The University of Southampton
University of Southampton Institutional Repository

STORM + STORM future climate scripts

STORM + STORM future climate scripts
STORM + STORM future climate scripts
These are the Python scripts and files necessary to recreate the STORM future climate scripts presented in Bloemendaal et al (2022) "A globally consistent local-scale assessment of future tropical cyclone risk". Please read the README before using the scripts. We recommend STORM users to also read the following documentation: Bloemendaal et al (2020) "Generation of a global synthetic tropical cyclone hazard dataset using STORM" (https://www.nature.com/articles/s41597-020-0381-2); Bloemendaal et al (2020) "Estimation of global tropical cyclone wind speed probabilities using the STORM dataset" (https://www.nature.com/articles/s41597-020-00720-x) The entire STORM repository can (also) be found on Github, see www.github.com/NBloemendaal. This also includes updates to the scripts.
Zenodo
Aerts, Jeroen C.J.H.
5dcc3360-4ec6-4e04-8071-71993ec461a2
Ward, Philip J.
ff039336-2f71-44da-b28f-feab4875a944
Roberts, Malcolm J.
5577a257-2416-4760-b72a-711f3a2dee84
van der Wiel, Karin
a994a517-4d7a-4a9d-b9c2-a235ea526dc0
de Moel, Hans
c10ce4ce-4443-4f55-89c7-b59150fe611c
Haigh, Ivan D.
945ff20a-589c-47b7-b06f-61804367eb2d
Dullaart, Job C.M.
689928c5-19fa-4241-a56e-012fedb9153a
Muis, Sanne
d73531db-78f1-4f65-b1a0-f96ae1c46377
Haarsma, Reindert J.
52de705c-7df6-48c6-a891-99c8a01f4b09
Bloemendaal, Nadia
8aaf62a9-9c7a-4650-ae4a-071a6f5b0ac1
Martinez, Andrew B.
e6d08e11-cb32-4279-afba-3fe557d9f560
Aerts, Jeroen C.J.H.
5dcc3360-4ec6-4e04-8071-71993ec461a2
Ward, Philip J.
ff039336-2f71-44da-b28f-feab4875a944
Roberts, Malcolm J.
5577a257-2416-4760-b72a-711f3a2dee84
van der Wiel, Karin
a994a517-4d7a-4a9d-b9c2-a235ea526dc0
de Moel, Hans
c10ce4ce-4443-4f55-89c7-b59150fe611c
Haigh, Ivan D.
945ff20a-589c-47b7-b06f-61804367eb2d
Dullaart, Job C.M.
689928c5-19fa-4241-a56e-012fedb9153a
Muis, Sanne
d73531db-78f1-4f65-b1a0-f96ae1c46377
Haarsma, Reindert J.
52de705c-7df6-48c6-a891-99c8a01f4b09
Bloemendaal, Nadia
8aaf62a9-9c7a-4650-ae4a-071a6f5b0ac1
Martinez, Andrew B.
e6d08e11-cb32-4279-afba-3fe557d9f560

(2022) STORM + STORM future climate scripts. Zenodo doi:10.5281/zenodo.6337643 [Dataset]

Record type: Dataset

Abstract

These are the Python scripts and files necessary to recreate the STORM future climate scripts presented in Bloemendaal et al (2022) "A globally consistent local-scale assessment of future tropical cyclone risk". Please read the README before using the scripts. We recommend STORM users to also read the following documentation: Bloemendaal et al (2020) "Generation of a global synthetic tropical cyclone hazard dataset using STORM" (https://www.nature.com/articles/s41597-020-0381-2); Bloemendaal et al (2020) "Estimation of global tropical cyclone wind speed probabilities using the STORM dataset" (https://www.nature.com/articles/s41597-020-00720-x) The entire STORM repository can (also) be found on Github, see www.github.com/NBloemendaal. This also includes updates to the scripts.

This record has no associated files available for download.

More information

Published date: 8 March 2022

Identifiers

Local EPrints ID: 474102
URI: http://eprints.soton.ac.uk/id/eprint/474102
PURE UUID: e640a7d9-8b2c-4460-8203-4acde6df3915
ORCID for Ivan D. Haigh: ORCID iD orcid.org/0000-0002-9722-3061

Catalogue record

Date deposited: 13 Feb 2023 18:09
Last modified: 21 Nov 2023 02:40

Export record

Altmetrics

Contributors

Contributor: Jeroen C.J.H. Aerts
Contributor: Philip J. Ward
Contributor: Malcolm J. Roberts
Contributor: Karin van der Wiel
Contributor: Hans de Moel
Contributor: Ivan D. Haigh ORCID iD
Contributor: Job C.M. Dullaart
Contributor: Sanne Muis
Contributor: Reindert J. Haarsma
Contributor: Nadia Bloemendaal
Contributor: Andrew B. Martinez

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×