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Fog computing is gaining popularity as a suitable computer paradigm for the Internet
of things (IoT). It is a virtualised platform that sits between IoT devices and centralised
cloud computing. Fog computing has several characteristics, including proximity to
IoT devices, low latency, geo-distribution, a large number of fog nodes, and real-time
interaction. A key challenge in fog is resource allocation because existing resource
allocation methods for cloud computing cannot directly apply to fog computing.
Hence, many resource allocation methods for fog computing have been proposed since
the birth of fog computing. However, most of these methods are centralised and
not truthful, which means that users are not incentivised always to provide the true
information of their tasks and their efficiency could decrease significantly if some users
are strategic. Hence, an efficient resource allocation mechanism for this computing
paradigm, which can be used in a strategic environment, is in need. Furthermore,
a decentralised resource allocation algorithm is needed when there is no central
control in the fog computing system. To this purpose, we consider three challenges:
(1) near-optimal resource allocation in a fog system; (2) incentivising self-interested
IoT users to truthfully report their tasks; and (3) decentralised resource allocation in a
fog system.

In this thesis, we examine relevant literature and describe its achievements and
shortcomings. Currently, many resource allocation mechanisms using various
techniques are proposed for resource allocation in cloud computing and fog
computing. However, there is little work that studies truthful fog computing resource
allocation mechanisms. Furthermore, reinforcement learning is also widely used in
resource allocation for fog computing. However, most of these studies focus on
single-agent reinforcement learning and centralised resource allocation. In summary,
they only address a subset of the challenges in our fog computing resource allocation
problem, and their application scenarios are highly limited.
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Therefore, we introduce our resource allocation model, i.e., Resource Allocation in
Fog Computing (RAFC) and Distributed Resource Allocation in Fog Computing
(DRAFC) in detail and choose the benchmark mechanisms to evaluate our proposed
resource allocation mechanisms. Then, we develop and test an efficient and truthful
mechanism called Flexible Online Greedy (FlexOG) using simulations. The simulations
demonstrate that our mechanism can reach a higher level of social welfare than
the truthful benchmark mechanisms by up to 10% and that it often achieves about
90% of the theoretical upper bound. To make FlexOG more scalable, we propose a
modification of FlexOG called Semi-FlexOG, which is shown to use less processing
time. Furthermore, to allocate resources in a decentralised fog system, we propose
Decentralised Auction with PPO (DAPPO), which uses online reverse auctions and
decentralised reinforcement learning for allocating tasks to resources in the fog. By
enabling competition between resource providers, these auctions ensure that the most
suitable provider is chosen for a given task, but without the computational and
communication overheads of a centralised solution. In order to derive effective bidding
strategies for nodes, we use a Proximal Policy Optimisation (PPO) reinforcement
learning algorithm that takes into account the status of a node and task characteristics
and that aims to maximise the node’s long-term revenue. Hence, DAPPO deals
naturally with highly dynamic systems, where the pattern of tasks could change
dramatically. The results of our simulations show that DAPPO achieves a good
performance in terms of social welfare. Specifically, its performance is close to the
upper bound (around 90%) and better than benchmarks (0% to 30%). Finally, we
conclude and outline possible future work.
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Chapter 1

Introduction

To extend the traditional Internet, which mainly connects computers and smartphones,
the IoT is about connecting all kinds of physical devices in the world to the Internet,
and we call those things IoT devices in this thesis. The IoT is developing rapidly
— by 2021, the number of connected IoT devices had grown to 12.3 billion, and it is
estimated that by 2025, there will be 27 billion active devices in the IoT (Sinha, 2021).
The reason why the IoT is fast-developing is that it makes things smart by giving
them the ability to receive and send information to the Internet. IoT applications
such as smart homes (Ricquebourg et al., 2006; Stolojescu-Crisan et al., 2021), smart
cities (Cocchia, 2014; Hassan et al., 2021), smart agriculture (TongKe, 2013; Sinha and
Dhanalakshmi, 2022), smart grid (Tuballa and Abundo, 2016; Mehmood et al., 2021),
and industry 4.0 (Roblek et al., 2016; Khan and Javaid, 2021) can significantly improve
work efficiency, make life more convenient and improve our health. For example, a
smart city can have a traffic management system, which takes advantage of widely
distributed sensors such as video cameras, Bluetooth sensors (i.e., sensors that detect
how many smartphones with their Bluetooth on are near it.), and loop detectors
(detect vehicles arriving or passing it) to reduces traffic congestion (Su et al., 2011),
and a smart home may allow a refrigerator to buy food automatically according to its
stock (Ricquebourg et al., 2006).

However, IoT devices usually have very limited computing power because they need
to have extremely low cost and very low power consumption (Chen et al., 2014).
For instance, to reduce cost, many IoT devices only use energy harvested from the
environment (Liu and Ansari, 2019), which is very limited. Many IoT devices must
be low-cost so that people are willing to buy and use them. For this reason, many
IoT devices cannot process their computational tasks or store their data locally. For
example, as a surveillance camera in a traffic management system generates a vast
amount of video data every day, its limited storage will fill up quickly if it stores
the data locally. Another example is the Amazon Echo, a smart speaker developed
by Amazon that performs speech recognition by sending the voice to Amazon’s
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servers because the Echo does not have enough computational power to perform
this locally (Marr, 2018). Similarly, the data generated by weather sensors in smart
agriculture need to be gathered for analysis because weather sensors can only collect
and send weather data, and the aggregated data from many sensors is required in order
to predict the weather (Mekala and Viswanathan, 2017).

One way to solve this problem is by combining IoT with cloud computing (Chen
et al., 2014; Sadeeq et al., 2021). This is because the cloud can offer virtually unlimited
computational power and storage from its data centres to IoT devices (Botta et al., 2016).
In more detail, the data centre in the cloud is mainly a collection of computing facilities
(e.g., servers, routers and switches) that are used to create cloud services (Greenberg
et al., 2008). However, this approach also has three main deficiencies in some IoT
scenarios. Firstly, cloud computing often has high latency, and thus, latency-sensitive
applications are not feasible to be deployed in the cloud (Bonomi et al., 2012). For
instance, a study of two cloud gaming platforms shows that the latency for their
games is between 135-500ms (Chen et al., 2011), which is too high for some types
of games such as first-person shooters and multiplayer online battle arena games.
Secondly, the bandwidth to and from the cloud provider is a bottleneck of cloud
computing, especially when more and more IoT devices will connect to the Internet
in the future (Sarkar et al., 2018). Finally, the data privacy and security of cloud
computing faces many risks (Takabi et al., 2010). For example, many IoT devices do
not have the capability to encrypt their data before sending it to the cloud (Alrawais
et al., 2017). Hence, cloud computing is not suitable for many IoT applications that are
latency-sensitive, generate a large volume of traffic or require a high-security level (e.g.,
smart homes, smart cities and smart grid) (Sen, 2015).

Thus, we need to turn to a new computing paradigm to make up for these deficiencies
of cloud computing. Against this background, fog computing is proposed as a
promising complement to cloud computing for IoT applications (Bonomi et al., 2012).
Fog computing is similar to cloud computing that provides computing, networking
and storage services between IoT devices and the cloud (Bonomi et al., 2012). Fog
computing reduces latency and saves network bandwidth requirements by processing
data close to IoT devices. Furthermore, fog computing makes IoT systems more
secure. For instance, it reduces the chances of eavesdropping by processing data
locally and reducing the amount of sensitive data transmitted to the cloud (Bonomi
et al., 2012). For example, fog computing can process the video stream collected
from a video surveillance system, which is latency-sensitive, privacy-sensitive and
generates a log of data to track objects (Liu et al., 2018). A new secure data storage and
searching framework, where raw data are first processed and stored in the fog, and then
non-time-sensitive data are sent to the cloud, is proposed and verified to significantly
improve the data security in the IoT because the amount of data transmitted in the
network is decreased (Fu et al., 2018).
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Besides the benefits of fog computing mentioned above, the effectiveness of fog is very
much determined by its resource allocation mechanisms (see Chapter 1.2), and resource
allocation is critical to making full use of resources in the fog and improving the Quality
of Service (QoS) of the fog (Mahmud et al., 2018). Therefore, in this thesis, we focus on
RAFC. In particular, we study RAFC in a strategic setting (i.e., assuming IoT users are
rational) due to the fact that the information of IoT users’ tasks is usually private, and
IoT users are not necessarily truthful in reality. Furthermore, we also study DRAFC
where there is no central control responsible for resource allocation, which is a common
situation.

Note that there are also many challenges faced by fog computing. First, the fog
computing system can be more complex and challenging to manage because it has
many fog nodes at different locations. Second, regarding security and privacy, some
fog nodes may be in a less secure environment. For example, a hacker may fake its IP
address to gain access to a particular fog node (Rafiq et al., 2019). Third, authentication
is more difficult for fog computing (Munir and Mohammed, 2019). For example, an
illegal fog node may pretend to be legal and takes advantage of its users. Finally,
regarding energy consumption, it takes a lot of energy to make all fog nodes work
in a fog (Mukherjee et al., 2019).

In the following, we introduce the fog computing paradigm in more detail in
Sections 1.1 and 1.2 and present the research challenges of RAFC in Section 1.3.
Moreover, we highlight our research contributions and give a brief outline of the whole
thesis in Sections 1.4 and 1.5 respectively.

1.1 Fog Computing Overview

Fog computing is formally defined as a virtualised1 computing platform, which lies
between IoT devices and cloud computing data centres, providing storage, computing
and networking services, which is typically located at the edge of the network (i.e., the
periphery of the network) (Bonomi et al., 2012). In particular, the main components
of the fog are fog nodes, which are devices or facilities that can provide computing
resources to IoT devices at the edge of the network, such as routers, switches, industrial
controllers, smartphones, laptops, video surveillance cameras and base stations (Yi
et al., 2015). Some commercial offerings of fog nodes are illustrated in Figure 1.1.

Compared with centralised data centres of the cloud, fog nodes have limited
computational power and are distributed, heterogeneous, and closer to IoT
devices (Tordera et al., 2016). For instance, Google data centres, which provide services

1Virtualisation is a technique to create virtual versions of resources such as an operating system or
a storage device. It allows many users to share a single physical server and different operating systems,
and applications can run on the same hardware simultaneously.
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FIGURE 1.1: Some existing products that can serve as fog nodes.

FIGURE 1.2: The architecture of the IoT, fog computing and cloud computing3.

for Google users, are only deployed at 23 locations around the globe2, and only two
of them are in Asia. In contrast, many fog nodes would need to be deployed just
along a motorway to provide low-latency services for Automonous Vehicle (AV)s (Xiao
and Zhu, 2017). Figure 1.2 shows the architecture of the IoT and the position of fog
computing in this architecture (Bonomi et al., 2012).

2https://www.google.com/about/datacenters/inside/locations/index.html

https://www.google.com/about/datacenters/inside/locations/index.html
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Note that several computing paradigms are similar to fog computing, such
as geo-distributed clouds (Narayanan et al., 2014; Li et al., 2021), edge
computing (Garcia Lopez et al., 2015; Al-Ansi et al., 2021), mobile cloud
computing (Fernando et al., 2013; AlAhmad et al., 2021) and cloudlets (Satyanarayanan
et al., 2009; Mukherjee et al., 2021). Although there are many differences between
these computing paradigms, in essence, they all place computational resources
close to the users, and they all have similar resource allocation models. As the name
suggests, a geo-distributed cloud consists of several geo-distributed cloud data centres,
which offer many advantages such as low latency, the ability to safeguard against
failures, and exploitation of different regional energy prices. However, compared
with fog nodes, the data centres in a geo-distributed cloud are still far away from IoT
devices (Narayanan et al., 2014). Furthermore, edge computing pushes the computing
power directly into the edge of the Internet, that is, applications are processed on
IoT devices that have sufficient computing power (Garcia Lopez et al., 2015), and
mobile cloud computing is about offloading computing tasks from mobile devices to
computing resource providers such as cloud or fog (Fernando et al., 2013). In addition,
cloudlets is just an alternative name for fog (Satyanarayanan et al., 2009). Given this, in
the rest of the thesis, we only refer to fog computing because it is the most appropriate
platform for many IoT applications (Bonomi et al., 2012). Still, our discussion and
solutions could be partly applicable to the other types of systems mentioned.

Similar to the cloud, the primary function of the fog is to provide computing and
networking resources, and fog computing is rather a complement to cloud computing
than a substitute (Matt, 2018). The differences between them make fog computing more
suitable for many IoT application scenarios. In what follows, we highlight important
features that fog computing should have (Bonomi et al., 2012), which need to be
considered when formulating the resource allocation model for RAFC. Note that fog
computing was recently proposed and has not yet been widely used, and some of these
features are shared by both fog and cloud computing.

First, the fog should have the ability to execute low latency computational tasks for
applications such as AVs, real-time video analytics and online games. For example, at
high speed, the response time for the autopilot system of an AV to avoid an accident
can be just several milliseconds. Fog computing can reduce latency and network traffic
because the data collected by IoT devices will be sent to fog nodes nearby for processing
and storage instead of sending them to often far-away cloud data centres (Atlam et al.,
2018).

Second, since many IoT devices are mobile (e.g., smartphones, laptops, AVs), the fog

3Source of icons: https://www.shutterstock.com/image-illustration/
set-line-icons-open-path-internet-600405563

https://www.shutterstock.com/image-illustration/set-line-icons-open-path-internet-600405563
https://www.shutterstock.com/image-illustration/set-line-icons-open-path-internet-600405563
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should support mobility through wireless access. It can use techniques like Locator
ID Separation Protocol4, Mobile IPv6 and Hierarchical Mobile IPv6 (Liu et al., 2015).
For example, LISP separates the address space of locators and identifiers and has the
advantage of mobility. In addition, the mobility of IoT devices brings new challenges
to resource allocation, such as VM migration and dynamic traffic routing.

Third, the fog also needs to support real-time interactions besides batch processing
because real-time interactions are demanded by many IoT applications such as Virtual
Reality (VR) and Augmented Reality (AR).

Finally, some data of the IoT needs to be processed in the fog, and others are more
suitable to be processed in the cloud because the cloud has data that the fog does not
have or has a greater computing power (Bonomi et al., 2012). As a result, the fog should
also support interplay with the cloud, which means that the fog can send data to the
cloud to process. For example, the big data generated by a smart grid can be first
processed in the fog, and then the results are sent to the cloud for latency-insensitive
analysis (Borylo et al., 2016).

Next, we will introduce the application scenarios that are especially suitable for fog
computing, such as AR, VR, real-time video analytics, smart grid and AV. These
applications typically need low latency that cannot be fulfilled by cloud computing.

• AR and VR: AR can "augment" real-world scenes by adding computer-generated
graphics to the real world, and VR constructs an environment of
computer-generated feedback of video and sound that makes people have
the feeling that the generated world is immersive and realistic. Examples of AR
include Microsoft HoloLens (Evans et al., 2017) and Google Glass (Al-Maroof
et al., 2021), while HTC Vive (Dempsey, 2016) and Oculus Rift (Jost et al., 2021)
are representatives of VR. Since the computer-generated environment should
be able to deceive the senses and humans are very sensitive to feedback delays
(latencies greater than 50ms are perceptible) (Brooks, 1999), the video must have
a high resolution to feel real as well as a high frame rate and very low latency
for sensitivity. Consequently, both AR and VR need immense computational
power to run properly. However, most mobile devices like smartphones do
not have enough computational power to run these applications locally (Yang
et al., 2018b). A possible solution is to combine fog computing and mobile
AR or VR devices and put intensive computations in the fog. For example, a
startup called GridRaster is developing a VR/AR software platform on Saguna’s
fog computing solution Open-RAN (Alto, 2018) to offer an immersive VR/AR
experience on mobile devices by leveraging fog computing. Furthermore, a large
shipbuilder, Navantia, is starting to use an AR system, which is also based on fog

4http://www.lispmob.org

http://www.lispmob.org
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computing. A study of this system shows that fog computing based AR systems
respond clearly faster than cloud-based AR system (Fernández-Caramés et al.,
2018).

• Real-Time Video Analytics: Real-time video analytics uses Artificial Intelligence
(AI) to analyse video contents generated by huge numbers of cameras deployed
in buildings, along the streets or in cars in real-time. Fog computing can
help many video analytics applications, such as video surveillance, object/face
recognition, and smart traffic lights, which typically require low latency, immense
computing power and large bandwidth. For example, a bandwidth of 25 Mbps
is required to stream a 4K video (Ananthanarayanan et al., 2017). A prototype
of a dynamic urban surveillance system based on fog computing, which uses
three drones to monitor vehicles and a laptop as the fog node, was built (Chen
et al., 2016). Evaluations showed that this scheme is with great promise for smart
urban surveillance applications, as it can track the target all the time in a noisy
environment, and the estimated speed is close to the actual speed of the target.
Furthermore, Ali et al. (2018) show that the efficiency in the throughput of a facial
recognition system using deep learning can be considerably improved by putting
the initial processing of the data at fog nodes compared to a cloud-only system.

• Smart Grid: The smart grid is a virtual network that can control the electricity
grid, including energy load, clean energy and grid safety. Many grid control
applications are run on the edge of the network, like smart meters and
micro-grids (Wei et al., 2014). As grid networks are distributed widely, it is
impractical to offload all computational tasks to the cloud. However, the fog can
gather and process data from the grid and do real-time analytics and control.
For instance, Singh and Yassine (2018) propose and validate an IoT big data
analytics system, which uses fog computing to store, process and analyse energy
consumption data from smart homes. Furthermore, a fog computing-based
application is proposed for power consumption forecasting using smart grid
sensors (Jaiswal et al., 2021). In addition, Okay and Ozdemir (2016) proposes a
three-tier (i.e., smart meters, fog nodes and cloud data centres) smart grid model
and shows that their model improves the cloud computing-based smart grid in
terms of privacy, latency, and locality. Finally, fog computing can also be used for
distributed demand-side response aggregation in the smart grid (Lyu et al., 2018;
Zhu et al., 2019).

• AVs: An AV is a vehicle that can drive by itself without human interference,
which is the trend in the car industry. For example, all Tesla cars have autopilot
features such as lane centring, adaptive cruise control, and self-parking (Ajitha
and Nagra, 2021) and Google and Apple are also developing their own AVs.
An AV uses cameras, radars and other sensors to capture information from
the surrounding environment, which must be processed in real-time to make
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proper driving decisions. Since AV applications also need very short latency
and high bandwidth to send the data, fog computing is particularly suited to
run them (Peter, 2015). Here, fog nodes can be AVs or static fog nodes such
as smart base stations or smart routers. With fog computing, vehicles without
sufficient computing power can utilise these fog nodes to run compute-intensive
applications (e.g., AR driving assistance and VR gaming), and spontaneous
exchange of information between AVs is made possible (Xiao and Zhu, 2017).
For example, a two-level architecture (i.e., AVs and fog nodes) is introduced to
cope with the challenges of automated driving services such as large content
volume, location-dependence and delay-sensitivity (Yuan et al., 2018). Another
framework called vehicular fog computing, which uses moving vehicles such
as taxis and buses as mobile fog nodes, is proposed in order to provide
on-demand and cost-effective fog computing service for AVs (Xiao and Zhu,
2017). Furthermore, to solve the problem of sensing dead zones, Du et al.
(2020) propose a fog computing based architecture for cooperative sensing among
adjacent AVs.

1.2 Fog Computing Resource Allocation

A typical fog has computing resources in its fog nodes and networking resources
in its network. Computing resources, which generally include processors, random
access memory (RAM) and storage, are capable of processing computational tasks.
Additionally, IoT tasks are processed by Virtual Machine (VM)s generated in fog nodes.
Here, VMs are computer emulations that contain all of the required components to
conduct fog tasks. Moreover, there are two different types of networking resources.
One is the bandwidth among the fog nodes; the other is the bandwidth between
fog nodes and IoT devices. Specifically, fog systems are owned and operated
by fog providers, which can be wireless carriers, Internet service providers, cloud
service providers and even IoT users who are willing to trade their spare computing
resources (Yi et al., 2015). Finally, the main business model of fog computing is the
pay-per-use business model, i.e., the fog resources used by IoT users are metered, and
they only pay for what they use (Yi et al., 2015).

The RAFC mainly involves three components, which are task scheduling, VM
placement and traffic routing (Gu et al., 2018), and DRAFC only involves task
scheduling and VM placement. In detail, task scheduling decides when to process
each task, and VM placement assigns VMs, which process fog tasks, to appropriate
fog nodes. Furthermore, traffic routing finds the paths to send data between IoT
devices and fog nodes and between VMs in different fog nodes. Notably, the latter
two components are unique to fog computing and do not apply to centralised cloud
computing.
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FIGURE 1.3: The procedure of RAFC5.

Against this background, the procedure of the RAFC and DRAFC is briefly introduced
below (Shi et al., 2017) (Figure 1.3). First, the IoT users report the information about
their tasks (e.g., value, demanded resource, processing time and deadline) to the fog
provider over time. Then, after receiving the report, the fog provider will immediately
decide whether to run the task, how much to charge the user, and how to allocate
resources for the task. Finally, the fog provider will send these decisions to the user,
process the tasks accordingly and wait for new task requirements.

In addition, in a strategic setting, self-interested users can misreport their tasks, such
as delaying the report, expanding their processing time, declaring a higher value
or an earlier deadline for their tasks. This could cause havoc to the efficiency of a
traditional resource allocation mechanism. Therefore, in order to prevent misreporting,
we can impose regulations and policies to penalise any users who misreport, or we can
take the approach of online mechanism design, which incentivises IoT users to report
truthfully. In detail, online mechanism design is a subfield of game theory that studies
the problem of how to design mechanisms that decides allocations of resource and
monetary transfers based on received reports to get desired objectives when rational
users arrive over time (Nisan et al., 2007). We choose to adopt the approach of online
mechanism design to deal with this problem because imposing regulations has been
criticised as being costly and slow (Demougin and Fluet, 2001). By using an online
truthful mechanism, we can be more confident about its efficiency and there is no need
to investigate who is violating the regulations.

5source of images: https://www.shutterstock.com/image-vector/
hand-holding-smart-phone-vector-illustration-1084761833
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1.3 Research Challenges

After introducing fog computing and the its resource allocation problem, we now
discuss the research challenges that we intend to address in this thesis.

1. Challenge 1 Limited bandwidth resources. If bandwidth in the fog is unlimited
and free, it is feasible just to consider allocating computational resources for
fog tasks. However, in actual situations, bandwidth is limited and costly.
Thus, resource allocation mechanisms in the fog need to take bandwidth into
consideration and try to make the best of it to reduce cost or latency. By contrast,
bandwidth is usually ignored in cloud computing resource allocation (Shi et al.,
2016) because the traffic routing is not controlled by the cloud provider (cloud
providers just buy bandwidth from Iternet Service Provider (ISP)) (He and
Walrand, 2005). However, the emerging software-defined networking (SDN) (i.e.,
a network approach that enables the network to be centrally controlled using
software) (Alamer, 2021) makes centralised network control in fog computing
feasible.

2. Challenge 2 Dynamic VM allocation. Another challenge that is unique to fog
computing is the dynamic allocation of VMs. First, in our model, VMs are not
limited to several types. Instead, they can be dynamically assembled according
to users’ demands. Second, unlike cloud providers, the fog provider needs to
choose a fog node to generate the VM for newly arrived tasks. Furthermore,
in order to keep a low latency to a moving IoT device, the VM may need to be
moved from one fog node to another every now and then (Bittencourt et al., 2015).
Beyond that, VMs in the fog also need to move among fog nodes to serve new
tasks efficiently.

3. Challenge 3 Time-oriented tasks. How to allocate time-oriented tasks is another
challenge to fog computing. This is because many IoT tasks are time-oriented,
meaning they require a specific amount of computational time (between the
earliest start time and the task’s deadline) to accomplish their maximum value,
but they can still achieve a portion of that value if given less time. Consider a user
who wishes to utilise a video surveillance application with facial recognition to
monitor their stores for 24 hours. If the monitoring lasts less than 24 hours, say
16 hours, it is still useful to them.

4. Challenge 4 High social welfare resource allocation. This challenge is about how to
maximise the social welfare (i.e., the overall utility) of IoT users given the limited
computing and networking resources of the fog, especially when there are many
users demanding diverse resources dynamically. In more detail, the utility of a
computing task represents the value obtained by the IoT user from processing
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that task. Maximising social welfare is a typical mechanism-design goal because
social welfare represents the aggregated satisfaction of users. Thus, the efficiency
of resource allocation mechanisms especially means efficiency in terms of social
welfare in this thesis.

5. Challenge 5 Resource allocation in a strategic setting. In practice, IoT users may
be strategic, which means that users can misreport their tasks for their own
benefit. In general, such behaviours are detrimental to the overall efficiency
of the IoT users and possibly lead to much worse system performance than
expected. To address this problem, the fog provider may use a truthful resource
allocation mechanism. Here, truthfulness (or strategyproofness) means that
IoT users cannot get a higher utility by misreporting their tasks to the fog
provider (Nisan et al., 2007). This challenge is composed of two parts. The
first part is how to design a mechanism that achieves truthfulness while only
degrading a little proportion of the efficiency or without a loss compared to the
best non-truthful mechanism in a non-strategic setting (i.e., users always report
their information truthfully unconditionally). The second part is that this truthful
mechanism should also outperform state-of-the-art non-truthful mechanisms
in social welfare in a strategic setting and outperform state-of-the-art truthful
mechanisms in social welfare as well.

6. Challenge 6 Resource allocation in online settings. Furthermore, the online nature of
the RAFC, which means that allocation decisions have to be made as information
of new tasks reported over time and without any knowledge of the future,
makes social welfare maximisation even more challenging. For example, poor
myopic decisions can make high-value tasks that arrive in the future unable to
be scheduled, which could lead to big losses in social welfare. What is more, it
also makes designing truthful mechanisms more challenging. For example, most
truthful mechanisms are not truthful anymore in online scenarios. However, a
large amount of literature just focuses on offline settings, in which all users report
their information simultaneously.

7. Challenge 7 Cost-aware resource allocation. Unlike most existing literature,
which solely considers social welfare as the total value of completed tasks, we
include resource costs in our model. As a result, our problem, which includes
both packing and covering constraints (packing task demands within resource
capacities and covering accepted tasks by paying resource operational costs), is
more challenging than problems that merely include packing constraints (Azar
et al., 2013).

8. Challenge 8 Timely resource allocation. Since it is common to have ad hoc fog
tasks that request to process immediately after the report. The resource allocation
mechanism should be computationally efficient so that it can make allocation
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and pricing decisions right away when it receives new reports from IoT users.
However, the resource allocation problem for fog computing has an NP-hard
nature (explained in Section 3.1), and the number of fog tasks, fog nodes, and
IoT devices can be enormous in the actual world. So it is both important
and challenging to design very computationally efficient resource allocation
mechanisms.

9. Challenge 9 Decentralised resource allocation. Many fog computing systems may
not have a central control to make resource allocation decisions. In this case, a
decentralised resource allocation algorithm is needed so that the decentralised
fog nodes can make allocation decisions by themselves.

1.4 Research Contributions

In order to address the research challenges listed above, this thesis takes the approaches
of constrained optimisation and online mechanism design to study the problem
of RAFC with the aim of maximising social welfare. In more detail, constrained
optimisation is a domain in mathematical optimisation whose goal is to find the
values of related variables to optimise an objective function given some constraints
of these variables (Bertsekas, 2014). In our problem, the objective function, which is
to be maximised, calculates the total social welfare, and constraints consist of both
resource constraints and time constraints. Furthermore, we take the approach of online
mechanism design because we intend to design a truthful mechanism, and in our
problem, users arrive over time, and thus, resource allocation decisions must be made
by an online mechanism.

In addition, this thesis combines reinforcement learning and reverse auction to
maximise social welfare for the DRAFC problem, which addresses Challenge 9, 4
and 6. Reinforcement learning is about learning how to take actions to maximise the
cumulative rewards (often delayed) (Sutton and Barto, 2018). The trial-and-error search
and the delayed reward are the two key aspects of reinforcement learning. In this thesis,
a reverse auction is a type of auction in which fog nodes bid for the price at which they
are willing to process an analytics task.

The main contribution of this thesis is proposing a truthful online resource allocation
mechanism as well as a decentralised mechanism that can achieve near-optimal social
welfare for IoT users. By designing, implementing and evaluating our resource
allocation mechanism, we show that the truthful mechanism achieves better social
welfare than benchmarks and achieves social welfare close to the optimal (around 90%)
in a strategic setting. Similarly, the decentralised mechanism can achieve near-optimal
social welfare in a decentralised fog system, and its performance is better than
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benchmarks in terms of social welfare. To address the challenges in Section 1.3, we
specifically make the following five contributions.

1. We formulate the fog computing resource allocation problems (i.e., RAFC and
DRAFC) as constraint optimisation problems. In order to address challenges 1–3
mentioned above, we formulate the fog computing resource allocation problems,
which consider the bandwidth constraints and traffic routing as well as allow
flexible allocation of VMs, as constraint optimisation problems. For the RAFC
problem, we also treat it as an online mechanism design problem in which a
fog task requests a certain amount of processing time while meeting certain
computing resource demands and time constraints.

2. We design a truthful mechanism and evaluate its performance in social welfare.
We design a new truthful and individually rational (IR) mechanism called
FlexOG. A mechanism is called IR if no participants can get a negative utility
by participation (Nisan et al., 2007). Thus, under our mechanism, IoT users will
truthfully report their tasks as soon as they get them. We show that FlexOG
achieves social welfare better than state-of-the-art benchmarks (up to 10%) and is
close to the optimal value (around 90%) using extensive simulations. Therefore,
we have addressed challenge 4,6,7 and part one of challenge 5, which is designing
a truthful mechanism that outperforms state-of-the-art truthful mechanisms.

3. We design a scalable and truthful mechanism and evaluate its performance in
social welfare. To improve the scalability of FlexOG, we propose a modified
FlexOG called Semi-FlexOG. This mechanism is also truthful and individually
rational. Although Semi-FlexOG achieves less social welfare than FlexOG in the
simulations (up to 10%), its process time is significantly less than that of FlexOG.
This contribution has also addressed challenge 4,6,7 and part one of challenge 5.

4. We design a decentralised resource allocation algorithm and evaluate its
performance in social welfare. Other than resource allocation in strategic
settings, we also consider the decentralised resource allocation for challenge 9.
In particular, we propose a decentralised resource allocation algorithm called
DAPPO, which combines Multi-Agent Reinforcement Learning (MARL) and
online reverse auctions. By extensive simulations, DAPPO is shown to have
better performance than the benchmarks in terms of social welfare and can
achieve near-optimal social welfare. Similarly, the contribution has addressed
challenge 4,6, and 7. Note that the implementation of DAPPO is based
on the RLlib6 library and the Multi-Agent Deep Reinforcement Learning for
Autonomous Vehicles in Disaster Response project from Jack Parsons7. To be specific,

6https://docs.ray.io/en/latest/rllib/index.html
7https://github.com/jack-parsons

https://docs.ray.io/en/latest/rllib/index.html
https://github.com/jack-parsons
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we implement the environement of DRAFC, the benchmark algorithms, the
algorithm generating synthetic data and the configurations files for PPO8.

5. We conduct simulations to show that our truthful mechanism performs better
than the non-truthful online optimal mechanism in a strategic setting. To
fully address challenge 5, we show that FlexOG achieves better social welfare
than the online optimal mechanism, which optimally allocates resources over
time with the information it has received in a strategic setting by simulations.
This is interesting because online optimal achieves better social welfare if all
agents report truthfully. We choose online optimal as the benchmark here
because online optimal is a greedy algorithm, which is good enough for resource
allocation under uncertainty (Gupta et al., 2017). First, we show that, on average,
non-truthful agents have a higher utility than truthful agents under the online
optimal mechanism, so IoT users indeed have incentives to misreport their tasks.
Then, we show that when even a small proportion of agents misreport, the social
welfare achieved by online optimal declines significantly and is lower than that
achieved by FlexOG9.

These contributions have led to two peer-reviewed publications:

• Fan Bi, Sebastian Stein, Enrico Gerding, Nick Jennings, and Tom La Porta. A
truthful online mechanism for allocating fog computing resources. In Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2019), pages 1829–1831,
May 2019b. URL https://eprints.soton.ac.uk/430226/

• Fan Bi, Sebastian Stein, Enrico Gerding, Nick Jennings, and Thomas La Porta.
A truthful online mechanism for resource allocation in fog computing. In The
16th Pacific Rim International Conference on Artificial Intelligence, April 2019a. URL
https://eprints.soton.ac.uk/431819/

1.5 Outline of the Thesis

To let the reader have a clear idea of the structure of this thesis, the following describes
its outline. There are five chapters in this thesis. Specifically, in Chapter 2 we outline
the literature that is related to our research and the techniques they use to address
some of the challenges listed in Section 1.3. It includes the related knowledge of
game theory, mechanism design (Section 2.1), reinforcement learning (Section 2.1.3)

8https://docs.ray.io/en/latest/rllib/rllib-algorithms.html#ppo
9We did not use Price of Anarchy (PoA) (i.e., the ratio between the optimal centralised solution and

the worst Nash equilibrium) to measure how the efficiency of a system degrades when its agents are
self-interested and rational because often pure strategy Nash equilibria do not exist, and randomised
strategies are unrealistic in our case.

https://eprints.soton.ac.uk/430226/
https://eprints.soton.ac.uk/431819/
https://docs.ray.io/en/latest/rllib/rllib-algorithms.html#ppo
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and MARL (Section 2.1.3.2). Moreover, it also includes the related online resource
allocation mechanisms proposed for similar resource allocation problems, such as
multiagent resource allocation (MARA) (Section 2.2), Resource Allocation in Cloud
Computing (RACC) (Section 2.3) and RAFC (Section 2.4). In Chapter 3 and Chapter 4,
we demonstrate the contributions of our research, including the model of RAFC
(Section 3.1 and 4.1), the descriptions and properties of benchmarks (Section 3.2 and
4.2) and our proposed mechanisms (Section 3.3.2, 3.3.3, and 4.3), the experimental setup
for simulations (Section 3.4.1 and 4.4.1) and results and analysis of the simulations
(Section 3.4.2 and 4.4). Finally, we draw conclusions from the research so far and detail
our planned future work in Chapter 5.
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Chapter 2

Literature Review

Given that the primary objective of our work is to develop a truthful and a
decentralised online mechanism that is efficient in terms of social welfare, as described
in the previous chapter, this chapter provides the necessary background for our
work and relevant literature on both online resource allocation mechanisms for
non-strategic and truthful online resource allocation mechanisms. Our main aim is
to explore the progress of current research, their advantages and disadvantages and
evaluate the extent to which the research challenges in Section 1.3 have already been
addressed and what research gaps are still left open.

We begin our literature review with the necessary background knowledge in
Section 2.1, including the pertinent concepts of game theory (Section 2.1.1), mechanism
design and online mechanism design (Section 2.1.2) because it is the theory of designing
mechanisms that achieve a specific outcome, including truthfulness (Challenge 5).
Moreover, we present basic knowledge of reinforcement learning in Section 2.1.3
because we use this technique in our decentralised algorithm in Chapter 4. Then in
Sections 2.2, 2.3 and 2.4, we examine the work on general MARA, RACC and RAFC,
respectively, and discuss what challenges they have addressed and what challenges
are still open. Finally, in Section 2.5, we summarise our findings and the main research
gaps according to our research challenges.

2.1 Preliminaries

Given that mechanism design is the theory we use to deal with the problem of resource
allocation in a strategic setting (Challenge 5), in what follows, we explain the main
concepts before proceeding to related work. If the reader is familiar with the basics of
game theory and mechanism design, they can choose to skip this section. In particular,
mechanism design is a domain in game theory (i.e., the study of agents’ strategies and
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behaviours in a certain game, which means a formal model of an interactive situation).
It studies how to design the mechanism, which makes decisions of resource allocation
and money transfer, of a game to achieve certain desirable properties or outcomes
under the assumption that all agents are rational (Hurwicz, 1973).

Traditionally, game theory and mechanism design are widely used in the field of
microeconomics as important analysis tools. Furthermore, they are also used in
some computer science problems such as sponsored search auctions (Zhu et al., 2012),
spectrum auctions (Qin et al., 2015) and bandwidth allocation (Wu et al., 2012; Xu et al.,
2021). Particularly, online mechanism design is an extension of mechanism design that
deals with problems in a dynamic environment (Challenge 6) where agents are allowed
to come and go at any time, such as the smart grid, cloud computing or fog computing.
In contrast, the classic mechanism design only deals with static environments. For
example, in a spectrum auction, telecommunications suppliers submit their bids before
the deadline, and the spectrum allocation decisions are made all at once. Similarly,
in sponsored search auctions, once someone searches online, the advertisers bid for
advertisement slots simultaneously. Then a decision is made to decide how all the slots
will be assigned.

The structure of this section is as follows. In Section 2.1.1, we introduce the
basic concepts of game theory. Then, in Sections 2.1.2 and 2.1.2.3 we examine the
relevant concepts and theorems of mechanism design and online mechanism design,
respectively.

2.1.1 Game Theory

Game theory is “the study of mathematical models of conflict and cooperation between
intelligent rational decision-makers" (Roger, 1991). In more detail, in game theory,
decision makers are often called agents, players or participants, and we use the term
agents in this thesis. To analyse agents’ behaviours, we must make assumptions about
how they behave. In game theory, this assumption is that all agents are rational,
which means they always strive to maximise their utility. The utility of an agent
is the quantification of its preference over all outcomes of a game, that is, a real
number is assigned to each outcome, and this is defined as its utility. If the utility
of outcome a is greater than that of outcome b for the agent, then it prefers outcome
a to outcome b. In a game, every agent tries to get the best outcome for itself and
also knows that other agents similarly try to achieve the best outcomes for themselves.
In order to achieve this goal, agents follow strategies that decide their behaviours in
all situations. Researchers in game theory have applied these mathematical models
to understand decision making in economics (Palafox-Alcantar et al., 2020; Krapohl
et al., 2021), biology (McNamara and Leimar, 2020; Dugatkin and Reeve, 2000) and
multi-agent systems (Wang et al., 2021; Semsar-Kazerooni and Khorasani, 2009). In
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particular, RAFC can be modelled as a game, where IoT users are agents of the game,
and they act to compete for fog resources (see the details in Section 3.1).

In game theory, a simultaneous game (e.g., rock-paper-scissors) is a game where each
agent chooses its actions without any knowledge of the actions of other agents. Our
RAFC problem belongs to this type of game because IoT users are assumed not to have
any information on other agents’ actions, although they do not take actions at the same
time. First of all, we present a rigorous mathematical definition of a simultaneous game
so that we can introduce other concepts based on it. Formally, we define a simultaneous
game as consisting of a finite set I of agents, I = {1, 2, . . . , n}. The relevent traits of
agent i (e.g., preferences and time constraints ) are summarised as the type θi ∈ Θi of
that agent, and the type profile θ = {θ1, θ2, . . . , θn} is the set of all agents’ types. The
behaviour of agent i is captured by a function that maps from all its possible types
to its set of actions: Θi → Xi, which is called the strategy of agent i. Si is the set
of all strategies of agent i. The strategy of agent i and the strategies vector of other
agents are si and s−i, respectively. Then the vector of strategies selected by all agents is
s = (s1, s2, . . . , sn). The set of all possible vectors of strategies is denoted as S, and the
set of all possible vectors of strategies except agent i’s is S−i. The utility of agent i when
it plays strategy si and others play strategy s−i is ui(si, s−i) ∈ R.

In addition, the strategies of agents can be categorised into pure strategies and mixed
strategies. A pure strategy uniquely determines the behaviour of an agent for any
situation (the state of the game) it can face. In other words, an agent using a pure
strategy will always take the same action when it faces the same situation. A mixed
strategy, on the other hand, is the attribution of a probability to each pure strategy.
This enables an agent to choose a pure strategy at random when it is required to take
action. In this thesis, we focus on pure strategies because we aim to incentivise agents
to always reveal their types truthfully, which is a pure strategy.

Furthermore, given a game, there are different ways to predict its result. We use
solution concepts to describe how the game results are predicted, and these predictions
are called solutions. There are two fundamental solution concepts: dominant strategy
equilibrium and Nash equilibrium. Here, an equilibrium means a strategy profile (i.e.,
a set of strategies for all agents) that is stable enough to be predicted as the actual result
of the game.

To present dominant strategy equilibrium, we first introduce dominant strategies of
agents. If an agent has a unique best strategy in the game regardless of other agents’
choices, then we call it a dominant strategy for that agent. Namely, s∗i ∈ Si is the
dominant strategy for agent i, if:

ui(s∗i , s−i) > ui(si, s−i), ∀si ̸= s∗i , s−i ∈ S−i.
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Furthermore, a weakly dominant strategy for agent i is a strategy such that no other
strategies are better than it. Formally, s∗i ∈ Si is a weakly dominant strategy for agent i,
if:

ui(s∗i , s−i) ≥ ui(si, s−i), ∀si ̸= s∗i , s−i ∈ S−i.

Then, a strategy vector s∗ ∈ S is called a dominant strategy equilibrium, if every
strategy in it is a weakly dominant strategy:

ui(si, s′−i) ≥ ui(s′i, s′−i), ∀i ∈ I, s′i ∈ Si, s′−i ∈ S−i

It is important to realise that when a game has a dominant strategy equilibrium, each
agent has a best strategy regardless of the strategies of other players. In other words,
each agent’s best strategy is unaffected by the actions of other agents. This property is
very useful when we design mechanisms because if the dominant strategy equilibrium
of a mechanism is desirable, this mechanism can be used in a strategic setting and still
get this desirable equilibrium. For example, if we hope that the strategy of every agent
is simply to reveal its type truthfully, then the corresponding equilibrium is desirable
in this case. Thus, it is the most widely used solution concept in mechanism design,
and we focus on designing mechanisms that have dominant strategy equilibria in this
thesis.

However, in most games, there is no dominant strategy equilibrium because, in these
games, an agent’s best strategy changes with other agents’ strategies. The stable
equilibria in these games are known as Nash equilibria, which is a central concept in
game theory with widespread applications. In a Nash equilibrium, no agent can benefit
from changing its behaviour unilaterally. Formally, a strategy vector s ∈ S is called a
Nash equilibrium if:

ui(si, s−i) ≥ ui(s′i, s−i), ∀i ∈ I, s′i ∈ Si.

Nash equilibria can exist in a stable manner because no agent in the Nash equilibrium
has an incentive to change its strategy. So normally, games will end up in one of its
Nash equilibria if it has one. This solution concept is not very convincing in predicting
agents’ strategies if there is more than one Nash equilibrium in a game (Nisan et al.,
2007). Furthermore, even when Nash equilibria are unique, they are not certain to be
attained because an agent’s assumption about the strategies of other agents may be
erroneous.

2.1.2 Mechanism Design

We now introduce the core concept of this thesis––mechanism design, which can be
viewed as reverse game theory. For game theory, the goal is to analyse the strategies
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and behaviours of agents in a certain game (as described in Section 2.1.1), while for
mechanism design, the goal is to design the mechanism of the game to achieve a
certain result or social choice (i.e., an aggregation of different types of agents toward
a single collective decision) in a strategic setting (Nisan et al., 2007). Since the types
(or part of the types) of the agents are usually private (i.e., not common knowledge),
mechanism design is necessary under these circumstances. In particular, the designer
of the mechanism does not participate in the game. Instead, it designs the mechanism,
or rules of the game, to achieve certain goals (e.g., social welfare maximisation or
revenue maximisation). Since the mechanism designer needs to make decisions based
on agents’ types, the difficulty of mechanism design is how to incentivise agents to
reveal their true types.

In order to model strategic behaviours of the agents, a model called independent
private values and strict incomplete information game (Nisan et al., 2007, Chapter 9)
is adopted in this thesis. Independent private values mean that the valuation of an
agent is not affected by any other agents’ information. Here, the valuation function
of an agent represents its valuation of the result it gets. Unlike the utility function,
this does not include any payments (see Definition 2.2). Strict incomplete information
means that there is no probabilistic information in the model. For example, we do not
know the distribution of valuation functions. This model is reasonable in our RAFC
scenario, in which agents are assumed to have independent valuation functions and
have no knowledge about the types of others, and the mechanism designer has no
probabilistic information about the agents either (Challenge 5). Here, a game comprises
a mechanism environment and a mechanism. We first introduce the mechanism
environment.

Definition 2.1 (mechanism environment). A mechanism environment E =

(I, A, {Xi}i∈I , {Θi}i∈I , {vi}i∈I) contains the following ingredients:

1. A set of n agents: I

2. A set of results: A

3. For every agent i, a set of actions Xi

4. For every agent i, a set of possible types Θi. The type of agent i is θi ∈ Θi

5. For every agent i, a valuation function vi : Θi × X1 × · · · × Xn → R, which maps
from the type of agent i (θi) and the actions taken by all agents (x1, x2, . . . , xn) to a
real number (Nisan et al., 2007, Definition 9.40)

In the following sections, we introduce some fundamental concepts and theories in
mechanism design. Specifically, we introduce the definitions of social choice function
and mechanism (Section 2.1.2.1), and we describe a special type of mechanisms
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called truthful direct-revelation mechanisms along with an important theory called the
revelation principle (Section 2.1.2.2).

2.1.2.1 Social Choices and Mechanisms

Building on the general definitions, we next introduce the notion of a general
(nondirect-revelation) mechanism. A general mechanism is composed of two
components: an outcome function that chooses a result based on the profile of agents’
actions and a payment function that decides a payment for every agent also based on
the profile of actions.

Definition 2.2 (mechanism). A general mechanismM = (a, {pi}i∈I) comprises:

1. an outcome function a : X1 × · · · × Xn → A

2. payment functions p1, . . . , pn, where pi : X1 × · · · × Xn → R (Nisan et al., 2007,
Definition 9.24).

Then, the game induced by a mechanism over some mechanism environment is
formally defined below.

Definition 2.3 (games of mechanisms). The game Γ(M) induced by a mechanism
M = (a, {pi}i∈I) over mechanism environment E = (I, A, {Xi}i∈I , {Θi}i∈I , {vi}i∈I) is
the strict incomplete information game Γ(M) = (I, {Θi}i∈I , {Xi}i∈I , {ui}i∈I) where the
agents’ utility functions ui(θi, x1, . . . , xn) = vi(θi, a(x1, . . . , xn))− pi(x1, . . . , xn) (Nisan
et al., 2007, Definition 9.24).

Usually, we want to make a desirable collective decision based on the preferences of all
agents, which can be expressed by a function called the social choice function.

Definition 2.4 (social choice function). The social choice function f maps the types of
agents to the results (allocation of goods):

f : Θ1 × · · · ×Θn → A

In general, we are interested in developing a mechanism that produces the same result
as a desirable social choice function (e.g., a social choice function that maximises the
social welfare based on the preferences of agents). Therefore, if the equilibrium under
a mechanism maps to the same outcome as a social choice function, this mechanism
implements this social choice function.
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Definition 2.5 (implementation). The mechanism implements a social choice function
f : Θ1 × · · · × Θn → A in dominant strategies if for some dominant strategy
equilibrium s1, . . . , sn of the induced game, where si : Θi → Xi we have that

f (θ1, . . . , θn) = a(s1(θ1), . . . , sn(θn)), ∀θ1, . . . , θn ∈ Θ (Nisan et al., 2007, Definition 9.24)

In the following section, we introduce a special type of mechanism called
direct-revelation mechanisms and a property of mechanisms called truthfulness.
Then we introduce the revelation principle, which shows that we can just focus on
direct-revelation truthful mechanisms when designing mechanisms.

2.1.2.2 Direct-Revelation Mechanisms and Truthfulness

There is a specific type of mechanism known as direct-revelation mechanisms that is
critical to the design of mechanisms due to the revelation principle (see Proposition 2.8).
In a direct-revelation mechanism, the set of actions of agent i, Xi, is the set of its possible
types Θi, which means what an agent can do is just to reveal its type to the mechanism.
To formally introduce this definition below, we first introduce some notations. We
denote the set of all possible valuation functions for agent i as Vi, and the vector of all
types of agents except agent i’s as θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn). Similarly, we define
Θ−i = Θ1 × · · · ×Θi−1 ×Θi+1 × · · · ×Θn.

Definition 2.6 (direct-revelation mechanisms). A direct-revelation mechanism
( f , p1, . . . , pn) is made up of a social choice function f and a vector of payment function
(p1, . . . , pn). The payment functions (p1, . . . , pn) maps the reported types of agents to
the payments of agents, where

pi : Θ1 × · · · ×Θn → R (Nisan et al., 2007, Definition 9.14)

Now we introduce the definition of truthfulness, which is a key concept in this
thesis. It is also called strategy-proofness or Dominant-Strategy Incentive Compatible
(DSIC). Under a truthful mechanism, agent i would prefer providing its true type
to the mechanism regardless of other agents’ strategies because by providing false
information, agent i cannot increase its utility. In other words, truthful mechanisms
can prevent agents from misreporting and manipulating.

Definition 2.7 (truthfulness). A mechanism ( f , p1, . . . , pn) is called truthful or DSIC if
vi( f (θi, θ−i))− pi(θi, θ−i) ≥ vi( f (θ′i , θ−i))− pi(θ

′
i , θ−i), ∀θi, θ′i ∈ Θi, θ−i ∈ Θ−i (Nisan

et al., 2007, Definition 9.15).

We can now introduce the revelation principle, a crucial principle in mechanism
design. It is fundamental because it demonstrates that it is sufficient just to
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study direct-revelation truthful mechanisms to determine whether social choice
function f can be implemented in dominant strategies. This principle makes
mechanism design much easier by narrowing the space of mechanisms that need to
be searched. For example, if we find the best direct-revelation truthful mechanism in
terms of social welfare for a scenario, it is guaranteed to achieve the best social welfare
in a strategic setting. Because no general mechanism could achieve better social welfare
according to the following revelation principle.

Proposition 2.8. (Revelation principle) Any social choice functions f that can be implemented
in dominant strategies by a general mechanism can also be implemented by a direct-revelation
truthful mechanism. Moreover, the payments of the agents in the truthful mechanism are the
same as those in the equilibrium of the original mechanism (Nisan et al., 2007, Proposition
9.25).

In the following, we introduce two desirable properties of a mechanism besides
truthfulness in this thesis. The first desirable property is called individual rationality
(IR), which guarantees that all (rational) agents are willing to participate. This
is required because agents in our RAFC problem cannot be compelled to join the
mechanism. To satisfy this property, the mechanism should guarantee that no agents
will get a negative utility by joining the game.

Definition 2.9 (IR). A mechanism is individually rational if no agent gets a
negative utility by participating the game (i.e., vi( f (θ1, . . . , θn)) − pi(θ1, . . . , θn) ≥
0, ∀θ1, . . . , θn ∈ Θn, i ∈ I) (Nisan et al., 2007, Definition 9.18)

The second desired property is weak budget balance (WBB), which means that the
total payment from agents is not lower than the overall cost of the resources. Here, the
cost function o : f (θ1, . . . , θn) → R of the mechanism maps from resource allocation
decisions to the overall operational cost of the resources (Challenge 7). This property is
desired because, normally, fog providers try to avoid losses. So they are not willing to
adopt a mechanism that is not WBB.

Definition 2.10. A mechanism is weakly budget balanced if it will never run
a deficit. Formally, if for every θ1, . . . , θn we have that ∑i∈I pi(θ1, . . . , θn) ≥
∑i∈I o( f (θ1, . . . , θn)).

To design truthful mechanisms, we define important properties of truthful mechanisms
in the following. These properties can be used to help design mechanisms or judge if a
mechanism is truthful.

Proposition 2.11. A mechanism is truthful if and only if it meets the following requirements
∀i ∈ I, θ−i ∈ Θ−i:
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1. The payment pi only depends on the outcome of the game f (θi, θ−i), namely, for every
θ−i, there exist prices pa ∈ R, ∀a ∈ A, such that for all θi with f (θi, θ−i) = a we have
that pi(θi, θ−i) = pa

2. The mechanism optimises for each agent (i.e., f (θi, θ−i) ∈ arg maxa(vi(a) −
pa), ∀θi ∈ Θi) (Nisan et al., 2007, Proposition 9.27).

Then, the following definition describes the property, which is called weak
monotonicity (WMON), a social choice function must has in a truthful mechanism.
This property means that if the result changes when an agent changes its type, then the
agent’s value of the new result should be increased relative to its value of the previous
result.

Definition 2.12. A social choice function f satisfies WMON if f (θi, θ−i) = a ̸= b =

f (θ′i , θ−i) =⇒ v′i(b) − v′i(a) ≥ vi(b) − vi(a) ∀i ∈ I, θi, θ′i ∈ Θi, θ−i ∈ Θ−i (Nisan
et al., 2007, Definition 9.28).

Then, the following theorem means that WMON is a necessary condition for
truthfulness but becomes a sufficient condition only if all domains of types are convex
sets. More specifically, a convex set is a set of points, for every pair of points within it,
every point on the straight line that joins them also lies within the set.

Theorem 2.13. If a mechanism ( f , p1, . . . , pn) is truthful, f satisfies WMON. In addition,
for every WMON f there exists payment function p1, . . . , pn such that the mechanism
( f , p1, . . . , pn) is truthful only if all domains of types Θi are convex sets (Nisan et al., 2007,
Theorem 9.29).

2.1.2.3 Online Mechanism Design

In this section, we extend the framework of (offline) mechanism design to online
mechanism design, which deals with time-dynamic scenarios where agents’ types
are reported over time, and decisions must be made without future information.
So unlike an offline mechanism, which just makes one overall decision, an online
mechanism must make a sequence of decisions over time. Many real-world scenarios
are dynamic, such as allocating computational resources to tasks being submitted over
time, allocating electrical power to electric cars arriving over time or selling seats on an
aeroplane to passengers. The RAFC problem we study in this thesis is also dynamic
because IoT users report their tasks over time, and allocation decisions must be made
immediately after the reports.

Online mechanism design faces challenges that are different from (offline) mechanism
design because the environment is dynamic (Parkes, 2007, Chapter 16). In particular:
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1. Decisions must be made without future information.

2. Other than their valuation functions, agents can also misreport their private
information about time, such as the arrival times and deadlines of their tasks
(Challenge 3)

3. (limited misreports) In practice, an agent may not be able to misreport its type
without limitations. For example, in the RAFC scenario, it is impossible to report
a task before the agent knows it needs to run this task. So an agent can only
misreport a later arrival time of its task.

Next, we discuss the component of a dynamic environment in this thesis. T =

{1, 2, . . . , t} denotes discrete (possibly infinite) time steps. Let q = (q1, q2, . . .) denote
the sequence of decisions (e.g., accepting/rejecting an agent, the payment of an agent,
and when to serve an agent) which can be made when receiving reports from agents.
The type of agent i, θi = (Ta

i , Td
i , vi) ∈ Θ, where Ta

i , Td
i ∈ T are its arrival time

and departure time (deadline), and vi(k) ∈ R is its valuation function. On the other
hand, the reported type of agent i is denoted as θ̂i = (T̂a

i , T̂d
i , v̂i) ∈ Θ, which may be

different from θi because agents can misreport in a strategic setting. The mechanism
state ht = (θ1, . . . , θt; q1, . . . , qt−1) ∈ Ht denotes the mechanism state in time step
t, where Ht is the set of possible mechanism states in time step t. It contains the
information of agent types (θ1, . . . , θt), and decisions (q1, . . . , qt−1) that have been made.
Furthermore, we use Q(ht) to denote all possible decisions in state ht (Parkes, 2007,
Section 16.2). In general, the mechahnism state also comprises the stochastic events
that occur in the environment, such as new resources are supplied. However, in this
thesis, the mechanism state only contains the agent types and decisions because there
is no stochastic events in our RAFC problem.

In the following section, we first give a formal definition of limited misreports and
the definition of truthfulness under limited misreports, and then we extend the
direct-revelation mechanisms and revelation principle to the online domain.

2.1.2.4 Direct-Revelation Online Mechanisms

Now we are ready to introduce the definition of a direct-revelation online mechanism.
A direct-revelation online mechanism is an extension of a direct-revelation offline
mechanism, but it has more restrictions on agents’ behaviours. Note that the
mechanism we design for RAFC in Section 3.3.2 belongs to this type of mechanism
because the only actions IoT users can take are to report their types, and they report
over time instead of reporting simultaneously.

Definition 2.14 (direct-revelation online mechanism). In a direct-revelation online
mechanism, each agent only sends a single report about its type to the mechanism.



2.1. Preliminaries 27

The mechanism consists a social choice policy f = { f t}t∈T and a payment policy
p = {pt}t∈T, where decision f t(ht) ∈ Q(ht) is made in mechanism state ht and payment
pt

i(h
t) is the money that agent i needs to pay to the mechanism. For convenience, we

denote the sequence of decisions as f (θ) = (q1, q2, . . .) and overall payment collected
from agent i as pi(θ) ∈ R, given type profile θ (Parkes, 2007, Definition 16.2).

Unlike offline scenarios, in certain online scenarios, it is reasonable to assume some
limitations on the domain of the misreports, which can also simplify the mechanism
design problem. For example, agent i cannot report an earlier arrival time than its true
arrival time (T̂a

i < Ta
i ) or report a later deadline (T̂d

i > Td
i ). This is a very natural

assumption because agent i has no idea of its type before its true arrival time Ta
i , and

reporting a later deadline will make the task miss its deadline.

Definition 2.15 (limited misreports). The limited misreports that an agent can make is
denoted as C(θi) ⊆ Θi, where θi is the type of agent i (Parkes, 2007, Definition 16.4).

Then, we introduce the definition of a truthful online mechanism given limited
misreports, which is similar to the definition of a truthful (offline) mechanism.

Definition 2.16 (truthful). Given limited misreports C, a truthful or DSIC online
mechanism satisfies:

vi(θi, f (θi, θ−i))− pi(θi, θ−i) ≥ vi(θi, f (θ̂i, θ−i))− pi(θ̂i, θ−i),

∀θ̂i ∈ C(θi), θi ∈ Θi, θ−i ∈ Θ−i

(Parkes, 2007, Definition 16.5).

Unfortunately, unlike (offline) mechanism design, only studying direct-revelation
truthful online mechanism is not without loss of generality because the online
revelation principle does not always hold. However, if the agents are assumed to have
no-early arrivals (T̂a

i ≥ Ta
i ) and no-late departures (T̂d

i ≤ Td
i ), then the online revelation

principle still holds. Alternatively, the revelation principle can be maintained by
requiring each agent to deliver a non-informative "heartbeat" message at each time
step t ∈ [T̂a

i , T̂d
i ] besides the report of its type (Parkes, 2007, Section 16.2.2). In our

RAFC model, although IoT users can report late departures, it is reasonable to request
that they deliver a "heartbeat" message at each time step t ∈ [T̂a

i , T̂d
i ]. So we focus on

truthful direct-revelation online mechanisms in our work.

In the following sections, we examine related work on MARA (Section 2.2), RACC
(Section 2.3), and RAFC (Section 2.4). Specifically, RAFC is the domain we study in this
thesis, RACC is a close domain with many similarities, and MARA is the big domain
that RAFC and RACC belong to. We analyse the different resource allocation models
they deal with, the techniques they use, and why their approach cannot directly apply
to our RAFC problem.



28 Chapter 2. Literature Review

2.1.3 Reinforcement Learning

Reinforcement learning is mainly used to solve problems involving sequential
decision-making. A sequential decision-making problem requires the decision maker
to make successive decisions based on observations of the environment. Importantly,
the objective of reinforcement learning is to maximise the overall return, not the reward
associated with a particular decision. Recent advancements in deep reinforcement
learning have led to multiple breakthroughs in solving real-world challenges. (e.g.,
the Game of Go (Silver et al., 2017), StarCraft II (Vinyals et al., 2019) and control of
tokamak plasmas (Degrave et al., 2022)).

Next, We introduce basic concepts of reinforcement learning and some commonly used
reinforcement learning algorithms in the following sections. Specifically, we introduce
basic concepts, different classification methods, and three algorithms (i.e., Q-learning,
DQN and PPO) of single-agent reinforcement learning in Section 2.1.3.1. Then, we
present basic concepts and different approaches for MARL in Section 2.1.3.2.

2.1.3.1 Single-Agent Reinforcement Learning

In reinforcement learning, we typically use Markov Decision Processes (MDPs) to
describe the sequential decision-making processes. Notably, they are referred to as
Markov Decision Processe (MDP)s because they satisfy the Markov property (i.e.,
the next state of a MDP is determined only by the current state and action and is
independent of previous states and actions). In reinforcement learning, the Markov
property is critical because decisions are made and values are estimated only based
on the present state. This is reasonable because agents may not have information of
historical states and actions in most scenarios, and many real-life processes satisfy this
property.

Formally, we can define MDP as a tuple (S, A, P(.), R(.), h)

• S is a set of states. st ∈ S is the state in step t

• A is a set of actions. at ∈ A is the action in step t

• P(s′ | s, a) is the state transition function indicates the probability that state s′

happens after action a is taken in state s.

• R(s, a, s′) is the reward when action a is taken in state s, and the next state is s′

• h is the horizon (a positive integer or infinite)

The MDP runs as follows: The initial state is s0, and action a0 is taken. The next state s1

is based on the transition function P(s′ | s, a). Then, a1 is taken and the state transites
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FIGURE 2.1: Markov Decision Process.

to s2 in the same way. In general, the agent decide action at ∈ A based on state st ∈ S
at step t, and the next state st+1 is decided by the trasition function P with a reward
R(st, at, st+1). The loop continues until a terminal state or the horizon h is reached, at
which point the episode stops. This process is illustrated in Figure 2.1

It is assumed that the purpose of reinforcement learning is to maximise the overall
return. It is defined in Equation 2.1, where γ ∈ [0, 1) is the discount factor (quantifies
how much discount we give for future rewards). If γ is big, the immediate rewards
are only a little more important than future rewards. However, if γ is a tiny value, the
immediate rewards are much more important than future rewards.

Gt = Rt+1 + γRt+2 + · · · =
∞

∑
k=0

γkRt+k+1 (2.1)

Now, with a definition of MDP, we will introduce what an agent tries to learn in
reinforcement learning: a policy. In short, a policy is a rule that an agent uses to decide
its actions. Due to the fact that different policies might result in significantly different
returns, an agent uses reinforcement learning to find the optimal policy. In formal
terms, a policy is defined as the probability distribution across all possible states:

π(a | s) = P[at = a | st = s]

Other than policy π, there are two functions that are especially useful in reinforcement
learning. The first function is referred to as the state-value function, and it defines the
expected return value of the current state under policy π:
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Vπ(s) = Eπ[G | st = s]

The second function, called the action-value function or Q-value function, defines the
expected return of the current state when action a is taken under policy π:

Qπ(s, a) = Eπ[G | st = s, at = a]

Reinforcement learning can be classified into model-based and model-free
reinforcement learning, depending on whether the environment’s model is to be
learned. The agent learns the dynamics of the environment (i.e., the transition function
P(s′ | s, a)) through model-based reinforcement learning. Then the agent can get
a good policy according to its learned environment model. However, model-based
reinforcement learnings are not scalable when the state space or action space grows.

By contrast, a model-free reinforcement learning agent learns through trial and error.
Therefore, it does not need to learn the transition function of all possible combinations
of states and actions. The algorithms used in this thesis fall into this category.

Additionally, reinforcement learning algorithms can also be classified as on-policy or
off-policy depending on how the experiences/samples for learning are generated. For
on-policy reinforcement learning, the experiences are generated using the latest learned
policy, and then the agent updates its policy using these experiences. For off-policy
reinforcement learning, the experiences used for updating policy may not be generated
by the latest learned policy. For example, off-policy learning may use all previously
collected experiences to update its current policy. Therefore, off-policy learning has
better sample efficiency.

Based on what to learn, there are three major families of reinforcement learning
algorithms: value-based, policy-based and model-based methods which learn value
functions, policies and models, respectively. For example, Q-Learning (Watkins, 1989)
is a popular model-free, off-policy, and value-based reinforcement learning algorithm.
It is called Q-Learning because it learns the Q-values of all combinations of states and
actions, and its policy is to choose the action that maximises the Q-value in any state.
Before learning, Q-values could be initialised with arbitrary values. Then, Equation 2.2
is used to update Q-values based on the experiences collected, and it is based on the
famous Bellman Equation of Optimality (Equation 2.3)

Q∗(st, at)← Q ∗ (st, at) + α · (Rt + γ ·max
a

Q∗(st+1, a)−Q∗(st, at)) (2.2)

Q∗(s, a) = Es′ [R + γ ·max
a′

Q∗(s′, a′)] (2.3)
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FIGURE 2.2: Actor-Critic architecture (Sutton and Barto, 2018)

where α ∈ (0, 1] is the learning rate and Q∗ approximates the optimal action-value
function.

A major limitation of Q-Learning is that it only works in environments where states and
actions are discrete and finite. To solve this limitation, Deep Q Network (DQN) (Mnih
et al., 2015) introduce Neural Networks to estimate the Q-value function. As a result,
a DQN agent is capable of estimating the Q-values of unobserved states. However,
with DQN, the action space must be discrete, which is not the case for a large number
of problems. To address this issue, we can employ policy gradient approaches,
which parameterise the policy function πtheta using a set of parameters theta. In this
method, we estimate the gradient of the return and use gradient ascent (or descent)
to improve the policy parameters θ. Notably, a common architecture of the policy
gradient methods is called Actor-Critic (Figure 2.2), where an actor is used to learn
a good set of policy function parameters θ and a critic is used to evaluate the policy
function estimated by the actor (Sutton and Barto, 2018). Note that both the Critic and
Actor are parameterised with neural networks, and Algorithm 1 is the pseudocode for
Actor-Critic.

In addition, PPO (Schulman et al., 2017) is a widely used actor-critic reinforcement
learning method and is the primary method used in Chapter 4. PPO is said to strike
a balance between performance, ease of tunning, and implementation simplicity. The
primary goal of this method is to reduce learning variance by ensuring that the updated
policy is not far from the previous policy; thus, it is called proximal policy optimization.
To introduce PPO, let us first introduce relavent concepts and equations. To begin
with, the advantage function Aπθ(st, at) under a policy πθ describes how much more
reward can be got by taking specific action at in state st in expectation, compared with
taking action according to πθ(· | s), assuming always acting under πθ afterwards.
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Algorithm 1: Actor-Critic Algotithm

1 Input: parameters θ of the policy πθ(a | s)
2 Input: parameters w of the state-value function Vw(s)
3 Parameters: step sizes αθ > 0, αw > 0
4 Initialise parameters θ ∈ Rd′ and w ∈ Rd′ (e.g., to 0)
5 for t = 1 . . . T : do
6 a′ ∼ πθ(· | s) // sample the next action

7 Take action a′ and observe s′, rt // take the action, observe the reward and the next

state

8 θ← θ+ αθVw(s)∇ ln πθ(a | s) // update the policy parameters

9 δt ← rt + γVw(s′)−Vw(s) // compute the Temporal Difference (TD) error

10 w← w + αwδt∇V(s, w) // update the action-value function parameters

11 a← a′

12 s← s′

13 end for

Mathematically, the advantage function is defined by

Aπθ(st, at) = Qπθ(st, at)−Vπθ(st)

Then, PPO updates the parameters for policies via:

θk+1 = arg max
θ

E
s,a∼πθk

[L(s, a, θk, θ)]

where L is given by

L(s, a, θk, θ) = min
(

πθ(a | s)
πθk(a | s)

Aπθk (s, a), g(ϵ, Aπθk (s, a))
)

where ϵ is a hyperparamter that roughly decides the biggest distance between the new
and previous policy and

g(ϵ, A) =

(1 + ϵ)A A ≥ 0

(1− ϵ)A A ≥ 0

In addition, reward-to-go from t is defined by

R̂t :=
T

∑
t′=t

R(s′t, a′t, s′t+1)

Finally, algorithm 2 is the pseudocode of the PPO algorithm.
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Algorithm 2: PPO Algotithm

1 Input: parameters θ of the policy πθ(a | s)
2 Input: parameters w of the state-value function Vw(s)
3 Initialise parameters θ ∈ Rd′ and w ∈ Rd′ (e.g., to 0)
4 for k = 0, 1, 2, . . . do
5 Collect set of experience Dk = {τi} by using policy πk = πθk in the

environment.
6 Compute rewards-to-go R̂t.
7 Calculate advantage estimations hatAt based on the current value function Vw

(using any method of advantage estimation).
8 Update the policy via stochastic gradient ascent, e.g., Adam (Kingma and Ba,

2014):

θk+1 = arg max
θ

1
|Dk|T ∑

τ∈Dk

T

∑
t=0

min
(

πθ(at | st)

πθk(at | st)
Aπθk (st, at), g(ϵ, Aπθk (st, at))

)

9 Update the value function via some gradient descent algorithm:

wk+1 = arg min
w

1
|Dk|T ∑

τ∈Dk

T

∑
t=0

min
(
Vw(st)− R̂t

)
10 end for

2.1.3.2 Multi-Agent Reinforcement Learning

Next, we introduce MARL because, in our DRAFC problem (Section 4.1.1), there are
multiple fog nodes, and these fog nodes make their decisions independently without
central control. Moreover, each fog node can only observe a small part of the full state of
the environment. Hence, we introduce Dec-POMDP, which is an extension of Partially
Observable Markov Decision Processe (POMDP), and POMDP is a generalisation of
MDP. In a POMDP, although the environment dynamics satisfies the Markov property,
the agent can only observe part of the state. Hence, the agent has to make decisions
under uncertainty of the real environment state, making the problem more challenging.
Against this background, Dec-POMDP is a decentralised version of POMDP, which can
be formally defined as a tuple (I, S, Ai, P(.), R(.), Ωi, O, h) where

• I is the set of agent

• S is a set of states,

• Ai is a set of actions for agent i,

• P(s′ | s, a) is the state transition function,

• R(s, a, s′) is the global reward function,
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FIGURE 2.3: Model of Dec-POMDP1.

• Ωi is the set of observations for agent i

• O is the observation probabilities O(o | s, a) = P(o | s, a)

• h is the horizon (a positive integer or infinite)

At each time step t of Dec-POMDP, each agent takes an action Ai,t ∈ Ai, and the next
state is based on the transition function st+1 = P(s′ | st, at) (at is the joint action at t).
Then, each agent gets an observation based on the observation function O(st+1, at, o)
and they receive a reward based on the reward function R(st, at, st+1). These rewards
are structured to be fully independent (each agent has its own goal), fully cooperative
(all agents have a common goal), or a combination of the two. This process is illustrated
in Figure 2.3.

Dec-POMDPs are generally difficult to solve due to the exponential growth of the joint
state-action space with the number of agents. Solving such problems, in particular,
can require super-exponential time in terms of the number of agents in the worst-case
scenario (Bernstein et al., 2002). Hence, we use MARL to learn near-optimal policies for
all agents instead of finding the optimal solution directly.

Independent learning is a simple approach of MARL, where each agent uses a
single-agent reinforcement learning algorithm (e.g., DQN or PPO), and each agent
treats the problem like a MDP without modelling other agents (Tan, 1993). For
example, OpenAI Five defeats world champions in an esports game called Dota 2 using
PPO (Berner et al., 2019). However, the environment is non-stationary for independent
learning because the policies of other agents may change over time. This breaks

1http://rbr.cs.umass.edu/camato/decpomdp/overview.html

http://rbr.cs.umass.edu/camato/decpomdp/overview.html
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one assumption of MDP that the environment should be static. Hence, independent
learning can be unstable and has no guarantee for convergence (Rashid et al., 2018)
although it may work fine in some MARL problems in practice (Abed-Alguni et al.,
2016).

To solve this problem, an architecture called centralised training and decentralised
execution is proposed. In this architecture, we have the full state and actions
information during training. Hence we can use this information to train the policies
to circumvent the non-stationarity problem. Then, agents use the trained policies
in a decentralised way. Two famous algorithms belonging to this architecture are
QMIX (Rashid et al., 2018) and MADDPG (Lowe et al., 2017). However, the architecture
cannot directly apply to our DRAFC problem because we cannot do centralised training
in DRAFC.

2.2 General Multiagent Resource Allocation

In this section, we discuss recent work on general MARA, in which resources are
distributed among several agents and these agents may have an impact on the
allocation results (Chevaleyre et al., 2006). MARA is relevant to a wide range of
applications such as resource allocation in electricity grids (Gradwell and Padget, 2005),
network routing (Feldmann et al., 2003), RACC (Wang et al., 2017) and RAFC (Yi et al.,
2015), which is the problem we focus on in the thesis. However, the work we discuss
in this section does not proactively address many challenges in our RAFC problem
(e.g., the dynamic VM allocation challenge (Challenge 2) and the limited bandwidth
challenge (Challenge 1)).

Formally, MARA models the following resource allocation problems. There is a set
of resources Z and a set of agents I. The resources may be indivisible (e.g., laptops,
cars and houses) or divisible (e.g., electricity, RAM and storage). Similar to what
is described in Section 2.1.2.2, agents report their preferences over the bundles of
resources (i.e., collections of resources that are wrapped together) by means of utility
functions (i.e., functions that assign a real number (utility) to each bundle to represent
the agents’ preferences). The objective is to find the optimal resource allocation plan
that maximises social welfare.

Now, other varieties of social welfare exist; some of the most common are utilitarian,
egalitarian, and Nash product social welfare. The most common type of social welfare
is utilitarian welfare, which is defined as the sum of all agents’ utility gains, and it is
also the social welfare we try to maximise in this thesis (Challenge 4). This is because
we assume that the fog provider is a non-profit organisation and aims to improve the
overall utilities.
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In terms of utility functions of the MARA problem, some properties (e.g., monotonicity,
submodularity, subadditivity, and fractional subadditivity) are to hold because they
are realistic for many applications (Nisan, 2000). In the following, we give a formal
definition of these properties. Let u : 2Z → R be a utility function.

• u is monotonic if u(X) ≤ u(Y) ∀ X, Y with X ⊆ Y ⊆ Z.

• u is submodular if ∀ X, Y with X ⊆ Y ⊆ Z and ∀x ∈ Z\Y we have that u(X ∪
{x})− u(X) ≥ u(Y ∪ {x})− u(Y).

• u is subadditive if ∀X, Y ⊆ Z we have that u(X ∪Y) ≤ u(X) + u(Y).

• u is a fractionally-subaddtive function if there exists a collection of set functions,
{a1, a2, . . . , al} such that each aj is additive (i.e., the value of X ⊆ Z is the sum of
the values of the items in X), and u(X) = maxl

j=1 aj(X).

In our problem, the utility function of the agents satisfies three properties of them,
except for submodularity (see Section 3.1). This is reasonable for our model because
often the processing time near the accomplishment of a fog task is much more
valuable than the previous processing time, which causes the utility function not to
be submodular.

Furthermore, resource allocation mechanisms can generally be categorised into two
main classes, namely, centralised mechanisms and distributed mechanisms. In
centralised mechanisms, a central authority is responsible for allocating resources to
agents based on their utility functions. A combinatorial auction is a classic example
in which bidders compete for bundles of resources, and the auctioneer serves as the
central authority. However, centralised mechanisms have the following disadvantages:
they require communication between agents and the central authority always to be
stable and reliable; the optimal allocation is often computationally hard; the procedure
is not very flexible due to its centralised nature (Friedlander, 1982). To address these
disadvantages, many fully or partially decentralised allocation mechanisms (Herreiner
and Puppe, 2002; Bouveret and Lang, 2011) are proposed. Under a fully decentralised
mechanism, agents execute the mechanism totally by themselves, while under a
partially decentralised mechanism, agents execute the mechanism with the help of a
central authority. However, decentralised allocation mechanisms cannot guarantee the
optimality of the allocation results in most situations (Rothe, 2015).

To address the Challenge 5, there is a rich body of work on offline mechanism design
where all agents submit their private information and the mechanism only makes a
one-time decision (Sandholm, 2003; Hartline and Lucier, 2010; Dobzinski and Dughmi,
2013; Rigas et al., 2020). In particular, a general mechanism which is strategy-proof and
maximises social welfare is proposed, called VCG (Vickrey-Clark-Groves) (Nisan et al.,
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2007). However, offline mechanism design is not suitable for online resource allocation
which is essential to our problem.

Hence, online mechanism design, which addresses our Challenge 5 and 6 was
introduced by Friedman and Parkes (2003). They extended offline mechanism design
to online mechanism design and proposed a strategy-proof online mechanism for
allocating WiFi resources. Then, one line of work in online mechanism design
proposes online variants of VCG mechanisms (Parkes and Singh, 2003; Parkes et al.,
2004; Gershkov and Moldovanu, 2010). In particular, Parkes and Singh (2003)
model the online mechanism design problem as a MDP, whose solution can be used
to implement optimal policies in a truth-revealing Bayesian-Nash equilibrium. To
make the mechanism more scalable, Parkes et al. (2004) adopt sparse-sampling-based
MDP algorithm to implement ϵ- efficient policies in a truth-revealing approximate
Baysian-Nash equilibrium. Furthermore, Gershkov and Moldovanu (2010) study the
truthful welfare maximising allocation of several heterogenous, commonly ranked
objects to impatient agents who arrive sequentially. However, these works focus on
Bayesian-Nash incentive compatibility and make some restrictive assumptions (e.g.,
agent types are sampled i.i.d. from a probability distribution known to all agents).
In addition, Bayesian-Nash incentive compatibility is weaker because if only all other
agents act truthfully then it is also best for an agent to act truthfully. Other types of
online mechanisms are also proposed for MARA. For example, Hajiaghayi et al. (2004)
design truthful online auctions for allocating identical items. However, they assume
the number of users is known in advance. Then, Hajiaghayi et al. (2007) proposed an
automated online mechanism design approach when the seller knows the distribution
of the bid values. For the problem of allocating identical items with unknown supply,
Babaioff et al. (2010) show that no strategy-proof mechanism can achieve better than
n-approximation (n is the number of agents) and propose a constant approximation
strategy-proof mechanism when the distribution of the supply is known.

Another line of work in online mechanism design considers model-free settings,
they have fewer assumptions and propose more tractable mechanisms than VCG
variants (Porter, 2004; Hajiaghayi, 2005; Parkes and Duong, 2007). Here, model-free
mechanisms are those that do not predict the demand and supply of resources in
the future. The advantages of model-free mechanisms are that they need fewer
assumptions and are usually easier to compute. Although these mechanisms are
myopic (i.e., they make resource allocation decisions without considering possible
future situations), their efficiency of resource allocation can still be near-optimal in
many scenarios. For example, Hajiaghayi (2005) investigate truthful online auctions
for allocating reusable goods for agents who only have unit-length requests and
provide two characterisations for strategy-proof mechanisms. Furthermore, a method
is introduced to transform a mechanism for online MARA into a truthful one in a
discrete-time system and single-valued preference domains (Parkes and Duong, 2007).
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The method is called “ironing” because it achieves truthfulness by cancelling allocation
decisions that violate monotonicity. However, the main drawback of this method
is that it is often computationally difficult because it needs to consider all possible
misreports from agents. In addition, Gerding et al. (2011) consider the problem of
hybrid Electric Vehicle (EV) charging. Since hybrid vehicles can use both electricity
and petrol, they have marginal non-increasing valuations for the electricity charged
and have no lower limit of the power charged. To make the mechanism truthful, they
combine a greedy algorithm with a technique called “burning", which leaves some
units of electricity unallocated when there is still demand unsatisfied. The timing of
the “burning" can be at the allocation of the resource or the departure of the agents.
In simulations, this mechanism’s performance is close to a non-truthful scheduling
algorithm and much better than a fixed price mechanism. However, the “burning"
technique may reduce the efficiency of the mechanism significantly. To deal with the
hybrid EV charging problem with various charging speeds, Robu et al. (2013) present
two greedy-algorithm-based online mechanisms that incentivise agents to truthfully
report not only their valuations for the electricity but also their maximum charging
rate. The “burning" technique is also used in this literature to achieve truthfulness.
Furthermore, a two-sided pricing mechanism, in which both the EVs and charging
stations report their private information, is presented (Gerding et al., 2013). However,
this mechanism is only truthful on the buyer side (i.e., EVs have no incentive to
misreport their types).

Model-based mechanisms, which consider possible future arrivals, are also used by
some work to improve the efficiency of the mechanisms (Challenge 4). Stein et al.
(2012) study the problem of pure EVs charging and propose a model-based truthful
online mechanism to allocate electricity. The mechanism modifies the consensus
algorithm (Bent and Van Hentenryck, 2004) by a technique called pre-commitment to
achieve truthfulness. In the consensus algorithm, some future scenarios are sampled,
and then the scheduling is solved for every one of them. Then, these scenarios vote
to decide whether to accept a job (in their case, an EV charging job) or not. A
mechanism with pre-commitment will only commit to an agent that the requested
resource will be allocated before its departure, but when and how the resource will be
allocated remains flexible. Note that this technique is also used in our mechanism for
RAFC. Real data simulations showed that this mechanism significantly outperforms
a model-free algorithm and is nearly as efficient as an offline optimal algorithm.
Moreover, Ströhle et al. (2014) considered the scenario where both the supply and
demand for electricity are uncertain. They also developed a truthful online mechanism
based on the consensus algorithm, which achieves near-optimal efficiency.

Most of the above literature finds truthful resource allocation mechanisms by looking
for an allocation policy that satisfies WMON and then coupling it with a critical-value
payment function. However, some literature takes the approach of price-based
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mechanisms, which decide the resource price before allocation. For instance,
Hayakawa et al. (2015) presented a class of price-based truthful online mechanisms
that can be used in scenarios where electricity has various marginal generation
costs and agents have multi-dimensional preferences by using carefully designed
pricing functions and scheduling algorithms. They showed that their mechanism has
near-optimal efficiency in a realistic setting with different marginal costs. Moreover,
they also present a class of price-based mechanisms allowing increasing marginal
valuations, which is DSIC and IR in settings with uncertain procurement costs,
multi-unit demand and multi-minded bidders (Challenge 3) (Hayakawa et al., 2018).
Although their system model is similar to ours (see Section 3.1) and our work is based
on this class of mechanisms, they only assume homogeneous resource. Specifically,
they do not consider limited bandwidth resource (Challenge 1) or deal with the
dynamical assembly of VMs from several different types of resource (Challenge 2).
Therefore, their resource allocation framework has been modified for our RAFC
problem in this thesis.

2.3 Resource Allocation in Cloud Computing

In this section, we examine work on RACC, which is a subdomain of MARA and
very similar to the RAFC problem we study in this thesis. For example, they all have
heterogeneous resources such as CPU, RAM and storage, and agents arrive over time
to request VM usage. We mainly focus on the Infrastructure-as-a-Service (IaaS) clouds
in this section because the service model of fog computing in this thesis is IaaS (see
Section 3.1). Here, IaaS is a service model that serves agents by directly providing
computer infrastructures. More specifically, cloud providers pack computational
resources (e.g., CPU, RAM and storage) into VMs and provide these VMs to their users.
Rather than dynamic VM instances with random VM configurations (Challenge 2), the
majority of IaaS cloud providers now offer pre-configured VM instances of fixed types.
For example, Amazon Elastic Compute Cloud (EC2) currently offers five categories
and 24 types of VMs, and each type has one or more instance sizes2. In terms of
resource allocation mechanisms, most cloud providers, such as Amazon Web Services
(AWS)3, Microsoft Azure4, and Google Cloud5 provide long-term reservation plans
or short-range on-demand fixed-price plans to their agents. However, long-term
reservation plans are obviously not suitable for agents with uncertain tasks, which is
common in IoT scenarios. Although fixed-price mechanisms are easy to implement
and are obviously truthful, they are not very efficient in social welfare (Challenge 4) or
revenue because they fail to discriminate between different types of tasks (Al-Roomi

2https://aws.amazon.com/ec2/instance-types/
3https://aws.amazon.com/
4https://azure.microsoft.com/en-gb/
5https://cloud.google.com/

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/
https://azure.microsoft.com/en-gb/
https://cloud.google.com/
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et al., 2013). For example, a high-value task would not get a high priority in a
fixed-price mechanism. Furthermore, they also fail to cater to the volatility of the
market, which leads to underpricing or overpricing. To improve efficiency in revenue,
spot pricing is also adopted by these cloud providers, such as Amazon EC26, Azure
Low-Priority VM7, and Google Preemptible VM Instances8. With spot pricing, a cloud
agent bids a price for its task. Then the task will run when the spot price is lower
than this price, and the agent pays the spot price. However, this mechanism has
no guarantee of service-level agreement (SLA). Specifically, the spot price is volatile,
and thus, tasks can be interrupted frequently, and there is no guarantee of the finish
time of the task. In addition, the spot pricing mechanism is not truthful (Challenge 5)
either (Wang et al., 2012b).

To solve the above problems, many mechanisms are designed for RACC in an online
manner. For example, Wang et al. (2013); Zhang et al. (2016) propose online auctions for
RACC, but they only consider VM instances of a single type and neglect the dynamic
allocation of different VMs (Challenge 2). Moreover, a posted pricing mechanism is
proposed by Zhang et al. (2017), under which the cloud provider publishes dynamic
unit prices for different resource types, and cloud agents either accept the current rates
or give up running their jobs. A threshold-based mechanism is also proposed by Farooq
and Zhu (2018) to maximise the revenue of the cloud provider. In their model, the
cloud provider has a limited number of VMs with different computational efficiency
and tasks with different complexity that arrive over time. However, these mechanisms
assume that all agents are truthful and do not work in a strategic setting (Challenge 5).

Therefore, a growing body of work is looking at how to efficiently allocate cloud
resources to agents in an online and strategic setting, and many truthful mechanisms
have been proposed in recent years. The early mechanisms only apply to very simple
settings. For example, Wang et al. (2012a); Zhang et al. (2016) propose truthful
mechanisms in the setting of single-type VMs, and Lin et al. (2010) treat cloud
computing resources as homogeneous. However, this is quite impractical because
cloud providers usually have more than one type of VM and more than one type
of resource (Challenge 2). Furthermore, Yang et al. (2018a) propose a truthful and
envy-free combinatorial auction-based mechanism to maximise the cloud provider’s
revenue. In their model, there are multiple types of VMs and a single cloud provider
and their mechanism combine two ideas: consensus estimate and RevenueExtraction.
However, these studies employ Static Resource Provisioning approaches (i.e., the types
of VMs are decided before the auction).

To increase efficiency, dynamic VM allocation, where cloud providers can decide
how to generate the type and number of VMs, is also studied by some researchers.

6https://aws.amazon.com/ec2/spot/pricing/
7https://azure.microsoft.com/en-gb/blog/low-priority-scale-sets/
8https://cloud.google.com/compute/docs/instances/preemptible

https://aws.amazon.com/ec2/spot/pricing/
https://azure.microsoft.com/en-gb/blog/low-priority-scale-sets/
https://cloud.google.com/compute/docs/instances/preemptible
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For example, Mashayekhy et al. (2015a) presents a strategy-proof polynomial time
approximation scheme (PTAS) mechanism in the scenario of a single cloud provider
and they claim their mechanism is the strongest approximation result so far.
Furthermore, Nejad et al. (2015) formulate the dynamic VM allocation problem as an
Integer Programming problem and design truthful greedy mechanisms to maximise
the cloud provider’s revenue. Shi et al. (2014a) look at the setting of multi-type VMs
and multi-type agents. They use a non-decreasing pricing curve to decide the allocation
of the resources and the payments of agents and claim that their truthful mechanism
RSMOA is both efficient in the social welfare of the system and the revenue of the cloud
provider. Additionally, an online combinatorial auction framework for dynamic RACC
computing is proposed by Shi et al. (2014b). This framework is able to model dynamic
allocations of heterogeneous VMs and optimise system social welfare over a period
of time. Primal-dual optimisation is used to transform a centralised approximation
algorithm into a truthful auction mechanism. Additionally, they demonstrated that this
auction framework is computationally efficient, truthful, and guarantees a competitive
ratio9. For the model where an agent requests a specific period of VM, Mashayekhy
et al. (2015b) propose a truthful auction-based online mechanism that ensures the users
are able to use their VMs for their entire requested period. Considering time-varying
user demands, Li et al. (2018) design a truthful online auction-based mechanism, which
is composed of a price-based allocation rule and a payment rule, for maximising cloud
providers’ revenue. Furthermore, Zhang et al. (2018b) propose a truthful heuristic
mechanism for a model, where VMs are flexible, and agents can submit multiple
requirements, but the cloud provider will at most accept one requirement. However,
their research does not examine the temporal correlation in decision-making, as tasks
can span multiple time slots (Challenge 3).

Truthful resource allocation mechanisms for tasks with deadlines (e.g., financial
companies need data analysis results before the next market open time, or AVs need
to identify the object in front of them in a very short time to stay safe) are also studied
by some researchers. For instance, Lucier et al. (2013) propose two deadline-aware
algorithms for homogeneous resource (i.e., CPU time) allocation in two settings. In one
setting, the tasks can be paused and resumed (preemptible), but in the other setting,
once a task is started, it must be processed until completion. They design a mechanism
using the dual fitting technique for the first setting and prove its competitive ratio
as well as showing that it significantly outperforms other heuristics used in practice.
For the other setting, they prove that no performance guarantee can be given and
propose an efficient heuristic called COMMITTED for resource allocation. Finally, they
prove that their COMMITTED algorithm can be made truthful very easily. Additionally,
preemptive scheduling with the assumption of deadline slackness (i.e., the lower
bound on the ratio of a task’s required time to the time window in which it can be

9The competitive ratio is defined in this context as the worst ratio between the social welfare cost
incurred by an online mechanism and the optimal social welfare.
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processed) has also been studied (Azar et al., 2015). A truthful online mechanism with
a guaranteed competitive ratio for the overall utility of jobs is presented in their work,
and another truthful online mechanism is developed that can commit whether a job
will complete before its deadline if the deadline slackness is large enough. In similar
work (Zhou et al., 2017), cloud agents not only specify their deadlines for the job but
also provide penalty functions for the situation that the deadlines are violated. An
auction framework with posted prices is used to incentivise truthful reports, and to
address the soft deadline limitations, a novel technique of compact exponential-size
LPs paired with dual separation oracles is proposed. Moreover, the classic primal-dual
framework is used to develop a social welfare approximation algorithm, and their
mechanism is shown to be efficient by simulations using Google cluster data (Reiss
et al., 2011). In addition, Zhang et al. (2020) consider time-varying multidimensional
resource allocation in clouds and design a truthful online auction to achieve high social
welfare, short execution time and high resource utilisation. Finally, Babaioff et al.
(2022) focus on machine learning jobs, whose utilities decline with completion time,
and design strategy-proof and constant competitive mechanisms to allocate in a cloud.

However, all the above work considers the setting of cloud computing, in which
a single centralised data centre provides resources, so their techniques do not deal
with bandwidth resources (Challenge 1) or dynamic VM allocation (Challenge 2).
Furthermore, they do not consider the operational cost of cloud providers, which is
also different from our setting (Challenge 7).

2.4 Resource Allocation in Fog Computing

Although fog computing is a relatively new concept, many studies have been carried
out on resource allocation in this domain. As mentioned in Section 1.1, the fog
computing structure is three-tier, which consists of the IoT devices, the fog, and the
cloud. Some work on resource allocation only considers the fog (Singh and Singh, 2021;
Aazam and Huh, 2015), while others consider the fog and IoT devices (Zeng et al., 2016)
or the fog and cloud simultaneously (Cao et al., 2021; Agarwal et al., 2016). However,
we only look at resource allocation in the fog tier in this thesis.

Notably, there are many performance metrics in RAFC and different studies may try
to optimise different performance metrics. The following list shows some performance
metrics that are commonly used.

• Execution Time: The execution time is the time required to complete the tasks,
excluding any waiting time.

• Latency: Latency is the time taken to acquire the processed results of a task from
the fog. It is the summation of computational time and transmission time.
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• Makespan: Makespan is the overall time required to complete a workflow (i.e., a
series of dependent tasks).

• Deadline: Deadline is about the percentage of tasks that finish before their
deadlines.

• Throughput: Throughput is the number of tasks processed per unit time.

• Energy Consumption: Energy consumption is the amount of energy used to
process all tasks.

• Social Welfare: Social welfare is the overall utilities got by processing the tasks
and is the performance metric of this thesis.

Next, we will have a review of the studies in RAFC, and we categorise them
by their methods. In detail, the main methods are traditional methods, integer
linear programming, heuristics and reinforcement learning. Traditional methods are
static algorithms (e.g., First-Come-First-Served (FCFS), Min-Mim and Min-Mam) that
can be used when all the information is known before resource allocation. For
example, Bittencourt et al. (2017) utilise three traditional scheduling methods, namely
FCFS, concurrent, and delay-priority, to optimise the scheduling of mobility-aware
applications. In another study, Mtshali et al. (2019) analyse four algorithms (i.e.,
Round-Robin, FCFS, SJF, and Genetic Programming) in terms of energy consumption,
average task delay, network utilisation, and execution time and conclude that FCFS
performs the best in fog computing task scheduling.

An integer linear programming problem is a constraint problem in which the
constraints are linear, and some or all of the decision variables are restricted to be
integers. When some of the decision variables are not discrete, the problem is referred
to as mixed-integer linear programming (Schrijver, 1998). Furthermore, Hoseiny et al.
(2021) formulate the Fog resource allocation problem as a mixed-integer nonlinear
programming problem and propose two scheduling algorithms called Min-CCV
and Min-V. In detail, Min-CCV is for minimising computation, communication and
violation cost, and Min-V is for minimising deadline violation cost. Their extensive
simulations show their proposed algorithms can significantly improve deadline
satisfaction and decrease the total cost. To minimise the overall service request
latency in hybrid Fog-Cloud computing, Aburukba et al. (2020) formulate the IoT
service scheduling problem as an integer linear programming problem and propose a
customised genetic algorithm. Their algorithm is shown to have lower overall latency
compared with three traditional methods.

Heuristic is a method that can find a good enough solution to a problem quickly,
although the solution may not be optimal. A heuristic-based fog computing job
scheduling algorithm is proposed to lower the latency and network usage (Jamil et al.,
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2020). By iFogSim simulations, their algorithm has better performance in latency and
network usage compared with FCFS method. In addition, Auluck et al. (2019) propose
two heuristic algorithms for scheduling tasks with stringent deadlines. In general,
more latency-sensitive tasks are processed on fog nodes, and less latency-sensitive
tasks are processed on the cloud. Simulation results show their approach increases the
success ratio and decreases the average response time compared to scheduling tasks on
the cloud alone. Furthermore, Aazam and Huh (2015) introduces an efficient resource
allocation framework that predicts and reserves resources based on agents’ historical
behaviour and offers prices based on agents’ characteristics. Their simulations show
that their framework can allocate resources adaptively and avoid resource wastage.
For joint resource allocation in fog and cloud computing,

Meta-heuristic (e.g., evolutionary algorithms, simulated annealing, ant colony
optimisation and bee life algorithm) is a problem-independent algorithm to find
heuristic optimisation algorithms (Hussain et al., 2019). For instance, an improved
firework algorithm is proposed to decrease the execution time of fog tasks and
to enhance the load balance of fog nodes (Wang et al., 2020). They enhance the
firework algorithm by incorporating an explosion radius detection mechanism and
demonstrate that their technique outperforms the benchmarks. Hyper-heuristic is
a method that automatically selects, combines, generates or adapts several simple
heuristics to solve optimisation problems (Burke et al., 2013). Kabirzadeh et al. (2017)
introduce a hyper-heuristic scheduling algorithm for fog computing. Simulations
using iFogSim show that their algorithm has lower energy consumption and cost than
that of benchmarks (i.e., simulated annealing, particle swarm optimisation algorithm
and ant colony optimisation algorithm). Additionally, the hybrid-heuristic algorithm
combines two or more heuristic algorithms to obtain superior performance to any
single heuristic (Baraglia et al., 2001), for example, Wang and Li (2019) propose a
hybrid-heuristic-based task scheduling algorithm that combines improved particle
swarm and enhanced ant colony algorithm in order to reduce energy consumption and
delay while improving the efficiency of smart production lines using fog computing.

Moreover, the resource allocation problem becomes more challenging considering
the inherent dynamism and uncertainty of the fog computing system (e.g., random
arrival of different types of analytic tasks and dynamic changes). Hence, the
conventional optimisation methods may not allocate resource in fog very efficiently.
To further increase the efficiency of resource allocation, reinforcement learning is
also proposed by many studies because of its ability to self-learn and handle the
ever-changing environment. To reduce power consumption and job execution latency
in fog computing, an ϵ-greedy Q-learning task offloading algorithm is proposed
by Liu et al. (2019). Specifically, each IoT device learns a policy to decide whether
to offload its tasks to the fog nodes or not. They demonstrate through extensive
simulations that their strategy provides an improved trade-off between task execution
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latency and power consumption. Furthermore, deep Q-network is also adopted
to find the optimum policy for resource allocation in fog (Yu et al., 2017; Chen
et al., 2018; Zhang et al., 2018a). Additionally, a scheduling algorithm based on
double deep Q-learning is proposed with the aim of lowering computation cost,
service delay, and energy consumption for fog-based IoT applications (Gazori et al.,
2020). Their evaluation shows their proposed algorithm outperforms the benchmarks.
Tuli et al. (2020) schedule applications in an edge-cloud computing system using
another reinforcement learning method termed asynchronous-advantage-actor-critic
(A3C) with residual recurrent neural networks. They claim their approach can
quickly adapt to dynamic environments, and has significantly better performance in
energy consumption, running cost and response time than state-of-the-art algorithms.
However, many approaches focus on centralised mechanisms, where a centralised
fog controller learns the optimal allocation policy for analytic tasks. To make the
resource allocation more robust and scalable, allocation mechanisms using multi-agent
reinforcement learning (MARL) are also proposed (Zhang et al., 2019b; Liu et al., 2020).
In these mechanisms, each end user learns its policy to offload its tasks to the fog
independently. However, not all IoT devices have the computational ability to do
reinforcement learning in practice.

In particular, the above work does not consider the strategic behaviour of agents
(Challenge 5). Thus, in a strategic setting where agents act according to their utilities,
these mechanisms can no longer guarantee their efficiency. Although there is little
work that directly studies the truthful online mechanism for RAFC, some literature has
looked at related domains such as distributed cloud computing, Cloudlets and edge
computing, which have similar resource allocation models. First of all, we discuss
the work on resource allocation in distributed clouds. Similar to RAFC, resource
allocation mechanisms in distributed clouds need to decide not only when but also
where to put the VMs (Challenge 2) and the bandwidth between VMs (Challenge 1).
Shi et al. (2015) have studied the problem of bandwidth allocation in a distributed
cloud. They developed truthful offline and online mechanisms from Shapley value
based auctions. Although real data simulations show that their mechanisms are
efficient, their mechanism is only for bandwidth allocation. Moreover, Zhang et al.
(2015) design truthful online auctions where agents bid for VMs for a fixed time in the
future for social welfare and revenue maximisation. This research utilised an online
primal-dual optimisation approach to maximise social welfare and a randomised
reduction algorithm to transform the social welfare maximisation auction to a revenue
maximisation auction. They showed that their mechanisms are polynomial-time
(Challenge 8) and have better performance than existing ones using Google cluster
data (Reiss et al., 2011). However, they did not consider the bandwidth between servers
and between server and agents (Challenge 1), and their agents are not multi-minded
(Challenge 3). Furthermore, two truthful online mechanisms are proposed by Shi
et al. (2017) for dynamic virtual cluster (VC) provisioning. VCs are assemblies of
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several VMs and the communication resources (bandwidths) between them. They
designed the Social Welfare Online Mechanism (SWMOA) to maximise social welfare
as well as the Provider Revenue Maximization Online Auction (PRMOA) to maximise
cloud providers’ revenue. SWMOA’s core idea is to maintain a dynamic virtual unit
cost for each resource type and accept a requested VC scheme (i.e., the placement of
VMs) only if its total virtual cost is less than its valuation. PRMOA, on the other
hand, first determines a provisional VC allocation and payments for agents using
SWMOA and then charges each accepted bid with a randomised boosted payment,
which is still below its valuation, to increase the cloud providers’ revenue. However,
under their mechanisms, cloud agents need to specify their desired schemes of VC
placement, which is not practical because cloud agents usually have no knowledge
about the following things: the physical topology of the distributed cloud and the
desirable VC schemes. Additionally, Zhang et al. (2019a) consider offloading tasks from
IoT devices to mobile devices, and propose a truthful online rewards-optimal auction,
which is based on Lyapunov optimisation and VCG auction, to optimise social welfare.
However, their mechanism is an offline auction and thus does not allow agents to
dynamically join the auction in real time. For the scenario of vehicular fog computing,
Peng et al. (2020) propose a truthful multiattribute-based (e.g., location, reputation,
and computing power) double auction mechanism for reasonable matching. For the
scenario of edge computing, Gao et al. (2019) study the problem of allocating VMs in
geo-distributed Edge Cloud Nodes and propose a truthful auction-based mechanism,
which consists of a greedy winning bid selection algorithm and a critical payment
pricing algorithm. Finally, Aggarwal et al. (2021) consider the Fog-Integrated Cloud
Architecture and propose a truthful reverse auction where the fog provider and cloud
provider are participants. Their mechanism is multi-attribute, polynomial time, and
achieves a low resource procurement cost. However, the above three mechanisms are
offline too.

2.5 Summary

In this chapter, we have presented the concepts and theories in game theory,
mechanism design, and reinforcement learning, as well as the literature that is
related to our work. As discussed beforehand, the research community has proposed
many effective approaches for RAFC and other related resource allocation problems.
However, they only address a subset of our challenges.

First, we examined related knowledge in game theory (Section 2.1.1), mechanism
design (Section 2.1.2) and reinforcement learning (Section 2.1.3) as a background.
In particular, we introduced important concepts such as game, solution concept,
mechanism, and we gave the definition of a special type of mechanism called
direct-revelation truthful mechanisms. Then we showed that we could just focus on
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this type of mechanisms because of the revelation principle. Furthermore, we listed
desirable properties for our mechanism in this thesis, such as truthfulness, IR and WBB.
Finally, we discussed fundamental concepts of reinforcement learning and presented
some popular reinforcement learning algorithms.

Second, we presented background and related work in general MARA in Section 2.2. In
the background part, we introduced the general model of MARA and different types of
utility functions, objective functions and resource allocation mechanisms and clarified
which type our work focuses on. Then we examined online mechanisms proposed for
MARA. Although they address parts of our challenges in isolation, they typically fail
to consider heterogeneous resources (Challenge 1 and Challenge 2).

Finally, we examined the related work in RACC or RAFC, which also addresses a subset
of our challenges. The main problem of work in RACC is that it usually does not deal
with bandwidth resources (Challenge 1) or location-aware VM allocation (Challenge 2).
Some work in RAFC considers most of our challenges, but they still have significant
shortcomings, such as requiring agents to define every detail of VM location. As a
result, no effort has been made to develop a truthful online mechanism capable of
resolving all of our challenges in RAFC. Thus, this is one of the research gaps that
we intend to bridge in this thesis. The other research gap is that most of the studies
using reinforcement learning propose centralised resource allocation algorithms and
fail to address Challenge 9. In particular, some insights from the examined work are
integrated into our work. We adapt the price-based mechanisms (Hayakawa et al.,
2018) and the pre-commitment technique (Stein et al., 2012) to our RAFC problem
and design our mechanism belonging to this class of mechanisms because price-based
mechanisms are guaranteed to be DSIC and IR.

To evaluate our work, we choose some mechanisms as benchmarks: the offline optimal
mechanism represents the upper limit of social welfare efficiency; the online optimal
indicates the social welfare could be achieved if all agents report truthfully; the online
greedy algorithm is an online truthful mechanism based on the idea from (Gerding
et al., 2011); SWMOA2 is a variant of a state-of-the-art truthful mechanism called
SWMOA (Shi et al., 2017). Random allocation and bidding zero are two decentralised
algorithms that can be used in the decentralised resource allocation. The details of these
benchmarks are described in Section 3.2 and 4.2.
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Chapter 3

Truthful Resource Allocation
Mechanisms in Fog Computing

In this chapter, we present our work on designing a truthful online mechanism for
resource allocation in fog computing (RAFC), which addresses our Challenges 1-7 in
Section 1.3. In Section 3.1, we describe the model of our RAFC problem. Then, in
Section 3.3.1, we introduce a class of truthful online resource allocation mechanisms
call price-based mechanisms to which our proposed mechanism belongs. Next, we
present the algorithms of benchmark mechanisms in Section 3.2 and the algorithm
and properties of our mechanism in Section 3.3.2. After that, we show the setup
and the results of the simulations in Section 3.4. Finally, Section 3.5 summarises the
whole chapter.

3.1 Model of RAFC

In this section, we present the RAFC model used in this thesis. We first give a brief
overview of this model in Section 3.1.1, and then formally describe it in detail in Section
3.1.2.

3.1.1 Overview of the Model

In our model, a single fog provider owns a fog computing system with several
geographically distributed fog nodes and data links interconnecting them, as shown
in Figure 3.1. Here, fog nodes have computational resources (such as CPU, RAM
and storage) and data links have bandwidth resources, and different resources have
different fixed operational costs. The operational costs of computational resources
comprise electricity costs and the depreciation charge of the resources, and the
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FIGURE 3.1: General view of a fog computing system.

operational costs of bandwidth are the costs charged by the ISPs. Fog nodes and
data links jointly supply these resources to fulfil the demands of IoT users by way
of processing tasks using VMs. IoT devices at different locations are connected to fog
nodes of the fog through data links. They can be stationary IoT devices in the fog
computing system or portable IoT devices carried by IoT users. For example, stationary
IoT devices can be smart TVs, surveillance cameras and smart speakers, while IoT
devices carried by agents can be smartphones and AVs. Further, the fog provider
manages the resource allocation of the fog via a central point of control and control
linkages. More specifically, the central point of control is a server, which receives
analytics tasks requests from IoT devices/agents and decides how to allocate resources
to satisfy these agents and the payment for each agent, and these decisions are sent to
fog nodes to execute through control links.

Another essential part of our model is IoT users. They report their tasks (e.g., video
surveillance tasks or picture processing tasks) to the fog provider through their IoT
devices over time, which includes the resource requirements, the time constraints and
the valuation functions of the tasks. In particular, we assume that their tasks are
pre-emptive and may migrate to other fog nodes during execution. Furthermore, some
users can always get the value of their tasks if the results are given to them before the
deadline, while others must get real-time results. For example, a picture processing
application can have computing tasks like adding filters or compressing photos. To
finish the task of adding filters to 100 photos, bandwidth resources are needed to
send the images to and from the fog node, and computational resources are needed
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to process the image. The time constraints of this task could be like this: the task can
start right now, and the result should be sent to the agent in 30 seconds because agents
usually do not want to wait for too long to add a filter to their photos. If the task is
completely finished before the deadline, the agent can get all the value of this task.
However, if filters have only been added to 50 photos at the deadline, the agent can
still get part of the value.

When receiving the reports from the applications, the fog provider decides whether to
accept them, how to allocate resources (i.e., computation time at a certain configuration)
to satisfy the demands of the accepted tasks and how much the corresponding payment
is through an online mechanism. Finally, the social welfare of the allocation is the
sum of value IoT users get by processing tasks minus the sum of the fog provider’s
operational costs, while the revenue is the sum of the fog provider’s income minus
its operational costs. We focus on social welfare because we assume that the fog
provider is a non-profit organisation, and improving overall social welfare is its
primary objective. Therefore, we leave the objective of maximising the fog provider’s
revenue to future work.

3.1.2 Formal Model of RAFC

We now present the model described in Section 3.1.1 in detail and formally. Consider a
fog provider with a set W of geo-distributed fog nodes and a set L of locations, which
are interconnected through a set E of data links, as shown in Figure 3.1.

Furthermore, there is a set El of IoT devices in each location l, and e ∈ El is an IoT device
(e.g., a smart TV, surveillance camera, smart speaker or AV). Every fog node w ∈W has
a set R of limited computational resources (e.g., CPU, RAM and storage). Moreover,
there are Aw,r units of type r ∈ R resources in fog node w, and the unit operational
cost of resource r in fog node w is ow,r. In addition, the bandwidth capacity and the
unit operational cost of link (j, k) ∈ E are bj,k and oj,k respectively. For simplicity,
we assume that the bandwidth capacity and unit bandwidth costs are symmetrical for
all links (i.e., bj,k = bk,j, oj,k = ok,j, ∀(j, k) ∈ E). Fog nodes and data links together
offer their resources to satisfy the needs of IoT users. In particular, we assume that
VMs can be created in a fog node to run computing tasks as long as there are enough
computational resources in that fog node, and the total resource requirements of several
VMs are just the sum of their individual resource requirement for simplicity, although,
in reality, they may need fewer resources because they can share resource with each
other. Furthermore, the fog provider uses a centralised online resource allocation
mechanism to make resource allocation and payment decisions.

IoT users with tasks arrive over time, and I denotes the set of all tasks. Note that we
adopt a continuous time system, but the tasks can only start execution at discrete time



52 Chapter 3. Truthful Resource Allocation Mechanisms in Fog Computing

steps, denoted by the set T = {1, 2, . . . , |T|}. Each task i ∈ I is owned by an agent,
which is also denoted as i for simplicity because we assume that each agent has one
task. In addition, the arrival time of task i is Ta

i ∈ [0, |T|], which is the time when agent
i becomes aware of its task i, and the time window that the task can be processed is
from its start time Ts

i to its deadline Td
i . Here, we assume that no tasks arrive at the exact

same time, and agent i reports its task’s type θ̂i (as defined in the following) at time T̂a
i to

run a certain application (e.g., a video surveillance application or a picture processing
application). We assume that agent i wants to know the number of time steps t̃i it will
get and the payment pi for its task also by time T̂a

i because agents want to run the tasks
locally or elsewhere if their tasks get rejected. The operational cost of task i is denoted
as oi, which is the sum of costs of all resources allocated to task i, including the cost
of bandwidth. Furthermore, we also assume that every task only requires one VM to
run but may require connections to several endpoints e ∈ E (in the same location or in
different locations) because this is common in an IoT system (Du et al., 2018). IoT users
are also assumed to be stationary, which means that the IoT devices of agents do not
change locations over time. Furthermore, we also assume VMs can migrate between
fog nodes and the migration costs are negligible, and all tasks are pre-emptive (i.e., all
tasks can be interrupted and restarted), which means that they can always be paused
and resumed. Finally, we focus on one type of task called time-oriented tasks (e.g.,
video surveillance and video processing tasks), which are common in fog computing.
Such a task i needs a certain configuration of resources for a time length ti to get its full
value but can still get part of the value if the processing time is less than ti. Formally,
the type of task i is a tuple θi = (Ta

i , Ts
i , Td

i , vi, {ai,r}r∈R, {Γi
l}l∈L), where ai,r denotes the

amount of resource r ∈ R required, and Γi
l denotes the bandwidth demand between its

VM and location l ∈ L. For simplicity, bandwidth demands are symmetrical. That is,
Γi

l denotes both the bandwidth demands to and from location l ∈ L. In this paper, the
valuation function is given by vi = {vi,0, vi,1, . . . , vi,ti}, where vi,t is the value when task
i gets a usage time of t time steps within its time window ([Ts

i , Td
i ]) and ti denotes

the amount of time required to complete the task. We reasonably assume that the
valuation function increases monotonically with usage time(i.e., vi,t′′ ≥ vi,t′ , ∀t′′ ≥ t′).
For instance, assume an agent wants to use real-time video analytics combined with
facial recognition to monitor their stores 24 hours a day. It is intuitive that they will not
get additional value for a surveillance time of more than 24 hours, and it is nevertheless
beneficial to them if the surveillance is fewer than 24 hours in duration, for example, 18
hours. We pick this sort of valuation function because it is applicable to a large number
of IoT applications that gain more utility as processing time grows. Additionally, the
reported task type i is a tuple θ̂i = (T̂a

i , T̂s
i , T̂d

i , v̂i, {âi,r}r∈R, {Γ̂i
l}l∈L), and θ̂⟨t⟩ represents

the set of all types reported up to and including the time step t.

Now, because a key assumption of our study is that agents are strategic, θ̂i may not
be identical to θi. Additionally, we assume limited misreports (see Section 2.1.2.4) due
to the nature of our problem (i.e., T̂a

i ≥ Ta
i , T̂s

i ≥ Ts
i , T̂d

i ≤ Td
i , âi,r ≥ ai,r r ∈ R, Γ̂i

l ≥
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Γi
l l ∈ L). This is reasonable because an agent cannot report a task before it becomes

aware of it (i.e., T̂a
i < Ta

i ), and cannot report a looser time window (i.e., T̂s
i < Ts

i or
T̂d

i > Td
i ) because the fog provider can idendty whether task i is ready at T̂s

i and send
the processed results to i at T̂d

i . Thus, reporting T̂is < Tis will be identified and will
result in the task being cancelled, and reporting T̂id > Tid will result in zero value.
Finally, agent i would not misreport a lower resource demand because its task cannot
be processed in that situation. However, for some tasks, the results cannot be withheld
until their deadlines, such as video surveillance tasks and autopilot tasks. This situation
is discussed in Section 3.3.4.

Following that, when the fog provider receives the bid θ̂i for task i, it will determine
the resource allocation plan λi, which is a tuple formally defined in the later part of
this paragraph, right away to this task. The decision comprises the amount of usage
time t̃i to be allocated, as well as the payment pi because of the assumption we made
earlier that all agents want to know the allocation results at their arrival times. To give
an upper bound on social welfare, we solve a constraint optimisation problem in an
offline scenario to determine the optimal social welfare, with the decision variables: (1)
{zi

w,t ∈ {0, 1}}i∈I,w∈W,t∈T, indicating whether task i’s VM is placed in fog node w (zi
w,t =

1) or not (zi
w,t = 0) in time slot t. (2) { f i

l,w,j,k,t ∈ R≥0}i∈I,l∈L,w∈W,(j,k)∈E,t∈T, indicating the
bandwidth allocation on link (j, k) for traffic from location i to fog node w associated
with task i at time step t. Thus, given task i, its duration of execution t̃i = ∑

w∈W,t∈T
zi

w,t,

and its resource allocation plan λi = ({zi
w,t}i∈I,w∈W,t∈T, { f i

l,w,j,k,t}i∈I,l∈L,w∈W,(j,k)∈E,t∈T).
Finally, the objective function (3.1a) of this optimisation problem maximises the social
welfare, which is subject to resource and time constraints:

max
λi

∑
i∈I

vi( ∑
w∈W,t∈T

zi
w,t)− ( ∑

i∈I,r∈R,w∈W,t∈T
ai,rzi

w,tow,r + ∑
i∈I,l∈L,w∈W,(j,k)∈E,t∈T

2oj,k f i
l,w,j,k,t)

(3.1a)

s.t. ∑
w∈W

zi
w,t ≤ 1, ∀i ∈ I, t ∈ T (3.1b)

∑
i∈I

zi
w,tai,r ≤ Aw,r, ∀w ∈W, r ∈ R, t ∈ T (3.1c)

zi
w,t = 0, ∀i ∈ I, w ∈W, t < Ts

i or t > Td
i (3.1d)

∑
j:(j,w)∈E

f i
l,w,j,p,t = Γi

lz
i
w,t, ∀w ∈W, i ∈ I, l ∈ L, t ∈ T (3.1e)

∑
k:(l,k)∈E

f i
l,w,l,k,t = Γi

lz
i
w,t, ∀w ∈W, i ∈ I, l ∈ L, t ∈ T (3.1f)

∑
j:(j,k)∈E

f i
l,w,j,k,t = ∑

j:(k,j)∈E

f i
l,w,k,j,t, ∀w ∈W, k ∈W, i ∈ I, l ∈ L, t ∈ T (3.1g)

∑
i∈I

f i
l,w,j,k,t ≤ bj,k, ∀(j, k) ∈ E, t ∈ T (3.1h)

f i
l,w,j,k,t ≥ 0, ∀i ∈ I, l ∈ L, w ∈W, (j, k) ∈ E, t ∈ T (3.1i)
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To explain the above constraints in detail, constraint (3.1b) represents that every task
only needs one VM. Constraint (3.1c) guarantees that the allocated resources at any
fog node will not surpass its resource capabilities at any time slot. Constraint (3.1d)
means that the VM is created within the start time and deadline of the task. Constraint
(3.1e) requires that the total inbound traffic to fog node w for the traffic from task i’s
location l equals its corresponding bandwidth demand at each time step if the VM
for task i is placed in fog node w. Since the bandwidth demands and the bandwidth
costs are both symmetrical. (i.e., The task requires the same upstream bandwidth and
downstream bandwidth and the unit operational cost for upstream and downstream
bandwidth is also the same.) It is sufficient to just consider the traffic from L to W.
Constraint (3.1f) indicates that the outbound traffic from task i’s location l is equal to
its corresponding bandwidth demand at each time step. Constraint (3.1g) represents
that the inbound and outgoing traffic of intermediary nodes should be equal for task
i. Constraint (3.1h) ensures that aggregated traffic on each traffic link does not exceed
its bandwidth capability at any point in time. Finally, constraint (3.1i) ensures that the
allocated bandwidth in each data link is not negative, which is impossible in practice.

This is a mixed-integer linear programming problem because the constraints and
the objective function are linear and one of the decision variables zi

w,t is discrete.
Unfortunately, this problem is NP-hard, which can be proved by reducing a 0-1
knapsack problem to it (see detailed proof below). In practice, the optimisation
problem (3.1a) can be solved using linear programming solvers. In particular, we
utilise the IBM ILOG CPLEX Optimization Studio in this thesis. However, solving this
problem can be time-consuming because the problem is hard per se.

Theorem 3.1. The optimisation problem (3.1a) is NP-hard.

Proof. Suppose we have a 0-1 knapsack problem with a maximum weight capacity Aw

and |I| items with weights {ai}i∈I and values {vi}i∈I . We can design a fog computing
resource allocation problem as follows. There is one fog node with CPU resource Aw

and no other resources. All |I| tasks arrives at t = 0 and task i requires only ai CPU
resource with start time Ts

i = 0, deadline Td
i = 1, and value vi, i ∈ I for ti = 1. Then,

we can solve the above 0-1 knapsack problem by just solving the above fog computing
resource allocation problem. Ergo, the offline optimal problem is at least as hard as the
0-1 knapsack problem. Since the optimisation problem of a 0-1 knapsack problem is
NP-hard, the optimisation problem (3.1a) is NP-hard too.

Finally, mechanisms need to make both resource allocation decisions and payment
decisions for IoT users. We use pi(λi, θ̂⟨T̂

a
i ⟩) ∈ R≥0 to denote the task i’s payment,

which is a function of the resource allocation (λi) and all types of tasks received by T̂a
i

(θ̂⟨T̂
a
i ⟩). Thus agent i’s utility is ui = vi(t̃i)− pi(λi, θ̂⟨T̂

a
i ⟩), and this is what agent i tries

to maximise.
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3.2 Resource Allocation Benchmarks

Against this background, we present the benchmark algorithms and the mechanism we
proposed for RAFC. We describe these algorithms in detail and show the pseudocode
of them except for offline optimal because for the offline optimal algorithm, what we
need to do is just solving the optimisation problem of all tasks.

3.2.1 Offline Optimal Algorithm

We assume in this algorithm that we have complete information about future tasks
and allocate resources to maximise social welfare without the need to incentivise
IoT users to report their tasks truthfully. The social welfare of this theoretical and
idealised scenario is computed via solving the constraint optimisation problem 3.1a
in Section 3.1.2.

3.2.2 Online Optimal Algorithm

This algorithm is akin to the offline optimal algorithm, except that at each time step, the
optimisation problem is performed using only the tasks that have arrived thus far (and
not of future tasks). While this algorithm is not entirely truthful, we use it to estimate
the amount of social welfare that could be produced in an online situation if all agents
reported truthfully. In Section 3.4.2.4, we also evaluate this algorithm’s performance
in social welfare in settings where part of the agents misreport. The details of this
algorithm are given in Algorithm 3 below.

3.2.3 Online Greedy Algorithm

This algorithm myopicly makes an allocation decision to maximise the social
welfare of a task with the earliest time slots possible when it arrives. Then it
commits to the decision henceforth. Moreover, it calculates the payout based
on the task’s associated operational costs (pi = oi = ∑r∈R,w∈W,t∈T(ai,rzi

w,tow,r) +

∑l∈L,w∈W,(j,k)∈E,t∈T(2oj,k f i
l,w,j,k,t)). This mechanism is DSIC and IR, and the details of

this mechanism are given in Algorithm 4:

Theorem 3.2. The OG mechanism is DSIC, IR and WBB.

Proof. Under the OG mechanism, any agent who gets allocated nothing has to pay zero
because the corresponding operational cost is zero. So it satisfies the third condition
of Definition 3.5. Furthermore, for every possible t̃i allocated to task i, the mechanism
chooses the allocation that has the lowest oi according to θ̂i. This is because v̂i(t̃i) is
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Algorithm 3: The online optimal algorithm

1 Θarrived ← ∅ // The set of arrived tasks

2 θ f lex ← ∅ // The set of flexible tasks

3 Λ← { } // The dictionary of allocation decisions for each task

4 for t in T do
5 while new tasks arrive within t do
6 when a new task i arrives // Tasks arrive over time

7 Θarrived ← Θarrived ∪ {i} // Update the set of arrived tasks

8 θ f lex ← θ f lex ∪ {i} // Update the set of flexible tasks

9 end while
10 solve the maximum utility allocation for tasks in θ f lex (i.e.,

arg max
λj

∑
j∈θ f lex

(v̂j(λj)− oj(λj))) // Find the allocation for tasks in θ f lex that maximise

their social welfare

11 pi ← 0 // Payment for task i is zero

12 for i in θ f lex do
13 if the next time step (t + 1) is allocated to i according to λi then
14 Λ[i]← Λ[i] ∪ λi,(t+1) // Save the allocation decision of the next time step for

task i

15 ti ← ti − 1 // Update the remaining usage time of task i

16 for j = 1; j ≤ ti; j++ do
17 v̂i(j)← v̂i(j + 1) // Update the valuation function of task i

18 end for
19 end if
20 if ti = 0 then
21 θ f lex ← θ f lex \ {i} // Delete task i from θ f lex if it gets its required usage time

22 end if
23 if t = T̂d

i then
24 θ f lex ← θ f lex \ {i} // Delete task i from θ f lex if it reaches its deadline

25 end if
26 end for
27 end for

independent of the allocation details, and the mechanism maximises v̂i(t̃i)− oi. Since
pi = oi, the payment pi is also independent of v̂i. In addition, increasing T̂a

i , T̂s
i or

decreasing T̂d
i can only increase oi by reducing the space of possible allocations (i.e.,

reducing the available time steps (increasing T̂s
i or decreasing T̂d

i ) or causing more
resource to be allocated to other agents (increasing T̂a

i )), and increasing t̂i, {âi,r}r∈R

or {Γ̂i
l}l∈L can only increase oi too because this increases the resource demands. Due

to the fact that pi = oi, pi(λi, θ̂⟨T̂
a
i ⟩) is monotonic according to Definition 3.4. Hence,

the mechanism satisfies the condition 1 in Definition 3.5. Finally, the mechanism
also satisfies the condition 2 in Definition 3.5 because it decides the allocation λi that
maximise v̂i(t̃i) − pi(λi, θ̂⟨T̂

a
i ⟩) so the t̃i incurred by λi also maximises the utility of

agent i. Taken together, the OG mechanism is DSIC and IR according to Theorem
3.6. In addition, because the payment of task i equals to the operational cost of that
task (pi = oi), the total sum of payments equal the total operational cost of the fog
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Algorithm 4: The online greedy mechanism

1 Θarrived ← ∅ // The set of arrived tasks

2 Λ← { } // The dictionary of allocation decisions for each task

3 for t in T do
4 while new tasks arrive within t do
5 when a new task i arrives // Tasks arrive over time

6 Θarrived ← Θarrived ∪ {i} // Update the set of arrived tasks

7 solve the optimal utility allocation for task i (i.e.,
arg max

λi

∑
t∈T

(v̂i(λi)− oi(λi)), s.t. constraints in Problem 3.1a and given Λ &

θ̂i) // Find the allocation for task i that maximise its social welfare

8 choose the λi whose time slots sum is the smallest if the previous problem
has multiple solutions. // Choose the allocation with the earliest time slots

9 Λ[i]← λi // Commit this allocation decision

10 pi ← oi(λi) // The payment for task i is its corresponding operational cost

11 end while
12 allocate resources in time step (t + 1) according to Λ
13 end for

(∑i∈I pi = o). Thus, OG satisfies WBB.

3.2.4 SWMOA2 Algorithm

While the SWMOA mechanism described by Shi et al. (2017) cannot be directly applied
to our model, we build a variation named SWMOA2 as a viable benchmark. The
major distinction between this mechanism (described in Algorithm 5) and OG is that
it maintains a virtual cost for each resource rather than an operational cost. For
convenience, we will refer to M as the set of all computational resources available
at each fog node and bandwidth resources available on each link, with m denoting
one type of them. To determine the virtual costs, we define the load factor κm,t as
the percentage of occupied resource m at time step t. The virtual cost is then: cm,t =

µκm,t − 1, ∀t ∈ T, m ∈ M, where µ = 2|M|F + 2 and F is the upper limit of the ratio of
the highest and lowest unit time task valuations.

Then, task i’s virtual cost is
ci = ∑r∈R,w∈W,t∈T(ai,rzi

w,tcw,r,t) + ∑l∈L,w∈W,(j,k)∈E,t∈T(2cj,k,t f i
l,w,j,k,t). Thus, the agent can

use resources cheaply when resources are abundant and is restrained when resources
are in shortage. In the original paper by Shi et al. (2017), the virtual cost also prevents
allocations that violate the resource constraints, which no longer works in our model,
because, unlike them, we do not assume an upper bound of each task’s resource
requirements. Therefore, resource constraints are added to this mechanism. SWMOA2
is also DSIC and IR and the detail of it is shown in Algorithm 5 below.

Theorem 3.3. The SWMOA2 mechanism is DSIC and IR.
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Algorithm 5: The SWMOA2 mechanism

1 Θarrived ← ∅ // The set of arrived tasks

2 Λ← { } // The dictionary of allocation decisions for each task

3 κm,t ← 0, ∀m, t // The load factors of resources

4 cm,t ← 0, ∀m, t // The virtual costs of resources

5 for t in T do
6 while new tasks arrive within t do
7 when a new task i arrives // Tasks arrive over time

8 Θarrived ← Θarrived ∪ {i} // Update the set of arrived tasks

9 solve the maximum virtual utility allocation for task i (i.e.,
arg max

λi

(v̂i(λi)− ci(λi)), given Λ & θ̂i) // Find the allocation that maximises

task i’s virtual social welfare

10 Λ← λi // Commit this allocation

11 pi ← ci(λi) // The payment for task i is its virtual cost

12 κm,t ← κm,t + zi
w,tai,r/Aw,r, ∀m ∈ P× R, t ∈ T // Update the load factors of

computational resources

13 κm,t ← κm,t + ∑
l∈L,w∈W

f i
l,w,j,k,t/bj,k, ∀m ∈ E, t ∈ T // Update the load factors of

bandwidth resources

14 cm,t = µκm,t − 1, ∀t ∈ T, m ∈ M // Update the unit virtual costs of resources

15 end while
16 allocate resources for the next time step (t + 1) according to Λ
17 end for

Proof. Following a similar argument, we can prove that SWMOA2 satisfies conditions
one and three in Definition 3.5. Furthermore, the payment pi is also independent of
v̂i because the virtual cost ci does not depend on v̂i. In addition, pi(λi, θ̂⟨T̂

a
i ⟩) is also

monotonic because increasing T̂a
i not only results in resource being allocated to other

agents but also increases the virtual costs of resources, increasing T̂s
i or decreasing T̂d

i

still reduces the available time steps to allocate, and increasing t̂i, {âi,r}r∈R, {Γ̂i
l}l∈L

increases the resource demands. Therefore, the SWMOA2 mechanism satisfies all the
conditions in Definition 3.5 and is also DSIC and IR by Theorem 3.6.

3.3 Proposed Resource Allocation Mechanisms

We begin this section by characterising a class of truthful resource allocation
mechanisms in Section 3.3.1, and then list all benchmarks in Section 3.2. At last, we
describe our truthful resource allocation mechanisms in Section 3.3.2 and 3.3.3.
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3.3.1 Price-based Mechanisms

To begin, we present price-based mechanisms that ensure DSIC and IR for our
resource allocation problem, and it includes our proposed mechanism. Note that this
class of mechanisms is an adaptation from the price-based mechanisms characterised
by Hayakawa et al. (2018). In the following, we characterise the properties that the
price-based mechanisms should have in order to guarantee DSIC and IR.

Definition 3.4. A monotonic payment function is one that increases (weakly)
monotonically over T̂a

i , T̂s
i , t̂i, âi,r, r ∈ R and Γ̂i

l , l ∈ L, and decreases (weakly)
monotonically over T̂d

i .

Then, we define the class of price-based mechanisms for RAFC as follows:

Definition 3.5 (monotonic price-based mechanisms). If an online mechanism meets the
following criteria, it is classified as a monotonic price-based mechanism:

1. The mechanism computes the payment pi for any potential resource allocation
plan λi to task i using a payment function pi(λi, θ̂⟨T̂

a
i ⟩) that is monotonic

and independent of v̂i.

2. Task i’s resource allocation plan λi maximises v̂i(λi) − pi(λi, θ̂⟨T̂
a
i ⟩) (over all

possible λi for task i with any v̂i).

3. Payment is zero for tasks that do not get allocated.

Then, the following theorem assures that any price-based mechanisms are DSIC and
IR.

Theorem 3.6. For our RAFC problem, any online mechanism that satisfies Definition 3.5 is
DSIC and IR.

Proof. The proof is shown below.

To prove a mechanism that satisfies Definition 3.5 is DSIC, we first use the sufficient
and necessary characterisation of incentive compatible mechanisms for a setting where
agents can only misreport their valuation function (i.e., where the misreports of T̂a

i , T̂s
i ,

T̂d
i , t̂i, {âi,r}r∈R and {Γ̂i

l}l∈L are not considered) proposed by Bartal et al. (2003) .

Lemma 3.7. In our setting, assuming the parameters T̂a
i , T̂s

i , T̂d
i , t̂i, {âi,r}r∈R, {Γ̂i

l}l∈L in agent
i’s bid θ̂i are truthful, a direct revelation mechanism is DSIC if and only if

1. The payment function pi(λi, θ̂⟨T̂
a
i ⟩) is computed for every possible allocation t̃i(λi) for

task i and does not depend on v̂i.
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2. The allocation function allocates t̃i for task i such that the value of v̂i(t̃i)− pi(λi, θ̂⟨T̂
a
i ⟩)

is maximised (over all t̃i that can be allocated to i for any choice of v̂i).

Lemma 3.7 is a simple extension of Theorem 1 in (Bartal et al., 2003).

Then, we use this Lemma to prove the following theorem that is in settings where
agents can misreport T̂a

i , T̂s
i , T̂d

i , t̂i, {âi,r}r∈R, {Γ̂i
l}l∈L besides v̂i (assuming limited

misreports).

Theorem 3.8. In our setting, a direct revelation mechanism is DSIC if and only if

1. The payment function pi(λi, θ̂⟨T̂
a
i ⟩) for every possible allocation t̃i(λi)to task i is

monotonic and does not depend on v̂i.

2. The allocation function allocates t̃i for task i such that the value of v̂i(t̃i)− pi(λi, θ̂⟨T̂
a
i ⟩)

is maximised (over all t̃i that can be allocated to i for any choice of v̂i).

Proof. At first, we show that the conditions in Theorem 3.8 are sufficient. According
to Lemma 3.7, an agent i cannot increase its utility by manipulating v̂i. Therefore, we
can assume that it truthfully reports its valuation coefficient v̂i, and the only way to
increase its utility is by decreasing the payment function. Since the payment function
is monotonic, only misreporting T̂a

i < Ta
i , T̂s

i < Ts
i , T̂d

i > Td
i , t̂i < ti, âi,r < ai,r, r ∈ R

or Γ̂i
l < Γi

l , l ∈ L can reduce it. First of all, misreporting T̂a
i < Ta

i , T̂s
i < Ts

i , T̂d
i >

Td
i is impossible because the limited misreports assumption we made earlier. Then,

misreporting t̂i < ti cannot increase ui because this only reduces the domain of t̃i and
the allocation function allocates t̃i to maximise ui (condition two of the above theorem).
Finally, misreporting âi,r < ai,r, r ∈ R or Γ̂i

l < Γi
l l ∈ L will lead to the failure of the task,

which reduces ui to negative. Hence, agent i has no incentive to submit a non-truthful
bid (i.e., where (T̂a

i , T̂s
i , T̂d

i , v̂i, {âi,r}r∈R, {Γ̂i
l}l∈L) ̸= ( Ta

i , Ts
i , Td

i , vi, {ai,r}r∈R, {Γi
l}l∈L)).

Then, we show that the conditions in Theorem 3.8 are also necessary. We first assume
to the contrary that the first condition does not hold, i.e., the payment function is
not independent of v̂i or the payment function is not monotonic. In the former case,
the mechanism is not DSIC according to Lemma 3.7. In the latter case, that is, there
is some Ta

i
′ < Ta

i
′′ such that the resource allocation is the same (λ′ = λ′′) but the

payment satisfies pi(λ
′, Ta

i
′) > pi(λ

′′, Ta
i
′′), while T̂s

i and T̂d
i remain unchanged. On

this occasion, an agent whose true arrival time is Ta
i
′ and who gets allocation λ′ when

reporting truthfully is incentivised to misreport Ta
i
′ as Ta

i
′′ because it can get the same

allocation with less payment. Since this is contrary to the definition of DSIC, the first
condition must be necessary.

Then, we assume that the first condition holds true but not the second. For instance,
for some agent i with vi = v′i , there exists v′′i , the mechanism allocates λ′i and λ′′i
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respectively such that v′i(t̃
′
i) − pi(λ

′
i, θ̂⟨T̂

a
i ⟩) < v′′i (t̃

′′
i ) − pi(λ

′′
i , θ̂⟨T̂

a
i ⟩). On this occasion,

this agent is incentivised to misreport v′i as v′′i . Hence, the second condition is also
necessary.

Finally, a mechanism that satisfies the Definition 3.5 is also IR for the following reasons.
Since agent i will always bid truthfully (i.e., v̂(t) = v(t)), the final allocation actually
maximises the utility of agent i: ui = vi(t̃i)− pi. In addition, the maximum of ui should
be greater or equal to zero as i can always get a utility of zero with no resource allocated
according to condition 3 in Definition 3.5. From the above discussion, it is clear that i
will never get a negative utility under such mechanisms.

From the above, Theorem 3.8 is proven, and so is Theorem 3.6.

3.3.2 Flexible Online Greedy (FlexOG) Mechanism

While OG is truthful, it is inefficient. This is because it does not change the allocation
plans for arrived tasks, which may have a detrimental effect on the allocation of
future high-value tasks. Our mechanism, FlexOG, extends OG by assigning newly
arrived tasks greedily while maintaining allocation plans flexible. In greater detail,
FlexOG employs a technique known as pre-commitment, in which FlexOG commits
only the usage time associated with a task. This preserves the DSIC attribute of
OG while increasing its flexibility. Additionally, this leads to increased societal
welfare, as there is more room for optimisation in the future when high-value
tasks arise. Algorithm 6 summarises FlexOG. After getting the report for task i,
FlexOG performs the following procedures to determine the pricing for the t′ amount
of usage time. First, it finds the optimal allocation of all flexible tasks within the
constraints of their committed usage time and t′ assuming that task i is reported before
k previous tasks. k starts from zero and ends to the number of tasks that arrives after
T̂a

i − tcap except for task i. FlexOG computes the marginal operational cost, which is
the difference between the total operational cost before and after task i arrives. Then
the price for t′ number of usage time is the maximum marginal operational cost for
all k. Then, FlexOG selects t′ that provides the most utility to task i as the committed
usage time for task i, which guarantees that task i will receive t′ usage time prior to
its reported deadline T̂d

i . Following that, FlexOG asks for payment for task I, which
was previously determined, and adds task i to the list of flexible tasks. Additionally,
at the end of each time slot, FlexOG allocates resources for the subsequent time step
based on the most recent allocation plans, which are those that maximise the social
welfare of all flexible tasks given their committed usage time. Finally, if a task receives
all of its committed usage time in the following time step, it is removed from the list of
flexible tasks. In summary, our mechanism’s key idea is that FlexOG commits only the
usage time t̃i to task i but leaves the task’s allocation plan flexible.

Theorem 3.9. The FlexOG mechanism is DSIC, IR and WBB.



62 Chapter 3. Truthful Resource Allocation Mechanisms in Fog Computing

Algorithm 6: The FlexOG mechanism
1 Θarrived ← [ ] // The list of arrived tasks
2 θ f lex ← [ ] // The list of flexible tasks
3 T̃ ← { } // The dictionary of (remaining) committed usage times of each task
4 Λ← { } // The dictionary of allocation decisions for each task
5 tcap // Twice the upper limit of the interval between the arrive time and the deadline of any

task: 2×max{(Td
i − Ta

i )}i∈I
6 for t in T do
7 while new tasks arrive within t do
8 when a new task i arrives // Tasks arrive over time
9 Θarrived.append(i) // Update the list of arrived tasks

10 θ f lex .append(i) // Update the list of flexible tasks
11 θ ← [ ] // The list of tasks that arrived between [T̂a

i − tcap, T̂a
i ]

12 for j in θ f lex // Loop through all tasks in θ f lex
13 do
14 if T̂a

j in [T̂a
i − tcap, T̂a

i ] // If task j arrived between [T̂a
i − tcap, T̂a

i ]
15 then
16 θ.append(j) // Append that task to θ
17 end if
18 end for
19 k← 0 // The number of tasks that i is assumed to report before
20 θ′f lex ← θ f lex // The list of flexible tasks if i is reported before k previous tasks
21 do
22 Solve the maximum utility allocation for tasks in θ′f lex \ {i}) (i.e.,

arg max
λj,k

∑
j∈(θ′f lex\{i})

(v̂j(λj,k)− oj(λj,k)), given T̃) // Find the allocation for (θ′f lex \ {i})

that maximise their social welfare, given their committed usage time
23 for t′ in [1, t̂i ] do
24 Solve the maximum utility allocation for tasks in θ′f lex (i.e.,

arg max
λj,k,t′

∑
j∈θ′f lex

(v̂j(λj,k,t′ )− oj(λj,k,t′ )), given T̃ and t′) // Find the allocation for θ′f lex

that maximise their social welfare, given their committed usage time and the
assumed usage time of task i: t′

25 if a solution is found then
26 pi,k,t′ ← ∑

j∈θ′f lex

oj(λj,k,t′ )− ∑
j∈(θ′f lex\{i})

oj(λj,k) // The payment for task i of this k

and t′ is the corresponding marginal operational cost of task i
27 else
28 pi,k,t′ ← ∞ // The payment for task i of this k and t′ is infinity
29 end if
30 end for
31 k← k + 1 // Increase k by one
32 θ.pop(−2) // Remove second to the last element from θ
33 θ′f lex .pop(−2) // Remove second to the last element from θ′f lex
34 while θ ̸= [i]
35 for t′ in [1, t̂i ] do
36 pi,t′ ← max

k
(pi,k,t′ ) // The payment of t′ usage time is the maximum payment for all k

37 end for
38 t̃i ← arg max

t′
(v̂i(t′)− pi,t′ ) // The committed usage time for task i is the usage time that

maximise i’s utility
39 T̃[i]← t̃i // Commit task i’s usage time
40 pi ← pi,t̃i

= max
k

(pi,k,t̃i
) // Decide the payment for task i

41 end while
42 Solve the maximum utility allocation for tasks in θ f lex (i.e., arg max

λj

∑
j∈θ f lex

(v̂j(λj)− oj(λj)), given T̃) // Find

the allocation for tasks in θ f lex that maximise their social welfare, given their
committed usage time

43 for i in θ f lex do
44 if the next time step (t + 1) is allocated to i according to λi then
45 Λ[i]← Λ[i] ∪ λi,(t+1) // Save the allocation decision of (t + 1) for task i
46 T̃[i]← T̃[i]− 1 // Update the remaining usage time of task i
47 end if
48 if T̃[i] = 0 // If the remaining usage time of task i is zero
49 then
50 θ f lex ← θ f lex \ {i} // Delete task i from the list of flexible tasks
51 end if
52 end for
53 end for
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Proof. Following a similar argument, the FlexOG mechanism satisfies condition three in
Definition 3.5. The payment of t′ usage time: pi,t′ , which equals the maximum marginal
operational cost: max

k
(pi,k,t′) for all the cases if task i is reported before any task that

arrive between
[
T̂a

i − tcap, T̂a
i
]
, is monotonic and independent of v̂i for the following

reasons. In each case, the total operational cost is actually the lowest total operational
cost that can still satisfy the committed usage time of every task. So it is independent
of v̂i, and hence the marginal operational cost is also independent of v̂i. Moreover,
increasing T̂s

i , t̂i, {âi,r}r∈R, {Γ̂i
l}l∈L or decreasing T̂d

i can only increase the entire cost
of operation ∑

j∈θ′f lex

oj(λj,k,t′) as well as the marginal operational cost ( ∑
j∈θ′f lex

oj(λj,k,t′) −

∑
j∈θ′f lex\{i}

oj(λj,k)) in the case that task i is reported before k tasks, following a similar

argument in Theorem 4’s proof. Since pi,t′ is the maximum marginal operational cost of
all k, so misreporting T̂s

i , t̂i, {âi,r}r∈R, {Γ̂i
l}l∈L higher or T̂d

i lower can only increase pi,t′ .
Finally, misreporting a higher T̂a

i also can only increase the payment of t′ usage time:
pi,t′ for the following reasons. Since agent i will not misreport T̂a

i > Td
i , Ta

i < T̂a
i ≤ Td

i .
If i reports truthfully, then FlexOG considers k ∈ [k1, k2] for T(i−k) ∈

[
Ta

i − 2tcap, Ta
i
]
.

Otherwise, FlexOG considers k ∈ [k3, k4] for T(i−k) ∈
[
T̂a

i − 2tcap, T̂a
i
]
. First, pi,k1,t′ =

pi,k3,t′ equals the lowest possible operational cost of t′ usage time for task i because
the time window of task (i − k3) and tasks reported before it will not overlap with
the time window of task i. Second, k3 ≥ k4 because T̂a

i > Ta
i . Hence the payment

for t′ usage time when i reports Ta
i truthfully: pi,t′ = max

k∈[k1,k2]
(pi,k,t′) is less or equal to

the payment when i misreports Ta
i : p̂i,t′ = max

k∈[k3,k4]
(pi,k,t′). Above all, this mechanism

satisfies condition 1 in Definition 3.5 too.

Condition two is also met by the mechanism because it chooses the usage time t′ that
maximises (v̂i(t′)− pi,t′). From the above, the FlexOG mechanism is DSIC and IR by
Theorem 3.6. Finally, because task i pays the maximum marginal operational cost, this
payment will not be less than the actual marginal operational cost for task i. Hence,
the total payment will not be less than the total operational cost. Thus, FlexOG satisfies
WBB.

3.3.3 Semi-Flexible Online Greedy (Semi-FlexOG) Mechanism

Although FlexOG is truthful and efficient in terms of social welfare, it is not very
efficient in terms of processing time. This is because it needs to solve an NP-hard
MILP problem whenever it needs to find the best allocation of all flexible tasks. To
increase its scalability, we propose another mechanism called Semi-FlexOG, which is
polynomial-time solvable. Similar to FlexOG, Semi-FlexOG commits only the usage
time to a task, leaving its allocation plan flexible. However, in Semi-FlexOG, the
allocation plans are not completely flexible as in FlexOG. The details of Semi-FlexOG
is summarised in Algorithm 7. Upon receiving the report of task i, Semi-FlexOG finds
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the price for t′ number of time steps by the following approach. First, Semi-FlexOG
finds the payment for t′ time steps for each start time T′ ∈

[
T̂a

i , T̂d
i
]

that i is able to
report and for the cases that i is reported before j ∈ [0, α] previous tasks by allocating
tasks sequentially using Online Greedy mechanism and compute the corresponding
marginal operational cost of task i as the payment. If it is impossible to satisfy all
the committed usage time of the arrived tasks, then the payment for t′, in this case, is
infinity. α is called the level of flexibility here because it decides the upper bound of the
number of previous tasks that task i is assumed to report before. Then, the payment
for t′ is the lowest payment of all the cases. After finding the payment for all possible
numbers of usage time, Semi-FlexOG will choose the t′ that gives task i the most utility
as the committed usage time: t̃i for task i, and record the corresponding resource
allocation plan. The payment for task i is the payment for t̃i decided previously.
Similarly, at the end of each time slot, Semi-FlexOG allocates resources for the next
time slot based on the most recent resource allocation plan, and if a task receives a time
step in the following time slot, its remaining usage time is lowered by one.

Theorem 3.10. The Semi-FlexOG mechanism is DSIC, IR and WBB.

Proof. Under Semi-FlexOG mechanism, the payment for zero usage time is zero
because the marginal operational cost is zero if the usage time is zero. Hence,
Semi-FlexOG satisfies condition three of Definition 3.5. Furthermore, the payment
for t′ usage time is monotonic and independent of v̂i for the following reasons. In
each case, the payment is decided by the lowest operational cost that can satisfy all
the resource requirements. So it is independent of v̂i, and the payment for t′ usage
time is the lowest payment of all cases, which is thus independent of v̂i. Following a
similar argument in Theorem 4’s proof, the payment for t′ usage time: pi,t′ increases
over T̂a

i , t̂i, {âi,r}r∈R, {Γ̂i
l}l∈L. Furthermore, the payment also increases over T̂s

i and
decreases over T̂d

i because increasing T̂s
i or decreasing T̂d

i can only reduce the space
of total cases. Furthermore, Semi-FlexOG also satisfies condition two of Definition 3.5
because it chooses the allocation plan that maximises task i′s utility. Above all, the
Semi-FlexOG mechanism is DSIC and IR by Theorem 3.6. Finally, because the payment
of task i equals its marginal operational cost, the total payment will equal the total
operational cost. Thus, Semi-FlexOG satisfies WBB as well.

3.3.4 Truthfulness Without Limited Misreport of Deadlines

As we discussed before, agents can report later deadlines for some types of tasks when
withholding the results until the reported deadline is not feasible. In that case, OG and
SWMOA2 mechanisms are still DSIC, while FlexOG is not DSIC anymore. We first give
an example showing why FlexOG is not DSIC. For example, suppose agent i reports
a later deadline T̂d

i (T̂d
i > Td

i ) and reports other information of its task truthfully. It
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Algorithm 7: The Semi-FlexOG mechanism
1 Θarrived ← [ ] // The list of arrived tasks
2 T̃ ← { } // The dictionary of (remaining) committed usage times of each task
3 Λ← { } // The dictionary of allocation decisions for each task
4 α // The upper bound of the number of previous tasks that any task is assumed to report before

(level of flexibility)
5 for t in T do
6 while new tasks arrive within t do
7 when a new task i arrives // Tasks arrive over time
8 Θarrived.append(i) // Update the list of arrived tasks
9 for t′ in [1, t̂i ] do

10 for T′ in [T̂a
i , T̂d

i ] do
11 for j in [0, α] do
12 Λ′ ← {key : Λ[key] for key in [0, i− k− 1]} // The resource allocation decitions

for the tasks that are assumed to report before task i
13 solve the maximum utility allocation for task i (i.e., arg max

λi,j,t′ ,T′
(v̂i(t′)− o(λi,j,t′ ,T′ )), given Λ′

and t′) // Find the allocation for i that maximises its social welfare,
given existing allocation decitions and the assumed usage time of task i:
t′

14 if there is no solution then
15 pi,j,t′ ,T′ ← ∞ // Payment for this setting is infinity
16 else
17 Λ′[i]← λi,j,t′ ,T′ // Save the allocation decision for task i
18 /* Make allocation decisions for the remaining tasks */
19 for k in [i− k, i− 1] do
20 solve the maximum utility allocation for task k (i.e.,

arg max
λk,j,t′ ,T′

(v̂k(T̃[k])− o(λk,j,t′ ,T′ )), given Λ′ and T̃[k]) // Find the allocation

for k that maximises its social welfare, given existing
allocation decitions and the committed usage time of task k: T̃[k]

21 if there is no solution then
22 pi,j,t′ ,T′ ← ∞ // Payment for this setting is infinity
23 end if
24 end for
25 if pi,j,t′ ,T′ ̸= ∞ then
26 pi,k,t′ ← ∑

j∈θ′f lex

oj(λj,k,t′ )− ∑
j∈(θ′f lex\{i})

oj(λj,k) // The payment for task i of

this k and t′ is the corresponding marginal operational cost of
task i

27 end if
28 end if
29 end for
30 end for
31 end for
32 arg max

j,t′ ,T′
(v̂i(t′)− pi,j,t′ ,T′ )) // Choose the setting that maximises task i’s utility

33 t̃i ← t′ // Commit task i’s usage time
34 T̃[i]← t̃i // Record task i’s committed usage time
35 pi ← pi,j,t′ ,T′ // Decide the payment for task i
36 for l in [i− k, i] do
37 Λ[l]← λl,j,t′ ,T′ // Update the allocation decisions
38 end for
39 end while
40 end for
41 for i in Θarrived do
42 if the next time step (t + 1) is allocated to i according to Λ then
43 T̃[i]← T̃[i]− 1 // Update the remaining usage time of task i
44 end if
45 end for
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may get a lower payment because the payment function pi is monotonic according to
Definition 3.5. Then, it is possible that its committed time steps get rescheduled in its
time window ([Ts

i , Td
i ]) because of tasks that arrive in the future. In that case, agent i

gets more utility by misreporting a later deadline because it gets the same value with
a lower payment. However, if we modify FlexOG so that the allocated time steps for
tasks can only be rescheduled to later time steps, then FlexOG will still be DSIC in this
case. The following theorems show that OG, SWMOA2 and modified FlexOG are still
DSIC and IR when agents can report later deadlines for their tasks.

Theorem 3.11. The OG and SWMOA2 mechanisms are DSIC and IR when agents are able to
report their deadlines arbitrarily.

Proof. First, an agent cannot increase its utility by reporting an earlier deadline or
misreporting other information about its task (under the limited misreport assumptions
in Section 3.1.2) according to Theorem 3.2 and 3.3. Then, we analyse the case where
agent i reports a later deadline. Suppose the utility of agent i is ui, and its payment
function is pi when it reports truthfully, and the utility of agent i is u′i, and its
payment function is p′i when it reports a later deadline. If the usage time is still
allocated in its time window [Ts

i , Td
i ], it gets the same utility (u′i = ui). If some

time steps (t̃1) are allocated in its time window, while some time steps (t̃2) are not,
then, u′i = vi(t̃1) − p′i(t̃1) − p′i(t̃2), and ui = vi(t̃1 + t̃2) − pi(t̃1) − pi(t̃2). Since, (t̃1)

is inside the time window, p′i(t̃1) = pi(t̃1), and u′i = vi(t̃1) − pi(t̃1) − p′i(t̃2). Now,
vi(t̃1 + t̃2)− pi(t̃1)− pi(t̃2) ≥ vi(t̃1)− pi(t̃1) because OG and SWMOA2 always choose
the allocation that maximises agent i’s utility. Thus, the utility of agent i when it reports
a later deadline is also no more than its utility when it reports truthfully (u′i ≤ ui).
Therefore, the OG and SWMOA2 mechanisms are still DSIC when agents can report
later deadlines. Furthermore, agents will get a utility of at least zero because the
payment for no allocation is zero and the machanisms maximise the agents’ utilities.
Therefore, these mechanisms also satisfy IR.

Theorem 3.12. The modified FlexOG mechanism is DSIC and IR when agents are able to
report their deadlines arbitrarily.

Proof. Similar to the proof above. An agent cannot increase its utility by reporting an
earlier deadline or misreporting other information about its task (under the limited
misreport assumptions in Section 3.1.2) according to Theorem 3.9. Then, we analyse
the case where agent i reports a later deadline. Suppose the utility of agent i is ui,
and its payment function is pi when it reports truthfully, and the utility of agent i is
u′i, and its payment function is p′i when it reports a later deadline. If in the end, the
usage time is still allocated in its time window [Ts

i , Td
i ], it gets the same utility (u′i = ui).

This is because the initial allocation must also be in its time window, since the modified
FlexOG can only reschedule its usage time to later time steps. If in the end, some
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time steps (t̃1) are allocated in its time window, while some time steps (t̃2) are not,
then, u′i = vi(t̃1)− p′i(t̃1)− p′i(t̃2), and ui = vi(t̃1 + t̃2)− pi(t̃1)− pi(t̃2). Since, (t̃1) is
inside the time window, p′i(t̃1) = pi(t̃1), and u′i = vi(t̃1)− pi(t̃1)− p′i(t̃2). Now, vi(t̃1 +

t̃2)− pi(t̃1)− pi(t̃2) ≥ vi(t̃1)− pi(t̃1) because FlexOG always choose the allocation that
maximises agent i’s utility. Thus, the utility of agent i when it reports a later deadline
is also no more than its utility when it reports truthfully (u′i ≤ ui). Therefore, the
modifield FlexOG is DSIC when agents can report later deadlines. Furthermore, this
mechanisms also satisfy IR because agents get at least zero utility by getting zero usage
time.

3.4 Simulations and Results

We evaluate our proposed mechanism FlexOG and Semi-FlexOG in this section
using extensive simulations. First, we describe how the synthetic data is generated.
We employ synthetic data in our simulations because no comprehensive dataset of
real-world fog computing tasks available at the moment. Following that, we assess
FlexOG’s social welfare performance under various configurations of the synthetic
data.

3.4.1 Experimental Setup

In order to simulate a small fog computing network, we choose the following
parameters. Our discrete time period has a duration of |T| = 12. Six fog nodes (|P|=6)
and six locations (|L|=6) are owned by the fog provider. Three classic topologies of
the network are used in our simulations: an almost fully connected topology, a ring
topology and a line topology (see Figures 3.2,3.3 and 3.4). Additionally, each fog
node has |R| = 3 types of computational resources (CPU, RAM, and storage). This
configuration was chosen to represent the following tiny community’s fog computing
network. There are six houses in this community. Each house is a location, and each
house is connected to a fog node. One time step corresponds to one hour in real life, and
the whole time span corresponds to a day. Another reason we chose this tiny setting
is that it allows us to execute more trials for all algorithms in a reasonable amount of
time.

This time period contains |I| = 40 tasks. The arrival time Tia follows a continuous
uniform distribution U(0, 10), which implies that no two tasks arrive at the same time,
which was an assumption stated before in our RAFC model. Furthermore, the number
of endpoints for each task Ei is uniformly generated from {1, 2, . . . , 6}, and the location
of each endpoint ui

e,l is uniformly determined at random from all L locations with
replacement.
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FIGURE 3.2: The (almost fully connected) topology of the fog computing system.

FIGURE 3.3: The (ring) topology of the fog computing system.

FIGURE 3.4: The (line) topology of the fog computing system.
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FIGURE 3.5: The valuation function of task i.

Moreover, in our simulations, we use a special valuation function vi that is a
non-decreasing linear function of i’s usage time t̃i:

vi(t̃i) =

gi × t̃i if t̃i ≤ ti

gi × ti if t̃i > ti

Where the valuation coefficient gi represents task i’s obtained value per usage time. An
example of such a valuation function is shown in Figure 3.5.

Since the value densities (i.e., the average valuation of each time step) of fog tasks
vary considerably in real life. To make resource allocation more realistic, this synthetic
data contains two categories of tasks: low-value tasks and high-value tasks. y ∈
[0, 1] denotes the fraction of high-value tasks. For either type of task i : and Γi

l ∀l ∈ L are
all generated using a Gaussian distribution N (1, 1) with negative values removed.
The duration of usage time ti is a positive integer uniformly chosen from the range
{1, 2, 3, 4}, and the start time Ts

i is an integer uniformly chosen within two time steps
following the arrival time: {⌈Ta

i ⌉, ⌈Ta
i ⌉ + 1, ⌈Ta

i ⌉ + 2}. Additionally, the deadline
Td

i is an integer that is uniformly picked between b and d time steps following the
earliest finish time (but not greater than the final time step): {Ts

i + ti − 1 + b, Ts
i + ti +

b, . . . , min(Ts
i + ti − 1 + d, |T|)}. Thus, (b, d) specifies the task’s deadline slackness,

a critical parameter that shows the task’s flexibility. gi is uniformly picked from the
continuous interval: [8, 30] for a low-value task i . For a high-value task i , on the other
hand, gi is uniformly chosen from the continuous interval: [180, 200]. Thus, the upper
bound of the ratio of the highest and lowest valuation coefficients in this example is
F = 200

8 = 25

Finally, the aggregate resource capacity of each resource r is calculated as follows: The
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FIGURE 3.6: The social welfare achieved by four mechanisms with parameters
((b, d) = (5, 10), F = 25, y = 0.1) and almost fully connected network.

value of ∑w∈W Aw,r is set to be a k proportion of the corresponding total resource
demand of ∑i∈I ai,r, as well as the total bandwidth capacity: ∑(j,k)∈E bj,k is set to a
2k percentage of the overall bandwidth requirements ∑i∈I,l∈L Γi

l because data traffic
is typically distributed across many data links. Then, each fog node receives the same
fraction of the resource r: ∑w∈W Aw,r

|W| , and each data link receives the same fraction of the

total bandwidth available: ∑(j,k)∈E bj,k

|E| . Thus, parameter k reflects the scarcity of resources
in the fog and is referred to in this thesis as the resource coefficient. Finally, the cost per
unit of resource at various fog nodes and links: ow,r w ∈W, r ∈ R and oj,k, (j, k) ∈ E are
all uniformly generated from [0.03, 0.1].

3.4.2 Performance of FlexOG

We evaluated our mechanism’s robustness by running simulations with a variety
of parameters, including network topologies, resource scarcity in fog nodes and data
links, and task deadline slackness. The trends are consistent across all of these
situations. FlexOG’s performance in social welfare is typically around 90% of the
theoretical upper bound and between 5% and 10% better than that of OG. In the
following, we will show the results of these simulations and analyse them.

3.4.2.1 Social Welfare for Different Levels of Resource Scarcity

First, we compare the total social welfare achieved by FlexOG to other benchmarks
using different resource coefficients k to indicate the scarcity of resources in Figure 3.6,
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FIGURE 3.7: The social welfare achieved by four mechanisms with parameters
((b, d) = (5, 10), F = 25, y = 0.1) and ring network.

FIGURE 3.8: The social welfare achieved by four mechanisms with parameters
((b, d) = (5, 10), F = 25, y = 0.1) and line network.
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3.7 and 3.81. Nota bene, we normalise the results to the offline optimal performance
to make comparisons between different mechanisms easier. Since the trend of all three
figures is similar, we analyse Figure 3.6 as a representative in the following.

Figure 3.6 demonstrates that FlexOG consistently produces more social welfare than
alternative truthful benchmarks(i.e., OG and SWMOA2). SWMOA2 in particular
always performs poorly, owing to the fact that its virtual prices are exponentially
related to the load factors of the resource, preventing jobs from being allocated even
when there is sufficient resource. This phenomenon gets even more significant when
the resource is more scarce, i.e., when k is lower. For example, the average social welfare
achieved by SWMOA2 is only 78.15% of that achieved by FlexOG when the resource
coefficient k = 0.2, while for other higher k this number is around 87%. This is because,
when the resource is more scarce, the load factors of resources increase faster, and so
do the virtual prices.

Furthermore, the performance of FlexOG is about 5%-10% better than that of OG in
terms of social welfare. This is because under FlexOG, when and how the committed
time steps are allocated to tasks is flexible. Thus, FlexOG can reschedule unfinished
tasks in order to free up more time steps for the newly arrived high-value task,
whereas OG cannot. Additionally, the figure also demonstrates that the performance
gap between FlexOG and OG narrows when the resource coefficient k is either
small or large. Intuitively, this is because when resources are few or abundant, OG
performance will be closer to optimal, leaving less room for FlexOG to increase social
welfare through task rescheduling. This indicates that the superiority of FlexOG is
more significant when resources are neither too scarce nor too abundant, which is in
correspondence with reality in most cases.

In addition, our mechanism also performs close to offline optimal, achieving around
90% in the almost fully connected network and around 95% in other topologies, which
indicates that our mechanism is efficient even though it is online. Interestingly, the
performance of online optimal is very close to that of offline optimal. The main
reason is that all tasks are preemptible, so myopic decisions will not have a significant
effect in the future. If a high-value task arrives, online optimal can always pause
some low-value tasks to process the newly arrived high-value one. However, online
optimal is not truthful and vulnerable to manipulations. So, although online optimal
performs about 10% better than FlexOG, its performance drops below that of FlexOG
when just 20% of agents misreport. Here, agents who misreport only misreport their
valuation coefficient higher (as 1 million), and report other information truthfully. So
the performance of online optimal is mainly used as an indicator of the upper bound of

1All statistics are within a 95% confidence interval based on 200 trials, and the CPLEX optimiser’s
relative tolerance is set to 1% for offline optimum and 5% for other methods. (A 1% tolerance indicates
that the optimiser will terminate when a solution is within 1% of optimality.) We establish the relative
tolerance for offline optimal lower to improve the accuracy of the theoretical upper bound on social
welfare.
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FIGURE 3.9: The number of tasks got allocated by five mechanisms with parameters
((b, d) = (5, 10), F = 25, y = 0.1) and the almost fully connected network.

online resource allocation here. In addition, we have also tested whether agents have an
incentive to misreport under the online optimal mechanism by comparing the utilities
of truthful and non-truthful agents (see Section 3.4.2.4), and the result shows on average
non-truthful agents get a higher utility. This means that, in a strategic setting where
agents can misreport, FlexOG can actually achieve significantly more social welfare
than online optimal.

Finally, Figure 3.9 shows the number of tasks that get allocated (i.e., tasks that get
at least one time step usage time) under different mechanisms with the almost fully
connected network. The result is similar for other network topologies, so these results
are omitted in this thesis. We can see from the figure that resources are truly scarce
when k = 0.2 because only around 30% of tasks get allocated under offline optimal.
While the resources are relatively abundant when k = 0.45, where around 75% of tasks
get allocated under offline optimal. In addition, FlexOG only allocates about one or
two tasks more than OG on average, which means that FlexOG achieves more social
welfare mainly by giving more usage time to high-value tasks rather than getting more
tasks allocated. Interestingly, most tasks get allocated under online optimal when 20%
of agents misreport. Intuitively, this is because some low-value tasks which would not
get allocated under other mechanisms can get some usage time because they misreport
their valuation coefficient higher. Additionally, because the virtual cost of SWMOA2 is
frequently significantly greater than the operational cost, tasks are rejected even when
sufficient resources are available to execute them, it has the lowest number of allocated
tasks.
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FIGURE 3.10: The social welfare achieved by four mechanisms with parameters
((b, d) = {(0, 5), (1, 6), (2, 7)(3, 8), (4, 9), (5, 10)}, F = 25, q = 0.1, k = 0.3) and almost

fully connected network.

3.4.2.2 Social Welfare for Different Levels of Deadline Slackness

Now we compare the performance of various network topologies in terms of social
welfare under varying levels of deadline slackness (Figures 3.10, 3.11 and 3.12). We do
not include the online optimal algorithm here because it is not truthful, and we have
already shown that its efficiency is lower than that of the OG and FlexOG mechanisms
in a strategic setting. A task with a greater degree of deadline slack has more time
steps between its earliest possible completion time and its deadlines and is therefore
more flexible in terms of resource allocation. As illustrated in the figures, the difference
between FlexOG and OG widens as task deadline slackness grows. This is because
when tasks are more flexible, FlexOG is more likely to reschedule low-value tasks to
make room for higher-value tasks, whereas OG cannot benefit from this because its
resource allocation is inflexible. In addition, SWMOA2’s performance is quite stable
in terms of different levels of deadline slackness. This is because, instead of the
flexibility of tasks, the virtual resource pricing has a significant impact on SWMOA2’s
performance.

3.4.2.3 Processing Time of Different Algorithms

In this section, we compare the processing time of FlexOG with the benchmark
mechanisms. The processing time is also important because many agents cannot wait
for a long time for an allocation decision, and the fog provider does not want to use
too much computing resource on making allocation decisions. Thus, in this thesis, the
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FIGURE 3.11: The social welfare achieved by four mechanisms with parameters
((b, d) = {(0, 5), (1, 6), (2, 7)(3, 8), (4, 9), (5, 10)}, F = 25, q = 0.1, k = 0.3) and ring

network.

FIGURE 3.12: The social welfare achieved by four mechanisms with parameters
((b, d) = {(0, 5), (1, 6), (2, 7)(3, 8), (4, 9), (5, 10)}, F = 25, q = 0.1, k = 0.3) and line

network.
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FIGURE 3.13: The processing time of five mechanisms with parameters ((b, d) =
(5, 10), F = 25, y = 0.1) and almost fully connected network.

FIGURE 3.14: The processing time of four mechanisms with parameters ((b, d) =
(5, 10), F = 25, y = 0.1) and ring network.

shorter the processing time, the better (Challenge 8). The simulation was conducted on
the Iridis 4 Compute Cluster2, using four cores of an Intel Xeon E5-2670 (‘Sandybridge’)
processor with 16GB RAM.

The results are shown in Figure 3.13, 3.14 and 3.15. We plot the processing time of
all mechanisms under resource coefficients k = 0.25, k = 0.35 and k = 0.45. The
processing time under different resource coefficients exhibits a similar pattern and is
not plotted to make the figures easier to read. Note that the boxes reflect the bottom to
upper 25 percentile values of the data with whiskers showing 5 to 95 percentile of the

2https://hpc.soton.ac.uk/redmine/projects/iridis-4-support/wiki
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FIGURE 3.15: The processing time of four mechanisms with parameters ((b, d) =
(5, 10), F = 25, y = 0.1) and line network.

data, and the outliers are discarded.

The figure demonstrates that, on average, offline optimal takes the least amount of
time to process, online optimal and OG take more time to process, and SWMOA2 and
FlexOG take the most time to process. This is mostly due to the fact that offline optimal
only needs to solve the optimization problem once, whereas all other algorithms must
solve it multiple times. Online optimal must solve the optimization problem at the
beginning of each time step except the first, which means it must solve it |T| − 1 = 11
times. The remaining algorithms must solve the optimization problem each time a new
task is encountered, which means they must solve it |I| = 40 times. However, the
processing time of offline optimal is much more than 1

11 of that of online optimal. This
is because offline optimal needs to make a resource allocation decision for all tasks at
once, while online optimal only needs to make a decision for tasks that arrived in the
previous time step every time. So offline optimal’s optimisation problems have more
decision variables and take more time to solve on average. Another reason is that the
relative tolerance of offline optimal is set to be 0.01 while this parameter is set at 0.05 for
other algorithms, which also causes offline optimal to take more time to find a solution
to its optimisation problem.

Similarly, although OG needs to solve the optimisation problem four times as many
time as online optimal, it has a similar processing time on average. This is because OG
only needs to make a resource allocation decision for just one task at a time. So, its
optimisation problem is solved faster than online optimal’s on average.

Finally, FlexOG uses the greatest time since it not only must solve the optimisation
problem |I| = 40 several times but also because its optimization problems contain more
decision variables. This is because it needs to make allocation decisions for all flexible
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FIGURE 3.16: Utility comparison between truthful and non-truthful agents ((b, d) =
(5, 10), F = 25, y = 0.1) in almost fully connected network.

tasks each time a new task arrives. The reason why SWMOA2 takes the second-highest
time on average is that SWMOA2 needs to compute the load factor and virtual price of
each resource after every allocation decision, while other algorithms just use the fixed
operational cost of each resource. Interestingly, the processing time of FlexOG also
has a wider dispersion than other algorithms. This is because with more optimisation
problems to solve and with more decision variables, FlexOG has a higher probability
of coming across optimisation problems that are hard to solve. For each task, FlexOG
takes around four seconds to make the allocation decision on average. For tasks whose
arrival time is much earlier than their start time, it is feasible to use FlexOG because
there is sufficient time for FlexOG to make allocation decisions. However, if the arrival
time and the start time of a task are the same, or tasks arrive frequently, then the
processing time of FlexOG will become an issue. Furthermore, our simulation is based
on a small fog network, and FlexOG will take even more time to make decisions for
larger fog networks. We will discuss how we plan to solve this issue in the future work
section (Section 5.2).

3.4.2.4 Utility Comparision between Truthful and Non-truthful Agents

In this section, we examine whether IoT users are incentivised to report their tasks
truthfully by comparing the average utility of non-truthful and truthful agents. The
result of what percentage of the total value of tasks (i.e., the sum of value for IoT
users if their tasks are all fully accomplished) are achieved by all agents, truthful agents
and non-truthful agents respectively under the online optimal algorithm in the almost
fully connected topology is shown in Figure 3.16. Recall that non-truthful agents
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always report their valuation coefficient as one million. This is because if they can
achieve a higher utility compared to truthful agents by misreporting their valuation
coefficient, they will have an even bigger advantage when they misreport other
information as well. Although this may not be the optimal strategy for non-truthful
agents, it is enough to show the impact of non-truthful agents. The figure shows
that non-truthful agents have similar utility as truthful agents when 20% of IoT users
are non-truthful. However, the utilities of truthful agents decrease rapidly as more
agents become non-truthful, and non-truthful agents have about a 67% higher utility
than truthful agents on average, when 80% of agents are non-truthful. This is because
the reported valuation coefficients of non-truthful agents are much higher than that of
truthful agents, and online optimal will always prioritise non-truthful agents when it
makes allocation decisions. This means that under online optimal, IoT users have no
incentives to be truthful. Thus, the social welfare achieved by online optimal when all
agents report their types truthfully cannot be achieved in a strategic setting.

Figure 3.16 also indicates that non-truthful agents have a negative impact on the overall
utility (social welfare). In more detail, the total social welfare decreases rapidly as more
agents become non-truthful. This is due to the fact that online optimal makes allocation
decisions based on false valuation coefficients, so it may prioritise a low-value task over
a high-value task. However, when all agents are non-truthful, online optimal achieves
a higher social welfare than that when 80% agents are non-truthful. The reason for this
is that when all agents are non-truthful, their valuation coefficients are all the same,
the case where a low-value task is prioritised over a high-value task because of its
misreported valuation coefficient disappears. The main reason why social welfare is
lower when all agents are non-truthful than that when all agents are truthful is that
low-value tasks are still prioritised when all agents are non-truthful because they need
fewer resources on average.

3.4.3 Performance of Semi-FlexOG

3.4.3.1 Social Welfare for Different Levels of Resource Scarcity

Figure 3.17 shows the social welfare achieve by five algorithms (100 trials). As
shown in the figure, FlexOG and Semi-FlexOG’s performance in social welfare is
better than other truthful benchmarks’, and. Furthermore, FlexOG and Semi-FlexOG’s
performance in social welfare is better than other non-truthful algorithms’ when some
(from a small proportion to all) agents misreport their tasks. Here, the total number
of tasks is 40, the deadline slackness of high-value tasks is zero, and the deadline
slackness of low-value tasks is six. For Semi-FlexOG, we consider the cases where a
task is assumed to report at most before two, three or five previous tasks. For FlexOG,
we consider the price assuming a task is reported at most before three previous tasks.
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FIGURE 3.17: Social welfare achieved by five algorithms with all connected network.

FIGURE 3.18: The processing time by five algorithms with all connected network
(k=0.09).

3.4.3.2 Processing Time of Different Algorithms

Figure 3.18 shows the processing time of five resource allocation algorithms. As shown
in the figure, Semi-FlexOG takes less processing time than FlexOG on average. Note
that the Semi-FlexOG makes a trade-off between scalability and efficiency in terms of
social welfare by setting the α parameter. (e.g., when α is smaller, the processing time is
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FIGURE 3.19: How much percentage is the social welfare performance of
Semi-FlexOG better than that of Online Greedy on average.

low and the social welfare is also lower) In addition, the relative MIP gap tolerance for
Offline Optimal is set to be 1%, and the relative MIP gap tolerance in Online Optimal
and FlexOG is set to be 5%. (Cplex terminates after a feasible integer solution that is
within the relative MIP gap tolerance of optimum is discovered.)

3.4.3.3 Social welfare for Different Levels of Deadline Slackness

Figure 3.19 shows how much percentage Semi-FlexOG outperforms Online Greedy in
social welfare (60 trials). As shown in the figure, Semi-FlexOG outperforms Online
Greedy when the deadline slackness of high-value/low-value tasks is higher. The start
time is generated uniformly between zero and four time slots after the arrival time.
The usage time is drawn uniformly between one and three time steps. Furthermore,
the level of flexibility of Semi-FlexOG is set to be six here.

3.5 Summary

We detailed the RAFC model studied in this thesis and formalised it as a constraint
optimisation problem in this chapter. Then, for the RAFC problem, we introduced
a class of resource allocation methods called price-based mechanisms, which are
guaranteed to be DSIC and IR, and our proposed mechanism FlexOG belongs to
this class of mechanisms. After that, we gave the algorithms of the benchmarks we
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used to evaluate the performance of FlexOG and presented some properties of these
benchmarks. Finally, we described FlexOG in detail and proved that it is DSIC and IR.

In this chapter, we described the synthetic data used in our simulations and analysed
the results from a number of empirical simulations. These results highlighted
the advantages of the FlexOG mechanism, which consistently outperformed all
truthful benchmarks and achieved a social welfare near the theoretical upper bound.
Furthermore, we also showed that IoT users are incentivised to misreport their types
under the non-truthful benchmark online optimal, which degrades its social welfare
significantly. Specifically, online optimal is outperformed by FlexOG when only 20% of
IoT users misreport. Besides, the results showed that the advantage of FlexOG is bigger
when resources are neither scarce nor sufficient and when tasks have a higher deadline
slackness, which is common in practice. Therefore, our proposed mechanism FlexOG
addresses the high social welfare resource allocation challenge (Challenge 4). Since
FlexOG takes considerable time to make an allocation decision for a newly arrived
task, to address the timely resource allocation challenge (Challenge 8), we proposed
Semi-FlexOG which is scalable and has a close social welfare performance to FlexOG.
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Chapter 4

Decentralised Resource Allocation
Mechanisms in Fog Computing

In this chapter, we present our work on designing a decentralised auction algorithm for
DRAFC, which addresses our Challenges 4 and 9 in Section 1.3. Note that the agents
are assumed non-strategic in this chapter. In Section 4.1, we describe the model of
DRAFC both in general and formally. Then, we present the algorithms of benchmark
algorithms in Section 4.2 and the algorithms in the decentralised auction in Section 4.3.
After that, we show the experimental setup and the results of the simulations in Section
4.4. Finally, Section 4.5 summarises the entire chapter.

4.1 Model of DRAFC

In this section, we describe the DRAFC model used in this thesis in detail because we
need a suitable model for decentralised resource allocation. First, we give an overview
of the DRAFC model in 4.1.1. After that, a formal description of the model is presented
in 3.1.2. Since the DRAFC model is similar to the RAFC model in Chapter 3.1, we
mainly describe the differences between DRAFC and RAFC.

4.1.1 Overview of the Model

In our DRAFC model, there are multiple geographically distributed fog nodes. These
fog nodes are autonomous agents linked by data links, as shown in Figure 4.1. A
key point is that there is no central control to make all resource allocation decisions
in this model. Here, fog nodes have computational resources (i.e., CPU, RAM, and
storage), and data links have bandwidth resources. We assume the bandwidth of each
data link is sufficient because any analytics task is only allocated to one fog node. In
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FIGURE 4.1: The general view of the DRAFC model.

other words, no bandwidth is required during processing, and the data link is only
used for communications between all fog nodes and uploading necessary data from
IoT devices to the fog node. Furthermore, each fog node has its own fixed unit costs
of computational resources, which comprise electricity costs, the depreciation charge
of the resources and other operational costs. In this model, fog nodes provide VMs
to process analytics tasks of the IoT devices, which connect to the fog via wired and
wireless connections.

Similar to the RAFC model, IoT users report the type of their analytics tasks to the
fog node they connect to. The type includes the following information: resource
requirements, time constraints and the valuation function of the task. Similarly,
according to the valuation function, a partly processed task can still get parts of its
value. In particular, we assume that these tasks are non-preemptive and only one task
can only run on one single virtual machine. Furthermore, some users may not get their
values if their tasks’ results are only released at their deadline. Especially, in contrast
to the model in the previous chapter, here we assume fog users are not strategic agents
(i.e., they will not misreport their tasks).

However, upon receiving the type of a new task, the fog nodes have to decide the
resource allocation plan and the payment of those analytics tasks by communications
because there is no central control. Note that in this chapter, we still focus on improving
the social welfare (defined in Section 3.1) of all IoT users.
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4.1.2 Formal Model of DRAFC

We now formally present the DRAFC model. Since the similarity between the DRAFC
and RAFC model, we omit the same assumptions and details. As shown in Figure 4.1
The fog computing system has several fog nodes, given by the set W . We consider a
discrete time system, t = 1, 2, . . . , T, where t denotes a discrete time step and T denotes
the final time step. Every fog node has three types of resources (i.e., CPU, RAM and
storage) that can be used for analytics tasks. The set of all types of resources is denoted
by R. fog node w ∈ W has a limited quantity of resource r ∈ R, given by Aw,r ∈ R+.
For example, A1,storage = 100 means that fog node 1 has 100G of storage in total. Finally,
the unit operational cost of resource r ∈ R on fog node w ∈ W is denoted as ow,r ∈ R+.

Analytics tasks arrive over time and are submitted to different fog nodes. Each task
is characterised by a type θi =

(
vi, ti, Ta

i , Td
i , {ai,r}r∈R

)
, where vi = [vi,1, vi,2, . . . , vi,ti ] is

the valuation vector of the task (vi,t denotes the valuation if task i gets t time steps), ti

is the number of time steps for a full completion of task i, Ta
i denotes the arrival time

of task i, Td
i denotes the deadline task i, and {ai,r}r∈R is a set denoting the demand for

each type of resource of task i per time step. For simplicity, the IoT user submitting
task i is also denoted as IoT user i ∈ I where I is the set of all IoT users. Note that
the arrival time of a task means the time that the IoT user realises it needs to process
this analytics task, and all tasks are assumed to be non-preemptive (i.e., tasks cannot
be paused and resumed again) and can be processed immediately after its arrival or
later. Furthermore, the operational cost of task i is denoted as oi, which is the overall
operational cost due to processing task i. Different from the RAFC model, each task
can only be processed in one fog node because we believe allocating one task to several
fog nodes in a distributed system is too complicated and not practical. In addition, we
assume that the reported type θi of task i is the same as the true type θi, and we leave
challenge 5 to future work.

Next, if one fog node receives the type θi of task i all the fog nodes will communicate
with each other to decide the resource allocation plan λi for task i immediately. The
plan includes how much usage time t̃i will be allocated to task i and the payment pi of
task i, and it will be send to the IoT user i right away. To reduce the communication
overhead, once λi is decided, it will not change in the future. To show the upper bound
of the social welfare of a DRAFC problem, We find the offline optimal social welfare
by solving a constraint optimisation problem, with the decision variable: {zi

w,t ∈
{0, 1}}i∈I,w∈W,t∈T, indicating that task i will be processed in fog node w (zi

w,t = 1),
or not (zi

w,t = 0) at time step t. Hence, task i will get usage time t̃i = ∑
w∈W,t∈T

zi
w,t

and its resource allocation plan λi = {zi
w,t}i∈I,w∈W,t∈T. The objective function of

this optimization problem (i.e., Function 4.1) aims to maximise social welfare while
adhering to resource and time constraints:
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max
λi

∑
i∈I

vi( ∑
w∈W,t∈T

zi
w,t)− ∑

i∈I,r∈R,w∈W,t∈T
ai,rzi

w,tow,r (4.1a)

s.t. ∑
w∈W

zi
w,t ≤ 1 ∀i ∈ I, t ∈ T (4.1b)

∑
i∈I

zi
w,tai,r ≤ Aw,r ∀w ∈W, r ∈ R, t ∈ T (4.1c)

zi
w,t = 0 ∀i ∈ I, w ∈W, t < ⌈Ta

i ⌉ or t > Td
i (4.1d)

T−1

∑
t=1
|zi

w,t+1 − zi
w,t| ≤ 2 ∀i ∈ I, w ∈W (4.1e)

Next, we describe the details of the constraints in the above optimisation problem.
First, constraint 4.1b guarantees that each analytics task is only processed in a specific
fog node or not processed. Second, constraint 4.1c makes sure that the allocated tasks
have enough resources for processing. Third, constraint 4.1d means that any task
is only processed after its arrival time and not after its deadline. Finally, constraint
4.1e guarantees that each task is non-preemptive (i.e., task execution does not being
interrupted).

However, the fog cannot make resource allocation decisions just by solving this
constraint optimisation problem. This is because all information of tasks is required
to solve the problem, but the fog must make resource allocation decisions online.
Furthermore, this problem is also NP-hard, which means it is intractable. We solve
it in this thesis by utilising the IBM ILOG CPLEX Optimization Studio.

Theorem 4.1. The optimisation problem (4.1) is NP-hard.

Proof. This proof is the same as the Proof 3.1.2

4.2 Resource Allocation Benchmarks

Here, we present the benchmark algorithms used for judging the performance of our
decentralised resource allocation algorithm. Specifically, we show the overview of each
benchmark along with their pseudocode except for the offline optimal algorithm. This
is because we can get the performance of offline optimal just by solving the constraint
optimisation problem 3.1a.

4.2.1 Offline Optimal Algorithm

This algorithm finds the optimal social welfare and resource allocation plan (i.e.,
the allocation that maximise the overall social welfare) given the types of all future
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tasks. Note that this benchmark cannot be used in practice because it is a centralised
algorithm and needs all tasks’ types. In contrast, the DRAFC model requires a
decentralised algorithm, and the types of tasks are submitted over time. Hence, this
algorithm is only used to show the upper bound of social welfare.

4.2.2 Online Greedy Algorithm

Under this algorithm, a newly arrived task is allocated to the fog node that can
maximise its social welfare, and its start time is made as early as possible to make
time for later tasks. This benchmark is similar to the Online Greedy (OG) algorithm in
Chapter 3, and the main differences are that VM migration is not allowed and tasks are
not preemptible. The pseudocode of this algorithm is given in Algorithm 8. Notably,
this benchmark is also a centralised algorithm and cannot be directly used in DRAFC.

Algorithm 8: The online greedy algorithm

1 Θarrived ← ∅ // The set of arrived tasks

2 Λ← { } // The dictionary of allocation decisions for each task

3 for t in T do
4 while new tasks arrive within t do
5 when a new task i arrives // Tasks arrive over time

6 Θarrived ← Θarrived ∪ {i} // Update the set of arrived tasks

7 solve the optimal utility allocation for task i (i.e., arg max
λi

(vi(λi)− oi(λi)),

s.t. contraints in Problem 4.1 and given Λ & θi) // Find the allocation for

task i that maximise its social welfare

8 choose the λi whose start time is the smallest if the previous problem has
multiple solutions. // Choose the allocation with the earliest start time

9 Λ[i]← λi // Commit this allocation decision

10 pi ← oi(λi) // The payment for task i is its corresponding operational cost

11 end while
12 allocate resources in time step (t + 1) according to Λ
13 end for

4.2.3 Random Allocation

This is a decentralised algorithm in which a fog node will send the task to a random
fog node when it receives it. Then, this random fog node finds the allocation plan for
this task that maximise its social welfare (with the earliest start time as well). Therefore,
this benchmark is decentralised and can be used DRAFC. Please find the pseudocode
of this algorithm in Algorithm 9
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Algorithm 9: The random allocation algorithm

1 Θarrived ← ∅ // The set of arrived tasks

2 Λw ← { } , ∀w ∈ W // The dictionary of allocation plans for each fog node

3 for t in T do
4 while new tasks arrive within t do
5 when a new task i arrives // Tasks arrive over time

6 Θarrived ← Θarrived ∪ {i} // Update the set of arrived tasks

7 send the task to a random fog node w ∈ W // Send the task to a random fog

node

8 solve the optimal utility allocation for task i on fog node w (i.e.,
arg max

λi

(vi(λi)− oi(λi)), s.t. contraints in Problem 4.1 , given Λw & θi & w)

// Find the allocation for task i that maximise its social welfare

9 choose the λi whose start time is the smallest if the previous problem has
multiple solutions. // Choose the allocation with the earliest start time

10 Λw[i]← λi // Commit this allocation plan

11 pi ← oi(λi) // The payment for task i is its corresponding operational cost

12 end while
13 allocate resources in time step (t + 1) according to Λw, ∀w ∈ W
14 end for

4.2.4 Bidding Zero

In this benchmark, a fog node will send the type of the task to all other fog nodes when
it receives the request. Next, each fog node finds its own allocation plan that maximises
the social welfare of this task (with the earliest start time). After that, they send their
bids (i.e., the usage time according to the allocation plan and bidding price = 0) to the
fog node that receives the task request. Finally, the task is allocated to the fog node
that maximises the social welfare of the task (break ties randomly). The detail of this
benchmark is given in Algorithm 10.

4.3 Proposed Resource Allocation Mechanism

In this section, we propose an algorithm that combines MARL and an online reverse
auction to maximise the long-term social welfare of the fog (i.e., the gap between the
total values of processed tasks and the fog nodes’ total operational costs). We adopt a
reverse auction to maximise the fog’s efficiency in terms of social welfare. Moreover,
each fog node uses a reinforcement learning algorithm (i.e., PPO) to learn its bidding
policy.

The reverse auction works as follows. Once a IoT device submits a task i to a fog
node w∗, that fog node immediately broadcasts the task’s type to all other fog nodes
in the fog. Then, each fog node will find the maximum number of time steps (i.e.,
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Algorithm 10: bidding zero algorithm

1 Θarrived ← ∅ // The set of arrived tasks

2 Λw ← { } , ∀w ∈ W // The dictionary of allocation plans for each fog node

3 for t in T do
4 while new tasks arrive within t do
5 when a new task i is submitted to fog node w∗ // Tasks arrive over time

6 Θarrived ← Θarrived ∪ {i} // Update the set of arrived tasks

7 broadcast the type of the task to all fog nodes
8 solve the optimal utility allocation for task i on fog node w, ∀w ∈ W (i.e.,

arg max
λi,w

(vi(λi,w)− oi(λi,w)), s.t. contraints in Problem 4.1 , given Λw, θi, w)

// Each fog node finds the allocation plan for task i that maximise its social

welfare

9 choose the λi,w, ∀w ∈ W whose start time is the smallest if the previous
problem has multiple solutions. // Choose the allocation plans with the

earliest start time

10 each fog node w sends its bid b̃i,w (i.e., t̃i,w according to λi,w and p̃i,w = 0) to
fog node w∗ // Each fog node sends its bid

11 w∗ find the b̃i,w, ∀w ∈ W that makes the most social welfare (break ties
randomly), and sends the task to the fog node w̃ that submitted this bid.
// Find the bid that makes the most social welfare and send the task fog node w̃

12 Λw̃[i]← λi,w̃ // Commit this allocation decision

13 pi ← 0 // The payment for task i is 0

14 end while
15 allocate resources in time step (t + 1) according to Λw, ∀w ∈ W
16 end for

t̃i,w, ∀w ∈ W) it can offer to task i and uses an reinforcement learning algorithm to
decide on the amount of the bidding price for task i (i.e., the unit price p̃i,w, ∀w ∈ W at
which it is willing to serve that task) and send the bid b̃i,w = {t̃i,w, p̃i,w} to fog node w∗.

Finally, task i is allocated to the fog node that maximises its utility
(i.e., w̃ = arg maxw(gi − p̃i,w)× t̃i,w ) as long as this utility is positive. The time steps
allocated to task i is denoted as t̃i, and fog node w∗ will send task i to fog node w̃
to process. Here, each fog node w ∈ W decides its bid b̃i,w for task i independently
without the knowledge of the states of other fog nodes and the types of future tasks. So
this is a decentralised online resource allocation algorithm because no single fog node
has the complete system information. This algorithm can continue to work even if one
or several fog nodes lose their connections.

As for the payment of task i, if the reverse auction is first-price, user i pays p̃i,w̃ × t̃i,w to
fog node w̃. If the reverse auction is second-price, user i pays p̃i,w̃′ × t̃i,w to fog node w̃
(p̃i,w̃′ is the second lowest bidding price).

To make it more clear, Figure 4.2 illustrates the process of this reverse auction, and
Algorithm 11 shows its pseudocode.
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FIGURE 4.2: The flow chart of the reverse auction process in respect of fog node w.
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Algorithm 11: DAPPO

1 Θarrived ← ∅ // The set of arrived tasks

2 Λw ← { } , ∀w ∈ W // The dictionary of allocation plans for each fog node

3 for t in T do
4 while new tasks arrive within t do
5 when a new task i is submitted to fog node w∗ // Tasks arrive over time

6 Θarrived ← Θarrived ∪ {i} // Update the set of arrived tasks

7 fog node w∗ broadcasts the type of the task to all fog nodes
8 find the maximum usage time for task i on fog node w, ∀w ∈ W (i.e.,

t̃i,w = max
λi,w

(ti,w)), s.t. contraints in Problem 4.1 , given Λw, θi, w) // Each fog

node finds the allocation plan for task i that maximise its usage time

9 choose the λi,w, ∀w ∈ W whose start time is the earliest if the previous
problem has multiple solutions. // Choose the allocation plans with the

earliest start time

10 each fog node w decides its bidding price p̃i,w using reinforment learning
algorithm PPO. // each fog node decides its bidding price

11 each fog node w sends its bid b̃i,w (i.e., t̃i,w and p̃i,w) to fog node w∗ // Each

fog node sends out its bid

12 fog node w∗ finds the fog node w̃ whose bid b̃i,w, ∀w ∈ W makes the most
utility for task i (i.e., w̃ = argmax

w
(gi − p̃i,w)× t̃i,w, break ties randomly),

and send the task to that fog node. // Find the fog node that makes the most

utility

13 each fog node w updates its reinforcement learning model
14 Λw̃[i]← λi,w̃ // Commit this allocation decision

15 pi ← p̃i,w̃ × t̃i,w̃ // The payment for task i

16 end while
17 allocate resources in time step (t + 1) according to Λw, ∀w ∈ W
18 end for

We formulate the DRAFC problem as a Dec-POMDP. In the following, we will describe
how the Dec-POMDP, which is defined as a tuple (W, S, Aw, P(.), R(.), Ωi, O, h), is
formulated.

Agents W: The set of agents W is the set of all fog nodes in the fog.

States S: The state s ∈ S includes the resource capacity, resource usage of all fog nodes
and the resource allocation plans for all arrived tasks. It is important to note that no
single node knows the state s of the fog because it only has a partial observation of the
system.

Observation o: The observation oi,w of fog node w after the arrival of task i consists
of the valuation vector vi, the relative deadline (i.e., Td

i −
⌊

Ta
i
⌋
), the resource demands

{ai,r}r∈R and the resource utilisation of fog node w in future C time slots (i.e., τw,y,t ∈ R,
where r ∈ R, and t ∈ (Ta

i , Ta
i + C]). Here, τw,r,t indicates how much proportion of type

r resource in fog node w is occupied in time slot t, which shows how busy is w at time
slot t. In summary, oi,w =

[
vi, (Td

i −
⌊

Ta
i
⌋
), {ai,r}r∈R, (τw,r,t)r∈R,t∈(Ta

i ,Ta
i +C]

]
.
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Actions Aw: In order to reduce the number of possible actions, the fog node w has
a set of possible actions (e.g., Aw = {0, 0.2, 0.4, 0.6, 0.8}), each element indicating the
quotient of its bidding price p̃i,w and the valuation coefficient gi of task i. Note that
action ai,w = 0 means that fog node w rejects task i.

Transition P: The transition function P(s′|s, a) ∈ [0, 1] indicates the probability that
state s′ happens when action a is taken in state s. Note that a is the joint action of all fog
nodes.

Reward Function R: For fog node w, the reward of action a in observation o is the
corresponding revenue for fog node w (i.e., R(w, oi,w, ai,w) = ( p̃i,w − oi,w)(t̃i,w), where
oi,w is the operational cost of task i in fog node w, if the reverse auction is first-price.),
if fog node w wins the reverse auction. Otherwise, the reward for fog node w is zero.
However, what fog node w tries to maximise in its observation oi,w is the return (i.e.,
sum of future rewards).

Horizon h: We treat each day as an episode, so h is the end of the day.

Furthermore, since the state-action space of this problem is large, we choose to
use neural networks as function approximators to approximate the return of each
state-action pair (i.e., G(oi,w, ai,w)). This can achieve faster computation and more
generalisations.

Finally, this problem is a MARL problem. A key challenge of this problem is that the
environment faced by each fog node is non-stationary because multiple fog nodes learn
how to bid concurrently. If the fog node acts like an independent learner (i.e., optimises
its policy assuming a stationary environment), the reinforcement learning algorithms
may fail to converge (Tan, 1993; Claus and Boutilier, 1998). However, independent
learning may achieve satisfiable performance empirically (Foerster et al., 2017).

4.4 Simulations and Results

In this section, we assess the DAPPO algorithm for DRAFC through extensive
simulations. To begin, we outline the setting in which the synthetic data were
generated. Second, we compare the performance of DAPPO with a variety of
hyperparameters and in a variety of synthetic data settings. It is shown that DAPPO is
more efficient in terms of social welfare than benchmarks and has a close performance
to the theoretical upper bound.
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4.4.1 Experimental Setup

The setup is similar to that described in Section 3.4.1. We choose the following settings
to mimic a modest fog computing network. Our discrete-time period’s temporal span
(|T|) is equal to 12. Thus, each episode corresponds to a single day’s allocation of
analytics tasks (i.e., one time slot is two hours long). The fog contains six fog nodes
(|P|=6). Assume that all fog nodes are connected via data links. Additionally, each
fog node has |R| = 3 distinct types of computational resources (i.e., CPU, RAM, and
storage). This arrangement was chosen to represent the following tiny community’s fog
computing network. This community consists of six dwellings. Each dwelling contains
a fog node. In real life, one time step equals two hours, and each day has 24 hours.
Another reason we chose this tiny setting is that it allows us to execute more trials for
all algorithms in an acceptable amount of time (i.e., our algorithms and benchmarks).

This time period contains |I| = 40 tasks. The arrival time Tia follows a continuous
uniform distribution U(0, 10), which ensures that no two tasks arrive at the same time,
as we assumed earlier in our DRAFC model.

Furthermore, for the sake of simplicity, we use a particular valuation function vi in our
simulations, which is a non-decreasing linear function of the real usage time t̃i:

vi(t̃i) =

gi × t̃i if t̃i ≤ ti

gi × ti if t̃i > ti

where the valuation coefficient gi represents task i’s obtained value per usage time.
This valuation function is the same as the valuation function in Section 3.4.1. Figure 3.5
illustrates an example of this type of valuation functions.

Similar to the experimental setup described in Section 3.4.1, this synthetic data contains
two types of tasks: low-value tasks and high-value tasks, and y ∈ [0, 1] denotes the
fraction of high-value tasks. For tasks of low and high value are created using Gaussian
distributions N (2, 1) and N (4, 1) respectively, with negative values discarded. The
time of use ti is a positive number randomly picked from the range {1, 2, 3, 4}, and all
tasks can begin immediately upon arrival. Additionally, the deadline Td

i is an integer
that is uniformly picked between b and d time steps following the earliest finish time
(but not exceeding the final time step): {Ts

i + ti − 1 + b, Ts
i + ti + b, . . . , min(Ts

i + ti −
1 + d, |T|)}. Thus, (b, d) specifies the task’s deadline slackness, a critical variable that
shows the task’s flexibility. gi is uniformly picked from the continuous interval [50, 100]
for a low-value task i . For a high-value task i , on the other hand, gi is uniformly chosen
from the continuous interval [500, 1000]. Thus, in this example, the upper constraint on
the ratio of the highest and lowest valuation coefficients is F = 1000

50 = 20.
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Furthermore, the aggregate resource capacity of each computational resource r is as
follows: ∑w∈W Aw,r is set to be a k proportion of the overall resource demand: ∑i∈I ai,r.
Each fog node is then allocated the same percentage of resource r: ∑w∈W Aw,r

|W| .

Furthermore, we have two types of fog nodes (i.e., low-cost-high-capacity fog nodes
and high-cost-low-capacity fog nodes). The resource capacities (Aw,r w ∈ W, r ∈ R) of
low-capacity fog nodes and high-capacity fog nodes are set to be a k and 3

2 k fraction
of the average resource requests of high-value tasks respectively. Thus, the parameter
k reflects the scarcity of the resources in the fog and is called the resource capacity
coefficient in this thesis. Moreover, the unit operational cost (ow,r w ∈ W, r ∈ R) of
low-cost and high-cost fog nodes is set to be two and four, respectively.

Finally, each fog node has |A| discrete actions. For example, if each fog node has five
actions, A = {0, 0.2, 0.4, 0.6, 0.8}, where each element indicating the quotient of its
bidding price p̃i,w and the valuation coefficient gi of task i, and action a = 0 means
rejecting the task.

4.4.2 Performance of DAPPO

We evaluated the performance of our DAPPO algorithm by running simulations using
various parameters, such as the DAPPO algorithm’s hyperparameters. Furthermore,
we change the resource scarcity in fog nodes, the number of fog nodes in the fog,
and the number of tasks in each episode. In particular, DAPPO’s performance in
social welfare is close to the upper bound (around 90%) and better than benchmarks’
performance (0% to 50%). The following sections will show and analyse the outcomes
of these simulations.

4.4.2.1 Hyperparameter Optimisation

Hyperparameters can greatly affect the performance of reinforcement learning
algorithms. The following results show how different hyperparameters influence the
outcome of DAPPO. Note that the y-axis shows the mean social welfare of previous
train batch size tasks.

Model Depth Model depth is the number of hidden layers in fully connected neural
networks. This experiment investigates the performance of DAPPO with different
model depths (each hidden layer has 256 neurones, learning rate = 0.0001, train batch
size = 3000, clip param = 0.3), and the results are shown in Figure 4.31. The performance
is better for model depth equals one and two, and the performance of DAPPO does not

1All figures are within 95% confidence interval based on 100 trials
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FIGURE 4.3: The mean social welfare achieved by different model depths.

seem to improve during learning for model depth equals three, four, five and six. One
explanation could be that deeper neural networks may easily overfit the training data
and lead to poor performance.

Learning Rate The learning rate determines the step size in each gradient descend
update iteration in PPO. Figure 4.4 illustrates the performance of DAPPO with various
learning rates (model depth = 1, train batch size = 3000, clip param = 0.3). They all
have similar good performance except for learning rate ≥ 0.01. This is because a large
learning rate can make the training unstable. As can be seen from Figure 4.4, DAPPO
with a learning rate less or equal to 0.0001 have similar good performance in terms of
social welfare.

Train Batch Size Now, train batch size is the number of experiences collected
between two gradient descent updates. Typically larger train batch size makes the
learning slower but more stable. As shown in Figure 4.5 (model depth = 1, learning
rate = 0.0001, clip param = 0.3), DAPPO with smaller train batch size converges faster,
and they all achieve similar social welfare at the end.

Clipping Range This hyperparameter, which prevents the updated policy to be too
different from the original policy during each policy update, is specific to the PPO
algorithm. Figure 4.6 compares the performance of DAPPO with different clipping
ranges. From the figure, we can see that DAPPO with clipping range = 0.2 and
clipping range = 0.3 have similar good performance, while DAPPO with clipping range
0.1 has significantly lower performance. The most likely cause is that DAPPO with
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FIGURE 4.4: The mean social welfare achieved by different learning rates.

FIGURE 4.5: The mean social welfare achieved by different train batch sizes.

a small clipping range can lead to insufficient exploration and trapped in bad local
optima (Wang et al., 2019).

Entropy Coefficient This hyperparameter decides how random the actions of
DAPPO, and a bigger entropy coefficient encourages more exploration. It can be seen
from Figure 4.7, DAPPO with entropy coefficient 0 or 0.01 have very close performance
in terms of social welfare. The most likely cause is that PPO does exploration with both
standard deviation and with entropy, and entropy is mainly used to ensure exploration
continues during training. So in this setting, the entropy coefficient does not make a
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FIGURE 4.6: The mean social welfare achieved by different clipping ranges.

FIGURE 4.7: The mean social welfare achieved by different entropy coefficients.

big difference in the outcome of learning, but if the pattern of tasks changes during
training, a higher entropy coefficient could be beneficial.

4.4.2.2 Social Welfare for Different Levels of Resource Scarcity

Next, we compare the social welfare achieved by DAPPO to that of benchmark
algorithms when resource coefficient k is varied(model depth = 1, learning rate = 0.001,
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clip param = 0.3, train batch size = 3000) in Figure 4.82. It can be seen from the figure
that DAPPO has a near-optimal performance in terms of social welfare, achieving
around 90% of the social welfare of offline optimal for all resource coefficients. This
shows that although DAPPO is an online algorithm, it is still quite efficient.

Furthermore, DAPPO has a significantly better performance than other benchmarks
except for when the resource coefficient is really big. As shown in Figure 4.8, random
allocation always has the worst performance. This is mainly because random allocation
may allocate a task to a fog node even if its social welfare is negative. Then, the
second-worst benchmark is bidding zero. It has better performance than random
allocation because the fog node will reject the task if its social welfare is negative.
However, its performance is still not that good because it does not prioritise low-cost
fog nodes and is myopic (i.e., it may allocate many low-value tasks and have to reject
high-value tasks later). Next, online greedy is a little more efficient than bidding zero
because it allocates tasks to low-cost fog nodes first but is still myopic. There are mainly
two reasons why DAPPO is more efficient in social welfare than the online benchmarks.
The first reason is that the fog nodes will learn that their bidding price should not be
lower than the operational cost of the task so that low-cost fog nodes have advantages
in the reverse auction. The second reason is that fog nodes can learn to reject tasks with
lower values and try to win the bid of the tasks with higher values.

Finally, different resource coefficients k also have a big influence on the performance.
In general, the performance of DAPPO is close to online greedy and bidding zero when
the resource is either too scarce or too sufficient. First, when the resource is too scarce,
the fog nodes can only process low-value tasks because high-value tasks have higher
resource requests as well. Second, when the resource is too sufficient, all tasks can
be processed. Since online greedy is a centralised algorithm that always prioritises
low-cost nodes in resource allocation, it is even a little more efficient than DAPPO when
k is big enough.

4.4.2.3 Social Welfare for Different Number of Fog Nodes

Next, we compare the social welfare achieved by different algorithms when the number
of fog nodes varies (model depth = 1, learning rate = 0.001, clip param = 0.3, train
batch size = 3000, resource coefficient = 1) in Figure 4.9. Note that the number of
tasks is proportional to the number of fog nodes (40 tasks for 6 fog nodes), and
other parameters are the same as in the previous section. The figure shows that
DAPPO always achieves near-optimal social welfare (about 80% to 90%). Furthermore,
DAPPO has higher efficiency in terms of social welfare than other benchmarks, and
the advantage expands as the number of fog nodes grows. For example, DAPPO’s

2All figures are within 95% confidence interval based on 100 trials, and the relative tolerance of the
CPLEX optimiser is set to be 10% for offline optimal
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FIGURE 4.8: The social welfare achieved by five algorithms for different resource
coefficients.

FIGURE 4.9: The social welfare achieved by five algorithms for different numbers of
fog nodes.

efficiency is about 20% better than OG when there are two fog nodes, however,
DAPPO’s efficiency is about 30% better than OG when there are 12 fog nodes. This
is mainly because there is more space for optimisation as the number of fog nodes
grows and the gap between Offline Optimal and the benchmarks is bigger. Hence, our
DAPPO shows a clear advantage in efficiency when there are many fog nodes in the
fog.
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FIGURE 4.10: The social welfare achieved by five algorithms for different numbers of
tasks in each episode.

4.4.2.4 Social Welfare for Different Number of Tasks

Now, we compare the social welfare achieved by DAPPO with benchmark algorithms
when each episode has a different number of tasks (model depth = 1, learning rate =
0.001, clip param = 0.3, train batch size = 3000) in Figure 4.10. Note that DAPPO is only
trained with 40-task episodes. So this experiment shows whether the trained agents are
robust to the fluctuations of the number of tasks that arrives in each episode. As can be
seen from the figure, DAPPO’s efficiency in terms of social welfare is close to (about
80% to 90%) offline optimal and significantly better than other benchmarks except
when the number of tasks in each episode is 20. The reason could be that when the
number of tasks is small, there is enough resource for both low-value and high-value
tasks, and online greedy is already quite efficient in this case. Furthermore, when the
number of tasks rises, the performance disparity between DAPPO and benchmarks
grows larger. The primary explanation for this is that DAPPO develops a preference
for high-value tasks, whereas benchmarks accept an excessive number of low-value
tasks and are incapable of accepting high-value tasks that appear later in the episodes.
Finally, as shown previously, the performance trends of various algorithms are similar.

4.4.2.5 Social Welfare for Different Types of Reverse Auctions

This section compares social welfare performance for different types of reverse
auctions. Note that in the first-price reverse auction, the price is just the bidding price
of the winning bid, and in the second-price reverse auction, the price is the same as
the lowest bidding price of all losing bids. From Figure 4.11 we can see that DAPPO
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FIGURE 4.11: The mean social welfare achieved by different types of auctions.

with the first-price auction is a little more efficient than DAPPO with the second-price
auction. The possible explanation is that in DAPPO with second-price auctions, the
reward of the winner is also related to the bidding prices of other fog nodes, which
increases the non-stationarity of the environment.

4.4.2.6 Social Welfare for Different Number of Actions

Here, we compare the performance of DAPPO when fog agents have a different
number of actions in Figure 4.12. We can see that when each fog node has ten
action options, DAPPO converges significantly slower than other cases because more
exploration is needed as the number of actions grows. Even so, they all converge to a
similar performance after 100000 timesteps.

4.5 Summary

In this chapter, we described the details of the DRAFC model used in the decentralised
auction. Then, we listed the algorithms of the benchmarks we used to evaluate
the performance of DAPPO. After that, we described DAPPO in detail and the
synthetic data used in our simulations. Finally, we presented the learning outcome
of DAPPO with different hyperparameters and compared DAPPO’s efficiency with the
benchmarks in terms of social welfare. The simulation results show that after training,
DAPPO can achieve near-optimal social welfare, which is significantly better than that
of benchmarks. In particular, DAPPO is also shown to be robust to the fluctuation
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FIGURE 4.12: The social welfare achieved by different number of actions of each fog
node.

of task numbers in each episode. Therefore, our proposed algorithm DAPPO can
address the high social welfare resource allocation challenge (Challeng 4). Since it can
work without a central control, it also addresses the decentralised resource allocation
challenge (Challenge 9).
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Chapter 5

Conclusions and Future Work

The final chapter summarises this thesis’s contributions to the fields of RAFC and
DRAFC and suggests future directions for research. To this purpose, in Section 5.1, we
first discuss the rationale for this thesis and then present an outline of the techniques we
propose to address it. Then, we outline our research contributions and connect them
to the research difficulties discussed in Section 1.3, and we summarise the evaluation
outcomes of our proposed mechanism by comparing it to benchmark mechanisms.
Finally, we discuss probable future works in Section 5.2.

5.1 Research Summary

Nowadays, the IoT is developing very fast and is predicted to revolutionise the way we
work and live by making all kinds of physical devices into IoT devices and connecting
them to the Internet. In this context, fog computing is proposed to complement cloud
computing in providing computing resources to IoT devices. Fog computing has many
important benefits, such as low latency and reduced data traffic, which is critical to the
popularisation of the IoT. Hitherto there is no truthful resource allocation mechanism
that achieves high social welfare in our RAFC model. As we have argued in this
thesis, it is reasonable to treat IoT users as intelligent agents who are rational and
have their own goals (i.e., utility maximisation). Therefore, the first goal is to design
a strategy-proof resource allocation mechanism and thus can be used in a strategic
setting. Our second goal is to design a decentralised resource allocation mechanism to
avoid a single point of failure and make the whole system more reliable. Note that the
fog users are assumed to be truthful in our second goal, so the decentralised allocation
mechanism is not required to be strategy-proof.

Reviewing the existing resource allocation mechanisms, we found that they cannot
directly apply to our RAFC model and only address a subset of our research challenges.
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A lot of existing approaches only focus exclusively on homogeneous resource
allocation, whereas RAFC contains multiple heterogeneous resources. Furthermore,
most work looks at different types of tasks, which only have value for agents if they
are fully accomplished. In addition, most existing mechanisms are not truthful and,
therefore, infeasible to work in a strategic setting. Thus, in this thesis (Chapter 3),
we proposed a truthful resource allocation mechanism for our RAFC problem.
We achieved the first goal by extending a class of mechanisms called price-based
mechanisms and using a technique called pre-commitment.

Furthermore, although many reinforcement learning-based approaches are proposed
for RAFC, they are not suitable for the DRAFC problem. Specifically, most of these
approaches are centralised resource allocation algorithms, and others are letting the
IoT devices make resource allocation decisions (i.e., offloading tasks to the fog or
not). Hence, in this thesis (Chapter 4) we presented a decentralise resource allocation
algorithm for our DRAFC problem that is efficient in terms of social welfare. We
achieved the second goal by combining reinforcement learning and online reverse
auction.

First, we described the RAFC problem we studied in detail and formulated it as a
constraint optimisation problem (Optimisation Problem 3.1a) considering all related
research challenges (Challenges 1, 2, 3, 4 and 7). This optimisation problem includes
the bandwidth and traffic routing constraints (Challenge 1), and it allows dynamic
generation of VMs in any fog nodes (Challenge 2) and uses time-oriented valuation
functions (Challenge 3). Furthermore, its objective function includes the operational
cost of the fog (Challenge 7) and is to maximise social welfare (Challenge 4).
Similarly, we described our DRAFC problem in detail and formulated it as a constraint
optimisation problem (Optimisatioin Problem 4.1), which is comprised of Research
Challenges 2, 3, 4 and 7. This contraint optimisation problem is similar to the constraint
optimisation problem for RAFC and the main difference is that in the optimisation
problem for DRAFC each task is only processed in one VM, and there are no bandwidth
constraints.

Second, in order to allocate resources efficiently in a strategic setting (Challenges
4, 5 and 6), we designed a price-based online mechanism called FlexOG. This
mechanism can be categorised as a price-based mechanism, which ensures that it is
truthful and works in a strategic setting. Furthermore, FlexOG uses a technique called
pre-commitment, which means that FlexOG only commits the usage time to a task
when it arrives but leaves how the usage time is scheduled flexibly. This technique
gives FlexOG an advantage in achieving higher social welfare than other truthful
benchmark mechanisms. However, it is still possible to further increase the efficiency
of our mechanism, so our Challenge 4 is partly addressed. The future work section
(Section 5.2) discusses in detail how we intend to boost its efficiency. Furthermore, to
increase the scalability of FlexOG, we proposed Semi-FlexOG, which is scalable at the



5.2. Future Work 105

cost of a minor decrease in social welfare. In addition, to allocate resource efficiently
in a decentralised setting (Challenges 4, 3, 6 and 9), we proposed a reinforcement
learning based online reverse auction called DAPPO. In this reverse auction, each fog
node learns the policy that maximises its own revenue using a reinforcement learning
algorithm called PPO, which makes it more adaptable in a dynamic environment and
no central control is needed, which solves Challenge 9.

Finally, to make sure that FlexOG, Semi-FlexOG, and DAPPO can truly achieve
higher social welfare than other state-of-the-art mechanisms for RAFC and DRAFC
respectively (Challenge 4), we carried out extensive simulations to evaluate their
performance. More specifically, we evaluated FlexOG using synthetic data of different
network topologies, resource scarcities or deadline slackness of tasks. Across all of
these settings, FlexOG achieves social welfare higher than the two truthful benchmarks
(around 5-10% better than OG and 10-20% better than SWMOA2) and close to the
theoretical upper bound (around 90%). In particular, we showed through simulations
that agents are incentivised to misreport under the non-truthful benchmark online
optimal, and the social welfare achieved by online optimal falls below FlexOG when
just 20% of agents misreport their valuation functions. In short, these simulations
indicated that FlexOG is more efficient than all benchmark mechanisms in a strategic
setting. However, the simulations show that the processing time of FlexOG is the
highest, and it takes about 2 − 6 seconds to make a decision for a newly reported
task. So we evaluated Semi-FlexOG and showed that its processing time is significantly
lower than FlexOG. Although the efficiency of Semi-FlexOG is lower than FlexOG,
Semi-FlexOG still outperforms two truthful benchmarks(i.e., OG and SWMOA2). For
the DRAFC problem, we evaluated DAPPO using synthetic data of different resource
scarcities and a various number of tasks in each episode. Additionally, we also
compared the performance of DAPPO with different hyperparameters and found a
good combination of hyperparameters for DAPPO. In detail, for different resource
scarcities, DAPPO has better efficiency in terms of social welfare than benchmarks
(around 0-30% better than OG and Bidding Zero, and 10-50% better than Random
Allocation) and close to the upper bound (around 90%). In particular, DAPPO trained
by 40 tasks in each episode consistently outperforms benchmarks (around 0-100%) and
is close to the upper bound (around 90%) when the number of tasks in each episode
changes (from 20 to 60 tasks in each episode).

5.2 Future Work

This thesis’ work can be extended in a variety of ways. First, to make their performance
more convincing, an empirical evaluation of resource allocation mechanisms with real
data evaluation or using fog computing simulation tools could be future work, and we
detail these in Section 5.2.1. Second, we could try to further increase the scalability
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of FlexOG. Another future work could be designing a truthful and decentralised
mechanism for the DRAFC problem so that Challenge 9 and 5 can be addressed
simultaneously. We discuss how this might be done in Section 5.2.2.

5.2.1 Empirical Evaluation

Although our evaluation is performed over a variety of configurations using synthetic
data, it is still of value to evaluate our proposed algorithms using real data. Although
there is currently a lack of comprehensive real-world data from fog computing systems,
one way to circumvent this problem is to combine real-world cloud computing data
with synthetic data. For example, we can configure the amount of resource required
by a VM based on the resource requirements of individual tasks in Google cluster
data or irids5 data1 and generate other data such as the number of IoT devices,
bandwidth demands and required usage time of each task synthetically. Some work
takes this approach to evaluate their mechanisms (Zhang et al., 2018c; Shi et al.,
2017; Rublein et al., 2021). We can also generate the arrival time of agents from the
fingerprinting dataset (Uluagac, 2014), which contains the inter-arrival time information
from different applications in 30 wireless devices (e.g., iPhones, iPads, Kindles and
Netbooks).

5.2.2 Resource Allocation Mechanisms

First, we intend to further enhance our mechanism’s scalability to fully address
our Challenge 8 because fog providers want to save energy on making resource
allocation decisions. Although compared with FlexOG, Semi-FlexOG has decreased
the processing time, it is still slower than the benchmarks (e.g., SWMOA2 and online
greedy). Furthermore, our simulations are only in a small setting (e.g., six fog nodes,
six locations, 12 time steps and 40 tasks). In reality, fog computing systems can have
thousands of fog nodes and tasks. Therefore, we may further improve the scalability of
our mechanisms. One approach is to simplify the associated data routing problem.
For example, we could restrict the number of hops from IoT devices of a task to
the VM of that task, which is also in accordance with the low latency requirements
of IoT applications. Another option is to design an efficient algorithm to solve the
MILP problem of social welfare maximisation instead of solving it using CPLEX.
Finally, we are also considering using sub-optimal heuristics, for example, by greedily
allocating tasks based on their value densities. Since finding the optimal allocation
for newly-arrived tasks is critical to the truthfulness of FlexOG, we would need to
ensure that the DSIC and IR properties still hold under the new mechanism, which
is challenging.

1https://hpc.soton.ac.uk/redmine/projects/iridis-5-support/wiki
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Second, we have designed DAPPO, which combines online reverse auctions and
reinforcement learning techniques instead of price-based mechanisms to allocate
resources. However, under this algorithm, IoT users may get more utility by
misreporting their tasks. For example, a task that would be rejected by all fog nodes
may get allocated by increasing its valuation coefficient. Fog nodes can also influence
what the algorithm learns and gain an advantage in the future. Hence, DAPPO is
not a truthful mechanism and may not work in a strategic setting. Therefore, it
is interesting to modify DAPPO to ensure that any agents cannot be better off at
present or in the future by misreporting their tasks. Although truthful centralised
reinforcement learning for online resource allocation has been proposed (Stein et al.,
2020), DAPPO uses decentralised reinforcement learning. For this reason, we need
to carefully design the reinforcement learning mechanism to make it truthful and
efficient at the same time. Finally, we could investigate other approaches to multi-agent
reinforcement learning to further improve the efficiency of the mechanism in terms of
social welfare. For example, use the networked multi-agent reinforcement learning,
where fog nodes are able to exchange information, instead of the fully independent
multi-agent reinforcement learning.
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