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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCE
Next Generation Computational Modelling

Doctor of Philosophy

MATHEMATICAL TOOLS FOR ANALYSIS OF GENOME FUNCTION, LINKAGE
DISEQUILIBRIUM STRUCTURE AND DISEASE GENE PREDICTION

by Norma Alejandra Vergara Lope Gracia

Next-generation sequencing (NGS) help to identify disease-causing genes underlying any given
monogenic or complex disease. Concurrently, mathematical tools and statistical methods, includ-
ing machine learning algorithms, are rapidly evolving and together, these technologies represent the
new frontier of research and clinical management on a path leading toward personalised medicine.

This thesis has been divided into three main sections. Firstly, the Linkage disequilibrium (LD)
patterns were observed to understand the combined impact of recombination, natural selection,
genetic drift and mutation. LD is the non-random association of alleles at different loci in a
given population. To this end, LD patterns were constructed using 454 whole-genome sequences
(WGS) from the Wellderly study based on the Malécot Morton model (exponential distributions
with restricted parameters). Therefore, the extent of the LD was computed for genic, intergenic,
exon and intron regions. The main result demonstrated that significant differences between exonic,
intronic and intergenic components demonstrate that fine-scale LD structure provides important
insights into genome function, which cannot be revealed by LD analysis of much lower resolution
array-based genotyping and conventional linkage maps.

Secondly, machine learning methodologies were applied to classify genes into four groups: essential
genes, Mendelian genes, genes associated with complex disorders, and non-essential–non-disease
genes. To this end, the dataset was extracted from published studies of biological and functional
properties of the genes. Hence, different supervised machine learning (ML) models were studied to
select the most important features relevant for classifying genes. Simultaneously, Bayesian inference
in a Gaussian graphical model (BGGM) was carried out to investigate recognising the significant
features to enclose genes. Once the relevant features had been selected, a proposed unsupervised
ML approach was developed to cluster genes into those four groups. The combined analysis of
genomic data for gradient boosting and random forest models showed that more than 50% of the
variance was explained and the results from BGMM showed that the connectivity between these
gene metrics was 40%. The proposed unsupervised model showed an improvement for classifying
genes into Mendelian group. However, results suggested that some genes involved in developing
Mendelian disorders overlap with complex disorders.
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Thirdly, a polygenic risk score (PRS) was developed to quantify the cumulative effect of low-
penetrance genetic variants on breast cancer (BC), following the hypothesis that the polygenic
component has an important impact on BC patients, as do BRCAs variants. Genome data from
POSH and WTCCC were used to generate the PRS. This score was computed based on the surprisal
theory. As a result, relative genome information per individual (RGI) was estimated to understand
how unusual a genome is related to the reference genome. Thus, a person with a higher RGI
has a more unusual genome. Likewise, a lower RGI corresponds to having more common alleles,
and therefore a less surprising genome. The PRS for women who carry BRCA1/2 mutations or
intermediate-risk/common variants demonstrated the hypothesis that the BC cases contain a strong
inherited polygenic component. Furthermore, the polygenic component carriers tend to have more
significant changes in allele frequencies compared to BRCA1 and BRCA2 variants.

This thesis presents methodological contributions to predictive models based on machine learning
techniques and mathematical programming, together with relevant insights into disease mechanisms
and potential treatment options.
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Chapter 1

Introduction

1.1 The human genome

Genes make up the core building blocks of life and their genomic and functional properties, along
with various interactions, are linked to health or disease conditions. The human genome is a diploid
genome encompassing a complete sequence of repeated nitrogenous bases (nucleotides): adenine (A),
guanine (G), thymine (T) and cytosine (C) with a haploid size of ∼3 Gbp [1]. This deoxyribonucleic
acid (DNA) sequence comprises 22 autosomal homologous pairs (1–22) and two allosomes (X & Y)
(Figure 1.1) [2]. Chromosomes range from 250 million bases (250 Megabases (Mb)) for chromosome
1, to 50 Mb for chromosome 21. The total length of the genome is approximately 3,000 Mb.

Figure 1.1: Human chromosome idiogram. Human chromosome is shown following Giemsa staining.
Black and grey indicate Giemsa positive, pink indicates centromeric regions, light blue indicates heterochro-
matin and dark blue indicates AT-rich regions of chromosomes. From the National Center for Biotechnology
Information, U.S. National Library of Medicine (https://www.ncbi.nlm.nih.gov/genome/tools/gdp/)

The human genome can be organised by the function of a specific genomic region. The DNA
regions that code for proteins are defined as genes and there are approximately 20,000 protein-
coding and 12,000 non-coding genes [3]. These genes have a divided structure in segments of coding
sequence called exons which are separated by non-coding sequences termed introns (Figure 1.2).
The transcription process is the first stage in gene expression into proteins. This process begins

1
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when in the cell nucleus a ribosome is exported to the cytoplasm to translate the information in
messenger RNA (mRNA) into a protein. As part of the mRNA processing pathway, precursor
messenger RNA (pre-mRNA) transcript is transformed into a mature mRNA removing the introns
by an alternative splicing mechanism [2]. Once introns are removed, protein synthesis results and
the ribosomes translate the messenger RNA sequence into an amino acid sequence. Transcribed
DNA is estimated to comprise 1–2% of the human genome [1], while the remaining ∼98% is formed
of repeat elements and regions of DNA that are non-coding [4].

Figure 1.2: Gene structure. Exon and intron regions for eukaryotic DNA are represented by the coloured
barrels. In the transcription of eukaryotic DNA into messenger RNA, introns are omitted (splicing) and
only exons are translated into proteins. Taken from Saberkari et al. (2013) [5]

1.2 Next-Generation Sequencing and Genotyping

Next-generation sequencing (NGS) or high throughput sequencing of DNA molecules makes it
possible to analyse whole-genome sequencing (WGS), whole-exome sequencing (WES) or sequencing
of a particular genome region [6] within a reasonable timeframe and cost [7]. NGS has the capacity
for a far higher genotyping density than even the highest density array. NGS-reads display direct
information of base pairs sequenced from a DNA fragment to elucidate genes containing disease-
causing variations underlying Mendelian/monogenic or complex diseases [8].

Several studies found that NGS technologies have a high rate for identifying causal genes across
diverse disorders with varying modes of inheritance, including dominant, recessive and de novo
arising mutations [9]. These methods yield the entire genome (through WGS) or parts of it (through
WES or targeted panels) to be sequenced faster, at greater depth and with greater sensitivity, and
this decrease in costs has made the clinical application of WES and WGS more feasible. WES is a
genomic technique for sequencing all protein-coding regions of genes, while WGS covers both introns
and exons of the genome without using techniques to isolate specific regions of DNA [10]. Given this,
several studies have examined the benefits derived from the application of WES and WGS in the
clinic. These studies have mainly focused under Mendelian conditions more broadly, consistently
reporting diagnostic yields between 25 and 30% [11]. In a recent study analysing the application
experience WES clinic indicated a 25% rate of putative molecular diagnoses in large cohorts with
various Mendelian diseases [12]. However, cohort studies have shown that WGS provides a higher
diagnostic yield than WES, with a 34% diagnosis rate in Mendelian disease increasing to 57% [13].



Chapter 1 Introduction 3

In addition to the inclusion of non-exonic regions of the genome, WGS provides complete coverage
of the exome, providing greater sensitivity for detection of variants [14].

Genotyping arrays remain a viable option for SNP detection due to the computational challenges
posed by the large amounts of sequence data produced at WGS [15]. Genotyping matrices have been
used primarily in large-scale genome-wide association studies (GWAS). In a GWAS, a large number
of markers, generally SNPs, are genotyped using these high-density genotyping matrices, followed
by SNP tests for association [16]. According to the GWAS catalogue (December 2017 version),
2,724 unique GWAS studies have been completed and published. This is particularly useful for
assessing known markers associated with cancer in the human genome, enabling researchers to find
DNA copy-number alterations in human cancers, as discussed in Chapter 6. Since 2007, GWAS
have identified roughly 100 common genetic susceptibility loci for breast cancer risk [17]. Mullighan
et al. illustrated the power of SNP genotyping arrays to identify significant genetic abnormalities
in children acute with lymphoblastic leukaemia [18].

1.3 Genetic diseases in humans

There is a lot to gain from understanding the relationship between an individual’s genotype and
their phenotypes. Identifying the genetic component becomes extremely valuable to treat or cure
a disease or understand more about a particular trait. A genetic disorder is a health complica-
tion originated by one or more abnormalities on the genome, such as a mutation in a single gene
(monogenic), a small number of genes (oligogenic), multiple genes (polygenic) or by a chromosomal
abnormality. There are 6,711 well known genetic disorders and new genetic disorders are continually
being reported in the medical literature [19]. The prevalence of people that are affected by a known
single-gene condition is approximately 1 in 50 people, while 1 in 263 people have been identified
with a chromosomal disorder [20]. Online Mendelian Inheritance in Man (OMIM) reported that
the molecular basis is not known for 50% of confirmed Mendelian phenotypes. OMIM also stated
that 1,769 phenotypes related to Mendelian basis, but they have not been fully established yet or
may overlap with other characterised phenotypes. Studies of monogenic diseases contribute to the
knowledge of polygenic forms of human disease [21]. Although polygenic or complex disorders are
more common than single-gene disorders, these disorders are difficult to study and treat because
different factors have not been identified. Moreover, complex diseases do not have Mendelian in-
heritance patterns, making it complicated to define of person’s risk of inheriting these disorders or
transmitting them to their descendants [22].

1.3.1 Mendelian disorders

Mendelian (monogenic) diseases are typically rare due to a mutation at a single genetic locus with
a clear inheritance pattern in pedigrees. Mendelian disorders are also recognised by their different
inheritance patterns, such as autosomal dominant, co-dominant or recessive and X-linked (sex-
linked). Recessive diseases occur because of inheriting two mutated genes or in the allele. Dominant
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disorders involve damage to only one gene copy. X-linked conditions are linked to defective genes
in the X chromosome. The X-linked alleles might also be dominant or recessive. These disorders
are not affected by exogenous factors. However, these factors can affect the phenotype [23].

At least 3,933 genes which underlie 5,646 Mendelian/monogenic diseases have been identified; how-
ever, there are thousands of Mendelian disorders that are yet to be uncovered in OMIM [19]. Since
2010, next-generation sequencing (NGS) has accelerated the rate estimation for monogenic disor-
ders diagnosis by only about 25% to 50%. The remaining significant fraction of monogenic disorders
is unfounded, or several genes may yield to be involved in complex phenotypes or require additional
environmental triggers. A further possibility for a low rate of the known Mendelian diseases may
fail in identifying genetic variation such as copy number variation, epistatic or epigenetic mech-
anisms [24]. For instance, Taylor et al. [13] stated that in 217 cases from WGS with a broad
range of disorders, only 35% of these cases were molecularly resolved as Mendelian diseases. In
2015, Jamuar et al. [25] found that NGS has been employed in clinics, with a reported diagnostic
yield of approximately 25% in Mendelian diseases. Boycott et al. (2013) stated that roughly 25%
of reported mutations in known disease-causing genes were associated with a phenotype that, in
retrospect, matched the clinical presentation of the patient being investigated. Although a large
number of underlying genetic disorders, mostly Mendelian/monogenic, have been resolved at the
molecular level by NGS, most of these genetic disease markers have no clear functional roles in
disease aetiology [26]. Hence, many genes–disease relationships remain poorly understood in terms
of identifying causal alleles for Mendelian disorders, most common diseases and complex diseases
[27, 28].

1.3.2 Complex disorders

Complex diseases are caused by the interaction of multiple genetic, environmental and lifestyle
factors. These factors confer a small risk individually of population risk [29]. To describe com-
plex diseases, it is essential to understand Mendel’s two main principles of inheritance, segregation
and independent assortment of genes. These principles determine how inherited traits, comprising
these underlying diseases, are passed from generation to generation. Following this, the factors that
influence complex genetics involve reduced penetrance, variable expressivity, phenotypic character-
isation, gene–gene interactions and gene–environment interactions [22, 30].

Genome-wide genotyping with high-throughput approaches for analysing complex diseases has en-
abled the identification of >2,600 associated common risk alleles that have positive associations
with >350 distinct complex traits [31, 32]. However, the majority of associated alleles, the identi-
ties of causal genes and variants and their function remain uncertain due to multiple interactions for
their manifestation, with genetic variants that predispose an individual to the condition, intergenic
signals/tag SNP or LD markers. Therefore, it requires different approaches to recognise Mendelian
or complex disease genes, as discussed in Chapter 5.
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1.4 Genome dynamics

1.4.1 Population structure

Population genetic structure refers to the total genetic diversity and distribution within and among
a population set. The shape patterns of genetic variability across the human genome are driven
by the combined effects of recombination, mutation, genetic drift, evolutionary history and natural
selection. Some of these variants are highly common in a population with a high alternative
allele frequency (AF), while other variants are found only in a single population among a broader
collection of people [33, 34]. These variants are not evenly distributed across populations, as a
variant could be rare in one population and common in another [35]. Therefore, it is essential
to consider these variations among populations to minimise population differences that may limit
some studies.

1.4.2 Linkage disequilibrium

In the human genome, alleles at two loci on the same chromosome often show stochastic depen-
dence. Linkage disequilibrium (LD) patterns are non-random pairwise allelic associations over many
generations that indicate that two genes are physically linked [36]. LD patterns are measured as
the difference between the observed frequency of a particular combination of alleles at two loci and
the rate expected for random associations. These random associations assume that given enough
evolutionary time, the event of recombination will affect the distribution of allele frequencies. Thus
the prevalence of a specific allele at a given locus will be independent of alleles at other linked loci.
Understanding this distribution of alleles frequencies and the recombination frequencies between
markers during crossover of homologous chromosomes, as reflected in a genetic linkage map, is
critical for genetic mapping. Therefore, the location of a disease-causing allele can be found by
coinheritance with a marker allele in a pedigree where transmitted recombined haplotypes might
target region to search for the disease-causing gene [37] (Figure 1.3).

LD patterns have been demonstrated that have an impact on population background in the form
of bottlenecks, genetic drift in small populations and admixture [38]. LD throughout the genome
reflects the population’s history and the pattern of geographic subdivision [39]. In contrast, LD
in each genomic region reflects the genetic recombination and elucidates patterns of the history
of natural selection, gene conversion, mutation and blocks of LD that might arise through genetic
hitchhiking [40, 41]. LD patterns help identify the genomic regions in which hitchhiking has taken
place by showing correlations between single nucleotide polymorphisms (SNPs). Thus the regions
which promote low recombination can be identified [42, 43, 44]. For example, Jeffreys et al.[44]
argued the recombination rates across the genome in the narrow regions (< 2 Kilobase (Kb)), also
known as hotspots, are much higher than would be expected by the average genome recombination
rate. A degenerate 13 base-pair motif was identified (CCNCCNTNNC-CNC) that is overrepresented
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in recombination hotspots compared to recombination cold regions [43], and this is the predicted
binding site for the PRDM9 which is involved in recombination double-strand breaks [45, 46, 47].

The extent and strength of LD patterns enable genes of unknown sequence that influence suscep-
tibility to gene diseases to be allocated. In previous studies, it has been demonstrated that high
recombination rates and mutation frequency reduce the extent of LD, resulting in increased diver-
sity of haplotypes. Likewise, low recombination rates in certain regions of the genome increase LD
[48]. Thus, the relationship between LD and recombination is directly correlated between regions
of weak LD and the presence of recombination hotspots [49].

[A]
Linkage mapping

[B]
Association

Linkage Disequilibrium

Figure 1.3: [A] Linkage mapping: the location of a disease-causing allele (D) can be marked by co-
inheritance with a marker allele (M) in a pedigree. Linkage mapping tracks and limits the linked region
of interest by meiotic recombination help reduce the target region for searching genes associated with
disease susceptibility. [B] Association mapping: population association between D in a founder haplotype
is encoded with M over many generations. Disease genes can be mapped by estimating the association in
LD between alleles M and D. Figure adapted from Fig. 1 and Fig. 3 from Collins A., (2007) [37].

Previously, LD analysis has enabled the development of cost-effective genome-wide association
studies and the consequent mapping of numerous common disease genes through development of
arrays of ’tag’ SNPs. However, Pengelly et al. [50] demonstrated that LD maps of SNP genotype
data from arrays of tag SNPs do not fully recover the LD structure. Thus, high-resolution maps of
the LD constructed by WGS data may enable the patterns of LD to be understood at a much higher
resolution. Specifically, in human data, it has been shown that the set of genes with ‘strong’ LD are
enriched for ‘core’ biological functions such as phosphorylation, cell division, cellular transport and
metabolic processes. By contrast, genes with weak LD are enriched for functions relating to sensory
perception or some immune functions and similar strategies for which high haplotype diversity is
likely to be adaptive [27, 51]. Genes that harbour significant disease gene variation have been shown
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to have intermediate levels of LD between these extremes. The much higher resolution LD maps
derived from large WGS samples enable much more comprehensive analysis of LD structure, and
genome function [52, 53].

As a result, some studies have suggested that fine-scale genetic maps of humans provide an op-
portunity to determine how recombination rates are influenced by genomic context. For instance,
McVean et al. [54] stated that recombination rates are lower in genic regions than in non-coding
regions. However, these frequencies could not be explained by recombination rates and selection
alone [55]. Similarly, Kong et al. [56] found that for females and males, the recombination rates
tend to be lower at genic regions, especially in bins containing exons, and higher for those contain-
ing only introns. Berger et al. [57] observed a 13.6% increase in LD in humans in genic regions
compared to non-genic.

1.4.3 Recombination

Recombination is a genetic mechanism that ’mixes’ or ’reshuffles’ the genetic material of different
individuals from generation to generation; it takes place during the reproductive cycle of sexually
reproducing organisms. Genetic recombination involves a set of genetic exchanges between homol-
ogous chromosomes (derived from each of the individuals’ parents) during the process of meiosis.
Meiotic recombination allows sites that are subject to purifying selection to segregate independently
and form new combinations of alleles (Figure 1.4) [58]. This process confers a significant evolution-
ary advantage through the breakdown of associations between alleles at linked loci generated by
genetic drift, thus reducing the accumulation of deleterious variants [59]. Due to the shortening of
haplotypes, regions of LD breakdown align with recombination areas (hotspots) might determine
and map the locations of disease-associated variation in the genome [50].

Understanding the recombination mechanism is crucial for interpreting the patterns of genome
evolution and identifying variation in the recombination rate across the genome [60]. In the ab-
sence of recombination, the accumulation of deleterious variants arising by mutation cannot be
eliminated because the original haplotype cannot be regenerated over many generations, a process
called Muller’s ratchet [61]. Previous studies have analysed this problem in regions with high re-
combination rates for variations that are likely harmful, and they have found that the variants are
reduced in these regions because purifying selection removes them [62]. However, some studies have
suggested that recombination may be directly mutagenic, leading to sequence structural changes
because of non-allelic homologous recombination [60]. It has been found that the gene mutation
rate is correlated with local GC content; however, recombination rate and recombination hotspots
have a negligible effect on the frequency of mutation [63].

1.4.4 Selection

Selection can be divided into three main categories: 1) Positive selection or a hard selective sweep
occurs when advantageous genetic variants rapidly increase in frequency, thereby promoting the
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Figure 1.4: Crossing over or recombination, is the exchange of chromosome segments between nonsister
chromatids in meiosis. Meiosis occurs in two stages, called meiosis I and II. Meiosis I divides homologues
from each other. Meiosis II breaks up sister chromatids from each other. Figure adapted from Pearson
Education Inc., (2012) [64].

spread of beneficial alleles in the population. 2) Soft selective sweep is when a neutral mutation
becomes a weakly beneficial variation because of environmental changes. 3) Negative (purifying)
selection removes deleterious variants from a population [60]. Selective sweeps thus work in opposite
directions on negatively associated variants, resulting in Hill-Robertson Interference (HRI) [61].

HRI describes the effects of linkage in reducing the effectiveness of selection by segregating sites
(Figure 1.5) [65]. The HRI effect shows that the efficacy of selection is reduced where there is
diminished recombination [60]. The selective sweep could also mean that disease variation is the
probable result of random mutation and penetrant monogenic variants. As a consequence, these
variants are maintained at low frequencies by purifying selection [52]. Linkage disequilibrium be-
tween alleles at selected loci, caused by the stochastic nature of mutation and sampling in finite
populations, ‘interferes’ with the action of selection at any one locus [59].

1.4.5 Mutation

Genes that have effective mutation rates might generate disease mutations and hence be associated
with a disease [66]. Mutations arise from errors in DNA replication or spontaneous DNA alterations.
Mutation rates depend upon many factors; sequence context, replication timing, transcription,
expression level and recombination rate [67]. Mutations can be small or large scale insertions or
deletions which may be missense, nonsense or frameshift mutations [68] (see Figure 1.6).

Mutation rates may also depend on the mutation rate per site according to gene length [69]. For
instance, Eyre-Walker et al. [66] found that the size of the gene has an impact related to the
disease. However, the mutation rate has historically been a complex genetic parameter to measure
accurately due to the variability of sequenced genomes [70]. The sequence context may explain
patterns of mutation rates. The substitution intolerance scores for genes improve the resolution
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Figure 1.5: Associations between selected alleles may reduce the efficacy of selection. HRI decreases
molecular adaptation and alters patterns of polymorphism in low recombination regions. The interference
effect increases the frequency distribution of segregating sites to resemble that expected from more weakly
selected mutations and generates specific linkage disequilibrium patterns. HRI has a significant impact
on positive selection, reducing competition between beneficial alleles (fixing or losing one of the beneficial
mutations), whereas, for variants subject to purifying selection, it diminishes the chance of eliminating
potentially deleterious variations.

of substitution models and identify new mutation-promoting motifs. Aggarwala and Voight ar-
gued that the statistical substitution models used explain >81% of the variability in substitution
probabilities across all substitution classes, covering 84% of all mutational events [71].

1.4.6 Gene essentiality

Essential genes are highly conserved and mostly encode proteins that drive basic cellular functions
such as transcription, translation, DNA replication, cell division cycle control and fundamental
metabolism [72]. Some mutations of essential genes could drastically alter phenotypes, almost
without exception being lethal or deleterious. Mutations within ‘non-essential’ genes can be further
defined as mutations that do not affect the phenotype in a particular environment [73].

Measuring the degree of gene essentiality of the proteins may quantify the tolerance for non-
synonymous variants. However, estimating gene essentiality is challenging due to the protein
structure complexity and the high density of interactions within a group of proteins. Recently,
many approaches have been developed to study gene essentiality genome-wide, such as protein in-
teraction networks integrated with gene expression or histone marks [72]. This information can be
a priori knowledge of essential genes, which may promote the identification of disease-causing genes
among multiple candidates.
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Missense 
3'- AAT GCT ACC TAT CGG TTA - 5'
5'- TTA CGA TGG ATA GCC AAT - 3'
N - Leu Arg Trp Ile Ala Asn -C

Nonsense
3'- AAA GCT ATC TAT CGG TTA - 5'
5'- TTT CGA TAG ATA GCC AAT - 3'
N - Phe Arg Stop

Frameshift by addition
3'- AAA GCT ACC ATA TCG GTT - 5'
5'- TTT CGA TGG TAT AGC CAA - 3'
N - Phe Arg Trp Tyr Ser Gln

Frameshift by deletion

3'- AAA CCT ATC GGT TA-5'
5'- TTT CGA TAG CCA AT-3'
N - Phe Gly Stop

GCTA
CGAT

Figure 1.6: Substitution mutations include the change in a single base pair. Small deletions affect the
function of only one gene. Missense mutations drive a change in a single amino acid in the protein. A
nonsense mutation breaks a nucleotide base to a stop codon, resulting in premature translation termination
to produce a truncated protein. Frameshift mutations include insertions or deletions of nucleotides, making
a change in the reading frame. Figure adapted from Lodish et al. (2016) [68]).

1.4.7 Hypothetical relationship between gene essentiality, linkage disequilib-
rium, recombination and selection

The hypothetical relationships between gene essentiality, recombination and selection can provide
insights into disease and non-disease genes (see Figure 1.7). The hypothetical model proposed by
Pengelly et al. [53], shows the relationships between gene essentiality, recombination and selection.
∼72% (12,062/16,736) of the genes included in this study had a reduced LD, reflecting high recom-
bination rates and potentially indicating that these genes may be associated with low essentiality
and weakly affected by selection. The properties of these genes might include greater tolerance of
mutation and include, for example, genes involved in sensory perception, such as genes encoding
olfactory receptors. The high recombination rate regenerates the less harmful haplotypes, although
residual variation is low and is unlikely to be associated with the disease.

The second group, which includes ∼9% (1,509/16,736) of the genes, has high essentiality, and its
genes are associated with reduced recombination rates and strong selection. For these genes, any
damaging variation is correlated with lethality. The measure of essentiality has a limited haplotype
diversity and strong LD. This suggests that the genes are involved in the metabolism of DNA and
RNA, damaging the cell’s DNA cycle. The third group comprises ∼19% (3,165/16,736) of the
genes, which contain or are affected by disease variation. These genes and their LD patterns are in
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an intermediate position. They are genes with low-intensity recombination and selection, enabling
identification of some deleterious variation associated with disease, which might involve these genes
in common diseases.

Finally, the paper also highlights that genes are affected by recombination and selection. Thus, the
impact of HRI reduces the efficiency of selection and Muller’s ratchet permits the accumulation of
deleterious variants.

Figure 1.7: Hypothetical relationships between gene essentiality, recombination and selection. The dot-
ted line denotes recombination, and the dashed line denotes selection. The shaded area indicates that
deleterious variants are removed through recombination for ’non-disease, non-essential’ gene groups and
intense selection for ’essential non-disease’ gene groups. Muller’s ratchet describes the random accumu-
lation of slightly deleterious mutations in finite populations with limited amounts of recombination. HRI
means that linkage between sites under selection will reduce the overall effectiveness of selection in finite
populations. Reprinted by permission from Pengelly et al., ©(2017) [53].
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1.5 Gene-specific metrics of disease genes

Establishing a causal link between gene function and human phenotypes may identify Mendelian and
complex phenotypes. In order to do this, existing gene-specific predictors related to evolutionary
and functional properties of the genes can potentially improve recognition of genes likely to be
disease-related.

1.5.1 Machine learning algorithms

The role of machine learning (ML) algorithms or statistical learning is to find an empirical solution
(target function) from the observed data. ML attempts to understand and predict mechanisms han-
dling an automatic or semi-automatic process in which the algorithm corrects its outputs. Firstly,
it assumes a target function to be learned (unknown) based on examples generated by the target.
Therefore, the learning algorithm applies these examples to look for a hypothesis that approximates
the target. This learning process follows the algorithm’s rules, continuously updating as it receives
more information to adapt the different inputs and then improve performance (see Figure 1.8) [74].

Unknown target function
𝒇:𝓧 ↦ 𝓨

(formula)

Training examples

(𝒙!, 𝑦!), (𝒙", 𝑦"), … , (𝒙#, 𝑦#) 

Hypothesis set
𝓗

(candidate formulas)

Learning 
Algorithm

𝓐

Final Hypothesis
𝒈	 ≈ 𝒇

(approval formula)

Figure 1.8: The figure illustrates the components of the learning problem. x represents the inputs,
f : X → Y describes the unknown target function, where X is the input space, Y is the outputs space. There
is a data set D of inputs-outputs examples (x1, y1), ..., (xn, yn)whereyn = f(xn) for n = 1, ..., N . Finally,
there is the learning algorithm that uses the data set D to pick a formula g : X → Y that approximates
f . The algorithm chooses g from a set of candidates formulas under consideration, called the hypothesis
set H. The decision will be good only to the extent that g faithfully replicates f . To achieve that, the
algorithm chooses g that best matches f on the training examples. Figure adapted from Abu-Mostafa et
al. (2012) [74].
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As the basic premise of ML from data is using a set of observations to uncover an underlying
process, there is a vast premise and challenging to fit into a single framework. As a result, various
learning paradigms have arisen to deal with different situations and different assumptions. The
most significant variations on the different types of ML have to do with the nature of the data set
[74].

1.5.2 Supervised machine learning application in genetics

Supervised ML algorithms typically build an algorithm that uses a dataset of candidate features as
input and then predicts a specific outcome. Their learning process is based on a comparison of the
predicted labels to the provided ones. This implies that the input data includes parallel information
about the correct output of each element. Supervised learning includes different algorithms to solve
prediction and inference problems such as linear regression, support vector machines, decision trees
or artificial neural networks.

Supervised ML methods have been applied to a wide variety of problems in genomics and genetics.
For example, ML techniques can aid gene prioritisation, that is, recognising which genes are more
likely to be associated or to interact to share a functional relationship [75]. The assumption behind
applying ML techniques is that causal genes are similar to those already known to be associated
with a disease. As a result, most strategies based on guilt-by-association need a set of seed genes
to train a model. They then use the trained models to rank a set of candidate disease genes for the
biological process, phenotype or disease under investigation [76].

Adie et al. [77] used a decision tree algorithm to identify disease-related genes based on the as-
sumption that these genes underly human hereditary diseases, which share certain distinctive and
sequence-based features. The authors selected evolutionary features such as conservation, coding
sequence length, and closeness of paralogs in the human genome. Similarly, Xu J. et al. [78]
proposed a classifier capable of identifying genes more likely to be involved in hereditary disease
based on the topological patterns of genetic products in protein-protein interaction networks by
using the K–nearest neighbour (KNN) algorithm. Radivojac et al. [79] proposed the PhenoPred
algorithm for candidate genes using the human protein-protein interaction network, protein se-
quence and protein functional information at the molecular level. PhenoPred was built through
a supervised framework using two layers of supervised vector machine (SVM). Yang et al. [80]
designed a positive-unlabelled learning algorithm (PUDI) for disease gene identification. This al-
gorithm combines biological process, molecular function, cellular component, protein domain and
protein-protein interaction data and divides the negative likelihood set into four groups based on
their likelihoods to be positives on gene affinity networks. Subsequently, a multi-level weighted
SVM used these four sets for classifying disease genes.
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1.5.3 Unsupervised machine learning in genetics

Unsupervised ML approaches are harder to interpret because there is no predefined outcome to be
predicted. The task here is to derive an algorithm able to explore data patterns and to discover
structure. Unsupervised ML algorithms try to represent and reduce the complexity of data by
observing relationships between samples and features. This process is known as clustering, and
dimensionality reduction [81, 82].

Various unsupervised ML algorithms have been explored to split genes up into different groups by
their genomic and functional similarity. For such reasons, several different approaches to clustering
have been proposed in the literature. For example, Oyelade et al. [83] considered functional
information related to gene expression. This information reveals underlying structures and identifies
patterns by using different clustering techniques such as hierarchical methods, hybridised k-means,
model-based methods, soft clustering, etcetera. Lopez et al. [84] proposed an unsupervised machine
learning method for recognising patient clusters based on their genomic similarity. Specifically, their
method classified genetically distinct subtypes of patients within genomic datasets. Karmakar et al.
[85] adopted a scalable version of the tight clustering method for significant gene expression data
sets or other large data sets. It applies a truncation of a hierarchical clustering tree to overcome
the local minimum problem in k-means clustering. They modified a tight clustering algorithm
based on decreasing order of tightness by resampling the sample at each iteration. However, it is
still challenging for unsupervised clustering to separate the genes when those genes may present
noise or irrelevant genes (outliers) [86]. For example, traditional clustering algorithms such as
hierarchical and k-means clustering are known to perform inefficiently for datasets with a small
number of outliers [83].

Because unsupervised ML algorithms involve several parameters, often operate in high dimensional
spaces, and cope with noisy, incomplete and sampled data, their performance can vary substan-
tially for different applications and types of data. Thus, previous approaches for comparing the
performance of clustering algorithms can be divided according to the nature of used datasets. As
an example, a comparative analysis using a real-world dataset is presented by Souto et al. [87].
The authors conducted a comparative analysis considering five clustering methods: k-means, mul-
tivariate Gaussian mixture, hierarchical clustering, spectral and nearest neighbour. The authors
used different proximities measures in the experiments, such as Pearson and Spearman correlation
coefficient, cosine similarity and the euclidean distance. The algorithms were evaluated using the
adjusted rand index for performance evaluation in the context of 35 gene expression data from ei-
ther Affymetrix or cDNA chip platforms. The multivariate Gaussian mixture method provided the
best performance in recovering the actual number of clusters of the datasets. K-means approach
displayed similar results. In this same analysis, the hierarchical method led to limited performance,
while the spectral method showed to be particularly sensitive to the proximity measure employed
[87].
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1.5.4 Bayesian estimation for Gaussian graphical models in genetics

Bayesian inference in Gaussian graphical models (BGGM) allows for learning conditional indepen-
dence structures that are encoded by partial correlations among random variables (features) based
on the Wishart prior distribution. This approach has been widely applied in genomics and pro-
teomics to infer various types of networks, including co-expression, gene regulatory, and protein
interaction networks [88].

Verzilli et al. [89] implemented a Bayesian graphical model to estimate candidate genes from GWAS.
The authors included prior knowledge of the spatial dependencies to constrain marker nodes due
to linkage disequilibrium. The proposed model was used in the simulation studies and analysis
of the synthetic CYP2D6 data. Zakery et al. [75] categorised genes by combining genotype and
phenotype data sources using Bayesian matrix factorisation. This Bayesian data fusion method
provides results on a variety of diseases such as those impacting the nervous system, metabolic
diseases, and congenital malformations [75].

In addition to the above, Williams et al. [90] introduced a Bayesian method to estimate sparse
matrices to estimate a protein-signalling network, in which conditional relationships are determined
with a projection of predictive selection. The authors employed Kullback-Leibler (KL) divergence
and cross-validation for neighbourhood selection to construct the network. Similarly, Yang et al.
[80] built a classification model to tackle the feature selection problem. The authors proposed a
computational method based on sparse Bayesian learning to produce a classifier and select highly
correlated predictive features simultaneously.

1.6 Breast cancer

Breast Cancer (BC) is developed in breast tissues, most commonly from the inner lining of milk
ducts (small tubes that carry the milk), leading to progressive aggregation of genetic and epigenetic
changes in breast cancer cells. BC is a complex polygenic disorder caused by the interaction of ge-
netic risk factors and environmental factors [91]. The genetic component is accompanied by other
risk factors attributed to moderate to high-penetrance variants defining the BC phenotype and iden-
tifying causative or associated elements [92]. The two most important breast cancer susceptibility
genes are BRCA1 and BRCA2. These genes are expressed at different phases in the DNA damage
response (DDR) and DNA repair. BRCA1 is a multifaceted DDR protein that functions in both
DNA damage sensing and DNA repair effectors, whereas BRCA2 is a mediator of the homologous
recombination repair. Inactivation of both leads to carcinogenesis [93, 94]. However, rare genetic
variants account for only up to 5% of BC, indicating that a polygenic component is involved in
disease liability. Much of this missing heritability may be either very rare highly penetrant genes
not currently known or much larger numbers of rare genetic variants with small effect sizes. The
cumulative effect of these genetic variants may be associated with increased relative risk [95, 96].
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1.6.1 Polygenic risk score for breast cancer prediction

Breast cancer is a highly heritable disorder and is known to have a substantial common polygenetic
component [97]. This component can be directly estimated through a polygenic risk score (PRS)
which measures common genetic susceptibility to the disease in individuals regardless of their af-
fected status [98]. A PRS also combines relevant SNPs and therefore predicts the risk of breast
cancer. Recent studies have found that the effect of PRS on absolute risks of the breast can be
higher in women in the highest quartile of polygenic distribution, with at least two-fold increased
risk for BC compared to those with PRS in the lowest quartile [99, 100]. In the study conducted
by Sawyer et al. 2012, the polygenic information subdivided the group of women with uninforma-
tive genetic testing results for monogenic causes for their ongoing breast cancer risk and the risk
of collateral disease for previously affected women [101]. Data for multiple common susceptibility
alleles for breast cancer may identify women at different levels of breast cancer risk. The authors
developed a PRS that stratifies breast cancer risk in women with and without a family history of
breast cancer. Based on these results, the level of risk discrimination can be used to inform targeted
screening, and prevention strategies [100].

1.7 Thesis outline, aims and contribution

The overall purpose of the work herein is to develop and apply sophisticated mathematical, sta-
tistical and ML modelling techniques to large-scale genetic data. This introduction has aimed to
provide a brief background on the genetic definition. The thesis also describes the mathematical,
statistical and ML methodologies used to understand better the genetic background that will help
the reader to contextualise what will be discussed in the following chapters. Since most of the
results will be focused on analysing different data types, it is necessary to describe state-of-art from
a research perspective in each chapter. Following the methods chapter, more details are provided
on the bioinformatics tools, mathematical models and machine learning algorithms that will be
extensively applied and cited throughout the result chapter. The method section is essential to
facilitate an understanding of the sophisticated mechanism that would blur the reader’s focus if
it were covered individually in each result chapter. The work conducted in this thesis was mainly
supervised by Prof Andrew Collins and Dr Reuben Pengelly. The following section presents a
summary of the specific intentions of each research chapter.

Research hypothesis

Mathematical and statistical approaches can be used to analyse genome function, linkage disequi-
librium structure and improve disease gene prediction for patient benefit.

Hypothesis 1
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Mapping LD at high resolution may reveal the highly variable intensity of LD structure in exonic,
intronic and intergenic regions, providing a novel understanding of the impact of recombination
and selection on genome structure and function.

Aim 1 –Evaluate highly variable intensity of linkage disequilibrium in exonic, intronic
and intergenic regions reflecting recombination and selection on fine scales

The first aim was focused on the construction of LD patterns fromWGS to understand the historical
impact of recombination, natural selection, genetic drift and mutation. It was demonstrated that
accurate determination of the extent of LD at high resolution provides increased insights into the
different regions of the genome, as discussed in detail in Chapter 3. My contribution consisted
of carrying out every step described in the chapter, including curation of the research database,
data quality control, data processing, LD map construction, model application and manuscript
preparation.

This chapter was predominantly my own work, with significant input from Dr Reuben Pengelly and
Prof. Andrew Collins contributing to research perspective and outputs interpretation.

Hypothesis 2

Gene-level metrics related to evolutionary and functional properties may improve recognition of
genes likely to be Mendelian disease-related using supervised ML classifier and BGGM approaches.

Aim 2 – Estimate gene-level score of genome function to predict disease genes through
supervised machine learning

Chapter 4 focuses on applying supervised ML algorithms to identify which determinants are acting
on human disease-causing genes. Thus, different gene-level metrics related to the gene’s evolution-
ary and functional properties were required to identify genes involved in Mendelian disease. My
contribution was to develop supervised ML models, analyse the public data, perform statistical
tests, and interpret results.

This work was predominantly my own, with significant contributions from Prof. Andrew Collins,
Prof. Niranjan Mahesan and Dr Reuben Pengelly.

Hypothesis 3

The multi-objective clustering technique proposed using the unsupervised ML method can be used
to predict and categorise known and novel Mendelian disease genes separate from complex diseases
and non-disease genes with improved performance over state-of-the-art methods.

Aim 3 – Construct a robust prediction to identify disease genes using unsupervised
machine learning

Chapter 5 covers applying a proposed unsupervised machine learning methodology using evolution-
ary and functional properties (discussed earlier in Chapter 4) as markers to classify and stratify
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genes according to their degree of essentiality. I was responsible for the models’ development and
their application.

This work was predominantly my own, with significant contributions from Prof. Andrew Collins
and Dr Reuben Pengelly.

Hypothesis 4

A PRS may quantify the cumulative effect of low-penetrance alleles on BC risk to examine whether
non-BRCA breast cancer patients have a significant risk of developing BC.

Aim 4 – Estimate a polygenic risk score to quantify cumulative effect of low-penetrance
alleles on breast cancer subtypes

The primary aim was to develop a polygenic risk score based on surprisal theory to measure the
risk of BC within specific subtypes of BRCA mutation and non-BRCA breast cancer patients,
and additionally to demonstrate that early-onset breast cancer (EOBC) has a strongly polygenic
component. My contribution consisted of developing the PRS and its application. For the genomic
data I was in charge of curating the research database, data quality control, data processing, the
application of statistical analysis, and the interpretation.

I mainly carried out this work with significant input from Prof. Andrew Collins, Prof. Ben MacArthur,
Dr William Tapper and Dr Reuben Pengelly.

Chapter 7 summarises the thesis findings and discusses future work.



Chapter 2

Methods and data analysis tools

The exponential growth in biological data has increased since the emergence of high-throughput
technologies such as next-generation sequencing (NGS). This method has revolutionised biological
research by providing a more comprehensive understanding of biological systems under study and
the mechanisms that underlie disease development [102]. NGS’s large amount of data requires
applying advanced bioinformatics techniques and mathematical tools to obtain new insights about
linkage disequilibrium and disease genes to improve diagnoses and design personalised treatments.
This chapter provides an overview of the bioinformatics tools, mathematical and statistical models
used in this research.

2.1 Malécot-Morton

Linkage disequilibrium (LD) research has underpinned the past decade of medical genetics research.
LD patterns show the dominant process of recombination, mutation, selection, genetic drift and its
cumulative effects of multiple historical bottlenecks. Maps expressed in linkage disequilibrium units
(LDUs) are constructed using the Malécot-Morton model, which predicts the background levels of
LD resulting from evolutionary history. LDU maps are analogous to linkage maps and discriminate
blocks of conserved LD with additive distances. Newton Morton developed this methodology of
LD drawing on the population genetics and geographical isolation work of Gustave Malécot to
apply his models to loci in the genome. The model is based upon isolation by distance to separate
populations by geographic distance. Formally, LD decreases exponentially with physical distance d
in kilobases, and the Malécot-Morton model represents the association ρ between any pair of SNPs
as

ρ = (1− L)Me
∑
diεi + L, (2.1)

where the asymptote level L is the residual association at large distance, which acts as the correction
factor for spurious association. M is the initial value of the LD before decay begins; that is,
association at zero distance, with values of 1 consistent with monophyletic inheritance and less
than one otherwise. ε is the exponential decline of LD with physical distance d in kilobases between

19
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single nucleotide polymorphisms (SNPs). The product εi · di at the ith interval is equivalent to
estimating the recombination product θ and time t in generations where recombination has taken
place.

The parameters L, M and ε are not known, but can be estimated iteratively by using composite
likelihood assumed from the observed pairwise comparison as:

ρ̂ =
D

Q(1−R)
, (2.2)

where Q, R are the minor allele frequencies and the covariance D is obtained from the 2× 2 rear-
rangement χ2 contingency table. D is always a positive difference between a haplotype frequency
and its equilibrium value as the product of allele frequencies [37, 103, 104, 105, 106, 41].

LD map generation was performed using the LDMAP program in C. The software LDMAP itera-
tively fits the Malecot-Morton model for values of ρ̂ between multiple markers to identify the values
of L, M , and ε provide the closest fit for the observed data. The software ultimately produces a
map in LDU, equal to εd, such that one LDU corresponds to the (highly variable) physical distance
over which LD declines to background levels.

2.2 Machine learning algorithms

Currently, statistical learning or machine learning (ML) algorithms are used for regression, classifi-
cation, clustering or dimensionality of large datasets with high dimensions. ML algorithms aim to
optimise the performance of a particular task by using examples based on experience. Usually, ML
can be divided into two broad groups: supervised and unsupervised learning algorithms.

2.3 Supervised machine learning

Supervised machine learning is based on the same principles as probability distribution fitting. In
supervised learning, the machine is given a sequence of desired outputs y1, y2, . . . , attempting to
find the unknown function linking known inputs to unknown outputs. The result for unknown
domains is estimated by extrapolating patterns found in the labelled training data [107].

Supervised ML approaches select or engineer relevant features to predict the output accurately.
This is accompanied by the selection of a supervised ML algorithm that will fit the desired output
value. Applying the ML algorithm requires first generating, finding, and cleaning the data to ensure
consistency and accuracy. Once the data pre-processing and model selection stages are completed,
the model is iteratively improved to reduce prediction error using an optimisation technique. This
entails adjusting hyperparameters that control the training process, structure, and characteristics
of the model. Some authors consider model selection and hyperparameter tuning as parts of the
same process. In other words, both the selection of the model and the hyperparameters are part of
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the model selection. The validation dataset is separated from the test and training sets to optimise
these hyperparameters [108, 107].

The two supervised ML approaches selected for classifying disease genes from non-disease genes are
detailed in the next section. Further information regarding the supervised ML used in this research
is given in Appendix A.

2.3.1 Random forest

Random forest (RF) is a supervised ensemble learning algorithm that constructs different models
of several decision trees on the training set to improve the prediction performance. RF creates
classification trees, and the bootstrap technique is applied to train each tree and therefore select
the best solution by employing voting. This ensemble method reduces over-fitting by averaging the
result.

Formally, RF is a combination of a collection of tree-structured classifiers (h(x, θk)|k = 1, . . . ) where
x is an input vector, and θk are independent and identically distributed random vectors. Each tree
shapes a unit vote for the most popular class at input x. The algorithm draws a bootstrap sample
Z∗ of size N from the training data. Then a random forest tree Tk is grown to the bootstrapped data
by recursively repeating the selection of m features at random from the p features for each terminal
node of the tree. Thus, the best variable/split-point is chosen from among m possibilities. Next,
the node is separated into two daughter nodes. The last steps are replicated until the minimum
node size nmin is reached. The classification at a new point x is then estimated by

Ĉkrf (x) = majority vote{Ĉk(x)}K1 , (2.3)

where Ĉ is the class prediction of the kth random forest tree [109].

2.3.2 Gradient tree boosting

Gradient tree boosting (GTB) is a numerical optimisation problem where the objective is to min-
imise the loss of function by adding weak learners using a gradient descent–procedure. The idea of
this methodology is to convert multiple weak learners into strong learners.

GTB is a generalization of boosting to arbitrary differentiable loss functions. GTB builds an
additive model in a forward stage-wise fashion, which is written as

Fm(x) = Fm−1(x) + γmhm(x), (2.4)

where hm(x) are weak learners. Thus, this algorithm uses decision trees of fixed size as weak learners.
In addition, the model allows for the optimization of arbitrary differentiable loss functions. At each
stage n class trees are fit on the negative gradient of the multinomial deviance loss function. The
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l2 regularization parameter is based on the loss function. GTB considers additive models of the
following form:

F (x) =
M∑
m=1

γmhm(x), (2.5)

where the newly added tree hm tries to minimize the loss L, given the previous ensemble Fm − 1:

hm(x) = arg min
n∑
i=1

L(yi, Fm − 1(xi) + h(xi)) (2.6)

The initial model F0 is problem-specific; for least-squares regression, the mean of the target values
is usually chosen [110].

2.3.3 Cross-validation

Each clustering algorithm is based on a set of parameters that require to be tuned for viable per-
formance. A prevalent problem in ML is defining a proper procedure for setting the parameter
values [111]. In general, an optimisation procedure can be applied to find these hyperparameters
framework that provides the best performance of a given algorithm, like genetic algorithms [112].
Nevertheless, there are two significant problems with such an approach. First, fitting the parameters
to a given data set can lead to overfitting [113]. Second, parameter optimisation can be unfeasi-
ble depending on the time complexity of many algorithms, combined with their large number of
parameters [111, 114]. Therefore, different applications are required for evaluating and comparing
the performance of clustering algorithms under default and optimisation situations.

In the following aspects of overfitting, the model could lead to high training error due to the
complexity of the data or the features not adequately describing the output. An overfitted model
might interpret a part of the noise in the training data as relevant information, resulting in a high
variance in the model, thus failing to predict new data reliably. Similarly, an underfitted model may
fail to fit the training dataset or generalise to a new data set, producing a high bias in the model. In
order to avoid these two causes of poor performance, it is necessary to monitor the process during
the training and validation to obtain an unbiased evaluation of a final model fit on the training
dataset [113].

Cross-validation is a statistical method used to assess and compare learning algorithms by randomly
dividing the dataset into two parts: one used to train or teach the model and the other utilised
to validate the model’s performance. The training and validation sets are crossed in successive
rounds to validate each data point. Firstly, the training set is built as a sample of data to fit
the model. Therefore the validation set takes place as a data sample to perform an unbiased
evaluation for the fit model on the training dataset while tuning model hyperparameters. Then,
the evaluation becomes more biased as a trade on the validation dataset is incorporated into the
model configuration [115].
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The simple form of cross-validation is k-fold cross-validation, while other forms are special cases,
including repeated rounds of k-fold cross-validation. In k-fold cross-validation, the data is first
randomly divided into k equal groups or folds. Consequently, k iterations of training and validation
are performed, leaving out one fold for testing and training the model on the remaining k− 1 folds.
The process is repeated for every fold, returning an mean squared error (MSE) relative to that
particular observation, and then the MSE is estimated as the average MSE over the k iterations by

CV(x) =
1

k

k∑
i=1

MSE i. (2.7)

The trade-off between bias and variance is then associated with the choice of k, and it has been
empirically demonstrated that 5-to-10 fold cross-validation is the optimal choice for both variance
and bias [115, 116]. Lastly, the final model must be assessed on previously unseen sample data,
denoted a test set, to estimate its generalisation/extrapolation and performance.

2.3.4 Resampling methods

A dataset is class imbalanced if the categories are not represented approximately equally. Class
imbalance is one of the problems that may arise if the data source provides unequal classes; examples
of one class in a training dataset outnumber examples of the other class.

The class imbalance makes identification of the minority class by a learner challenging because this
imbalance problem introduces a bias in the majority class. A biased learning process could classify
all instances as the majority class and produce a false high-accuracy metric. Resampling strategies
are methods for dealing with imbalanced domains. The resampling method draws repeated samples
from the training set on each sample in order to balance them before training the classifiers. There
are different types of resampling methods, such as oversampling and undersampling techniques. In
the random undersampling method, all of the training data points from the minority class are used.
Instances from the majority class are removed randomly from the training set until the desired
balance is achieved [117].

2.4 Unsupervised learning

Unsupervised learning algorithms are models used when the observations are unlabelled, and the
analysis aims to find patterns between features and samples. In unsupervised learning, the machine
receives inputs x1, x2, . . . , but no supervised target output is available. However, it is possible to
develop a formal framework of the data, which assumes that the data points are independently and
identically drawn from some distribution P (x) [118]. These algorithms are also applied as methods
for data visualisation or pre-processing before applying other supervised techniques.



24 Chapter 2 Methods and data analysis tools

Unsupervised learning models are utilised for two main tasks; clustering and dimensionality reduc-
tion. Clustering is a technique that groups unlabelled data based on similarities or differences to
find hidden structures or patterns in the data. Clustering algorithms can be classified into a few
types; exclusive, hierarchical, and probabilistic. Dimensional reduction is a technique that preserves
the structure of the original dataset as much as possible while also decreasing the number of data
inputs to a manageable size. This technique is commonly used in the preprocessing data stage.
The most popular algorithms for dimensionality reduction are principal component analysis and
t-distributed stochastic neighbour embedding [118].

2.4.1 Clustering

2.4.1.1 k-means clustering

K-means clustering is a clustering method in which data points are assigned into K groups, spec-
ifying that a data point exists only in one cluster. K denotes the number of clusters based on
the distance from each group’s centroid. The closest data points to a given centroid are grouped
under the same class. K-means is one of the most popular clustering methods for analysing gene
expression data [119].

2.4.1.2 Hierarchical clustering

Hierarchical clustering is an unsupervised clustering algorithm that can be categorised in two ways:
agglomerative or divisive. Agglomerative clustering is considered a "bottoms-up approach." Its data
points are initially isolated as separate groupings and then merged iteratively based on similarity
until one cluster has been achieved. These clusterings are usually visualised using a dendrogram or
a tree diagram that displays the splitting or merging of data points at each iteration [119].

2.4.2 Probabilistic clustering

A probabilistic model is an unsupervised technique that the data points are clustered based on the
likelihood of belonging to a particular distribution. The Gaussian Mixture Model (GMM) is one of
the most commonly used probabilistic clustering methods.

2.4.2.1 Gaussian Mixture Models

Gaussian mixture model (GMM) are classified as mixture models that are made up of an unspecified
number of probability distribution functions. GMMs are primarily leveraged to determine which
Gaussian, or normal, probability distribution a given data point belongs to. If the mean or variance
are known, it can determine which distribution a given data point belongs to. However, in GMM,
these variables are unknown, so we assume that a latent or hidden variable exists to cluster data
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points appropriately. Expectation-Maximization (EM) algorithm is commonly used to estimate the
assignment probabilities for a given data point to a particular data cluster.

Formally, GMM is a parametric distribution assembled from weighted multivariate Gaussian dis-
tributions. The density of each data point is a weighted sum of K component Gaussian densities
which can be written as:

p(y|θ) =

K∑
k=1

πkp(y|θk), (2.8)

where the K components of the mixture are Gaussian distributions with differing means and co-
variances θk = (µk,Σk) where πk is the mixing proportion for component k, and they satisfy the
constraint that

∑K
k=1 πk = 1 and πk > 0, ∀k. The complete GMM is parameterized by the mean

vectors, covariance matrices and mixture weights from all component densities.

Since the data point assignment is not known, this describes a form of unsupervised learning.
GMMs measure continuous features, and their parameters are estimated from training data using
the iterative expectation-maximisation (EM) algorithm.

The expectation-maximisation algorithm for Gaussian mixture models starts with an initialisation
step, which assigns reasonable values to the model parameters based on the data. Then the model
iterates over the expectation (E) and maximisation (M) steps until the parameter estimates con-
verge; i.e., for all parameters, θkt at iteration t satisfies |θkt − θkt−1| ≤ ε where ε is the tolerance
error [120, 121].

K-means groups data points using distance from the cluster centroid; data objects are divided into
non-overlapping groups. K-means using a pre-specified number of clusters based on expert knowl-
edge. GMM generates density-based to assign data points to clusters. Each cluster is described
by a separate Gaussian distribution [122]. In contrast, hierarchical clustering builds a hierarchy of
clusters without having a fixed number of groups.

2.4.3 Dimensionality reduction

2.4.3.1 Principal component analysis

Principal Component Analysis (PCA) is an unsupervised linear dimensionality reduction and data
visualisation technique for high dimensional data. The fundamental idea of this technique is to
reduce the dimensionality of highly correlated data by transforming the original vector set to a new
set known as principal components (PCs). This can be achieved by computing the eigenvectors
corresponding to the largest eigenvalues of the data’s covariance matrix and returning the data’s
projection on these eigenvectors, namely, the principal components (PCs). These PCs are given
by an orthonormal linear transformation from a set of random features and therefore are ordered,
with the first component retaining the most variation from the original variables. Application of
this technique includes feature extractions, stock market predictions, and gene data analysis.
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Formally, the uncorrelated PCs are represented by the linear projection of the original random
vector of a p-dimensional variable x = (x1, x2, . . . , xp) with covariance matrix Σ. Thus, the linear
combinations of the columns of matrix x with maximum variance are given by

z(1) = α′1x = α11x1 + α12x2 + · · ·+ α1pxp =

p∑
j=1

α1jxj , (2.9)

where α1 is a vector of p constants α1, α2, . . . , αp and ′ denotes the transpose. The linear function
α′2x is uncorrelated with α′1x, having maximum variance, and so on at the kth stage. Thus, α1 is
the eigenvector corresponding to the largest eigenvalue of Σ, and var(α′1x) = α′1ςα1 = λ1 is the
largest eigenvalue. In general, z can be denoted by the vector whose kth element is zk, the kth PC,
k = 1, 2, . . . , p. Then

z = A′x, (2.10)

where A is the orthogonal matrix. Thus, the PCs are defined by an orthonormal linear transfor-
mation of x and the p PCs are orthogonal and ordered with respect to their variances (eigenvalues
of the covariance matrix Σ). Hence, the eigenvectors are orthonormal; they satisfy the unit length
α′kαk = 1, k = 1, 2, . . . , p, and are called PC loading vectors. Since PCA is scale-dependent, the
variables are often mean-centered and scaled to unit variance before PCA is carried out. With stan-
dardised variables, the correlation matrix is instead used to derive the eigenvector–eigenvalue pairs.
The first principal component is their normalised linear combination that has maximum variance.
Then the second principal component follows the same property, accounting for as much of the
remaining variance as possible with the constraint that the second component is orthogonal to the
first component; their projections will be uncorrelated. Then all subsequent principal components
must be uncorrelated to those already computed, and the explained variance will decrease after an
empirically derived number of components [123, 124].

2.4.3.2 t-distributed stochastic neighbour embedding

The method of t-distributed stochastic neighbour embedding (t-SNE) is a nonlinear dimension-
ality reduction algorithm and data visualisation technique. It embeds the points from a higher
dimension to a lower dimension trying to preserve the neighbourhood of that point. This tech-
nique is commonly applied in music analysis, cancer research, bioinformatics, and biomedical signal
processing.

t-SNE computes low-dimensional coordinates of high-dimensional data, converting the high-dimensional
Euclidean distance between data points into conditional probability by:

pi|j =
exp(‖xi−xj‖

2/2σ2
i )∑

k 6=i exp(‖xi−xk‖
2/2σ2

i )
, (2.11)

where xi and xj are the data point in the Cartesian plane, the probability density distribution
assumes a Gaussian distribution around each data point in the high-dimensional space and models
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the target distribution of pairwise similarities (the joint probability) in the lower-dimensional space
using the Cauchy distribution (Student t distribution with 1 degree of freedom) to calculate the
joint probability between yi and yj as:

qi|j =
(1 + ‖yi − yj‖2)−1∑
k 6=i(1 + ‖yi − yk‖2)−1

, (2.12)

If the map points yi and yj correctly estimate the similarity between the high dimensional data
points xi and xj , the joint probability qij should be close to pij . Then, Kullback–Leibler (KL)
divergence between the conditional probabilities is iteratively minimised via gradient descent to
evaluate the projection from the high-dimensional structure and joint probability distribution P to
the low-dimensional representation Q as [125, 126, 127]:

KL(P ‖ Q) =
∑
i

∑
j

pij log
pij
qij
. (2.13)

PCA embedding preserves the global structure; however, the local information is lost due to the
noise and the nonlinear structure. Conversely, t-sne preserves the local data structure by minimising
the Kullback–Leibler divergence between the two distributions concerning the locations of the points
in the map.

2.5 Bayesian inference in Gaussian graphical models

The application of Gaussian graphical models (GGM) comprises two main parts: the first is qualita-
tive, given by the graphs, which represent the structure of dependency among the studied variables,
and the second is quantitative, which refers to the conditional or joint variables of the same dis-
tribution. GGM estimates the conditional independence among a set of random variables using
an undirected graph. In this graph model, nodes represent the random variables, and directed
edges represent stochastic dependencies among the variables. A set of conditional distributions is
assumed to follow a multivariate normal distribution [128, 129].

Bayesian inference in Gaussian graphical models (BGGM) [130] uses the G-Wishart distribution as
a priori. This is a generalisation of the Wishart distribution, which is the conjugate prior for the
precision matrix whose elements associated with edges, not in the underlying graph, are constrained
to be equal to zero [131, 128]. Then the Bayesian inference estimates the sparse matrices1 in which
conditional relationships are determined with predictive projection [90]. Consequently, assuming
the posterior joint density is normally distributed (asymptotic normality and consistency [132]), it
allows for constructing credible intervals and computing posterior probabilities.

1A sparse matrix is a matrix that contains mostly zero values.
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Formally, BGGM characterises the undirected2 and conditional dependence structure of a set of
random variables. Formally stated, the undirected graph is G = (N,E), consisting of a node set
N = 1, . . . , p and an edge set E ⊂ N × N . Let X = (X1, . . . , Xp) be a n × p matrix, where each
X is a n-dimensional vector that is indexed by the graph nodes. The edge set E contains pairs
(i, j), where (i, j) ∈ E3. Assume that the Xp follow a Wishart prior distribution W (k, εIp) with
k degrees of freedom and identity matrix Ip. This prior distribution provides an analytic solution
for determining E, and allows for conveniently drawing posterior samples. Thus, the Wishart
distribution is the conjugate prior of the inverse covariance-matrix Σ−1, where the p × p positive
definite covariance matrix Σ, which is the posterior distribution, also has a G-Wishart distribution:

Θ|X ∼W (k + n, (S + εIp)−1), (2.14)

where S is the sum of squares matrix Y ′Y and ε is a constant [128, 133, 134].

2.6 Surprisal theory

Surprisal analysis identifies the probability of different events of a physical system when these events
may have a rich internal structure. The procedure assumes that a reference system is in a steady-
state, to estimate a probability measure on the space. These bits of information are considered to
be sufficient to characterise deviations of the distribution from the system due to the conditions
imposed on the balance system. Then the procedure also uses the estimated probability to assess
how unusual any other system is concerning the reference system that minimises the expected
number of bits required to specify a system drawn at random from the reference system [96, 135].

Surprisal analysis is based on the principle of maximal entropy. Entropy can be defined as a measure
of disorder in a physical system or uncertainty (lack of information) of a random variable; i.e., it
quantifies the amount of information required on average to describe the random variable. Entropy
decreases when the probability of the system of being in a particular state is much larger than the
probabilities of being in any other state; otherwise, the entropy is minimal [135, 136].

Formally, let X be a discrete random variable with alphabet Ω and probability mass function
p(x) = Pr{X = x}, x ∈ Ω. Then p(x) and p(y) refer to two different random variables with
different probability mass functions. The entropy H(X) of a discrete random variable is defined
by:

H(X) = −
∑
x∈Ω

p(x) log p(x). (2.15)

The logarithm is base two, and the entropy is expressed in bits. The entropy will then be measured
in bits. For example, the entropy of a fair coin toss is 1-bit [136].

2An undirected graph encodes a factorisation of the joint probability distribution in terms of clique potentials.
3There is an edge between two nodes Xi and Xj if and only if Xi and Xj are conditionally dependent given all

the other variables {Xk, k 6= i, j}.
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2.7 Computational tools and resources

Iridis 4

Most of the analysis performed in this research was conducted using the IRIDIS High-Performance
Computing Facility. Iridis 4 is the fourth-generation computational facility at the University of
Southampton. The cluster is made up of:

• 750 computing nodes with dual 2.6 GHz Intel Sandybridge processors

• each compute node has 16 CPUs per node with 64 GB of memory

• 4 high-memory nodes with two 32 cores and 256 GB of RAM

• 24 Intel Xeon Phi accelerators

• 3 login nodes with 16 cores and 125 GB of memory

• 12,320 processor cores providing 250 TFlops peak

• 1.04 PB of raw storage with Parallel File System

• InfiniBand network for interprocess communication

• 12 × GPU nodes (2.6 GHz Intel Sandybridge 16-core nodes with ∼62 GB usable memory and
2 K20 GPU cards each)

Iridis 4 does not have a graphical user interface (GUI), and each operation or software must be
executed using the bash command line. The Iridis 4 command line is based on the operating system
Red Hat Enterprise Linux.

C

C is a procedural programming language. Dennis Ritchie initially developed it as a system pro-
gramming language to write an operating system. C language includes low-level memory access to
make it suitable for system programmings like operating systems or compiler development [137].

Python

Python is an interpreted high-level, general-purpose programming language with dynamic seman-
tics. It is a multi-paradigm programming language, as it supports object orientation in combination
with imperative, functional and procedural programming. The Python interpreter and standard
libraries are available in source or binary form. The versions used for all the analyses performed on
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this research were versions 3.5 and 3.7.3 [138]. The custom scripts ran on Iridis were in .py format,
and some analyses were run on a personal computer in Jupiter notebook 6.2.0 format.

Packages

SciPy is a library of programs for mathematics, science and engineering [139]. It includes funda-
mental tools such as NumPy for array (matrix) calculations and Matplotlib for graphs and 2-3D
plotting.

Scikit-learn is the main package for statistical learning in Python [140]. It includes algorithms
for supervised and unsupervised machine learning with tools for choosing and validating parameters
and models.

Pandas is a library that allows to you perform data manipulation and analysis in Python [141]. This
library facilitates data manipulation and operations for numerical tables and time series. Pandas
is built on top of NumPy.

R

R is a language and environment for statistical computing and graphics. GNU project is similar to
the S language and environment, developed at Bell Laboratories by John Chambers and colleagues.
R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests,
time-series analysis, classification or clustering) and graphical techniques and is highly extensible. R
can be extended via packages through the CRAN family of Internet sites covering multiple modern
statistics. The version used in this dissertation was and R 3.6.3 (http://www.r-project.org/)
[142].

Plink

PLINK is a free, open-source whole-genome association analysis toolset designed to perform a range
of fundamental large-scale analyses in a computationally efficient manner. The focus of PLINK is
purely on analysis of genotype/phenotype data such as study design and planning, generating
genotypes, or copy number variation calls from raw data. Through integration with gPLINK
and Haploview, there is some support for subsequent graphing, annotation and storage of results.
PLINK was developed by Shaun Purcell at the Center for Human Genetic Research, Massachusetts
General Hospital, and the Broad Institute of Harvard and MIT, with the support of others. The
versions used in this dissertation were 1.07, and 1.9 [143].

Perl

Practical Extraction and Reporting Language (Perl) is a general-purpose, high level interpreted and
dynamic programming language. Larry Wall developed it in 1987. The Perl is used widely for text

http://www.r-project.org/
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processing, like extracting the required information from a specified text file and converting the
text file into a different form. Perl supports both procedural and Object-Oriented programming.
The versions used in this dissertation were Perl [144].

2.7.1 Data and code availability

All data, code and results obtained in this study are available for download at the GitHub repository
https://git.soton.ac.uk/nvlg1e15/thesis_navlg.

https://git.soton.ac.uk/nvlg1e15/thesis_navlg




Chapter 3

Highly variable intensity of linkage
disequilibrium in exonic, intronic and
intergenic regions reflecting
recombination and selection on fine
scales

3.1 Introduction

Patterns of Linkage disequilibrium (LD) reflect the combined impacts of recombination, natural
selection, genetic drift and mutation. The analysis of high-resolution of LD structure provides
essential insights into human evolutionary history, the nature of recombination, and disease gene
mapping [105, 145]. In addition, fine-scale LD analysis has improved the understanding of popula-
tion structure and migration, biological mechanisms such as the nature of recombination hotspots,
mutation and selection and the identification of sequence determinants that promote recombination
[146, 43].

The majority of LD analyses have focused on the mapping of numerous common disease genes by
developing arrays of ‘tag’ single nucleotide polymorphisms (SNPs). However, the cost-effectiveness
and high sequence quality of whole-genome sequencing (WGS) have made it feasible to investigate
the properties of genomes at high resolution. For example, Pengelly et al. [50] proved that LD
maps from WGS produce up to 2.8-fold more regions of intense LD breakdown (which align with
recombination hotspots) compared to array-based tag genotypes, which miss valuable information.

Developing LD maps at the gene and sub-genre levels may characterise the recombination rate,
which may contribute to predict the degree of LD and target marker densities for genomic se-
lection. Furthermore, improving the prioritisation of candidates genes and variants depends on

33
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understanding the interplay between recombination and selection processes at genic and subgenic
level [51, 53].

The construction of LD maps is based on the Malécot-Morton model [103, 104, 49]. This equation
combines pairwise association data between SNPs to quantify the decline of LD across SNP intervals.
LD map distances are additive and are analogous to the linkage map centimorgan (cM) scale, but
expressed in linkage disequilibrium units (LDUs) where one LDU is the physical distance along the
chromosome over which LD declines to ‘background’ levels (generated by genetic drift). Plots of
the LDU scale compared to the physical kilobase (kb) maps show ‘steps’ where LD breaks down
over narrow sequence intervals (often aligning with recombination hotspots) and ‘plateaus’ where
LD is strong in regions which align with ‘blocks’ of low haplotype diversity [147].

Earlier construction of genome-wide LD maps using this approach for array-based data [106, 49],
considering HapMap phase II [148], indicated that the CEU genome has 57,819 LDUs. The genome
sequence spans ∼3,100,000 kb,1 showing a average genome extent of LD (kb/LDU) of ∼54 kb.
Nevertheless, this approach has lower resolution than WGS [50]. Therefore, improving the map
resolution from WGS yields the analysis of the LD structure at sub-genre levels such as gene exonic
and intronic sequences.

Previous analyses have estimated the intensity of LD along and within genes. These estimates
found that recombination rates tend to be higher in intergenic regions close to genes compared
with genic areas, implying that LD is likely to be stronger within genes [54]. Eberle et al. [55]
observed that the extent of LD mostly increases in genic regions as compared to intergenic regions.
This finding could not be explained purely by differences in the recombination rates, suggesting
increased selection in genic regions. Their analyses also indicated that fewer than ∼3% (600) genes
contribute to the observed excess LD in genic regions.

Recently, the recombination map at a fine-scale – 10 kb of resolution – has been analysed by
estimating 10 kb bins classified as genic, intergenic, or at gene boundaries [56]. The authors found
that the recombination rates are reduced in genic versus intergenic regions along with some sex-
specific differences. Moreover, lower recombination rates were detected in bins having only exons.
Additionally, intergenic regions close to genes have a lower recombination rate to the 5′ ends of
genes than the 3′ ends.

Berger et al. [57] observed approximately 13.6% more LD in genic regions of the genome than in
non-genic regions in their study based on array-based genotyping (684,990 SNPs). However, their
results could have a bias in the average extent of LD because they do not correct for chromo-
some size dependence; therefore, these results may indicate higher recombination rates of smaller
chromosomes [49].

In the present study, this chapter aims to estimate LD maps of the autosomal genome at a fine-
scale based on WGS data from individuals in the Wellderly study [149]. To this end, LD patterns
were computed at high-resolution sub-gene levels such as exons, introns and non-coding ribonucleic

1http://www.ensembl.org/Homo_sapiens/Location/Genome

http://www.ensembl.org/Homo_sapiens/Location/Genome
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acids (RNAs). LDU maps will be created using LDMAP in-house software. These estimates
use information from the reference human genome build hg19/GRCh37 from the UCSC Genome
Browser [150]. The UCSC Genome Browser files information specifying the locations of these
features. The underlying objective is to augment the much-increased resolution of LD structure,
which enables analysis of the LD structure on a very fine scale at the level of individual gene exons,
contributing novel understanding of the impact of recombination and selection on genome structure
and function.

3.2 Methods

3.2.1 Sample used

The data analysed consist of ∼60 million SNPs genotyped for chromosomes 1–22. Genomic data
from the Wellderly study has been made freely available to the scientific community by Erikson et
al. [149] from the Scripps Wellderly Genome Resource.2 The WGS genotype data are from 597
unrelated individuals. The Wellderly sample is characterised by individuals aged 80 to 105 without
chronic diseases and who are not taking any long-term medications. The Wellderly cohort has been
collected over the course of eight years.

The demographic characteristics of this cohort are shown in Table 3.1. The majority of the healthy
ageing cohort were enrolled between 80 and 85 with similar overall age distributions for females
and males. The Wellderly individuals contain a low but significantly elevated rate of male smokers,
and more than half of the total population do regular exercise.

The data was downloaded in tab-separated values (TSV) format. The file was converted using a
custom script of Complete Genomics ‘Small-Variant-Table’ multi-individual files to VCF.

Table 3.1: Wellderly cohort data

Characteristic Wellderly Cohort

Average age years 84.2 (±9.3)
male 39.3% (±1.3%)

Gender
female 60.7% (±1.3%)

male 76.2 (±21.3)Average weight

(kg) female 59.9 (±20.4)
male 61% (±2.6%)

Ever smoked
female 42% (±2.6%)

Exercise - 66.8% (±2.5%)
The 95% confidence interval is in parentheses. Taken from
Erikson et al., (2016).

2https://www.scripps.org/news_items/4757-scripps-wellderly-genome-resource-now-available-to-researchers.

https://www.scripps.org/news_items/4757-scripps-wellderly-genome-resource-now-available-to-researchers
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3.2.2 Single nucleotide polymorphism processing

The Wellderly genomes were filtered to retain only 454 individuals of self-reported European ethnic-
ity who were unrelated. Quality control (QC) metrics were applied to the Wellderly data to identify
poorly genotyped SNPs. QC at this stage led to removing 7,238,157 SNPs from the analysis ow-
ing to poor genotyping quality (see Table 3.2). In order to avoid differences in deoxyribonucleic
acid (DNA) quality and bias towards one genotype per sample, further QC was carried out as part
of this study to remove an additional ∼15 million SNPs, which were genotyped in fewer than 95%
of the samples, with no individuals having more than 5% of SNPs missing.

Following Pengelly et al. [50] and Purcell et al. [143], SNPs with 5% missing genotyping and
variants that deviated significantly from Hardy-Weinberg equilibrium (HWE) (χ2, P <0.001) were
excluded. Since rare SNPs are uninformative for LD, previous studies have demonstrated that
including these variants with low minor allele frequency (MAF) can bias LD estimates [151, 152].
The impact of excluding SNPs with MAF frequency cut-offs of <0.05 and also <0.01 were evaluated
on chromosome 22 as an example Figure 3.4. The close similarity between <0.01 and <0.05 MAF
cut-off were observed, but using a <0.01 MAF cut-off produces a 3.4% longer map and retains many
more SNPs (103,367, compared to 70,579 SNPs retained using the MAF <0.05 cut-off). Therefore,
all SNPs with a MAF of <0.01 were used for all subsequent work, which may help better resolve LD
structure in genomic regions with higher recombination rates. Outcomes of the HWE and MAF
screening are given in the results per chromosome. The heterozygosity rates were computed to
identify sex, taking into account the frequency threshold of less than 20% for females. However, the
X chromosome was not included in the subsequent analysis due to a more significant proportion
of SNPs being lost on this chromosome; almost half of SNPs in both female and male failed >5%
missing genotyping. Therefore, only autosomal chromosomes were used in all subsequent analyses.

Table 3.2: Quality filtering

Variant Filtration SNPs

Raw data 59,818,579

SNPs with minor allele threshold (<0.01) 37,376,474

SNPs with missing genotype data (>0.05) 15,170,966

SNPs failing Hardy-Weinberg exact test (<0.001) 32,982

Variants after filtration 7,238,157

Genotype data were filtered out using PLINK version 1.07 [143] and VCFtools version 0.1.15 [153].
Samples were processed on IRIDIS 4, the University Southampton cluster, and required 16 proces-
sors nodes per chromosome.
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3.2.3 Linkage Disequilibrium map construction

Prior to LD map construction, quality control data had been determined with sufficient numbers
of individuals and SNPs. The next step was to compute LDU maps on autosomal chromosomes 1–
22 by the LDMAP programme available at http://soton.ac.uk/genomicinformatics/research/
ld.page/. LD maps based on the Malécot-Morton model combine pairwise association data between
SNPs to quantify the variable rate of decline of LD with distance across SNP intervals. LD patterns
are represented in the form of a metric map with additive LDUs distances. LDUs are analogous to
cM,3 reflecting accumulated recombination over generations. The LDU scale is comparable to the
cM [103, 104].

Maps are expressed by LDU ratio length to the linkage map in Morgans showing the impact of
the dominant process of recombination and its duration, genetic drift, selection, mutation, gene
conversion and the partly cumulative effects due to demographic events (the effective bottleneck
time) between populations [106]. Thus, the ratio of the LDUs estimates the number of generations
over which recombination has driven the decay of LD along with the impact of other factors such
as selection and systematic errors in estimating interface in the linkage map [37].

One LDU represents the distance in kb between loci on the chromosome over which LD declines
to background levels [103, 105]. These units are constructed by estimating the decline of associa-
tion between SNP markers. This LDU distance between SNPs represents the product of a small
frequency of recombination θ and the effective number of generations t over which recombination
has accumulated after one or more population bottlenecks.

The LDMAP algorithm implements a sequential program built from the Malécot equation. It
analyses pairwise measures of association through a Newton-Raphson iterative process. The Malécot
equation estimates LD map distances from SNP data in LDUs whilst an iterative process examines
the convergence of composite −2 ln (likelihood) for combining pairwise SNP data at every interval.
This model is defined as:

ρ = (1− L)Me
∑
diεi + L, (3.1)

where ρ is the probability of association between SNPs, the asymptote L accounts for the bias
introduced by residual association at large distance, and M is the maximal association at zero
distance. Here, a value ofM ∼ 1 means monophyletic inheritance (allele arising a single haplotype)
and M < 1 means polyphyletic inheritance. di represents the physical distance (kb) between SNPi
and SNPi + 1,b and εi at the ith interval denotes the exponential decline of the LD in kb.

The LDU distances are estimated for every interval between adjacent SNPs. The LDU map distance
is then a product of εi and di at the ith interval. Thus the cumulative LDU for the whole map∑n

i=1 εidi is the sum of SNP intervals. The Malécot equation combines the multiple informative
3A centimorgan is a unit of genetic distance. Two loci are one cM apart if there is a 1% chance of recombination

between two markers in a given meiotic event.

http://soton.ac.uk/genomicinformatics/research/ld.page/
http://soton.ac.uk/genomicinformatics/research/ld.page/
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SNP pairwise data to estimate the association ρ. The predicted association between SNPs and ρ̂ is
fitted using composite likelihood:

lk = e−Λ/2 , (3.2)

where
Λ =

∑
Kρ(ρ̂− ρ)2. (3.3)

In this way, each SNP interval uses a sliding window that weights association data from all SNP
pairs in the region that includes the interval of interest. These measures are combined by weighting
them according to their information (Krho) so that interval 1–2 is given the biggest weight and
1–5 the smallest weight.The corresponding LDU distance for the interval is

∑
i εidi = 1, where di

is the physical distance in the ith interval and εi is a Malécot parameter whose LDU distances are
additive to form a map contour. However, LDU maps may include a small proportion of holes; that
is, intervals with indeterminate values of εi. For those intervals, the maximum value assigned by
default is 3 LDU [41].

To construct the LDU maps with the LDMAP programme, it was necessary to create an interme-
diate file. PLINK [143] was used to transform the pre-filtered VCF files into flat files (MAP/PED
format). These files were converted into LDMAP input format (TPED format) for each chro-
mosome. Subsequently, the new TPED files were split into overlapping subfiles to allow parallel
processing. Having produced the intermediate data, the Malécot model was used to estimate values
of εi for the whole genome.

At this stage, to enhance computational feasibility, optimise time and parallel processing, and
minimise information loss at the ends of each segment, the genotype data was split into ∼25,000
SNPs segments, adding a 200-marker overlap at the ends of each segment. These segments had 25
markers trimmed off at the end of the LD maps segments and were then joined to complete the
entire chromosome for assembled annotation. Map segments were submitted and constructed as
individual jobs on the computer cluster. The simultaneous submission of all segments accomplishes
the parallel processing. Plots of the LDU scale compare to the physical maps (kb) represent the
weak LD as a ‘step’ interval (often aligning with recombination hotspots) and the strong LD as a
‘plateaus’ region (often aligning with ‘blocks’ of low haplotype diversity) [49].
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3.2.4 SNP annotation and characterisation of gene-specific maps

The extent, or intensity, of LD computed as kb/LDU for all genes were obtained. The bound-
aries of the gene, exon, intron, intergenic and non-coding RNA regions were identified using the
UCSC Genome Browser files available at https://genome.ucsc.edu/ based on the reference hu-
man genome build GRCh37 (UCSC name: hg19) released by the Genome Consortium in 2012 [150].
Since chromosome coordinates and context change depending on the completeness of sequences, it is
essential to select the appropriate release consistently in the case of sample comparison. Obtaining
the boundaries of these features into analogous locations on the LDU map, two algorithms were
developed for: 1) Interpolating LDU locations and 2) Merging gene names.

The first algorithm computes the location (beginning and ending) of gene transcripts both on
physical maps in kb characterised by a physical map of the reference human genome build on
hg19/GRCh37 and LDU maps from the Malécot equation. Then, custom Python scripts were used
for linear interpolation to convert the sequence positions of the boundary genes into corresponding
locations on the LDU map. The left and right boundaries from the genomic intervals (starting and
ending locations of the genes) along the physical map in kb were located for the whole genome. Once
both positions were found, the LDU position was re-calculated employing a linear interpolation to
have the real and accurate positions of the gene in the LDU maps. The resultant database contains
the sequence positions of the boundaries of these genes in LDU and kb map locations. Although
the LDU maps are not linear, the use of linear interpolation for analysis of high-resolution maps is
justified over short distances.

The second algorithm computes a function to match the physical map in kb in the genomic interval
based on the reference human genome build hg19/GRCh37 from UCSC Genome Browser, thus
providing the boundaries of the new LDU location and the approved gene names for autosomal
genes. Another custom Python script was developed to match the approved gene names using the
NCBI Refseq gene definitions [154]. After matching to the approved names, the complete set of
interval locations produced a map comprising 18,268 autosomal genes in the kb, LDU map and the
extent of the LDU/kb gene. The canonical transcript was used for each gene.

3.2.5 LDU map analysis

Genic and intergenic regions were obtained applying the methodology of Berger et al. [57]. This
method indicates that all genes that overlap with other genes are merged into smaller genic re-
gions. Intergenic regions were taken as any areas flanked without overlapping by genic regions (see
Figure 3.1). A custom Python script was run for all overlapping intervals merged in genic and
intergenic regions. The total number of resulting intervals was 16,742. For calculations of these
intervals, the script applies a binary search algorithm based on O(log(n)). The idea is that, in a
sorted array of intervals, if interval [i] does not overlap with interval [i − 1], then interval [i + 1]

cannot overlap within interval [i − 1] because the starting time of interval [i + 1] must be greater
than or equal to interval [i].

https://genome.ucsc.edu/
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Figure 3.1: The general process of the integration sites between genic and intergenic regions. All genes
which overlap with other genes were merged into smaller number of genic regions. Intergenic regions were
taken as any areas situated next to but not overlapped by genic regions.

The LD maps should be estimated under the assumption that the number of generations over
which recombination has accumulated is constant between chromosomal arms and their deciles.
Moreover, the exclusion of heterochromatic regions from acrocentric chromosome p-arms was not
included in the construction of LDU maps. To avoid bias due to the different properties of intergenic
regions, all centromeric intervals between the last gene on chromosome p-arms and the first gene
on chromosome q-arms of non-acrocentric chromosomes were omitted for subsequent analyses (see
Figure 3.2).

Exon and intron boundaries were identified as genic and intergenic regions. Intronic regions were
defined as the difference between exon base pairs. Data for the exons and introns were then
partitioned into those transcribed on either positive or negative strands, genes in the 5′ to 3′

direction. The exon/intron analysis excluded the small number of exons, and introns involved in
producing transcribed products on both forward and reverse strands.

Following Kong et al., [56], the bins closest to the 5′ end of autosomal chromosomes were excluded.
The recombination into these bins is less reliable because introns have more extensive LD than
exons. Non-coding RNA (ncRNA) data were also clustered if overlapping but were not distinguished
from other genomic features (such as our definition of intergenic regions). For all output data, we
removed the isoform repetition regions of DNA, taking the longest one. The extent of LD across
genes was analysed independently in exonic and intronic regions due to variable gene size. The
analysis consisted of dividing all genes into five bins oriented from 5′ to 3′, with equally sized bins
for each given exon and intron within a gene. The location of the mid-point in the sequence of
each exon and/or intron was used to sum the LDU and kb length of that exon or intron into the
respective bin, that is LDU (

∑18,268
n=1 LDUbin) and kb (

∑18,268
n=1 kbbin), and then the extent of LD

(kb/LDU) was added into each bin (see Figure 3.3). To examine the impact of highly variable size
LD extent profiles was constructed using the set of 18, 268 genes divided into two groups of 9, 134

genes, each corresponding to small genes of size < 23.5 kb and large genes of size > 23.5 kb.

Finally, the ratio kb/LDU was used to quantify the extent of LD in kilobases for any genomic
region.
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Figure 3.2: Chromosome Types. Acrocentric: centromere severely off-set from centre with shorter p-arm
(chromosomes 13–15, 21, 22). Submetacentric: centromere off-centre, leading to shorter p-arm compared
to q-arm (chromosomes 2, 4–12, 17, 18). Metacentric: centromere is in the middle, meaning p and q
arms are of comparable length (chromosomes 1, 3, 16, 19, 20). Black and grey indicate Giemsa positive
(GNEQ/GPOS). GPOS are classes containing progressively lighter staining G-positive bands, while GNEQ
class consists of the nonstaining G-negative light bands. GVAR in blue determinates heterochromatin part.
The yellow parts of the chromosomes (shown in the figure) were considered in constructing the LDU maps.

3.2.6 Variation in extent of LD for different gene groups

To examine the extent of LD and the relationship to gene essentiality and disease, the extent of LD
at gene level was matched to one of the five gene groups defined by Spataro et al. [52]. Around
fifteen thousand genes were matched, considering names and locations in both datasets. The gene
groups are defined as:

• Essential non-disease (END) genes, 1572 putatively essential genes defined as orthologues of
essential mouse genes detected by knock-out experiments and not involved in any human
disease.

• Non-disease non-essential (NDNE) genes, 13,135 genes not known to be involved in any human
disorder and not known to be essential.

• Complex non-Mendelian (CNM), 2388 genes uniquely associated with complex diseases.

• Complex-Mendelian (CM), 203 genes associated with both complex and Mendelian disorders.

• Mendelian non-complex (MNC), 684 genes uniquely causing Mendelian disease traits.
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Figure 3.3: LD intensity across all genes at exonic and intronic levels. The exonic and intronic regions
were analysed separately. All genes were divided into five bins oriented from 5′ to 3′, with equally sized
bins for each gene. The location of the mid-point in the sequence for each exon and/or intron was used to
add the LDU. Therefore, kb length of those exons/introns were located into the respective bin, and then
the extent of LD was calculated per bin.

3.2.7 Data and code

Quality control analyses were performed using Plink v1.90p 64-bit [143]. The LDU maps construc-
tion and analysis were conducted in Python version 3.7.3 (https://www.python.org/), awk and R
version 3.2.2 (https://www.r-project.org/) using custom-written scripts.

3.3 Results

3.3.1 SNP genotyping

SNP genotypes were obtained from WGS data from the Scripps Wellderly Genome Resource com-
prising 454 unrelated individuals of European ethnic origin from the Wellderly study [149]. Of the
∼60 million autosomal SNPs genotyped, ∼7.2 million (12.1%) remained after filtering, resulting in
more than 20 million pairwise comparisons. Of those SNPs excluded, ∼32 thousand SNPs were ex-
cluded for not being in HWE and a further ∼37 million were excluded with MAF<0.10. Lastly, ∼15
million SNPs with missing genotypes above 5% were removed. The number of SNPs per autosome
remaining after exclusions ranged from 103,367 to 610,013 and were closely related to chromosome
length, as shown in Table 3.3.

https://www.python.org/
https://www.r-project.org/
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Table 3.3: Quality filtering of SNPs

Chromosome Data1 MAF2 Geno3 HW4 Final Data5

1 4,805,958 3,061,059 1,178,848 2,990 563,061

2 5,183,336 3,288,369 1,283,087 1,867 610,013

3 4,391,564 2,745,126 1,131,916 1,080 513,442

4 4,573,833 2,720,842 1,340,110 3,764 509,117

5 4,019,742 2,488,929 1,065,794 1,192 463,827

6 3,849,523 2,357,732 1,010,552 5,047 476,192

7 3,531,207 2,158,659 952,271 1,504 418,773

8 3,265,054 2,068,305 791,981 913 403,855

9 2,488,441 1,558,292 614,896 749 314,504

10 2,781,879 1,766,058 643,533 1,694 370,594

11 2,900,610 1,794,783 749,409 1,008 355,410

12 2,933,769 1,827,370 756,805 736 348,858

13 2,291,013 1,375,766 650,705 542 264,000

14 1,974,646 1,231,611 499,922 1,213 241,900

15 1,659,110 1,079,433 369,162 1,377 209,138

16 1,711,170 1,109,285 367,433 3,313 231,139

17 1,664,107 1,093,372 372,093 1,433 197,209

18 1,659,986 1,044,868 405,232 258 209,628

19 1,376,672 850,610 359,134 1,391 165,537

20 1,219,655 804,629 246,453 285 168,288

21 817,191 488,733 227,798 355 100,305

22 720,113 462,643 153,832 271 103,367

Total 59,818,579 37,376,474 15,170,966 32,982 7,238,157
1 Raw data.
2 Variants removed due to minor allele threshold (<0.01).
3 Variants removed due to missing genotype data (>0.05).
4 Variants removed due to Hardy-Weinberg exact test (>0.001).
5 Number of valid variants which pass the filters and Quality Control.
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3.3.2 Whole chromosome LDU maps and comparison with linkage maps

The extent of LD in the maps was determined for genes and intergenic regions and also for exons
and introns within genes using the UCSC Genome Browser files (hg19/GRCh37). LD maps were
constructed based on the Malécot mode explained in Chapter 2 for autosomal chromosomes 1–
22. Each SNP has an LD location, and the distance between adjacent SNPs in the LD map was
constrained to a maximum of 3 LDU. Following Tapper et al. [49], the intervals called holes were
removed. Nine intervals holes were detected between adjacent markers where the upper limit on ε
(set at εidi= 3) was requested because LD is unlikely for εidi >3 and of unreliable for εidi >2. This
implies that the LD map can be used to determine the local density of SNPs and that increased
density within these holes is required to refine LDU map length.

Subsequent, the boundaries of these features were calculated to convert the sequence positions of
these boundaries into corresponding locations on the LDU map. As a result, LDU locations were
matched with approved gene names for 18,268 autosomal genes. The final LD map of the autosomes
has ∼63,428 LDUs. The completed LDU maps of chromosomes 1–22 contain 7,162,973 SNPs
spanning 2,791,110 kb, indicating a density of one SNP for every ∼400 base pairs (see Table 3.4).

Descriptive analysis of the LD maps showed that chromosome 21 has the smallest LDU length
(∼1,110 LDUs) and 99,550 SNPs representing 1.39% of the DNA total. The largest LDU length is
for chromosome 2 (557,873 LDUs) with ∼5.9 million SNPs, 8.3% of the DNA.

LDU/cM ratios were computed, and it was observed the effective number of generations over LD
has declined consistently with the extent of LD to date. Following Zhang et al. [106], the effective
population bottleneck time was estimated based on 63,428 LDUs for an autosomal euchromatic
genome spanning 34.36 Morgans = 1,846 generations or 46,150 years since an effective bottleneck,
assuming 25 years per generation. The ‘swept radius’, 4 for European population is 54.16 kb
[(3,435.71 × 1,000)/63,427.68 = number of kb per LDU, where 1 LDU is the average extent of LD,
see Table 3.4)].

Since rare SNPs are uninformative for LD, we evaluated the impact of excluding SNPs with alter-
native MAF of >0.01 and >0.05 on chromosome 22 as an example. The LD maps were very similar
but using a >0.01 MAF cut-off produced a 3.4% longer map, as shown in Figure 3.4. The inclusion
of many more SNPs in the analysis by excluding rarer SNPs (using a MAF >0.01 cut-off retains
103,367 SNPs, compared to 70,579 SNPs retained using the MAF >0.05 cut-off). Consequently, it
was decided that MAF >0.01 would be applied to all SNPs for consecutive analyses.

There is a high correspondence between the linkage map in Morgans and LDUmaps for all autosomal
chromosomes (see Figure 3.5). The linear regression analysis showed that linkage maps explain
∼99% of variation in the LDU map for all chromosomes. The regression coefficient shows that the
size of each chromosome map tends to be 1, 784 times longer compared to the smallest chromosome
in centimorgans. R2 = 0.985 for all chromosomes also shows highly high correspondence, showing

4the swept radius estimates the distance in kb at which LD declines to e1 ∼ 0.37 of its initial value [155].
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that recombination dominates patterns of LD. These values are calculated as the average of the
results for each chromosome, and the values are consistent across these chromosomes. A ratio of
LDU weighted by centimorgans also can give the effective bottleneck time in generations.
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Table 3.4: Characteristics of whole chromosome maps

Chromosome Chromosome start location (kb) Chromosome end location (kb) Chromosome (kb) coverage* Chromosome LDU length Number of SNPs Chromosome length (cM)** LDU/cM

1 69.51 249,222.53 249,153.02 5,078.92 557,873 270.27 18.79

2 11.94 239,856.97 239,845.03 4,736.82 593,868 257.48 18.4

3 60.20 197,880.78 197,820.58 4,138.09 509,066 218.17 18.97

4 13.26 191,033.02 191,019.76 3,936.59 504,243 202.8 19.41

5 13.33 180,716.00 180,702.67 3,785.07 459,987 205.69 18.4

6 148.00 170,919.74 170,771.73 3,604.75 472,261 189.6 19.01

7 21.95 159,127.02 159,105.07 3,460.39 415,335 179.34 19.3

8 161.47 146,296.84 146,135.37 3,101.18 400,025 158.94 19.51

9 62.10 141,102.87 141,040.77 2,953.02 311,320 157.73 18.72

10 92.19 135,506.38 135,414.19 3,140.77 367,619 176.01 17.84

11 189.67 134,945.77 134,756.10 2,943.56 351,378 152.45 19.31

12 83.15 133,838.99 133,755.84 2,990.16 345,765 171.09 17.48

13 19,168.01 115,108.80 95,940.79 2,309.50 261,818 128.6 17.96

14 19,050.28 107,288.38 88,238.10 2,158.42 239,704 118.49 18.22

15 20,010.01 102,486.12 82,476.10 2,151.48 207,177 128.76 16.71

16 83.89 90,180.71 90,096.83 2,562.56 229,203 128.86 19.89

17 0.83 81,153.78 81,152.95 2,287.03 195,607 135.04 16.94

18 11.28 78,015.56 78,004.28 2,079.02 208,014 120.59 17.24

19 94.62 59,097.93 59,003.31 1,869.27 163,978 109.73 17.04

20 61.1 62,964.27 62,903.17 1,846.33 166,816 98.35 18.77

21 9,495.96 48,100.71 38,604.75 1,110.60 99,550 61.86 17.95

22 16,054.80 51,223.99 35,169.19 1,184.17 102,366 65.86 17.98

Totals/Chromosome mean - - 2,791,109.60 63,427.68 7,162,973 3,435.71 18.36

*Table includes all heterochromatic and centromeric regions except acrocentric p-arms, which were not sequenced.
**Kong et al., (2010) [56].
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Figure 3.4: LDU maps for chromosome 22 at different MAF cut-offs. Excluding SNPs with MAF < 0.01
(red) includes many more markers but produces only a modest increase in map length compared to the
cut-off at MAF < 0.05.

Figure 3.5: The genetic length in cM of the autosomal chromosomes (numbered), compared to LD length
(LDUs), showing the close relationship between current and historical patterns of recombination.
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3.3.3 Extent of LD in kb (kb/LDU) for genome regions

The total number of genic regions was 16,742, compared to 16,720 intergenic regions (see Appendix
B Table B.1). Analyses were carried out for each genome region separately. The results showed
(Table 3.5) that SNPs in genic region (introns and exons combined) make up ∼40% of the sequence,
while this number is higher in intergenic regions ∼55%. The genetically inactive satellite DNA
sequences regions enclose ∼4.3%. Moreover, ∼2.35% corresponds to the coding part of the genome,
whilst intronic regions constitute 37.23% of the sequence (see Appendix B Table B.2 for additional
details of whole chromosomes). The proportional distribution across the genome regions are shown
in Table 3.6. Comparable LDU lengths are ∼38, ∼61 and ∼0.32% the greatly reduced LDU lengths
in centromeric regions reflecting deeply suppressed recombination and therefore particularly strong
LD. These extreme differences could be because the centromere is smaller in genic than intergenic
regions (see Appendix B Table B.3 for more detail across chromosomes).

Table 3.5: Physical size of genome regions (kb)

Chromosomes Total % coverage

Whole chromosomes 2,791,109.60 -

Genic regions 1,121,267.26 40.17

Gene exons 65,524.61 2.35

Gene introns 1,039,236.88 37.23

Non-coding RNAs 334,132.38 11.97

Intergenic regions 1,541,437.90 55.23

Centromeric heterochromatin 120,967.95 4.33

*All calculations include centromeric regions.

Table 3.6: LDU size of genome regions

Chromosomes Total % coverage

Whole chromosomes 63,427.68 -

Genic regions 24,297.76 38.31

Gene exons 1,413.55 2.23

Gene introns 22,537.79 35.53

Non-coding RNAs 6,899.19 10.88

Intergenic regions 38,725.67 61.05

Centromeric heterochromatin 203.77 0.32

*All calculations include centromeric regions.

The extent of LD in kb (kb/LDU) showed similar averages between genome regions. However, the
extent of LD in kb (kb/LDU) on centromeric regions (∼858.29 kb) is remarkably different from
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the whole chromosome average (∼42 kb), as shown in Table 3.7; for example kb has a range of
139.52 kb in chromosome 19 to 3,773.83 kb in chromosome 1 (see Appendix B, Table B.4). A slight
difference in the average extent of LD of ∼44.5 kb in genic regions was observed compared to ∼37.8
kb for intergenic regions. LD being about ∼16% more in genic regions compared to intergenic re-
gions presumably reflects relatively reduced recombination and/or increased selection across genic
regions (see Table 3.7).

Table 3.7: Extent of LD in kb (kb/LDU) for genome regions

Chromosomes Mean Standard deviation

*Whole chromosomes 42.03 6.40

Genic regions 44.54 7.23

Gene exons 46.39 8.20

Gene introns 44.49 7.42

Non-coding RNAs 46.52 7.61

**Intergenic regions 37.78 6.81

Centromeric regions 858.29 -

Gene exons + Non-coding RNAs 46.34 7.29

*Includes centromeric regions.
** Excludes centromeric regions.

The discrepancies in LDU lengths between exonic and intronic regions were analysed for individual
gene exons and introns for all 18,268 genes, ignoring overlaps. For the extent of LD in exon and
intron regions, a non-significant difference of ∼4% with p = 0.078 (paired t-test, 21 degrees of
freedom; see Table 3.8) was observed. The results in Table 3.8 show that the extent of LD is
longer in the exonic and intronic regions than in the intergenic regions, and the difference is highly
significant (p<0.001). Non-coding RNA (ncRNA) regions comprise ∼11% of the DNA sequence,
and the extent of LD across these regions is not significantly different from exons. LD is ∼4.5%
more extensive than in intronic regions and ∼21% more extensive than in intergenic regions.

Table 3.8: Comparisions of extent of LD in kb

Variable1 (V1) Variable 2 (V2) Chromosome mean V1 (kb) Chromosome mean V2 (kb) Diff (kb)/ % difference P (paired t-test, df=21)

Genic regions Intergenic regions 44.54 37.78 6.76 / 16.40 <0.001

Exons Introns 46.39 44.49 1.89 / 4.20 0.078

Exons Non-coding RNAs 46.39 46.52 0.13 / 0.30 0.469

Exons Intergenic regions 46.39 37.78 8.61 / 20.50 <0.001

Introns Non-coding RNAs 44.49 46.52 2.02 / 4.50 0.005

Introns Intergenic regions 44.49 37.78 6.71 / 16.30 <0.001

Non-coding RNAs Intergenic regions 46.52 37.78 8.74 / 20.70 <0.001

*Pairwise comparison of length of LD in different genome regions in kb.
**P-value for differences in length of LD across all autosomal chromosomes.
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The strong relationship between the extent of LD and chromosome recombination rate (see Fig-
ure 3.6) exceeds effects due to selection and mutation. This relationship shows elevated recom-
bination rates across the smaller chromosomes (e.g., cM/Megabases (Mb)) displaying a markedly
reduced extent of LD for these chromosomes. Intergenic regions show a significantly shorter extent
of LD, intronic regions occupying an intermediate position. The observed patterns indicate elevated
selection and/or reduced recombination in functionally sensitive genome regions. The similar pat-
terns of strong LD observed for exonic and non-coding RNA (ncRNA) regions indicate increased
positive selection, which might align with evidence for the functional significance of ncRNA regions.
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Figure 3.6: There is a strong linear relationship between chromosome genetic length and the extent of LD
because smaller chromosomes have a higher rate of recombination per unit of physical length. Intergenic
regions show a significantly reduced extent of LD, intronic regions occupying an intermediate position
between exonic and ncRNA regions show the most extensive LD.The observed patterns indicate elevated
selection and/or reduced recombination in functionally sensitive genome regions.



Chapter 3 Highly variable linkage disequilibrium reflecting recombination and selection 51

3.3.4 Variable extent of LD across gene endings from 5′ to 3′

Figure 3.7 summarises the relationships between the extent of LD in the exonic regions compared
to intronic regions. For all bins except bin one, which is closest to the 5′ end of genes, introns have
more extensive LD than exons. These results suggest that bins containing the first intron have
higher recombination rates than the last intron or the first and last exons. For example, exons
within the more central regions reflect high LD extending to ∼52 kb for bin 2 with a decrease in
extent of LD towards the 3′ end. Introns show more uniform LD distribution across the gene, with
a slight decrease in extent towards the 3′ end.
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Figure 3.7: The profile of LD across all genes combined with LDU and kb data allocated to one of five
(equally sized within a gene) positional bins. Exonic data shown in blue, intronic in red. The extent of
LD is most variable for exonic regions: LD is less extensive, suggesting relatively increased recombination
and/or reduced selection towards the 5′ end of genes.

Considering genes stratified into small and large size groups (see supplementary Figure 3.8), there
was no significant difference in the extent of LD between exons and introns of small genes but
increased evidence for a difference in some bins for larger genes. LD also extends further generally
for large genes in both exonic and intronic regions compared with small genes. While larger genes
may be subject to elevated selective pressure since they have a higher density of exons corresponding
to multiple linked sites further studies are required to interpret this difference [156] fully.
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Figure 3.8: The profile showing extent of LD after allocating exon and intron mid-points to one of five
regions 5’ to 3’ shows relatively elevated extent of LD fo exons, particularly in the second region. The
sub-set of larger genes accounts for most of the difference.

3.3.5 Variable extent of LD across gene groups

END genes show significantly more extensive LD (53.9 kb) compared with genes implicated in
complex phenotypes (CNM and CM groups, 40.9 and 35.2, respectively). However, the slight
increase in extent of LD relative to MNC is not significant. Increased selective pressure in both
END and MNC gene groups, relative to genes involved in complex phenotypes where variants have
reduced phenotypic effect, might account for this difference. The large group of genes classed as
NDNE also show extensive LD, although the extent to which some genes in this group are miss-
classified because relationships with disease phenotypes and essentiality are not yet known is unclear
(see Figure 3.9).
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Figure 3.9: Groups of genes classified according to essentiality and relationship to disease phenotypes show
wide variability in the extent of LD. Genes classed as essential (END) and Mendelian disease genes (MNC)
show an elevated extent of LD compared with genes with variation related to complex disease phenotypes
(CNM, CM). This might reflect elevated selective pressure within genes assigned to the Mendelian and
essential groups. The large group of genes not known to be associated with disease and not known to be
essential (NDNE) also show extensive LD, but this group is likely to include some miss-classified genes not
currently identified as essential or disease-related. The 95% confidence intervals are shown.
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3.4 Discussion

LD high-resolution maps from WGS were constructed in the present study showing estimates com-
parable to those from SNP array-based maps. The results of map length and the effective bottleneck
are consistent with previous estimations. For example, Tapper et al. [49] estimated an effective
bottleneck of 43,325 years which is comparable to ∼46,000 years in this study from the European
population. This finding implies shorter LDU maps and more extensive LD.

The extent of LD over centromeres, as previously noted but not directly quantified, suggests that
LD extends one megabase on average in these regions. These high-resolution patterns prove that
the differences in fine-scale LD structure are detectable down to at least exon level, despite exons
encompassing only 2% of the autosomal genome span of exons is ∼2% with an average exon size of
just ∼300 base pairs. This resolution pattern is similar to the estimated pattern of Kong et al. [56].
They argue that a resolution down to 10 kb is effective for observing recombination patterns across
a linkage map. Another related study to our results reported herein observed that the average of the
extent of LD up to ∼42 kb can be detectable across autosomal chromosomes based on incompletely
saturated maps from ‘tag’ SNP array data [49, 148].

Since the size of the chromosomes is a strong determinant of genome-wide recombination rates,
substantial differences in the maps are presented here, indicating a significantly increased recom-
bination rate of smaller chromosomes. In contrast, Berger et al. [57] did not show less extensive
LD on the smaller chromosomes compare with larger chromosomes. For example, the LD extends
an average ∼30 kb on chromosome 22 compared to ∼50 kb on chromosome 1. Similarly, Kong et
al. [157] computed the recombination rate of chromosome 22 to be ∼2.1 cM/Mb compared to ∼1.1
for chromosome 1, and confirmed the close alignment between the extent of LD and recombination
rate. However, it is worth noting that, among other differences between the two studies, Berger et
al. [57] used the r2 metric to define pairwise LD.

The LD extent in genic regions is ∼16% greater than in intergenic regions. This result has a similar
magnitude to that observed for the extent of LD shown by Berger et al. [57]. The authors found
that genic regions are 13.6% higher than the intergenic region. Moreover, they have explained that
genic regions are more conserved than non-genic and the higher haplotype diversity in non-genic
regions may indicate that recombination has less effect on biological cycles or pathways. Thus, the
results suggest that the stronger association observed between genic and intergenic regions might
be a higher recombination rate in intergenic regions.

Haplotypes arising through recombination will have a more neutral impact on fitness and therefore
reduced selection. Thus, regions with suppressed recombination are enriched to contain highly
conserved genes with essential cellular functions showing an excess of mutations [62]. Similarly,
Gibson et al. [51] found, in the opposite direction, high LDU/kb genes for which high levels of
recombination might increase haplotype diversity in line with functions related to the immune
system and sensory perception (where high levels of haplotype variation might be adaptive).
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Nevertheless, regions or genes with low recombination rates have also been shown to have an excess
of damaging mutations, including higher proportions of rare (MAF <0.01) and non-synonymous
variants. This has a medical impact because recombination coldspot regions are more likely to hold
rare variants. For example, Hussin et al. [62] have demonstrated that between ∼40 and ∼400-fold
enrichment in disease-causing mutations have a higher recombination coldspot, which are more
efficiently eliminated by natural selection.

Similarly, McVean et al. [54] reported that regions with weak LD and higher recombination rates
tend to be impacted by selection, leading to a reduction in the accumulation of damaging variants.
The binding PRDM9 process seeks to fix the double-stranded breakthrough homologous recom-
bination. This process breaks away from essential genomic functional elements that may have a
protective role against potential mutagenic effects [46]. It has been shown that if the LD is more
extensive in exonic regions, then these regions reflect selection against recombination within exons,
which may imply that the recombination is mutagenic [158].

Empirical studies suggest that recombination rates influence positive or negative selection efficiency
in moderate or high recombination regions. Still, there is no strong empirical evidence for the
association between low recombination rates, which may permit the accumulation of damaging
variation, and high recombination, which increases the rate of mutation and the interaction within
the selection.

The analysis of LD profiles of genes enables an understanding of how recombination and selection
are related, contributing to the identification of genes that are more likely to contain disease-related
variation. Sun et al. [159] presented evidence to show how gene function is related to LD intensity,
suggesting that these structures are related to the evolutionary history of genes based on their
analysis of the LD structure of ‘high’ and ‘low’ LD genes.

Pengelly et al. [53] has demonstrated that elucidating LD structure at gene-specific level consists
of studying the interaction between genomic properties with their functional elements through
the identification of essential genes by observing intolerance to loss-of-function variants. Thus,
genes that tolerate variation may carry a high number of variants with weak LD, whereas genes
that are intolerant to variation will show a relative depletion, higher positive selection, reduced
recombination, and strong LD [160].

The patterns of LD on exon-intron variation were consistent with the findings of Zhu et al. [161],
which revealed that there is an ordinal reduction of length and divergence in both exons and introns
from a 5′ to 3′ position. The authors calculated the correlation between exon and intron ordinal
positions of 13 eukaryotic genomes and provided three main results: introns and exons being more
extended or more divergent may reflect a time-orderly evolution; there are common factors that
are likely to shape either exons or introns or both; and larger first and last exons may be splicing-
required. Heterogeneity in patterns of LD intensity across genes provides another dimension to
these analyses and are worth further investigation.
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Several studies have suggested that mutation and recombination have created massive haplotype
diversity in many species, including humans. These results imply that human-specific characteristics
evolved primarily due to positive selection in non-coding regions involved in the regulation of genes.
LD is 4.5% and 20.7% more extensive in ncRNA regions than in intronic and intergenic sequences
respectively. It has been demonstrated that non-coding regions under selection are pervasively
transcribed in critical regulatory mechanisms.

The ncRNA is implicated in chromosome conformation, regulation of enzymatic activity, coordi-
nation of cell state, differentiation, development, and disease, whereas selection acting on protein-
coding regions is associated with immunity olfaction [162]. Furthermore, patterns of LD along
ncRNA species should be researched further as it might indicate the relative functional importance
of the sub-types.

In conclusion, all the results have shown here demonstrate that the LD patterns may provide
distinguishable flags for understanding genome function at the sub-genic level, with conclusive
differences between LD patterns within fine-scale levels such as exons. Further analysis of the
LD structure at fine-scale in more sequence samples might contribute significant information to
discovering candidate disease-causing genes and their biological implications.





Chapter 4

Gene-level score evaluation of genome
function to predict disease genes through
supervised machine learning

4.1 Introduction

Discovering the basis of genetic diseases has provided unparalleled opportunities to gain insights
into the mechanisms linking genotype and phenotype to develop new diagnostics and therapeutics
and transform healthcare delivery. However, the genetic basis for the majority of cases remains
unsolved. Understanding the aetiology of Mendelian and complex disorders is far from complete
and they are often poorly understood due to phenotypic diversity and complexity of gene–disease
relationships [163, 52]. For example, the average diagnosis rate for monogenic diseases still remains
low, ranging between 25 and 50% [164]. As of September 2020, 4,318 genes underlying 6,723
Mendelian conditions have been discovered, but the genes underlying ∼40% (i.e., 2,405) of all the
known Mendelian phenotypes are still unknown, and many more Mendelian diseases have not yet
been recognised [19].

Genes implicated in disease may differ in their genomic characteristics depending on whether they
are associated with Mendelian or complex diseases. For example, genes that display allelic hetero-
geneity at their loci and low prevalence are more often implicated in Mendelian diseases [165]. In
contrast, most complex disorders have a higher prevalence, low penetrance and are often involved
in gene–environment interactions. Causal genes linked with both Mendelian and complex disorders
tend to be more functionally important and expression levels in protein interactions are higher
than the genes related exclusively to complex diseases. Moreover, genes that are implicated in both
types of disorder have more significant effects on the likelihood of developing disease in comparison
to those genes that are only correlated with the same complex disorders but not with Mendelian
conditions [52].

57
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In tackling this problem, it is necessary to understand disease aetiology and how genetic vari-
ation contributes to the phenotypes by incorporating gene-level information metrics. In recent
years, ranking metrics have been developed to predict the functional effects of potential variant
pathogenicity, based on the assumption that the genes that cause a particular disease have similar
functions or in similar biological pathways to each other [166, 167]. These metrics or scores are
frequently constructed from measures of genic intolerance of mutations using samples from the
general population [168].

Several studies have integrated gene-level metrics related to evolutionary and functional properties
to help recognise disease-causing variation. For example, Cacheiro et al. [169] proposed an approach
for disease gene discovery across the full spectrum of intolerance to loss of function (FUSIL) score.
They demonstrated that genes have different degrees of essentiality. Similarly, Spataro et al. [52]
identified five main groups measuring the degree of essentiality. The first group is made up of a larger
set of genes not currently known to be involved, neither essential nor associated with the disease;
Non-disease non-essential (NDNE). The second group comprises known Mendelian non-complex
(MNC) genes, the third and fourth ones contain Complex non-Mendelian (CNM) and Complex-
Mendelian (CM) genes, respectively. The final group consists of Essential non-disease (END) genes
that are not associated with NDNE genes or human disease (HD) genes. The systematic review of
Alyousfi et al. [167] considered the literature related to gene-specific metrics and their applicability
to improving the filtering of genome sequence data in order to identify disease genes.

Thus, this work aims to improve the recognition of genes likely to contain disease-related varia-
tion based on identifying gene-level metrics acting on human disease-causing genes. To this end,
a supervised machine learning (ML) classifier and Bayesian inference in Gaussian graphical mod-
els (BGGM) were implemented to discern which of these metrics may help to identify genes that
are potentially involved in Mendelian diseases. The gene-specific metrics related to evolutionary
and functional properties were selected following the review of Alyousfi et al. [167]. These metrics
described (i) essentiality and conservation (see Table 4.1), (ii) haploinsufficiency, (iii) genes under
selection, (iv) recombination, and (v) genomic and biological characteristics. Moreover, for predict-
ing gene diseases, the gene groups proposed by Spataro et al. [52] were used to categorise genes into
NDNE, CNM, CM, MNC and END.

4.1.1 Properties of essential and conserved genes

Essential and conserved genes encode proteins that are required for the foundation of life. Genes
at this level are enriched in fundamental biological processes, such as ribosomal ribonucleic acid
(rRNA) processing, translational initiation, messenger RNA (mRNA) splicing and deoxyribonucleic
acid (DNA) replication [170]. However, when essential genes include loss of function (LoF)1

variation, this compromises organism viability (lethal to the cell) or results in a profound loss of
fitness [171, 172]. Essential genes are more evolutionarily conserved, and therefore are subject to a

1Loss of function variants in genes are defined as those which impair or eliminate the function of the encoded
protein.



Chapter 4 Gene-level score evaluation to predict disease genes 59

more intense purifying (negative) selection than non-essential genes [173, 174]. Thus, the ‘degree’
of essentiality can be defined as a spectrum from essential to non-essential based upon the degree of
tolerance to LoF mutation [175, 53]. Measuring patterns of intolerance to LoF variation in human
genes might aid in recognition of the more essential genes, which might be associated with a wide
range of diseases [167, 176].

Current gene-level scores aim to predict disease-causing variation by considering genic intolerance
such as the loss intolerance probability (pLI) score obtained from the Genome Aggregation Database
[177] dataset. This measure describes the probability of a gene being LoF intolerant, taking into
account the frequency of synonymous variants. Another example of a ranking score is the residual
variation intolerance score (RVIS), which categorises genes by the probability of carrying more, or
less, functional genetic variation than expected compared to common functional variation [173, 166,
167]. Another score is the gene constraint de novo excess (DNE), which estimates the expected rate
of de novo mutation excess per gene and gene set by calibrating a model of de novo LoF mutation
[178].

A different method for measuring essentiality, given LoF variation, is the substitution intolerance
score (SIS). Genes that show high SIS scores are functionally constrained and are thus more likely
to contain pathogenic variation. In contrast, genes with low scores are highly tolerant of functional
changes in the protein [71]. These metrics measure whether a given gene is likely to be a candidate
for a specific genetic disease.

4.1.2 Properties of haploinsufficient genes

Haploinsufficiency (HI) describes a dominant phenotype caused by a heterozygous loss-of-function
mutation. HI genes have highly conserved sequences and greater gene expression during early
development, which leads to a sharp increase in tissue specificity [179]. Recent research suggests
that haploinsufficiency is more often found for essential than non-essential genes. HI is one of the
principal characteristics of Mendelian disease genes with a dominant inheritance pattern; therefore,
several methodologies have been generated for predicting haploinsufficiency. These incorporate
distinct biological properties by recognising LoF-tolerant genes, protein–protein interactions and
dominant and recessive diseases [180].

Khurana et al. [181] devised the gene position in networks (NET) score, which quantitatively es-
timates the global perturbation caused by deleterious mutations in each gene. The NET score
classifies functionally essential and LoF-tolerant genes to explain gene importance. Similarly, Stein-
berg et al. [182] proposed an unbiased HI score, the genome-wide haploinsufficiency (GHIS) score,
which replaces biological networks with co-expression networks. Huang et al. [183] provided another
important metric for predicting haploinsufficiency, which discriminates pathogenic and benign dele-
tions among healthy individuals. The HI score gives the probability of potential candidate genes
for causing dominant traits. McArthur et al. [184] calculated the recessive (REC) score, developed
to distinguish genes with LoF tolerance from genes associated with recessive diseases.
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4.1.3 Properties of genes under selection

The role of selection on patterns of genetic variation is termed positive selection if variants are
advantageous, so that beneficial alleles are selected for and thereby increase their prevalence in
the population. Negative selection, on the other hand, acts to remove deleterious alleles and thus
reduce their frequency [52, 53]. However, deleterious alleles may not be entirely removed due to
a balance between selection and mutation rates. This balance can be altered by alleles showing
dominant/recessive properties and genetic drift. Models of the interactions between these forces
have produced several tests for natural selection [185]. There are, therefore, some approaches to
recognising genes that are more strongly impacted by negative and/or positive selection. These
measurements might provide information on which genes are more likely to have variation that
could have damaging consequences.

One approach is termed the gene-level integrated metric of negative selection (GIMS) score, which
shows the selection intensity probability distribution in quantiles across the entire genome. Genes
in the lowest quantile are scored under negative selection. GIMS combines multiple comparative ge-
nomics, functional genomics, and population genetic metrics to estimate the enrichment of negative
selection for each gene [186].

Another score is the gene damage index (GDI), which predicts the mutational damage profile
accumulated by each protein-coding human gene in both monogenic disease patients and in the
general population. The GDI measures the combined influences of drift and selection. Genes with
high GDI tend to be under less intense purifying selective pressure. A low GDI score is associated
with highly conserved genes, reflecting essentiality [187].

4.1.4 Properties of genetic recombination

Homologous recombination is a fundamental biological process that might help to identify poten-
tially disease-associated variants along the whole genome. Recombination is the exchange of genetic
information between paired homologous chromosomes through the process of meiosis, which breaks
up chromosome segments, increasing haplotype diversity [53, 42]. In the absence of recombination,
deleterious mutations which accumulate on haplotypes cannot be eliminated by recombination – a
process termed Muller’s ratchet [62]. Additionally, homologous recombination is often associated
with DNA repair and replication, which may also control the transcriptional context of essential
genes [188]. Genes with high essentiality tend to have low recombination rates, and so purifying
selection may be intense because, with increased essentiality, any deleterious variation is correlated
with lethality [189].

Methods that recover the recombination structure using population data include the LDhat pro-
gram, approximating the high-resolution linkage map. This method estimates recombination rates
in the presence of hotspots, which might provide a basis for discriminating between genomic regions
subject to selective sweeps and those with increased or reduced recombination [190].



Chapter 4 Gene-level score evaluation to predict disease genes 61

4.1.5 Pattern of linkage disequilibrium

An alternative measure that recovers substantial information on local recombination rates and
identifies recombination hotspots involves the construction of Linkage disequilibrium (LD) profiles
using single nucleotide polymorphism (SNP) data. LD describes the nonindependence of alleles;
this pattern is highly determined by recombination over many generations, although it is also
impacted by selection and mutation. Recombination and mutation tend to increase the diversity
of haplotypes, and therefore act to reduce LD locally; in contrast, selection tends to increase LD
[191, 192]. The pattern of LD is an outcome of these processes and may have a close relationship
with the disease genome [27].

Vergara-Lope et al. [192] examined the extent of LD and the relationship to gene essentiality and
disease following the Spataro et al. [52] gene groups. They found that the extent of LD is more
elevated in genes that are classified as essential and associated with Mendelian disorders compared
to genes linked with complex traits [192]. Similarly, Gibson et al. [51] and Collins et al. [27] establish
that genes with strong LD are enriched for essential functions (e.g., phosphorylation, cell division,
cellular transport and metabolic processes), and genes with weak LD are enriched for functions
related to sensory perception and some immune functions.

4.1.6 Functional genomic properties

Each disease-associated gene has a unique set of functional genomic properties. These proper-
ties can be described by measuring gene products such as coding transcripts, non-coding RNAs,
gene expression levels, replication timing, levels of meiotic recombination and chromatin structure.
These measures may potentially quantify the biological process and improve the filtering of genes
associated with a phenotype. For example, Hsu et al. [180] found that autosomal recessive disease-
associated genes tend to have more non-coding RNA isoforms and nonsynonymous variants [193].
The authors also observed that these recessive disease-associated genes had more complicated reg-
ulatory processes and tolerance of genetic variation. They have also demonstrated that early-onset
disease-associated genes may also have de novo mutations with merely neutral effect [67]. Addi-
tionally, GC content is one of the significant promoter elements that control open chromatin status
and support paused transcription [194]. Paused transcription can explain the regulation in gene
expression in all domains of life, so understanding it is highly important [194, 195]. Hence, linking
functional properties under essential human genes, non-disease genes, and genetic disorders could
provide valuable information for gene annotation.
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Table 4.1: Gene-specific metrics

Features Definition Method Magnitude Properties Literature

pLI
pLI is the probability of being
loss-of-function (LoF) intolerant

Recessive, where observed is 50% of
expected (heterozygous LoFs are
tolerated). Haploinsufficiency, where
observed is <10% of expected
(heterozygous LoFs are not tolerated).
Posterior probabilities from a Poisson
mixture model

I
Essential and

conserved genes
Samocha et al. (2014) [178],

Lek et al. (2016) [177]

RVIS

Residual variation intolerance score ranks
genes from common missense and LoF
variants versus the total number of
protein-coding variants regardless of their
frequency in the genetic population

A gene with a positive score has more
common functional variation. A gene with
a negative score has less and is referred to
as ‘intolerant’. Linear regression

I
Essential and

conserved genes
Petrovski et al. (2013) [173]

DNE
Gene constraint de novo excess score
recognises constrained genes using a
neutral mutation model as a baseline

Gene-specific probabilities for different
types of mutation: synonymous, missense,
nonsense, essential split site and
frameshift. Z-score

I
Essential and

conserved genes
Samocha et al. (2014) [178],

Hsu et al. (2016) [180]

SIS

Substitution intolerance score measures
essentiality based on sample
ascertainment, population history,
selection and local context features that
influence the rate of mutation

Probability that a nucleotide substitution
occurs at a genomic site varies. Posterior
substitution probabilities

I
Essential and

conserved genes
Aggarwala et al. (2016) [71]

HI

Deletion-based haploinsufficiency score
examines copy number variation in
biological properties (genomic,
evolutionary, functional and network)
among many healthy individuals

Gene-based probability based on
biological properties. Linear discriminant
analysis

I
Haploinsufficient

genes
Haung et al. (2010) [183]

NET

Gene position in network score calculates
gene centrality and indispensability in
various protein–protein interactions (PPI)
and regulatory networks to assess the
gene’s importance

Gene-based probability to dissect the
gene’s importance. Logistic regression
model

I
Haploinsufficient

genes
Khurana et al. (2013) [181],

Hsu et al. (2016) [180]



C
hapter

4
G
ene-levelscore

evaluation
to

predict
disease

genes
63

Table 4.1 : Gene-specific metrics description (continued)

Features Definition Method Magnitude Properties Literature

GHIS
Genome-wide haploinsufficiency score
eliminates study bias for the predictions

Gene-based probability of prioritising
gene disruptions resulting from any
genetic variant. Support vector machine

I
Haploinsufficient

genes
Steinberg et al. (2015) [182]

REC

Recessive score explains conservation and
adjacency to recessive disease genes in a
protein interaction network to categorise
genes into recessive disease and
LoF-tolerant classes

Gene-based probability of LoF-tolerant
and recessive disease classes. Linear
discriminant analysis

D
Haploinsufficient

genes
MacArthur et al. (2012) [184],

Hsu et al. (2016) [180]

GIMS

Gene-level integrated metric of negative
selection measures the strength of
negative selection. GIMS integrates
GERP++ scores as comparative genomic
metric

GIMS expresses quantile across all genes D
Genes under
selection

Sampson et al. (2013) [186]

GDI

Gene damage index filters out the
non-synonym mutational (false-positive)
variants in genes that are susceptible to
damaging variation in the general
population

Probability of relationship to the mean of
false-positive variants in
damage-susceptible genes

D
Genes under
selection

Itan et al. (2015) [186], Hsu et
al. (2016) [180]

LDhat
(residuals)

LDhat analyses patterns of linkage
disequilibrium within the framework of
the coalescent theory of the genealogical
history of a sample of genes

Probability of the residuals adjusted for
gene size using linear regression.
Coalescent model. LDhat length adjusted
by linear regression

I
Genetic

recombination
Auton and McVean (2013)

[190]

LDU
(residuals)

Linkage disequilibrium units (LDU)
quantify meiotic recombination over a few
generations reflecting accumulated
recombination over many generations

Probability of residuals adjusted for gene
size using linear regression. LDMAP
under Malécot–Morton model defines LD
map distances in LDUs, analogous to the
centimorgan scale of linkage maps. LDU
length adjusted by linear regression

D
Linkage

Disequilibrium

Vergara-Lope et al. (2019)
[192], Lonjou et al. (2003)

[197]

Non-
synonym

Number of non-synonymous variants per
gene

Frequency - Genomic features
Liu et al. (2013) [193], Hsu et

al. (2016) [180]
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Table 4.1 : Gene-specific metrics description (continued)

Features Definition Method Magnitude Properties Literature

Synonym Number of synonymous variants per gene Frequency - Genomic features
Liu et al. (2013) [193], Hsu et

al. (2016) [180]

Gene
expression

Average expression level per gene
Global expression derived from RNA-Seq
data and summed across the 91 cell lines
in the Cancer Cell Line Encyclopaedia

- Genomic features
Lawrence et al. (2013) [67],

Hsu et al. (2016) [180]

DNA
replication

time
DNA replication time per gene

Expressed on a scale of 100 (early) to
1500 (late)

- Genomic features
Lawrence et al. (2013) [67],

Hsu et al. (2016) [180]

GC-
content

Number of GC content per gene Reads measured from the exome samples - Genomic features
Lawrence et al. (2013) [67],

Hsu et al. (2016) [180]

Hi-C
Hi-C statistic measures the chromatin
status

Measured from HiC experiment. This
metric indicates which chromosomal
compartment the gene is in (negative
values = closed compartment ‘B’, positive
values = open compartment ‘A’)

- Genomic features
Lawrence et al. (2013) [67],

Hsu et al. (2016) [180]

Gene in kb Length of the gene
Total number of nucleotide base pairs of
DNA

- Genomic features
Vergara-Lope et al. (2019)

[192]

Note. Adapted from ‘Essentiality-specific pathogenicity prioritization gene score to improve filtering of disease sequence data’ by Alyousfi D, Baralle D, and Collins
A. (2020) Briefings in Bioinformatics [196]. The magnitude column explains the direction of the score value. A ‘D’ value represents essentiality decrement, while an ‘I’
value corresponds to the essentiality increment.
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4.1.7 Algorithms to select relevant gene-specific properties

Supervised ML techniques were carried out, along with BGGM, to identify genes that are likely
to contain Mendelian variation. As described in Section 2.3, supervised ML algorithms aim to
predict and find patterns within data and use them to make predictions and classifications or
infer new knowledge. Thus, different supervised models are investigated to select relevant gene-
specific properties. The BGGM methodology described in Section 2.5 is implemented to encode
probabilistic relationships between gene properties, building connectivity between these features.
Following this framework, the nodes represent the features, and the undirected edges describe the
correlation among these nodes. The resulting network provides a comprehensive insight to explain
the properties of genes.

All the approaches applied in this study focus on integrating diverse biological data sources and
preserving the relevant features. To this end, scores that predict the potential pathogenicity of
individual DNA at gene level were selected from the literature. Additionally, maps of linkage dis-
equilibrium and recombination rates from the Wellderly population genetic data (Vergara-Lope et
al., [192]) were added to the models. The selected features were compared between these method-
ologies and were considered for the final machine learning classification model. The final approaches
can provide biological knowledge and insights for disease genes to investigate further how they are
related to the disease phenotypes.

4.2 Methods

4.2.1 Collection of gene-level and functional-related gene metrics

The datasets for this study were extracted from published gene prioritisation scores to assess each
gene’s functional genomic properties. These gene-level scores were selected to include known gene-
specific properties and data on evolutionary and functional genomic properties. The following
scores were downloaded from either dbNSFP [193], which provides a collection of scores, or the
corresponding studies. Hence, for measuring essentiality and conservation, the following gene-
specific scores were considered; pLI [177], RVIS [173], DNE [178], and SIS [71]. For assessing
haploinsufficient genes the following were included; HI [183], NET [181], GHIS [182], and REC [184]
scores. For quantifying genes under selection, GIMS [186] and GDI [187] metrics were included.

A total of six biological and genomic features were collected from the Ensembl database through
the BioMart system. These features include gene length in kilobases [192], and GC content (GC)
[198]. In addition, functional-related gene features were included: global expression (Expr) derived
from RNA-Seq data and summed across ten different cell lines, DNA replication time (Reptime),
the Hi-C statistic (HIc), and the measurement of chromatin status [67].

As described above, LDhat recombination maps [190] serve as a guide to the recombination rate per
gene, while LD maps in LD units show the LD intensity per gene. These maps were constructed
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using 454 whole-genome sequences from the Wellderly study [149, 192]. Linear regression for LD-
hat and extent of LD adjusting by physical gene lengths due to the strong correlation between
LDhat/LDU and physical gene lengths. Therefore, the residual terms were used for both scores in
the analysis as:

LDUres = LDUi − ˆLDU, (4.1)

LDhatres = LDhati − ˆLDhat, (4.2)

where LDUi and LDhati are the observed values, and ˆLDU and ˆLDhat are the predicted values.

Once the gene-specific scores were integrated for all genes, an exploratory analysis was implemented
to prepare the data for applying ML techniques and BGGM. First, a simple summary of central
tendency and dispersion measurements are given to describe the data.

4.2.2 Genes groups

Following Spataro et al. [52], classified five discrete groups of genes based on roles in protein
networks, rates of protein evolution and tests of neutrality. The five gene groups are ordered
according to the degree of gene essentiality: non-disease and non-essential (NDNE), complex non-
Mendelian (CNM), complex-Mendelian (CM), Mendelian non-complex (MNC) and essential non-
disease (END).

Non-disease and non-essential (NDNE) comprises genes that are neither essential nor associated
with a disease. These genes are related to being under the weakest purifying selection levels and
have the least functional relevance.

The complex non-Mendelian (CNM), complex-Mendelian (CM), Mendelian non-complex (MNC)
are named as well as Human Diseases (HD) genes. Genes at these ends are functionally relevant
less than essential than NDNE group. Moreover, these genes are under stronger and longer-lasting
purifying selection.

The last group, essential non-disease (END) includes genes that are defined as genes responsible
for core biological functions in the organism and so are required for cell survival. These genes have
no association with human disease.

Therefore, following the Spataro et al. [52] structure, here genes were classified into five groups
which may represent different degrees of essentiality according to the model proposed by Pengelly
et al. [53] (as described in Chapter 2). Because the small proportion of genes in the CM and CNM
groups were joined into a single group named CNM, the gene groups considered were MNC, CNM,
END and NDNE.
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4.2.3 Supervised learning algorithms to select the relevant features

The supervised ML models were applied by training the pre-set learning algorithms to map the
relationships between genes into the four gene groups based on 19 gene-specific metrics (see Ta-
ble 4.1). The first step was collecting the relevant information of the genes to construct the data.
The second step was data preparation using different methodologies to handle missing data, trans-
forming skewed distributions and removing collinear features. Third, different ML algorithms were
applied using a nested resampling strategy and adjustable parameters for feature distributions. The
methods used in each of these steps are described in detail below.

To state the results more formally, some notations are introduced in this section. The classifier
is mapped by the function f : X → Y based on the four gene groups within the selected X as
biological features from the training set D where Y = {1, 2, . . . , k|k ∈ N}. Y represents a discrete
set consisting of k classes, and X ⊆ ND is the data domain such that X describes the attributes of
gene i. The dataset of size n is a tuple D = (X ×Y )n consisting of n labelled examples {xi, yi}ni=1,
where genes are assorted independently. The data set is queried by specifying a classifier f : X → Y

and observing its accuracy acc(f) on the training data D, which is simply the fraction of points
that are correctly labelled fk(xi) = yi. The accuracy of f is denoted by acc(f) = Pr{f(x) = y}
over the genes, attributes from which the joint probability distribution P(X,Y ) of (x, y) is drawn.
Proceeding in k iterations, the analyst specified a function in each round and observed its accuracy
on the data set. The analysis is built as a sequence of adaptively chosen functions f1, . . . , fk. Given
a set of genes already causally linked to specific gene groups, the classifier is sought for any gene
that predicts whether it would have belonged to any other gene group. This function is defined as
follows:

fk(x) =

x if x ∈ {1, . . . , k},

0 otherwise.
(4.3)

Before the gene classification was carried out, the analysis was divided into three main steps. In the
first step, the data was prepared, setting out a complete and detailed specification of the features.
The second step identified the best possible learning algorithm based on prediction accuracy and
model interpretability. In the final step, the hyperparameter tuning stage was implemented from
the selected model.

Figure 4.1 shows the workflow applied in supervised learning. Along with this process, the machine
learning algorithms to be used are selected to fit the desired target quantity. Most of the work
consisted of generating, finding, and cleaning the data to ensure consistent and accurate data. It
was also necessary to decide on the genes’ functional properties, i.e., the inputs for the model that
would be suitable for the chosen algorithm. The model was trained by optimising its performance,
measured through cost function metrics. This entailed adjusting the hyperparameters that control
the model’s training process, structure, and properties. The data were split into various sets.
A validation dataset separate from the test and training sets was used for optimisation of the
hyperparameters.
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Figure 4.1: Machine learning pipeline. Generic pipeline of the methodologies used to classify genes
into gene groups. The first step involves collecting the metrics data to describe functional genomic prop-
erties. The second step follows the data pre-processing; this process cleans the data, removes redundancy,
and carries out feature scaling and data transformation. Once the data has been pre-processed, the next
step is to divide the data into training and test datasets. Then the different machine learning models con-
sidered are evaluated using five-fold cross-validation to select the best-performing model. In each fold, the
resampling technique is implemented. The final step in the pipeline is tuning the best-performing models.

4.2.4 Bayesian inference in Gaussian graphical models to select the relevant
features

The BGGM is implemented to encode probabilistic relationships between gene properties to estab-
lish that the features proposed for this study are relevant for classifying the genes into the gene
groups [52]. Following this framework, the nodes represent the features and the undirected edges
represent the correlations among these nodes. The results describe the interactions between genes,
reflecting gene properties based on functional properties.
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4.2.5 Data processing step

The data was partitioned into a training set and a test portion was used to teach a model that
covers highly complete patterns (fitting the model) from the training data and evaluate the model’s
accuracy (goodness of prediction) using the same features but different instances from the test
data. Following Liu and Cocea [199], the data were randomly partitioned using 70% of the data
for training and 30% for the test datasets.

4.2.5.1 Imputation

During the data preparation step, an imputation model was specified to handle missing data for each
incomplete feature, conditioned on the observed data. It is important to note that the inference for
parameters of a simpler data model can be biased and might decrease the accuracy of the classifier.
The imputation model fits a statistical model to the observed data per feature as a function of the
other features and uses it to estimate values for the missing data. At each step, one feature column
was designated as output y and the other feature column treated as input X. The regressor from
the model was fit to (X, y) for known y. In this way, the regressor was used to predict the missing
value of y. This was done for each feature in an iterated round-robin fashion [200]. Each imputed
feature was then analysed individually using standard statistical procedures (Student t).

The Bayesian ridge regression was used for imputing missing values. This is a probabilistic technique
that introduces uninformative priors over the hyperparameters. This method is initialised using
random sampling and runs univariate imputations sequentially until convergence is reached. Each
iteration is a Gibbs sampler that draws from the distribution that is conditional on the imputed
values. To obtain a fully probabilistic model, the output is assumed to be Gaussian distributed
around Xω:

p(y|X,ω, α) = N (y|Xω, α), (4.4)

where the prior for the coefficient ω is given by a spherical Gaussian

p(y|X,λ) = N (ω|0, λ−1Ip). (4.5)

The priors over α and λ are chosen to be gamma distributions, the conjugate prior for the precision
of the Gaussian distribution. Then the parameters are jointly estimated by maximising the log
marginal likelihood over the coefficients ω with precision λ−1 [201].

4.2.5.2 Data transformation

Data transformation strategies were applied both for training and for testing data. First, all dis-
tributions of the features were analysed for handling skewness and addressing scaling issues. A
standard log transformation was used to reduce skewness and spread low values by expressing the
values as orders of magnitude. In addition, this transformation might reduce the high degree of
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variation among attributes within genes. Secondly, a scaling method was carried out to standardise
the range of each independent numerical feature. By doing so, changes in different features become
comparable and reduce the variation in magnitude and scope across features. The standard z score
of X data was used to scale the features. It is calculated by removing the mean and scaling to unit
variance:

z =
(x− µ)

σ
, (4.6)

where µ is the mean and σ is the standard deviation of the training and test data [202].

4.2.5.3 Multicollinearity analysis

During the data pre-processing step, a multicollinearity analysis was performed to reveal the linear
dependence between the features [202]. The variance inflation factor (VIF) is used to quantify the
severity of multicollinearity. The VIF is based on ordinary least squares regression analysis as:

VIF j =
1

1−R2
j

, (4.7)

where R2
j is the value obtained by regressing the jth feature on the remaining predictors. Gene

metrics with VIF j ≥ 7 [202, 203] were excluded from further estimation of ML algorithms in both
cases, training and test data; this procedure is applied in the same way for the BGMM inference.

4.2.6 Model selection

Despite the broad range of ML approaches available today, there is no unique ML method that
generally outperforms all others [204]. Different ML approaches were evaluated to recognise the most
suitable model for determining the essential features (see Table 4.2). The final model was estimated
using resampling methods and k-fold cross-validation from which mean scores were calculated and
compared directly [205]. The best model was selected based on accuracy and minimum error (see
Appendix A for further details of the methodologies).

Table 4.2: Supervised machine learning methodologies

Algorithms Classifier

Bayesian Gaussian naïve Bayes

Instance-based
K-nearest neighbour

Support vector clustering

Dimensionality reduction
Linear discriminant analysis

Quadratic discriminant analysis

Regression Logistic regression cross-validation

Neural network Multi-layer perceptron

Ensemble
Random forest

Gradient boosting

Bagging classifier
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4.2.6.1 Cross-validation

The best classifier that fits the data was selected comparing the different models perform. However,
training a model on the same train data means that the model will eventually learn well for only
that data and fail on new data; this is called overfitting2. Thus, cross-validation strategy was
implemented to avoid overfitting.

Cross-Validation in ML is a technique used to train and evaluate the model on a portion of the
database before re-portioning the dataset and evaluating it on the new portions. Instead of splitting
the dataset into train and test sets, the dataset is divided into multiple parts. Then, a different
division to train is used and test our model. This ensures that the model is training and testing
on new data at every iteration. The training data will be used by the model to learn. The model
will use the testing dataset to predict unseen data called ‘model’s performance’. Then, a different
portion is chosen to test on and use the other parts for training. The model performance is re-
evaluated with the results obtained from the new portioned dataset to improve the results. This
step is repeated multiple times until the model has been trained and evaluated on the entire dataset.

Stratified K-fold cross-validation was used here to mitigate the overfitting problem during the
validation process. This method is useful when there are minority classes present in the data. The
dataset was split into k parts one section is for testing and the rest for training. Then, another
section will be chosen for testing and the remaining section will be for training. This will continue
k number of times until all sections have been used as a testing set once. The final performance
measure will be the average of the output measures of the k iterations. Thus, the gene-specific data
was divided into five equal random non-overlapping folds. This was repeated five times such that
each of the five sets was used as the test set exactly once [206].

4.2.6.2 Resampling

A balanced ratio of gene groups was required to address the multiclass problem. The undersampling
technique was used to balance the skewed class distribution of the gene groups and improve the
classification performance. A simple random undersampling method was applied for the majority
class (NDNE) in the gene groups in the training data. This approach involves randomly selecting
examples for the NDNE group and keeping all the observations from the minority class (MNC)
from the training data until a balanced distribution is reached. Hence, the ratio is expressed as
α = NMNC

NNDNE
where NMNC is the number of samples in the END gene group, and NNDNE is the

number of samples in the NDNE group after resampling. During classifier design, the NDNE group
was undersampled in each training fold of the five cross-validations [207]. The method from the
imbalanced-learn Python library was used, resulting in a subset of 25% per group. The five-fold
cross-validation of classifiers built on undersampled datasets was repeated five times.

2When the model trains fit perfectly on the training data and generalise to it, but fails to perform on new, unseen
data. It captures every single variation in training data and cannot perform on data with the same variations.
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4.2.6.3 Tuning the model with a hyperparameter grid

Once the supervised ML model was chosen based on the parameters directly estimated from the
data parameters in the training phase, the next step was to tune its hyperparameters to control
the complexity of the training algorithm. The hyperparameters are the parameters predefined
before the training process. During this tuning process, Bayesian optimisation cross-validation
was applied to find the optimal hyperparameters combination. Bayesian optimisation proceeds
by assuming the unknown function was sampled from a Gaussian process and keeps a posterior
distribution for this function as the learning algorithm’s results with different hyperparameters.
That is, Bayesian optimisation works along with the probability distribution for each parameter
on the sample [208, 209]. Therefore, a set of candidate tuning parameters was specified and then
evaluated. The folds number and random seed were set to generate reproducible models. The next
step was building a grid search using Bayesian optimisation with the selected model and fitting the
entire training set. During this hyperparameter optimisation, the five-fold cross-validation process
was also included [210].

4.2.6.4 Evaluation metrics

The performance of the classification algorithms was evaluated using several statistical measures:
precision, recall and F1-score. Precision is a measure of relevance, and recall is the fraction of re-
trieved relevant features over the total number of relevant features, so high values for both measures
indicate better performance. The false-positive rate (FPR) is the fraction of wrong true predic-
tions, and the true-positive rate (TPR) or sensitivity is the fraction of correct classifications (for a
classifier). The TPR and FPR range between 0 and 1, and high TPR and low FPR reflect good
performance [211]. Thus, the F1-score supplements them by reducing the two measures into a single
number by expressing the harmonic mean between precision and recall. The formulas are

Precision =
TP

TP + FP
, (4.8)

Recall =
TP

TP + FN
, (4.9)

F1−score =
2× Precision × Recall

Precision + Recall
, (4.10)

where TP is the number of true positives, TN is the number of true negatives, FP is the number of
false positives and FN is the number of false positives.

4.2.7 Bayesian inference for Gaussian graphical models

A BGGM was implemented to capture the conditional dependencies between the features for the
functional properties of the genes, thus selecting the most important features by sparsifying the set of
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edges. The 19 features represented the nodes, and the edges correspond to statistical dependencies
between those features. Hence, the first step was preparing the data in the same way as the
supervised ML application. In the next step, a Gaussian graphical model was constructed based on
the Wishart prior distribution, which is directly conjugate to the precision matrix. These posterior
probabilities determined the graphic structure, enabling conditional dependent and independent
connections adjacent to the features to be assessed. Finally, the structured learning determined the
topology of the probabilistic graphical model and its accuracy was estimated by the likelihood that
the model explained the observed data [212, 90].

4.2.8 Data and code

The ML models were constructed and analysed in Python version 3.7.3 (https://www.python.
org/), awk and R version 3.2.2 (https://www.r-project.org/) using custom-written scripts.

4.3 Results

4.3.1 Descriptive data analysis

The data formats for gene properties were obtained by merging the nine published datasets from
either dbNSFP [193] or their corresponding studies. The combined data comprises the Spataro
et al. [52] groups of the different subtypes of genes where n represents the number of genes, and
p represents the number of biological features. The complete genetic matrix includes 19 features
(see Table 4.1) along 14,708 genes, where all these genes were considered to be merged to all the
datasets.

Figure 4.2 shows the gene distribution among the four groups defined by Spataro et al. [52]. The
NDNE group has 10,421 genes not known to be involved in any human disorder and not known to
be essential genes. The second group are those genes uniquely associated with MNC; it comprises
822. The third group contains 2,076 genes uniquely causing CNM. The END group includes 1,389
genes defined as orthologues of essential mouse genes detected by knock-out experiments and not
involved in any human disease. Of the 14,708 genes, 70.85% were in the NDNE group, 14.11%
were in MNC, 9.44% were in CNM, and 5.59% in END. The pie chart (Figure 4.2) shows that most
genes tend to be in the NDNE group and that relatively few genes are in the END group. This is
consistent with a previous study, which demonstrated that ∼10% of the ∼20,000 genes in human
cells is essential for cell survival [170].

4.3.2 Statistical summary: Measures of central tendency

The means of the gene-specific metrics for each gene group are presented in Table 4.3. The features
considered an approximation to gene essentiality show higher mutation intolerance on average than

https://www.python.org/
https://www.python.org/
https://www.r-project.org/
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Figure 4.2: Gene distribution by gene groups. Gene number and percentage of genes belonging to
NDNE, CNM, MNC, END groups based on Spataro et al. study [52].

the other gene groups (pLI m= 0.562, RVIS m= −0.428, DNE m= 1.733 and SIS m= 0.557 means).
These results are consistent with essential genes that tend to have low recombination (LDhat m=
−21.915), intense selection (GIMS m= 0.326, GDI m= 3.666 ) and strong LD (LD m= −0.323).
In addition, at the END gene group, the degree of intolerance of genes to loss-of-function variation
is higher than in the rest of the groups (HI m= 0.474, NET m= 0.743). Gene groups that contain
disease variation occupy an intermediate place in mutation intolerance, recombination and selection
and retain damaging variation associated with Mendelian disease (REC m= 0.361). Genes in the
NDNE group tend to have low essentiality (pLI m= 0.252, RVIS m= 0.054, DNE m= 0.727 and
SIS m= −0.048), high recombination and high haplotype diversity (LDhat m= −3.847 and LD m=
−0.323) and haploinsufficiency (HI m= 0.264). They also show evidence for weak selection and
weak LD (close to 0). Thus, genes located in this group might be more tolerant of mutation [53].

The correlation patterns are presented in Figure 4.3. Spearman correlation analysis suggests that
most of the features have a modest correlation with each other. The highest correlations3 in either
direction (positive or negative) were between LD and LDhat (ρ = 0.86) as expected because both
metrics model SNP association to estimate or approximate the population scaled recombination
rate. In addition, synonymous and nonsynonymous rates per gene are highly correlated (ρ = 0.78);
these results rely on common selective constraint due to mutations that might be related to selection
for translational accuracy [213]. Meanwhile, the overall expression level, Hi-C status and GC
content have positive correlations with each other. This result can be explained because chromatin
structure contributes to controlling gene expression (Hi-C vs Expr ρ = 0.58) and replication (Hi-
C vs Reptime ρ = −0.61) [214]. Moreover, GC content is a prominent for maintenance of open

3Spearman coefficient |ρ| > 0.5
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Table 4.3: Distribution of the gene-specific mean among gene groups

Features NDNE MNC CNM END

pLI 0.252 0.245 0.379 0.562

RVIS 0.054 −0.220 −0.138 −0.428
DNE 0.727 0.914 1.006 1.733

SIS −0.048 0.113 0.139 0.557

HI 0.264 0.363 0.350 0.474

NET 0.514 0.709 0.597 0.743

REC 0.156 0.361 0.218 0.261

GIMS 0.508 0.433 0.439 0.326

GDI 4.380 5.321 4.564 3.666

Ldhat (residuals) −3.847 8.181 19.607 1.915

LDU (residuals) −0.069 0.105 0.192 −0.323
Non-synonym 24.310 36.001 29.273 27.048

Synonym 13.350 20.934 17.407 19.048

Gene expression 6.716 6.319 5.752 7.122

DNA replication time 442.134 439.560 487.942 399.765

GC content 46.335 46.745 44.880 46.434

Hi-C 19.902 20.224 17.560 23.289

Gene size in kilo bases 53.543 60.701 123.959 74.193

chromatin structures (Hi-C vs GC ρ = 0.61) [195]. The pLI score has a high correlation with SIS
and DNE scores (pLI vs SIS ρ = −0.56; pLI vs DNE ρ = −0.58); this relationship may imply that
those scores share LoF measures such as gene essentiality and conservation. There is a negative
correlation between RVIS and SIS scores (RVIS vs SIS ρ = −0.70); RVIS reports negative scores
while SIS increases in quantifying the action of selective pressure. This result might reflect purifying
selection on functional substitutions [173, 71]. Another high correlation is between RVIS and GIMS
scores (RVIS vs GIMS ρ = −0.70), elucidating genes under negative selection [186]. SIS and DNE
scores show a high correlation with each other. This correlation may reflect functionally essential
genes and LoF tolerant genes [71, 181].

A descriptive statistical analysis was performed to describe gene–specific metrics and population
genetics measures. First, the non-parametric Kruskal–Wallis (KW) test was employed to detect an
association between gene-specific metrics and the four gene groups using p ≤ 0.05 as a threshold
criterion (see Table 4.3). All the gene-specific metrics are statistically significantly different between
gene groups. Hartigan’s dip test was used to detect multinomial distributions among all the features.
This test reported possible multimodal distributions for HI, pLI, NET, Hi-C, DNA replication
time, nonsynonymous, and synonymous. Understanding multimodal distributions may help better
maximise classification accuracy, provide an exact Type I error rate, and allow for assessing cross-
generalizability (Wu et al. [215]). Tukey’s test suggested that DNE, REC, SIS, LDU, LDhat,
RVIS, GDI, gene expression, Hi-C, DNA replication time, nonsynonymous, synonymous, and gene
size have large values that may be considered as outliers.
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Figure 4.3: Heatmap. Sample correlation matrix based on the 14,708 genes using gene-level metrics.
The matrix entries are Pearson correlation coefficients. Red indicates positive correlation and blue negative
correlation. Darker colours indicate strong correlation and lighter colours indicate low dependency between
features. The coloured bar at right shows the scale of the degree of correlation.

4.3.3 Data visualization

Figure 4.4 shows feature distribution by gene groups. The overall difference in pLI, NET, SIS, and
HI scores between gene groups have the highest probability for increasing essentiality. In contrast,
GDI, GIMS, LD, REC, and RVIS have a smaller degree with increasing essentiality. It also appears
that GDI, LDU, LDhat, REC, SIS, gene size, nonsynonymous, and synonymous are heavily right-
skewed. The features pLI, HI, NET, DNA replication time, and GC content follow a multimodal
distribution.
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Figure 4.4: Feature density distributions and correlation among features by gene group.
Illustration of modelling approach and prediction of the number of gene groups for single genes using the
information on 18 functional genomic features of genes. The curve shows the density plot of a smooth
version of the histogram. The y-axis indicates density, and the histogram is normalised on the same y-scale
as the density plot.



78 Chapter 4 Gene-level score evaluation to predict disease genes

Table 4.4: Statistical descriptive features by gene groups

Feature NDNE MNC CNM END Kruskall-Wallis test

Number of genes 10421 822 2076 1389

pLI 0.008 [0.000,0.483] 0.002 [0.000,0.399] 0.100 [0.000,0.901] 0.723 [0.024,0.992] Significant

RVIS −0.009 [−0.380,0.415] −0.181 [−0.622,0.260] −0.139 [−0.579,0.267] −0.296 [−0.737,0.017] Significant

DNE 0.704 [−0.109,1.581] 0.773 [0.045,1.721] 0.989 [0.085,1.966] 1.716 [0.852,2.590] Significant

SIS 0.109 [−0.596,0.635] 0.197 [−0.385,0.679] 0.303 [−0.381,0.793] 0.677 [0.216,1.049] Significant

HI 0.198 [0.113,0.390] 0.280 [0.137,0.558] 0.265 [0.133,0.535] 0.424 [0.220,0.728] Significant

NET 0.533 [0.170,0.852] 0.801 [0.539,0.948] 0.682 [0.274,0.903] 0.846 [0.586,0.965] Significant

REC 0.117 [0.101,0.166] 0.306 [0.194,0.541] 0.136 [0.108,0.239] 0.183 [0.128,0.315] Significant

GIMS 0.513 [0.262,0.752] 0.410 [0.226,0.637] 0.408 [0.186,0.674] 0.278 [0.112,0.501] Significant

GDI 3.143 [1.390,6.103] 4.088 [1.987,7.633] 3.156 [1.344,6.335] 2.387 [1.054,5.099] Significant

Ldhat (residuals) −1.197 [−25.512,8.837] −1.730 [−27.846,10.457] −4.325 [−47.276,9.665] −10.837 [−51.647,5.309] Significant

LDU (residuals) 0.021 [−0.460,0.211] 0.026 [−0.492,0.394] −0.019 [−0.820,0.355] −0.109 [−0.958,0.182] Significant

Non−synonym 19.000 [11.000,31.000] 25.000 [15.000,44.000] 21.000 [11.000,37.000] 18.000 [10.000,34.000] Significant

Synonym 10.000 [6.000,17.000] 14.500 [9.000,25.000] 12.000 [7.000,21.000] 14.000 [8.000,23.000] Significant

Gene expression 4.955 [2.607,9.019] 4.656 [2.465,8.758] 3.756 [1.865,7.818] 5.449 [2.793,9.437] Significant

DNA replication time 393 [236,581] 391 [249,564] 436 [269,627] 359 [219,506] Significant

GC content 44.980 [40.150,51.860] 46.080 [40.360,52.370] 43.160 [38.990,50.050] 44.930 [39.700,52.695] Significant

Hi−C 25 [6,37] 25 [5,38] 22 [1,37] 27 [11,39] Significant

Gene size in kilo bases 22.646 [8.671,54.978] 30.386 [13.197,72.907] 45.237 [14.563,130.114] 36.934 [13.830,87.543] Significant

Mean and 95% CI for all gene-level metrics. Kruskal−Wallis test was applied, p−value < 0.001.

4.3.4 Machine learning results

4.3.4.1 Training and testing dataset results

The gene-specific metrics data were divided into two parts; training data with 10,295 genes (70%
of the whole data) and testing data with 4,413 genes (30% of the data; see Table 4.5). The
distribution among the gene groups is highly unbalanced, as the minority class accounts for as little
as ∼6% of the training data in the MNC group, followed by ∼10% and 14% for END and CNM,
respectively. Therefore, there is a genuine lack of data in the END, MND and CNM groups due to
the low frequency with which events occur or genes known to be associated with essentiality/disease
variation are present [167]. In this study, the MNC and END are the classes of interest that
can identify the underlying causes for disease genes, and NDNE potentially contains undiscovered
disease genes. Therefore, the sampling method was applied in the supervised machine learning
model for handling class imbalance during the pre-processing data step.

Table 4.5: Number of genes in the training and test sets by group

Gene group
Training set Test set

Number Percentage Number Percentage

NDNE 7252 70.4% 3169 71.8%

MNC 608 5.9% 214 4.8%

CNM 1438 14.0% 638 14.5%

END 997 9.7% 392 8.9%

Total 10295 100.0% 4413 100.0%



Chapter 4 Gene-level score evaluation to predict disease genes 79

4.3.4.2 Gene dataset imputation

Of the 10,295 genes in the training data, 6,159 (∼60%) genes had data available for all features
in the analysis model. HI and REC scores had the highest proportion of missing values, ∼24%,
while DNE and SIS had ∼12% missing data. The rest of the features have less than 5% of the data
missing. For the test data, 2,622 (∼60%) of 4,413 genes had complete data for all the features,
showing the same proportion of missing values as the training data (see Table 4.6). Therefore, the
imputation method was applied to reduce bias during the pre-processing data step for training and
test data.

Table 4.6: Number of missing genes in the training and test data

Feature
Training data Test data

Number Proportion Number Proportion

pLI 0 0.0% 0 0.0%

RVIS 0 0.0% 0 0.0%

DNE 1,218 11.8% 544 12.3%

SIS 1,079 10.5% 506 11.5%

HI 2,478 24.1% 1,069 24.2%

NET 249 2.4% 125 2.8%

REC 2,478 24.1% 1,069 24.2%

GDI 5 0.0% 1 0.0%

GIMS 98 1.0% 42 1.0%

LDhat (residuals) 0 0.0% 0 0.0%

LDU (residuals) 0 0.0% 0 0.0%

Non-synonym 0 0.0% 0 0.0%

Synonym 0 0.0% 0 0.0%

Gene expression 253 2.5% 105 2.4%

DNA replication time 253 2.5% 105 2.4%

GC content 14 0.1% 5 0.1%

Hi-C 253 2.5% 105 2.4%

Gene size in kilo bases 0 0.0% 0 0.0%

Iterative imputation using Bayesian ridge regression was used for handling missing values. This
process estimated each feature with missing values as a function of the other features. Thus, the
Bayesian ridge approach completed the missing values by iteratively maximising the marginal log-
likelihood of the observations. The imputed data for DNE, SIS, HI, NET REC, GIMS, GDI, gene
expression, DNA replication time GC-content and Hi-C features are drawn from the joint posterior
distribution of the missing data under a Bayesian ridge model. In order to appropriately analyse
the performance of the imputation, Table 4.7 provides a summary of the two-sample t-test that
was used. This test compared the empirical distributions of the observed and imputed data and
flagged features as a potentially significant difference if they had a p-value below 0.05. DNE, REC
and HI results suggest that the accuracy and robustness of imputation were affected because of
an increment in the missing rate, showing statistically significant differences between the mean of
the observed and imputed data. The distribution of the remaining features indicated no significant
difference between the two averages. Although t-tests provide a suitable way to check a large
number of imputed features, the results can be challenging to interpret because the magnitude of
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the p-values depends on both the sample size and the proportion of missing values in the incomplete
features. It is also important to note that discrepancies between observed and imputed data are
not necessarily problematic since this gene data is missing at random; therefore, these differences
can be expected to arise.

Table 4.7: Two sample t-test for difference between means of features in observed and
imputed data

Feature
Percentage Standard error Original - Imputed

Z score Statistical test Level of significance*
Original Imputed Original Imputed Diff. % Diff. std. error

DNE 0.91 0.87 0.0141 0.0128 −0.04 0.02 −1.99 0.05 Significant

SIS 0.03 0.05 0.0101 0.0093 0.02 0.01 1.24 0.22 Non-significant

HI 0.32 0.30 0.0029 0.0023 −0.02 0.00 −5.67 0.00 Significant

NET 0.56 0.56 0.0034 0.0033 0.00 0.00 −0.64 0.52 Non-significant

REC 0.20 0.19 0.0019 0.0015 −0.01 0.00 −3.48 0.00 Significant

GIMS 0.48 0.48 0.0028 0.0028 0.00 0.00 0.00 1.00 Non-significant

GDI 4.40 4.39 0.0418 0.0415 −0.02 0.06 −0.30 0.76 Non-significant

Gene expression 6.65 6.65 0.0585 0.0574 0.00 0.08 −0.01 0.99 Non-significant

DNA replication time 441.8 442.2 2.3950 2.3484 0.35 3.35 0.10 0.92 Non-significant

GC content 46.2 46.2 0.0747 0.0747 0.00 0.11 −0.01 0.99 Non-significant

Hi-C 20.3 20.2 0.2457 0.2405 −0.03 0.34 −0.08 0.94 Non-significant

*Two-tailed hypothesis test with a significance level of 0.05.

4.3.4.3 Skewed data

The log transformation was used to address skewed data; the log-transformed data follows a normal
or near-normal distribution. Shown in the top panel in Figure 4.5 is the histogram of two distri-
butions xi, gene size and GDI, while the bottom panel is the histogram of yi (the log-transformed
version of xi) based on a sample size of n=10,295. While both distributions of xi are left-skewed,
the log-transformed data yi are not skewed.

Figure 4.5: Skewed data transformation. Comparison of the KDE-plots of both gene size and GDI
features vectors before (top row) and after (bottom row) transformation.
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4.3.4.4 Feature scaling

Given the significant differences in the scales, magnitudes, and features, all these predictors were
normalised before the machine learning model was developed for the training and test data. This
feature scaling improved the model performance by speeding up gradient descent and avoiding many
extra iterations that would be required when one or more features takes on much larger values than
the rest. Moreover, in this study, most machine learning algorithms use Euclidian distance, which
might be a problem because the results vary significantly between different ranges. For example,
in the left column of Figure 4.6 the nonsynonymous, synonymous, LDU and LDhat residuals have
high magnitudes, which will weigh a lot more in the distance calculations than features with low
magnitudes. In contrast, in the right columns of Figure 4.6 all features have been normalised and
are on the same scale (relative to one another).

4.3.4.5 Multicollinearity

The linear dependence or multicollinearity between feature means was tested to evaluate the pro-
posed features’ quality and measure instability and redundancy between them. These problems
were addressed by measuring the variance inflation factor (VIF). The values with VIF above seven
were removed and were considered highly collinear. The logarithm of GDI, Synonymous and gene
size was not considered further for inclusion in the machine learning models (see Table 4.8).

Table 4.8: Multicollinearity among the features

Feature Variance Inflation factor

pLI 2.669 2.636 2.626 2.625

RVIS 2.927 2.896 2.348 2.342

DNE 4.078 4.041 3.200 3.102

SIS 4.144 4.101 3.867 3.758

HI 4.002 3.922 3.894 3.791

NET 4.994 4.631 4.602 4.439

REC 1.220 1.197 1.194 1.185

GIMS 6.388 6.145 6.111 3.835

GDI log 8.657 7.454 7.443 -

LDhat (residuals) 5.357 5.355 5.353 5.353

LDU (residuals) 5.468 5.467 5.435 5.435

Non-synonymous 6.992 6.979 1.420 1.128

Synonymous 7.545 7.542 - -

Gene expression 1.836 1.813 1.810 1.807

DNA replication time 1.985 1.982 1.980 1.978

GC content 2.153 1.798 1.751 1.736

Hi-C 1.766 1.757 1.757 1.756

Gene size log in kilo bases 9.813 - - -

Note. Variables with VIF > 7 were removed from further anal-
ysis.
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Figure 4.6: Feature scaling performed per feature. On the left side shows the original scale of the
distribution, while the right side displays the new scale distribution.
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4.3.4.6 Resampling for imbalanced dataset

The data imbalance problem is shown clearly in Table 4.5 in the training data. For example, the
NDNE gene group has nearly eight times as many genes as the END gene group. The training and
testing data are derived from the given gene data using data points from the majority and minority
classes. The random undersampling technique was applied to the training data to generate a
resampled training set to which the different machine learning algorithms were applied, whereas for
a given prediction task, the testing data was kept constant between the different ML techniques for
a fair comparison. All of the training data points from the MNC gene group (minority class) were
used. Genes at this point were randomly removed from the NDNE, CNM and END gene groups
(majority training data) until the desired balance was achieved. The number of genes selected for
estimating the different machine learning algorithms was 608 for each gene group (see Table 4.9).
Subsequently, a classification algorithm was applied to generate a prediction model examined on
the test data to evaluate its efficacy. The steps were repeated for each ML algorithm. Intuitively,
one of the advantages of undersampling is that it reduces the overall training data set size, thereby
saving memory and speeding up the classification process.

Table 4.9: Number of genes in the re-balanced set by group

Gene group Undersampling*

NDNE 608

MNC 608

CNM 608

END 608

Total 2,432
Note. *Data artificially re-balanced via ran-
dom undersampling technique.

4.3.4.7 Supervised machine learning algorithms

All classifiers were trained for 14 gene-specific metrics. During the five-fold cross-validation process
for each fold, the resampling technique was applied. Custom scripts were used for pre-processing
the data, and scikit-learn from the Python libraries was implemented to perform all classification
tasks. The average accuracy of each of the performance measures across the five iterations is shown
in Table 4.10. The accuracy information is also presented for unbalanced data and the resampling
data.

The accuracy averages for all the supervised ML algorithms are misleading in the imbalanced data.
For example, ∼70% of the genes are related to the NDNE group; thus, most of the results will
overfit this group as the majority class can still achieve very high accuracy. In this situation, the
classifier is more sensitive to detecting the majority class patterns (NDNE gene group) but less
sensitive to detecting the minority class patterns (MNC gene group). Moreover, ML algorithms are
designed to maximise overall accuracy.
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Of the results shown below (see Table 4.10), the Random forest (RF) and Gradient tree boosting
(GTB) algorithms achieved the highest average accuracy for the balanced data (48.9% and 47.8%
respectively). In addition, three of the algorithms have the highest test accuracy; however, this
implies that these models are facing an overfitting problem since their training accuracy is around
100%, while their test accuracy is only around ∼40% to ∼48%. Therefore, these algorithms cannot
be trusted in terms of their generalisation ability. For instance, the RF algorithm tends to fit
all samples perfectly in the training data set when the model does not limit the maximum depth.
Therefore the model can keep growing until it has exactly one leaf node for every single observation,
perfectly classifying all of the genes. In the case of the K–nearest neighbour (KNN) trained model,
there is no parameter to estimate. A bagging classifier overfits the trained model in the same way
as the RF algorithm. All the supervised ML algorithms calculated on average around 47% of the
genes into the four gene groups on the test data using the balanced groups (Table 4.10). This
demonstrates that the features used do not describe all the gene group properties. However, these
scores still provide important information to highlight potential candidates for genome filtering.
The better performing algorithms were RF and GTB; therefore, those models were selected for
parameter tuning.

Table 4.10: 5-fold cross-validation average for balance and unbalanced data by different
machine learning algorithms

Machine learning algorithm
Unbalanced data Sampling technique

MLA train accuracy mean MLA test accuracy mean MLA train accuracy mean MLA test accuracy mean

*Gradient boosting 0.766 0.715 0.735 0.478

Logistic regression cross-validation 0.711 0.710 0.487 0.479

Multi-layer perceptron 0.739 0.707 0.594 0.472

Support vector clustering 0.723 0.707 0.555 0.487

Linear discriminant analysis 0.707 0.706 0.479 0.467

Bagging classifier 0.979 0.699 0.983 0.455

*Random forest 0.968 0.695 0.997 0.489

K-nearest neighbour - 0.682 1.000 0.405

Quadratic discriminant analysis 0.680 0.675 0.462 0.441

Gaussian naive Bayes 0.646 0.644 0.440 0.436

Multinomial 0.564 0.562 0.488 0.479

Note. *The best-performing learners.

4.3.4.8 Bayesian optimization for parameter tuning

Hyperparameter tuning was carried out for the RF and GTB models using Bayesian optimisation.
This technique evaluated the objective function by selecting the next input values based on those
that have done well in the past. The objective function was validated during the training process
using a specific set of hyperparameters as seen in Figure 4.7. For this process, the library Hyperopt

in Python was implemented. First, the objective function was set by the domain space to search.
Second, the surrogate model was constructed and the next hyperparameter values to evaluate were
chosen. Third, the outcomes were stored from evaluations of the objective function consisting of the
hyperparameters. This process was repeated until max iteration (100 times), and in each iteration,
the resampling technique was simultaneously implemented.
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Nine parameters were selected to be optimised for the GTB model, and five parameters were op-
timised for the RF model (see Figure 4.7). The mean validation was reported over five randomly
initialised runs for each strategy on a withheld validation set. The results are presented in Fig-
ure 4.7 and contrasted with the average results achieved using the best parameters found by the
optimisation method. Each algorithm was repeated 100 times. For the GTB classifier, to avoid
overfitting on the training data, the optimal tree depth was set to five, and the weight of the regu-
larisation term was set at 0.893. It also was found that increasing the learning rate degrades model
accuracy. The optimal value of the learning rate was found to be 0.094 for all iterations. The max-
imum number of tree leaves for base learners was set to 20, and the best result was achieved with
the aggressive subsampling (.782) of the training data; ∼44% to ∼55%. The best result achieved
after tuning the model was 53.29% on the test set. As expected, RF does not overfit the training
data after finding the optimal tree depth to be 5. Moreover, to reduce uncertainty in the model, a
suitable function to measure the quality of the split was found to be Gini. The results also indicate
that the number of features for the best separation was 13 and the number of trees in the forest
was 226. This approach achieved an accuracy of ∼53% on the test data.
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Figure 4.7: Tuning parameters process. First, the best models performances are selected, then an
undersampling technique and the estimation of the model based on the hyperparameters is performed
during the five-fold cross-validation process. Finally, the set of hyperparameters are optimise for the model
to be assed in the test data.

To evaluate robustness and overfitting of the two classifiers, Table 4.11 and Table 4.12 summarise
the predicted performance on the training, validation and test sets for both GTB and RF. Three
metrics were used: precision, recall and F1-score. The results show that both the GTB and RF
methods do not overfit the training data and perform favourably in both validation and test sets.

The metrics evaluation for the GTB classifier on the test data were different among the groups,
as seen in Table 4.11. For example, the NDNE gene group has a higher frequency than the other
gene groups. 86% of the genes were correctly identified by the ML classifier (∼2,700 of the 3,169
genes). With the recall measure, 59% of the genes were correctly identified out of all the genes
that belong to this class (1,870 of the 3,169 genes). The F1-score reflected that 70% of the genes
were correctly labelled and shows how robust the model was to identify genes that correspond to
that class (2,218 of the 3,169 genes). The gradient boosting classifier tended to be weak for the
MNC, CNM and END gene groups, with a precision of 18% (39 of the 214 genes), 25% (160 of the
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638 genes) and 19% (75 of the 341 genes), respectively. Similarly, recall measures are low for these
groups in classifying genes correctly. These results show that the GB classifier has poor sensitivity
and performance for correctly classifying the genes.

Table 4.11: Comparison of metrics measures for gradient boosting classifier

Gene group
Training Validation Test

Precision Recall F1-score Genes Precision Recall F1-score Genes Precision Recall F1-score Genes

NDNE 60% 75% 67% 608 50% 62% 56% 608 86% 59% 70% 3,169

MNC 63% 72% 67% 608 52% 60% 56% 608 18% 65% 28% 214

CNM 67% 38% 48% 608 40% 22% 29% 608 25% 22% 24% 638

END 61% 62% 61% 608 48% 51% 49% 608 19% 43% 27% 392

The RF classifier was evaluated on the test data in the same way as the GTB classifier (see Ta-
ble 4.12). The metrics for the NDNE gene group achieved the highest precision (86%, ∼2,700 of
the 3,169 genes), recall (59%, ∼1,870 of the 3,169 genes) and F1-score (70%, ∼2,218 of the 3,169
genes) values. The CNM group was one of the most difficult for classifying genes, with a precision
of 23% (∼147 of the 638 genes). The recall measure was 20% ( 128 of the 638 genes) and the
F1-score was 21% (∼134 of the 638 genes). The END group was also difficult for predicting genes,
with a precision of 21% (∼83 of the 392 genes), and the F1-score was 30% (∼118 of the 392 genes).
However, the recall measure accurately recognised 48% of all the genes in this class. For the MNC
gene group, the RF classifier approximately identified just one of four genes that belong to this
class, similar to the END group. The recall measure yielded the highest value for MNC; 64% of the
genes in this group were accurately recognised. Therefore, as evaluated by precision, recall and the
F1-score, the random forest algorithm exhibited poor performance in gene classification.

Table 4.12: Comparison of metrics measures for random forest classifier

Gene group
Training Validation Test

Precision Recall F1-score Genes Precision Recall F1-score Genes Precision Recall F1-score Genes

NDNE 65% 76% 70% 608 52% 61% 56% 608 86% 59% 70% 3,169

MNC 68% 78% 72% 608 52% 62% 57% 608 17% 64% 26% 214

CNM 90% 57% 70% 608 44% 24% 31% 608 23% 20% 21% 638

END 70% 74% 72% 608 47% 52% 50% 608 21% 48% 30% 392

Figure 4.8 shows feature impact within the trained model for the gene groups. This feature impor-
tance was ranked in descending order, indicating the value’s effect associated with the higher (in
red) or lower prediction (in blue). The correlation is shown on the X-axis where REC residuals had
higher importance and were negatively correlated with the gene groups, most likely because the
distribution of this feature is highly skewed. pLI was positively correlated with the gene groups,
which shows that those genes are likely to be essential genes; However, it may also suggest that a
degree of separation between LoF and recessive genes, will be a substantial overlap [184].

In summary, the results of the ML models showed that REC, pLI, Nonsynonymous, GIMS, RVIS
have the most significant impact on prediction. This suggests that genes in this state have a
high degree of conservation and are related to the gene’s essentiality, which implies being highly
intolerant of variation due to loss of function. Furthermore, these genes could explain that the
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strength and consistency of purifying selection act against functional variation. These genes may
encode certain regulators of core cellular functions [196].

Figure 4.8: Feature importance describes the prediction of an gene by computing the contribution of
each feature to the prediction. The position on the y-axis is determined by the feature and on the x-axis by
the prediction value. The colour represents the value of the feature from low to high. Overlapping points
are jittered in y-axis direction. The features are ordered according to their importance.

4.3.4.9 Structure learning

The BGGM was used for determining conditional relationships between features. This model was
developed by identifying non-zero off-diagonal elements in the inverse-covariance matrix. The learn-
ing structure determined which partial correlations were non-zero. The node names are shown in
Table 4.13. For prior distributions of the precision matrix, the G-Wishart distribution WG(3, I14)

was assigned. The function was run for 10,000 iterations with 7,000 as burn-in.

The model estimated that almost half of the nodes shared connectivity of ≈0.60%, which is consid-
ered a dense network. Figure 4.9 shows the graphical structures of BGGM with 0.95 thresholds for
the analytical solution. The estimated structure had strongest connections in a positive direction
between the LDU and LDhat nodes (3-4), SIS and DNE scores (7-14), pLI and HI features (1-5), HI
and REC scores (5-13) and RVIS and REC (2-14). The nodes that had a conditional dependence
structure in the negative direction are the RVIS and SIS nodes (2-7), DNA replication time and
Hi-C status features (8-11), Gene expression and DNA replication time nodes (10-11) and GIMS
and SIS scores (6-7). These results appear to be strongly consistent with the application of the
supervised ML techniques.
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Figure 4.9: Graphical structure of gene property features. This figure shows partial correlations
(edges) between connected nodes with posterior means and 95% credible intervals. The partial correlations
are pairwise relationships in which all other variables have been controlled for. When there is evidence for a
non-zero, it indicates a direct association between two variables. Green lines indicate positive correlations
and red lines indicate negative correlations. Line width reflects edge strength (effect size).

Table 4.13: Node Names

Feature Node

pLI 1

RVIS 2

LDU (residuals) 3

LDhat (residuals) 4

HI 5

GIMS 6

SIS 7

Hi-C 8

Non-synonym 9

Gene expression 10

DNA replication time 11

GC content 12

REC 13

DNE 14

In Figure 4.10, the graph at the top left has the highest posterior probability with links for which
the estimated posterior probabilities are greater than 0.5. This graph follows the same Pearson
correlation pattern showed earlier. The graph at the top right gives the estimated posterior prob-
abilities of all the graphs; it indicates that the algorithm found more than 600 different graphs.
The graph at the bottom left shows the estimated posterior probabilities of the size of the graphs,
meaning that there is 64% of connectivity between the features. This graph also suggests that
the algorithm estimated mainly graphs with measures between 60 and 68 links. At the bottom
right is the trace of the algorithm based on the size of the graphs. These results suggest the adja-
cency matrix of the selected graph estimated by posterior probabilities of all possible links found
54 significant interactions between features.

The BGGM structure was estimated using posterior sampling and a region of practical equivalence
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Figure 4.10: Graphical summary of gene property features using BGGM. At the top left is
the inferred graph with the highest posterior probability. The figure at the top right gives the estimated
posterior probabilities of all visited graphs. The figure at the bottom left gives the estimated posterior
probabilities of all visited graphs based on the sizes of the graphs. The figure at the bottom right gives the
trace of our algorithm based on the size of the graphs.

with the most conservative threshold. The model was computed by first calculating the edges, and
then the posterior distributions were subtracted using the region of practical equivalence (±0.1).
The error bars correspond to 95% credible intervals. This estimated structure had fewer connections,
only 22%. For example, Figure 4.11 shows that in the majority of the edges from REC, Hi-C,
Gene expression and DNA replication the conditional dependence was practically equivalent to
zero (Supplementary Table 2). These results suggest that those features have negligible relevance
for determining conditional correlations between variables. This discrepancy could be due to the
inflated false positive rate of 1-regularised estimation [134].
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Figure 4.11: Graphical summary of gene property features using BGGM. The figure displays
the conditional dependencies for the posterior means and 95% credible intervals. The red points denote
intervals that excluded zero.

4.4 Discussion

For many years, the advent of next-generation sequencing (NGS) has driven progress in identifying
disease causal genes and variants in the human genome for rare Mendelian disorders. Despite
the apparent utility of high throughput technologies, hundreds if not thousands of causal genes
are still unrecognised [52, 164, 166]. The integration of gene discovery methods is required for
an understanding of the mechanisms of human phenotypes. Here, quantitative scores related to
human disease genes, evolutionary conservation, variant intolerance genes, gene interaction protein
network, and DNA sequence context have been evaluated to improve recognition of genes that are
likely contributing to monogenic phenotypes.

To this end, the present study has introduced some of the most useful supervised learning tech-
niques for modelling Bayesian classifiers, logistic regression, discriminant analysis, classification
trees, nearest neighbour, neural networks, support vector machines and ensembles of classifiers. All
of these supervised methods used a training data set where the classification was known a priori
using the Spataro et al. [52] groups to develop a classifier, and this trained model was applied to
classify the test data.

The combined analysis of genomic data for the gradient boosting and random forest models showed
that more than ∼50% more of the variance is explained than taking the scores individually. In
addition, the results from BGMM are consistent with the results of the supervised ML model.
That is, the connectivity between the gene metrics used was 40%. Therefore, the features used are
not sufficiently reliable for predicting causal genes for most monogenic disorders.

Although ML classifiers have been used to recognise potential Mendelian disease genes in the NDNE,
CNM and END groups, the approaches do not identify a clear relationship between genes. This poor
classification can be explained by the fact that essential genes are expected to overlap in monogenic
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disorders [169]. Both classifiers have shown that more than 70% of the genes were found in the
NDNE groups. In particular, this group has many genes, and a considerable number of them are
likely to be undetected Mendelian genes which lead to inconsistent results and misinterpretations
of underlying disease causal mutations [53].

The main result suggests that all subsets of MNC and CNM genes are under similar evolutionary
pressures, which may be a substantial overlap between those groups. Consistently with previous
studies [52, 216], genes that are classed in the human diseases group according to hOMIM follow a
dominant transmission pattern were more conserved and enriched of rare frequency variants than
recessive genes. These results are consistent with the hypothesis that dominant genes will be under
stronger purifying selection. Moreover, Spataro et al. [52] recognised that more than 23% of genes
linked to a Mendelian disorder are also associated with at least one complex after compiling 887
Mendelian genes. Furthermore, the intersection between disease genes explains specific biological
features, indicating a prominent role of MNC genes in the aetiology of complex disease. Indeed,
CNM genes present higher functional importance in the protein network, a tendency towards higher
expression levels and are enriched in relevant biological categories.

Identifying genes implicated in monogenic disease from the analysis of the supervised ML models
shows that the major features appear to be consistent with previous studies; that is, pLI and RVIS
provide the most information for the classification shown in Table 4.1. These results suggest that
the tolerance of LoF variation quantifies the degree of essentiality that aids the gene prediction
of monogenic disorders [167, 52, 53]. By contrast, LDU residuals and features related to the local
sequence context of the gene, such as GC content and gene expression, are the least informative
features in the supervised ML model. These results reflect that detecting selection is difficult, as
signatures are confounded by processes such as recombination and drift and the effects of changing
demography over time [42]. In the Alyousfi et al. [196] study, the REC variable showed a small
contribution to the combined essentiality-specific pathogenicity prioritisation (ESPP) gene score
used to predict disease genes. The authors also found that SIS and NET explained a high proportion
of the variance from the ESPP score. Here, in this analysis, the variable REC was very important
for this model; however, this result may not be robust because of the lack of information from
the original source [184]. Despite the use of imputation technique used for the REC feature, the
estimation is still biased. Finally, NET and SIS had a much smaller effect on the model. The NET
cannot differentiate between known disease-associated genes [167] while SIS had several missing
values from the original source [71]. Interestingly, in the supervised ML analysis, the gene expression
feature has the most negligible impact in the model; this result might reflect the fact that those
genes could be particularly prone to splicing mutations, which are more challenging to recognise
and assess [217].

Overall, pre-processing and balancing the genomic data was not sufficient to yield a robust estimate
from the performance of the tuned machine learning model. Moving forward, the predictive value of
ML-based classifier ensembles and the BGMM approach provides evidence of the explanatory power
of using gene-level metrics. In particular, genes found to be contributing to Mendelian disorders
tend to be complex in structure. For monogenic diseases, one or several validated causal variants
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are associated with some variants from complex disorders [169]. Furthermore, in complex disorders,
many genes may act together and modify the effect of each other, jointly contributing to disease
development [52]. Despite this, it might be reasonable to separate genes for complex disorders from
gene prioritisation for monogenic disorders and reformulate. For example, the Abramovs et al.
[218] study developed a gene variation intolerance rank for prioritising disease genes. They divided
Mendelian disorders into dominant and recessive Mendelian genes. Their results revealed that the
most intolerant genes are potential genes related to severe dominant disorders.

Although by no means comprehensive, the preceding examples represent both the basic principles
and common challenges of using combined omics data to recognise human disease genes. The diffi-
culties of combining diverse genic properties in this way are evident, as are the problems of modelling
highly unbalanced data where the majority class (NDNE) is likely to contain numerous misclassi-
fied genes that are the monogenic genes research set out to discover. However, genes positioned
towards the end of the essentiality spectrum likely represent the best candidates for unrecognised
monogenic disease genes. Along with the impact of variability in quality and completeness of indi-
vidual gene-specific scores, an incomplete understanding of the gene groups make it challenging to
classify them. This study is limited by the accuracy of the genetic information currently available
for human diseases and the incomplete knowledge regarding the true susceptibility/causal variants
and their corresponding genes. Identifying new genes, which have not yet been classified to the
group of genes already known to be related in MNC, is the rationale behind this study. Therefore,
it is expected to include misassignments. Another challenge is the difficulty in recognising essential
genes, given that the inactivation of an essential gene is fatal. For this reason, integration of new
functional genomic data across multiple levels of gene properties may reveal both candidate causal
variants and one or more target genes for downstream study.





Chapter 5

Robust predictions to identify disease
genes using unsupervised machine
learning

5.1 Introduction

Causal variant identification often begins by understanding their function at a molecular level.
Clustering genes can recognise these causal variants according to the similarity of their genomic
and functional properties [177]. Two factors often link genes that underlie human disease; a higher
probability of physical interaction between their products and higher expression profile similarities
for their transcripts [219]. As a result of the interplay between gene properties, Spataro et al. [52]
demonstrated that the biological properties and the evolutionary history of human disease genes
are different compared to non-disease genes and to putatively essential human genes.

Gene property data can be represented as a matrix, with each row corresponding to a gene and
each column denoting a particular property. In this case, the properties are related to genomics,
functional and biological information describing the gene. Each entry of the matrix is a numeric
representation of the gene describing a given property for that particular gene [220]. This structure
can be used to compare a gene’s profile to produce a cluster of known/candidates disease genes
distinct from non-disease genes. Thus, this structure falls into the category of unsupervised machine
learning (ML) methods. Unsupervised learning algorithms are used when observation labelling is
not available and the analysis aims to discover hidden patterns between genes properties and genes.
Moreover, these methods may help to identify potentially novel patterns of genomic elements [84].
In addition, the unsupervised ML method can partition genes into groups and assign a label to each
partition based on the functional and genomic information. The goal is then to separate the genes
into groups or clusters that are more similar to each other and dissimilar between gene groups [211].

95
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An unsupervised ML method is proposed for grouping genes based on their genomic and functional
similarity properties. The proposed method integrates statistical analysis to achieve simultaneous
consensus clustering and outlier detection. The method enables gene clustering by applying a
Gaussian mixture model (GMM) resulting from the underlying structure of the properties of the
genes without a priori information and simultaneously eliminating the negative effect of outlying
data.

The simultaneous Gaussian mixture clustering with outlier removal (GMM-non) uses the selected
features discussed in Chapter 4 (see Table 4.3 [167]). These gene metrics measure the degree of
gene essentiality by quantifying the tolerance of loss of function (LoF) variation and the degree of
conservation of genes under selection. By integrating these features, distinct gene subtype classifi-
cations might be made according to the degree of gene essentiality (see Table 5.1). In this study,
the proposed multi-objective clustering technique is applied over the reduced dimensionality gene
set to categorise known and novel Mendelian disease genes and separate them from complex disease
and non-disease genes.

Table 5.1: Features selected

Feature Name Properties Literature

pLI pLI is the probability of loss-of-function variation Essential and conserved genes Samocha et al. (2014) [178], Lek et al. (2016) [177]

RVIS Residual variation intolerance score Essential and conserved genes Petrovski et al. (2013) [173]

DNE Gene constraint de novo excess score Essential and conserved genes Samocha et al. (2014) [178], Hsu et al. (2016) [180]

SIS Substitution intolerance score Essential and conserved genes Aggarwala et al. (2016) [71]

HI Deletion-based haploinsufficiency score Haploinsufficient genes Haung et al. (2010) [183]

NET Gene position in network score Haploinsufficient genes Khurana et al. (2013) [181], Hsu et al. (2016) [180]

GHIS Genome-wide haploinsufficiency score Haploinsufficient genes Steinberg et al. (2015) [182]

REC Recessive score Haploinsufficient genes MacArthur et al. (2012) [184], Hsu et al. (2016) [180]

GIMS Gene-level integrated metric of negative selection score Genes under selection Sampson et al. (2013) [186]

GDI Gene damage index score Genes under selection Itan et al. (2015) [186], Hsu et al. (2016) [180]

LDU (residuals) Linkage disequilibrium residuals from LD maps in LDU Linkage disequilibrium Vergara-Lope et al. (2019) [192], Lonjou et al. (2003) [197]

Note. Features were selected based on the systematic review in ‘Essentiality-specific pathogenicity prioritization gene score to improve
filtering of disease sequence data’ by Alyousfi D, Baralle D, and Collins A. (2020) Briefings in Bioinformatics [196].

5.1.1 Unsupervised machine learning algorithm

Unsupervised ML algorithms train a machine to discover hidden structures and patterns in unla-
belled data [221]. The unsupervised methodology ‘learns’ about a set of examples by considering
the specific characteristics of features. Because the method is unsupervised, the output classes must
then be semantically interpreted [211]. In this context, the learning model aims to resolve genes
with a high potential for containing pathogenic disease-related variation and discern relationships
among genes based entirely on their genomic and functional properties.
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5.1.2 Clustering approaches

Clustering techniques are known as unsupervised ML algorithms since they do not require prior
knowledge about the clusters. This analysis is used to uncover latent groups of homogenous obser-
vations. The performance of clustering techniques is highly dependent on the effectiveness of the
clustering algorithm [222].

The standard clustering-based algorithms are hierarchical methods and k-means clustering. These
algorithms divide the entire unlabelled data into relatively homogeneous clusters in such a way
as to maximise data similarity within the cluster and data dissimilarity outside the cluster [223].
Hierarchical methods build a tree-like structure wherein instances or subgroups are merged until
all the genes are in a single cluster based on their genomic and functional profiles (similarity
matrix). This agglomerative method merges the closest profiles, building an average profile of the
joined profiles, and continues iteratively until the entire tree is built. However, it is well known that
hierarchical clustering algorithms are susceptible to outliers and display highly skewed dendrograms,
which may not reflect the real underlying data structure [83, 224, 223].

The k-means algorithm separates a dataset into k clusters by selecting representative gene profiles.
The method defines an initial centroid randomly for each k cluster using the totality of gene profiles.
The k centroids are then repeatedly updated by assigning genes to the closest centroid; the algorithm
then iterates until the new centroid and the previous centroid are within some defined threshold.
The k-means algorithm is more sensitive to outliers since it uses the mean of cluster data points to
find the cluster centre [225].

Model-based clustering, on the other hand, predicts probabilistic distributions in the data. The
model parameters can be estimated using maximum likelihood algorithms such as the expectation-
maximization (EM) algorithm. A GMM implements the EM algorithm to fit a mixture of Gaussian
models assuming that the probability distributions are multivariate Gaussian distributions with
unknown parameters. The model parameters for Gaussian distributions (mean and variance) are
considered latent variables, and the goal of EM is to compute maximum likelihood estimates of the
parameters based on the data. EM clustering alternates between two steps: (E) expectation and
(M) maximisation. In the E step, the current estimates of the model parameters are used to compute
the posterior probability – often referred to as the responsibility – of the model parameters for every
instance. In the M step, the responsibility is used to re-estimate the model parameters. These two
steps are repeated until the model parameters converge. The inferential goal is then to estimate
the weights and the location of the components’ densities for the k groups [222, 226, 120]. Similar
to clustering-based techniques, GMM is not able to deal with outliers properly. The outliers are
represented with low probability, which may negatively impact the performance of Gaussian-based
clustering algorithms.
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5.1.3 Outlier detection

Outliers are observations that deviate significantly from the majority of the patterns in the data,
which suggests that they may be generated by a different process [227]. Observations having
integrated squared error greater than a threshold are also termed outliers. Cluster analysis is
analogous to outlier detection as the two techniques address highly related tasks. Clustering finds
the majority of patterns in a data set and organises the data accordingly, whereas outlier detection
deals with recognised points belonging to none of the clusters [228, 86]. Therefore, outlier detection
can be used to detect and remove those extreme observations from the dataset.

5.2 Methods

5.2.1 Simultaneous Gaussian Mixture clustering-based outlier detection algo-
rithms

5.2.1.1 Definition of gene-classes

The GMM-non method was applied to classify disease genes as distinct from non-disease genes. This
proposed method uses knowledge from the hypothetical model of Pengelly et al. [53] (as described
in Chapter 1) to describe the degree of essentiality. The four gene groups were defined as Spataro
et al. [52] gene groups; Mendelian non-complex (MNC), Complex non-Mendelian (CNM), Essential
non-disease (END), and Non-disease non-essential (NDNE) (as discussed in Chapter 4). Briefly, the
genes groups constructed by Spataro et al. [52] showed that, relative to non-disease genes, human
disease genes have specific evolutionary profiles and protein network properties. Their results also
suggest that genes linked to Mendelian disorders play an important role in driving susceptibility to
complex disease.

5.2.1.2 Gene data and dimensionality reduction

The simultaneous GMM-non method consists of three consecutive stages. It begins with a data
preparation step, followed by dimensionality reduction and finally cluster assignment. The analysis
is shown schematically in Figure 5.2. In the first stage, 11 gene-specific metrics were used as
a baseline data set for constructing the gene classification (see Table 5.1). These features have
already been pre-processed by data normalisation, imputing missing values, and undertaken data
transformation (as described in Chapter 4). Once the appropriate gene-specific metrics for gene
clustering had been selected, in the second stage, two methods for dimensional reduction were
examined prior to clustering the gene data; principal components analysis (PCA) and t-distributed
stochastic neighbour embedding (t-SNE). These algorithms represent opposite ends of the spectrum
ranging from projection/embedding algorithms that prioritise preservation of the global structure
(PCA) to those that prioritise preservation of local structure (t-SNE) [229, 125].
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In the third stage, the GMM-non method was first applied to draw the probability distribution
from the gene data by summing mixture components until convergence was reached. Each mixture
component represented a multivariate Gaussian distribution with four dimensions (gene groups), a
multivariate mean (a 4-dimensional vector) and a covariance matrix (a 4×4 matrix). In order to
map comparison of the methods, the number of mixture components was chosen (the key fitting
parameter of a GMM, usually denoted k) by checking the variance structure of each cluster. This k
parameter was found by comparing the results of Bayesian information criterion (BIC) and Akaike
information criterion (AIC). The fitting procedure attempts to find the model that maximises the
gene data’s likelihood given the GMM. Secondly, the outlyingness factor is computed for each vector
during the iteration process, and those data points (potential to be outliers) are removed. Thus, the
GMM clusters are modified in each iteration until the maximum distance to the partition centroid
is found.

Figure 5.1: Suggested unsupervised behavioural mapping method flow chart. Analysis for gene
clustering. The analysis is aggregated into two major segments; dimension reduction and unsupervised
ML model. During the first stage, the gene data were pre-processed and then PCA was undertaken to
reduce the dimensionality of the data. The simultaneous Gaussian Mixture clustering with outlier removal
method was applied during the second stage to generate clusters.

5.2.1.3 Gaussian mixture model

Model-based clustering was carried out as the second stage of model construction. A GMM for
the gene data X was assumed, with n observations and D variables. In particular, it was assumed
that the data in each gene group was derived from a multivariate Gaussian distribution and the
combined gene data was from a convex combination of multivariate Gaussian distributions. This
distribution is used in Gaussian mixture modelling for G clusters, and the likelihood is given by:

P (X,Z|µk,Σk) =

n∏
i=1

G∏
k=1

πI(zi=k)N (µ,Σ)I(zi=k), (5.1)
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where πk is the probability that an observation belongs to cluster k, φk = N (µ,Σ)I(zi=k) is the
normal probability density function centered at µk with variance–covariance matrix Σk, and zik

defines the probability that the nth observation belongs to the kth cluster [230]. Thus, from the
initial clusters, maximum likelihood estimation (MLE) of φk was carried out via the EM algorithm.
Until convergence occurs, the EM algorithm iterates between the E-step, which computes zik, the
conditional probability that observation i belongs to group k given the current parameter estimates
by:

log(P (X,Z|µk,Σk)) =
n∑
i=1

G∑
k=1

zik [log(πk) + log(N (µk,Σk))] , (5.2)

with each zik replaced by its current conditional expectation ẑik = E(zik|xi, φ1, . . . , φG), and the
M-step, where the new parameters z∗ik are maximized with respect to the parameters (see Figure 5.2)

5.2.1.4 Distance-based outlier removal

For the third stage, the outlyingness factor is computed from gene data to determine which genes
may be classified as outlying. Let us assume that the factor depends on the distance from the
cluster centroid of k groups from the gene data X. Then the algorithm’s iterations first start by
finding the vector with maximum distance to the partition centroid:

dmax = max
i
{‖xi − cpi‖}, i = 1, ..., I. (5.3)

For GMM clustering, the Euclidean distance was used as a multivariate distance metric to measure
the distance between each centroid and a point (vector). The centroid point corresponds to a
coordinate X in the two-dimensional space. Thus, the centroid of the GMM was defined as the
point with the maximal density to represent its cluster by:

cpi = argmax
G∑
k=1

πiN (X|µk,Σk). (5.4)

The outlyingness factor was then calculated for each vector as:

oi =
‖xi − cpi‖
dmax

, (5.5)

where its value lies between 0 and 1 after being normalised. Finally, a threshold was set to determine
all points regarded as outliers and removed from the gene data. Points with an outlier factor higher
than the threshold are treated as outliers and thus removed; that is, the vectors oi > T . At the
end of each iteration, the GMM algorithm was run using the previous cpi as the initial point, and
a new solution was then fine-tuned for the reduced dataset. Clusters are updated at each iteration
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using the new cpi and the remaining dataset without the removed outliers. This iterative process
continues until the change in log-likelihood from GMM is less than some threshold and convergence
is declared (see Figure 5.2).

Figure 5.2: Pseudo-code of the proposed method for simultaneous Gaussian mixture clus-
tering outlier removal. The pseudo-code explains the proposed method, which employs both clustering
and outlier discovery to improve the estimation of the centroids of the generative distribution. First, the
GMM is run until convergence and the best centroid is chosen. The algorithm continues for I iterations in
each cluster to compute the outlyingness factor, then all data points exceeding the threshold are removed,
and the data updated. Lastly, the GMM is run over the updated data and the cluster.

5.2.2 Data and code

The GMM-non construction and analysis were conducted in Python version 3.7.3 (https://www.
python.org/), awk and R version 3.2.2 (https://www.r-project.org/) using custom-written
scripts.

5.3 Results

5.3.1 Data

The functional and genomic metrics were described in Chapter 4, using 11 gene-level metrics (Table
4.1) to distinguish disease genes from non-disease genes. A total of 14,708 genes were allocated into
the categories NDNE, MNC, CNM and END using the proposed groups of Spataro et al. [52] and
the hypothetical model of Pengelly et al. [53] (as discussed in Chapter 1). Spataro gene groups were
taken for comparison against the new classification provided for the proposed methodology. Here,
Spataro’s gene groups were further revised to include additional genes implicated in Mendelian disor-
ders using an updated list from the genemap2.txt OMIM database https://omim.org/downloads/

https://www.python.org/
https://www.python.org/
https://www.r-project.org/
https://omim.org/downloads/
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(OMIM, 2020). The combined set of genes known to be involved in monogenic disorders comprised
3,350 genes for this category. In addition, to update the MNC gene group, an updated set of
Mendelian gene names of disease genes was included from the HUGO Gene Nomenclature Commit-
tee (HGNC) database (https://www.genenames.org/download/statistics-and-files/) and the
GeneCards database of human genes (https://www.genecards.org/cgi-bin/listdiseasecards.
pl?type=full). Spataro’s gene groups were used as a benchmark for showing the distribution of
the genes within the gene groups. The genes in each group are unbalanced and are distributed as
follows: 8,986 NDNE genes, 3,362 MNC, 1,588 CNM and 891 END.

5.3.2 Dimensionality reduction

Dimensionality reduction was used for data visualisation, reducing the number of data inputs to a
manageable size, preserving the dataset’s integrity as much as possible. It was implemented in the
pre-processing data stage, and there were applied two different dimensionality reduction methods:
PCA and t-SNE.

The results of applying PCA and t-SNE dimensionality reduction to 11 features extracted from
the functional and genomic data are given in Figure 5.3. Although these methods can separate
gene groups, PCA and the embedded feature space (t-SNE) overlap among the four gene groups.
The results suggest that the dimensionality reduction methodologies applied could not identify an
internal structure or a noticeable pattern from the set of p=11 features. For the MNC gene group,
however, it can be observed that some genes have the highest PCA units along with the CNM group.
Although t-SNE may improve the translation of multidimensional data into low dimensions upon
nonlinear dimensionality-reduction, in this study, PCA was used for subsequent analysis because
the pairwise distance between two genes is low, suggesting that genes are similar and that linear
mapping is preserved in the data over short distances [231, 232].

PCA components determined to be orthogonal transform the 11 correlated features into a set
of linearly uncorrelated features. As there is no significant test to elect principal components,
researchers have been forced to devise some rules throughout time. Therefore, the optimal number
of dimensions was chosen based on the shuffling procedure described by Berman et al. [233].
This procedure quantifies the cumulative explained variance ratio as a function of the number
of components. The procedure indicated that between 1 and 20 principal components contained
variance above sampling error and should be retained, explaining 50%–70% of the data variance,
which implies that the eigenvalues greater than one can be considered as having a significant impact
on the target variable. Figure 5.4 shows the cumulative proportion of explained variance. Therefore,
two components were retained for the subsequent analysis as the first component explained ∼42% of
the total variance, and the second component explained ∼11% of the total variance. The cumulative
percentage variance described for the first two components was ∼53%.

The 2-dimensional PCA results of the 11 features are given in Table 5.2. These results show the
importance of each feature reflected by the magnitude of the corresponding characteristic vectors.

https://www.genenames.org/download/statistics-and-files/
https://www.genecards.org/cgi-bin/listdiseasecards.pl?type=full
https://www.genecards.org/cgi-bin/listdiseasecards.pl?type=full
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Figure 5.3: PCA (a) and t-SNE (b) plot of a three-dimensional gene cloud. Comparison between
3-dimensional PCA (a) and t-SNE (b) spatial display of 11 features from genomic and functional data using
14,708 genes. For PCA, the percentage variation explained by each component is indicated in parentheses
and the PC are ordered by their ability to explain the variance. Gene groups proposed by Spataro et al.
(2017) are color-coded as follows: NDNE in blue, MNC in purple, CNM in green and END in yellow. The
gene distribution is 8,986 NDNE, 3,362 MNC, 1,588 CNM and 891 END.

Principal 
components

Variance 
Explained

1 0.416
2 0.110
3 0.091
4 0.078
5 0.067
6 0.058
7 0.054
8 0.042
9 0.035
10 0.034
11 0.016

Figure 5.4: Explained variance ratio. The curve that quantifies the 11-dimensional variance. The
first two-dimensional projection describes more than ∼53% of the total variance of the data, and three
components describe close to 63% of the variance.

The important features are REC and SIS, explaining 13.41% and 10.52% of the total variance,
respectively. linkage disequilibrium unit (LDU) (∼4%) and pLI (∼8%) showed the smallest propor-
tion of variance explained in the 2-dimensional space, but these features have a moderate impact on
the second principal component weight. Interestingly, residual variation intolerance score (RVIS)
had the most weight in the second principal component. These results suggest that the first com-
ponent could be related to explaining intolerance with LoF, while the second component could be
associated with the selection process.
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Table 5.2: Distribution of the gene-specific mean among gene groups

Feature
Principal component loadings

Variance explained Proportion of variance explained
PCA 1 PCA 2

REC −0.32 0.10 6.20 13.41

SIS 0.33 0.23 4.86 10.52

HI −0.34 0.03 4.62 9.99

NET −0.40 −0.21 4.44 9.60

GIMS −0.30 0.35 4.34 9.39

GHIS −0.28 0.36 4.24 9.17

RVIS −0.15 0.67 4.20 9.09

GDI −0.35 −0.18 3.84 8.32

DNE 0.38 0.12 3.81 8.25

pLI 0.24 0.31 3.66 7.93

LDU (residuals) 0.05 0.22 2.00 4.33

Figure 5.5 displays all the component lengths, showing their magnitudes. The first principal com-
ponent can be attributed to a measure of haploinsufficiency by recessive (REC), Haploinsufficiency
(HI) and gene position in networks (NET), while the second component corresponds to a measure
of essential genes and intolerance to LoF by substitution intolerance score (SIS), genome-wide hap-
loinsufficiency (GHIS), gene constraint de novo excess (DNE), loss intolerance probability (pLI),
but which at the same time is inversely related to the measure of genes under selection by gene-level
integrated metric of negative selection (GIMS), RVIS, gene damage index (GDI) and LDU. For
REC, SIS, HI, NET, pLI, DNE, SIS and GHIS are oriented in the same direction, indicating a
correlation. The directions for GIMS, RVIS, GDI and LDU are opposite, indicating that the second
principal component might be related with genes that tend to be intolerant to LoF, reflecting an
intense impact of selection and vice versa. Following the gene-groups, CNM probability seems to
be influenced by PCA2, which goes beyond the PCA1 trend reflecting the scheme shown for the
END groups. This result suggests that it could be applied to GWASs, where both axes define CNM
probability and might define a classifier based on these components.

5.3.3 Clustering approaches

Once the reduced gene space was formed, hierarchical and k-means clustering methods were carried
out over this reduced gene space. The hierarchical clustering model was run first. This unsupervised
approach identifies 2 gene groups (Figure 5.6 (a)). The hierarchical clustering performance is
displayed in Figure 5.6 (b). The Figure shows hierarchical clusters under the two-dimensional
projection space for four groups. This approach allocated 4,535 genes to NDNE, 4,630 genes to
MNC, 3,859 genes to CNM and 1,803 genes to END. Comparing the hierarchical clusters and the
Spataro gene groups, it was observed that the cluster assignment was not robust for END and
CNM. These results suggest that the algorithm tends to concentrate on local clusters instead of the
global expression pattern. Due to this local effect, errors in the early stage of cluster assignment
increased the final result.
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Figure 5.5: Principal component analysis of functional and genomic data for feature im-
portance. Two-dimensional projection of impact and importance of 11 features. The vector loadings for
each of 11 features under the two-dimension projection represent how important they are in describing the
distribution of the functional and genomic data; specifically, they represent the measure of the variance of
the gene data. Colours indicate Spataro’s gene groups: NDNE in blue, MNC in purple, CNM in green and
END in yellow.

Figure 5.6: Hierarchical clustering of functional (a) and genomic data and principal compo-
nents analysis plot for hierarchical clustering (b). The dendrogram (a) was obtained by carrying out
hierarchical clustering using ward distances and average linkage strategy. Each leaf represents one of the
14,708 genes and colours indicate the selected clusters. The vertical axis represents the distance between
nodes of the tree. In the PCA plot (b) for functional and genomic data, colours indicate the four classes
from the hierarchical approach in the gene data: 4,535 NDNE, 4,630 MNC, 3,859 CNM and 1,803 END.

Secondly, the k-means clustering was applied to assigned genes into four classes (Figure 5.7). The
k-means procedure yielded a partition very close to the underlying structure in the functional and
genomic data. Following Spataro’s gene-groups, k-means did not stratify genes according to END,
MNC and CNM. The approach assigned 4,143 genes to NDNE, 5,662 genes to MNC, 3,716 genes
to CNM and 1,306 genes to END. These results may imply that the similarity between the END,
MNC and CNM gene groups become isometric when more genes are involved and noisy genes can
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further distort the relationship.

Figure 5.7: Principal components analysis plot for k-means clustering. The scatter plot with
the two first largest components from the PCA for the functional and genomic data. Colours indicate the
four classes in the gene data: 4,143 NDNE genes, 5,662 MNC genes, 3,716 CNM genes, and 1,306 END
genes.

5.3.4 Application of the proposed approach

The determination of the number of GMM-non components was based on the likelihood function
using BIC and AIC. The optimal number of clusters is the value that minimises the BIC and AIC.
Following these techniques, Figure 5.8 suggests that a four-component Gaussian mixture was more
appropriate to represent the gene data. This result is consistent with the gene groups proposed by
Spataro et al. [52].

Figure 5.8: Principal components analysis plot for k-means clustering. This graph displays the
optimal Gaussian components.

Once the appropriate number of GMM-non components was set, the proposed algorithm was applied
to functional and genomic data, and distinct gene classes can be identified. Briefly, the GMM-non
method seeks to model the relationship of the genes via a mixture of Gaussian density distributions
that can conceptually be visualised as a collection of 4-dimensional Gaussian distributions overlaying
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a two-dimensional projection. The peaks of each distribution form where points are most dense
and the ellipses of the distribution conform to nearby points (see Figure 5.9 (a)). The maximum
likelihoods for distribution parameters of GMM are updated using a series of successive steps in the
expectation-maximisation algorithm. The genes in a GMM cluster will always meet the outlyingness
factor assumption on the outlier removal step. Once this is completed, every gene receives a label
with membership probabilities, indicating the distribution to which it most likely belongs. The
results of the proposed algorithm can be seen in Figure 5.9 (b). Genes are coloured according to
the different gene classes: NDNE in blue, MNC in purple, CNM in green and END in yellow. Genes
coloured maroon were determined to be outliers and were removed from the data. The distribution
of the genes within the gene classes found by the GMM-non model with outlier removal was 3,630
in NDNE, 5,865 in MNC, 3,808 in CNM and 1,510 in END, excluding 14 potential outlier genes.
The proportion of outlier genes was relatively small within the gene classes: 6 in NDNE, 6 in MNC
and 2 in CNM, indicating that the proposed methods can detect genes related to various outlier
genes.

Figure 5.9: PCA for Gaussian contours (a) and GMM clustering with outlier removal (b).
In (a), each GMM ellipse is identified with a different colour: NDNE in blue, MNC in purple, CNM in
green and END in yellow. It can be seen that there is an overlapping area between the GMM ellipses. In
(b), the GMM clustering model with outlier removal was applied in 11 features under the two-dimensional
projection using 14,813 genes (after the outlier removal step). The distribution into gene classes is 3,630 in
NDNE, 5,865 in MNC, 3,808 in CNM and 1,510 in END. Colour coding in (b) is consistent with sequence
colouring in (a), adding maroon, which identifies the outlier genes to be removed.

The results given by GGM clustering with outlier removal (Figure 5.9 (b)) might suggest that the
END gene-class has positive loadings for the first component and negative loadings for the second
component, indicating that these genes tend to be intolerant of LoF and might be subject to a strong
selection effect. By contrast, the NDNE group has negative loadings in the first component and
positive loadings in the second component, implying that these genes can be tolerant of mutation
since they are exposed to high recombination events and are weakly impacted by selection. Genes
enriched for both MNC and CNM have an intermediate loading for both the first and second
components involving recombination and selection processes, which might preserve damaging but
non-lethal variants [53].
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5.3.5 Clustering performance

According to current understanding, the proposed method can capture the heterogeneity of gene
relationships through their functional and genomic properties under a two-dimensional projection.
However, functional and genomic scores cannot allocate all genes into their known classes due to
extensive overlap and similarities between gene groups. However, the analysis aims to aid recog-
nition of potential but currently unrecognised Mendelian disease genes. Genes currently assigned
to classes other than the Mendelian gene group but classified by these methods towards the essen-
tial end of the gene spectrum are potential Mendelian disease candidates and recognition of even
a small number of potential novel Mendelian genes is valuable. Figure 5.10 shows a comparison
of the distribution of genes in two-dimensional space between gene groups given by Spataro and
gene classes estimated by GMM-non. According to gene groups (Figure 5.10 (a)), there was no
clear separation between those groups, although the END gene group seems to be separated from
the NDNE group. In contrast, for genes distributed within gene classes predicted by the proposed
methodology (Figure 5.10 (b)), there is segregation between these classes. Both NDNE and MNC
have a visible separation showing different gene characteristics, while the CNM class overlaps with
the other gene classes. Genes in both MNC and END show a strong relationship indicating that
genes at this end share similar properties explained by the scores.

Figure 5.10: Comparison of gene distribution between gene groups. In (a) the distributions of
the genes are coloured according to Spataro’s gene groups; in (b) they are coloured by GMM-non prediction
groups. Both gene groups are graphed under a two-dimensional projection. Colours indicate the groups:
NDNE in blue, MNC in purple, CNM in green and END in yellow.

The precision, recall and F1-score metrics (see Table 5.3) were computed using a combination of the
OMIM-Mendelian disease list [19] and Spataro’s groups as a benchmark to evaluate the robustness
of the method of GGM clustering with outlier removal. Approximately 30% (precision) of the genes
in NDNE were identified correctly as belonging to this class; however, the proposed GMM-non
model can recognise 80% (recall) of the genes as belonging to NDNE, while just one of four genes



Chapter 5 Robust predictions to identify disease genes using unsupervised machine learning 109

were allocated to the MNC class. The CNM and END have the lowest precision, recall and F1

score. This indicates that the model is prone to producing more false negatives in these classes
than in the NDNE and MNC groups.

Table 5.3: Performance of GMM clustering with outlier removal model

Gene group Precision Recall F1-score Genes

NDNE 32% 80% 46% 3,630

MNC 36% 21% 26% 5,865

CNM 26% 11% 15% 3,808

END 20% 12% 15% 1,510

A total of 5,865 of the 14,813 genes were identified belong to MNC by the proposed model. 3,808
genes were placed in CNM, 3630 in NDNE and 1,510 in END. Due to the similarities and shared
properties between MNC, CNM and END genes, the proposed model cannot classify all genes
precisely into their proper categories. However, it must be noted that the Spataro classification
is based on current knowledge and is likely to include genes that are unrecognised Mendelian
candidates (presumably mostly classified as NDNE). Comparing the gene classes given by the
proposed model and the benchmark gene group (see Table 5.4), 1,750 genes that are well known
to be related to Mendelian disorders were found in CNM and END. Moreover, 388 and 3017 were
wrongly classified as NDNE when they are MND or CNM. Many genes that are classified in the
NDNE group by Spataro et al. [52] study were placed into the MND (3,440) and CNM (2,253)
groups.

Table 5.4: Gene distribution by GMM-non model prediction and OMIM/Spataro groups

OMIM/Spataro gene group
GMM model prediction

NDNE MNC CNM END

NDNE 2,906 3,440 2,253 381

MNC 388 1,218 1,000 750

CNM 307 666 415 198

END 29 541 140 181

The mean of the scores for each score by Spataro and GMM-non gene group is given in Table 5.5.
It reports that the directions of the scores were preserved between all groups, which is consistent
with the model proposed by Pengelly et al. [53]. For example, the END group presents the highest
degree of essentiality, while the NDNE group appears to be the least essential. The MNC and the
CNM groups are found to be at intermediate levels of degree of essentiality. The means of the
metrics were found to be statistically different between the classification by the GMM-non model
and the benchmark gene groups (Supplementary Table S4.1). Interestingly, the pLI score from both
gene groups in END was not statistically different, with similar results for LDU residuals from both
NDNE and CNM.
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Table 5.5: Means of the metrics by GMM-non model prediction and OMIM/Spataro groups

Feature
NDNE MNC CNM END

OMIM Spataro GMM prediction OMIM Spataro GMM prediction OMIM Spataro GMM prediction OMIM Spataro GMM prediction

Number of genes 8,986 3,630 3,362 5,865 1,588 3,808 891 1,510

pLI 0.252 0.031 0.317 0.513 0.364 0.119 0.589 0.566

RVIS 0.082 0.618 −0.219 −0.525 −0.079 0.204 −0.425 −0.301
DNE 0.696 −0.183 1.074 1.587 0.942 0.472 1.753 1.619

SIS −0.072 −0.853 0.194 0.715 0.096 −0.275 0.601 0.432

HI 0.258 0.118 0.358 0.381 0.330 0.237 0.478 0.598

NET 0.498 0.186 0.657 0.679 0.574 0.603 0.747 0.856

GHIS 0.515 0.456 0.530 0.581 0.522 0.488 0.567 0.542

REC 0.149 0.109 0.269 0.161 0.194 0.175 0.239 0.502

GIMS 0.516 0.745 0.426 0.258 0.452 0.605 0.314 0.358

GDI 4.352 5.974 4.787 2.424 4.521 5.905 3.303 4.494

LDU (residuals) −0.047 −0.075 −0.084 −0.465 0.204 0.317 −0.291 0.768

Principal component 1 −0.400 −2.466 0.510 1.677 0.196 −0.962 1.757 1.840

Principal component 2 0.232 0.370 −0.487 0.497 −0.105 −0.276 −0.302 −2.115

5.4 Discussion

This chapter examines the efficiency of recognising Mendelian disease genes from complex disease
and non-disease genes through essentiality-specific information sharing across genes. Here, different
clustering methods were applied to separate genes into four groups such as k−means, hierarchical
clustering and the proposed GMM-non model. The latest showed improvements in efficiency for
detecting MNC genes. This proposed GMM-non model would therefore be effective for selecting
Mendelian-related genes that are positioned towards the essential-gene end of the spectrum as
defined by Pengelly et al. [53]. However, the model for selecting MNC genes with intermediate and
low essentiality could be a subject of further research. Another important subject would be adding
a gene-level mixture structure; more integration of additional functional and genomic data of the
association specifically with MNC and CNM would help provide a more formal basis for evaluating
false positives and true positives in gene selection.

Different methods have been developed to separate genes, as an example, the study conducted by
Alyousfi et al. [196] developed the essentiality-specific pathogenicity prioritisation (ESPP) score
based on PCA. The score integrates eight individual gene-specific scores, which have different
properties and assumptions. The ESPP score was calculated as the weighted sum of each of the
component scores. For the gene groups, the distribution of ESPP score was considered to located
the genes following Spataro et al. [52] gene groups. In this study, the proposed GMM-non model
also integrates gene-specific metrics according to their essential properties. Although these method-
ologies are differently measured, the results are similar. For example, genes currently classed as
NDNE with a particularly high ESPP are related to monogenic disorders scores. In this context,
those genes were classified into the monogenic disease by GMM-non. Both analyses showed that
candidates genes to be potentially essential classified as NDNE (for example, SUPT6H, FRY) and
genes known to contain CNM variation but have properties that suggest that they are also candidate
monogenic disease genes (for example, RYR3, DIP2C).

Although PCA has its own structure to elucidate population structure or separate hyperplane
ranking strategy, it does not necessarily represent important discriminant directions to separate
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sample groups. In this context, it was decided to develop a new method that includes a robust
mathematical structure. The GMM-non is an alternative methodology for looking at the data
and recognising genes with high potential for pathogenic disease-related variation. The GMM-non
classifier is suitable for the classification part, but the initial dimension reduction is performed by
principal component analysis. Then, the reduced data (which contained only two components)
dealt with the two–variables together and fitted a two-component bivariate GMM-non to the data.
Later, the classifier was obtained using an EM algorithm and simultaneously outlier removal.

The analysis of GMM-non showed that genes allocated to MND are expected to include misas-
signment between END and CNM due to overlapping the essentiality level properties across these
groups. Moreover, ∼38% of the genes that are placed in the NDNE groups [52, 196] were assigned to
the MND group by using the proposed model. For example, genes in these MND groups, AADAT
(Aminoadipate Aminotransferase) was identified by the proposed model related to MND, but it
was placed in NDNE. According to OMIM [19], AADAT is a protein-coding gene which is associ-
ated with Huntington disease (autosomal dominant) (Rappaport et al. [234]). Another example is
ANKRD44 (Ankyrin Repeat Domain 44), which tends to be involved in developing Glass syndrome
(autosomal dominant and fatal disease). The gene CT62 (cancer/testis associated 62) related to
cancer was found in the MND groups when in reality it belongs to CNM [234]. New genes were
identifying into MND using the proposed model. Although these genes have not yet been labelled,
they are already known to be involved in MND were

The analysis of CNM groups given by the proposed model found that ∼25% of the total genes
in the NDNE groups were assigned to CNM. Comparing genes in the CNM group, the model has
distinguished 15 genes well known to be related to inflammatory bowel diseases [234]. However,
there are ∼30% of the genes that are well known to be Mendelian-related genes that were wrongly
assigned into CNM group. This is the result of the shared properties between both MND and CNM
groups. All results above indicate that CNM genes tend to present higher expression levels and
are enriched in specific relevant protein function categories compared to CNM genes. According to
Spataro et al. [52] study, genes that overlap into the MND and CNM groups might be involved in
essential metabolic processes. They might also enrich protein products in essential biological func-
tions, such as cytoskeletal proteins, extracellular matrix components, enzymes, proteins involved in
cellular communication, transporters and transfers/carriers, and proteins involved in the immune
and defence system. Thus MND genes seem to have more relevant functional roles among those
associated with at least one complex disease.

While using the proposed model shows promise for identifying condition-specific MND genes from
non-disease genes, several challenges still have to be tackled. The GMM-non assumed four compo-
nents across genes. In some cases, using only one cluster for a particular direction of gene properties
may be rather restrictive for identifying plausible considerable heterogeneity among disease genes.
The complexity of disease-gene relationships and the diversity of gene properties limit the ability of
individual and integrated scores to discriminate certain gene classes fully. For example, MacArthur
et al. [12] developed their gene score based on human–macaque conservation and proximity to
known recessive genes in protein interaction networks. Although their score, which describes the
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probability of a gene containing recessive variation, provides a degree of separation between loss
of function tolerant and recessive genes, there is a substantial overlap. These scores do, however
provide useful information to rank potential candidates in a genome filtering context. Furthermore,
with the continued and dramatic rise in the number of genomes sequenced, a greater understand-
ing of gene properties and functions is likely to improve the recognition of genes likely to contain
monogenic disease variation. Given a sequenced genome for which there are several potential func-
tional candidate variants in different genes access to the available scores provides a basis for ranking
candidates objectively.

To improve the model’s performance, an effort to integrate additional genomic and functional
gene properties alongside improving gene classification given developing knowledge would be a
worthwhile basis for future studies. Therefore, this methodology can be extended to involve multiple
components, possibly with a selection of the number of Mendelian-related genes based on autosomal
recessive or dominant genes [218]. Another restriction in the context of GMM-non is that no
interaction or correlation is assumed among genes. According to studies by Cacheiro et al. [169] and
Spataro et al. [52], the integration of protein–protein interaction data at gene level can quantify the
correlation between genes that tends to be associated with essential genes. Further, in the context of
the proposed model, the impact of allowing correlation among the genes can control the misassigned
genes in the clustering model [235]. Although the gene data underwent a pre-processing step and
noise removal (outlier removal), the proportion of bias is expected to be high due to the similarities
and shared properties across the genes. This is especially the case for genes with a higher degree of
essentiality and are related to MND. However, the quantity and type of bias created by the model
is not yet known and requires further investigation on the complexity of disease–gene relationships
and the diversity of gene properties (i.e., very close and overlapping). The proposed model may not
be appropriate for every relationship between pairs of genes. For example, the resulting clusters
are near each other, often have no distinguishable gap between them and hence could be merged
into a larger nonlinear cluster [121]. Strategies exist for merging GMM clusters (e.g., [236]), but
these were not yet incorporated into this analysis.

After screening disease-related genes among different clusters given by GMM-non, the proposed
model shows an improvement on classifying genes in the MND group. However, it will be necessary
to identify gene patterns that belong to the same molecular pathway related to disease biology to
obtain better clusters [53]. At the same time, an important topic for future studies to improve
gene classification would be developing a two-way model-based clustering of genes in the context of
Mendelian disorder analysis as an extension of the proposed model-based method in this chapter.



Chapter 6

Polygenic risk score to quantify the
cumulative effect of low-penetrance
alleles on breast cancer and breast
cancer subtypes

6.1 Introduction

6.1.1 Breast cancer

Breast Cancer (BC) is one of the most common cancer diagnosed worldwide among women with an
estimated ∼2 million new cases in 2018, thus making it the second leading cause of global mortality
after lung cancer [237] (see Figure 6.1). BC is the primary cause of mortality among women aged
45–55. Although BC aetiology is still unknown, the predisposition to BC is driven by multifactorial
and genetic factors. Approximately 10% of BC cases have a strong genetic basis [238]. Rare
high-penetrance variants located in two major predisposition genes, BRCA1 and BRCA2, confer a
high risk of developing BC; however, these variants account only for approximately 5–10% of BC
cases[239]. In contrast, both intermediate-risk variants (e.g., in PALB2, ATM, and CHEK2 ) [240]
and commoner variants (mostly single nucleotide polymorphisms (SNPs)) confer lower risks of BC
[241].

The advent of genome-wide association studies (GWAS) enabled the identification of more than
100 low-penetrance and moderate-penetrance variants associated with BC [100]. These studies were
highly successful at discovering variants associated with both familial and sporadic1 BC; however,
the variants identified to date collectively explain around 15 to 30% of the heritability of BC

1Sporadic BC occurs in women who carry a high penetrance BC susceptibility gene mutation but do not have a
family history of BC.
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Figure 6.1: Estimated incidence rate of top cancer per country age-standardized for both
sexes in 2018. IData source: GLOBOCAN 2018. Graph production: IARC (http://gco.iarc.fr/today)
World Health Organization.

cases in the general population [242, 243]. Nevertheless, the majority of individuals afflicted with
this disease do not harbour any such pathogenic variants. Instead, the inherited susceptibility of
breast cancer has a considerable polygenic component, driven by the cumulative effect of numerous
common variants scattered across the genome [101].

6.1.2 Polygenic risk score on BC

Multiple common variants in BC liability confer a small risk individually, but their combined effect
is substantial and associated with much larger relative risk. Genome-wide heritability estimates
that all common variants explain only about 45% of the familial contribution to BC on genome-
wide SNP arrays, and the remaining BC cases are of unknown genetic aetiology [244, 100, 241].
Thus, the BC risks associated with SNPs combine multiplicatively and hence their joint effect can
be conveniently represented as a polygenic risk score (PRS). Based on this, several studies have
focused on developing efficient PRS for BC to improve the diagnosed [245]. PRS therefore might
be an essential tool for interpreting human genomes in complex phenotypes for which effect sizes of
genetic variants are individually small [246]. The construction of PRS focuses on estimating a small
fraction of variation in the phenotype, which might elucidate the BC risk from the accumulation
of many small genomic contributions [247]. For example, Mavaddat et al. [241] developed an
optimised PRS for the prediction of subtype-specific breast cancer using BRCA1 and BRCA2 from
the largest available GWAS dataset. The authors estimated a PRS of BC used 303 genetic variants,
showing that women had an increased risk of developing estrogen receptor-positive (or ER+) breast
cancer in the top 1 percentile of the PRS while women in the lowest percentile decreased the risk
sixfold. Although the PRS had a receiver-operator curve (AUC) = 0.630, it demonstrated that
breast cancer PRS might reach sufficient information to identify a high-risk subgroup of women
who could be advised for a specific preventive intervention [241]. Another recent study conducted

http://gco.iarc.fr/today
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by Läll et al. [248] provided a PRS for BC, which enables the different strata in BC incidence to be
identified and its potential for personalised risk assessed based on GWAS studies. Similarly, Shi et
al. [249] established a PRS based using 77-SNP PRS and non-genetic risk factors for young-onset
BC. Despite extensive research, the implementation of polygenic scores in breast cancer is still
challenging due to the limited data for quantifying the cumulative effect on this disease of variation
across the whole genome.

6.1.3 An overview of polygenic risk score

In recent years, PRS has generated much excitement due to its potential applications in precision
medicine. A PRS can represent individual genetic predictions of phenotypes; in other words, it can
predict a person’s risk of developing a particular disease. Along with the accumulation of genomic
loci related to common and complex diseases, it can quantify polygenic risk using allele frequencies.
As a usual practice, PRS has been calculated as a weighted sum of several risk alleles carried by an
individual using GWAS studies. The risk alleles and their weights are defined by SNPs and their
measured effect sizes. Effect sizes are typically estimated as standardised (regression) coefficients,
also called beta coefficients for quantitative traits or as odds ratios for categorical binary traits.
Frequently, PRS is calculated using a set of SNPs with different p-value thresholds for disease
association, and then a PRS series is estimated for a particular disease or trait. Once the PRS
has been calculated in one cohort, it is essential to evaluate its predictive performance in another
external cohort, not used to construct the PRS [250].

However, there are some methodological concerns in the calculation and validation of the PRS
[251, 98]. For example, although the construction of PRS by including a more significant number
of SNPs may have higher predictive precision, it is argued whether the inclusion of those SNPs
with close to zero effects in the PRS is valid [252]. Another example, Linkage disequilibrium (LD),
the correlations between nearby SNPs, which leads to over-representation of high LD regions in
calculating PRS, potentially reduces the predictive performance of PRS. To reduce the effect of LD,
‘clumping/pruning and thresholding’ methods have been used [253]. In contrast, other methods
evaluate the best prediction across the genome by explicitly modelling the correlation structure
between variants without identifying a subset of SNPs for prediction; the Bayesian approaches are
the most widely used implementation [254]. Many novel risk scoring methods are being developed
and may be more powerful compared to the current methods.

An alternative methodology to compute a PRS has been developed by Smyth et al. [96]. Their PRS
is based on surprisal theory for measuring differences in the global genome structure between cases
and controls. This approach measures the information provided by sub-sequences surrounding indi-
vidual loci, where sequences with lower surprise represent the frequency of alleles. Those sequences
appear more common and therefore tend to be encoded with common sequences. Conversely, loci
with specific functions are encoded with rarer and higher surprisal sequences. In this study, a PRS
was developed following this global PRS structure of Smyth et al. [96] using the same reference
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population (Wellcome Trust Case Control Consortium (WTCCC)). This approach measures an al-
ternative PRS that quantifies the cumulative effect of low penetrance genetic variants on BC. This
approach can be applied broadly across all sequences, irrespective of overall sequence similarity,
and independent of the functional relationships used to group them. The method can also analyse
unconnected genomic loci such as those harbouring single nucleotide variants (SNVs) or somatic
mutations or evaluate different molecular sequences.

6.1.4 Relative genome information

Maximal genotype density base on whole-genome sequencing (WGS) were used in this study for
characterisation of the cumulative effect of numerous polygenic variants in BC for different types
of mutations. Following the global measure of Smyth et al. [96] based on surprisal theory, the
differences in the genome structure between cases and controls were measured. This global structure
based on surprisal analysis allows to define a balanced as a reference population (control genomes)
to all the types of genomes; that is, the steady-state is the standard reference to which different
types of measured genomes can be compared in their global structure. The deviations of these
genomes represent a perturbation in the genome [255].

The quantification of those deviations is defined as relative genome information (RGI), which esti-
mates how unusual a genome is related to the reference genome. A DNA sequence can be represented
as a string of the letters A,C,G, T corresponding to the individual nucleotides in the genome. Since
all the possible alleles in each locus code naturally lead to the likelihood of the allele pair, different
allele frequencies reflect different aspects of the genome. The RGI follows the natural information
theory measure of the surprise of observing a specific genome given the probability of finding each
allele pair in the reference population. This decomposition allows us to distinguish and thus sep-
arately quantify the fraction of the relative accuracy2 that is attributable to differences between
populations and the fraction attributable to alleles frequencies. Thus, a person with a higher RGI
has a more unusual genome, having either fewer common alleles more often than expected or having
some particularly rare alleles. Likewise, a lower RGI has more common alleles and, therefore a less
surprising genome.

Formally, surprisal analysis can be expressed as maximal entropy discussed in the Introduction.
This entropy measures the complexity of an ensemble X, of samples (nucleotides) x, where each
sample occurs with a probability p(x). This self-information associated with each sample is called
surprisal and is defined by S(x) = −log2(p(x)) where S(x) is estimated in bits3. For the complete
set of samples is the sum of all surprisals RGI(x) =

∑n
i=1 S(xi). Entropy is therefore defined

as the average information per of samples or the expectation value of all surprisals as EIL(x) =

E(S(x)) = −
∑n

i=1 p(xi)log2(p(xi)) where
∑n

i=1 p(xi) = 1 and EIL(x) is also measured in bits.
2A measure of positional consistency between a data point and other near data points. Relative accuracy compares

the scaled distance of objects on a map with the same measured distance on the ground.
3where logarithms are taken to base 2 so that information is measured in bits
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In this study, a PRS is developed based on the surprisal theory to evaluate the important impact
of a polygenic component on the risk of developing BC. This PRS quantifies the cumulative effect
of low-penetrance alleles on BC risk. The term ‘polygenic risk scores’ will cover the sum of allele
likelihood to provide individual risk measures based on the RGI in different types of mutations
in BC from Prospective Study of Outcomes in Sporadic versus Hereditary breast cancer (POSH)
cohort and unaffected individuals from WTCCC dataset.

6.2 Methods

6.2.1 Study cohort

The dataset used for developing the polygenic score comprises 2,064 breast cancer-affected cases and
5,195 control subjects of European ancestry. SNP genotypes of early-onset breast cancer (EOBC)
cases were collected from POSH. This cohort recruited 3,021 women aged 40 years or younger with
breast cancer diagnosed with invasive breast cancer between 1 January 2000 and 31 December 2007.
The study was conducted in 127 hospitals across England, Northern Ireland, Scotland and Wales.
The exclusion criteria included prior history of invasive malignancies apart from non-melanomatous
skin cancer and not being available for follow-up or refusing consent to retain data. Written informed
consent was obtained at study entry [256].

Existing whole-genome data was used from healthy controls in Phase 2 from WTCCC data. This
dataset comprises individuals derived from the UK 1958 British and the UK National Blood Service.
The 1958 British birth cohort is a sequential sample of live births in England, Wales and Scotland
during one week in 1958 who were followed up in 2002–2004 when they were 44–46 years old. The
UK Blood Service Control Group cohort is collected from individuals in the age range of 18–69 who
have donated blood to the UK National Blood Services (NBS) Collection. Individuals from the
NBS cohort have been screened by standard processes used to exclude blood donors from dissident
groups (WTCCC, http://www.wtccc.org.uk/) [257].

6.2.2 Genotyping

The POSH cohort consists of approximately 3000 patients, from which 2,503 SNPs genotypes were
obtained from blood samples in six separate batches using different genotyping arrays (Figure 6.1).
Genotyping of the first batch was conducted at the Mayo Clinic, Rochester, MN, on 274 patients
with positive family history and triple-negative breast cancer. These patients had little or no tumour
expression for the absence of oestrogen receptor, progesterone receptor and human epidermal growth
factor receptor 2 (HER2 ). Genotyping of the second batch was carried out at the Genome Institute
of Singapore, National University of Singapore, on 300 samples with survival extremes of either
early distant metastasis or death (n=200) or long-term event-free survival (n=100) [258]. The
third batch consisted of 308 patients from the Cambridge dataset with a positive family history.

http://www.wtccc.org.uk/
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These three batches were genotyped on the Illumina (San Diego, CA, USA) 660-Quad SNP array
[259]. The fourth batch included 377 individuals selected from the Haiman dataset, who were
genotyped using the Illumina HumanOmni5Exome-4v1-1+exome SNP array. These patients were
defined as having high risk by onset age, second diagnosis and family history. The 1,088 samples
in the fifth batch were randomly chosen from the POSH cohort and were genotyped employing the
Consortium-OncoArray [100]. The 156 patients of the sixth batch had mostly triple-negative breast
cancer. These patients were genotyped using the Illumina Global Screening Array v2.0.

The WTCCC comprises two independent sets of controls (disease-free): 2,699 individuals from the
1958 British Birth Cohort and 2,501 individuals from the NBS Collection. Genotyping of both sets
was conducted using the Illumina 1.2M chip Illumina [260]. A summary of all data sets is given in
Table 6.1.

Table 6.1: Data characteristics and genotyping methods

Dataset Inclusion criteria samples SNP chip/genotyping array

MAYO POSH cases Cases with little or no tumour expression for ER, PR and HER2 274 Illuminia 660-Quad SNP array

GIS POSH cases Cases with survival extremes; early relapse (n=200) or long term survival (n=100) 300 Illuminia 660-Quad SNP array

Cambridge POSH cases Cases with positive family history 308 Illuminia 660-Quad SNP array

Haiman POSH cases Cases with high risk cases defined by onset age, second diagnosis and family history 377 Illumina Human Omni5 Exome SNP array

Oncoarray POSH cases Random samples from POSH 1088 Consortium-OncoArray

GSA POSH cases Cases with mostly triple-negative breast cancer 156 Illumina Global screening array

1958 British birth cohort WTCCC control Control, disease-free 2699 Illuminia 1.2M chip

National blood service WTCCC control Control, disease-free 2501 Illuminia 1.2M chip

Note. Post-quality control analysis in caucasian population.

6.2.3 Quality control

Quality control (QC) filtering was undertaken before analysis of the whole-genome data using
standard procedures for GWAS in order to minimise potential false findings [261]. Figure 6.2 shows
the QC pipeline used in this study in detail. QC for each dataset was implemented using Plink
v1.90p 64-bit [143] and custom scripts using awk, and R version 3.6.3 (http://www.r-project.
org/). Autosomes were only considered, and SNPs were excluded from each data set if they failed
any subsequent QC filters. SNPs with a low minor allele frequency (MAF) of less than 1% were
excluded. Samples and SNPs with missing genotypes greater than 10% were removed. In addition,
SNPs were identified with a significant deviation from the Hardy-Weinberg equilibrium (HWE)
(cases p < 10−10 and for control p < 10−4) were rejected for subsequent work. The significance
level in HWE for cases was higher than for the controls, as it is more likely to have poor genotyping
than disease association. SNPs were excluded if they were not in the haplotype reference consortium
(HRC) or had alleles that do not match HRC. SNPs with MAF difference > 0.2 were compared to
the HRC. AT/GC SNPs with MAF > 0.4, duplicate SNPs and indels were removed for subsequent
filter procedures.

Further rigorous QC was also carried out for each individual in the datasets. Heterozygosity in each
sample was calculated, and individuals with outlying levels of heterozygosity were also excluded.
Excess heterozygosity may indicate sample contamination or admixture, and reduction suggests

http://www.r-project.org/
http://www.r-project.org/
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inbreeding or deletions. Samples with a discrepancy between reported and inferred sex based
on X chromosome homozygosity were also identified and removed [261]. SNP chip annotation
files (http://www.well.ox.ac.uk/~wrayner/strand/) were employed to remove custom SNPs that
were not in the strand file, update SNP locations to genome reference consortium 37 (GRCh37/hg19)
and flip genotypes to the positive strand [262]. Non-AT/GC custom SNPs were retained in the
Cambridge and Haiman datasets, which have a large number of custom SNPs.

6.2.4 Imputation

Imputation on the genotyped samples was carried out to increase resolution. Because cases and
controls were genotyped separately using different arrays, imputation was carried out in separate
batches according to the genotype array. To minimise false positives due to differential measure-
ment error whereby some SNPs are measured almost correctly (through actual genotyping) in
one batch but measured imperfectly (through imputation based on nearby measured SNPs). In
other batches imputed, SNPs were quality controlled as genotyping call rate < 99%; MAF < 1%;
missing genotypes > 10%; extreme deviation from HWE (p ≤ 1 × 10−10 in cases, ≤ 1 × 10−4 in
controls); SNPs with one or more discordant genotype between duplicate samples; and GWAS sig-
nificance between batches (p < 5× 10−8). SNPs were imputed using the Sanger imputation server
(https://imputation.sanger.ac.uk/) and EAGLE2 for pre-phasing into the Haplotype Refer-
ence Consortium (r1.1). This imputation employs the largest reference panel of human haplotypes
and positional Burrows-Wheeler transform (PBWT).

6.2.5 Merging datasets

Before integrating the genotypic data from POSH and HapMap, individual datasets were merged
in different pairwise combinations of cases (n=15) and further QC steps were completed. All
known duplicate genotypes were established using pairwise measures of identity by state (IBS).
The evaluation of genotyping concordance between duplicate samples per each SNP and sample
was performed using Plink v1.90p 64-bit [143], and SnpSift [263]. SNPs with discordant genotypes
between duplicate samples were removed.

6.2.6 Population stratification and relatedness

Population stratification might cause false positives in association studies, and therefore evidence of
ethnic admixture was excluded by performing multi-dimensional scaling (MDS) in Plink v1.09 [143].
Ancestry was inferred using genome-wide autosomal SNPs in linkage equilibrium (independent
SNPs) to minimise underlying differences between case and control groups. To avoid confounding
bias of relatedness pairwise values of IBS were assessed by keeping only the LD independent SNPs.
Thus, autosomal SNPs with maximum pairwise r2 ≤ 0.5, a window size of 50kb and a step size of 5
SNPs were selected using LD-based pruning in Plink v1.09 [143]. SNPs selected after pruning were

http://www.well.ox.ac.uk/~wrayner/strand/
https://imputation.sanger.ac.uk/
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used to calculate the IBS distance between each pair of individuals that passed QC. For sample pairs
with evidence of relatedness (PIHAT ≥ 0.125, equivalent to third-degree relatives), the sample with
the lowest genotyping rate for all SNPs passing QC was excluded. These data were then merged
with data from the founders or unrelated individuals in the HapMap sample [261]. The HapMap
data were used to describe reference population genotypes against the genotype data of the cases
and the controls for the African, East Asian and Caucasian populations [264].

6.2.7 Testing for batch effects

Systematic differences among the composition of individuals within each batch (i.e., the case to
control ratio or race/ethnicity of individuals on plates) can result in batch effects. Thus, MDS
analysis was also performed to recognise whether samples clustered according to the genotyping
batch or if any variation was due to batch effects [261]. Dummy variables for cases and controls
analysis were assigned to compare all pairs of batches using logistic regression with correction for
population stratification, including the first 5 ’dimensions from the MDS analysis. The genomic
inflation and significant SNPs (p < 10−8) were identified. SNPs with MAF difference > 0.15

between batches and > 0.1 were recorded and then compared to the HRC reference to be removed.
SNPs were only retained if they passed the QC steps in every pairwise combination.

6.2.8 LD-pruned SNPs

LD describes a non-random association between alleles at different loci on the same chromosome in
a given population. SNPs are in LD when the frequency of association of their alleles is higher than
expected under random assortment. LD concerns patterns of correlations between SNPs, which
makes identifying the contribution from causal independent genetic variants extremely challenging.
Due to the presence of LD, SNPs were LD-pruned before the construction of PRS using Plink
v1.90p 64-bit [143] to select a set of approximately independent SNPs [265]. The LD pruning was
used as a first step to select a subset of independent SNPs. The algorithm uses the first SNP
following the genome order and calculates the correlation. The SNPs were removed when a large
pair correlation was found, and the SNP with largest MAF was retained. The strength of LD
between SNPs was set using a window size of 50kb of the chromosome with a step size of 5 SNPs.
SNPs that are approximately uncorrelated were selected based on an r2 threshold < 0.5. Hence,
the LD-clumping method was used as a second step to increase the resolution and retain the most
important SNPs in each LD block. This algorithm sorts SNPs based on their marginal p-values and
iteratively removes SNPs in LD with a higher-ranked SNP based on this ranked list. This reduces
the correlation between the remaining SNPs while retaining SNPs with the most robust statistical
evidence associated with the phenotype. In this study, the threshold was set to p < 10−5 with a
500 kb window [143]. Lastly, the independent SNPs found were merged and used for subsequent
analyses.
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Figure 6.2: Flowchart overview of the complete quality control process. This figure shows each
step of the QC procedures that should be performed prior to GWAS data analysis. Each topic is discussed
in detail in the corresponding section of the text. Squares represent steps, ovals represent input or output
data, and trapezoids represent filtering of data. Figure modified from "Quality Control Procedures for
Genome-Wide Association Studies" by Turner S. et al. (2011) [261] Current Protocols in Human Genetics.

6.2.9 Relative genome information

PRSs are usually constructed from a weighted sum of allGenome-Wide Without loss of generality,
in this study, the relative genome information (RGI) was defined using the WTCCC dataset as a
reference population for PRS construction. Thus, the procedure first uses the reference population
to estimate the RGI as the probability measure on the space of all genomes, then uses the estimated
probability measure to assess how unusual this RGI of an individual’s genome is compared to the
reference population.

Formally, the RGI estimate is given according to surprisal theory [96]: the uncertainty in a random
genome X is quantified taking a certain value x based on its probability of occurrence

∏
(x). Let L

denote the set of locations in the genome (loci), and let Ω = A,C,G, T be all the possible alleles at
each locus I ∈ L. Let

∏
l(λ, µ) be the likelihood of the unordered allele pair (λ, µ) ∈ Ω×Ω at locus

l ∈ L in the reference population. Then Xl ∈ Ω2L, where the space of all possible genomes is Ω2L

with likelihood πl over all I ∈ L. The relative local information (RLI) is derived as the surprisal
measure in bits when the base of the logarithm is 2 [266]:

Il(Xl) = − log2

∏
l

(Xl) (6.1)
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at each locus I ∈ L in the genome X. Hence the RGI for each genome X of interest is defined as

I(X) =
∑
l∈L

Il(Xl). (6.2)

Since chromosome size is highly variable, it is necessary to normalize the RGI by the number n of loci
genotyped. Thus, the comparison between sequences of different lengths or different chromosomes
tends to be equivalent up to normalising. Hence, the expected information per locus (EIL) is defined
as follows:

En(Il) =
1

n

∑
l∈L

Il(Xl) (6.3)

The probability π is unknown and estimated from a reference sample of similar ethnic backgrounds
to the cases. Here, the WTCCC cohort was used to determine the likelihood of the

∏
for each locus

over all available genotypes in the reference at that locus [96]. RLI, RGI and EIL were constructed
using custom-written scripts in Python.

Once π is estimated, the RGI was calculated for each genome in each of the remaining six (test)
samples (POSH cases). Estimating RGI takes O(n(m+N)) computational time for N case genomes,
where n is the number of loci and m is the number of genomes in the control population. This
was carried out on IRIDIS 4 at the University of Southampton computing cluster and required on
average ∼23 hours of run time on a 16-processor node per sample.

6.2.10 Polygenic component

Once the probability of the RGI and therefore EIL were obtained, the POSH study cases were
divided into three significant subtypes of cancer; BRCA1 mutation carriers, BRCA2 rare pathogenic
variant carriers and polygenic components. In this study, the polygenic component was defined as
the combination of intermediate-risk and commoner variants (SNPs joint effect). Therefore, the
polygenic component stringently excluded people who carried either the BRCA1 or the BRCA2
mutation.

6.2.11 Statistical Analysis

Analysis of significant differences between groups was tested using Wilcoxon rank-sum tests. Two-
sided tests were used when testing the null hypothesis of no difference in EIL between cases and
controls against the alternative hypothesis that EIL differs in cases and controls; one-sided tests
were used when testing the null hypothesis of no difference in EIL between cases and controls
against the alternative hypothesis that EIL is higher in cases. Logistic regression was performed
to determine the BC mutations’ contribution; this accounts for the variation in different types of
mutations and controls as dependent variable and EIL as an independent variable.
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6.2.12 Data and code

Quality control analyses were performed using Plink v1.90p 64-bit [143]. The PRS construction and
analysis were conducted in Python version 3.7.3 (https://www.python.org/), awk and R version
3.2.2 (https://www.r-project.org/) using custom-written scripts.

6.3 Results

6.3.1 Characteristics of patient cohort

Table 6.2 shows the demographics of the POSH participants recruited in each batch. The proportion
of women aged 31–40 was 86–91%; fewer women were in the 21–31 age group (9–14%) and fewer than
1% were under-20. The majority of patients (97%) were ethnically Caucasian (self-reported) and the
proportion of women that reported Asian, Black or other ethnicity was around 3%. Approximately
half of the POSH population had family history information, with a higher proportion of cases
having a family history in the Cambridge and Haiman batches. 337 (14%) of 2,503 patients included
in the POSH study had either a BRCA1 or BRCA2 mutation, and 2,166 (87%) carried a polygenic
component.

Table 6.2: Demographic characteristics of POSH cohort

Dataset Mayo GIS Cambridge Haiman Oncoarray GSA Total

Cases 274 300 308 377 1088 156 2503

Age at diagnosis

≤20 years 1 (<1%) 1 (<1%) 2 (<1%)

21 - 30 years 30 (11%) 37 (12%) 29 (9%) 47 (12%) 123 (11%) 20 (13%) 286 (11%)

31 - 40 years 244 (89%) 262 (88%) 279 (91%) 330 (88%) 964 (89%) 136 (87%) 2215 (88%)

Mean age 35.1 35.2 35.6 35.3 35.3 34.8 35.5

Stated ethnicity

Asian 1 (<1%) 7 (2%) 8 (2%) 1 (<1%) 12 (8%) 29 (1%)

Black 7 (2%) 14 (4%) 11 (7%) 32 (1%)

Caucasian 274 (100%) 296 (99%) 288 (95%) 348 (93%) 1086 (99%) 128 (82%) 2420 (97%)

Other 2 (1%) 3 (1%) 1 (<1%) 1 (<1%) 7 (<1%)

Missing 3 4 4 4 15

Family history

Yes 57 (21%) 87 (30%) 285 (93%) 341 (91%) 300 (28%) 60 (40%) 1130 (45%)

No 213 (79%) 205 (70%) 20 (7%) 33 (9%) 755 (72%) 88 (60%) 1314 (53%)

Missing 4 8 3 3 33 8 59

Cancer status

Polygenic component 232 (85%) 259 (86%) 235 (76%) 343 (91%) 992 (91%) 105 (67%) 2166 (87%)

BRCA1 or 2 42 (15%) 41 (14%) 73 (24%) 34 (9%) 96 (9%) 51 (33%) 337 (13%)

6.3.2 Quality control

After QC, this study included 2,064 unique cases from POSH cohort and 5,195 individuals from
WTCCC data that passed quality control filters, and 40,545 SNP markers overlapped between

https://www.python.org/
https://www.r-project.org/
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these platforms. Downstream analysis was performed, which prepared raw genetic data on both
the POSH and the WTCCC cohort, completed pre-imputation quality control, phasing, imputation,
post-imputation quality control, population stratification and batch effect analysis. The steps of
the analysis are detailed herein.

Table 6.3 summarises the SNPs and samples removed from the POSH cohort at each stage of the
QC procedure on the raw data across all six batches. It shows that a little more than one-third
of SNP cases (32%, 7,731,260 SNPs) were removed, rejecting SNPs with ≥10% missing genotypes
(5%, 362,898 SNPs), significant deviations from Hardy-Weinberg equilibrium p < 10−10 (< 1%,
4,357 SNPs) and allele frequencies less than 10% (27%, 2,119,800 SNPs).

For the observed data on the WTCCC, approximately 97% of the SNPs passed quality control filter-
ing. The fraction for SNPs was about 2% (29,295 SNPs) without the MAF > 0.01. Approximately
1% of these SNPs (24,640) were removed for genotype frequencies observed to have a significant
deviation from HWE (p ≤ 0.001). Most samples had very low rates of missing data, and 9,392
SNPs with ≥ 10% missing genotypes were excluded.

The overall genotyping rate was above 0.997 across all batches on the raw data, showing that the
samples had complete genotypic data with few missing genotypes. Table 6.3 also shows that further
sample QC was implemented to remove SNPs with discordance, sex differences in allelic frequency,
outlying rate of heterozygosity, duplication, related samples, and divergent ancestry for both the
POSH and WTCCC datasets. Once the data was cleaned and merged from all POSH batches and
WTCCC cohorts, a total of 2,772,602 SNPs remained, of which 892,217 were genotyped in both
cases and controls for subsequent analysis. Following the merge of all POSH case and control data,
2,064 of 2,503 remained as unique cases and for unaffected individuals, 5,195 of 5,200 were retained
for PRS construction (Table 6.4).

6.3.3 Population stratification

Population diversity from the POSH study was examined using MDS. Patients reported their ances-
try as Caucasian, Black or Asian. The inferred ancestry was based on pairwise IBS across 57,258
autosomal SNPs in LD and genotyped across all cohorts (6 case batches, controls and reference
populations from HapMap). The differences between self-reported ancestry tended to be close to
inferred ancestry (Figure 6.3). There is a clear overlap between most POSH cases and WTCCC,
indicating appropriate controls for the subsequent analysis.

6.3.4 Testing for batch effects

To further test whether the results are robust, the dummy case versus control analyses between all
batches was performed (Table 6.5). The results suggest that the close agreement between observed
and expected p < 10−8 over the entire distribution, from least to most significant, and genomic
inflation factors below 1.05 show that there is no sign of systematic bias between batches or residual
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Table 6.3: SNPs quality control summary

QC criteria
POSH cases Controls

Mayo GIS Cambridge Haiman Oncoarray GSA WTCCC 1958 BBC1 WTCCC NBS2

Standard filters

Raw 559,348 559,348 594,360 4,763,767 494,444 759,993 954,144 954,144

Missing genotypes 363 629 2,489 341,607 10 17,800 12,697 11,943

Hardy-Weinberg 69 71 1,541 2,559 0 117 5,320 4,072

Minor allele frequency (MAF) 25,486 24,644 35,208 1,712,899 91,550 230,013 14,600 14,695

Remaining 533,430 534,004 555,122 2,706,702 402,884 512,063 921,527 923,434

SNPs passing standard filters

In strand file 533,313 534,004 554,437 2,615,815 402,824 512,063 541,469

MAF difference >0.2 172 183 656 6,840 210 1,026 274

AT/GC MAF >0.4 294 293 721 10,772 2,036 551 591

Duplicates 2 2 4 57,437 12 1,180 1

Non-matching alleles 1,228 1,235 1,334 6,739 909 595 1,267

Not in haplotype reference consortium (HRC) 107 154 798 28,163 2,752 12,633 351

Indels ignored 0 0 0 2071 5,602 207 0

Skipped 64 65 13 227 16 280 5

Remaining 531,446 532,072 550,911 2,503,566 391,287 495,591 538,980

Custom SNPs passing standard filters

All 117 0 685 90,887 60 0 394,076

Remove AT/GC 36 29,690 14,045

MAF difference >0.2 18 155 347

AT/GC MAF >0.4 0 0 7

Duplicates 0 683 1

Non-matching alleles 2 112 874

Not in HRC 185 7,942 832

Skipped 0 241 590

Remaining 444 52,064 377,380

Merge strand and custom3 531,446 532,072 551,355 2,555,630 391,287 495,591 916,353

Merge pairs

Discordant 776 1,610 2,375 7,201 2,381 1,771

MAF difference, batches >0.15 and HRC >0.1 1 1 30 2 0 50

Remaining
|
530,669 530,461

|
548,950 2,548,427

|
388,906 493,770

916,353 (Both)

902,868 (BBC)

904,723 (NBS)

Merge pairs for Mayo, GIS, Cambridge, Haiman, Oncoarray, GSA and WTCCC

Remaining 2,748,467 916,353

SNPs in both 89,217

SNPs remaining 2,772,602

1 1958 BBC – 1958 British Birth Cohort.
2 NBS – National Blood Service.
3 Merge strand and custom: SNPs may overlap between strand and custom after updating identifiers, therefore total SNPs can be less than sum of strand plus custom.

Table 6.4: Sample quality control summary

QC criteria
POSH cases Controls

Mayo GIS Cambridge Haiman Oncoarray GSA WTCCC

Raw 274 300 308 377 1,088 156 5,200

Missing genotypes >10% 0 2 0 0 0 0 0

Sex check 0 1 1 2 0 0 0

Heterozygosity 4 4 6 3 6 5 0

Remaining 270 293 301 372 1,082 151 5,200

Merge pairs for Mayo, GIS, Cambridge, Haiman, Oncoarray and GSA = 2,068

Relatedness 4 5

Remaining 2,064 5,195
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Figure 6.3: Multidimensional scaling plot of Caucasian populations from POSH study and
WTCCC individuals. MDS for whole-genome genotype data for POSH study and WTCCC individuals.
Colours indicate cohort (POSH cases=orange, WTCCC controls=blue, HapMap CEU=green, HapMap
YRI=yellow, HapMap ASI = purple).

evidence of population stratification. One genome-wide significant SNP was removed to mitigate
incorrect associations with the phenotype due to a batch effect. Therefore, it can be concluded that
systematic bias is unlikely to impact the results.

Table 6.5: Dummy case control analysis between all pairwise batches

Cases Controls Duplicates GIF* SNPs tested

Haiman (237) Cambridge (231) 205 1.0188 507,542

GIS (293) Cambridge (301) 0 1.0089 526,754

Mayo (270) Cambridge (301) 0 1.0174 526,995

Oncoarray (1073) Cambridge (301) 7 1.0127 147,483

GSA (149) Cambridge (283) 18 1.0122 113,197

Haiman (345) GIS (293) 27 1.0094 502,790

GSA (149) GIS (293) 0 1.0160 112,136

Mayo (270) GIS (293) 0 1.0117 527,620

Oncoarray (1071) GIS (293) 9 1.0122 146,943

GSA (151) Haiman (372) 0 0.9700 387,642

GSA (149) Mayo (267) 3 1.0009 112,075

Oncoarray (1039) GSA (149) 41 0.9723 379,989

Haiman (357) Mayo (270) 15 1.0098 502,291

Haiman (372) Oncoarray (1005) 75 0.9995 332,384

Oncoarray (1076) Mayo (270) 4 0.9879 146,896

Note. *P<5×10−8
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Because the POSH cohort data were genotyped in six separate batches, an MDS analysis was per-
formed to detect potential batch effects (see Figure 6.4). The scatterplot of the first two dimensions
from MDS of the IBS metric indicated a considerable batch effect in the SNP data collected from
the POSH study, as most samples were in six small clusters. Due to this limited overlap in SNPs
genotyped across all batches, the sample size and therefore power was reduced and the batch effect
was increased. It was necessary to remove technical variations not to skew the accuracy analysis to
capture the ’true’ biological variation of their disease phenotype.

Figure 6.4: Multidimensional scaling plot of POSH study by BC risk in mutation. Genotype
data of samples from POSH study. Plotting under two dimensions.

Therefore, imputation was performed to fill in the genomic gaps for both POSH and WTCCC
datasets, increase statistical power, and standardise the datasets. As a result, batches genotyped
with different arrays can be combined, increasing the resolution of overlap in genotypic data and
reducing batch effects. Here, SNPs were imputed in separate batches according to genotype array.
In some cases, the power to replicate SNPs was limited due to small effect sizes, rare risk alleles or
where SNPs were only genotyped in a subset of patients.

Following imputation, the 7,259 individuals with genotype data from both the POSH cohort and
WTCCC were imputed from EAGLE2 for pre-phasing into the HRC and positional PBWT for
imputation (see Table 6.6). Specifically, the Haiman batch resulted in the most imputed variants
across the autosomes with a total of 6,461,507 variants, followed by the GSA cohort with approxi-
mately four million autosomal variants. In contrast, the MAYO and Cambridge batches had similar
imputed variants of around three million. The Oncoarray and GSA batches had about two million
imputed variants. The WTCCC reference population had slightly fewer imputed variants than the
POSH batches cohort. This reference had around four million imputed variants.

Once all the chromosomal segments were imputed, a post-imputation quality control check was run,
where poorly imputed variants were filtered out (see Table 6.7). These were: first, rare SNPs with
minor allele frequency less than 2%; and second, SNPs with MAF < 1%, SNPs with > 10% missing
genotypes, SNPs with significant deviations from Hardy-Weinberg equilibrium (p <= 1× 10−10 in
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Table 6.6: Sample imputation quality control summary

Criterion Mayo Gis Cambridge Haiman Oncoarray GSA

Input 530,669 530,461 548,950 2,548,427 388,906 493,672

MAF difference >0.2 1 0 4 19 0 15

Imputation input 530,668 530,461 548,946 2,548,408 388,906 493,657

Genotyping rate 0.999134 0.999619 0.998985 0.998177 0.999446 0.997228

Imputation output and filtering

Filtered (MAF)>1%, info>0.99) 3,951,850 4,029,602 3,763,866 6,461,507 2,928,788 2,054,255

Missing genotypes 0 22 0 0 0 0

Hardy-Weinberg 45 56 208 1,384 25 10,510

Duplicates 618 696 538 1,198 346 244

Remaining 3,951,187 4,028,828 3,763,120 6,458,925 2,928,417 2,043,501

Merge pairs

Triallelic 148 151 2+141 3+170+43 105 137

Non matching alleles 9 2 6 24 2 2

Discordant 323,541 673,001 535,330 2,201,578 809,870 371,575

P<5×10−8 between batches 0 0 2 0 0 0

Remaining 3,627,489 3,355,674 3,227,639 4,257,107 2,118,440 1,671,787

cases ≤ 0.001 in controls), SNPs with one or more discordant genotypes between duplicate samples,
SNPs with GWA significance between batches (p <= 5 × 10−8). Lastly, the resulting SNPs were
merged for the POSH and WTCCC datasets, accounting for 5,830,116 variants. The genotyping
rate for the imputed data was above 0.86.

Table 6.7: Sample merge summary

Merge case batches 5,830,116

Hardy-Weinberg 84

MAF 574

Remaining 5,829,458

Merge with controls, no SNPs in common 4,132,794

For the merged imputed data, all related individuals were removed based on IBD estimation, QC,
LD pruned with r2 < 0.5, a window size of 50kb, step size of 5 SNPs and MAF > 10% to include
only common variants. SNPs selected after pruning were used to calculate IBS distance between
each pair of individuals that passed QC. A total of 40,545 SNPs were retained from both datasets
after imputation not to skew the accuracy analysis. MDS was performed again to test the batch
effect on the POSH imputed dataset. Figure 6.5 presents plots for the first two components, 1 and
2, coloured by genotyped array. The distribution structure is well evident from these MDS analyses,
and it can be inferred that there is no batch effect.

The basic descriptive statistics of the BC patients according to pathogenic mutations and controls
are presented in Table 6.8. Of the 7,259 individuals used for the analysis, 5,195 (∼72%) were
unaffected individuals, and 1,790 (∼25%) had a polygenic component moderate risk or commoner
variants. This outcome was more prevalent in carriers of BRCA1 with 169 (∼2%) and BRCA2
with 105 (∼1%).
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Figure 6.5: Multidimensional scaling plot of POSH batches by BC risk in mutation. Genotype
data of samples from POSH study. Plotting under two dimensions. Population cluster designations are
labelled on the plot.

Table 6.8: Descriptive statistics of expected information per locus

Type Samples Mean/SD

Control 5195 (71.6%) 1.0098 (± 0.003)

BCRA1 169 (2.3%) 1.1550(± 0.087)

BCRA2 105 (1.4%) 1.1390 (± 0.019)

Polygenic component 1790 (24.7%) 1.1400 (± 0.042)

Total 7259 (100%) -

6.3.5 Polygenic risk score association with breast cancer prevalence

Significant differences of EIL were only observed in BRCA1 mutation and polygenic component
carries. (p-value = 0.009, two-sided Wilcoxon rank-sum test) (Table 6.8). In Figure 6.6 (A) shows
that the BRCA1 mutation carries elevated EIL in comparison to BRCA2 mutation and polygenic
component patients. In contrast, the polygenic component carriers had a slightly heavier tail
than the distribution of BRCA1 and BRCA2 mutation carriers indicating a greater proportion
of samples with higher EIL (see Figure 6.6 (B)). The greatest EIL was observed in carriers with
polygenic component mutations (orange line Figure 6.6 (B)), while the risk levels associated with
BRCA1 and BRCA2 mutations (purple and green line, respectively Figure 6.6 (B)) are also showing
elevated EIL.

To investigate further the relationship between BC risk in mutations odds and EIL, logistic regres-
sion was conducted. However, the cases and control samples are not directly comparable due to
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Table 6.9: EIL two-sided Wilcoxon rank sum test within BC risk in mutation carriers and
controls

Type Wilcoxon rank-sum test p-value

Polygenic component
BRCA1 -2.61 0.009

BRCA2 -0.58 0.560
BRCA1 BRCA2 -1.21 0.226

A B

Figure 6.6: Breast cancer risk associated with the increased genome-wide disorder. A) Ex-
pected information per locus (EIL) within BC in mutation carriers. Median ±95% confidence intervals are
shown. (B) EIL for BC risk in mutation carriers density distributions. The plot shows the area under the
curve of a density function representing the probability of carrier and noncarrier mutations between the
ranges of EIL values.

the batch effect for using different genotyping arrays. The sub-structure in control data will lead
to a systematic bias that influences the results of association testing. Therefore, it was no possible
to make comparisons between these populations.

In addition, a logistic regression model was performed in order to estimate the relationship between
EIL for BC cases (see Table 6.10). According to the logistic regression results, there is a significant
association in EIL among the BC cases. Consistent with the heavy–tailed nature of the polygenic
component and BRCAs distribution (Figure 6.6 (B)). In particular, the highest odds ratio for
EIL was between BRCA2 and the polygenic component having an odds ratio greater than 12. In
comparison, the odds ratio for EIL of the polygenic component was 7.82 times higher than BRCA1.
The results also show that EIL is slightly elevated in patients for BRCA1 compared to BRCA2
with an odds ratio of 1.53. Overall, these results indicate that EIL is significantly elevated in BC
cases, with the highest EIL for the polygenic component conferring a substantially increased risk.

Table 6.10: Logistic regression model for cases

Mutation type Odds ratio coefficient std. err z p>z [0.025 0.975]

Polygenic vs BRCA1 7.82 2.06 0.07 29.30 0.00 1.92 2.19

Polygenic vs BRCA2 12.06 2.49 0.09 28.23 0.00 2.32 2.66

BRCA1 vs BRCA2 1.53 0.43 0.11 3.93 0.00 0.21 0.64
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In order to investigate the genetic basis with particular genomic loci, the EIL was assessed on indi-
vidual chromosomes. The EIL was consistently elevated in polygenic component cases in comparison
with the carriers of BRCA1 and BRCA1 along the whole chromosomes (Figure 6.7) (p < 0.05, one-
sided Wilcoxon rank-sum test), indicating that differences in EIL are distributed throughout the
genome. It was observed that BRCA1 and polygenic component carriers are significantly different
for autosome chromosomes 1–22. BRCA1 and BRCA2 were different on chromosomes 3, 5 and 13.
However, there was no evidence of heterogeneity in the effect of EIL between polygenic cases and
BRCA2 carriers across chromosomes.

Figure 6.7: BC risk in mutations in specific regions of the genome. Expected information
per locus (EIL) by chromosome. In all panels, median ±95% confidence intervals are shown. Two-sided
Wilcoxon rank-sum test is represented with stars which indicate significant changes between BRCA1 and
polygenic component; triangles denote BRCA1 and BRCA2 statistical differences; x’s represents BRCA2
and polygenic component dissimilarities. There were no significant differences observed between BRCA2
and polygenic component.

The results among BC cases may be biased due to the structured population in the data set used
and thus risk of false-positive findings. Although the data was treated to mitigate this batch effect,
the sample only considered approximately ∼40,000 SNPs which may not be representative, or it is
not enough power to find a statistically significant difference between BC cases. More insight will
be detailed in the conclusion section below.

6.4 Discussion

The main conclusion of this work reflects a sub-structure in both data set used, POSH and WTCCC,
that were not expected. Briefly, batch effect in a population generates structure in genetic variation,
correlated most strongly with false-positive findings. Despite clumping/pruning methods have been
used to mitigate the batch effect, the relevant evidence is insufficient to confirm the results found
in this study. Because the allele frequencies might differ systematically between intra-batch and
intra-batch variations, therefore cannot be possible to identify whether the differences come from
genetic drift or the ascertainment of genotype variants. Hence, there could be a risk that differences
at null SNPs may not generate an association between the PRS and BC subtypes.
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The population from the POSH study was well characterised, although a fundamental limitation of
the present study is derived from the data genotyping. The SNPs used to construct the PRS were
in both data, WTCCC and POSH study, which may not be directly comparable among batches due
to the difference in the genotyping arrays. The differences in genotyping SNPs for BC cases in six
separate batches are limited overlap of SNPs genotyped across all those batches in the data, which
reduced the sample size to ∼ 40,000 SNPs less statistical power. However, the findings found in this
study were not very satisfying, noteworthy the problems observed in the datasets had demonstrated
that in the Smyth et al. [96] study had not recognised a substructure in the datasets that might
conduct false-positive results. It is of note that should be considered for further future analysis.
Moreover, the construction of the PRS was based on WTCCC; it was not possible to show the
efficiency of the PRS due to its data substructure. Therefore, applying this PRS to a new reference
dataset will help quantify the risk of developing a particular disease. Finally, another possibility
for finding spurious results might be that many non-BRCA1/2 cases are not certainly polygenic.
They could be more related to environmental factors or sporadic BC; these results may indicate
that low and moderate penetrance genes/loci can only explain a minor fraction of non-BRCA1/2
BC.

Currently available methods to compute PRS have used either parametric or Bayesian approaches
to determine the BC risk. Despite this, the methodology proposed here is considered to be a
robust alternative to measuring BC risk. This approach introduced the estimation of probabilistic
expectations given a rigorous mathematical formulation in the form of surprisal theory [267, 96].
Thus, this theory focused on the intuitive notion that allele frequencies are more difficult to process
when they are less likely to occur in their genome. More formally, the surprisal theory proposed
that allele frequencies are proportional to its negative log probability on all previous frequencies.

Nevertheless, this research shows that the PRS developed for women who carry BRCA1/2 muta-
tions or intermediate-risk/common variants supported the hypothesis that the BC cases include a
strong inherited polygenic component. The PRS also showed that the non-BRCA1/2 breast cancer
patients have particularly high EIL compared to BRCAs cases. The EIL measured the cumulative
effect of low-penetrance allele frequency on disease risk in BC cases compared to controls. The
results obtained in this study for BC carriers with different mutations showed higher EIL values,
implying a surprising genome. The results also show that the polygenic component carriers tend
to have similar allele frequencies for the risk of BC to highly penetrant genes. By contrast, the
reference population showed lower EIL, implying more common alleles and a less unusual genome.

As genetic susceptibility in BRCA1 and BRCA2 mutation is already known to confer a high risk of
developing BC, the combined effects of risk-modifying variants could lead to much more significant
differences in the absolute risk of developing BC as compared with the general population [268, 269,
270]. Consistent with this, the RGI cumulative effects demonstrated that women with increased BC
risk have a significant polygenic component involving variation at thousands of markers distributed
throughout the genome [96]. This study also has shown that the SNPs by which modify BC risk in
carriers of the polygenic component mutation have somewhat higher EIL than BRCA1 and BRCA2
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carriers (see Table 6.10). Conversely, BRCA2 conferred lower risk to BC compared to BRCA1 and
polygenic component.

The present study’s results align with recent BC cases findings compared with noncarriers with BC
risk-increasing alleles. For example, Mavaddat et al. [99] developed a PRS derived from 77 SNPs
showing a strong effect of the score in predicting future BC cases. Sieh et al. [271] also developed
a genomic risk score using allele frequencies and effect sizes of 86 SNPs, inferring a distribution of
breast cancer risks for BC cases. L "all et al. [248] found the strongest association with prevalent
BC status in patients compared to controls based on PRS. More recently, Jia et al. [272] constructed
a polygenic risk score using GWAS to identify risk variants for eight common cancers. The authors
estimated that female breast cancer patients had a higher mean value of PRS than non-BC patients
(0.628, 95% CI = 0.620 to 0.637). Mavaddat et al. [99] did not observe a strong effect between
the SNPs that modify breast cancer risks in BRCA1 and BRCA2 mutation carriers compared to
the general population, consistent with the results from EIL presented here in different types of
mutations. Despite the differences in methodology, Mavaddat et al. [99] demonstrated that there
are inherited components associated with BC risk, which compares closely with the findings of this
study.

SNPs associated with BC risk in different types of mutations were observed in BRCA1 and polygenic
component carriers. Their distributions tend to overlap, which indicate that these genes may
share similar behaviour (see Figure 6.6 (B)). This could explain why mutations in these genes
lead to functional similarities and specific hereditary predisposition to BC. Moreover, BC risk for
BRCA1, BRCA2 and polygenic mutation may be influenced by different loci (see Figure 6.7).
These findings are consistent with the fact that both BRCA1 and BRCA2 are associated with
maintenance of chromosome stability and recombination-mediated double-strand break repair of
DNA [273]. Additionally, the polygenic component was defined as small multiplicative effects on
BC risk of non-BRCA1/2 cases, which may indicate that SNPs in these genes are acting in a
common pathway [274, 93]. However, the links between these genes are still not well understood.

In summary, the findings demonstrate that RGI global measures of genome variation enable the
polygenic basis of BC to be quantified more efficiently than GWAS. In addition, the result showed
that an efficient PRS estimate might identify higher-risk strata in BC risk levels (see Table ??).
Thus, the individual’s genome information can be used as a predictor of breast cancer susceptibility.
However, the PRS is still a proxy of real genetic risk and is not uniquely defined. More efficient
polygenic predictors could therefore be developed integrating molecular subtype distribution be-
tween the polygenic component and sporadic tumours to make more accessible the identification of
BC [275].

Furthermore, stratifying BC by molecular subtypes based on factors including estrogen, proges-
terone or human epidermal receptor status [275, 273] may improve the estimation of RGI for BC
risk. In addition, incorporated signatures based on transcriptome as well as genome profiling have
proven suitable for predictions of BRCA1/2 and polygenetic component status [275]. Furthermore,
the PRS developed in this study can also be extended straightforwardly to include other specific
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genetic variants such as Mendelian, or if deemed helpful in the future, a combination of Mendelian
variants and PRS levels would require further study.



Chapter 7

Conclusions and future work

7.1 Thesis summary

Recent rapid technological advances to reveal genomic insights have increased the ability to carry
out high-throughput studies characterised by large datasets. Big data management has become a
significant aspect of genomic research, including the study of human diseases. Now, the challenge
is to identify, within the massive amount of data obtained with next-generation sequencing (NGS),
what is of genomic relevance. In this context, computational methods are being developed to
incorporate genotypic and phenotypic knowledge to better understand genome function. Bringing
together computational genomics expertise and research knowledge will provide significant and
novel insights into biological mechanisms and aetiology of disease.

The central goal of this thesis was to develop and apply statistical methods and mathematical tools
that can boost the analysis of genome function, Linkage disequilibrium (LD) structure and disease
gene prediction. To that end, this thesis has presented different approaches to using different types
of data to transform the information gained from newly generated data and produce knowledge.

At a first level, high-resolution LD patterns from the whole-genome sequencing (WGS) Wellderly
data were constructed to reveal the LD structure of functional elements within genic and subgenic
sequences. Next, application of the mathematical Malécot–Morton model was introduced to con-
struct LD map distances in linkage disequilibrium units (LDUs) from 454 individuals from the
Wellderly cohort [149]. The ratio of corresponding map lengths, kilobases/LDU, was defined to
describe the extent of LD within genome components. The findings demonstrated that significant
differences between exonic, intronic and intergenic components at fine-scale LD structure provide
important insights into genome function. In addition, patterns of LD were observed that vary across
the gene profile, although the functional implications are not fully understood.

On another level, this thesis introduces the application of supervised machine learning (ML) al-
gorithms to identify which determinants are acting on monogenic disease-causing genes based on
evolutionary and functional properties at the gene level. These metrics were integrated using LD
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maps constructed in Chapter 3 and publicly available biological data. The Gradient tree boost-
ing (GTB) and Random forest (RF) models were run in a multi-stage procedure to reveal which
functional properties are closely associated with the degree of essentiality of the genes that are
interesting and relevant to be linked to diseases. Bayesian inference in Gaussian graphical mod-
els (BGGM) was implemented in such a way that putative features were selected for classifying
genes. These findings enable analyses to be optimised by genotype to improve recognising genes
that are likely contributing to Mendelian phenotypes.

Following on from this, in chapter 5, a hybrid approach was proposed called simultaneous Gaussian
mixture clustering with outlier removal (GMM-non) to classify and stratify genes according to
their degree of essentiality into four groups; Non-disease non-essential (NDNE), Mendelian non-
complex (MNC), Complex non-Mendelian (CNM) and Essential non-disease (END). This approach
recognises aberrant genes in order to remove them during the clustering process. The iterative
process is improved simultaneously until algorithm convergence is reached. The success of this
framework has revealed subtle differences in gene patterns that characterise them into different
gene groups. It is clear from these analyses that the features used provided significant information
gains, particularly in genes associated with Mendelian disorders. However, further analysis and
discovery of patterns and associations of these gene groups must be made based on integrating
molecular pathways such as protein–protein interactions or gene expression patterns to obtain non-
overlapping clusters.

Due to an explosion in the search for polygenic risk scores, surprisal theory was applied in this work
to construct a polygenic risk score (PRS) for Breast Cancer (BC). This PRS enabled the cumulative
effect of low-penetrance genetic variants in known BC susceptibility genes to be quantified. Surprisal
theory was used to measure differences in global genome structure between cases and appropriate
controls. The quantification of those deviations is defined as relative genome information (RGI),
which estimates how unusual a genome is compared to the reference genome. In order to test
its ability to predict disease risk, RGI was used to compare approximately 40,000 SNPs of 7,259
genomes from the Prospective Study of Outcomes in Sporadic versus Hereditary breast cancer
(POSH) and Wellcome Trust Case Control Consortium (WTCCC) datasets. The results suggest
that RGI is significantly higher in BC cases, with a polygenic component conferring a substantially
increased risk compared to controls. These results also indicate that BC cases comprise a strong
inherited polygenic component.

Overall, throughout this thesis, it was sought to use mathematical and statistical models to generate
accurate predictions and facilitate scientific exploration. A new statistical method was not purely
developed, but rather the capability of these methods to address insight into genomic signatures,
linkage disequilibrium patterns and disease gene prediction was demonstrated.
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7.2 Study limitations

Although the mathematical tools and statistical strategies were successfully applied, this study was
limited by various general factors, as described in the following.

Machine learning limitations

A reliable set of ML algorithms was not found for this type of data. Although the dataset was
preprocessed to be balanced and imputed, the features’ combined effect only explains around 50%
of the variance in gene properties that would yield gene predictions within a reasonable error margin.
The classifiers considered and tested, including gradient boosting and random forest, were unable
to efficiently and adequately distinguish between gene groups. One possible explanation for this
inability to separate genes could stem from more variance amongst samples within gene groups than
between genes belonging to different groups. This would make it difficult to separate each group
and would drive poor performance of the ML algorithms. Another possibility is that the features
selected in Chapter 4 were not accurately informative because the variance explained by them was
not suitable to describe the gene groups used. The scope of the data is limited to measure gene
properties and may not include important insights for the disorders studied.

Furthermore, this study is limited by the currently available genetic information for human diseases
and the incomplete knowledge of the true susceptibility/causal variants and their corresponding
genes. Moreover, the similar properties of disease-gene relationships restrict the ability of individual
and integrated measurements to segregate certain gene classes. Therefore, a portion of the HD genes
may be misassigned to the corresponding disease group.

Polygenic risk score limitations

The limitations of the polygenic risk score detected in this study were that the PRS was highly
sensitive to the batch effect, meaning that variability in a PRS could be heavily influenced by allele
frequency differences, differences in estimated effect sizes, and differences in population structure
across different batches. The British dataset’s population structure and POSH cohort were geno-
typed differently, making the SNPs not directly comparable between cases and controls. This lack of
the polygenic risk score depends on the control dataset’s population structure requires very complex
attention and further analysis. Although in this study, the batch effect was controlled, the sample
size was reduced. Therefore, the statistical power of the PRS was impacted due to the use of a
modest sample size. Here, the PRS was calculated with ∼40,000 SNPs, making genetic association
signals less clear and increasing heterogeneity within genetic levels. Although no power test was
conducted, the power to detect an association was not enough to satisfy the whole genome-wide
significant threshold (1× 106). The reduction of these SNPs may only sample about 10
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7.3 Future work

There are many encouraging areas of future work that can be explored using the ideas presented
in this thesis as a starting point. The methods presented here could be improved in different ways.
Some of the items listed below may help improve the efficacy of machine learning methods or PRS
construction or simply may suggest interesting topics to explore further.

Using multi-omics data to predict disease genes

This work observed that ML-based approaches achieved lower prediction performance for clustering
genes into the four gene groups NDNE, MNC, CNM, and END, due to the lower interconnectedness
among these genes. This showed the weakness of the classifiers selected both in terms of distributions
of complex and Mendelian disease genes and complex disease genes. However, this problem can be
addressed by efficient integration of genomic data and omics data.

Multi-omics data characterise different stages of cellular activities, and analysing omic data may
improve the accuracy of computational prediction. However, for disease gene prediction, most
algorithms still focus on genomic data, and only a few algorithms have used multi-omics data in
their studies [276]. Therefore, a critical area of future work is to extend the ML algorithms and
the proposed GMM-non used in Chapters 4 and 5, integrating genomic data alongside other omics
such as transcriptomic or proteomic data for disease gene prediction.

Expanding learning techniques

One potential future direction would be to extend the ML methods developed in this thesis to
directly estimate latent structure while simultaneously using the structure of positive-unlabelled
(PU) learning. This is because, for a specific disease, there are only a few known disease-associated
genes from the human genome, and the rest of the genes are waiting for further analysis and remain
unlabelled. Therefore, unlike traditional machine learning methods, treating the rest of the genes
as an unlabelled set rather than a negative training set is a suitable strategy for this problem. Thus,
unbiased PU learning algorithms [277] can be adopted for disease gene prediction algorithms. Hou
et al. [278] developed a generative adversarial network (GAN)-based PU learning algorithm, which
can open our minds to alternative ideas. GAN is a generative algorithm that is designed as a two-
player game. One of the players in the generator, which synthesises fake data from random noise.
The other player is the discriminator, which examines both fake and accurate data to determine
whether they are real or not. Their design provides a more robust approach to adapt PU learning
to deep neural networks without overfitting.
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Incorporating information to PRS

One exciting direction for future work in the development of PRS would be to incorporate informa-
tion about underlying linkage disequilibrium structure. This improvement may include information
about the relationship of genotypes to gene expression profiling of breast tumours, a rapidly devel-
oping knowledge base, which would have beneficial effects in optimally weighting and calibrating
the calculation of the PRS [279]. In fact, it has been demonstrated that the integration of gene
expression database to generate PRS in psychiatric disorders may improve the predictive power
of genotypic data by over threefold [280]. Furthermore, classifying subtypes of BC by estrogen,
progesterone or human epidermal receptor status may improve the prognosis of BC [281].

Particular contributions

This thesis significantly contributed to constructing high-resolution linkage disequilibrium (LD)
maps using whole-genome sequence data. Major differences between exonic, intronic and intergenic
components confirm that fine-scale LD structure provides significant insights into genome function,
which traditional linkage maps cannot explain. Moreover, this thesis proposed a robust prediction
to identify disease genes using a simultaneous Gaussian mixture clustering outlier removal model.
This approach improved the efficiency of recognising Mendelian disease genes from complex disease
and non-disease genes through essentiality-specific information. Finally, this thesis demonstrated
that the Smyth et al. [96] study had not recognised a substructure in the datasets for control that
might conduct false-positive breast cancer diagnoses. Despite this, this thesis also has shown an
alternative PRS based on the surprisal theory to evaluate the cumulative effect of low-penetrance
alleles on BC risk.





Appendix A

Machine learning algorithms

This appendix details the supervised machine learning (ML) approaches used in this study to select
the most significant features to distinguish between genes that have an association with Mendelian/-
Complex disorders and those that do not. These machine learning methods included Gaussian
naïve Bayes (GNB), k nearest-neighbour (k-NN), support vector clustering (SVC), linear discrim-
inant analysis (LDA), quadratic discriminant analysis (QDA), logistic regression cross-validation
(LRCV), multi-layer perceptron (MLP), decision tree (DT), random forest (RF), and AdaBoost
(AB).

Gaussian naïve Bayes classification

Gaussian naïve Bayes (GNB) classification is a supervised learning algorithm that uses Bayes’
theorem as a framework for classifying observations into one of a pre-defined set of classes. GNB
classifier takes a probabilistic approach for calculating an observation that belongs to a particular
class based on the conditional independence assumption, thereby (naively) the covariance is not
considered among the features. The posteriori Y is given by the values of features X = (X1, ..., Xp)
into k classes. Y is modelled according to Bayes theorem as:

P̂ (Y = k|X1, ..., Xp) =
π(Y = k)

∏p
j=1 P (Xj |Y = k)∑k

k=1 π(Y = k)
∏p
j=1 P (Xj |Y = k)

, (A.1)

where π(Y = k) is the prior probability that the class index is k. For each feature, the algorithm
estimates a separate Gaussian distribution for each class, and observations are categorised to the
class with the maximum posterior probability given the features values [282].
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K-nearest neighbour classifier

The k-NN algorithm is a nonparametric supervised classifier in which the distance as a basis to
weight the contribution of each k neighbour in the class assignment process. The k-NN algorithm
clusters a set of data points into groups and classifies new data based on a measure of similarity
using the Euclidean distance. The k-NN is entirely based on data-driven learning. Technically
stated, given a value k and a feature vector to classify Y, locates the k nearest neighbours of Y in
the sample set and uses the categories of neighbours to determine the class of I. k-NN computes
the distances between a new observation and all the observations in the set use for learning, and
thus choose the k observations from the learning set are the closest to the new observation. Finally,
k-NN classify the new observation to the group associated with the most significant number the
k observations. Once the k nearest neighbours are located, the class of the new observation is
identified by using a voting algorithm.

The formal k-NN classifier algorithm is as follows:

argmin(de(t, n, k)) =⇒ identifyP (A.2)

where t is the training data, n is the object to be classified, P is the assigned class of the new
observation, k is the number of closest neighbours to be considered, and de is the Euclidean distance
given by:

de(t, n, k) =

√√√√ L∑
i=1

(ti,k − ni,k)2 (A.3)

where L is the length of each data vector [116].

Support vector clustering

Support vector clustering (SVC) consists of mapping data points into a sphere with minimal radius
by means of a Gaussian kernel function from high dimensional feature space. This sphere represents
a set of contours which enclose the data points in input space. These contours are defined as cluster
boundaries and points enclosed by each separate contour are associated with the same cluster. The
SVC training phase contains to fix the width parameter of the Gaussian kernel, calculate kernel
matrix, calculate Lagrange multipliers, select support vectors and calculate the radius of the sphere
in the high dimensional feature space [283].

Following Ben-Hur et al. [283], denote a data set as {Xi} ⊆ χ of N points, with χ ⊆ Rd, the data
space. Using a nonlinear transformation Φ from χ to some high dimensional feature space to find
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a minimal radius sphere R that comprises most of the data points in the feature space, described
by the constraints:

||Φ(Xj)− a||2 ≤ R2 + ξj (A.4)

where . is the Euclidean norm and a is the center of the sphere and ξj > 0 is a soft constraints.
Therefore, Lagrange multiplier is estimated as:

max
N∑
j=1

K(xj , xj)βj −
N∑
i=1

N∑
j=1

βiβjK(xj , xj) (A.5)

such that
∑N

j=1 βj = 1 and 0 ⊆ βj ⊆ C,∀j = 1, 2, . . . , N . Where βj are Lagrange multipliers
and K(xixj) = Φ(xi • Φ(xj)) is kernel function. It is demonstrable that only those points with
0 ⊆ βj ⊆ C lie on the boundary of the sphere and are called support vectors (SVs).

Gaussian kernel is the next form:

K(xi, xj) = e−q||xi−xj ||
2

(A.6)

with width parameter q.

The distance of its projection in feature space from the center of the sphere at each x point:

R2(x) = ||Φ(Xj)− a||2 = K(x, x)− 2

N∑
j=1

K(xj , xj)βj −
N∑
i=1

N∑
j=1

βiβjK(xj , xj) (A.7)

Let Ω is the set of all of SVs, then the radius of the sphere is:

R = {R(xi)|xi ∈ Ω} (A.8)

The contours that enclose the points in data space are defined by the set:

{x|R(x) = R} (A.9)

Finally, the cluster assignment is leading by the definition of the adjacency matrix element Aij
between pairs of points xi and xj whose projections lie in or on the sphere in feature space:

Aij =

{
1, if R(λxi + (1− λ)xj) ≤ R ∀ λ ∈ [0,1]
0, otherwise

, (A.10)
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where data points pair are given by (xi, xj), which belong to different clusters, any path that
connects them must exit from the sphere in feature space, i.e., λ ∈ [0, 1], such that R(y) > R,
where y = λxi + (1− λ)xj .

Linear discriminant analysis

Linear discriminant analysis (LDA) is a dimensionality reduction technique based on Fisher’s linear
discriminant, which generates a linear projection matrix used to improve classification accuracy.
In particular, the redundant and dependent features are removed by transforming the features
from higher dimensional space to a space with lower dimensions. Besides, LDA determines linear
decision boundaries by maximising the proportion of intra-class and inter-class variability. Thus,
eigenvalue decomposition (EVD) estimates these linear boundaries. EVD assumes that the scatter
matrix is non-singular, and all the variables are normally distributed and the covariance matrices
are identical. Linear discriminant analysis is modelled as a multivariate Gaussian distribution with
density:

P (X|y = k) =
1

(2π)
d
2 |
∑

k |
1
2

e(− 1
2

)(X−µk)t
∑−1

k (X−µk) (A.11)

where d is the number of features.

Formally stated, the intra groups (Si) and inter groups variances are expressed by:

Si =

C∑
i=1

∑
x∈Ci

(xi − µi)(xi − µi)T (A.12)

Sb =

C∑
i=1

∑
x∈Ci

Li(µi − µ)(µi − µ)T (A.13)

where xi, Li and µi are represented by the biological and functional properties of the genes at each
ith class; µ is the mean of all classes and T is the transpose operator. Therefore, theW ∗ eigenvector
is the maximization between intra and inter groups:

W ∗ = argmaxw
|W TSbW |
W TSiW

(A.14)

i.e. W of S−1
i Sb [116].
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Quadratic discriminant analysis

Quadratic discriminant analysis (QDA) is a variant of LDA, in which the assumption is that the
observations are drawn from a Gaussian distribution which are not follow the same covariance
matrix. That is, QDA has different feature covariance matrices for different classes, leading to a
quadratic decision boundary. QDA is especially beneficial due to the prior knowledge that individual
classes exhibit distinct covariances [284].

P (X|y = k) = −1

2
(log|

∑
k

| − (X − µk)t
∑
k

(X − µk) + log(πk) (A.15)

Logistic regression cross-validation

Logistic regression takes a cost function defined as a logistic function or a Sigmoid function. The
hypothesis of logistic regression to limit the cost function between 0 and 1. It models the conditional
probability as:

Pw(y = ±1|x) = − 1

1 + eywtx
(A.16)

where x is the data, y is the class label, and w ∈ Rn is the weight vector. Given two-classes train-
ing data {x1, yi}li=1, xi ∈ Rn, yi ∈ (1,−1), logistic regression minimizes the following regularized
negative likelihood.

Pw = C
l∑

i=1

log(1 + eyw
tx) +

1

2
wtw (A.17)

where C > 0 is a penalty parameter. This probability is referred to as the primal form of logistic
regression, as one may instead solve dual problem. Thus, it is necessary to find the parameter
vector weight w that minimize a cost function in order to get the best predicted output.

l(w) = P (w) (A.18)

Dual formulation can be solved by implementing different solvers such as Newton methods, stands
for Limited-memory Broyden-Fletcher–Goldfarb, library for large linear classification or stochastic
average gradient descent [285].
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Multi-layer perceptron

Multi-layer Perceptron (MLP) is a supervised learning algorithm with at least three layers of nodes,
an input layer, certain number of intermediate layers, and an output layer. Each node in a given
layer is connected to every node in the adjacent layers.

The input layer consists of a set of neurons {xi|x1, ..., xm} representing the input features, where m
is the number of dimensions for input. Each neuron in the hidden layer transform the value from the
previous layer with a weighted linear summation, followed by a non-linear function g(.) : R → R.
While, the output layer receives the values from the last hidden layer and transforms them into
output values

MPL learns from a non-linear function approximator on the training dataset (x1, y1), ..., (xn, yn)

where xi ∈ Rn and yi ∈ (0, 1). The function is defined by:

f(x) = W2g(W t
1x+ b1) + b2 (A.19)

where W1,W2 represent the weights of the input and hidden layer; and b1, b2 correspond the bias
added to the hidden layer and the output layer. The activation function is set by the hyperbolic
tan. It is given as:

g(z) =
ez − e−z

ez + e−z
(A.20)

For more than two classes, f(x) is a vector of size n which passes through the softmax function,
which is written as:

softmax(z)i =
e(zi)∑k
l=1 e(zi)

(A.21)

where zi represents the ith element of the input to softmax, which corresponds to class i, and K
is the number of classes. The result is a vector containing the probabilities that sample belong to
each class. The output is the class with the highest probability.

Finally, MLP uses different loss functions depending on the problem type. The loss function for
classification is Cross-Entropy [286].

Bagging classifier

A Bagging classifier is an ensemble meta-estimator that fits base classifiers each on random subsets of
the original dataset and then aggregate their individuals predictions (either by voting or averaging)
to reach a final prediction.
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A learning set of L consists of data {(yn, xn), n = 1, ..., N} where y′s are either class labels or a
numerical response. Assuming that the learning set to form a predictor is ϕ(x, L). The sequence of
learning sets are given by Lk for N independent observations which follow the same L underlying
distribution. Therefore, the average is taken as ϕa(x) = ELϕ(x,Lk) where A in ϕA denotes aggrega-
tion. Thus, ϕ(x, L) predicts a class j ∈ (1, ..., J), then one method of aggregating the ϕ(x, Lk) is
by voting. Let Nj = nr{k : ϕ(x, Lk) = j} and take ϕA(x) = argmaxjNj , that is, the j for which
Nj is maximum. Finally, taking repeated bootstrap samples L(B) from L, and form ϕ(x, L(B)), the
classifier is written by:

ϕB(x) = avbϕ(x, L(B)) (A.22)

where avB is the average of ϕ(x, L(B)) [287].
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Figure B.1: LDU maps of chromosomes 1 to 6

149



150 Appendix B Supplementary data

0

1000

2000

3000

0 30,000 60,000 90,000 120,000 150,000
Location (kb)

Lo
ca

tio
n 

(L
D

U
)

Chromosome 7

0

1000

2000

3000

0 30,000 60,000 90,000 120,000
Location (kb)

Lo
ca

tio
n 

(L
D

U
)

Chromosome 9

0

1000

2000

3000

0 30,000 60,000 90,000 120,000
Location (kb)

Lo
ca

tio
n 

(L
D

U
)

Chromosome 11

0

1000

2000

3000

0 30,000 60,000 90,000 120,000
Location (kb)

Lo
ca

tio
n 

(L
D

U
)

Chromosome 8

0

1000

2000

3000

0 30,000 60,000 90,000 120,000
Location (kb)

Lo
ca

tio
n 

(L
D

U
)

Chromosome 10

0

1000

2000

3000

0 30,000 60,000 90,000 120,000
Location (kb)

Lo
ca

tio
n 

(L
D

U
)

Chromosome 12

Figure B.2: LDU maps of chromosomes 7 to 12
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Figure B.3: LDU maps of chromosomes 13 to 18
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Figure B.4: LDU maps of chromosomes 19 to 22
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Table B.1: Number of genome regions in each category by chromosome

Chromosome Genic regions Gene Exons Gene Introns Non-coding RNAs Intergenic regions

1 1,804 21,642 19,493 859 1,803

2 1,084 15,645 14,338 637 1,083

3 944 12,793 11,600 580 943

4 681 8,298 7,494 367 680

5 760 9,308 8,409 481 759

6 916 10,499 9,389 488 915

7 811 9,897 8,932 456 810

8 621 7,277 6,558 385 620

9 691 8,478 7,650 396 690

10 661 8,829 8,037 416 660

11 1,160 11,991 10,591 446 11,59

12 922 12,107 11,026 448 921

13 287 3,768 3,422 306 286

14 539 6,470 5,798 318 538

15 521 7,483 6,844 358 520

16 723 8,926 8,008 370 722

17 1,013 12,386 11,094 467 1,012

18 247 3,263 2,967 167 246

19 1,295 12,439 10,930 457 1,294

20 480 5,285 4,690 259 479

21 193 2,168 1,939 152 192

22 389 4,469 3,980 227 388

Total 16,742 203,421 183,189 9,040 16,720

Table B.2: Physical size of genome regions Kb! (Kb!) across the autosomal chromosomes

Chromosome Whole chromosomes Genic regions Gene exons Gene introns Non-coding RNAs Intergenic Centromeric heterochromatin

1 249,153.02 106,391.14 6,966.09 95,072.08 31,857.81 119,817.23 22,637.32

2 239,845.03 93,819.86 4,842.43 87,935.59 32,003.58 139,486.84 6,486.72

3 197,820.58 85,036.44 4,092.21 80,299.69 27,636.41 108,435.28 4,060.60

4 191,019.76 64,694.37 2,887.17 61,022.58 17,318.02 122,555.79 3,645.07

5 180,702.67 63,226.23 3,309.01 59,097.75 23,953.80 113,373.81 3,995.81

6 170,771.73 65,599.37 3,553.01 61,101.57 19,085.66 100,231.21 4,770.63

7 159,105.07 70,410.39 3,228.88 65,213.91 19,080.67 82,362.62 5,972.54

8 146,135.37 54,619.05 2,468.18 52,250.19 20,968.91 86,526.18 4,955.14

9 141,040.77 47,100.87 2,740.57 43,702.30 12,844.84 72,221.93 21,580.89

10 135,414.19 61,181.39 2,833.16 57,160.70 15,859.62 69,521.25 4,645.33

11 134,756.10 57,196.76 3,795.30 52,874.20 14,080.35 73,377.12 3,513.45

12 133,755.84 58,557.90 3,692.46 54,191.12 13,161.68 70,549.56 4,529.32

13 95,940.79 31,424.37 1,316.66 29,831.53 11,994.84 63,920.46 -

14 88,238.10 35,089.01 2,161.38 32,560.97 10,400.25 51,529.84 -

15 82,476.10 39,306.01 2,333.19 37,124.44 13,575.37 42,420.39 -

16 90,096.83 34,243.66 2,657.50 31,142.67 8,516.88 42,453.93 13,347.78

17 81,152.95 41,358.90 3,716.92 36,888.72 9,603.98 36,091.02 3,597.06

18 78,004.28 27,429.14 1,185.86 26,293.07 7,693.70 46,740.84 3,676.96

19 59,003.31 28,400.76 3,932.01 24,335.12 6,697.98 25,188.24 5,385.40

20 62,903.17 26,602.88 1,714.88 24,277.99 6,146.94 32,068.45 4,167.93

21 38,604.75 11,626.38 681.67 10,764.19 6,035.17 25,552.46 -

22 35,169.19 17,952.38 1,416.09 16,096.51 5,615.93 17,013.45 -

Total & %coverage 2,791,109.60 1,121,267.26 (40.17) 65,524.61 (2.35) 1,039,236.88 (37.23) 334,132.38 (11.97) 1,541,437.90 (55.23) 120,967.95 (4.33)
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Table B.3: LDU size of genome regions across the autosomal chromosomes

Chromosome Whole chromosomes Genic regions Gene exons Gene introns Non-coding RNAs Intergenic Centromeric heterochromatin

1 5,078.92 2,209.43 137.00 1,991.46 610.26 2,858.10 6.00

2 4,736.82 1,564.72 76.14 1,465.07 561.48 3,145.75 24.72

3 4,138.09 1,721.74 80.80 1,633.80 523.42 2,399.74 9.82

4 3,936.59 1,262.07 53.50 1,186.58 355.96 2,658.18 2.16

5 3,785.07 1,241.02 56.01 1,162.17 460.56 2,537.92 3.00

6 3,604.75 1,310.61 74.46 1,222.90 363.34 2,277.70 10.71

7 3,460.39 1,455.49 71.52 1,346.96 350.78 1,978.58 15.58

8 3,101.18 1,127.98 45.54 1,077.69 395.37 1,957.49 13.11

9 2,953.02 1,073.42 64.78 998.06 266.52 1,857.18 18.00

10 3,140.77 1,310.58 55.02 1,234.98 325.28 1,822.07 6.27

11 2,943.56 1,249.33 78.86 1,158.70 303.48 1,655.63 5.61

12 2,990.16 1,216.67 83.90 1,120.99 253.33 1,761.32 7.16

13 2,309.50 708.45 27.19 674.65 254.68 1,583.06 -

14 2,158.42 713.46 57.02 646.05 205.78 1,413.62 -

15 2,151.48 845.87 44.77 791.93 294.94 1,297.06 -

16 2,562.56 1,054.57 56.80 990.89 250.18 1,487.36 20.10

17 2,287.03 1,041.98 94.77 935.15 268.40 1,235.20 5.50

18 2,079.02 749.03 36.98 710.61 159.85 1,311.23 13.18

19 1,869.27 903.86 116.72 782.73 198.36 924.66 38.60

20 1,846.33 724.34 52.78 665.78 158.68 1,113.93 4.25

21 1,110.60 355.63 15.25 334.36 204.02 728.87 -

22 1,184.17 457.55 33.76 406.28 134.50 721.05 -

Totals /% coverage 63427.68 24297.76 (38.31%) 1413.55 (2.23%) 22537.79 (35.53%) 6899.19 (10.88%) 38725.67 (61.05%) 203.77 (0.32%)

Table B.4: Extent of LD in Kb (Kb/LDU) for genome regions across the autosomal chro-
mosomes

Chromosome *Whole chromosomes Genic Gene exons Gene introns Non-coding RNAs **Intergenic Centromeric Gene exons + Non-coding RNAs

1 49.06 48.15 50.85 47.74 52.20 41.92 3772.89 51.96

2 50.63 59.96 63.60 60.02 57.00 44.34 262.41 57.79

3 47.80 49.39 50.65 49.15 52.80 45.19 413.5 52.51

4 48.52 51.26 53.97 51.43 48.65 46.11 1687.53 49.35

5 47.74 50.95 59.08 50.85 52.01 44.67 1331.94 52.78

6 47.37 50.05 47.72 49.96 52.53 44.01 445.44 52.83

7 45.98 48.38 45.15 48.42 54.39 41.63 383.35 52.83

8 47.12 48.42 54.20 48.48 53.04 44.20 377.97 53.16

9 47.76 43.88 42.31 43.79 48.19 38.89 1198.94 47.04

10 43.11 46.68 51.49 46.28 48.76 38.16 740.88 49.15

11 45.78 45.78 48.13 45.63 46.40 44.32 626.28 46.75

12 44.73 48.13 44.01 48.34 51.95 40.05 632.59 49.98

13 41.54 44.36 48.42 44.22 47.10 40.38 - 47.23

14 40.88 49.18 37.91 50.40 50.54 36.45 - 47.80

15 38.33 46.47 52.12 46.88 46.03 32.71 - 46.83

16 35.16 32.47 46.79 31.43 34.04 28.54 664.07 36.4

17 35.48 39.69 39.22 39.45 35.78 29.22 654.01 36.68

18 37.52 36.62 32.07 37 48.13 35.65 278.98 45.11

19 31.56 31.42 33.69 31.09 33.77 27.24 139.52 33.74

20 34.07 36.73 32.49 36.47 38.74 28.79 980.69 37.18

21 34.76 32.69 44.7 32.19 29.58 35.060 - 30.63

22 29.70 39.24 41.95 39.62 41.75 23.6 - 41.79

Chromosome means / SD 42.03 / 6.40 44.54 / 7.23 46.39 / 8.20 44.49 / 7.42 46.52 / 7.61 37.78 / 6.81 858.29 46.34 / 7.27

*Includes centromeric regions
** Excludes centromeric regions
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