸𝐻 = √
2(𝐹

𝑠𝑖𝑚
− 𝐹𝑜𝑏𝑣)

2

𝐹𝑠𝑖𝑚 + 𝐹𝑜𝑏𝑣
  (6-1) 

Where 𝐹𝑠𝑖𝑚 is the traffic volumes generated in simulation from the FSM approach and 𝐹𝑜𝑏𝑣 is the 

traffic volumes observed by inductive loops. The model flow counts should satisfy the criteria that 

GEH statistics of more than 85% of the cases should be less than 5%.  

The flow counts in the average level were used to be calibrated in this research. High and low flow 

levels can be adjusted accordingly. The GEH statistics were calculated using hourly flow counts 

obtained from inductive loops and hourly flow generated by the FSM approach over 24 hours. If 

the GEH values fail to satisfy the requirements, the hourly traffic volumes produced by FSM are 

sent back to be recalibrated. This procedure will be repeated until GEH values meet the criteria. 

The results of GEH values are indicated in Figure 5.7. From Figure 5.7 all of the GEH values over 24 

hours are below the 5% criteria baseline, which means that the traffic flows used in the simulation 

are well calibrated to represent the real state traffic flows. 
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Figure 5. 7 GEH values for different hour time periods over 24 hours 

5.6 Junction settings and vehicle parameters 

5.6.1 Stage patterns 

The fixed-time control, actuated control and vehicle-based control using CV data apply a fixed 

stage sequence. The green phases operated in one stage need to follow the phase non-conflicting 

rules. In isolated junction, the stage sequence and phase combinations are observed from the 

survey of the case study. Left-turning, straight movements and dedicated right-turning 

movements in the same direction are combined to form one stage. The stage sequence applied in 

three benchmarking models is graphed in Figure 5.8. For road networks, a traffic manual survey 

gathers the stage sequences of 5 junctions and applies them in simulation experiments, the 

detailed information has been placed in Appendix B. 

 

Figure 5. 8 Stage sequence for isolated junction case study 
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5.6.2 Intergreen time, minimum green time and maximum green time configuration 

The intergreen time is the duration of phase transition to ensure the safety of vehicle movements 

at the junction. The intergreen time duration is derived from the UK government guidelines 

presented in Table 5.3, which is related to the distance from the crossline to probable collision 

points. 

Table 5. 3 Determining intergreen time duration by DfT (DfT, 2006) 

Distance(m) <10 10 – 18 19 - 27 28 – 37 38-46 47-55 56-64 >65 

Intergreen (s) 5 6 7 8 9 10 11 12 

Minimum green time and maximum green time are important parameters in actuated control to 

constraint the green duration for each stage to satisfy queue clearance requirement. The vehicle-

based control using CV data also adopt the configuration settings of minimum and maximum 

green time as it follows fixed stage sequence. The recommended minimum and maximum green 

duration are given by Traffic Signal Timing Manual in Table 5.4. The minimum and maximum 

green time in this research are set to 2 and 10 times intergreen duration.  

Table 5. 4 Typical minimum and maximum green interval durations 

Phase Facility Type Maximum Green (s) Minimum Green (s) 

Through 

Major Arterial (speed limit exceeds 40 mph) 50 to 70 10 to 15 

Major Arterial (speed limit is 40 mph or less) 40 to 60 7 to 15 

Minor Arterial 30 to 50 4 to 10 

Collector, Local, Driveway 20 to 40 2 to 10 

Left Turn Any 15 to 30 2 to 5 

5.6.3 Signal timing parameters  

5.6.3.1 Signal timing parameters for TRANSYT fixed-time control 

Hourly O-D matrix of zones in Table 5.1 and Table 5.2 are adopted as traffic volume data inputs of 

TRANSYT and TRANSYT-Network fixed time optimization. Cycle length is another input parameter 

to decide the green operation duration for each stage. The DfT recommends that the cycle time of 

the fixed time plan should not exceed 120 seconds regularly to prevent drivers from being 

frustrated to wait too long at red lights (DfT, 2006). TRANSYT 16 provides a Cycle Time Optimizer 

function as optional support to the difficult task of selecting cycle time. Cycle Time Optimizer 
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provides information for a wide range of cycle length selections and figures out the relative 

results of the Performance Index involving practical reserve capacity or total delay. The cycle 

length optimization results for the isolated junction are graphed as an example in Figure 4.4. 

 

Figure 5. 9 Cycle time optimization result for isolated junction with cycle length from 60s to 180s with a 

step of 10s 

 

Figure 5.9 indicates that the Performance Index decreases as the cycle length increases and there 

is no obvious decline when the cycle length is longer than 120 seconds. The cycle length of 120 

seconds is selected for TRANSYT signal plans. The optimized signal timing plans are produced in 

Table 5.5. 

 

Table 5. 5 TRANSYT signal timing plans for isolated junction (Stage ID are shown in Figure 5.8) 

Stage ID Stage start (s) Stage end (s) Duration (s) 

4 0 15 15 

1 21 44 23 

2 50 83 33 

3 89 114 25 

 

5.6.3.2 Signal timing parameters for actuated signal control ILACA 

Some parameters for control strategies responsive to traffic flow should be decided based on 

junction layouts to operate the algorithms. For instance, the start time loss at the start of green 
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time and saturated flow for each lane in the isolated junction is observed to be 1.8s and 1400 

veh/h separately in this junction. The 1400 veh/h saturated flow equals to flow of 0.38 veh/s, 

therefore the time needed to clear 1 vehicle in the queue is estimated to be 2.6s. For the 

inductive loop actuated control algorithm (ILACA), each approach lane installs inductive loops at 

6m and 18m from their stop lines (Highways Agency, 2002) so that the vehicle flows can be 

detected. At the actuated control decision point (see figure 6.2), if vehicle flow is greater than 

80% of the saturated flow (0.8×1400veh/h = 1120veh/h = 0.31veh/s →≈3s/veh), the vehicle can 

be detected less than 3s from the last detection time between detectors. Thus the unit extension 

time will be extended for this lane corresponding to high vehicle demand. The typical value of 

extension time is suggested to be a range from 0.1s to 2s in (Koonce et al., 2008), so 1s extension 

time will be accepted here to related to the time step. 

5.6.4 Vehicular parameters for cars and buses 

As claimed in Chapter 3, Krauß car-following model is the most appropriate model to reproduce 

the vehicle behaviours in this project. The Krauß car-following model parameters for passenger 

cars and buses are described in Table 5.6. 

Table 5. 6 The Krauß car-following model parameters for passenger cars and buses (DLR, 2018) 

Description Unit Value 

Vehicle type - Passenger car Bus 

Maximum acceleration m/s2 2.6 1.0 

Maximum deceleration m/s2 4.5 3.5 

Vehicle length m 5.0 12.0 

Vehicle min gap m 2.5 2.5 

Driver imperfect value - 0.5 0.5 

Driver reaction time s 1.0 1.0 

Maximum Speed  m/s 50 23.6 

 

5.7 Passenger occupancy estimation 

Although there are no specific distribution proportions of different car occupancies released from 

UK DfT or detailed survey information from the case study area, the number of passengers in a car 

(excluding drivers so that the value can start from 0) can be assumed to follow Poisson 

distribution when the number of independent trials is large and the probability of occurrence in 
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one experiment is very small. The mean values of vehicle occupancy at different times of day on 

weekdays are provided in Table 2.3. In different hour periods, the corresponding mean vehicle 

occupancy value is considered as the mean occupancy of passenger vehicles in the case study 

area. Given the mean value, Table 5.7 provides an example of probability estimation for 

passenger cars with different occupancy levels from 1 to 4 assuming they follow the Poisson 

distribution. For each new generated vehicle, the probabilities of the number of people inside it 

can be decided in Table 5.7. 

Table 5. 7 Different probabilities of cars occupancies from 1 to 4 in a vehicle assumed Poisson distribution 

with a mean of 1.6 

Car occupancy 0 1 2 3 

Probability 54% 33% 10% 3% 

 

Similarly, the bus occupancies can be assumed to follow the Poisson distribution. The distribution 

of different vehicle types in the VEH0104 dataset provided by DfT can be used to determine the 

model choice in the traditional FSM method (UK Govt. Dept. Transport, 2018b). The statistics 

from the dataset are compared with the results collected from the manual survey in the case 

study location to make sure that the statistics are consistent with the real state, which can be 

seen in Appendix C. In this research, two vehicle modes, passenger cars and buses are considered. 

As there is no statistic for vehicle type distribution under different hour periods, the traffic 

volumes of buses are calculated by total traffic volume multiples the summation percentage of 

bus distribution to determine the bus flows in different periods. 

  
From average vehicle occupancies sorted by vehicle types provided by DfT in Table 2.3, the 

average bus occupancy (with driver) is 13.2 in 2000 and the average growth rate until 2036 is 0 

(UK Govt. Dept. Transport, 2021b). In this research, it is assumed that the average bus occupancy 

(with driver) in the case study area is 13.2 and the distribution of passengers follows the Poisson 

distribution. The bus capacity is determined by the local bus operator National Express West 

Midlands in the case study area. The buses consist of 30% single-decker buses with 45 passenger 

capacity (Alexander Dennis, 2019a) and 70% double-decker buses with 86 passenger capacity 

(Alexander Dennis, 2019b). The estimations of different occupancy excluding drivers are listed in 

Table 5.8 as follows. 
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Table 5. 8 Different probabilities of buses with occupancy from 1 to capacity assumed Poisson distribution 

with a mean of 13.2 

Bus occupancy 1 - 5 6 - 10 11 - 15 16 - 20 21 - Capacity 

Ratio 1% 22% 53% 22% 2% 

 

As bus occupancy values are varied, the distribution ratios of different passenger numbers are 

calculated in groups with a step of 5 passengers. The bus occupancy number in each group is 

assigned uniformly to form the ratio of the corresponding group to estimate bus occupancy. 

5.8 Evaluation experiments 

To validate the performance of PerSiCon-Network, the road networks and generated traffic flows 

of the case study in the Newtown area of Birmingham were implemented in SUMO. Table 3.4 

provides an evaluation outline. To evaluate the performance in different flow demand levels, the 

proposed algorithm was simulated in three kinds of flow levels: low, average and high. The low 

and high flow levels are defined as ±25% of average hourly flow levels. The car occupancy 

distributions and car-following model parameters are described in the above sections. Three 

benchmarking models: TRANSYT, ILACA and VehSiCon and their coordination versions were 

programmed and operated in simulation.  

The penetration rate, which is the rate of CVs to non-CV cars, is set to vary between 10% and 

100% with a step of 10% in simulation to test the performance of the proposed algorithm to 

change to CV penetration rate. The communication range is set to be 250m and situations of data 

measurement and transmission processes are assumed to be perfect (no packet loss, data 

measurement error and data transmission delay). Meanwhile, different planning duration values 

will be adopted in the PerSiCon-Bus and PerSiCon-Network evaluation. The planning duration is 

incremented from 10s to 60s with a step of 10s to test the influences of the planning horizon 

towards PerSiCon-Bus and PerSiCon-Network. Besides the various scenarios to different traffic 

flows, prediction horizons and CV penetration rates, a range of bus occupancy levels are tested in 

simulation, with a step of 10 from 10 to 50 and with a step of 2 below 10, to analyse the 

sensitivity of the proposed algorithm to bus occupancy. The different values of weighted factor 𝛿 

from 0 to 1 in Equation (3-2) are adopted in PerSiCon-Junction to observe the changes in 

performance. The performance of buses and passenger cars are also expressed respectively to 

understand how the proposed algorithm works in the mixture of vehicular environments. 

Each experimental scenario was operated 30 times with different random seeds to avoid the 

influences of randomness on generated traffic demands and occupancy sequences. The 
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experiments were carried out on a laptop with Windows 10 system and Intel Core i7 CPU (2.9 

GHz) and computational cost is recorded for each simulation. The average computation time for 

each time step (1s decision step and 29s execution step for every 30s) and each decision point is 

0.174s and 0.378s for isolated junction experiments, 0.204s and 0.531s respectively for road 

network experiments, both of which are less than 1s. 

In order to identify whether there are significant differences in PerSiCon-Network and 

benchmarking models, the hypothesis tests are carried out between mean person-related values 

of them. As all of the evaluation results collected from the proposed method and benchmarking 

models are samples and they may not reflect the actual mean values of signal controls, two 

sample T-test hypothesis tests are adopted for this research in the case that the actual mean 

values are unknown and cannot be captured. 

5.9 Results and discussions for isolated junction case study 

The proposed person-based controls PerSiCon-Bus and PerSiCon-Network are operated in isolated 

junction and road networks respectively to validate the person-based control effectiveness in 

different traffic environments. This section presents and analyses the results of PerSiCon-Bus 

which is evaluated in the isolated junction case study, including general results of PerSiCon-Bus in 

100% CV penetration rates and performance to different sensitivity factors. 

5.9.1 General results 

The results in Table 5.9 show the average person delays and average vehicle delays sorted by 

occupancy levels from PerSiCon-Bus and comparisons of three benchmarking models. Table 5.10 

presents the average person number of stops and average vehicle number of stops of PerSiCon-

Bus and three reference models. The average vehicle-related values: average vehicle delay and 

average vehicle number of stops, divided by the total number of people and number of vehicles 

are also summarized in two tables. To illustrate the priority policies and actual effects of the 

proposed approach PerSiCon-Bus to different occupancy level vehicles, the performance of 

evaluated vehicles in different signal control simulations are recorded separately by different 

occupancy levels. The numbers in the last two columns in Tables 5.9 and 5.10 represent the 

collected output data of average person/vehicle delay and average person/vehicle number of 

stops values per person. Meanwhile, the data in the first four columns present person/vehicle 

delay and stop values per person categorized by occupancies. All values are collected under 100% 

CV penetration rate. 
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Tables 5.11 and 5.12 illustrate the p-values results of two sample T-test carried out between 

outputs collected from PerSiCon-Bus and benchmarking models in different demand levels in a 

95% confidence degree. In each experiment, if the p-value is less than 0.05, one group of data is 

identified to have a significant difference compared to another group of data. The hypothesis test 

results are contributed to verify whether PerSiCon-Bus achieves significant improvements or not 

against another reference signal control method. 

The general results are discussed in further detail in the following part of Section 5.9.1. 

Table 5. 9 Comparison of average passenger delay (s/per) and average vehicle delay (s/veh) of the proposed 

algorithm and benchmarking algorithms under three flow scenarios in 100% CVs penetration rate with a 

mixture of cars and buses 

Flow 
level 

Control 
methods 

Cars 
with 4 
occups 

Cars 
with 3 
occups 

Cars 
with 2 
occups 

Cars 
with 1 
occup 

Buses 
with 30 
occups 

Average 
person 
delay 

Average 
vehicle 
delay 

Low TRANSYT 104.39 103.67 102.92 103.15 103.81 103.29 103.62 
 ILACA 80.13 81.12 81.73 80.72 82.41 81.08 81.38 
 VehSiCon 55.25 56.02 54.21 56.24 54.31 55.23 55.38 
 PerSiCon-

Bus 
35.31 38.47 43.63 72.05 20.21 49.81 58.87 

Average TRANSYT 110.05 112.37 111.84 111.16 111.04 111.56 111.47 
 ILACA 87.25 88.82 88.56 88.03 87.92 88.31 88.28 
 VehSiCon 67.04 67.82 66.73 68.32 67.36 66.98 67.43 
 PerSiCon-

Bus 
45.62 51.93 56.37 86.04 22.46 62.37 71.48 

High TRANSYT 130.93 128.83 131.85 129.48 130.42 130.44 130.34 
 ILACA 107.15 107.84 108.94 108.64 108.72 108.52 108.39 
 VehSiCon 83.21 84.02 84.72 82.34 83.01 83.66 83.56 
 PerSiCon-

Bus 
62.24 67.13 72.45 101.67 32.57 77.94 87.48 

 

Table 5. 10 Comparison of average passenger stop (num/per) and average vehicle stop (num/veh) of the 

proposed algorithm and benchmarking algorithms under three flow scenarios in 100% CVs penetration rate 

with a mixture of cars and buses 

Flow 
level 

Control 
methods 

Cars 
with 4 
occups 

Cars 
with 3 
occups 

Cars 
with 2 
occups 

Cars 
with 1 
occup 

Buses 
with 30 
occups 

Average 
passenger 

delay 

Average 
vehicle 
delay 

Low TRANSYT 1.21 1.25 1.24 1.23 1.24 1.24 1.23 
 ILACA 0.92 0.97 0.95 0.98 0.94 0.96 0.96 
 VehSiCon 0.58 0.55 0.56 0.56 0.57 0.56 0.56 
 PerSiCon-

Bus 
0.35 0.42 0.48 0.73 0.19 0.50 0.59 

Average TRANSYT 1.43 1.40 1.40 1.44 1.45 1.40 1.41 
 ILACA 1.11 1.16 1.12 1.17 1.13 1.15 1.14 
 VehSiCon 0.66 0.64 0.66 0.67 0.65 0.66 0.66 
 PerSiCon-

Bus 
0.45 0.48 0.57 0.84 0.29 0.61 0.70 

High TRANSYT 1.63 1.60 1.60 1.64 1.65 1.60 1.61 
 ILACA 1.39 1.34 1.36 1.38 1.36 1.36 1.37 
 VehSiCon 0.93 0.95 0.91 0.90 0.91 0.91 0.92 
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 PerSiCon-
Bus 

0.60 0.65 0.69 1.29 0.35 0.86 0.96 

Table 5. 11 P-values in average person delay and average vehicle delay comparisons for PerSiCon-Bus and 

three benchmarking models in different traffic flow demands with a mixture of cars and buses in 100% CV 

penetration rate and 30s prediction horizon 

Average person  

delay comparison 

P-values Average vehicle  

delay comparison 

P-values 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

Low 0.000 0.000 0.004 Low 0.000 0.000 0.043 

Average 0.000 0.000 0.010 Average 0.000 0.000 0.018 

High 0.000 0.000 0.003 High 0.000 0.000 0.024 

 

Table 5. 12 P-values in average person stop and average vehicle stop comparisons for PerSiCon-Bus and 

three benchmarking models in different traffic flow demands with a mixture of cars and buses in 100% CV 

penetration rate and 30s prediction horizon 

Average person  

stop comparison 

P-values Average vehicle  

stop comparison 

P-values 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

Low 0.000 0.000 0.013 Low 0.000 0.000 0.027 

Average 0.000 0.000 0.025 Average 0.000 0.000 0.047 

High 0.000 0.000 0.017 High 0.000 0.000 0.032 

 

It can be found from Table 5.9 that the proposed PerSiCon-Bus reduces 40.2% - 51.8%, 28.2% - 

38.6% and 6.8% - 9.8% of average passenger delay of all vehicles compared to the TRANSYT, ILACA 

and VehSiCon benchmark algorithms in the vehicular environments under three flow scenarios. 

Table 5.10 demonstrates similar reductions of average passenger stop for the proposed 

algorithms against the benchmark algorithms, which are 46.3% - 59.7%, 36.8% - 47.9% and 5.5% - 

10.7% respectively. Meanwhile, the average vehicle delay and average vehicle stop of the 

proposed algorithm also is not heavily degraded in each scenario even if VehSiCon is selected as a 

baseline. Although Table 5.11 and Table 5.12 show significant differences in average vehicle delay 

and average vehicle stop of PerSiCon-Bus compared to VehSiCon, the average vehicle delay and 

stop of the proposed algorithm are only 4.7% - 6.3% and 4.3% - 6.1% higher than those of 

VehSiCon. The signal control methods using CV data achieve fewer average person delays and 

average vehicle stops, as CV data inputs can provide a more accurate estimation of vehicle 
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crossing time than infrastructure sensors such as inductive loops or pre-determined off-line signal 

optimization. The higher average delay and stop in ILACA can be attributed to an imprecise 

estimation of road conditions, queue length discharging time, stage switching and green 

extension by inductive loop sensors. The detectors in ILACA can partially react to flow demand 

and adjustments for signal plans are not as accurate as VehSiCon and PerSiCon-Bus in the absence 

of vehicle instantaneous trajectories from CVs, resulting in a higher frequency of mode switching 

between queuing and discharging statuses to cause more average stops. 

The results indicate that the application of connected vehicle technology is more beneficial to 

road network signal control than inductive loops under 100% penetration rate situation. The 

proposed PerSiCon-Bus achieves obvious average person delay reductions even compared to 

VehSiCon, which reflects the effects of the proposed person-based control algorithm in this 

project. The P-values results from hypothesis tests in Table 5.11 and Table 5.12 also identify the 

improvements of the proposed PerSiCon-Bus on average person delay and average person stop. 

Table 5.11 and Table 5.12 illustrate that the PerSiCon-Bus has significant differences in average 

person delay and average person stop in high, average and low traffic demand scenarios against 

TRANSYT, VehSiCon, where the P-values results are all below 0.05 at 95% confidence level. 

Among three different traffic demand levels, PerSiCon-Bus achieves the highest average person 

delay and average person stop reductions against three benchmarking models when the traffic 

demand level is low. On the contrary, PerSiCon-Bus reduce the average person's delay and stop at 

minimal degrees when the traffic demand level is high. This is because more vehicles arrive at the 

junction with dynamic occupancy level combinations when traffic demand is higher and PerSiCon-

Bus have to first give priority to some low occupancy level vehicles before the vehicles with high 

occupancy levels. For instance, in high-level traffic demands, 1-occupancy vehicles are more likely 

to be stopped before 4-occupancy vehicles, so 4-occupancy vehicles can only be discharged after 

the green light is given for 1-occupancy vehicles. Therefore, high flow level influences the 

performance of PerSiCon-Bus to a certain extent. 

More specifically, it can be observed from Table 5.9 and Table 5.10 that the average delay and 

stop of high-occupancy cars (cars with 2, 3 or 4 occupants) and buses are significantly reduced 

compared to the summations of average passenger delay. In terms of cars with 4 occupants and 

buses, the average delays of them are 25.2% - 36.1% and 60.8% - 66.7% less than those in the 

vehicle-based approach VehSiCon using CVs data to minimise vehicle delay in all cases. The 

average person stops of them are also significantly less than those in VehSiCon. However, the 

average delay and stop of 1-occupancy vehicles are 23.5% - 28.1% and 25.4% - 43.3% larger than 

those in VehSiCon. As expected, the reason is that the proposed algorithm reduces delays of high-
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occupancy vehicles and scarifies the travel time of 1-occupancy vehicles through more flexible 

signal timing plans in 8-phases junction to reduce the average delay of all drivers and passengers. 

5.9.2 Sensitivity analysis to CV penetration rate 

In order to understand how the proposed PerSiCon-Network performs under a variety of mixture 

vehicle environments of conventional vehicles and CVs, the sensitivity analysis experiments are 

tested for different approaches. Figure 5.10 illustrates sensitivity test results of average delays 

(Figure 5.10 (a), (c) and (e) for average person delays and Figure 5.11 (b), (d) and (f) for average 

vehicle delays) respectively of different controls from 10% to 100% CV penetration rate with a 

step of 10%. Figure 5.11 illustrates how the proposed algorithm and benchmarking models 

change with CV penetration rates (Figure 5.11 (a), (c) and (e) for average person stop and Figure 

5.11 (b), (d) and (f) for average vehicle stop) assuming situations of all passenger cars. Table 5.13 - 

Table 5.16 are hypothesis test results for average person/vehicle delays and stops in different CV 

penetration rate scenarios respectively. 

The plots in Figure 5.10 show similar variation trends of average person/vehicle delays among 

signal controls using CV data under three traffic flow levels. The average person/vehicle delays of 

signal controls using CV data (VehSiCon and PerSiCon-Bus) increase as the CV penetration rate 

decreases regardless of their objectives or signal plan flexibilities. The average person/vehicle 

delays of the connected control methods perform worse than ILACA when the CV penetration 

rate is less than 50%, and perform worse than TRANSYT when the CV penetration rate is less than 

30%. Compared to VehSiCon, the advantage of reducing passenger delay in the proposed 

algorithm is gradually reduced by reducing the CV penetration rate. This can be proved by the 

hypothesis test results in Tables 5.13 and 5.14. The average person/vehicle delays of PerSiCon-Bus 

are not significantly different to those of VehSiCon when the CV penetration rate decrease to 60% 

- 80%. Figure 5.11, Table 5.15 and 5.16 illustrate that there are similar influences on trends of 

average passenger/vehicle stops in Figure 5.10, Table 5.13 and 5.14 of all operational algorithms 

under three flow levels. The reason is that the gradual absence of CVs reduces the data sources of 

signal optimization algorithms using CV data, making them cannot realize the entire vehicle 

situation at multiple junctions. As the CV penetration rate decreases, VehSiCon/PerSiCon-Bus can 

only acquire part of vehicular information. The optimization outputs of their algorithms cannot 

reach the perfect objective function targets of minimising person/vehicle delay. The values of 

TRANSYT and ILACA remain the same as they do not rely on the information sent from CVs.  
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Figure 5. 10 Comparison of average passenger delay (s/per) and average vehicle delay (s/veh) of proposed 

algorithm PerSiCon-Bus and benchmarking algorithms in isolated junction under variety CV penetration 

rates and three flow levels 

Table 5. 13 P-values in average person delay comparison for PerSiCon-Bus and three benchmarking models 

in isolated junction in different traffic flow demands and different CV penetration rates 

 P-values for average person delay 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

100% 0.000 0.000 0.004 0.000 0.000 0.010 0.000 0.000 0.003 

90% 0.000 0.000 0.009 0.000 0.000 0.022 0.000 0.000 0.009 

80% 0.000 0.000 0.016 0.000 0.000 0.024 0.000 0.000 0.008 

70% 0.000 0.000 0.027 0.000 0.000 0.037 0.000 0.000 0.025 

60% 0.000 0.000 0.069 0.000 0.418 0.072 0.000 0.046 0.044 

50% 0.000 0.143 0.082 0.000 0.000 0.115 0.000 0.000 0.735 
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40% 0.000 0.000 0.175 0.291 0.000 0.893 0.375 0.000 0.254 

30% 0.083 0.000 0.225 0.000 0.000 0.346 0.000 0.000 0.437 

20% 0.000 0.000 0.417 0.000 0.000 0.842 0.000 0.000 0.577 

10% 0.000 0.000 0.258 0.000 0.000 0.618 0.000 0.000 0.782 

 

Table 5. 14 P-values in average vehicle delay comparison for PerSiCon-Bus and three benchmarking models 

in isolated junction in different traffic flow demands and different CV penetration rates 

 P-values for average vehicle delay 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

100% 0.000 0.000 0.043 0.000 0.000 0.018 0.000 0.000 0.024 

90% 0.000 0.000 0.031 0.000 0.000 0.029 0.000 0.000 0.029 

80% 0.000 0.000 0.045 0.000 0.000 0.007 0.000 0.000 0.037 

70% 0.000 0.000 0.058 0.000 0.048 0.034 0.000 0.041 0.054 

60% 0.000 0.046 0.074 0.000 0.210 0.096 0.000 0.067 0.133 

50% 0.000 0.008 0.094 0.000 0.000 0.085 0.000 0.000 0.094 

40% 0.000 0.000 0.146 0.006 0.000 0.269 0.005 0.000 0.865 

30% 0.001 0.000 0.325 0.000 0.000 0.168 0.000 0.000 0.644 

20% 0.000 0.000 0.490 0.000 0.000 0.641 0.000 0.000 0.429 

10% 0.000 0.000 0.272 0.000 0.000 0.658 0.000 0.000 0.718 

From Table 5.13, PerSiCon-Bus has significant differences in average person delay against 

VehSiCon when the CV penetration rate is higher than or equal to 70% in low/average traffic flow 

scenarios and 60% in high traffic flow scenarios at a 95% confidence level. Table 5.14 illustrates 

that the average vehicle delays of PerSiCon-Bus and VehSiCon only have significant differences 

when the CV penetration rate is higher than or equal to 80% in low traffic demand levels and 70% 

in average/high demand levels. Tables 5.15 and Table 5.16 provide similar dynamics about the 

average person/vehicle stop performance of these two controls. The P-values results for average 

person delay indicate high-level requirements of CV penetration rate for PerSiCon-Bus to achieve 

the obvious advantages of reducing average person delay, 60% - 80% against vehicle-based 

control using CV data. This is because fewer CV penetration rate makes signal controllers have 
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less vehicle environment realization and execute signal timing plans less precise to the objective 

functions. The signal timing plans are not optimal in PerSiCon-Bus/VehSiCon so they are less likely 

to achieve significant improvements in reducing average person/vehicle delays and stops. 

In most cases, the performance of PerSiCon-Bus in Table 5.13 – Table 5.16 are significantly 

different to those of TRANSYT and ILACA. However, there are still a few special situations where 

p-values are higher than 0.05, for instance, 30% CV penetration rate compared to TRANSYT and 

50% CV penetration rate compared to ILACA in low demand level in Table 5.13. The reason is that 

KPIs of PerSiCon-Bus increase as the CV penetration rate decreases and the rising values are very 

close to the unchanged values in TRANSYT or ILACA at a CV penetration rate. In this case, the 

mean difference is a minor value, which leads to a large p-value as it is a critical component to 

calculate p-values. 

 

Figure 5. 11 Comparison of average passenger stop (num/per) and average vehicle stop (num/veh) of 

proposed algorithm PerSiCon-Bus and benchmarking algorithms in isolated junction under variety CV 

penetration rates and three flow levels 
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Table 5. 15 P-values in average person stop comparison for PerSiCon-Bus and three benchmarking models 

in isolated junction in different traffic flow demands and different CV penetration rates 

 P-values for average person stop 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

100% 0.000 0.000 0.013 0.000 0.000 0.025 0.000 0.000 0.017 

90% 0.000 0.000 0.016 0.000 0.000 0.031 0.000 0.000 0.030 

80% 0.000 0.000 0.024 0.000 0.000 0.027 0.000 0.000 0.028 

70% 0.000 0.000 0.037 0.000 0.000 0.038 0.000 0.000 0.044 

60% 0.000 0.015 0.048 0.000 0.000 0.071 0.000 0.040 0.537 

50% 0.000 0.000 0.082 0.000 0.000 0.211 0.000 0.000 0.199 

40% 0.000 0.000 0.249 0.000 0.000 0.376 0.000 0.000 0.582 

30% 0.000 0.000 0.913 0.000 0.000 0.240 0.000 0.000 0.625 

20% 0.000 0.000 0.190 0.000 0.000 0.558 0.000 0.000 0.817 

10% 0.000 0.000 0.572 0.000 0.000 0.362 0.000 0.000 0.762 

 

Table 5. 16 P-values in average vehicle stop comparison for PerSiCon-Bus and three benchmarking models 

in isolated junction in different traffic flow demands and different CV penetration rates 

 P-values for average vehicle stop 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

100% 0.000 0.000 0.027 0.000 0.000 0.047 0.000 0.000 0.032 

90% 0.000 0.000 0.042 0.000 0.000 0.035 0.000 0.000 0.005 

80% 0.000 0.000 0.039 0.000 0.000 0.041 0.000 0.000 0.012 

70% 0.000 0.000 0.119 0.000 0.000 0.076 0.000 0.036 0.038 

60% 0.000 0.871 0.378 0.000 0.000 0.213 0.000 0.000 0.083 

50% 0.000 0.000 0.192 0.000 0.000 0.156 0.361 0.000 0.237 

40% 0.000 0.000 0.485 0.000 0.003 0.712 0.000 0.000 0.411 
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30% 0.000 0.000 0.283 0.000 0.000 0.368 0.000 0.000 0.394 

20% 0.000 0.000 0.423 0.000 0.000 0.871 0.000 0.000 0.347 

10% 0.000 0.000 0.694 0.000 0.000 0.536 0.000 0.000 0.514 

 

5.9.3 Changes to prediction horizons 

As explained above, the suitable planning horizon for the proposed PerSiCon-Bus is uncertain. 

Therefore, it is essential to make a sensitivity analysis of the performance of the developed 

approach under a group of different predictive horizons. Figure 5.12 and Table 5.13 are sensitivity 

test results of average person/vehicle delay and stop values in different DP prediction horizons 

(10s, 20s, 30s, 40s, 50s, 60s) in different signal control methods. Table 5.17 – Table 5.20 are 

hypothesis test results. 

 

Figure 5. 12 Line charts of average person delay (s/per)  and average vehicle delay (s/veh) of proposed 

algorithm and benchmarking algorithms in isolated junction under variety predictive horizons (s) and three 

flow levels. CV penetration rate is assumed to be 100% 
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Table 5. 17 P-values in average person delay comparison for PerSiCon-Bus and three benchmarking 

algorithms in isolated junction in different traffic flow demands and different prediction horizons (100% CV 

penetration rate) 

 P-values for average person delay 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

10s 0.000 0.000 0.386 0.000 0.000 0.911 0.000 0.000 0.176 

20s 0.000 0.015 0.013 0.000 0.000 0.004 0.000 0.000 0.006 

30s 0.000 0.000 0.004 0.000 0.000 0.010 0.000 0.000 0.003 

40s 0.000 0.000 0.018 0.000 0.000 0.019 0.000 0.000 0.008 

50s 0.000 0.000 0.010 0.000 0.000 0.008 0.000 0.000 0.011 

60s 0.000 0.000 0.014 0.000 0.000 0.017 0.000 0.000 0.021 

Table 5. 18 P-values in average vehicle delay comparison for PerSiCon-Bus and three benchmarking 

algorithms in isolated junction in different traffic flow demands and different prediction horizons (100% CV 

penetration rate) 

 P-values for average vehicle delay 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

10s 0.000 0.000 0.259 0.000 0.000 0.397 0.000 0.000 0.271 

20s 0.000 0.000 0.032 0.007 0.000 0.034 0.000 0.000 0.027 

30s 0.000 0.000 0.043 0.000 0.000 0.018 0.000 0.000 0.024 

40s 0.000 0.000 0.037 0.000 0.000 0.026 0.000 0.000 0.035 

50s 0.000 0.000 0.029 0.000 0.967 0.015 0.000 0.643 0.018 

60s 0.000 0.421 0.040 0.000 0.000 0.022 0.814 0.000 0.014 
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Figure 5. 13 Line charts of average person stop (num/per)  and average vehicle stop (num/veh) of proposed 

algorithm and benchmarking algorithms in isolated junction under variety predictive horizons (s) and three 

flow levels. CV penetration rate is assumed to be 100% 

Table 5. 19 P-values in average person stop comparison for PerSiCon-Bus and three benchmarking 

algorithms in isolated junction in different traffic flow demands and different prediction horizons (100% CV 

penetration rate) 

 P-values for average person stop 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

10s 0.000 0.000 0.095 0.000 0.000 0.087 0.000 0.000 0.213 

20s 0.000 0.000 0.002 0.027 0.000 0.021 0.000 0.000 0.005 

30s 0.000 0.000 0.013 0.000 0.000 0.025 0.000 0.000 0.017 

40s 0.000 0.000 0.022 0.000 0.000 0.016 0.000 0.000 0.026 

50s 0.000 0.000 0.016 0.000 0.000 0.028 0.000 0.045 0.013 
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60s 0.000 0.000 0.009 0.000 0.007 0.031 0.036 0.000 0.008 

Table 5. 20 P-values in average vehicle stop comparison for PerSiCon-Bus and three benchmarking 

algorithms in isolated junction in different traffic flow demands and different prediction horizons (100% CV 

penetration rate) 

 P-values for average vehicle stop 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

10s 0.000 0.000 0.096 0.000 0.000 0.468 0.000 0.000 0.104 

20s 0.000 0.000 0.021 0.000 0.000 0.031 0.000 0.000 0.019 

30s 0.000 0.000 0.027 0.000 0.000 0.047 0.000 0.000 0.032 

40s 0.000 0.000 0.026 0.000 0.000 0.037 0.000 0.000 0.026 

50s 0.000 0.000 0.012 0.000 0.000 0.020 0.000 0.025 0.017 

60s 0.000 0.288 0.009 0.419 0.000 0.017 0.001 0.000 0.012 

From Figures 5.12 and 5.13, the performance of person/vehicle delay and stop in PerSiCon-

Bus/VehSiCon present a similar tendency. As seen in Figures 5.12 and 5.13, there is a visible 

trough located at the planning duration 30s for the rolling horizon approach in the proposed 

PerSiCon-Bus/VehSiCon. The performance of TRANSYT and ILACA keep unchanged in different 

prediction horizon scenarios as the rolling horizon approach is only adopted in PerSiCon-

Bus/VehSiCon. The average person/vehicle delays and stops of PerSiCon-Bus/VehSiCon rapidly 

decrease from 10s, 20s to 30s horizon, and slightly increase from 30s to 60s duration at a step of 

10s. The results indicate that setting the planning horizon too short significantly degrades the 

performance of NPerSiCon-Network/ PerSiCon-Network in terms of people's number of stops due 

to limited signal plan choices and biased function values. The blanking periods of intergreen 

interval and start-up loss time occupying a considerable part of too short a planning horizon leads 

to no benefits to people discharging. The results are heavily biased when determining the traffic 

signal executions as signal schemes are generated based on the highest value function with rarely 

vehicles can be discharged, regardless of effects on signal phase switching for following saturated 

flows. The effects on cumulative deviation in long-time vehicle discharging prediction (40s, 50s, 

60s) are comparable to less negative influences on the performance of ILACA. 30s are suggested 

to be selected as planning horizon and signal scheme operation cycles combing objective 

understanding of value function and accurate vehicle travel prediction in the group of six planning 

horizon choices. 
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Table 5.17 – Table 5.20 indicate the similar tendency of p-values of average person/vehicle delay 

and stop in different planning horizon plans in PerSiCon-Bus compared to reference models. 

PerSiCon-Bus presents significant improvements against VehSiCon when the prediction horizon is 

higher than or equal to 20s in all cases. However, when the prediction horizon is 10s, all of the p-

values are above 0.05. The reason has been claimed above that 10s are not sufficient for 

implementing optimal solutions of PerSiCon-Bus/VehSiCon, resulting in a heavily degraded of 

their performance. Similar to the abnormal p-values in Section 5.9.3, there are also a few special 

cases where the p-values are higher than 0.05s with comparisons of TRANSYT or ILACA. For 

instance, 60s prediction horizon in low demand levels in Table 5.18 when compare to ILACA. The 

reason is also that the increasing mean values of average delay and stop are very close to the 

values in TRANSYT and ILACA in some special cases and the minor mean differences result in high 

p-values. 

5.9.4 Changes to accumulation time weighted factors 

Figures 5.14 and 5.15 illustrate the performance of average person/vehicle delay and stop of 

PerSiCon-Bus under different numbers of accumulation time weighted factor 𝛿 from 0 to 1 in 

Equation (3-2). Table 5.21 – Table 5.24 are hypothesis test results of PerSiCon-Bus and reference 

models in different accumulation time weighted factors.  From Figures 5.14 and 5.15 the 

performance of PerSiCon-Bus present a similar tendency. The average person/vehicle delay and 

stop of PerSiCon-Bus/VehSiCon increase as the weighted factor 𝛿 rises. Figures 5.14 and 5.15 (a), 

(c) and (e) illustrate that the change ranges of average person delay and stop of PerSiCon-Bus are 

higher than those of VehSiCon.  

On the contrary, the change ranges of average vehicle delay and stop of PerSiCon-Bus are lower 

than those of VehSiCon according to Figures 5.14 and 5.15 (b), (d) and (f). This is because the 

PerSiCon-Bus algorithm provides more right of ways to those low occupancy vehicles with high 

accumulation time and scarifies the crossing chances of high occupancy vehicles when the 

accumulation time weighted factor is high. The changes in accumulation time weighted factor also 

make negative influences the decision-making process of VehSiCon. However, the negative 

influences on VehSiCon are less than those on PerSiCon-Bus as all of the vehicles have the same 

priority levels.  



Chapter 5 

173 

 

Figure 5. 14 Line charts of average person delay (s/per)  and average vehicle delay (s/veh) of proposed 

algorithm and benchmarking algorithms in isolated junction under variety accumulation time weighted 

factors and three flow levels. CV penetration rate is assumed to be 100% 

Table 5. 21 P-values in average person delay comparison for PerSiCon-Bus and three benchmarking 

algorithms in isolated junction in different traffic flow demands and different accumulation time weighted 

factors (100% CV penetration rate) 

 P-values for average person delay 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.1 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 

0.2 0.000 0.000 0.002 0.000 0.000 0.003 0.000 0.000 0.002 

0.3 0.000 0.000 0.007 0.000 0.000 0.012 0.000 0.000 0.005 
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0.4 0.000 0.000 0.009 0.000 0.000 0.013 0.000 0.000 0.009 

0.5 0.000 0.000 0.004 0.000 0.000 0.010 0.000 0.000 0.003 

0.6 0.000 0.000 0.023 0.000 0.000 0.024 0.000 0.000 0.029 

0.7 0.000 0.000 0.031 0.000 0.000 0.028 0.000 0.000 0.038 

0.8 0.000 0.000 0.038 0.000 0.000 0.037 0.000 0.000 0.034 

0.9 0.000 0.000 0.044 0.000 0.000 0.043 0.000 0.000 0.043 

1.0 0.000 0.000 0.063 0.000 0.000 0.059 0.000 0.000 0.051 

Table 5. 22 P-values in average vehicle delay comparison for PerSiCon-Bus and three benchmarking 

algorithms in isolated junction in different traffic flow demands and different accumulation time weighted 

factors (100% CV penetration rate) 

 P-values for average vehicle delay 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

0 0.000 0.000 0.103 0.000 0.000 0.095 0.000 0.000 0.175 

0.1 0.000 0.000 0.073 0.000 0.000 0.084 0.000 0.000 0.080 

0.2 0.000 0.000 0.082 0.000 0.000 0.069 0.000 0.000 0.059 

0.3 0.000 0.000 0.057 0.000 0.000 0.061 0.000 0.000 0.049 

0.4 0.000 0.000 0.044 0.000 0.000 0.035 0.000 0.000 0.017 

0.5 0.000 0.000 0.043 0.000 0.000 0.018 0.000 0.000 0.024 

0.6 0.000 0.000 0.030 0.000 0.000 0.026 0.000 0.000 0.019 

0.7 0.000 0.000 0.024 0.000 0.000 0.017 0.000 0.000 0.006 

0.8 0.000 0.000 0.017 0.000 0.000 0.004 0.000 0.000 0.004 

0.9 0.000 0.000 0.005 0.000 0.000 0.001 0.000 0.000 0.000 

1.0 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 
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Figure 5. 15 Line charts of average person stop (num/per)  and average vehicle stop (num/veh) of proposed 

algorithm and benchmarking algorithms in isolated junction under variety accumulation time weighted 

factors and three flow levels. CV penetration rate is assumed to be 100% 

Table 5. 23 P-values in average person stop comparison for PerSiCon-Bus and three benchmarking 

algorithms in isolated junction in different traffic flow demands and different accumulation time weighted 

factors (100% CV penetration rate) 

 P-values for average person stop 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

0 0.000 0.000 0.007 0.000 0.000 0.011 0.000 0.000 0.033 

0.1 0.000 0.000 0.012 0.000 0.000 0.004 0.000 0.000 0.032 

0.2 0.000 0.000 0.009 0.000 0.000 0.010 0.000 0.000 0.024 

0.3 0.000 0.000 0.015 0.000 0.000 0.019 0.000 0.000 0.017 

0.4 0.000 0.000 0.011 0.000 0.000 0.015 0.000 0.000 0.026 

0.5 0.000 0.000 0.013 0.000 0.000 0.025 0.000 0.000 0.017 
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0.6 0.000 0.000 0.031 0.000 0.000 0.023 0.000 0.000 0.033 

0.7 0.000 0.000 0.028 0.000 0.000 0.034 0.000 0.000 0.019 

0.8 0.000 0.000 0.039 0.000 0.000 0.036 0.000 0.000 0.036 

0.9 0.000 0.000 0.044 0.000 0.000 0.047 0.000 0.000 0.041 

1.0 0.000 0.000 0.047 0.000 0.000 0.068 0.000 0.000 0.073 

Table 5. 24 P-values in average vehicle stop comparison for PerSiCon-Bus and three benchmarking 

algorithms in isolated junction in different traffic flow demands and different accumulation time weighted 

factors (100% CV penetration rate) 

 P-values for average vehicle stop 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

0 0.000 0.000 0.051 0.000 0.000 0.062 0.000 0.000 0.048 

0.1 0.000 0.000 0.046 0.000 0.000 0.043 0.000 0.000 0.035 

0.2 0.000 0.000 0.023 0.000 0.000 0.039 0.000 0.000 0.038 

0.3 0.000 0.000 0.036 0.000 0.000 0.034 0.000 0.000 0.031 

0.4 0.000 0.000 0.029 0.000 0.000 0.025 0.000 0.000 0.026 

0.5 0.000 0.000 0.027 0.000 0.000 0.047 0.000 0.000 0.032 

0.6 0.000 0.000 0.034 0.000 0.000 0.041 0.000 0.000 0.029 

0.7 0.000 0.000 0.025 0.000 0.000 0.036 0.000 0.000 0.015 

0.8 0.000 0.000 0.019 0.000 0.000 0.027 0.000 0.000 0.020 

0.9 0.000 0.000 0.008 0.000 0.000 0.023 0.000 0.000 0.018 

1.0 0.000 0.000 0.031 0.000 0.000 0.011 0.000 0.000 0.023 

 

The change ranges of average person/vehicle delays and stops of PerSiCon-Bus and VerSiCon are 

also reflected in hypothesis test results in Table 5.21 – Table 5.24. It can be found that in some 

cases in Tables 5.21 and 5.23 when accumulation time weighted factor equals 1, there is no 

significant difference between average person delay and stop of PerSiCon-Bus and VerSiCon. On 

the contrary, in some cases in Tables 5.22 and 5.24 when the weighted factor equals 0, the 

average vehicle delay and stop of PerSiCon-Bus are not significantly different against VerSiCon. 
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The reason is that with the increments of weighted factor 𝛿, PerSiCon-Bus incorporates more 

considerations of those low occupancy vehicles which wait quite a long time at the junction. The 

adjustments of signal control decisions provide more opportunities to provide the green time for 

low occupancy vehicles and thus the summation values of average person/vehicle delay and 

number of stop increase with higher change ranges than VerSiCon. As a result, the most 

appropriate value of weighted factor 𝛿 is considered to be 0.5 to make a balance between 

providing priorities to high occupancy vehicles and taking into account the accumulation time of 

low occupancy vehicles.  

5.9.5 Changes to bus occupancy levels 

Figures 5.16 and 5.17 show the average person/vehicle delay and stop of vehicles of the proposed 

algorithm PerSiCon-Bus under three flow scenarios if bus occupancy ranges from 2 to 50 

passenger/veh. Table 5.25 – Table 5.28 present p-values of PerSiCon-Bus compared to reference 

models in various experiments. It can be seen from Figures 5.16 and 5.17 that KPIs of PerSiCon-

Bus keep unchanged when bus occupancy is higher than or equal to 8 passenger/veh. The average 

person delay and stop slightly increase, but the average vehicle delay and stop slightly decrease 

when bus occupancy is lower than 8 passengers/veh. Meanwhile, the performance of PerSiCon-

Bus have only minor fluctuations so they are significantly different to the performance of 

reference models in all scenarios in Table 5.25 – Table 5.28. The causes of the phenomenon are 

buses only make up a very small part of vehicle dynamics and their performance changes have 

minor influences on the summation. In PerSiCon-Bus, the priority levels of buses are determined 

by comprehensive results of bus occupancy, bus length, bus headway, and predictive arrival and 

departure time. Discharging a bus costs a higher green time right of way than discharging a 

vehicle. Therefore, the junction controller provides the right of way for a car rather than a bus if 

their priority levels of them are the same, which heavily increases the travelling delay of buses. 
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Figure 5. 16 Line charts of average person delay (s/per)  and average vehicle delay (s/veh) of proposed 

algorithm and benchmarking algorithms in isolated junction under variety bus occupancy levels and three 

flow levels. CV penetration rate is assumed to be 100% 

Table 5. 25 P-values in average person delay comparison for PerSiCon-Bus and three benchmarking 

algorithms in isolated junction in different traffic flow demands and different bus occupancy levels (100% 

CV penetration rate) 

 P-values for average person delay 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

2 0.000 0.000 0.013 0.000 0.000 0.019 0.000 0.000 0.007 

4 0.000 0.000 0.008 0.000 0.000 0.012 0.000 0.000 0.002 

6 0.000 0.000 0.005 0.000 0.000 0.016 0.000 0.000 0.005 

8 0.000 0.000 0.004 0.000 0.000 0.010 0.000 0.000 0.003 

10 0.000 0.000 0.004 0.000 0.000 0.010 0.000 0.000 0.003 
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20 0.000 0.000 0.004 0.000 0.000 0.010 0.000 0.000 0.003 

30 0.000 0.000 0.004 0.000 0.000 0.010 0.000 0.000 0.003 

40 0.000 0.000 0.004 0.000 0.000 0.010 0.000 0.000 0.003 

50 0.000 0.000 0.004 0.000 0.000 0.010 0.000 0.000 0.003 

Table 5. 26 P-values in average vehicle delay comparison for PerSiCon-Bus and three benchmarking 

algorithms in isolated junction in different traffic flow demands and different bus occupancy levels (100% 

CV penetration rate) 

 P-values for average vehicle delay 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

2 0.000 0.000 0.047 0.000 0.000 0.021 0.000 0.000 0.028 

4 0.000 0.000 0.044 0.000 0.000 0.016 0.000 0.000 0.027 

6 0.000 0.000 0.045 0.000 0.000 0.018 0.000 0.000 0.022 

8 0.000 0.000 0.043 0.000 0.000 0.018 0.000 0.000 0.024 

10 0.000 0.000 0.043 0.000 0.000 0.018 0.000 0.000 0.024 

20 0.000 0.000 0.043 0.000 0.000 0.018 0.000 0.000 0.024 

30 0.000 0.000 0.043 0.000 0.000 0.018 0.000 0.000 0.024 

40 0.000 0.000 0.043 0.000 0.000 0.018 0.000 0.000 0.024 

50 0.000 0.000 0.043 0.000 0.000 0.018 0.000 0.000 0.024 
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Figure 5. 17 Line charts of average person stop (num/per)  and average vehicle stop (num/veh) of proposed 

algorithm and benchmarking algorithms in isolated junction under variety bus occupancy levels and three 

flow levels. CV penetration rate is assumed to be 100% 

Table 5. 27 P-values in average person stop comparison for PerSiCon-Bus and three benchmarking 

algorithms in isolated junction in different traffic flow demands and different bus occupancy levels (100% 

CV penetration rate) 

 P-values for average person stop 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

2 0.000 0.000 0.019 0.000 0.000 0.020 0.000 0.000 0.019 

4 0.000 0.000 0.017 0.000 0.000 0.028 0.000 0.000 0.016 

6 0.000 0.000 0.014 0.000 0.000 0.024 0.000 0.000 0.021 

8 0.000 0.000 0.013 0.000 0.000 0.025 0.000 0.000 0.017 

10 0.000 0.000 0.013 0.000 0.000 0.025 0.000 0.000 0.017 
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20 0.000 0.000 0.013 0.000 0.000 0.025 0.000 0.000 0.017 

30 0.000 0.000 0.013 0.000 0.000 0.025 0.000 0.000 0.017 

40 0.000 0.000 0.013 0.000 0.000 0.025 0.000 0.000 0.017 

50 0.000 0.000 0.013 0.000 0.000 0.025 0.000 0.000 0.017 

Table 5. 28 P-values in average vehicle stop comparison for PerSiCon-Bus and three benchmarking 

algorithms in isolated junction in different traffic flow demands and different bus occupancy levels (100% 

CV penetration rate) 

 P-values for average vehicle stop 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

2 0.000 0.000 0.033 0.000 0.000 0.049 0.000 0.000 0.031 

4 0.000 0.000 0.028 0.000 0.000 0.044 0.000 0.000 0.034 

6 0.000 0.000 0.030 0.000 0.000 0.048 0.000 0.000 0.032 

8 0.000 0.000 0.027 0.000 0.000 0.047 0.000 0.000 0.032 

10 0.000 0.000 0.027 0.000 0.000 0.047 0.000 0.000 0.032 

20 0.000 0.000 0.027 0.000 0.000 0.047 0.000 0.000 0.032 

30 0.000 0.000 0.027 0.000 0.000 0.047 0.000 0.000 0.032 

40 0.000 0.000 0.027 0.000 0.000 0.047 0.000 0.000 0.032 

50 0.000 0.000 0.027 0.000 0.000 0.047 0.000 0.000 0.032 

To make things clearer, Figure 5.18 lists the average person delay and stop of passenger cars and 

buses separately. 5.18 illustrates that the average passenger delays of buses and cars keep 

unchanged when bus occupancy is higher than or equal to 8 passenger/veh. However, the 

average passenger delay of buses is significantly degraded if bus occupancy is lower than 8 

passengers/veh, and is even worse than the average passenger delay of cars when bus occupancy 

is 2 passengers/veh. Meanwhile, the average passenger delay of cars slightly improves as bus 

occupancy decreases. The results indicate that the priority levels of buses are less than those of 

cars with the same occupants as the predictive discharging time of buses is relatively high 

compared with cars. Since the average person's delay and stop of passenger cars only make minor 

changes and they occupy a large proportion of vehicle compositions on road, the summation 

delay and stop of PerSiCon-Bus do not change obviously. Table 5.25 – Table 5.28 prove that the 



Chapter 5 

182 

summation average person delay and stop of PerSiCon-Bus have a significant difference against 

other control methods in all kinds of bus occupancy levels. 

 

Figure 5. 18 Average person delay (s/per) and average person stop (num/per) of cars and buses respectively 

of proposed algorithm PerSiCon-Bus and under variety bus occupancy levels and three flow levels with 

mixture of cars and buses  

 

5.10 Results and discussions for road network case study 

Section 5.9 presents and analyses the results of PerSiCon-Bus in an isolated junction. This section 

presents and analyses the results of the coordination version of the proposed algorithm PerSiCon-

Network, which is evaluated in the road network case study. The detailed performance of 

PerSiCon-Network and reference algorithms in various experiments with different sensitivity 

factors are also illustrated in this section.  
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5.10.1 General results 

This section presents the general simulated results of PerSiCon-Network with benchmarking 

models in mixture vehicle environments in the road network. Tables 5.29 and 5.30 compare the 

average person/vehicle delay and stop of the proposed PerSiCon-Network to those obtained from 

TRANSYT-Network, ILACA-Network and VehSiCon-Network under three different flow levels (low, 

average and high), in the vehicular mixtures of cars and buses respectively. The summations of 

average person delay, average vehicle delay and average delays of cars and buses in different 

occupancy levels are also represented in Table 5.29. Table 5.30 shows the average person stop, 

average vehicle stop and average stops of vehicles with different occupancy levels. Table 5.31 and 

Table 5.32 show the hypothesis test results of average person/vehicle delay and stop of PerSiCon-

Network against three benchmarking models at a 95% confidence level. The null hypothesis is 

that the average performance of PerSiCon-Network do not have a significant difference from 

another control method. The details are discussed below. 

Table 5. 29 Comparison of average passenger delay (s/per) and average vehicle delay (s/veh) of the 

proposed algorithm and benchmarking algorithms under three flow scenarios in 100% CVs penetration rate 

with a mixture of cars and buses 

Flow 
level 

Control methods Cars 
with 4 
occups 

Cars 
with 3 
occus 

Cars 
with 2 
occups 

Cars 
with 1 
occup 

Buses 
with 30 
occups 

Average 
passenger 

delay 

Average 
vehicle 
delay 

Low TRANSYT- Network 127.62 128.79 127.18 129.07 129.27 127.45 128.15 
 ILACA- Network 97.31 98.43 97.18 96.95 98.25 97.38 97.49 
 VehSiCon- Network 68.85 68.16 68.91 67.82 68.19 68.34 68.42 
 PerSiCon- Network 47.86 53.82 59.13 84.46 25.63 63.88 71.91 

Average TRANSYT- Network 133.24 134.52 134.68 132.07 132.56 134.23 133.71 
 ILACA- Network 104.02 105.03 104.11 103.87 105.62 104.27 104.58 
 VehSiCon- Network 77.43 76.08 76.92 75.49 76.21 76.32 76.26 
 PerSiCon- Network 52.77 58.19 61.65 93.06 29.27 69.12 79.15 

High TRANSYT- Network 156.54 155.46 155.89 154.51 155.85 155.87 155.84 
 ILACA- Network 122.68 123.87 122.85 124.03 123.76 123.44 123.59 
 VehSiCon- Network 95.90 96.68 94.73 94.93 95.31 95.25 95.41 
 PerSiCon- Network 72.57 77.69 83.39 111.07 44.23 89.14 98.43 

 

Table 5. 30 Comparison of average passenger stop (num/per) and average vehicle stop (num/veh) of the 

proposed algorithm and benchmarking algorithms under three flow scenarios in 100% CVs penetration rate 

with a mixture of cars and buses 

Flow 
level 

Control methods Cars 
with 4 
occups 

Cars 
with 3 
occups 

Cars 
with 2 
occups 

Cars 
with 1 
occup 

Buses 
with 30 
occup 

Average 
passenger 

delay 

Average 
vehicle 
delay 

Low TRANSYT- Network 1.80 1.78 1.81 1.82 1.80 1.81 1.81 
 ILACA- Network 1.16 1.18 1.15 1.17 1.13 1.17 1.16 
 VehSiCon- Network 0.73 0.74 0.75 0.73 0.75 0.74 0.73 
 PerSiCon- Network 0.59 0.64 0.73 0.92 0.33 0.70 0.76 

Average TRANSYT- Network 1.86 1.84 1.87 1.83 1.86 1.85 1.85 
 ILACA- Network 1.25 1.25 1.24 1.26 1.24 1.25 1.25 
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 VehSiCon- Network 0.80 0.77 0.79 0.81 0.79 0.80 0.79 
 PerSiCon- Network 0.68 0.70 0.77 0.99 0.45 0.74 0.82 

High TRANSYT- Network 2.07 2.05 2.06 2.05 2.08 2.06 2.05 
 ILACA- Network 1.48 1.50 1.47 1.49 1.48 1.48 1.48 
 VehSiCon- Network 1.20 1.18 1.17 1.21 1.16 1.18 1.19 
 PerSiCon- Network 0.69 0.78 0.83 1.55 0.56 1.04 1.23 

 

Table 5. 31 P-values in average person delay comparison for PerSiCon-Network and three benchmarking 

models in different traffic flow demands with a mixture of cars and buses in 100% CV penetration rate road 

network 

Average 

person  

delay 

comparison 

P-values Average 

vehicle  

delay 

comparison 

P-values 

TRANSYT-

Network 

ILACA-

Network 

VehSiCon-

Network 

TRANSYT-

Network 

ILACA-

Network 

VehSiCon-

Network 

Low 0.000 0.000 0.005 Low 0.000 0.000 0.039 

Average 0.000 0.000 0.001 Average 0.000 0.000 0.046 

High 0.000 0.000 0.002 High 0.000 0.000 0.025 

 

Table 5. 32 P-values in average person stop comparison for PerSiCon-Network and three benchmarking 

models in different traffic flow demands with a mixture of cars and buses in 100% CV penetration rate road 

network 

Average 

person  

stop 

comparison 

P-values Average 

vehicle  

Stop 

comparison 

P-values 

TRANSYT-

Network 

ILACA-

Network 

VehSiCon-

Network 

TRANSYT-

Network 

ILACA-

Network 

VehSiCon-

Network 

Low 0.000 0.000 0.018 Low 0.000 0.000 0.031 

Average 0.000 0.000 0.002 Average 0.000 0.000 0.043 

High 0.000 0.000 0.000 High 0.000 0.000 0.036 

 

The general results of signal control operations with their coordination versions in the road 

network are very similar to the results of signal control operations in the isolated junction. From 

Table 5.29, the results show that the proposed PerSiCon-Network outperforms other control 

methods in average person delay of all vehicles in the presence of buses, with reductions of 42.8% 

- 49.9% against TRANSYT-Network, 27.8% - 34.4% against ILACA-Network and 6.4% - 9.4% against 
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VehSiCon-Network respectively in the road network. Table 5.30 also illustrates similar results that 

PerSiCon-Network reduces average person stop by 49.5% - 61.3% compared to TRANSYT-

Network, 29.7% - 40.8% compared to ILACA-Network and 7.5% - 16.7% compared to VehSiCon-

Network. The hypothesis test results from Tables 5.31 and 5.32 can also be evident that average 

person delay and stop of PerSiCon-Network are significantly different to any one of the control 

methods in three flow levels, where the null hypothesis should be rejected at a 95% confidence 

level.  

Similar to the general results in the isolated junction case study in Section 5.9.1, the signal control 

methods using CV data achieve fewer average person delays and stops because vehicular data 

from CVs provide a more accurate estimation of vehicle crossing time than infrastructure sensors 

such as inductive loops or pre-determined off-line signal optimization. The optimization process 

of TRANSYT-Network cannot react to the real-time traffic dynamics, which heavily degrades the 

performance of TRANSYT-Network. ILACA-Network also causes higher average person delay and 

stop due to imprecise estimation of road conditions, queue length discharging time, stage 

switching and green extension by inductive loop sensors. The detectors in ILACA-Network only 

partially react to flow demand and adjustments for signal plans are not as accurate as VehSiCon-

Network and PerSiCon-Network in the absence of vehicle instantaneous trajectories from CVs, 

resulting in a higher frequency of mode switching between queuing and discharging statuses to 

cause more average stops.  

More precisely, it can be observed from Table 5.29 and Table 5.30 that the average delays and 

stops of high-occupancy cars (cars with 2, 3 or 4 occupants) and buses with a mean of 13.2 

passengers in PerSiCon-Network are significantly reduced compared to those in benchmarking 

models. In terms of cars with 4 occupants and buses, the average delay them are 24.3% - 31.8% 

and 53.6% - 62.4% less than those in vehicle-based approach VehSiCon-Network using CVs data 

with the objective of minimising vehicle delay in all cases. However, the average delays of 1-

occupancy vehicles in PerSiCon-Network are larger than those in VehSiCon-Network. As expected, 

the proposed algorithm provides more crossing opportunities for high-occupancy vehicles and 

scarifies the travel time of 1-occupancy vehicles through more flexible signal timing plans in 8-

phases junction to reduce the average delay of all drivers and passengers. Therefore, the vehicles 

with high occupancy levels cross the junction at the earliest chance and they suffer fewer vehicle 

delays and stops. The summation person delay and stop in PerSiCon-Network can be reduced as 

the delays and stops of more passengers in high occupancy levels are decreased.  
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5.10.2 Sensitivity analysis to CV penetration rate 

As claimed in Section 5.8, a group of scenarios are carried out with different parameters of CV 

penetration rates, prediction horizons, accumulation time weighted factors and bus occupancy 

levels. Figures 5.19 and 5.20 illustrate how the KPIs of the proposed algorithm and benchmarking 

models change with different CV penetration rates (average person/vehicle delay in Figure 5.19 

and average person/vehicle stop in Figure 5.20 with mixture situations of cars and buses on the 

road network. Table 5.33 - Table 5.36 are hypothesis test results for different CV penetration 

rates at a 95% confidence level. 

 

Figure 5. 19 Comparison of average passenger delay (s/per) and average vehicle delay (s/veh) of proposed 

algorithm PerSiCon-Network and benchmarking algorithms in road network under variety CV penetration 

rates and three flow levels 

Table 5. 33 P-values in average person delay comparison for PerSiCon-Network and three benchmarking 

models in road network in different traffic flow demands and different CV penetration rates 

 P-values for average person delay 

Flow level Low Average High 
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Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

100% 0.000 0.000 0.005 0.000 0.000 0.001 0.000 0.000 0.002 

90% 0.000 0.000 0.011 0.000 0.000 0.0004 0.000 0.000 0.011 

80% 0.000 0.000 0.021 0.000 0.000 0.013 0.000 0.000 0.016 

70% 0.000 0.000 0.034 0.000 0.000 0.032 0.000 0.000 0.030 

60% 0.000 0.000 0.045 0.000 0.000 0.043 0.000 0.000 0.037 

50% 0.000 0.073 0.064 0.000 0.382 0.052 0.000 0.084 0.280 

40% 0.000 0.000 0.093 0.000 0.000 0.276 0.000 0.000 0.367 

30% 0.000 0.000 0.147 0.155 0.000 0.359 0.080 0.000 0.310 

20% 0.003 0.000 0.326 0.000 0.000 0.320 0.000 0.000 0.173 

10% 0.000 0.000 0.417 0.000 0.000 0.498 0.000 0.000 0.441 

 

Table 5. 34 P-values in average vehicle delay comparison for PerSiCon-Network and three benchmarking 

models in road network in different traffic flow demands and different CV penetration rates 

 P-values for average vehicle delay 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

100% 0.000 0.000 0.039 0.000 0.000 0.046 0.000 0.000 0.025 

90% 0.000 0.000 0.036 0.000 0.000 0.043 0.000 0.000 0.037 

80% 0.000 0.000 0.041 0.000 0.000 0.041 0.000 0.000 0.028 

70% 0.000 0.000 0.205 0.000 0.000 0.158 0.000 0.041 0.257 

60% 0.000 0.000 0.157 0.000 0.011 0.832 0.000 0.031 0.625 

50% 0.000 0.195 0.336 0.000 0.246 0.347 0.000 0.240 0.510 

40% 0.000 0.000 0.674 0.000 0.000 0.559 0.000 0.000 0.267 

30% 0.231 0.000 0.813 0.127 0.000 0.416 0.036 0.000 0.756 

20% 0.000 0.000 0.549 0.000 0.000 0.742 0.041 0.000 0.315 

10% 0.000 0.000 0.357 0.000 0.000 0.467 0.000 0.000 0.823 
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Figure 5. 20 Comparison of average passenger stop (num/per) and average vehicle stop (num/veh) of 

proposed algorithm PerSiCon-Network and benchmarking algorithms in road network under variety CV 

penetration rates and three flow levels 

Table 5. 35 P-values in average person stop comparison for PerSiCon-Network and three benchmarking 

models in road network in different traffic flow demands and different CV penetration rates 

 P-values for average person stop 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

100% 0.000 0.000 0.018 0.000 0.000 0.002 0.000 0.000 0.000 

90% 0.000 0.000 0.013 0.000 0.000 0.016 0.000 0.000 0.003 

80% 0.000 0.000 0.025 0.000 0.000 0.032 0.000 0.000 0.011 

70% 0.000 0.000 0.039 0.000 0.000 0.041 0.000 0.877 0.024 

60% 0.000 0.000 0.042 0.000 0.000 0.082 0.000 0.000 0.064 
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50% 0.000 0.000 0.238 0.000 0.013 0.238 0.000 0.000 0.127 

40% 0.000 0.000 0.095 0.000 0.000 0.098 0.000 0.000 0.472 

30% 0.000 0.000 0.146 0.000 0.000 0.341 0.314 0.000 0.489 

20% 0.000 0.000 0.118 0.000 0.000 0.319 0.000 0.000 0.264 

10% 0.000 0.000 0.083 0.000 0.000 0.276 0.000 0.000 0.368 

 

Table 5. 36 P-values in average vehicle stop comparison for PerSiCon-Network and three benchmarking 

models in road network in different traffic flow demands and different CV penetration rates 

 P-values for average vehicle stop 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

100% 0.000 0.000 0.031 0.000 0.000 0.043 0.000 0.000 0.026 

90% 0.000 0.000 0.040 0.000 0.000 0.041 0.000 0.000 0.038 

80% 0.000 0.000 0.036 0.000 0.000 0.047 0.000 0.716 0.044 

70% 0.000 0.000 0.351 0.000 0.000 0.761 0.000 0.000 0.242 

60% 0.000 0.140 0.275 0.000 0.000 0.267 0.000 0.000 0.188 

50% 0.000 0.000 0.258 0.000 0.035 0.177 0.000 0.000 0.171 

40% 0.000 0.000 0.187 0.000 0.000 0.268 0.000 0.000 0.367 

30% 0.000 0.000 0.376 0.000 0.000 0.198 0.047 0.000 0.616 

20% 0.663 0.000 0.201 0.000 0.000 0.297 0.000 0.000 0.466 

10% 0.000 0.000 0.876 0.000 0.000 0.603 0.000 0.000 0.304 

 

Similar to the sensitivity analysis results in the isolated junction in Section 5.9.2, the plots in 

Figures 5.19 and 5.20 show similar variation trends of average person/vehicle delays and stops in 

two signal controls using CV data under three traffic flow levels. In Figure 5.19, average passenger 

and vehicle delays of signal controls using CV data VehSiCon-Network and PerSiCon-Network 

increase as the CV penetration rate decreases regardless of their objectives or signal plan 

flexibilities. The increments of average passenger delay for the connected control methods 

perform worse than ILACA-Network and TRANSYT-Network below 50% and 20% CV penetration 
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rate respectively. By comparing VehSiCon-Network with PerSiCon-Network, the advantage of 

reducing person delay in the proposed algorithm is gradually eliminated by reducing the CV 

penetration rate. The plots in Figure 5.20 illustrate a similar tendency of average passenger and 

vehicle stops of all operational algorithms in the presence of buses under three flow levels. Table 

5.33 - Table 5.36 evident that there is no significant difference between average person delay and 

stop of PerSiCon-Network and VehSiCon-Network in the case that CV penetration rate is lower 

than 50% - 60% and 80% respectively. The reason is that the gradual absence of CVs reduces the 

data sources of signal optimization algorithms using CV data, making them cannot realize the 

entire vehicle situation at multiple junctions. As the CV penetration rate decreases, 

VehSiCon/PerSiCon-Bus can only acquire part of vehicular information. The optimization outputs 

of their algorithms cannot reach the perfect objective function targets of minimising 

person/vehicle delay. The performance of TRANSYT-Network and ILACA-Network keep the same 

in different CV penetration rates as their data inputs do not rely on the data from CVs. 

The plots in Figure 5.10 show similar variation trends of average person/vehicle delays among 

signal controls using CV data under three traffic flow levels. The average person/vehicle delays of 

signal controls using CV data (VehSiCon and PerSiCon-Bus) increase as the CV penetration rate 

decreases regardless of their objectives or signal plan flexibilities. The average person/vehicle 

delays of the connected control methods perform worse than ILACA when the CV penetration 

rate is less than 50%, and perform worse than TRANSYT when the CV penetration rate is less than 

30%. Compared to VehSiCon, the advantage of reducing passenger delay in the proposed 

algorithm is gradually reduced by reducing the CV penetration rate. This can be proved by the 

hypothesis test results in Tables 5.13 and 5.14. The average person/vehicle delays of PerSiCon-Bus 

are not significantly different to those of VehSiCon when the CV penetration rate decrease to 60% 

- 80%. Figure 5.11, Tables 5.15 and 5.16 illustrate that there are similar influences on trends of 

average passenger/vehicle stops in Figure 5.10, Tables 5.13 and 5.14 of all operational algorithms 

under three flow levels.  

The reason is that the gradual absence of CVs reduces the data sources of signal optimization 

algorithms using CV data, making them cannot realize the entire vehicle situation at multiple 

junctions. As the CV penetration rate decreases, VehSiCon/PerSiCon-Bus can only acquire part of 

vehicular information so that they have less vehicle environment realization and execute signal 

timing plans less precise to the objective functions. The optimization outputs of their algorithms 

cannot reach the perfect objective function targets of minimising person/vehicle delay. The signal 

timing plans are not optimal in PerSiCon-Bus/VehSiCon. As a result, their performance do not 

have significant improvements in either reducing person-related or vehicle-related performance. 
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The values of TRANSYT and ILACA remain the same as they do not rely on the information sent 

from CVs. 

In most cases, the performance of PerSiCon-Network in Table 5.33 – Table 5.36 are significantly 

different to those of TRANSYT-Network and ILACA-Network. However, some abnormal situations 

where p-values are higher than 0.05 also exist, for instance, 30% CV penetration rate compared to 

TRANSYT-Network and 50% CV penetration rate compared to ILACA-Network in average demand 

level in Table 5.33. These phenomenon forms as performance indicators of PerSiCon-Network 

gradually increase as CV penetration rate decreases and the rising values are very close to the 

unchanged values in TRANSYT-Network or ILACA-Network at a certain CV penetration rate in any 

flow demand level. In this case, the mean difference is a minor value, which leads to a large p-

value as it is a critical component to calculate p-values. 

5.10.3 Sensitivity analysis to prediction horizon 

Figures 5.21 and 5.22 are sensitivity test results of average person/vehicle delay and stop values 

in different DP prediction horizons (10s, 20s, 30s, 40s, 50s, 60s) in different signal control methods 

in the road network case study. Table 5.37 – Table 5.40 present hypothesis test results of 

reference models compared to the proposed algorithm in different prediction horizons in three 

flow levels. 

  
In Figures 5.21 and 5.22, the average passenger/vehicle delays and stop of all algorithms 

excluding TRANSYT-Network and ILACA-Network are lowest under three flow levels in the case of 

30s horizon duration with a mixture of cars and buses, which illustrate the roughly similar 

tendency of results in isolated junction case study in Section 5.9.3. The average passenger/vehicle 

delays and stops of PerSiCon-Network and VehSiCon-Network slightly increase when the 

predictive horizon increases to 40s, 50s and 60s, and significantly increase as the predictive 

horizon decreases to 10s, 20s compared to 30s prediction horizon. From Table 5.37 – Table 5.40, 

the average person delay and stop of PerSiCon-Network with prediction horizons from 20s to 60s 

have significantly difference against VehSiCon-Network in three flow levels and there is no 

significant difference between two signal controls using CV data when the prediction horizon is 

10s. 
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Figure 5. 21 Line charts of average person delay (s/per)  and average vehicle delay (s/veh) of proposed 

algorithm and benchmarking algorithms in road network under variety predictive horizons (s) and three 

flow levels. CV penetration rate is assumed to be 100% 

Table 5. 37 P-values in average person delay comparison for PerSiCon-Network and three benchmarking 

algorithms in road network in different traffic flow demands and different prediction horizons (100% CV 

penetration rate) 

 P-values for average person delay 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

10s 0.000 0.000 0.160 0.000 0.000 0.241 0.000 0.000 0.477 

20s 0.000 0.238 0.008 0.000 0.000 0.003 0.486 0.000 0.004 

30s 0.000 0.000 0.005 0.000 0.000 0.001 0.000 0.000 0.002 

40s 0.000 0.000 0.023 0.000 0.000 0.008 0.000 0.000 0.011 

50s 0.000 0.000 0.015 0.000 0.000 0.017 0.000 0.000 0.018 
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60s 0.000 0.000 0.007 0.000 0.000 0.026 0.000 0.000 0.005 

Table 5. 38 P-values in average vehicle delay comparison for PerSiCon-Network and three benchmarking 

algorithms in road network in different traffic flow demands and different prediction horizons (100% CV 

penetration rate) 

 P-values for average vehicle delay 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

10s 0.000 0.000 0.259 0.000 0.000 0.137 0.000 0.000 0.291 

20s 0.000 0.000 0.037 0.007 0.000 0.031 0.000 0.000 0.039 

30s 0.000 0.000 0.039 0.000 0.000 0.046 0.000 0.000 0.025 

40s 0.000 0.000 0.046 0.000 0.000 0.016 0.000 0.000 0.026 

50s 0.000 0.000 0.018 0.000 0.000 0.032 0.000 0.952 0.029 

60s 0.000 0.296 0.027 0.000 0.186 0.021 0.000 0.000 0.043 

 

The results indicate that setting the planning horizon too short significantly degrades the 

performance of PerSiCon-Network/VehSiCon-Network in terms of people's number of stops due 

to limited signal plan choices and biased function values. The blanking periods of intergreen 

interval and start-up loss time occupying a considerable part of too short a planning horizon leads 

to no benefits to people discharging. The results are heavily biased when determining the traffic 

signal executions as signal schemes are generated based on the highest value function with rarely 

vehicles can be discharged, regardless of effects on signal phase switching for following saturated 

flows. The effects on cumulative deviation in long-time vehicle discharging prediction (40s, 50s, 

60s) are comparable to less negative influences on performance of ILACA-Network. 30s are still 

the most appropriate choice to be applied in PerSiCon-Network in road network case study as 

planning horizon and signal scheme operation cycles combing objective understanding of value 

function and accurate vehicle travel prediction in the group of six planning horizon choices. 

Table 5.17 – Table 5.20 indicate the similar tendency of p-values of average person/vehicle delay 

and stop in different planning horizon plans in PerSiCon-Network compared to reference models. 

PerSiCon-Network presents significant improvements against VehSiCon-Network when the 

prediction horizon is higher than or equal to 20s in all cases. However, when the prediction 

horizon is 10s, all of the p-values are above 0.05. The reason has been claimed above that 10s are 
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not sufficient for implementing optimal solutions of PerSiCon-Network/VehSiCon-Network, 

resulting in a heavily degraded of their performance. Similar to the abnormal p-values in Section 

5.9.3, there are also a few special cases where the p-values are higher than 0.05 with comparisons 

of TRANSYT-Network or ILACA-Network. For instance, in Table 5.37 p-value of PerSiCon-Network 

is higher than 0.05 when compare to ILACA-Network at a low demand level and compare to 

TRANSYT-Network at a high demand level if the prediction horizon is 20s. The reason is also that 

the increasing mean values of average delay and stop are very close to the values in TRANSYT-

Network and ILACA-Network in some special cases and the minor mean differences result in high 

p-values. 

 

 

Figure 5. 22 Line charts of average person stop (num/per)  and average vehicle stop (num/veh) of proposed 

algorithm and benchmarking algorithms in road network under variety predictive horizons (s) and three 

flow levels. CV penetration rate is assumed to be 100% 

Table 5. 39 P-values in average person stop comparison for PerSiCon-Network and three benchmarking 

algorithms in road network in different traffic flow demands and different prediction horizons (100% CV 

penetration rate) 
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 P-values for average person stop 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

10s 0.000 0.000 0.284 0.000 0.000 0.349 0.000 0.000 0.319 

20s 0.000 0.000 0.005 0.000 0.000 0.014 0.615 0.000 0.000 

30s 0.000 0.000 0.018 0.000 0.000 0.002 0.000 0.000 0.000 

40s 0.000 0.000 0.019 0.000 0.000 0.003 0.000 0.000 0.000 

50s 0.000 0.000 0.023 0.000 0.000 0.007 0.000 0.357 0.003 

60s 0.000 0.000 0.006 0.000 0.000 0.019 0.000 0.000 0.005 

Table 5. 40 P-values in average vehicle stop comparison for PerSiCon-Network and three benchmarking 

algorithms in road network in different traffic flow demands and different prediction horizons (100% CV 

penetration rate) 

 P-values for average vehicle stop 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

10s 0.000 0.000 0.436 0.000 0.000 0.732 0.000 0.000 0.282 

20s 0.000 0.000 0.021 0.000 0.000 0.042 0.000 0.000 0.034 

30s 0.000 0.000 0.031 0.000 0.000 0.043 0.000 0.000 0.026 

40s 0.000 0.000 0.017 0.000 0.000 0.027 0.000 0.021 0.027 

50s 0.000 0.000 0.025 0.000 0.000 0.022 0.000 0.000 0.015 

60s 0.000 0.225 0.036 0.000 0.000 0.029 0.001 0.000 0.036 

 

5.10.4 Sensitivity analysis to accumulation time weighted factor 

Figures 5.23 and 5.24 illustrate the performance of average person/vehicle delay and stop of 

PerSiCon-Bus under different numbers of accumulation time weighted factor 𝛿 from 0 to 1 in the 

road network case study. Table 5.41 – Table 5.44 are hypothesis test results of PerSiCon-Network 

and reference models in different accumulation time weighted factors.  Like the results in Section 

5.9.4, the performance of PerSiCon-Network in Figures 5.23 and 5.24 present a similar tendency 
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to those in the isolated junction case study. The average person/vehicle delay and stop of 

PerSiCon-Network/VehSiCon-Network increase as the weighted factor 𝛿 rises. Figures 5.23 and 

5.24 (a), (c) and (e) illustrate that the change ranges of average person delay and stop of 

PerSiCon-Network are higher than those of VehSiCon-Network. On the contrary, the change 

ranges of average vehicle delay and stop of PerSiCon-Network are lower than those of VehSiCon-

Network according to Figures 5.23 and 5.24 (b), (d) and (f). The reason is that the PerSiCon-

Network algorithm provides more right of ways to those low occupancy vehicles with high 

accumulation time and scarifies the crossing chances of high occupancy vehicles when the 

accumulation time weighted factor is high. The increments of accumulation time weighted factor 

make negative influences on the decision-making process of VehSiCon-Network. However, the 

negative influences on VehSiCon-Network are less than those on PerSiCon-Network as the 

optimization mechanism of VehSiCon-Network treats all of the vehicles with the same priority and 

the accumulation time of any vehicle would not be a great value.  

 

Figure 5. 23 Line charts of average person delay (s/per)  and average vehicle delay (s/veh) of proposed 

algorithm and benchmarking algorithms in road network under variety accumulation time weighted factors 

and three flow levels. CV penetration rate is assumed to be 100% 
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Table 5. 41 P-values in average person delay comparison for PerSiCon-Network and three benchmarking 

algorithms in road network in different traffic flow demands and different accumulation time weighted 

factors (100% CV penetration rate) 

 P-values for average person delay 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

0 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

0.1 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 

0.2 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.002 

0.3 0.000 0.000 0.004 0.000 0.000 0.001 0.000 0.000 0.005 

0.4 0.000 0.000 0.005 0.000 0.000 0.002 0.000 0.000 0.003 

0.5 0.000 0.000 0.005 0.000 0.000 0.001 0.000 0.000 0.002 

0.6 0.000 0.000 0.026 0.000 0.000 0.013 0.000 0.000 0.011 

0.7 0.000 0.000 0.038 0.000 0.000 0.027 0.000 0.000 0.020 

0.8 0.000 0.000 0.034 0.000 0.000 0.031 0.000 0.000 0.032 

0.9 0.000 0.000 0.041 0.000 0.000 0.035 0.000 0.000 0.039 

1.0 0.000 0.000 0.059 0.000 0.000 0.042 0.000 0.000 0.055 

Table 5. 42 P-values in average vehicle delay comparison for PerSiCon-Network and three benchmarking 

algorithms in road network in different traffic flow demands and different accumulation time weighted 

factors (100% CV penetration rate) 

 P-values for average vehicle delay 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

0 0.000 0.000 0.182 0.000 0.000 0.102 0.000 0.000 0.042 

0.1 0.000 0.000 0.084 0.000 0.000 0.073 0.000 0.000 0.045 

0.2 0.000 0.000 0.076 0.000 0.000 0.067 0.000 0.000 0.041 

0.3 0.000 0.000 0.046 0.000 0.000 0.053 0.000 0.000 0.040 

0.4 0.000 0.000 0.044 0.000 0.000 0.049 0.000 0.000 0.034 



Chapter 5 

198 

0.5 0.000 0.000 0.039 0.000 0.000 0.046 0.000 0.000 0.025 

0.6 0.000 0.000 0.030 0.000 0.000 0.034 0.000 0.000 0.023 

0.7 0.000 0.000 0.029 0.000 0.000 0.033 0.000 0.000 0.026 

0.8 0.000 0.000 0.024 0.000 0.000 0.034 0.000 0.000 0.015 

0.9 0.000 0.000 0.011 0.000 0.000 0.026 0.000 0.000 0.021 

1.0 0.000 0.000 0.006 0.000 0.000 0.014 0.000 0.000 0.017 

 

Figure 5. 24 Line charts of average person stop (num/per)  and average vehicle stop (num/veh) of proposed 

algorithm and benchmarking algorithms in road network under variety accumulation time weighted factors 

and three flow levels. CV penetration rate is assumed to be 100% 

Table 5. 43 P-values in average person stop comparison for PerSiCon-Network and three benchmarking 

algorithms in road network in different traffic flow demands and different accumulation time weighted 

factors (100% CV penetration rate) 

 P-values for average person stop 

Flow level Low Average High 
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Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

0 0.000 0.000 0.003 0.000 0.000 0.006 0.000 0.000 0.002 

0.1 0.000 0.000 0.016 0.000 0.000 0.007 0.000 0.000 0.016 

0.2 0.000 0.000 0.008 0.000 0.000 0.013 0.000 0.000 0.014 

0.3 0.000 0.000 0.006 0.000 0.000 0.017 0.000 0.000 0.007 

0.4 0.000 0.000 0.010 0.000 0.000 0.004 0.000 0.000 0.006 

0.5 0.000 0.000 0.018 0.000 0.000 0.002 0.000 0.000 0.000 

0.6 0.000 0.000 0.015 0.000 0.000 0.013 0.000 0.000 0.005 

0.7 0.000 0.000 0.031 0.000 0.000 0.027 0.000 0.000 0.012 

0.8 0.000 0.000 0.027 0.000 0.000 0.025 0.000 0.000 0.033 

0.9 0.000 0.000 0.031 0.000 0.000 0.013 0.000 0.000 0.021 

1.0 0.000 0.000 0.042 0.000 0.000 0.038 0.000 0.000 0.025 

Table 5. 44 P-values in average vehicle stop comparison for PerSiCon-Bus and three benchmarking 

algorithms in isolated junction in different traffic flow demands and different accumulation time weighted 

factors (100% CV penetration rate) 

 P-values for average vehicle stop 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

0 0.000 0.000 0.057 0.000 0.000 0.141 0.000 0.000 0.156 

0.1 0.000 0.000 0.044 0.000 0.000 0.075 0.000 0.000 0.086 

0.2 0.000 0.000 0.036 0.000 0.000 0.064 0.000 0.000 0.061 

0.3 0.000 0.000 0.041 0.000 0.000 0.051 0.000 0.000 0.045 

0.4 0.000 0.000 0.033 0.000 0.000 0.048 0.000 0.000 0.034 

0.5 0.000 0.000 0.031 0.000 0.000 0.043 0.000 0.000 0.026 

0.6 0.000 0.000 0.026 0.000 0.000 0.037 0.000 0.000 0.024 

0.7 0.000 0.000 0.036 0.000 0.000 0.030 0.000 0.000 0.016 

0.8 0.000 0.000 0.013 0.000 0.000 0.019 0.000 0.000 0.018 



Chapter 5 

200 

0.9 0.000 0.000 0.029 0.000 0.000 0.036 0.000 0.000 0.004 

1.0 0.000 0.000 0.035 0.000 0.000 0.026 0.000 0.000 0.009 

The change ranges of average person/vehicle delay and stop of PerSiCon-Network and VerSiCon-

Network are also reflected in hypothesis test results in Table 5.41 – Table 5.44. It can be found 

that in some cases in Table 5.41 that when accumulation time weighted factor equals 1, there is 

no significant difference between the average person delay and stop of PerSiCon-Network and 

VerSiCon-Network in low and high flow demands. On the contrary, in some cases in Table 5.42 

and 5.44 when the weighted factor decreases to 0 - 0.3, the average vehicle delay and stop of 

PerSiCon-Network are not significantly different from VerSiCon-Network. This is because with the 

increments of weighted factor 𝛿, PerSiCon-Network incorporates more considerations of those 

low occupancy vehicles which wait quite a long time at the junction. The adjustments of signal 

control decisions provide more opportunities to provide the green time for low occupancy 

vehicles and thus the summation values of average person/vehicle delay and number of stop 

increase with higher change ranges than VerSiCon-Network. As a result, the most appropriate 

value of weighted factor 𝛿 is considered to be 0.5 to make a balance between providing priorities 

to high occupancy vehicles and taking into account the accumulation time of low occupancy 

vehicles.  

5.10.5 Sensitivity analysis to bus occupancy 

Figures 5.25 and 5.26 present the average person/vehicle delay and stop of vehicles of the 

proposed algorithm PerSiCon-Network under three flow level scenarios when bus occupancy 

ranges from 2 to 50 passenger/veh. Table 5.45 – Table 5.48 present p-values of PerSiCon-Bus 

compared to reference models in various experiments. Similar to the results in the isolated 

junction, the performance of PerSiCon-Network keep unchanged when bus occupancy is higher 

than or equal to 8 passengers/veh. The average person delay and stop slightly increase, but the 

average vehicle delay and stop slightly decrease when bus occupancy is lower than 8 

passengers/veh according to Figures 5.25 and 5.26. The hypothesis test results in Table 5.45 – 

Table 5.48 prove that the performance of PerSiCon-Network always significantly outperform any 

of the reference models in different bus occupancies and demand levels. The causes of the 

phenomenon are buses constitute a very small part of vehicle dynamics and their performance 

changes have minor influences on the summation performance. In PerSiCon-Bus, the priority 

levels of buses are determined by comprehensive results of bus occupancy, bus length, bus 

headway, and predictive arrival and departure time. Discharging a bus costs a higher green time 

right of way than discharging a vehicle. In this condition, the junction controller does not 
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necessarily provide priority to the bus and scarifies the travel time of more passenger cars. 

Therefore, the junction controller provides the right of way for a car rather than a bus if their 

priority levels of them are the same, which heavily increases the travelling delay of buses. 

 

 

Figure 5. 25 Line charts of average person delay (s/per)  and average vehicle delay (s/veh) of proposed 

algorithm and benchmarking algorithms in road network under variety bus occupancy levels and three flow 

levels. CV penetration rate is assumed to be 100% 

Table 5. 45 P-values in average person delay comparison for PerSiCon-Network and three benchmarking 

algorithms in road network in different traffic flow demands and different bus occupancy levels (100% CV 

penetration rate) 

 P-values for average person delay 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

2 0.000 0.000 0.014 0.000 0.000 0.004 0.000 0.000 0.009 
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4 0.000 0.000 0.0011 0.000 0.000 0.003 0.000 0.000 0.006 

6 0.000 0.000 0.007 0.000 0.000 0.001 0.000 0.000 0.008 

8 0.000 0.000 0.005 0.000 0.000 0.001 0.000 0.000 0.002 

10 0.000 0.000 0.005 0.000 0.000 0.001 0.000 0.000 0.002 

20 0.000 0.000 0.005 0.000 0.000 0.001 0.000 0.000 0.002 

30 0.000 0.000 0.005 0.000 0.000 0.001 0.000 0.000 0.002 

40 0.000 0.000 0.005 0.000 0.000 0.001 0.000 0.000 0.002 

50 0.000 0.000 0.005 0.000 0.000 0.001 0.000 0.000 0.002 

Table 5. 46 P-values in average vehicle delay comparison for PerSiCon-Network and three benchmarking 

algorithms in road network in different traffic flow demands and different bus occupancy levels (100% CV 

penetration rate) 

 P-values for average vehicle delay 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

2 0.000 0.000 0.041 0.000 0.000 0.048 0.000 0.000 0.031 

4 0.000 0.000 0.042 0.000 0.000 0.044 0.000 0.000 0.027 

6 0.000 0.000 0.047 0.000 0.000 0.045 0.000 0.000 0.024 

8 0.000 0.000 0.039 0.000 0.000 0.046 0.000 0.000 0.025 

10 0.000 0.000 0.039 0.000 0.000 0.046 0.000 0.000 0.025 

20 0.000 0.000 0.039 0.000 0.000 0.046 0.000 0.000 0.025 

30 0.000 0.000 0.039 0.000 0.000 0.046 0.000 0.000 0.025 

40 0.000 0.000 0.039 0.000 0.000 0.046 0.000 0.000 0.025 

50 0.000 0.000 0.039 0.000 0.000 0.046 0.000 0.000 0.025 
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Figure 5. 26 Line charts of average person stop (num/per)  and average vehicle stop (num/veh) of proposed 

algorithm and benchmarking algorithms in road network under variety bus occupancy levels and three flow 

levels. CV penetration rate is assumed to be 100% 

Table 5. 47 P-values in average person stop comparison for PerSiCon-Network and three benchmarking 

algorithms in road network in different traffic flow demands and different bus occupancy levels (100% CV 

penetration rate) 

 P-values for average person stop 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

2 0.000 0.000 0.027 0.000 0.000 0.011 0.000 0.000 0.004 

4 0.000 0.000 0.021 0.000 0.000 0.006 0.000 0.000 0.000 

6 0.000 0.000 0.017 0.000 0.000 0.003 0.000 0.000 0.001 

8 0.000 0.000 0.018 0.000 0.000 0.002 0.000 0.000 0.000 
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10 0.000 0.000 0.018 0.000 0.000 0.002 0.000 0.000 0.000 

20 0.000 0.000 0.018 0.000 0.000 0.002 0.000 0.000 0.000 

30 0.000 0.000 0.018 0.000 0.000 0.002 0.000 0.000 0.000 

40 0.000 0.000 0.018 0.000 0.000 0.002 0.000 0.000 0.000 

50 0.000 0.000 0.018 0.000 0.000 0.002 0.000 0.000 0.000 

Table 5. 48 P-values in average vehicle stop comparison for PerSiCon-Network and three benchmarking 

algorithms in road network in different traffic flow demands and different bus occupancy levels (100% CV 

penetration rate) 

 P-values for average vehicle stop 

Flow level Low Average High 

Signal 

controls 

TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon TRANSYT ILACA VehSiCon 

2 0.000 0.000 0.048 0.000 0.000 0.041 0.000 0.000 0.039 

4 0.000 0.000 0.043 0.000 0.000 0.047 0.000 0.000 0.044 

6 0.000 0.000 0.034 0.000 0.000 0.043 0.000 0.000 0.031 

8 0.000 0.000 0.031 0.000 0.000 0.043 0.000 0.000 0.026 

10 0.000 0.000 0.031 0.000 0.000 0.043 0.000 0.000 0.026 

20 0.000 0.000 0.031 0.000 0.000 0.043 0.000 0.000 0.026 

30 0.000 0.000 0.031 0.000 0.000 0.043 0.000 0.000 0.026 

40 0.000 0.000 0.031 0.000 0.000 0.043 0.000 0.000 0.026 

50 0.000 0.000 0.031 0.000 0.000 0.043 0.000 0.000 0.026 
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Figure 5. 27 Average person delay (s/per) and average person stop (num/per) of cars and buses respectively 

of proposed algorithm PerSiCon-Bus and under variety bus occupancy levels and three flow levels with 

mixture of cars and buses 

More specifically, Figure 5.27 lists the average person's delay and stop of passenger cars and 

buses separately. Figure 5.27 illustrates that the average passenger delay of buses and cars keeps 

unchanged when bus occupancy is higher than or equal to 8 passengers/veh. However, the 

average passenger delay of buses is significantly degraded if bus occupancy is lower than 8 

passengers/veh, and is even worse than the average passenger delay of cars when bus occupancy 

is 2 passengers/veh. Meanwhile, the average passenger delay of cars slightly improves as bus 

occupancy decreases. In contrast to those of passenger cars with 2 and 4 occupants, the average 

passenger delays of buses with the same occupants are 21.5% - 30.3% and 9.1% - 14.8% larger 

respectively. The results indicate that the priority levels of buses are less than those of cars with 

the same occupants as the predictive discharging time of buses is relatively high compared with 

cars. Since the average person delay and stop of passenger cars only make minor changes and 

they occupy a large proportion of vehicle compositions on road, the summation delay and stop of 

PerSiCon-Network do not change obviously.  
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5.11 Summary 

This chapter describes the details of the isolated junction and road network as case studies to 

evaluate the performance of proposed algorithms PerSiCon-Bus and PerSiCon-Network. The 

junction settings, vehicle parameters, traffic demands and benchmarking models are also 

introduced in this chapter, which is implemented in microsimulation software SUMO for signal 

control operation. The vehicle environments consist of passenger cars with different occupancy 

levels and buses. The performance of PerSiCon-Bus and PerSiCon-Network with benchmarking 

signal controls are provided and analysed in this chapter with changes to CV penetration rates, 

prediction horizons, weighted factors and bus occupancies. The results indicate that PerSiCon-Bus 

performs better in average person delay and average person stop in terms of high occupancy 

vehicles. The PerSiCon-Bus also outperforms vehicle-based adaptive CV signal control VehSiCon in 

average person delay and stop of summation and high occupancy vehicles, which outstanding its 

effectiveness in dealing with reducing person delay in passenger vehicle environments. However, 

the vehicle-related performance, average vehicle delay and stop of PerSiCon-Network perform 

worse than VehSiCon. The performance of different signal controls with their coordination 

versions in the road network are similar to the results in the isolated junction case study. 

The evaluation experiments to different sensitivity factors are also carried out and the results 

present that the average person delay and stop of overall vehicles and buses in PerSiCon-

Bus/PerSiCon-Network can be significantly improved with high levels of CV penetration rates. 

However, the performance of PerSiCon-Bus/ PerSiCon-Network in low CV penetration rates (such 

as below around 60% CV penetration rate in three flow levels) do not have better performance 

than vehicle-based controls. The sensitivity tests also find that 30s prediction horizon and 0.5 

accumulation time weighted factor are found to be the most appropriate parameters to be 

applied in proposed person-based algorithms. Buses can award high priority levels and suffer 

minor delays and stops when the average occupancy is higher than or equal to 8 passengers/veh. 

In next chapter, a supported algorithm used to estimate the status of unequipped vehicles in 

imperfect CV penetration rate is described to improve the performance of PerSiCon-Network. 

 

 

 

 

 



Chapter 6 

207 

Chapter 6 Improving the performance of person-based 

control under imperfect connected vehicle penetration 

rate 

The proposed person-based control is evaluated in the isolated junction and road network with a 

mixture of buses and cars vehicular environments Chapter 5. The sensitivity test results to CV 

penetration rates find that the PerSiCon-Bus/PerSiCon-Network do not achieve significant 

improvements in person-related performance, around 60% CV penetration rate below against 

signal controls using CV data and 30% CV penetration rate below against fixed time control. 

Therefore, it is essential to improve the performance of person-based control under imperfect CV 

penetration rates. This chapter describes an Estimation status of Unequipped Vehicle with 

Occupancy (EUVO) algorithm to estimate the vehicle statuses of those unequipped vehicles based 

on several data types collected from CVs, inductive loops and cameras. The EUVO algorithm can 

be operated before the optimization process to supply the initial departure time and occupancy 

level estimation of unequipped vehicles. To validate the effectiveness of the EUVO algorithm, the 

enhanced PerSiCon-Network augmented by the EUVO algorithm is evaluated in the case study 

and its person-based performance are compared to those of PerSiCon-Network as introduced in 

Chapter 3. 

6.1 Method consideration for EUVO algorithm 

Few state-of-the-art researches attempted to enhance the performance of vehicle-based signal 

controls in mixture vehicular environments of unequipped vehicles (UVs) and CVs. Feng et al. 

(2015) proposed an Estimation of Location and Speed (EVLS) algorithm to estimate the positions 

and speeds of UVs according to the data received from CVs. Wiedemann car following model was 

applied to estimate locations and speeds of UVs in three regions divided by vehicle status: 

queuing region, slow-down region and free-flow region. However, from the results of the EVLS 

algorithm, the estimations of those UVs located in the slow-down region and free-flow region 

were not quite accurate with 25% and 50% CV penetration rates. A traffic state estimation 

algorithm was then proposed to estimate the locations, speeds and accelerations of UVs using 

data from CVs and inductive loops (Islam et al, 2020). The algorithm found the leader-follower 

vehicle pair and estimated the acceleration rate of a UV based on the relative velocity and 

headway between the leader and follower using the Wiedemann car-following model to calculate 

the positions and speeds of UVs in the current time step. However, this algorithm did not consider 

the influence of green/red traffic lights on the vehicle state. An augmenting traffic signal control 
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system developed by Rafter et al (2020) enhanced the performance of vehicle-based signal 

controls using data from CVs and inductive loops in low CV penetration rates. However, the 

algorithm did not explicitly estimate the vehicle status of individual vehicles, which is difficult to 

be adopted in PerSiCon-Network. In addition, a common limitation of the above estimation 

algorithms is that they only estimated the vehicle states of UVs, such as locations and speeds, but 

failed to acquire the vehicle occupancy data. Those estimation data can satisfy the requirements 

of vehicle-based controls, but both vehicle state data and vehicle occupancy data are required in 

person-based controls. Therefore, none of them can be directly adopted in PerSiCon-Network.  

  
The challenging thing to enhancing the proposed optimization algorithm PerSiCon-Network in 

imperfect CV penetration rate is that it requires predicted departure time, travelling status and 

occupancy level of each vehicle from each lane as data inputs. In mixture environments of UVs 

and CVs, the data inputs of UVs cannot be obtained by PerSiCon-Network. Although the general 

vehicle occupancy level ratios can be estimated by assuming that vehicle occupancy levels follow 

Poisson distribution, the specific vehicle occupancy level sequences are stochastic at a particular 

time, which makes the estimation works to be challenging to follow the real occupancy level 

sequences on road.  However, the vehicle occupancy detection technology introduced in Section 

2.4.1 can capture the occupancy level of crossing vehicles from one-side cameras, which can be 

used to collect vehicle occupancy data at a specific camera installation site. The inductive loops 

can be used to detect whether there is a vehicle crossing the site or not and it has been adopted 

in vehicle-based controls to estimate the states of UVs. Therefore, a EUVO algorithm is proposed 

in this research to estimate the vehicle status (vehicle departure time and travelling status) with 

the help of inductive loop detectors (E1 detectors), and match the occupancy levels of UVs by 

one-side cameras installed to detect vehicles at the same place with the confirmed information 

from CVs. The illustration layouts of the EUVO algorithm are presented in Figure 6.1. 
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Figure 6. 1 Illustration layouts of EUVO algorithm 

From Figure 6.1, one detection area of the EUVO algorithm consists of the inductive loop 

detectors (E1 detectors) installed on all of the discharging lanes and a one-side camera installed 

on the left side of the approach lanes. Vehicles travel through the detection area with installed 

inductive loops and cameras sequentially. The research assumes that no lane-changing 

behaviours happen after vehicles enter the detection area until they pass through the cross line. 

The time steps of vehicle detecting signal from the inductive loop of a specific lane can be 

recorded so that the junction controller can use the information to estimate the time needed for 

a vehicle with free-flow speed to cross the junction.  

  

In the EUVO algorithm, the initial departure time and vehicle status of UVs, which are part of the 

data sources of the optimization process of PerSiCon-Network, can directly be estimated by data 

from inductive loops CVs and traffic signals. The occupancy levels of UVs, which are the rest of the 

data inputs, can be obtained by matching the measured occupancy from the one-side cameras to 

UVs detected by loop detectors based on the vehicle data from CVs.  

 

As a result, the algorithm does not need to estimate the exact locations and positions of UVs. The 

occupancy information recorded from one-side cameras is matched and assigned to the vehicles 

travelling across the detection area. The assumptions and limitations of the EUVO algorithm and 

simulation experiments are listed in next section. The details of the EUVO algorithm are described 

in Section 6.3. 
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6.2 Assumptions and limitations 

Besides the assumptions made in Chapters 4 and 5 for proposed algorithm methodologies and 

simulation experiments, some additional assumptions are listed in this section to clarify the 

details of the EUVO algorithm and operation settings in evaluation frameworks. The assumptions 

simplify some of the realistic situations and the limitations of this research need to be improved in 

future research. The additional assumptions made in this chapter are listed as follows: 

  

The local highway authority is assumed to have adequate E1 detectors and one-side cameras 

devices to operate the EUVO algorithm. As claimed in Section 6.1, the operation of the EUVO 

algorithm requires extra data inputs to estimate the vehicular status and match the occupancy 

levels of UVs. From the illustration of Figure 6.1, the number of data collection devices required 

for a junction is determined by the number of approach lanes and approach directions of a 

junction. One E1 detectors per approach lane and two one-side cameras per junction approach 

direction are needed for every junction. For a four-leg typical junction with two approach lanes 

from each direction, 8 inductive loop detectors and 4 one-side cameras are required to 

implement the EUVO algorithm. The E1 detectors installed at the detection area can detect when 

there is a vehicle crossing a specific lane and one-side cameras can capture the occupancy level of 

a crossing vehicle.  

  

Occupancy level detection accuracies from in-vehicle cameras and one-side roadside cameras are 

assumed to be 99% and 87% in simulation setup and experiments in SUMO. The vehicle 

occupancy detection works are challenging to be simulated in this research as vehicle occupancy 

detection technology and photos from roadside cameras are required. To simplify the simulation 

experiments, the detection accuracy from in-vehicle cameras and one-side roadside cameras are 

assumed to be consistent with the related literature. In SUMO simulation, a vehicle occupancy 

detection message is automatically generated when there is a vehicle crossing the detection area 

and the junction controller receives the message. To fit the detection accuracy, the occupancy 

level generated has an 87% probability to report the real occupancy level of the detected vehicle 

and the rest with a 13% probability to form a random value from other possibilities.  

  
The junction controllers are assumed to receive the signals from inductive loop detectors installed 

in the EUVO algorithm in simulation. E1 detectors are installed at all approach lanes to the 

junction and they can detect and send the signals when there is a vehicle crossing the detectors. If 

a junction controller receives a signal at a specific time step, the message forms part of the data 

inputs of the EUVO algorithm. 
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6.3 Detail descriptions of EUVO algorithm 

At the time step of the signal plan optimization process, the EUVO algorithm operates to estimate 

the statuses and occupancy levels of UVs after PerSiCon-Network triggers and collects vehicular 

data from CVs. As the index of CVs in the whole vehicle platoon is uncertain, the departure time 

estimations of UVs at various places (e.g. UVs in front of the first detected CVs, UVs in the middle 

of two detected CVs or behind the last detected CVs sorted by distances to the cross line) are 

different. The predicted departure time of the following vehicles can only be calculated after 

determining the vehicle status and discharging time of the previous one. Therefore, the EUVO 

algorithm procedure is executed in three steps:  

1. Collecting data for EUVO algorithm from CVs, inductive loops and vehicle information 

storage spaces of junction controller; 

2. Estimating the initial departure times, statuses and occupancy levels of UVs before first 

detected CVs; 

3. Estimating the initial departure times, statuses and occupancy levels of CVs and those 

UVs between or behind them; 

4. Update the vehicle information storage spaces. 

EUVO algorithm is an extension of the proposed algorithm PerSiCon-Network to enhance its data 

inputs. Besides the sets, decision variables and parameters adopted in Table 4.1 in Chapter 4, the 

additional parameters and constants which are dedicated to EUVO algorithm are summarized in 

Table 6.1. 

Table 6. 1 Definitions of parameters and constants for EUVO algorithm 

Sets Description  Unit  

𝐼𝐷𝐶𝑉
𝑃  ID list of CVs for phase 𝑝 collected at initial time step 𝑡0. __ 

𝑉𝐶𝑉
𝑃  Speed list of CVs for phase 𝑝 collected at initial time step 𝑡0. __ 

𝑆𝐶𝑉
𝑃  Position list of CVs for phase 𝑝 collected at initial time step 𝑡0. __ 

𝑂𝐶𝑉
𝑃  Occupancy list of CVs for phase 𝑝 collected at initial time step 𝑡0. __ 

𝑇𝑙𝑜𝑜𝑝
𝑝

 
Vehicle crossing time list for phase 𝑝 captured by inductive loop during the signal plan 

execution duration. 
__ 

𝑂𝑐𝑎𝑚
𝑝

 
Vehicle occupancy list for phase 𝑝 captured by camera during the signal plan execution 

duration. 
__ 

𝐼𝐷𝑙𝑜𝑜𝑝
𝑝

 
ID list of vehicles for phase 𝑝 sorted by their loop crossing sequence during the signal plan 

execution duration. 
__ 

𝑇𝑐𝑟𝑜𝑠𝑠
𝑝

 
Loop crossing time step of vehicles for phase 𝑝 sorted by their loop crossing sequence during 

the signal plan execution duration. 
— 

𝐼𝐷𝑟𝑒𝑐
𝑝

 ID list of vehicles left in discharging lane for phase 𝑝 recorded in junction database. — 

𝑂𝑟𝑒𝑐
𝑝

 Occupancy list of vehicles left in discharging lane for phase 𝑝 recorded in junction database. — 
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Parameters      

𝐼𝐷𝐶𝑉
𝑃 (𝑖) ID of CV 𝑖 in list 𝐼𝐷𝐶𝑉

𝑃  . __   

𝑉𝐶𝑉
𝑃 (𝑖) Speed of CV 𝑖 in list 𝑉𝐶𝑉

𝑃  . m/s   

𝑆𝐶𝑉
𝑃 (𝑖) Position of CV 𝑖 in list 𝑆𝐶𝑉

𝑃  . m   

𝑂𝐶𝑉
𝑃 (𝑖) Occupancy of CV 𝑖 in list 𝑂𝐶𝑉

𝑃  . __   

𝑇𝑙𝑜𝑜𝑝
𝑝

(𝑖) Vehicle crossing time of vehicle 𝑖 in list 𝑇𝑙𝑜𝑜𝑝
𝑝

. s   

𝑂𝑐𝑎𝑚
𝑝

(𝑖) Occupancy of vehicle 𝑖 in list 𝑂𝑐𝑎𝑚
𝑝

. __   

𝐼𝐷𝑙𝑜𝑜𝑝
𝑝

(𝑖) ID of vehicle 𝑖 in list 𝐼𝐷𝑙𝑜𝑜𝑝
𝑝

. __   

𝑇𝑐𝑟𝑜𝑠𝑠
𝑝

(𝑖) Loop crossing time of vehicle 𝑖 in list 𝑇𝑐𝑟𝑜𝑠𝑠
𝑝

. s   

𝐼𝐷𝑟𝑒𝑐
𝑝
(𝑖) ID of vehicle 𝑖 in list 𝐼𝐷𝑟𝑒𝑐

𝑝
. —   

𝑂𝑟𝑒𝑐
𝑝
(𝑖) Occupancy of vehicle 𝑖 in list 𝑂𝑟𝑒𝑐

𝑝
. —   

𝑛𝑓𝑟𝑜𝑛𝑡
𝑝

 Number of vehicles stopped before the first detected CV in the queue. —   

𝑡𝑙𝑜𝑜𝑝,𝑐𝑟𝑜𝑠𝑠
𝑝 (𝑖

− 1) 
The actual time of last CV 𝑖 − 1 spends from inductive loop to stop line. s 

  

𝑡𝑒𝑥𝑐𝑒𝑠𝑠
𝑝

(𝑖
− 1) 

The excess time cost of last CV 𝑖 − 1 spends from inductive loop to stop line. s 
  

𝐷𝐶𝐿 The distance needed for CV 𝑖 to accelerate to free-flow travelling speed 𝑉𝑑. m   

𝑡𝑛𝑒𝑥𝑡
𝑝

(𝑖) 
The time needed for next CV/UV 𝑖 to cross the lane when last CV/UV discharges from the 
cross line. 

s   

𝑡𝑔𝑎𝑝(𝑖

− 1, 𝑖) 
The time gap between last CV/UV and next CV/UV when they cross the inductive loop. s 

  

𝑔𝑟𝑒𝑠𝑡
𝑝

(𝑖) The rest of green time of phase p supposing next CV/UV i can cross the lane s   
Constants     

𝜇𝑓𝑖𝑟 The constant value of the distance between the first stopped CV and the cross line. m   

𝑙𝑣𝑒ℎ The length of a vehicle. m   

𝜇 The gap distance between two vehicles in queue. m   

 

The EUVO algorithm is illustrated in Algorithm 6 as follows: 

 

Algorithm 6 EUVO algorithm  

Input: ID list 𝐼𝐷𝐶𝑉, speed list 𝑉𝐶𝑉, position list 𝑆𝐶𝑉, occupancy list 𝑂𝐶𝑉 of detected CVs; Crossing 
time list 𝑇𝑙𝑜𝑜𝑝 and occupancy list 𝑂𝑐𝑎𝑚, from loop and camera; ID list of UVs and CVs cross the 

inductive loop 𝐼𝐷𝑙𝑜𝑜𝑝; 𝑔𝑙𝑎𝑠𝑡 and 𝑔𝑝; Vehicle ID list 𝐼𝐷𝑟𝑒𝑐 and occupancy list 𝑂𝑟𝑒𝑐 from storage 

space. 

Output: Predicted initial departure time list, status list and occupancy list of UVs and CVs in 

lane; Updated vehicle ID list 𝐼𝐷𝑟𝑒𝑐
𝑝

 and occupancy list 𝑂𝑟𝑒𝑐
𝑝

 

1:  If there is at least one CV in the approach lane & the speed of first detected CV is less than 
0.01 m/s: 

2:       determine number of stopped UVs in front of it using Equation (6-1) 

3:       estimate predicted initial departure time of UVs using Equation (6-2) 

4:  Else if there is at least one CV in the approach lane & at least one CV in the discharging list 
during last planning duration & no UV between first detected CV and last discharged CV: 

5:       predict initial departure time and status using Equation (6-3) - (6-6) 

6:  Else: 

7:       retrieve 𝑇𝑙𝑜𝑜𝑝
𝑝 (𝑖 − 1) and 𝑇𝑐𝑟𝑜𝑠𝑠

𝑝 (𝑖 − 1) of last discharged CV/UV from storage space or 

loop/stop line cross time list 
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8:       For UV(s)/CV(s) after last discharged CV/UV: 

9:            If UV/CV is the following vehicle next to last discharged CV/UV: 

10:                 judge whether it can cross the lane or not using Equations (6-7) – (6-14) 

11:          Else: 

12:               judge whether it can cross the lane or not using Equations (6-11) – (6-14) 

13:          If it cannot cross the lane: 

14:               calculate initial departure time Vc0
𝑝
(1, s0) and status Sc0

𝑝
(1, s0) using Equation (6-

15) and (6-16) 

15:               update value of 𝑡𝑒𝑥𝑐𝑒𝑠𝑠
𝑝

(1), 𝑡𝑛𝑒𝑥𝑡
𝑝

(1) and 𝑔𝑟𝑒𝑠𝑡
𝑝

(1) using Equations (6-11) – (6-14) 

16:               break 

17:           Else if there is at least one CV in the approach lane & the UV is previous vehicle of first 
detected CV: 

18:                calculate initial departure time Vc0
𝑝
(1, s0) and status Sc0

𝑝
(1, s0) using Equation (6-

3) to (6-6) 

19:           Else: 

20:                pass 

21:           update value of 𝑡𝑒𝑥𝑐𝑒𝑠𝑠
𝑝

(1), 𝑡𝑛𝑒𝑥𝑡
𝑝

(1) and 𝑔𝑟𝑒𝑠𝑡
𝑝

(1) using Equations (6-11) – (6-14) 

22: For vehicles from second one which cannot cross to last one detected by inductive loop: 

23:      If it is a UV: 

24:           calculate initial departure time Vc0
𝑝
(𝑖, s0) and status Sc0

𝑝
(𝑖, s0) using Equation (6-17) 

and (6-16) 

25:      Else: 

26:           calculate initial departure time Vc0
𝑝
(𝑖, s0) and status Sc0

𝑝
(𝑖, s0) using Equation (6-18) 

and (6-19) 

27:      update value of 𝑡𝑒𝑥𝑐𝑒𝑠𝑠
𝑝

(𝑖), 𝑡𝑛𝑒𝑥𝑡
𝑝

(𝑖) and 𝑔𝑟𝑒𝑠𝑡
𝑝

(𝑖) using Equations (6-11) – (6-14) 

28: Create occupancy list for all vehicles by matching the corresponding indexes in either 𝑂𝑟𝑒𝑐
𝑝

 

or 𝑂𝑐𝑎𝑚
𝑝

 

29: Remove data of vehicles before last discharging CV from 𝐼𝐷𝑟𝑒𝑐
𝑝

 and 𝑂𝑟𝑒𝑐
𝑝

 

30: Append data of all UVs before first detected CV in the approach lane into 𝐼𝐷𝑟𝑒𝑐
𝑝

 and 𝑂𝑟𝑒𝑐
𝑝

 

 

6.3.1 Data collection for EUVO algorithm 

Compared to data inputs of PerSiCon-Network, more data sources are required for the EUVO 

algorithm to estimate the states of UVs. The data inputs for the EUVO algorithm originate from 

three parts: a) data from CVs; b) data from inductive loops and roadside cameras; c) Data from 

the storage space of junction controllers. Inductive loops and roadside cameras are activated 

every time step during the whole signal plan execution duration between two optimization 

processes of PerSiCon-Network. The data from the nearest CV to the cross line for every time step 

are also required to realize whether the first detected CV has discharged from the arrival lane. 

Data from the storage space of junction controllers record all of the index and occupancy levels of 

vehicles detected but not discharged in the last signal optimization process to recognize their 

states and occupancy information. The relationships of the three data resources of the EUVO 

algorithm are presented in Figure 6.2. 
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Figure 6. 2 Relationships of three data resources of EUVO algorithm 

The illustration of the junction controller receiving three types of data sources as the first step of 

the EUVO algorithm is shown in Figure 6.3. The details of all pieces of data are listed below: 

• ID list 𝐼𝐷𝐶𝑉
𝑃 = [𝐼𝐷𝐶𝑉

𝑃 (1), 𝐼𝐷𝐶𝑉
𝑃 (2), … , 𝐼𝐷𝐶𝑉

𝑃 (𝑛)], speed list 𝑉𝐶𝑉
𝑃 =

[𝑉𝐶𝑉
𝑃 (1), 𝑉𝐶𝑉

𝑃 (2),… , 𝑉𝐶𝑉
𝑃 (𝑛)], position list 𝑆𝐶𝑉

𝑃 = [𝑆𝐶𝑉
𝑃 (1), 𝑆𝐶𝑉

𝑃 (2),… , 𝑆𝐶𝑉
𝑃 (𝑛)] and 

occupancy list 𝑂𝐶𝑉
𝑃 = [𝑂𝐶𝑉

𝑃 (1), 𝑂𝐶𝑉
𝑃 (2),… , 𝑂𝐶𝑉

𝑃 (𝑛)] of all detected CVs of phase 𝑝 ∈ 𝑃 and 

their distance to the cross line from nearest to farthest one at an initial time step 𝑡0. The 

elements with the same index in the above lists are characteristics of the same vehicle. 

• Loop crossing time list 𝑇𝑙𝑜𝑜𝑝
𝑝

= [𝑇𝑙𝑜𝑜𝑝
𝑝

(1), 𝑇𝑙𝑜𝑜𝑝
𝑝

(2), … , 𝑇𝑙𝑜𝑜𝑝
𝑝

(𝑛)] and camera captured 

occupancy list 𝑂𝑐𝑎𝑚
𝑝

= [𝑂𝑐𝑎𝑚
𝑝

(1), 𝑂𝑐𝑎𝑚
𝑝

(2),… , 𝑂𝑐𝑎𝑚
𝑝

(𝑛)] from loop and camera 

respectively sorted from earliest to latest one during the signal plan execution duration. 

The elements with the same index in two lists are characteristics of the same vehicle. 

• Locations of nearest CV for every time step and all CVs when there is a vehicle crossing 

the inductive loop. The former one is to identify the time step when the last CV is 

discharging from the cross line. The latter one is to find out whether the vehicle that 

crosses the inductive loop is a CV or not. The location of CVs can be used to compare with 

the distance from the inductive loop to the cross line to ensure this. A new ID list mixture 

by CVs and UVs to distinguish UV/CV type with the same sequence of their stop line cross 

time of phase 𝑝 ∈ 𝑃 is generated as 𝐼𝐷𝑙𝑜𝑜𝑝
𝑝

= [𝐼𝐷𝑙𝑜𝑜𝑝
𝑝

(1), 𝐼𝐷𝑈𝑉
𝑝
(2),… , 𝐼𝐷𝑙𝑜𝑜𝑝

𝑝
(𝑛)]. 𝐼𝐷𝑈𝑉

𝑝
 

refers that this vehicle is a UV. The stop line crossing time step list 𝑇𝑐𝑟𝑜𝑠𝑠
𝑝

=

[𝑇𝑐𝑟𝑜𝑠𝑠
𝑝

(1), 𝑇𝑐𝑟𝑜𝑠𝑠
𝑝

(2), … , 𝑇𝑐𝑟𝑜𝑠𝑠
𝑝

(𝑛)] represents the detected or estimated time steps of 

CVs/UVs when they cross the stop line. 



Chapter 6 

215 

• Signal timing plan optimized by PerSiCon-Network in the last planning horizon. It is used 

to judge whether UVs are discharging from the cross line after the last CV and realize the 

green duration given for this lane before the current time step. Two parameters are 

important to be identified: green time last after the final detected CV or estimated UV 

passes through the cross line 𝑔𝑟𝑒𝑠𝑡
𝑝

 before the optimization time step and constantly 

green time given for this lane before the initial time step 𝑔𝑝. 

• ID list mixture by CVs and UVs of vehicles in discharging lane updated at last optimization 

time step 𝐼𝐷𝑟𝑒𝑐
𝑝

= [𝐼𝐷𝑟𝑒𝑐
𝑝
(1), 𝐼𝐷𝑈𝑉

𝑝
(2),… , 𝐼𝐷𝑟𝑒𝑐

𝑝
(𝑛)]  and occupancy list sorted by the 

index of ID list 𝑂𝑟𝑒𝑐
𝑝
= [𝑂𝑟𝑒𝑐

𝑝
(1), 𝑂𝑈𝑉

𝑝
(2), … , 𝑂𝑟𝑒𝑐

𝑝
(𝑛)]. These two lists are recorded in the 

storage space of the junction controller and are used to determine the number of vehicles 

in discharging lane in the current time step and their occupancy data. 

 

Figure 6. 3 Data collection stage for EUVO algorithm 

6.3.2 Estimate states of unequipped vehicles in front of first detected CV 

At the initial time step 𝑡0, the junction controller receives data from all CVs. The initial departure 

time can directly be predicted using Equations (4-10) – (4-13) if all vehicles on road are CVs. 

However, with the presence of UVs, the number of UVs in front of the first detected CV is 

challenging to be required as they cannot provide their vehicular status. Therefore, it is critically 

important to figure out the status of the first vehicle in discharging lane and then estimate the 

initial departure time of all vehicles sequentially and search for their relative the occupancy level 

from occupancy data list 𝑂𝑐𝑎𝑚 or 𝑂𝑟𝑒𝑐. An example has been illustrated in Figure 6.4. 
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As claimed in Section 6.3.1, 𝐼𝐷𝑙𝑜𝑜𝑝 or 𝐼𝐷𝑟𝑒𝑐 can be used to identify whether there are UVs 

between the first detected CV and the last discharging CV. If there is no UV between them, the 

first detected CV is the nearest vehicle to the cross line. Its initial departure time and status can 

be calculated by Equations (4-10) and (4-12). If there is at least 1 UV between two CVs, the states 

of UV are estimated in different cases. If the speed of the first detected CV is less than 0.01 m/s, it 

can be regarded as a stopped vehicle in the queue. The number of vehicles stopped in front of it 

𝑛𝑓𝑟𝑜𝑛𝑡 can be calculated by Equation (6-1): 

 

𝑛𝑓𝑟𝑜𝑛𝑡 = (𝑆𝐶𝑉,1 − 𝜇𝑓𝑖𝑟) / (𝑙𝑣𝑒ℎ + 𝜇) (6-1) 

 

Where 𝜇𝑓𝑖𝑟  is the constant value of the distance between the first stopped vehicle and the cross 

line, 𝑙𝑣𝑒ℎ is the length of the first vehicle and 𝜇 is gap distance between two vehicles in queue. 

The initial departure time of vehicles including the first detected CV Vc0
𝑝
(𝑖, s0) is calculated in 

Equation (6-2): 

 

Vc0
𝑝
(𝑖, s0) =  {

𝛼 + ℎ𝑠 − 𝑔𝑝,             𝑖𝑓 𝑖 =  1 

Vc0
𝑝
(𝑖 − 1, s0)  + ℎ𝑠,     𝑖𝑓 𝑖 ≥  2

    (6-2) 

 

Where 𝛼 and ℎ𝑠 are start-up loss time and saturated headway defined in Chapter 3. The 

constantly green time given for this lane before initial time step is 0 if the traffic signal is a red 

light. All vehicle status from first stopped vehicle to the first detected CV is queuing status. The 

occupancy level of first detected CV can be matched either 𝑂𝑐𝑎𝑚 or 𝑂𝑟𝑒𝑐 through the index of its 

unique ID in the ID list 𝐼𝐷𝐶𝑉 or 𝐼𝐷𝑙𝑜𝑜𝑝. The occupancy levels of all vehicles in front of it can be 

assigned by the occupancy list with relative indexes. 

If there is at least one CV in the approach lane and at least one CV in the discharging list during 

the last planning duration and no UV between the first detected CV and last discharged CV, the 

first detected CV is the nearest vehicle to the cross line. The initial departure time for the first 

detected CV and following CVs in queue and arrivals can be predicted at the start of optimization 

supposing that the next stage for this lane will be constantly activated with green lights, which are 

expressed in Equations (6-3) - (6-6). The prediction of the following CVs can be found below in 

Equations (6-18) and (6-19). The prediction method is originated from the kinematic wave theory 

principles adopted in person-based control (Christofa et al, 2016) and (Mohammadi et al, 2019), 

which is used for describing vehicle trajectories in the fleet with the influence of adjacent 

vehicles. In this paper, the acceleration and deceleration process of vehicles when they merge 

into queues or start up for discharging are simplified to reduce the operational complexity of 
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algorithm optimization. Four cases of different fleet trajectory patterns are considered in this 

method in the case of no less than three vehicles in arriving fleet:  

1. All vehicles are discharged at free-flow speed 

2. All vehicles are discharged from the queue 

3. Following vehicles travelling at free-flow speed arrive before the queue has been 

discharged 

4. Following vehicles travelling at free-flow speed arrive after the queue has been 

discharged.  

 

𝑉𝑐0
𝑝
(1, 𝑠0) = {

𝛼 + ℎ𝑠 − 𝑔𝑝, 𝑖𝑓𝑣0
𝑝(1) = 0 ∧ 𝑔𝑝 < 𝛼 + ℎ𝑠

𝑚𝑖𝑛 [𝛼 + ℎ𝑠 − 𝑔𝑝, 𝑙0
𝑝 (1) 𝑣0

𝑝⁄ (1)], 𝑖𝑓0 ≤ 𝑣0
𝑝(1) ≤ 𝑣𝑠

𝑙0
𝑝 (1) 𝑣0

𝑝⁄ (1), 𝑖𝑓𝑣0
𝑝(1) > 𝑣𝑠 ∨ 𝑔𝑝 ≥ 𝛼 + ℎ𝑠

∧ 𝑔𝑝 < 𝛼 + ℎ𝑠∀𝑝 ∈ 𝑃 (6-3) 

𝑆𝑐0
𝑝
(1, 𝑠0) = {

1, 𝑖𝑓𝑣0
𝑝(1) > 𝑣𝑠

0, 𝑖𝑓𝑣0
𝑝(1) ≤ 𝑣𝑠

∀𝑝 ∈ 𝑃 (6-4) 

  

ℎ𝑠 = {
3600 𝑆𝑐⁄ , 𝑖𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖𝑠 𝑎 𝑐𝑎𝑟

3600 𝑆𝐵⁄ , 𝑖𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖𝑠 𝑎 𝑏𝑢𝑠
 

(6-5) 

 

𝑣𝑠 = {
𝑣𝑐𝑎𝑟 , 𝑖𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖𝑠 𝑎 𝑐𝑎𝑟
𝑣𝑏𝑢𝑠, 𝑖𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖𝑠 𝑎 𝑏𝑢𝑠

 (6-6) 

More details for predicting the initial departure time and status of the first detected CV in 

different cases can be found in Chapter 4. Equation (6-5) represents that buses and cars have 

different saturated flows and the headways between two vehicles are decided by the saturation 

flow of the front vehicle. This simplification is justified by the calculation of headway only relying 

on the front vehicle, so does not significantly degrade the results (Yang et al, 2018). Equation (6-6) 

indicates that the speeds of cars and buses discharging from the queue, which are used for 

judging vehicle status, are also different. 

In other cases, if the speed of the first detected CV is higher than 0.01 m/s, the status of vehicles 

in front of it cannot be directly decided and data of the last CV discharging from the cross line is 

needed. Define 𝑡𝑙𝑜𝑜𝑝,𝑐𝑟𝑜𝑠𝑠
𝑝 (𝑖 − 1) as the actual time of the last CV 𝑖 − 1 spends from the inductive 

loop to the stop line. The excess time cost 𝑡𝑒𝑥𝑐𝑒𝑠𝑠
𝑝

(𝑖 − 1) of the last CV 𝑖 − 1, which compares 

𝑡𝑙𝑜𝑜𝑝,𝑐𝑟𝑜𝑠𝑠
𝑝 (𝑖 − 1) with the time spent on free-flow travel time from the inductive loop to 

discharge from the lane, is calculated as: 

 

𝑡𝑙𝑜𝑜𝑝,𝑐𝑟𝑜𝑠𝑠
𝑝 (𝑖 − 1) =  𝑇𝑐𝑟𝑜𝑠𝑠

𝑝 (𝑖 − 1) − 𝑇𝑙𝑜𝑜𝑝
𝑝 (𝑖 − 1), ∀𝑝 ∈ 𝑃 (6-7) 
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𝑡𝑒𝑥𝑐𝑒𝑠𝑠
𝑝

(𝑖 − 1) =  𝑡𝑙𝑜𝑜𝑝,𝑐𝑟𝑜𝑠𝑠
𝑝

(𝑖 − 1) − (𝑑𝑙𝑜𝑜𝑝,𝑐𝑟𝑜𝑠𝑠
𝑝

 / 𝑣𝑙𝑜𝑜𝑝
𝑝

(𝑖 − 1)), 𝑖𝑓 𝑣𝑙𝑜𝑜𝑝
𝑝 (𝑖 − 1)) ≥ 0.9𝑉𝑑 (6-8) 

  

𝐷𝐶𝐿 = 
𝑉𝑑

2 − (𝑣𝑙𝑜𝑜𝑝
𝑝

(𝑖 − 1))2

2𝑎
 (6-9) 

  

𝑡𝑒𝑥𝑐𝑒𝑠𝑠
𝑝

(𝑖 − 1) =  𝑡𝑙𝑜𝑜𝑝,𝑐𝑟𝑜𝑠𝑠
𝑝

(𝑖 − 1) − (𝑑𝑙𝑜𝑜𝑝,𝑐𝑟𝑜𝑠𝑠
𝑝

− 𝐷𝐶𝐿)/ 𝑉𝑑 − (𝑉𝑑

− 𝑣𝑙𝑜𝑜𝑝
𝑝 (𝑖 − 1))/𝑎, 𝑖𝑓 𝑣𝑙𝑜𝑜𝑝

𝑝 (𝑖 − 1)) < 0.9𝑉𝑑 
(6-10) 

Equation (6-7) defines the calculation value of actual travel time 𝑡𝑙𝑜𝑜𝑝,𝑐𝑟𝑜𝑠𝑠
𝑝 (𝑖 − 1). Equations (6-8) 

- (6-10) calculate the excess time cost 𝑡𝑒𝑥𝑐𝑒𝑠𝑠
𝑝

(𝑖 − 1) of the last CV 𝑖 − 1 in either free-flow speed 

travelling mode or acceleration and free-flow speed travelling mode, depending on the location of 

the loop detection area and the speed of the vehicle when it crosses the inductive loop. If the 

junction controller judges the speed of vehicle 𝑣𝑙𝑜𝑜𝑝
𝑝 (𝑖 − 1) is in the range of free-flow speed, the 

excess time cost 𝑡𝑒𝑥𝑐𝑒𝑠𝑠
𝑝

(𝑖 − 1) can be calculated by Equation (6-8). Notably, cars and buses have 

different free-flow speed ranges, which need to be recognized separately. Otherwise, Equations 

(6-9) and (6-10) are used for estimating 𝑡𝑒𝑥𝑐𝑒𝑠𝑠
𝑝

(𝑖 − 1), which represent that the vehicle first 

experiences an acceleration process from queue discharging status to free-flow travelling status, 

then cross the stop line with free-flow speed. For UVs, the free-flow speed and the speed when 

vehicles cross the inductive loop are originated from the empirical values observed. 

The time needed for the next CV/UV 𝑖 to cross the lane when the last CV/UV discharges from the 

cross line 𝑡𝑛𝑒𝑥𝑡
𝑝

(𝑖) is calculated by Equations (6-11) and (6-12): 

 

𝑡𝑔𝑎𝑝(𝑖 − 1, 𝑖) =  𝑇𝑙𝑜𝑜𝑝
𝑝 (𝑖) − 𝑇𝑙𝑜𝑜𝑝

𝑝 (𝑖 − 1), ∀𝑝 ∈ 𝑃 (6-11) 

  

𝑡𝑛𝑒𝑥𝑡
𝑝

(𝑖) =  max (ℎ𝑠, 𝑡𝑔𝑎𝑝(𝑖 − 1, 𝑖) − 𝑡𝑒𝑥𝑐𝑒𝑠𝑠
𝑝

(𝑖 − 1)) , ∀𝑝 ∈ 𝑃 (6-12) 

 

Where 𝑡𝑔𝑎𝑝(𝑖 − 1, 𝑖) is the time gap between the last CV/UV and the next CV/UV when they cross 

the inductive loop. The excess time cost 𝑡𝑒𝑥𝑐𝑒𝑠𝑠
𝑝

(𝑖) of vehicle 𝑖  are then updated for estimating 

the arrival status of the next following vehicle by Equation (6-13). Formula (6-14) is used to judge 

whether the next CV/UV can cross the junction before the initial time step or not: 

 

𝑡𝑒𝑥𝑐𝑒𝑠𝑠
𝑝

(𝑖) = {
0,    𝑖𝑓 𝑡𝑔𝑎𝑝(𝑖 − 1, 𝑖) − 𝑡𝑒𝑥𝑐𝑒𝑠𝑠

𝑝
(𝑖 − 1) ≥ ℎ𝑠

𝑡𝑒𝑥𝑐𝑒𝑠𝑠
𝑝

(𝑖 − 1) + ℎ𝑠 − 𝑡𝑔𝑎𝑝(𝑖 − 1, 𝑖), 𝑖𝑓 𝑡𝑔𝑎𝑝(𝑖 − 1, 𝑖) − 𝑡𝑒𝑥𝑐𝑒𝑠𝑠
𝑝

(𝑖 − 1) ≥ ℎ𝑠
    (6-13) 

  

𝑔𝑟𝑒𝑠𝑡
𝑝

(𝑖) =  max (𝑔𝑟𝑒𝑠𝑡
𝑝 (𝑖 − 1) − 𝑡𝑛𝑒𝑥𝑡

𝑝 (𝑖), 0), ∀𝑝 ∈ 𝑃 (6-14) 
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In formula (6-14), 𝑔𝑟𝑒𝑠𝑡
𝑝

(𝑖) means the rest of the green time of phase 𝑝 supposing the next CV/UV 

𝑖 can cross the lane. If it is a negative value, CV/UV cannot cross the lane and it becomes the 

nearest vehicle to the cross line. The initial departure time Vc0
𝑝
(1, s0) and status Sc0

𝑝
(1, s0) of it is 

calculated by: 

Vc0
p
(1, s0) =  {

𝑡𝑛𝑒𝑥𝑡
𝑝

(𝑖) − 𝑔
𝑝
,    𝑖𝑓 𝑐𝑜𝑛𝑡𝑎𝑛𝑡𝑙𝑦 𝑔𝑟𝑒𝑒𝑛 𝑢𝑛𝑡𝑖𝑙 𝑡0

𝛼 + ℎ𝑠 − 𝑔𝑝,                𝑖𝑓 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠
    (6-15) 

  

Sc0
p
(i, s0) =  {

1,    𝑖𝑓 𝑡𝑔𝑎𝑝 − 𝑡𝑒𝑥𝑐𝑒𝑠𝑠 − ℎ𝑠 > 0

0,    𝑖𝑓 𝑡𝑔𝑎𝑝 − 𝑡𝑒𝑥𝑐𝑒𝑠𝑠 − ℎ𝑠 ≤ 0
    (6-16) 

 

Figure 6. 4 An example of estimating states of unequipped vehicles in front of first detected CV 

6.3.3 Estimate states of vehicles behind first detected CV 

The initial predictive departure time and status of the first CV/UV can be determined in different 

cases mentioned above. After that, the next step is to estimate the following vehicles within the 

inductive loop and CV detection region, as shown in Figure 6.5. As each CV or bus can be 

recognized by its unique ID in 𝐼𝐷𝐶𝑉 or 𝐼𝐷𝑙𝑜𝑜𝑝, the number of UVs/CVs/buses after the first vehicle 

in the discharging lane can be determined. For all of the vehicles from the second one which 

cannot cross to the last one detected by the inductive loop, if it is a UV, the initial departure time 

Vc0
𝑝
(𝑖, s0) and status Sc0

𝑝
(𝑖, s0) of vehicle 𝑖 can be calculated by Equations (6-17) and (6-16): 

 

Vc0
p
(i, s0) =   Vc0

p
(i − 1, s0) + 𝑡𝑛𝑒𝑥𝑡,   𝑖 ≥ 2 (6-17) 
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If the next following vehicle in the lane is a bus or CV, the initial departure time Vc0
𝑝
(𝑖, s0) and 

status Sc0
𝑝
(𝑖, s0) can be calculated by Equations (6-18) and (6-19) considering four different cases 

analysing vehicle trajectories and statuses with the knowledge of speeds and distances of bus or 

CV to junction cross line. 

𝑉𝑐0
p
(𝑖, s0) =  {

 Vc0
𝑝
(𝑖 − 1, s0)  + ℎ𝑠,                 𝑖𝑓 𝑣0

𝑝(𝑖)  ≤  𝑣𝑠 

max[ 𝑙0
𝑝(𝑖)/𝑣0

𝑝
(𝑖),  Vc0

𝑝
(𝑖 − 1, s0)  + ℎ𝑠],   𝑖𝑓 𝑣0

𝑝(𝑖)  >  𝑣𝑠
  ∀𝑝 ∈ 𝑃, 𝑖 ≥ 2  (6-18) 

 

𝑆𝑐0
𝑝
(𝑖, 𝑠0) =  {

1, 𝑖𝑓 𝑣0
𝑝(1)  >  𝑣𝑠 𝑎𝑛𝑑  𝑉𝑐0

𝑝
(𝑖, 𝑠0)  > 𝑙0

𝑝(𝑖)/𝑣0
𝑝(𝑖)

0,                                𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠
   ∀𝑝 ∈ 𝑃 ,   𝑖 ≥ 2 

(6-19) 

 

After estimating the departure time Vc0
𝑝
(𝑖, s0) and status Sc0

𝑝
(𝑖, s0) of vehicle 𝑖, the occupancy 

values with corresponding indexes in 𝑂𝑟𝑒𝑐
𝑝

 or 𝑂𝑐𝑎𝑚
𝑝

 are assigned to vehicles to estimate the 

occupancy levels of UVs. In addition, the value of 𝑡𝑒𝑥𝑐𝑒𝑠𝑠
𝑝

(𝑖), 𝑡𝑛𝑒𝑥𝑡
𝑝

(𝑖) and 𝑔𝑟𝑒𝑠𝑡
𝑝

(𝑖)  need to be 

updated for the preparation of calculating departure time and status for the next vehicle 𝑖 + 1 

until the last vehicle is detected by inductive loop using Equations (6-11) – (6-14).  

 

 

Figure 6. 5 An example of estimating states of unequipped vehicles behind first detected CV 

6.3.4 Update the storage space of junction controller 

The final step of the EUVO algorithm is to update the storage space of the junction controller. The 

purpose of this step is to record the data of all UVs and CVs in the approach lane, which is 

contributed to identifying the numbers, distributions and relative occupancy data of UVs for the 

next optimization duration. As seen in Figure 6.6, the data of those vehicles that have been 

discharged from the lane in the last signal plan execution duration are removed. The data of 
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upcoming vehicles detected by inductive loops are appended to the end of the ID list 𝐼𝐷𝑟𝑒𝑐 and 

occupancy list 𝑂𝑟𝑒𝑐.  

 

Figure 6. 6 An example of updating storage space after estimation. 

6.4 Experiments and evaluations of PerSiCon- Network with EUVO 

algorithm 

To validate the performance of the EUVO algorithm, the person-related performance of PerSiCon-

Network with EUVO algorithm compared to the performance of PerSiCon-Network without UVs 

estimation. The experiment results of PerSiCon-Network without UVs estimation are presented in 

Chapter 5 and placed in this chapter as the performance of a benchmarking model. The person-

based control PerSiCon-Network supported by the EUVO algorithm is operated and evaluated in 

the same case study provided in Chapter 5 in SUMO simulation. The vehicular parameters, 

junction layouts and traffic generation have been introduced in Chapter 5 and kept the same to 

evaluate PerSiCon-Network with the EUVO algorithm. 

  

The data collection simulations for additional data inputs from loop detectors and roadside 

cameras in the EUVO algorithm have been explained in Sections 6.1 and 6.2. The occupancy 

detection outputs from cameras are assumed to be directly obtained in experiments due to the 

lack of vehicle occupancy detection technology and photo inputs. The state-of-the-art research 

reviewed in Chapter 2 achieved 87% vehicle occupancy detection accuracy using one-side 

cameras. This value is adopted and set to be the accuracy degree of occupancy detection from 

one-side cameras to make data sources of evaluations more realistic. If there are 2 or more lanes 

from one direction and 2 or more vehicles cross the inductive loop detection area at the same 
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time step, the occupancy level of vehicles except the left one cannot be detected and their 

occupancy values are replaced by a uniformly random value from 1 to vehicle capacity. The 

occupancy level accuracy of CVs captured from in-vehicle cameras is assumed to be 99%.  

  
Instead of the sensitivity factors that have been tested in Chapter 5, this Chapter designs some 

particular sensitivity factors for the EUVO algorithm to understand in which conditions it can 

achieve the best results. The scenarios for different CV penetration rates need to be carried out to 

evaluate the effectiveness of the EUVO algorithm in imperfect CV penetration rates. Besides, it is 

not clear where the most suitable detection area installation place is and how frequently to 

activate the detection area to perform the EUVO algorithm best. To observe the sensitivity of the 

estimation algorithm to different factors, different CV penetration rates, distances of loops and 

cameras to the cross line and active time interval of loops and cameras are tested respectively. 

The CV penetration rates are set from 10% to 100% with a step of 10%. The distances of loops and 

cameras to the cross line are set from 50m to 250m with a step of every 50m. 1s, 2s, 3s and 5s 

active time intervals of loops and cameras are used in different experiments to test the changes 

of EUVO algorithm. When one of the parameters is changed and tested, 50% CV penetration rate, 

250m distance and 1s active time interval are used for the other two factors. 

6.5 Results and discussions 

6.5.1 Initial results observation 

To better understand how the EUVO algorithm works and make effects on vehicle state 

estimations, an initial results observation is made at a certain time step when the PerSiCon-

Network is triggered. The observation place is westbound two approaching lanes of the junction 

of New John St West and Summer Ln of Birmingham, UK, where there are two main approach 

lanes with massive streams of traffic. The optimization outputs made by the EUVO algorithm are 

compared with the outputs when the CV penetration rate is 100%. Figure 8.7 to Figure 8.9 

illustrate the comparisons of estimation results from the EUVO algorithm in different settings of 

CV penetration rates, distances of loops/cameras to the cross line, active time intervals and 

baseline data representing actual states of UVs and CVs. As the PerSiCon-Network requires 

predictive departure time and occupancy data as inputs, the initial predictive discharging time and 

occupancy sequence for two lanes from west to east of the selected junction are calculated by 

100% penetration rate as the baseline, which represents the actual states of vehicle data with CVs 

and UVs. In PerSiCon-Network with the EUVO algorithm, only data from CVs can be directly 

obtained. 
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Figure 6. 7 Initial result observations of EUVO algorithm in different CV penetration rates 

Figure 6.7 illustrates the vehicle state estimations made by the EUVO algorithm in 20%, 50%, 80% 

CV penetration rates respectively. Above the horizontal lines lane 1 and lane 2, there are three 

lists respectively, which represent the EUVO estimation results and baselines for lane 1 and lane 2 

respectively in three different CV penetration rates. Each list responds to the CV penetration rate 

marked on the left side and it consists of two groups. In each list, the upper group (consisting of 

circle shapes) is the vehicle predictive cross-time estimations and correspond occupancy levels 

(represented by different colours) made by the EUVO algorithm in relative CV penetration rate. 

The lower group is the baseline outputs made by PerSiCon-Network when the CV penetration rate 

is 100%. The rectangle shapes and triangle shapes represent baseline values of CVs and UVs and 

different colours are their real occupancy levels. In different CV penetration rates, the EUVO 

algorithm can only acquire vehicle information with rectangle shapes (CVs). With different CV 

penetration rates EUVO algorithm receives different degrees of CV information, there are 

different baselines under each of the EUVO algorithm estimation outputs with circle shapes, to 

represent which vehicle information can be acquired by the EUVO algorithm (with rectangle 

shapes) in specific CV penetration rate.  

  
Figure 6.7 illustrates that in different CV penetration rates, the estimation results for two lanes 

made by the EUVO algorithm produce correct predictive cross time for all vehicles, regardless of 

their connectivity. Only in a few cases, such as 20% CV penetration rates for lane 2, the EUVO 

algorithm generates an incorrect vehicle occupancy level. It could be found from this figure that 

penetration rate is not a critical factor to affect the performance of the estimation algorithm 

when loops and cameras are active every second with a distance of 250m to cross the line. In the 

case of 20% penetration rate, the accuracy of the estimation algorithm is still kept at a high level. 
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Figure 6. 8 Initial result observations of EUVO algorithm in active time intervals of cameras and loops 

 

Figure 6.8 presents comparisons of estimation algorithm effects under active time intervals of 

different devices when the CV penetration rate is 50%. Similar to Figure 6.7, the rectangles and 

triangles on two lines represent the predictive cross time and occupancy levels of vehicles in 100% 

CV penetration rate as baselines. When the CV penetration rate is 50%, only CV data with 

rectangle shapes can be acquired by the EUVO algorithm. The groups of circle shapes with 

different colours on lane 1 and lane 2 lines represent the vehicle departure time estimation and 

occupancy level results of the EUVO algorithm, in the case that active time intervals are 1, 2, 3 

and 5 seconds respectively. 

  
It can be found in Figure 6.8 that the performance of the EUVO algorithm are significantly 

degraded when loops and cameras are active every 2, 3 and 5 seconds compared to those when 

devices are activated every second. The reason is around half of the crossing vehicles cannot be 

detected by loops and cameras when they are active every 2 seconds and two third cannot be 

found when the active interval is 3 seconds. It is hard to make an accurate estimation when a 

proportion of unequipped vehicle data are missing. 
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Figure 6. 9 Initial result observations of EUVO algorithm in different distances from cameras and loops to 

cross line 

The illustration of Figure 6.9 is very similar to Figure 6.8. The rectangles and triangles on two lines 

represent the predictive cross time and occupancy levels of vehicles in 100% CV penetration rate 

as baselines. EUVO algorithm can only acquire CV data with rectangle shapes as data inputs. The 

circle shapes above lane 1 and lane 2 are EUVO algorithm outputs for lane 1 and lane 2 when the 

inductive loops and cameras are installed at 50, 100, 150, 200 and 250 meters to cross the line 

respectively.  

  
Figure 6.9 shows comparisons of estimation algorithm effects under different device installation 

locations. The effects of the estimation algorithm do not severe drop when distances from loops 

and cameras to cross line change between 100 meters and 250 meters. However, the overclose 

distance of devices makes estimation not quite accurate as some UVs fail to cross the detection 

area when the EUVO algorithm works. 

6.5.2 Sensitivity analysis to CV penetration rate 

Figure 6.10 illustrates the performance of PerSiCon-Network with EUVO algorithm compared to 

PerSiCon-Network without EUVO algorithm in various CV penetration rates in three flow levels. 

The loops and cameras are 250m far from the cross line and active for every second. Table 6.2 

shows the hypothesis test results of two control methods at 95% confidence degree. From Figure 

6.10, although the average person delays and stops of PerSiCon-Network with EUVO algorithm 

increase as CV penetration rate decreases, the trend is rather steady and gentle compared to 

those performance of PerSiCon-Network without EUVO algorithm. The improvements in average 

person delays and stops are more significant especially when the CV penetration rate is below 
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50%. From the six subplots in Figure 6.10, the performance of PerSiCon-Network with EUVO 

algorithm at 30% CV penetration rate are even better than those of PerSiCon-Network without 

EUVO algorithm at 70% CV penetration rate. However, when the CV penetration rate is below 

20%, the increments of average person delays and stops are relatively larger than the cases when 

the CV penetration rate is higher than 20%. The small proportion of CVs causes negative impacts 

on reducing delays and stops. The results from hypothesis tests in Table 6.2 also prove the 

effectiveness of the EUVO algorithm. The average person delays and stops of two control 

methods have significant differences when the CV penetration rate is below 90%. 

 

 

Figure 6. 10 Comparison of average passenger delay (s/per) and average person stop (num/per) of 

PerSiCon-Network with and without EUVO algorithms under variety CV penetration rates and three flow 

levels with mixture of cars and buses 
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Table 6. 2 P-values in average person delay and stop comparison for PerSiCon-Network with and without 

EUVO algorithm with mixture of cars and buses in different traffic flow demands and different CV 

penetration rates 

 P-values for average person delay P-values for average person stop 

Flow level Low Average High Low Average High 

100% 1.000 1.000 1.000 1.000 1.000 1.000 

90% 0.318 0.549 0.274 0.038 0.032 0.131 

80% 0.020 0.042 0.009 0.006 0.003 0.000 

70% 0.000 0.000 0.000 0.000 0.000 0.000 

60% 0.000 0.000 0.000 0.000 0.000 0.000 

50% 0.000 0.000 0.000 0.000 0.000 0.000 

40% 0.000 0.000 0.000 0.000 0.000 0.000 

30% 0.000 0.000 0.000 0.000 0.000 0.000 

20% 0.000 0.000 0.000 0.000 0.000 0.000 

10% 0.000 0.000 0.000 0.000 0.000 0.000 

 

6.5.3 Sensitivity analysis to active time intervals 

Figure 6.11 illustrates the person-related performance of PerSiCon-Network with EUVO algorithm 

with loops and cameras active time intervals of every 1, 2, 3 and 5 seconds in three flow levels. 

The CV penetration rate is set to be 50% and the distance from devices to the cross line is 250m. 

Similar to the observations found from the initial results presented in Section 6.5.1, the average 

person delays and stops of PerSiCon-Network with EUVO are significantly degraded when the 

devices of loops and cameras are activated every 2, 3 and 5 seconds. The reason is that in these 

scenarios many UVs possibly fail to be captured by loops and cameras. The hypothesis test results 

in Table 6.3 show that the EUVO algorithm takes significant effects on improving person-based 

delays and stops when the active time interval is 1, 2 or 3 seconds. In some cases when the active 

time interval is 5 seconds, the optimization results of PerSiCon-Network equipped with EUVO 

algorithm do not have obvious differences from PerSiCon- Network without EUVO algorithm. 
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Figure 6. 11 Comparison of average passenger delay (s/per) and average person stop (num/per) of 

PerSiCon-Network with and without EUVO algorithms under different active time intervals and three flow 

levels with mixture of cars and buses 

 

Table 6. 3 P-values in average person delay and stop comparison for PerSiCon-Network with and without 

EUVO algorithm with mixture of cars and buses in different traffic flow demands and different 

active time intervals 

 P-values for average person delay P-values for average person stop 

Flow level Low Average High Low Average High 

1s 0.000 0.000 0.000 0.000 0.000 0.000 

2s 0.000 0.000 0.000 0.000 0.000 0.000 

3s 0.003 0.007 0.000 0.000 0.000 0.000 

5s 0.102 0.358 0.021 0.000 0.374 0.000 
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6.5.4 Sensitivity analysis to distances from loops and cameras to cross line 

Figure 6.12 shows the results of PerSiCon-Network equipped with EUVO algorithm in different 

loop and camera installation locations to the cross line in three flow levels. The performance of 

average person delays and stops are similar to the observation of the initial results concluded in 

Section 6.5.1. The average person delays and stops in three flow levels are lightly increased with 

the distance shortening in the range of 100m to 250m. The performance of the algorithm are 

degraded when the distance is 50m as the inductive loops and cameras are installed over close to 

the cross line, resulting in part of the UVs cannot being detected. However, the hypothesis test 

results in Table 6.4 indicates that the two results have significant differences at 95% confidence 

degree wherever the loops and cameras are located, even if they are installed 50m away from the 

cross line. If the detection area is too close to the cross line, the EUVO algorithm can only receive 

the loop signals and occupancy data of vehicles within the short range from the detection area to 

the cross line. This shortens the data inputs collected by the EUVO algorithm and seriously affects 

the performance of the EUVO algorithm. 

 

 

Figure 6. 12 Comparison of average passenger delay (s/per) and average person stop (num/per) of 

PerSiCon-Network with and without EUVO algorithms under different distances from devices to cross line 

and three flow levels with mixture of cars and buses 
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Table 6. 4 P-values in average person delay and stop comparison for PerSiCon-Network with and without 

EUVO algorithm with mixture of cars and buses in different traffic flow demands and different distances 

from cameras and loops to cross line 

 P-values for average person delay P-values for average person stop 

Flow level Low Average High Low Average High 

50m 0.000 0.000 0.000 0.000 0.003 0.000 

100m 0.000 0.000 0.000 0.000 0.000 0.000 

150m 0.000 0.000 0.000 0.000 0.000 0.000 

200m 0.000 0.000 0.000 0.000 0.000 0.000 

250m 0.000 0.000 0.000 0.000 0.000 0.000 

6.6 Summary 

This chapter proposes an innovative EUVO algorithm which can estimate the predictive departure 

times, vehicle statuses and occupancy levels of UVs with the help of cameras and loops. The EUVO 

algorithm is operated before the optimization process of PerSiCon-Network to improve the 

degraded person-related performance of PerSiCon-Network, especially in the case the CV 

penetration rate is below 60%. The PerSiCon-Network supported by the EUVO algorithm is 

evaluated using the same case study implemented in Chapter 5 in various scenarios and its 

performance are compared to the results of PerSiCon- Network without the EUVO algorithm. The 

results indicate that the EUVO algorithm can significantly improve average person delays and 

stops of PerSiCon- Network when the CV penetration rate is below 90%. The inductive loops and 

cameras should be activated for every second to maintain the effectiveness of the EUVO 

algorithm. Meanwhile, the location of loops and cameras is not a critical factor to influence 

estimation effects until the distance between devices and the cross line is shortened to 50m. In 

next chapter, an overall summary of the project is given to point out the contributions of the 

research, how to implement the proposed method in a new location and future work directions. 
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Chapter 7 Conclusions and future works 

In recent developments, CVs are enabled to be connected with infrastructure (V2I) and other 

vehicles (V2V) via wireless communication technologies (e.g. DSRC). CVs have the ability to 

acquire and share rich types of real-time vehicle data including positions, speeds and travel times 

to junction controllers. As a result, various researchers have proposed new models and algorithms 

to improve the performance of urban signal controls in CVs environments against traditional UTC 

systems such as fixed time controls, actuated controls and adaptive controls. On the other hand, a 

series of passenger occupancy systems, such as the APC system, bearing loading sensors and 

vehicle occupancy detection technology using inside/roadside cameras, are proposed to make the 

shift from vehicle-based controls to person-based controls to be possible. However, the 

development of person-based controls requires more flexible, updating vehicle trajectory theories 

and adaptive signal plans to achieve person-based objectives than those in vehicle-based controls 

inspired by TSP strategies. 

This research has proposed a number of algorithms to understand how to utilise the CV data 

including occupancy information to achieve person-based controls in a generalized 8-phase 

options junction. The algorithms also extend the signal control methods to larger network scales 

with the data supplement from adjacent junctions and incorporate the bus mode to identify how 

to implement person-based controls in mixture vehicle environments. Considering the realistic 

situation of CV penetration rate, the algorithm is enhanced to improve the performance under 

imperfect CV penetration rate. A real-world case study is reproduced in simulation with various 

numbers of sensitivity analyses to evaluate the performance of proposed person-based control 

algorithms. 

This chapter concludes how the research works proposed in this project fulfil the objectives point 

out in Chapter 1, how to make the developed algorithm generalization and operate it in a new 

place and what are the future work directions. 

7.1 Fulfilment of the research objectives 

Chapter 1 points out five research objectives for this project, this section discusses how the 

research achieves them and the key findings of the research. 



Chapter 7 

232 

1) Investigating the relationships between vehicle-based and person-based signal control and 

understanding the current state-of-the-art signal controls using connected vehicle data. 

In Chapter 2, the UTC systems representing traditional vehicle-based controls and traditional 

transit signal priority focusing on assigning high priority levels to buses are reviewed. The person-

based controls have more potentially meaningful benefits to urban traffic mobility than vehicle-

based controls such as relieving traffic demand pressures and reducing direct and indirect costs of 

traffic congestion. However, the mechanisms of person-based controls are found to be more 

complicated than vehicle-based controls as more flexible signal controls should be adopted to 

allow high-priority vehicles to cross the junction. Meanwhile, the achievements of person-based 

controls need additional occupancy data of vehicles to realize their occupancy levels. The data 

sources of occupancy level are challenging to be provided in traditional signal controls.  

The CVs are introduced to provide adequate and highly frequent real-time data sources to 

possibly improve the performance of signal controls and realize the achievements of person-

based controls. The review of start-of-the-art researches in Chapter 2 finds great achievements to 

improve the performance of vehicle-based controls. According to the person-based control review 

in Chapter 3, only a few researchers attempt to shift vehicle-based controls to person-based 

controls in mixtures of cars and buses or all passenger cars environments. However, the complete 

flexible signal plans, updating vehicle trajectory theories, coordinated control paradigms and 

implementation of imperfect CV penetration rates failed to be achieved in the research and this 

research attempts to fill in the gaps. 

2) Proposing an Adaptive Person-based Signal Control Algorithm (PerSiCon-Junction) to reduce 

person average delay in isolated urban junction under 100% CV penetration rate. 

Chapter 3 finds the research gaps and clarifies the research contributions to fill in the gaps and 

achieve the aim and objectives. The person-based control PerSiCon-Junction is proposed in this 

research to figure out the optimal signal control plans in an isolated junction. It can be extended 

to vehicular environments with bus incorporation (PerSiCon-Bus) and road networks with junction 

coordination (PerSiCon-Network). Evaluation frameworks to test the performance of PerSiCon-

Bus and PerSiCon-Network in two case studies are also outlined in Chapter 3. 

Chapter 4 proposes an innovative PerSiCon-Junction to minimise person delay at isolated 

signalised urban junctions. PerSiCon-Junction can explore complete flexible phase combinations 

and stage sequences to find the optimal signal timing solution in the prediction horizon using data 

from CVs. A three-layered dynamic programming approach is adopted in PerSiCon-Junction with 
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the objective of minimising person delay. A signal phase transition exploration mechanism is also 

developed to explore all possible signal timing plans according to non-conflicting phase rules and 

efficient principles. The vehicle trajectory and car-following updating theories used for predicting 

the discharging time of all vehicles in the platoon are also proposed considering different cases 

and fleet trajectories.  

4) Developing Adaptive Person-based Signal Control Algorithm with Buses (PerSiCon-Bus) which 

integrates bus mode into vehicular environments of person-based control; constructing real-

world case study to validate the performance of proposed control method in isolated junction;  

Chapter 4 modifies the paradigm of PerSiCon-Junction to be PerSiCon-Bus and extends its scope 

of application into more complicated vehicular environments containing both buses and 

passenger cars. A real-world isolated junction case study in Birmingham, UK is reproduced in 

SUMO in the chapter evaluating the performance of PerSiCon-Bus in mixtures of passenger cars 

and buses. The results indicate that PerSiCon-Bus has better performance in improving average 

person vehicle delay, with an overall reduction of 40.2% - 51.8%, 28.2% - 38.6% and 6.8% - 9.8% 

compared to the TRANSYT, ILACA and VehSiCon benchmark algorithms in three flow demands. 

PerSiCon-Bus also achieves similar reduction of average passenger stop against the benchmark 

algorithms also reduced, which are 46.3% - 59.7%, 36.8% - 47.9% and 5.5% - 10.7% respectively. 

The results also find that the average person delay and stop of PerSiCon-Bus have significant 

improvements compared to those of VehSiCon, with a less average delay of 2, 3 and 4 occupancy 

vehicles and a higher average delay of 1 occupancy vehicles.  

The sensitivity analysis tests indicate that the performance of PerSiCon-Bus below around 60% CV 

penetration rate in three flow levels does not have better performance than VehSiCon. The 

average passenger delay of buses is also significantly degraded if bus occupancy is lower than 8 

passengers/veh. 30s are suggested to be selected as the planning horizon for signal scheme 

optimization, which combines considerations of preventing biased function value calculation in 

too short planning periods and failure of receiving the newest CV data in too long planning 

periods. The performance of overall average person values and low occupancy vehicles are 

observed to be stable and reached a balance with a range of 0.5 of accumulation time weighted 

factor 𝛿. 

4) Developing Coordinated Person-based Control (PerSiCon-Network) to extend algorithm from 

isolated junction to multiple road networks and evaluate its performance in road network case 

study; 
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Chapter 4 presents a PerSiCon-Network to extend the developed approach PerSiCon-Bus from an 

isolated junction to multiple junctions, to understand how adaptive person-based control 

formulates and implements in multiple junctions and how it affects junction performance in terms 

of average person delay and number of stops. The CV information from both surrounding CVs and 

adjacent junctions can be acquired to enable junction controllers to have knowledge of vehicular 

situations within further range. In order to incorporate further information properly for 

controllers to make adaptive signal timing decisions to all surrounding vehicles with different 

occupancies, the data from the adjacent junction will be utilised as a supplement form of 

predictive vehicle arrival time list according to vehicle trajectory data and signal strategy. A case 

study with 5 successive junctions in Birmingham, UK is built in SUMO to evaluate PerSiCon-

Network. The results are very similar to the findings in an isolated junction case study. PerSiCon-

Network achieves 42.8% - 49.9%, 27.8% - 34.4%, 6.4% - 9.4% average person delay reduction and 

49.5% - 61.3%, 29.7% - 40.8%, 7.5% - 16.7% average person stop reduction compared to 

TRANSYT-Network, ILACA-Network and VehSiCon-Network. At the same time, the average vehicle 

delay and average vehicle stop of PerSiCon-Network are not heavily degraded. The sensitivity test 

results to CV penetration rate indicate that PerSiCon-Network only performs better person-

related results when the CV penetration rate is above 60-80% than VehSiCon-Network. The 

average passenger delay and stop of buses keep unchanged until bus occupancy is lower than 8 

passengers/veh. Similar to the isolated junction case study, 30s prediction horizon and 0.5 

accumulation time weighted factor are still the most appropriate choices for PerSiCon-Network. 

5) Proposing Estimation status of Unequipped Vehicle with Occupancy (EUVO) algorithm to 

improve the behaviours of PerSiCon-Network under imperfect CV penetration rate environments.  

  
Chapter 6 develops a EUVO algorithm to estimate the vehicle statuses of those unequipped 

vehicles based on several data types collected from CVs, inductive loops and cameras, and storage 

space of junction controllers. The EUVO algorithm can be operated before the optimization 

process to supply the initial departure time and occupancy level estimation of unequipped 

vehicles and improve the performance of PerSiCon-Network in low CV penetration rates. To 

validate the effectiveness of the EUVO algorithm, the enhanced PerSiCon-Network with the EUVO 

algorithm is evaluated in the same case study for PerSiCon-Network without the EUVO algorithm 

in Chapter 6. The results figure out that PerSiCon-Network with EUVO algorithm performs 

significantly improvements of average person delay and stop against to PerSiCon-Network 

without EUVO algorithm when CV penetration rate is lower than or equal to 80%. Estimation 

effects under low CV penetration rates are not significantly degraded when loops and one-side 

cameras are active every second. The location of loops and cameras is also not a critical factor to 

influence estimation effects until close distance which causes some vehicles undetected. On the 
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other hand, the increasing time intervals of loops and one-side cameras make estimation 

inaccurate as part of vehicles fail to be captured. 

7.2 Implementing proposed method in a new place 

This research develops person-based controls and evaluates them in a real-world case study. 

However, the results from various scenarios only represent behaviours of the proposed method in 

this specific case study, and it is uncertain whether the signal control paradigms and suggestive 

values are suitable in another road network as well. Hence, this subsection describes how the 

proposed PerSiCon-Network with EUVO algorithm can be operated in a new location. 

The first important step to implementing the proposed method in a new place is to realize the 

geometry layouts of each junction and distributions of junctions within networks so that it would 

be possible to reproduce the road networks in microsimulation more realistic. For instance, the 

length width and speed limits may affect the free-flow speed of vehicles. The road lengths and 

distance between two adjacent junctions may change their coordination level of them. The scales 

of the junction centre area and movement lanes may influence the vehicle clearance time. The 

factors which may make effects vehicle travelling status, signal control strategies and signal timing 

parameters should be kept the same as the real situations. 

The next step is to conduct comprehensive surveys of the case study area including traffic flows, 

vehicle types, signal patterns and vehicular parameters to reproduce traffic flows in simulation, 

calculate the essential parameter inputs of PerSiCon-Network and decide the strategy adopted by 

PerSiCon-Network. For example, the traffic flow surveys in different approaches of the case study 

area during different times of day periods contribute to reproducing and calibrating vehicle flow 

generation. The vehicle type distribution can be used to decide which types of vehicles should be 

incorporated into PerSiCon- Network paradigms. The vehicle parameters such as start-up time 

loss and saturated headway of queue discharge are required as inputs for predicting vehicle 

departure time. Signal patterns decide the possible formats of complete flexible signal plans that 

can be adopted by PerSiCon-Network.  

After reproducing the case study in simulation and proposing the paradigms of PerSiCon-Network, 

the next step is to operate PerSiCon-Network in microsimulation in various scenarios to observe 

the performance of parameter changes. For instance, the suggestive planning duration, loops and 

cameras installation location, CV penetration rate and flow level scopes of PerSiCon-Network 

application can only be determined after analysing the results from a number of simulation 

operations. 
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The final step is to encode the algorithm of PerSiCon-Network for junction controller in a real 

place with the installation of devices such as CV data receiving infrastructures, inductive loops and 

roadside cameras. 

7.3 Future work directions 

7.3.1 Proposing person-based controls in CAVs environments 

The vehicle trajectory modelling and planning in CAVs and convention vehicle environments are 

more complex than in the mixture environments of CVs and UVs. This is because Autonomous 

Vehicles (AVs) can not only send vehicle data to the junction controller but the trajectory of AVs 

can also be adjusted by themselves with the suggested information from controllers. Optimizing 

the signal controls and vehicle trajectory at the same time is a challenging task for person-based 

controls. In addition, how to decide the occupancy level of AVs should also be considered in 

future works. 

7.3.2 CV data measurement error, packet loss and communication delay  

The data received from CVs are assumed to be perfect in this research. In future works, the 

person-based control should have more realistic data-receiving conditions. For instance, the 

position and speed of data collection devices may cause bias errors, which leads to inaccurate CV 

data. The packet loss and packet latency of the CV data transmit process should also be 

considered in future research, as well as the transmission delay of wireless communication 

technology. 

7.3.3 Lane changing behaviours  

In this research, the lane-changing behaviours are assumed to be finished at the earliest chance 

when they can complete them. The future works of person-based control should consider the 

influences of lane-changing behaviours on the vehicle arrival time prediction and vehicle 

departure sequences within the detection area. The vehicle turning intention data may contribute 

to deciding which lane the vehicle will be in when they cross the junction and adopt relative signal 

control strategies. 

7.3.4 Special vehicle modes and pedestrians 

Bus mode is considered as a special vehicle mode in this research. Future works can incorporate 

more vehicle types such as LGVs, HGVs and MCs into person-based controls with different vehicle 
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parameters and occupancy levels. The pedestrians with their dedicated movement lines could 

also be considered in person-based control. The paradigms of flexible signal control plans need to 

be updated to ensure collision avoidance between pedestrians and vehicles. 

7.3.5 Flexible planning duration  

In PerSiCon-Network, planning duration is a constant value to decide the duration of signal plan 

execution and interval of signal plan optimization. The shorter planning duration is possible more 

suitable than the fixed planning duration when person-based control detects a few vehicles from 

approaching lanes, such as during the off-peak period, as the junction controller has the chance of 

receiving CV data earlier. How to figure out the optimized planning duration according to the real-

time vehicle states could be solved in future works.
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Appendix A Contributions to the field 

The conference paper and journal papers produced throughout this research are listed below: 

Wu, Z., Waterson, B., Anvari, B., 2020. Adaptive Person-based Signal Control System in Isolated 

Connected Vehicle Junction. In Proceedings of the Transportation Research Board 99th Annual 

Meeting. 

Wu, Z., Waterson, B., 2022. Urban Junction Management Strategies for 

Autonomous/Connected/Conventional Vehicle Fleet Mixtures. IEEE Transactions on Intelligent 

Transportation Systems, 23(8), pp. 12084-12093. 

Wu, Z., Waterson, B., Anvari, B., 2022. Developing and Evaluating a Coordinated Person-based 

Signal Control Paradigm in a Corridor Level Network. Transport Planning and Technology, 45(6), 

pp. 498-523. 

Wu, Z., Waterson, B., Anvari, B., 2022. (Under review) The Adaptive Dynamic Programming Three-

layered Person-based Signal Control System in Connected Vehicle Environment.  IEEE Transactions 

on Vehicular Technology. 

Wu, Z., Waterson, B., Rafter, C. B., Anvari, B., 2022. (Under review)  An Adaptive Three-layered 

Person-based Control System with Flexible Signal Plans in a Connected Vehicle and Bus 

Environment. IEEE Transactions on Intelligent Transportation Systems. 

Wu, Z., Waterson, B., Rafter, C. B., Anvari, B., 2022. (Under review) An Unequipped Vehicle Status 

Estimation Algorithm to Improve the Performance of Person-based Control in Imperfect 

Connected Vehicle Penetration Rates. IEEE Transactions on Intelligent Transportation Systems. 
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Appendix B Signal pattern survey 

As mentioned in Section 5.3.1, a manual traffic survey of the case study in Newtown area of 

Birmingham, UK was carried out over two days in October 2020. The distributions of 5 successive 

junctions in this case study area are presented in Figure B.1, with their individually ID labels.  

 

Figure B. 1 The locations of modelling junctions labelled with their IDs in the road network 

Signal stage patterns and sequence at each signalized junction were observed and illustrated in 

Figures B.2 – B.6 respectively. The stage patterns and sequence were applied to TRANSYT, ILACA, 

and VehSiCon and their coordination versions in Chapter 5. 

 

Figure B. 2 The signal stage patterns for junction 1 
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Figure B. 3 The signal stage patterns for junction 2 

 

Figure B. 4 The signal stage patterns for junction 3 

 

Figure B. 5 The signal stage patterns for junction 4 

 

Figure B. 6 The signal stage patterns for junction 5 
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Appendix C Traffic flow survey 

As claimed in Section 5.3.1, 15 minutes traffic flows of each stage of 5 junctions in the selected 

case study area during the inter-peak period and evening peak period were counted in the 

manual survey to make sure whether the traffic flows collected from the data portal are 

consistent with the real states of the case study or not. Table C.1 and Table C.2 show the vehicle 

counts observed in 15 minutes during the evening peak period and inter-peak period respectively. 

The collected data in 15 minutes were extended to hourly flow and were found to be consistent 

with the data from the online portal. Therefore, the data recorded from the portal are used to 

reproduce the traffic flows in the case study area. 

Table C. 1 Vehicle counts observed of each stage of 5 junctions in road network in 15 minutes during 

evening peak period 

Junction ID Stage ID Left Straight Right Total 
 

Junction 1 
1 37 25 93 155 
2 71 114 66 251 
3 68 27 25 120 
4 22 97 27 146 

 
Junction 2 

 

1 18 4 19 41 
2 15 167 29 211 
3 36 3 42 81 
4 38 178 16 232 

 
Junction 3 

1 17 3 31 51 
2 27 189 22 238 
3 15 2 7 24 
4 11 173 17 201 

 
Junction 4 

1 10 4 29 43 
2 28 144 31 203 
3 22 3 9 34 
4 12 147 9 168 

 
Junction 5 

1 14 112 -- 126 
2 -- 115 54 169 
3 47 -- 12 59 
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Table C. 2 Vehicle counts observed of each stage of 5 junctions in road network in 15 minutes during inter-

peak period 

Junction ID Stage ID Left Straight Right Total 
 

Junction 1 
1 21 28 79 128 
2 72 57 70 199 
3 76 29 20 125 
4 23 68 26 117 

 
Junction 2 

 

1 16 3 13 32 
2 11 153 15 169 
3 25 2 26 53 
4 17 168 14 199 

 
Junction 3 

1 8 4 13 25 
2 33 170 29 232 
3 23 5 14 42 
4 16 134 13 163 

 
Junction 4 

1 9 3 26 38 
2 40 116 48 204 
3 31 4 10 45 
4 12 111 15 138 

 
Junction 5 

1 7 85 -- 92 
2 -- 102 41 143 
3 42 -- 9 51 
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Appendix D Vehicle type survey 

The manual survey also recorded the vehicle types of traffic flows during the inter-peak period 

and evening peak period. The count values of different vehicle types and their separate ratios are 

presented in Table D.1. The observed vehicle type distributions from the manual survey are 

compared with the statistics recorded in the VEH0104 dataset from DfT in the West Midlands 

region and comparison results are illustrated in Figure D.1. The results indicate that the observed 

vehicle type distributions are consistent with the statistics from DfT dataset. Therefore, the 

vehicle ratio of the bus is adopted to determine the bus number in the case study area in different 

traffic flow levels in Chapter 5. 

Table D. 1 Vehicle type distributions counted from manual survey in Newtown case study area 

Vehicle type Counts Ratio 
Car 3964 83.5% 
LGV 537 11.3% 
HGV 115 2.4% 
MC 89 1.9% 
Bus 43 0.9% 

Total 4748 100% 

 

 

Figure D. 1 Vehicle type distribution comparisons of observed results from manual surveys and statistics 

from VEH0104 dataset from DfT in the West Midlands region of the UK (UK Govt. Dept. Transport, 2018b)
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