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Abstract

Atom interferometry based gravity gradiometers are capable of operating with
unparalleled sensitivity when compared to their classical counterparts. This
makes them ideal candidates for field applications. The Phase Locked Atomic
Interferometers for Gravity Gradiometry (PLAIN-GG) project aims to use two
absolute gravimeters connected with a stabilised optical fibre link to achieve
a lightweight gradiometer with a flexible baseline. This allows for a portable
system without the sacrifice of sensitivity.

In this thesis we present the development of an atom interferometer for meas-
urements of gravity using a novel, compact, and integrated vacuum chamber.
We aim to use this chamber as the centre of the PLAIN-GG sensor head. Using
absorption imaging, we characterise the atom number and temperature of the
cold atom cloud as experimental variables are changed. When optimised, we
measure the number of trapped atoms to be ≈ 1.5×106 and their temperature to
be ≈ 7µK. To demonstrate the viability of this chamber for use in inertial atom
interferometry measurements, we find the atom ensemble to be detectable after
a 120ms free fall. We also briefly detail the preliminary work of the PLAIN-GG
stabilised fibre link.
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Chapter 1

Introduction

The simplest measurement of gravity can be dropping an inertial test mass and
measuring its position over time. However these measurements have a funda-
mental problem of the equivalence principle. Einstein’s equivalence principle
indicates it is impossible to distinguish between linear and gravitational accel-
eration. In reality this manifests as mechanical noise affecting a gravimeter’s
measurements of local gravity. However, since the attraction due to gravity
falls off the further away from the object, if measurements were to be taken
at two points—one further from the gravitational source than the other—then
the gravitational acceleration and linear acceleration can be distinguished from
each other. By measuring the difference of gravity between these two points any
noise common to both points is also rejected—a feature that makes this type
of measurement ideal for noisy environments. These devices are called gravity
gradiometers [1, 2].

Baron Loránd von Eötvös is regarded as the father of gravity gradiometry
[3]. In 1890 he adapted the Coulomb balance to create the ‘torsion balance’,
the first gravity gradiometer. Eötvös also lends his name to the unit used
to measure a gravitational gradient; the ‘Eotvos’, or E, where 1E = 10−9 s−2.
The torsion balance was constructed of two known masses, held at different
heights, separated by a horizontal beam. This beam was then suspended by
a thin string. If the gravitational force on both masses is unequal a torque is
exerted on the beam. This deflects the beam and the angle of deflection can be
measured. The torsion balance could reach a sensitivity of 1E after a lengthy
measurement time [4]. This basic design was improved upon for many years
until other implementations became more sensitive and practical. These include
accelerometers on a spinning disk [5, 6] to a superconducting mass on a spring
[7] and micro-fabricated gradiometers [8]. Gravity gradiometers have also found
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2 Chapter 1 Introduction

use in space; for example in 2018 the Gravity Recovery and Climate Experiment
Follow-On (GRACE-FO) mission was launched [9]. Its mission is to track the
movement of the Earth’s water in order to help measure and assess climate
change [10]. GRACE-FO consists of two identical satellites following one another
in orbit. As they orbit the Earth the changes in gravity—the gravity gradient—
will alter the distance between the satellites. When the trailing satellite then
travels over an area of higher gravity it will ‘catch up’ with the leading satellite.
By measuring the distances between the satellites the gravity gradient can be
detected. GRACE-FO has a sensitivity of ≈ 10−6 E/

√
Hz with a baseline length

of 220 km [11].1 For further reading, Veryaskin [4] provides a good summary
and history of gravity gradiometry techniques and systems.

Gravity measurements, due to its ability to detect invisible density changes
provides an invaluable tool for a wide range of fields including civil engineering,
archaeology, inertial navigation, geophysics, and geodesy. Because a gravitational
field cannot be shielded, measurements of gravity are able to overcome certain
limitations that restrict other measurement techniques, such as radar, which are
limited by resolution, range, and by absorption of their transmissive signal [14].
However, to compete with these tools the gravimeter must be suitably sensitive.
Ideally, 1 E of sensitivity is required for applications such as civil engineering,
however sensitivities on the order of < 10E are suitable [15].

A classical system, made from bulk material and using manufactured inertial
test masses, is prone to wear and degradation. This can affect measurements and
give classical gravity gradiometers a limited lifetime. Atoms are not susceptible
to this macroscopic wear and degradation; making them the ideal candidates
for use as inertial test masses. Furthermore, atom interferometry can be used
to increase the sensitivity of measurements as opposed to simply dropping the
atoms. [16]. This is a technique where pulses of laser light are used to impart
specific quantum states onto the atom ensembles—most commonly, lasers that
excite Raman transitions are used. The evolution of the atom’s quantum state
depends on the acceleration it undergoes and by measuring the atom’s final
state we are able to find measurements of gravity. This is explained in more
detail in Chapter 3. For these quantum gravity gradiometers to maintain the
common noise rejection, it is required that the phase of the light pulses used
to interact with the atomic test masses are phase correlated at both test mass
locations. To provide this, line of sight is required and the atom clouds are
usually in the same vacuum chamber.

1The per
√
Hz in the unit implies the precision scales inversely with the square root of the

measurement time; i.e. the measurement gets more sensitive the longer the measurement is
performed for [12, 13]. For example, a 1E/

√
Hz sensitivity provides 1E at 1 s and 0.1E at

100 s.
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Snadden et al. [17] were the first to create a quantum gravity gradiometer in
1998 [4]. They used two magneto-optical traps (MOTs), one on top of the other
separated by 1.09m, in two separate vacuum chambers. Line of sight of Raman
beams was achieved through windows on these chambers. In this design they
were able to reach a sensitivity of 100E. While not the most sensitive it showed
there to be potential for future quantum gravity gradiometers.

To increase the sensitivity most designs use a large single vacuum chamber and
an ‘atom fountain’. Here a 2D MOT is used to cool and then eject atoms in
a continuous beam on a vertical trajectory. During this trajectory the atoms
are in free fall and by using two trajectories offset from each other the gravity
gradient can be measured. This has the benefit of longer measurement times
since the atoms are launched upwards and travel twice the distance compared
to dropping the atom ensembles. This increases sensitivity and is a commonly
used technique as a result [18, 19]. This however requires a large enough single
vacuum chamber to accommodate the fountain’s trajectory.

Since Snadden et al. [17], quantum gravity gradiometry has become more
refined and found many uses. Due to their unparalleled sensitivity quantum
gradiometers found their use mainly in fundamental science [20]. These include
measuring the gravitational constant G, [21], mapping Earth’s gravity field
[22], and testing the equivalence principle [23]. Unfortunately, due to the large
vacuum chambers required for these measurements, current quantum gravity
gradiometers are bulky and heavy; this limits their practicality outside of the
lab. Currently, classical gravity gradiometers remain the only suitable solution
for field use [14]. Bongs et al. [24] gives a good overview of the challenges
atom interferometers are confronted by to become more practical than their
classical counterparts in field applications. In recent years, there has been
much progress in developing portable quantum gravity gradiometers [25, 26, 27].
Most notably—and recently—this includes a successful measurement performed
outside of the laboratory environment [28]. However, these devices remain
fundamentally limited by a trade-off between sensitivity and portability [15].

Despite gradiometers theoretically being best suited for field applications, abso-
lute quantum gravimeters have found more success outside the lab. [29, 30, 31, 32]
Currently, the most sensitive gravity gradient measurement performed with a
portable atom interferometer was with an absolute gravimeter in an elevator
shaft [33]. Bidel et al. [33] was able to achieve a precision of 4 E using a baseline
of 45.8m. Notably, this system was then able to perform a survey of absolute
gravity onboard a ship [34].
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1.1 The PLAIN-GG project

In order to create a practical quantum gravity gradiometer we decided to take
a fundamentally different approach. Rather than have both atom ensembles
in one vacuum chamber, where we are restricted by geometry and necessary
encumbrance, the Phase Locked Atomic Interferometers for Gravity Gradiometry
(PLAIN-GG) project will attempt to use two separate vacuum chambers with
one atom cloud in each. This would allow free translation of the chambers
relative to each other and relieve of the weight and bulk from requiring one large
chamber. Chapters 5 and 6 detail the progress made to building these sensor
heads.

However this presents another problem; we no longer have line of sight for the
interaction beams to maintain their phase coherence. We can use an analogy
for the laser light being a ruler that measures the atom’s position relative to
the phase of the light. When moving the atom clouds into separate chambers
we now have two rulers that are free to move independently of each other. We
now require a method to stabilise these separated rulers so they move together
and maintain the phase coherence of the interaction light between both atom
ensembles. To do this we plan to adapt a method used in distributing optical
phase in atomic clocks [35]. Foreman et al. [36] demonstrated transfer instability
of 5× 10−15 at 1 s for 86 km of optical fibre and 6× 10−18 at 1 s for a 7 km fibre.
This instability is suitable for distributing signals for the most precise atom
clocks over a much larger distance than required for our system. Section 7.2
details the progress made towards the construction of this stabilisation system.
An aim to determine the success of this stability mechanism is to ensure that
the fibre arms are not the main source of noise in the system. If the dominant
noise source is the mirrors in the vacuum chambers then this noise is able to be
successfully ‘shared’ between both sensor heads through a rigid structure; being
a gradiometer, any measurements would then be unaffected by this common
noise.

Figure 1.1 shows the initial design of the proposed system named PLAIN-GG.
This approach can also provide additional benefits. The ability to control
the phase relation between the two atom clouds enables investigation into the
regime between uncorrelated accelerometers, and fully coherent single chamber
quantum gravity gradiometers. This is a largely unexplored region and further
demonstrates novelty of this approach. The flexible optical fibre link between
both atomic test masses also provides the ability to have a variable baseline. This
may be useful in applications where different levels of sensitivity are required.
Furthermore, this opens up possibilities of probing the gravity gradient along
multiple axes.
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Figure 1.1: Design of the PLAIN-GG. Light from the Helium Neon laser (HeNe)
is sent through an optical fibre Michelson interferometer. Along the arms of
the interferometer are acousto-optical modulators (AOMs), one of which is
modulated with a proportional-integral-derivative (PID) feedback loop. At the
ends of the interferometer arms are the sensor heads which is where the cold
atom physics takes place. These contain retro-reflecting mirrors that the HeNe’s
light reflects off of and then re-enters the optical fibre interferometer. The
HeNe’s light is then shone onto a photodiode (PD) which detects phase changes
in the interferometer. The PID feedback loop then corrects for any changes
in phase between the two fibre interferometer arms. Raman interaction light
also passes through the fibre interferometer in order to be phase stabilised. The
MOT light necessary for the cooling and trapping of the atoms does not pass
through the optical fibre interferometer as the AOMs would shift the light’s
frequency.

For a gravity gradiometer to measure a 10 kg object 1m away with a 1m baseline
a sensitivity of 1 E is required. A device with 30E of sensitivity is able to detect
objects of masses > 300 kg under the same conditions. While a device with this
level of sensitivity may not be capable of detecting small objects, it should still
be suitable for measuring larger structures. Therefore, we have chosen 30E as a
reasonable initial sensitivity aim of the PLAIN-GG project.

1.2 Thesis overview

In Part I we introduce the theoretical background for atom interferometry and
gravity gradient measurements with atom interferometry. We begin in Chapter 2
by introducing Raman transitions, this is the tool which we use to perform
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the atom interferometry. Through the use of Raman transitions we are able
to transform a multi-level atom into an ideal two-level system with long state
lifetimes. Chapter 3 then describes how we use pulses of light that drive Raman
transitions to build an atomic Mach-Zehnder interferometer. We then describe
how this technique can be used to make inertial measurements; and in particular,
measurements of local gravity. By using two atom interferometers we then
describe how noise insensitive measurements of the gravity gradient can be
performed. To begin realising such an interferometer, we require an ensemble of
atoms which are able to maintain coherent quantum states for long time periods.
Chapter 4 describes how this can be achieved through cooling and trapping of
atoms within a MOT. This chapter also includes details of how we are able to
measure the number of atoms trapped by the MOT and the cloud’s average
temperature with absorption imaging.

Part II contains the experimental work performed. Chapters 5 and 6 contain the
majority of the experimental work in this thesis. In these chapters we describe
the apparatus used for performing the cold atom experiments (Chapter 5) and
the results using that apparatus (Chapter 6). Here we also describe the novel
vacuum chamber which we design the optical system around. This vacuum
chamber is the first commercially available compact vacuum chamber with
integrated optics designed for inertial measurements with atom interferometry.
We aim to use this vacuum chamber as the basis for the PLAIN-GG sensor head
design. Showing the viability of this chamber for use in atom interferometry is
a foundational step towards realising the PLAIN-GG project.

In Chapter 7 we describe the progress made towards realising a Raman laser
system and plans for observing Raman transistions in the apparatus described
in Chapter 5. Here we also describe the preliminary work and results in building
the optical fibre interferometer for stabilising the Raman light in the PLAIN-GG
system.
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Theoretical background
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Chapter 2

Coherent manipulation of atoms

In this chapter we will explore the theoretical background behind turning a three-
level atom into a much simpler two-level atom by driving stimulated Raman
transitions between the two hyperfine ground states of 85Rb. A stimulated
Raman transition is a two-photon process which by simultaneous absorption and
stimulated emission, coherent population transfer between two energy states
is induced. This is performed through a virtual intermediate level which is far
detuned from a real atomic energy level. Usually the transition between the
two real energy levels, where coherent population transfer is achieved between,
is single-photon forbidden. This creates a system where state lifetimes are
longer than the interferometer period. The Raman transition is also capable
of imparting momentum to the interacting atoms; we will see this couples the
internal and external energy states.

This technique provides the means to coherently manipulate the state of an
atom. Therefore, it is an important foundational step in performing atom
interferometry: the tool we will be using to take measurements of gravity [37].

After describing the theory underpinning Raman transitions, the realities of
using such a technique on an actual atom, 85Rb, will then be discussed. The
experimental work on implementing the Raman transitions is described in
Chapter 6.

9
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|3,p+ ℏka⟩

|1,p⟩
ω1

|2,p+ ℏ(ka − kb)⟩
ω2

ω3

ωa, ka ωb, kb

δab

∆

Figure 2.1: Energy level diagram of three-level atom interacting with two lasers
of frequencies ωa and ωb, and respective wavevectors ka and kb. Frequency is
increasing in the ‘upwards’ direction such that ω1 < ω2 < ω3. Atomic states
|1,p⟩ and |3,p+ ℏka⟩ are coupled by monochromatic light of frequency ωa

and wavevector ka. Likewise, states |2,p+ ℏ(ka − kb)⟩ and |3,p+ ℏka⟩ are
coupled by light of frequency ωb and wavevector kb. The ‘detunings’ ∆ and δab
represent frequency differences between the atomic transitions and the coupled
light beams.

2.1 Raman transitions

Consider a three-level atom, seen in Figure 2.1, with two lower energy states,
|1⟩ and |2⟩, and an upper state, |3⟩, separated by their respective frequencies:
ω1, ω2, and ω3. The lower energy states represent two hyperfine levels of the
ground level of an atom; therefore no single-photon electric dipole transition
can couple them, including spontaneous decay. The upper energy level is an
excited state that can spontaneously decay to either |1⟩ or |2⟩. Two lasers,
counter-propagating along the ẑ axis with frequencies ωa and ωb, interact with
the atom. The total field is given by

E =
1

2
Eae

i(ka·z−ωat+ϕa) +
1

2
Ebe

i(kb·z−ωbt+ϕb) + c.c., (2.1)

where Ea,b are the amplitudes of each beam, ka,b are the beam’s wavevectors,
ϕa,b are the phases of each laser, and the c.c. represents the complex conjugate
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of both terms. Since the beams are counter-propagating: ka ≈ −kb.
1

Laser A, with frequency ωa, couples |1⟩ to |3⟩; likewise laser B, with frequency
ωb, couples |2⟩ to |3⟩. However both are greatly detuned from single-photon
resonance by ∆ ≡ (ω31) − ωa = (ω32) − ωb − δab, where ω31 = ω3 − ω1 and
ω32 = ω3 − ω2. The beams also have a small two-photon Raman detuning
between the ground states δab ≡ ωab − ω21 = (ωa − ωb) − (ω2 − ω1). If ∆ is
sufficiently large, no transition will be driven to state |3⟩ and we can assume its
population to be negligible. We will describe these quantities in more detail in
Section 2.1.2.

In Figure 2.1 we have chosen a momentum inclusive basis: |1⟩ ≡ |1,p⟩, |3⟩ ≡
|3,p+ ℏka⟩, and |2⟩ ≡ |2,p+ ℏ(ka − kb)⟩, where p is the initial momentum of
the atom. This choice of basis will become clear in Section 2.1.1.

We can write the atomic wavefunction as

|Ψ(t)⟩ = c1(t) |1,p⟩+ c2(t) |2,p+ ℏ(ka − kb)⟩+ c3(t) |3,p+ ℏka⟩ , (2.2)

where c1,2,3(t) are the state’s time-dependent amplitudes. The wavefunction
evolves according to the time-dependent Schrödinger equation (TDSE):

iℏ
∂

∂t
|Ψ(t)⟩ = Ĥ |Ψ(t)⟩ , (2.3)

where Ĥ is the Hamiltonian. The Hamiltonian is the sum of the atomic
Hamiltonian, ĤA =

∑
n ℏωn |n⟩ ⟨n|+ p̂2/2m, and the interaction Hamiltonian,

V = −d̂ · E = −er̂ · E, where p̂ is the momentum operator which describes
transitions between states, m is the atomic mass, d̂ is the electric dipole moment
operator, e is the electric charge, and r̂ is the operator for the position of the
electron relative to the atomic nucleus centre of mass. The Hamiltonian for the
three level system is:

Ĥ =
p̂2

2m
+ ℏω1 |1⟩ ⟨1|+ ℏω2 |2⟩ ⟨2|+ ℏω3 |3⟩ ⟨3|+ V (2.4)

The interaction Hamiltonian represents the potential the atom is experiencing.
In this case, this represents the state couplings by the laser. We write the
interaction Hamiltonian as [38, 39]

V = V̂ ∗
13 |3⟩ ⟨1|+ V̂ ∗

23 |3⟩ ⟨2|+ V̂13 |1⟩ ⟨3|+ V̂23 |2⟩ ⟨3|

=
ℏΩ∗

a1

2

(
e−i(ka·z−ωat+ϕa) + ei(ka·z−ωat+ϕa)

)
|3⟩ ⟨1|

+
ℏΩ∗

b2

2

(
e−i(kb·z−ωbt+ϕb) + ei(kb·z−ωbt+ϕb)

)
|3⟩ ⟨2|+ c.c.,

(2.5)

1For 85Rb (we see later that this is our atom of choice): ka − kb/ka ≈ 3GHz/400THz ≈
8× 10−6. Therefore this assumption is valid.
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where we have introduced the single-photon Rabi frequency [40]:

ΩLn = −⟨n| d̂ · EL |3⟩
ℏ

, (2.6)

for coupling of state |n⟩ to |3⟩ by laser L = a, b. The Rabi frequency is the rate
which the population will oscillate periodically between the coupled states when
driven with a (resonant) laser. This behaviour is called ‘Rabi flopping’ [41]. In
Section 2.2 we describe this phenomenon in more detail.

2.1.1 Momentum transfer

The Hamiltonian, through Equation 2.5, includes eika,b·z terms in its matrix
elements. We shall assume that ka,b is aligned parallel with z; the terms now
become eika,bz. As we will see this leads to a momentum transfer from the light
to the atom in quanta of ±ℏka,b in the z direction. Physically this is due to
conservation of momentum during absorption and stimulated emission of the
laser photons; each photon carries ℏka,b momenta.

To see this analytically we begin by re-writing the completeness relation I =∫∞
−∞ dp |p⟩ ⟨p|, where |p⟩ is the momentum state wavefunction, as:

Ie±ika,bz =

∫ ∞

−∞
dp e±ika,bz |p⟩ ⟨p| . (2.7)

Similarly using the completeness relation, we define the momentum state wave-
function as [38, 40]

|p⟩ =
∫ ∞

−∞
dz |z⟩ ⟨z|p⟩ = 1√

2πℏ

∫ ∞

−∞
dz eipz/ℏ |z⟩ . (2.8)

Substituting this into Equation 2.7 gives

e±ika,bz =
1√
2πℏ

∫ ∞

−∞
dp

∫ ∞

−∞
dz ei(p±ℏka,b)z/ℏ |z⟩ ⟨p|

=

∫ ∞

−∞
dp |p± ℏka,b⟩ ⟨p|

(2.9)

Here we can see that the e±ika,bz part of the Hamiltonian acts on the momentum
term of wavefunction in such a way to impart ±ℏka,b. This motivates the choice
of momentum inclusive basis seen in Figure 2.1 and equation 2.2.

If we assume the atom is in initial state |1,p⟩ the incident light from laser A,
with wavevector ka, will drive the transition to the upper state. The absorption
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of the photon will also impart momentum giving the new state |3,p+ ℏka⟩.
While in this upper state the atom undergoes stimulated emission driven by the
second laser beam B, with wavevector kb, propagating in the opposite direction.
This imparts more momentum in the same direction as the momentum from
the absorption of the first photon; leading to the final state |2,p+ ℏ(ka − kb)⟩.2
We can see here that the internal atomic states have been coupled to the atom’s
external states. Here we can define the effective wavevector keff = ka−kb, where
for counter-propagating beams keff ≈ 2ka.

3 We can then re-write states |2⟩ and
|3⟩ as |2,p+ 2ℏkeff⟩ and

∣∣3,p+ 1
2
ℏkeff

〉
respectively.

2.1.2 Evaluating the three-level Hamiltonian

In this section we will see how our three-level Raman system has an inertial-
dependent phase term. This phase term will be key for the application of the
atom interferometry in Chapter 3. Currently the total three-level Hamiltonian
can be written as

Ĥ =

E1 0 V̂13

0 E2 V̂23

V̂ ∗
13 V̂ ∗

23 E3

 , (2.10)

where the diagonal terms, En = ℏωn + p2
n/2m, represent the energy and mo-

menta of each state, the off-diagonal terms represent the interaction part of the
Hamiltonian seen in Equation 2.5.4 Since a (direct) transition cannot be driven
between states |1⟩ and |2⟩ their interaction elements on the Hamiltonian are
zero.5 The interaction terms are given by:

V̂13 =
ℏΩa1

2

(
e−i(ωat+ϕa) + ei(ωat+ϕa)

)
(2.11)

V̂23 =
ℏΩb2

2

(
e−i(ωbt+ϕb) + ei(ωbt+ϕb)

)
, (2.12)

with Rabi frequencies defined in Equation 2.6. We have assumed that laser
A only couples to the |1⟩ ⇔ |3⟩ transition, and laser B only couples to the
|2⟩ ⇔ |3⟩ transition. This allows us to ignore any Ωb1 and Ωa2 terms.6

2Here we can see the atom has gained +ℏka,b momentum. If the atom began in the
|2,p+ ℏ(ka − kb)⟩ state it would return to the |1,p⟩ state via the same process, ‘gaining’
−ℏka,b momentum.

3In the case of co-propagating beams keff = 0 however in this thesis we will only be dealing
with counter-propagating beams. The reason for this is that the coupling of internal states to
external momentum states is essential for atom interferometry, we will see this in Chapter 3.

4It may be helpful to note that V̂ ∗
13 = V̂31, V̂

∗
23 = V̂32, and vice-versa.

5i.e. ⟨1| d̂ ·E |2⟩ = ⟨2| d̂ ·E |1⟩ = 0 as the transition is dipole forbidden.
6In reality the light would still interact; however rather than drive transitions it would

contribute towards an AC Stark shift. A full treatment including these absent terms can be
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By substituting the atomic wavefunction, Equation 2.2, and the three-level
Hamiltonian, Equation 2.10, into the TDSE, Equation 2.3, we arrive at the
following coupled differential equations:

iℏ
∂

∂t
c1(t) = E1c1(t) + V̂13c3(t) (2.13a)

iℏ
∂

∂t
c2(t) = E2c2(t) + V̂23c3(t) (2.13b)

iℏ
∂

∂t
c3(t) = E3c3(t) + V̂ ∗

13c1(t) + V̂ ∗
23c2(t) (2.13c)

These equations are non-trivial to solve. To simplify this system we make
the transformation |Ψ′(t)⟩ = T̂ |Ψ(t)⟩, where the diagonal unitary matrix T̂ =
I · eiEnt/ℏ and ⟨n|Ψ′(t)⟩ = bn(t) = cn(t)e

iEnt/ℏ [38].7 This has the effect of
performing substitutions that factor out the fast oscillations of the atomic
states. We can see this by performing this substitution on the TDSE—a
detailed derivation can be found in Appendix A.1.1—to obtain the transformed
Hamiltonian:

Ĥ ′ = T̂ ĤT̂ † − iℏT̂
∂

∂t
T̂ † =

 0 0 V̂ ′
13

0 0 V̂ ′
23

V̂ ′∗
13 V̂ ′∗

23 0

 , (2.14)

where the new elements are

V̂ ′
13 =

ℏΩa1

2

(
e

i
ℏ (E1−E3)t−i(ωat+ϕa) + e

i
ℏ (E1−E3)t+i(ωat+ϕa)

)
(2.15)

V̂ ′
23 =

ℏΩb2

2

(
e

i
ℏ (E2−E3)t−i(ωbt+ϕb) + e

i
ℏ (E2−E3)t+i(ωbt+ϕb)

)
. (2.16)

We now (re)introduce the single-photon detuning for each laser8

∆ = ωa − (E3 − E1) /ℏ (2.17)

= ωb − (E3 − E2) /ℏ+ δab (2.18)

found in Dunning [40].
7I realise that it may be confusing to have quantities b2(t) and Ωb2 in close proximity

to each other. Remember that these are not labelled similarly for any other reason than
convention (and some aesthetics). The notation of laser B and the state amplitudes bn are
independent of each other.

8It is also perfectly valid to define this as if ∆ were ‘below’ |3⟩ in Figure 2.1. There would
simply be just a change of sign (can be interpreted as the ‘atom’ rotating in the opposite
direction) for the terms in this section.
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where the two-photon detuning is

δab = ωa − ωb − (E2 − E1) /ℏ (2.19)

= (ωa − ωb)−

(
ω2 +

(p+ ℏkeff)
2

2mℏ

)
+

(
ω1 +

p2

2mℏ

)
(2.20)

= [(ωa − ωb)− (ω2 − ω1)]− keff · v − ℏk2
eff

2m
(2.21)

= δL − δDoppler − δrecoil. (2.22)

Here we have defined separate contributions to the detuning: the laser detuning
δL = (ωa − ωb)− (ω2 − ω1), the Doppler shift of the atom relative to the lasers
δDoppler = keff · v, and the recoil shift δrecoil = ℏk2

eff/2m. For this thesis the
Doppler contribution will be particularly important in Chapter 3.

Using these definitions of the detunings, Equations 2.15 and 2.16 become

V̂ ′
13 =

ℏΩa1

2

(
ei(∆−2ωa)t−iϕa + ei∆t+iϕa

)
(2.23)

V̂ ′
23 =

ℏΩb2

2

(
ei(∆−δab−2ωb)t−iϕb + ei(∆−δab)t+iϕb

)
. (2.24)

Here we can see that the more off resonant the lasers are from the transitions the
faster the terms oscillate. In particular the ‘off-resonant’ terms, ei(∆−2ωa)t and
ei(∆−δ−2ωb)t, will always oscillate much faster than their ‘resonant’ counterparts,
ei∆t and ei(∆−δ)t.9 These rapidly oscillating terms will average out and are
negligible. This is called the rotating wave approximation (RWA). Under this
approximation the three-level Hamiltonian becomes

Ĥ =
ℏ
2

 0 0 Ωa1e
i∆t+iϕa

0 0 Ωb2e
i(∆−δ)t+iϕb

Ω∗
a1e

−i∆t−iϕa Ω∗
b2e

−i(∆−δ)t−iϕb 0

 . (2.25)

2.1.3 Effective two-level atom

Now we have simplified the three-level Hamiltonian, in this section we will
see how we can turn this three-level system into a two-level system where

9From Figure 2.1 we can see that ωa ≫ ∆. In a real system the sign of ∆ can change,
however it is unimportant as, for rubidium, ωa is on the scale of THz whereas ∆ is usually on
the scale of GHz. If we used a definition where ∆ = ω31 − ωa, a factor of −2ω31 and −2ω32

would neatly fit into the terms of this substitution. The approximation we make here would
remain valid as the difference between the upper and lower energy levels is also much greater
than ∆.
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population is only transferred coherently between |1⟩ and |2⟩. This is seen
when the single-photon detuning is sufficiently large: |∆| ≫ |Ωa1|, |Ωb2|, |δab|.
Under this condition any transfer of population to |3⟩ is negligible, including
any associated spontaneous decay [39].10

We begin by solving the TDSE for |Ψ′(t)⟩ and the transformed RWA Hamiltonian
found in Equation 2.25. This gives the following equations:

iℏ
∂

∂t
b1(t) = b3(t)

ℏ
2
Ωa1e

i∆t+iϕa (2.26a)

iℏ
∂

∂t
b2(t) = b3(t)

ℏ
2
Ωb2e

i(∆−δab)t+iϕb (2.26b)

iℏ
∂

∂t
b3(t) = b1(t)

ℏ
2
Ω∗

a1e
−i∆t−iϕa + b2(t)

ℏ
2
Ω∗

b2e
−i(∆−δab)t−iϕb . (2.26c)

Remembering that bn(t) = cn(t)e
iωnt, the amplitudes b1(t) and b2(t) oscillate

much slower than b3(t). Therefore we can treat them as being constants and
integrate Equation 2.26c, remembering that ∆ ≫ δab, to obtain:

b3(t) = b1(t)
Ω∗

a1

2∆
e−i∆t−iϕa + b2(t)

Ω∗
b2

2∆
e−i(∆−δab)t−iϕb . (2.27)

Substituting this result into Equations 2.26 gives

iℏ
∂

∂t
b1(t) =

ℏ
2

(
b1(t)

|Ωa1|2

2∆
+ b2(t)

Ωa1Ω
∗
b2

2∆
ei(δabt−ϕL)

)
(2.28a)

iℏ
∂

∂t
b2(t) =

ℏ
2

(
b1(t)

Ω∗
a1Ωb2

2∆
e−i(δabt−ϕL) + b2(t)

|Ωb2|2

2∆

)
(2.28b)

iℏ
∂

∂t
b3(t) = b1(t)

ℏ
2
Ω∗

a1e
−i∆t+iϕa + b2(t)

ℏ
2
Ω∗

b2e
−i(∆+δab)t+iϕb , (2.28c)

where we have defined the effective laser phase ϕL = ϕb − ϕa.
11 This represents

the phase of the ‘standing wave’ the two counter-propagating lasers create. We
will address this in more detail in Chapter 3.

We can see that the populations of states |1⟩ and |2⟩ now no longer depend on
b3, the population of |3⟩. We have therefore uncoupled the ground states from
the excited state of the three-level atom. By inspection we can see that the
effective two-level Hamiltonian is

Ĥ =
ℏ
2

(
2ΩAC

1 ΩRe
+i(δabt+ϕL)

Ω∗
Re

−i(δabt+ϕL) 2ΩAC
2

)
, (2.29)

10By this we have also assumed that the population of |3⟩ starts at zero i.e. b3(t = 0) = 0.
11The choice of sign for the definition of ϕL is arbitrary. Defining ϕL = ϕa − ϕb is perfectly

reasonable.
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where we have defined the two-photon Raman Rabi frequency

ΩR =
Ωa1Ω

∗
b2

2∆
, (2.30)

and the AC Stark shift ΩAC
1,2 = |Ωa1,b2|2/4∆ of each state. The Raman Rabi

frequency is analogous to the single photon Rabi frequencies except it is now
describing the coupling strength between the two ground states: a previously
forbidden transition. In reality this transition is still forbidden by any other
means than the Raman lasers driving the transition; therefore we have also
effectively eliminated any spontaneous decay in the atomic system. The expres-
sion for the Stark shift we have here is slightly incomplete. It would take on a
slightly different form that includes both laser contributions to each level; which
would only add towards the light shift of each level. A full treatment including
these terms can be found in Dunning [40]. However for this thesis these terms
are largely ignored. We can apply another transformation to the Hamiltonian

to simplify these Stark shift terms. The transformation I · ei(ΩAC
1 +ΩAC

2 )t/2 turns
the diagonal elements of the Hamiltonian into terms representing the difference
in the Stark shifts δAC = ΩAC

2 − ΩAC
1 :

Ĥ ′ =
ℏ
2

(
−δAC ΩRe

+i(δabt−ϕL)

Ω∗
Re

−i(δabt−ϕL) δAC

)
. (2.31)

We can make a final transformation in order to remove time dependence from
the Hamiltonian. We do this by transforming into a frame rotating around the
z axes at rate δab. This is expressed by the operator [38]12

R̂ =

(
e−iδabt/2 0

0 eiδabt/2

)
. (2.32)

This transformation results in the rotating frame Hamiltonian

ĤR =
ℏ
2

(
δ ΩRe

−iϕL

Ω∗
Re

+iϕL −δ

)
, (2.33)

where we have defined the total detuning into δ = δab − δAC. We have now
arrived at a time-independent13 two-level Hamiltonian of a three-level atom
undergoing Raman transitions between its two ground levels. We will use this
Hamiltonian to build an atom interferometry ‘tool-kit’.

12This is constructed using a matrix exponential of the Pauli spin matrix, σ̂z, and the
identity exp(iασ̂) = I cos(α) + iσ̂ sin(α).

13We will see later on in Chapter 3 that we can ‘nudge’ some necessary time-dependence
back and solve for a very simple case.
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2.2 The Bloch sphere and Rabi oscillations

In Equation 2.6 we introduced the concept of the Rabi frequency and proceeded
to use it extensively. Here we describe the importance of this quantity and
its relation to atom interferometry. In order to do so we first introduce the
Bloch sphere [42]: a method to visually and intuitively represent the state and
evolution of a two-level atom. A different method of deriving the equations in
this section using the density matrix can be found in Appendix A.2. The Bloch
sphere figures were generated using the QuTiP package [43, 44].

Following from Equation 2.33, we now attempt to show the dynamics of the
two-level atom. However rather than arriving at a set of differential equations
through solving the TDSE we find a much more useful14 ‘time-propagator’
operator[38, 45]. Section A.3.1 shows the following steps in more explicit detail.
Assuming that the Hamiltonian is time-independent,

|Ψ(t)⟩ = exp

[
−i

ℏ
Ĥ · (t− t0)

]
|Ψ(t0)⟩ (2.34)

is a solution to the TDSE.15 We can call the exponential a new time-propagator
operator that takes |Ψ(t = t0)⟩ to the new state at arbitrary time t:

Û(t, t0) = exp

[
−i

ℏ
Ĥ · (t− t0)

]
. (2.35)

Before we plug the rotating frame Hamiltonian (Equation 2.33) into this operator,
let us first represent it in terms of the field vector,

Ω = ΩR cos(ϕL)x̂+ ΩR sin(ϕL)ŷ + δẑ, (2.36)

and the vector of Pauli matrices, σ̂ = (σ̂x, σ̂y, σ̂z)
T:

ĤR =
ℏ
2

(
δ ΩRe

−iϕL

ΩRe
iϕL −δ

)
=

ℏ
2
Ω · σ̂. (2.37)

This allows us to use the identity exp [iαn̂ · σ̂] = I cos(α) + in̂ · σ̂ sin(α) on
the time-propagator operator, where α = −

√
Ω2

R + δ2(t − t0)/2 and n̂ =

Ω/
√

Ω2
R + δ2. We arrive at a matrix with the form

Û =

(
C∗ −iS∗

−iS C

)
, (2.38)

14At least in my opinion.
15Valid for any time-independent Hamiltonian... not just the one we happen to have also

made time-independent.
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where the elements C and S are

C = cos

(√
Ω2

R + δ2

2
(t− t0)

)
+

iδ√
Ω2

R + δ2
sin

(√
Ω2

R + δ2

2
(t− t0)

)
(2.39)

S = eiϕL
ΩR√

Ω2
R + δ2

sin

(√
Ω2

R + δ2

2
(t− t0)

)
. (2.40)

We can see that Û is a function of t, t0, ΩR, δ, and ϕL. By adjusting these
parameters we can provide different ‘pulses’ of light to the atom - controlling
its state. To show the effect of these on the atomic state we will introduce the
state vector

R = ux̂+ vŷ + wz, (2.41)

where u, v, and w are the Optical Bloch Equations (OBEs):

u = ⟨Ψ| σ̂x |Ψ⟩ = c1c
∗
2 + c∗1c2 (2.42a)

v = ⟨Ψ| σ̂y |Ψ⟩ = i (c1c
∗
2 − c∗1c2) (2.42b)

w = ⟨Ψ| σ̂z |Ψ⟩ = |c1|2 − |c2|2 (2.42c)

The state vector, R, can be plotted on a unit sphere. On this sphere the poles
would represent the ‘pure states’, in this case |1⟩ and |2⟩ in the +ẑ and −ẑ
directions respectively. Any mixed state will have components along the equator
where the angle of the vector along the x̂–ŷ plane is the global phase.16 This
is representation is the Bloch sphere picture. We can also represent the field
vector, Ω, on the Bloch sphere.

Figure 2.2 shows these vectors on the Bloch sphere and how Ω affects the state
of R and therefore |Ψ⟩. We can see that the atomic state ‘orbits’ around the
field vector, and thus the state population to oscillate. It can be seen that Ω
causes a ‘torque’ on R: Ṙ = R×Ω. This relation is shown more rigorously in
Appendix A.2. The frequency of this oscillation is the (effective) Rabi frequency,
Ωeff = |Ω| =

√
Ω2

R + δ2, which is also described by the magnitude of the field
vector. Any detuning ‘lifts’ the field vector off the sphere’s equator and increases
its magnitude. This can be seen in Figure 2.2b as Ω protrudes out of the Bloch
sphere; R has ‘rotated’ around the field vector by a larger angle over the same
period as in Figure 2.2a. However due to the smaller angle between R and Ω,
the atomic state doesn’t ever fully reach the other state. It can be seen that
the ‘amplitude’ of the state population oscillations is decreased in this scenario,

16It may be worth noting, to clear up any confusion, that these dimensions are not the same
spatial coordinates we physically occupy. These are just the dimensions of this particular
representation.
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|2⟩
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|Ψ(t0)⟩

|Ψ(t)⟩

(a) δ = 0

x

y

|1⟩

|2⟩

R

Ω

(b) δ = ΩR

Figure 2.2: Visual representation of the light field, Ω, and the atomic state,
|Ψ⟩ ≡ R, using Equations 2.36 and 2.41, shown by the blue and red arrows
respectively. The faded blue arrow represents the initial state of the atom—here
the atom starts with c1(t0) = 1. The blue line represents the path the state
vector, R, has taken over the period t = π/ΩR. (a) shows the case where δ = 0
and (b) where δ = ΩR. The trajectories and vector positions calculated by
applying Equation 2.38 to the initial atomic state for each time step.

whilst the frequency is increased. Figure 2.3 shows this sinusoidal oscillation
called Rabi oscillations or Rabi flopping [41]. Here we can also see the effect of
detuning on the Rabi oscillations. This and many of the graphs throughout this
thesis were generated with the matplotlib python package [46].

If we increase the duration of the light pulse, the atomic state will continue
to rotate around Ω. After a period of t = 2πn/Ωeff, where n is an integer, the
atomic state will have oscillated back to its initial state.17 In the case for δ = 0,
the state will continue to ‘flop’ sinusoidally between the two pure states as the
light pulse is increased. During the time between the atom being in either |1⟩
or |2⟩ the atom will be in a superposition of those states.

If we time a resonant (δ = 0) light pulse duration to be half-way between a
full oscillation, t = π/ΩR, we will have completely swapped the atomic state
population. Similarly, by timing the pulse to stop ‘in-between’ the two states
we can engineer a coherent superposition of the two states. For equal state
probabilities we would time the pulse so that the atom stops at the midpoint:
t = π/2ΩR. This forms the basic tools for coherently manipulating the atomic
state for atomic interferometry: π (mirror) pulses and π/2 (beam-splitter) pulses

17i.e. |Ψ(t0)⟩ = |Ψ(n2π/Ωeff)⟩ where n in an integer.
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Figure 2.3: Simulation of Rabi oscillations of an atomic state by resonant
and detuned light. The time axis is scaled to the period of half a resonant
Rabi flop. This simulation was achieved by numerically computing the effect of
Equation 2.38 on the atomic state at each time.

respectively. This will be discussed in more detail in Chapter 3. Therefore
any system that can undergo Rabi oscillations by Raman transitions can be an
atomic interferometer.

2.2.1 Dephasing in an ensemble

As we can see in Figures 2.2 and 2.3 a detuning changes the path taken on the
Bloch sphere. The larger the detuning, the smaller the amplitude of the Rabi
oscillations and the higher the oscillation’s frequency.

In an atomic ensemble, where the atoms have a temperature and a distribution
of velocities, each atom will see a slightly different Doppler shifted laser. This
would mean that each atom, while beginning in the same state, would oscillate
as if seeing a slightly different detuning from its different speed neighbour. When
measuring the atomic state of the ensemble, it would be impossible to select
individual atoms; the measured signal would be the average state of the ensemble.
Figure 2.4 shows the effect of this dephasing in the ensemble.

As we increase the temperature of the ensemble, a larger portion of the atoms
contribute to a detuned signal. This acts to ‘dephase’ the overall Rabi oscillations
of the ensemble from an atom that experiences no Doppler shift. This is seen by
the oscillations damping until eventually the ensemble resembles a steady state.
The hotter the ensemble the faster the damping rate. As a larger proportion
of atoms are contributing to a detuned signal their average also has a smaller
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Figure 2.4: Simulation of Raman dephasing in ensemble of atoms. This
simulation is illustrative and is not to make any useful experimental predictions.
Graph (a) shows how changes in the temperature of the ensemble affects the
overall phase, decay rate, and amplitude of the ensemble average population.
Similarly graph (b) shows how laser detuning affects this in a 5µK ensemble. The
simulations used 1000 atoms with velocities distributed by the one-dimensional
Maxwell-Boltzmann distribution. Using Equation 2.38, the progression of each
atom’s state population was calculated with the detunings determined through
the atom’s Doppler shift.

amplitude. This is seen by a decreased signal when the ensemble has reached a
steady state. To minimise these effects in an experiment it is important to cool
the atoms as much as possible.

The same effect occurs due to laser detuning. Now a much smaller portion of the
atoms experience resonant light, again due to their Doppler shift. So a greater
fraction of the atoms are contributing to the detuned signal. In an experiment
this can be used as a method for spectroscopy, as it allows probing of the Raman
linewidth.

This is also a reason why a large ΩR is beneficial experimentally. Increasing Ω
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Figure 2.5: 85Rb D2 hyperfine structure. For more detail please refer to Steck
[49] where the data presented here was taken from.

in the ‘resonant’ x̂–ŷ plane decreases this dephasing effect. A large part of the
work by Saywell [38] is to confront and alleviate the difficulties that effects such
as this present in an atomic interferometer.

We have not included any spontaneous emission in the atomic model of this
chapter. The reasons for this is that we are transitioning between atomic states
whose single-photon transitions are forbidden.18 Carey [47] and Fox [48] include
spontaneous decay in their discussion.

2.3 Rubidium-85

In our experiments we use 85Rb, atomic number 37, the hyperfine structure
of which can be seen in Figure 2.5. These transitions, named the D2 line,
conveniently sit around 780 nm. This wavelength is convenient because laser
diode technology at that wavelength is well developed due to its application
in commercial CD drives. Rubidium also has a high vapour pressure at room
temperature, enabling vapour cells for absorption spectroscopy to be used for
laser locking.

18Remember this is an assumption made at the beginning of this chapter. We are using a
two-photon Raman transition to ‘bypass’ the single-photon forbidden transition.
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Rubidium has two distinct fine-structure atomic transitions from the
∣∣52S1/2

〉
ground state to the excited

∣∣52P1/2

〉
(D1) and

∣∣52P3/2

〉
(D2) states at 795 nm and

780 nm respectively [49].19 85Rb has a nuclear spin angular momentum of I = 5/2;
therefore, the ground state has hyperfine states |F = 2, 3⟩, the D1 line hyperfine
states to be |F ′ = 2, 3⟩, and the D2 hyperfine states as |F ′ = 1, 2, 3, 4⟩.20 Any
transition between these states must conserve angular momentum. This leads to
only certain transitions being permitted by the selection rule ∆F = F ′ − F =
0,±1 [48]. Another reason we choose to use the D2 line is that there is a closed
transition (only one decay route back to the initial state) of |F = 3⟩ ⇔ |F ′ = 4⟩.
The D1 line has no such transitions. This closed transition is integral to the
convenient cooling and trapping of rubidium. This and the previous factors
allow us to cool and trap rubidium with relative ease: a topic we will detail in
Chapter 4.

Rubidium has two abundant isotopes; 85Rb and 87 with relative abundances of
72.17% and 27.83% respectively [50]. A reason we choose the 85Rb isotope over
87Rb is due to the hyperfine splitting frequency of its ground states. In 85Rb
the splitting is about 3.0GHz and around 6.8GHz in 87Rb. This puts different
bandwidth requirements of equipment to use the different isotopes, with 85Rb
having a lower bandwidth requirement. The equipment used currently in the
lab in designed for 85Rb and while there is scope to use 87Rb we currently do
not have the required equipment.

2.3.1 Multiple Raman routes

At the beginning of the chapter we introduced the electric dipole matrix, d̂ = er̂,
whose elements represent the strength of an external field on the atom’s electron.
Revisiting the single-photon Rabi frequency, which represents the coupling
strength of a transition by the external field,

Ω
(L)
|F,mF ⟩,|F ′,m′

F ⟩ = −1

ℏ
⟨F ′,m′

F | d̂ · EL |F,mF ⟩ , (2.43)

where |F,mF ⟩ is the starting ground state, and |F ′,m′
F ⟩ is the excited state.21

Here we have also introduced the magnetically sensitive Zeeman sub-levels, mF ,

19The notation used for the fine structure is n 2S+1LJ , where n is the principle quantum
number (electron energy level), S is the electron spin, L is the orbital angular momentum, and
J = L+ S is the total electron angular momentum. Rather than numbers, it is convention to
use the ‘names’ of the electron orbitals for L; the first few are S = 0, P = 1, and D = 2.

20The total atomic angular momentum F has integer values satisfying |J − I| ≤ F ≤ J + I.
21This is the case for absorption of a photon, the complex conjugate of the Rabi frequency

would represent stimulated emission.
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where there are 2F + 1 levels of each state |F ⟩.22 For the rubidium transitions
we can write the single-photon Rabi frequencies as the vectors

Ωa1 =
(
Ωa

|2,mF ⟩,|1,m′
F ⟩,Ω

a
|2,mF ⟩,|2,m′

F ⟩,Ω
a
|2,mF ⟩,|3,m′

F ⟩,Ω
a
|2,mF ⟩,|4,m′

F ⟩
)

(2.44a)

Ωb2 =
(
Ωb

|3,mF ⟩,|1,m′
F ⟩,Ω

b
|3,mF ⟩,|2,m′

F ⟩,Ω
b
|3,mF ⟩,|3,m′

F ⟩,Ω
b
|3,mF ⟩,|4,m′

F ⟩
)
. (2.44b)

For 85Rb the only possible paths for the Raman transitions to be mediated
by are the |F ′ = 2, 3⟩ states. While the Raman light may fulfil the large ∆
condition for all F ′ levels, transitions between |F = 2⟩ to |F ′ = 4⟩ are forbidden.
Similarly, |F = 3⟩ cannot transition to |F ′ = 1⟩. These components in the above
vector are therefore zero.23

Extending this formalism to the Raman Rabi frequency, Equation 2.30, results
in [38, 40]:

ΩR =
|Ωa1 ·Ωb2|

2∆

=
1

2∆

∣∣Ωa
|2,mF ⟩,|2,m′

F ⟩Ω
b
|3,mF ⟩,|2,m′

F ⟩

+Ωa
|2,mF ⟩,|3,m′

F ⟩Ω
b
|3,mF ⟩,|3,m′

F ⟩
∣∣ .

(2.45)

We have applied our model to a real atom where |1⟩ = |F = 2⟩ and |2⟩ = |F = 3⟩.
Our model slightly breaks down here as |3⟩ is equivalent to two states |F ′ = 2, 3⟩.
Therefore the Raman transitions take both paths simultaneously.

2.3.2 Raman polarisations

When a transition occurs between the hyperfine F levels, in addition to obeying
∆F = 0,±1 they must also satisfy the selection rule ∆mF = m′

F −mF = 0,±1.
In the presence of a weak magnetic field, the mF levels of their respective F levels
become non-degenerate; this Zeeman splitting is given by ∆E = µBgFBmF ,
where µB is the Bohr magneton, gF is the Landé g-factor for a given F level,
and B is the magnetic field strength [41]. Whereas a transition to a different
F state is driven by the laser’s wavelength, the transition between mF levels
is determined by the laser’s polarisation relative to the applied magnetic field.
The magnetic field applies a quantisation axis to the atom. We will take the
magnetic field to be acting in the ẑ direction: B = Bẑ.

To discuss polarisations we take the atom’s perspective, at some positive ẑ
position looking towards the laser source at the origin. The polarisation of a

22These states have values given by the integers that satisfy −F ≤ mF ≤ F .
23i.e. Ωa

|2,mF ⟩,|4,m′
F ⟩ = Ωb

|3,mF ⟩,|1,m′
F ⟩ = 0
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laser beam propagating in the negative ẑ direction would still be determined
whilst looking towards the origin in a positive ẑ position i.e. π0,+,− = −π0,+,−,
and ±σ+,− = ∓σ−,+.

For linearly polarised light propagating perpendicular to ẑ, its polarisation can
be parallel with ẑ. We call this polarisation π0 which drives a transition where
∆mF = 0. If this linearly polarised light propagates in the ẑ direction, with
its polarisation parallel to either x̂ or ŷ directions it will drive a ∆mF = ±1
transition. These polarisations are called π− and π+ respectively.

To drive a ∆mF + ±1 transition with a particular sign, we require circularly
polarised light propagating along the quantisation axis ẑ. Left-circularly polar-
ised light, σ+, with the polarisation rotating anti-clockwise drives a ∆mF = +1
transition, whereas right-circularly polarised light, σ−, with the polarisation
rotating clockwise drives a ∆mF = −1 transition.24

Only particular combinations of polarisations for the two counter-propagating
beams give valid Raman transitions.25 These are all perpendicularly polarised
combinations26 which have routes through an m′

F = ±1 state. However, when
being driven to the ground state the total change ∆mF = 0. Following from
the previously described transitions, the linearly polarised case π+ − π−, named
lin-perp-lin, takes a route through m′

F = ±1. For left-circularly polarised light,
σ+ − σ+, the m′

F = +1 route is taken. Similarly the right-circularly polarised
configuration, σ− − σ−, takes the m′

F = −1 route.

The reason only certain combinations of polarisations can achieve Raman trans-
itions is that, rather than the transitions being forbidden by selection rules, the
dipole matrix elements (in Equation 2.45) cancel out. It is particularly worth
noting that the polarisations σ± − σ∓ cannot facilitate Raman transitions. As
we will see in Chapter 4 this is the required configuration for the atom trapping
beams. This polarisation requirement must be considered in any experiment
involving Raman transitions and motivates design choices in Chapter 5.

24Linear polarisations can be constructed using a superposition of circular polarisations:
π+ = (σ+ + σ−)/

√
2 and π− = (σ+ − σ−)/

√
2.

25There are other combinations that provide Raman transitions with beams that are not
counter-propagating [40]. However we are only interested in the counter-propagating case as
they are useful for atom interferometry.

26It may be more intuitive to see that these light beams are perpendicularly polarised by
looking towards the laser source, as opposed to the fixed viewpoint we have set previously.
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Atom interferometry

Broadly speaking, atom interferometry—a form of matter-wave interferometry—
is a technique where matter behaves as a wave to perform interferometry. This
is analogous to optical interferometry where constructive and deconstructive
interference causes fringes to be observed. Depending on the nature of the
experiment, these fringes can be used to perform measurements with precision
smaller than the travelling wave’s wavelength.

Perhaps the most famous example, especially in popular science, is Young’s
double slit experiment [51]. Waves diffracting through two thin slits would
interfere at a distance after propagating. Here an ‘interference pattern’ would
be observed. This pattern could only be explained through the properties of
waves. The wavelength of a matter-wave is given by the de Broglie wavelength
relation λdB = h/p, where p is the momentum of the particle.

We are able to appropriate the optical Mach-Zehnder interferometer configuration
for atom interferometry [37, 52]. Here the ‘roles’ of light and matter are
swapped; the matter becomes the propagating wave and light is used as the
mirrors and beamsplitters. We can construct this interferometer using timed
pulses of light. A beamsplitter, π/2, pulse followed by a mirror, π, pulse
and finally another beamsplitter pulse: identical to the typical optical Mach-
Zehnder. Figure 3.1 shows this matter-wave interferometry sequence. Likewise,
to any optical interferometer, a measurement with the interferometer requires
determination of the phase difference of the interferometer arms. For an atomic
interferometer we imprint this phase onto the atomic state population.

We begin this chapter by creating the ‘tool-kit’ to construct the interferometry se-
quence. This tool-kit will be used as the basis for all numerical simulations in this
chapter. We then explore how this can be used to make inertial measurements of

27
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Figure 3.1: Spatial and temporal representation of Mach-Zehnder matter-wave
interferometry sequence. The solid lines represent trajectories where the atom is
in the ground state, |1⟩, and has not gained any momentum from the light pulses.
The dashed lines represent trajectories where the atom is in the excited state,
|2⟩, and has gained momentum, 2ℏkeff, from the two light pulses. The light
pulses are applied in a beamsplitter–mirror–beamsplitter (π/2–π–π/2) sequence
chronologically; and applied along the spatial axis that is being investigated.
Here we have used the two arrows to indicate that the pulses are comprised
of two counter-propagating beams. For symmetry of the interferometer the
pulses are each separated by time T . The final output of the interferometer is
the state population, where these two populations are determined by the phase
accumulated during the interferometry sequence.



Chapter 3 Atom interferometry 29

local gravity, and some of the challenges in making such a measurement. Finally
we discuss the benefits of using a gradiometer and how such a measurement can
be achieved.

3.1 Interferometry tool-kit

Following from the results in Chapter 2, we can build the beamsplitter and mirror
pulses, also called π/2 and π–pulses respectively. These are pulses of counter-
propagating Raman beams along the axes we wish to make a measurement along.
In the ideal case the pulses are resonant, δ = 0, and maintain the same phase,
ϕL, at each pulse. We also set t0 = 0 for the purposes of each pulse. We will
see later how this is not the case when making measurements, however we will
assume this holds true while we build the pulses.

To construct a π–pulse we use Equation 2.38 with t = π/ΩR (half the period of
a full Rabi oscillation). This results in

Ûπ =

(
0 −ie−iϕL

−ieiϕL 0

)
. (3.1)

Hence the two-level atom wavefunction is transformed into

|Ψ⟩π =

(
c1(tπ)
c2(tπ)

)
= −i

(
e−iϕLc2(t0)
eiϕLc1(t0)

)
. (3.2)

As expected for a mirror pulse, the state populations become swapped. We know
this intuitively from the Bloch sphere picture presented in Section 2.2. We can
also see that this facilitates the mirror function in Figure 3.1. It is important to
remember, as we showed in Section 2.1.1, that the internal states are coupled to
the external momentum states. When we swap the states we also swap their
momenta and therefore direction in the interferometer.

We construct a beamsplitter pulse in the same way. Using the time propagator
matrix, Equation 2.38, with t = π/2ΩR we obtain:

Ûπ/2 =
1√
2

(
1 −ie−iϕL

−ieiϕL 1

)
, (3.3)

transforming the waveform into

|Ψ⟩π/2 =
1√
2

(
c1(t0)− ie−iϕLc2(t0)
c2(t0)− ieiϕLc1(t0)

)
. (3.4)
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From this equation it is slightly less intuitive what happens. Returning to the
Bloch sphere picture, when the atom is in a pure state a beamsplitter pulse
will put the atom in an equal superposition of both states. This effect of the
beamsplitter pulse on the momentum states can be seen in Figure 3.1. Similarly
when the atom is in a superposition, the pulse will attempt to return the atom
to the other basis state.1 An important feature to note is that this depends on
the angle between the state vector and the laser phase, ϕL. This fact allows us
to map the atomic phase onto its state populations.

A change in the atom’s phase, relative to the laser phase, during the sequence
would be reflected onto the final atomic state. Currently, the π/2–π–π/2
sequence will simply return the atomic state to its initial state. The atomic
phase accumulation occurs during the time between the interferometry pulses.
This stage of the interferometry determines what the interferometer is sensitive
to—what is being measured. We call this period of the sequence free evolution.

3.1.1 Free evolution operator

When we approach the time between the interferometry pulses, the free evolution
time, the assumption—made in Equation 2.34—that the Hamiltonian is time-
independent breaks down. Here we need to introduce time dependence into
the Hamiltonian. Thankfully when setting the Rabi frequency to zero, i.e. no
laser, the Hamiltonian only has diagonal elements—this makes the TDSE much
simpler to solve. A more detailed description of the following steps can be found
in Appendix A.3.2. We introduce time dependence into the Hamiltonian through
the Doppler shift in Equation 2.22:

δDoppler(t) = keff · v(t) = keff · (v0 + at) , (3.5)

where v0 is the initial velocity of the atom, and a is the acceleration experienced
by the atom in time t. The Doppler shift the atom experiences–hence the
detuning—is dependent on its velocity, and therefore its acceleration. This
changes the phase the atom’s state accrues compared to the laser’s phase. Solving
the TDSE with the diagonalised rotating frame Hamiltonian, Equation 2.33,
results in the following differential equations:

iℏ
∂

∂t

(
c1(t)

c2(t)

)
=

ℏ
2

(
δ(t)c1(t)

−δ(t)c2(t)

)
. (3.6)

1This follows that a beamsplitter pulse is ‘half’ a mirror pulse, both in period and function.
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This has solutions

c1(t) = c1(t0) exp

[
− i

2

∫ t+t0

t0

δ(τ) dτ

]
(3.7a)

c2(t) = c2(t0) exp

[
+
i

2

∫ t+t0

t0

δ(τ) dτ

]
. (3.7b)

Therefore the transformed wavevector is

|Ψ(t)⟩FE =

(
exp
[
− i

2
keff ·

(
v0t+

1
2
a [t2 + 2tt0]

)]
c1(t0)

exp
[
+ i

2
keff ·

(
v0t+

1
2
a [t2 + 2tt0]

)]
c2(t0)

)
. (3.8)

As expected, only the phase of the atomic population changes. Importantly, this
phase change depends on the acceleration, or forces, the atom experiences. We
can write the free evolution ‘operator’ to be

ÛFE =

(
e−

i
2
keff·(v0t+

1
2
a[t2+2tt0]) 0

0 e+
i
2
keff·(v0t+

1
2
a[t2+2tt0])

)
. (3.9)

Assuming the pulse lengths to be small compared with t, for the first period of
free evolution (between the first beamsplitter pulse and the mirror pulse) t = T1.
For the second period of free evolution we want to begin where the previous free
evolution ended (i.e. t0 ≡ T1 + t0) and end after a period of T2: t = T2. For the
purposes of this thesis we will only consider the case for equal periods of free
evolution, T = T1 = T2. It is also worth noting that in previous parts of the
interferometry sequence we have taken t0 to be at the start of that interferometry
pulse, however here t0 is the start of the interferometry sequence when the atoms
have initial velocity v0. We will see later that under this restriction the static
terms in the detuning cancel out for the final interferometer phase shift.2 To
simplify the algebra we will only consider the δDoppler terms in our calculations.
We will see that the time independent velocity term vanishes as would the other
terms we are neglecting to show.

3.1.2 Total interferometer phase shift

Now we have the individual components of the interferometer we can construct
the entire interferometry sequence:

|Ψ⟩final = Ûπ/2ÛFEÛπÛFEÛπ/2 |Ψ(t0)⟩ . (3.10)

2The recoil shift, δrecoil, also vanishes if we consider v0 to be the average of the initial and
final velocities [53].
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Maintaining the assumptions made previously (resonant laser, constant laser
phase, and small 1/ΩR compared to T ) and the initial state |Ψ(t0)⟩ = (1, 0)T,
we find the final state of the atom to be

|Ψ⟩final =
(

− cos
(
1
2
ϕT1 − 1

2
ϕT2

)
eiϕL sin

(
1
2
ϕT2 − 1

2
ϕT1

)) , (3.11)

where the terms [38]

ϕT1 = keff ·
(
v0T1 +

1

2
a
[
T 2
1 + 2T1t0

])
(3.12a)

ϕT2 = keff ·
(
v0T2 +

1

2
a
[
T 2
2 + 2T1T2 + 2T2t0

])
(3.12b)

are the phase terms originating from the first and second period of free evolution
respectively. We can see that the final populations depend on the difference of
phase accumulated during each free evolution period. The full calculation can
be found in Appendix A.3.3.

Many analogies can be made of matter-wave interferometers [54]. The periods
of free evolution can be interpreted as the atom ‘winding up’ and then back
down like a coil, where Equations 3.12 are the angles through which the coil
has been wound. The difference in how far the atom has been ‘rotated’ each
way is the final phase term of the interferometer—which is then mapped onto
the atomic state populations. We will return to this analogy later as we have
neglected yet to involve the dynamics of the laser.

Figure 3.2 shows the state of the atom during a Mach-Zehnder interferometry
sequence on the Bloch sphere. Here we can see the effect of each interferometry
stage on the internal state of the atom. In particular the phase of the atom can
be seen clearly along the equator of the Bloch sphere.3 This is particularly useful
in showing geometrically how the difference in free evolution phases determines
the final atomic state. We can see that if ϕT1 = ϕT2 the atomic state returns to
the initial state. Likewise, if ϕT2 − ϕT1 = π we obtain an inversion of the initial
state.

We obtain the final result of the interferometer as the population of the excited
atomic state

P2 =
1

2
− 1

2
cos(Φ), (3.13)

where Φ is the total phase shift of the interferometer. When the periods of free
evolution are equal, T = T1 = T2, the total phase shift is

Φ = ϕT2 − ϕT1

= keff · aT 2.
(3.14)

3These phases have been calculated in Appendix A.3.4.
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Figure 3.2: Bloch sphere representation of Mach-Zehnder interferometry se-
quence. The blue arrows represent the starting point (faded) of the atomic state
vector, R, and end state with similarly blue trajectories. The red arrows repres-
ent the laser vector Ω. The red trajectories represent the phase accumulated
during free evolution. For each phase term we have neglected to include the
ϕL − π/2 terms as here we are mostly interested in the interaction of ϕT1 and
ϕT2 . Adapted from Saywell [38].
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We can see that keffT
2 is the space-time area enclosed by the interferometer, seen

more clearly in Figure 3.1. The phase shift due to acceleration is proportional
to this factor.4

The output of the interferometer being dependent on acceleration allows us
to use this as an inertial sensor. This technique has found applications in
measuring acceleration [58, 59], rotations [60, 61, 62, 63], and gravity [1, 16, 52].
In this thesis we are particularly interested in measuring gravity and gravity
gradients. By directing the Raman beams vertically, aligning keff vertically,
the acceleration we measure can be local gravity, g. Therefore Equation 3.14
becomes Φ = −keffgT

2.

3.2 Gravity

So far we have neglected to involve the aspects of the laser in the interferometry
sequence. Let us imagine an atom falling under earth’s gravity, seen in Figure 3.3.
If we wish to interact with this atom using resonant light we would need to
continually ‘chirp’ the laser’s frequency to match the atom’s Doppler shift. This
is no different during the interferometry sequence. When the atom is falling due
to gravity during the interferometry sequence the acceleration it experiences
is constant.5 Therefore with a constant laser phase, ϕT1 = ϕT2 and the atom
will always return to its initial state. However, the laser phase does not remain
constant. This adds extra phase terms to the interferometry sequence and affects
the final output of the interferometer. Figure 3.4 shows an example of this effect
on the Bloch sphere. In this diagram, even when ϕT1 = ϕT2 , the atom does not
return to its initial state. To return the atom back to its initial state, we must
maintain constant laser phase. This is done by phase-continuously chirping the
Raman laser frequency at each stage of the interferometry sequence to match
the atom’s Doppler shift.6 When these are matched the atom will once again
return to its initial state.

This is analogous to the phase difference accrued between two oscillators of
different frequencies. As the atom becomes Doppler shifted it sees the laser
frequency shift, and hence phase. The longer there is a frequency difference the
more phase will be accrued between them. In order to not gain any relative
phase the laser frequency must stay the same as the atoms, requiring a chirp.

4The phase shift of some gyroscope schemes can be proportional to T 3 [55, 56, 57].
5We will assume that the interferometry sequence period (2T ) is sufficiently shot that any

effect from the gravity gradient is negligible.
6Chirping also maintains resonance with the atom. Off-resonant interactions lead to

decreasing fringe amplitudes [64]. This is the same effect seen in Section 2.2.1.
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Figure 3.3: Concept of classical gravity measurement. The left side shows an
example of a classical absolute gravity measurement. The right side shows an
example of a classical gravity gradiometry measurement. In the centre is the
acceleration due to gravity, g, common to both diagrams. The coloured balls
represent the atomic test masses. The atoms in the left side are the same atom
at different times. The atoms on the right side are different atoms at different
heights, separated by ∆z. The graphs on the left represent atomic spectral lines
that become Doppler shifted.
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Figure 3.4: Top-down view of Mach-Zehnder interferometry sequence with
changing laser pulse phases. The phases ϕ1, ϕ2, and ϕ3 are the laser phases for
the π/2, π, and the final π/2 pulses respectively. The atomic state is also labelled
at each stage, represented by a blue arrow. The laser vector Ω is represented by
the red arrows. The trajectories of the atomic state are represented by the blue
and red lines for pulses and free evolution respectively. Here the phase accrued
during free evolution is the same for both periods.

We can build up a picture of the phase accrued by iterating the chirp rate. This
can then be used to find the chirp rate which matches the atom’s Doppler shift.

In the frame of the atom, there is no phase difference gained through free
evolution. The Doppler shift is experienced through interaction with the laser
pulses. Here we can define the phase of each pulse as [65]

ϕn = ωntn − keffgt
2
n + ϕ0

n, (3.15)

where ωn is the frequency of the pulse, tn is the time at which the laser is pulsed,
and ϕ0

n is the phase of the light pulse at the atom’s position at t = 0. The pulses
are numbered n = 1, 2, 3 corresponding to the π/2, π, and the final π/2 pulses
respectively. The laser’s frequency can be defined by the chirp rate β:

ωn = ω0 + β(tn − t0), (3.16)

where ω0 is the initial (unchirped) laser frequency and t0 is the time when the
chirp is started. Performing the interferometry steps (with a free evolution stage
which accrues zero phase) we obtain a final phase of

Φ = ϕ1 − 2ϕ2 + ϕ3 (3.17)

= (β − keffg)T
2 +∆ϕ0, (3.18)
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Figure 3.5: Simulation of interferometry sequence measuring gravity. Laser
phases defined in Equation 3.15 and ϕT1 = ϕT2 = 0. Horizontal axis scaled by
−keffa, in experiments chirp rate is usually measured in MHz/s. Multiple dwell
times, T , have been plotted to illustrate their effect on the fringe periodicity.

where ∆ϕ0 = ϕ0
1 − 2ϕ0

2 + ϕ0
3 is the initial phase difference between the pulses.7

This provides us two experimentally controllable variables: β and ∆ϕ0.8 Scanning
across these results in interferometer fringes. Using Equation 3.18 g can be
found to high precision.9 Figure 3.5 shows a simulated example of this when
scanning β with ∆ϕ0 = 0

There are a couple methods to obtain a gravity measurement from this. For
example Peters et al. [1, 16] uses a coarse ‘guess’ of β that corresponds roughly
to g and then varies ∆ϕ0 to fine tune. Bidel et al. [33, 34] simply varies β to
obtain fringes (similarly to Figure 3.5). Hauth et al. [29] uses a hybrid of the
two methods, first obtaining a best guess β and then tuning ∆ϕ0 to the fringe
maxima. The chirp rate is then varied to track the fringe and the absolute local
gravity is calculated.10

7It is worth noting that this is insensitive to ω0 and t0. This implies that the timing when
the chirp is initiated or even the chirp ‘offset’ is unimportant.

8Usually in experiments only one laser phase is modulated, this tends to be the final
interferometer pulse, ϕ0

3.
9Might be worth remembering that keff = 4π/λ.

10The sensitivity of an interferometer can be increased by operating on the side of a fringe
[66]. This is due to the sides of the fringes having a steeper slope than the maxima/minima
and hence are more sensitive to phase fluctuations.
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3.2.1 Phase noise

An accelerometer is also sensitive to mechanical vibrations due to the laser phase
being affected by movements of equipment—usually vibrations from a retro-
reflecting mirror. Such vibrations are indistinguishable from absolute gravity as
they modulate the laser’s phase and hence effect the atom’s phase during the
interferometry sequence. This has the effect of ‘scrambling’ the measured fringe.
As a result, the accelerometer apparatus is usually supported by sophisticated
vibration isolation/damping stages [30, 33, 67]. Classical accelerometers have
also found use in compensating for these vibrations [34, 68], creating ‘hybrid’
accelerometers.11 We have seen how the dynamics of the laser phase are used
for inertial measurements. Therefore any instability in the laser phase would
affect measurements. In a matter-wave interferometer the mechanism by which
vibrational noise affects the measurement is though the laser phase.

Even within a vibrationless environment laser phase fluctuations would still
be present. Any Raman laser system involves electronic frequency (and phase)
manipulation. Inevitably any electronic noise present in these control systems is
imprinted onto the laser phase.

There are many other contributions to the interferometric phase noise and
degradation of the interferometer fringe. For example magnetic field noise,
aberrations in wave-front uniformity, and non-uniform beam intensity. These
are discussed in detail in works such as Hinton [15], Schmidt [64], and Zhu [69].
We have chosen to focus on the noise inherent to the laser itself in this thesis as
it is most relevant to the benefits of gradiometry.

Sensitivity function

Any discussion of phase noise would be incomplete without inclusion of the
sensitivity function. With this we can quantify the effect the noise has on the
interferometer. A detailed derivation of the following can be found in Cheinet
et al. [70]. Here we only state the main results.

So far we have approximated each Raman laser pulse to be instantaneous. This
of course is not possible in a physical system.12 The laser pulses have a period

11This arrangement also allows the classical accelerometer to compensate for the slow
repetition rate of current matter-wave accelerometers.

12Not just because of physical limitations but we require, by definition, the laser pulse
durations to be scaled by the Rabi frequency, ≈ 1/ΩR. Usually the Rabi frequency is on the
order of < 100 kHz [65].
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defined by the Rabi frequency. The period of a π/2 pulse is τR = π/2ΩR,
therefore a π pulse length is 2τR. Here we can adjust T to be between when
the laser pulses are switched on and off. The means the entire interferometry
sequence has a period of 2(T + 2τR). We will also redefine t = 0 to be the
centre of the π pulse. This divides the interferometry sequence evenly into
two segments. The initial time is then ti = −(T + 2τR) and the final time
tf = T + 2τR.

Consider a laser phase fluctuation, δϕL, at time t, this fluctuation changes the
transition probability, Equation 3.13, by δP . The sensitivity function is defined
as:

gs(t) = 2 lim
δϕL→0

δP (δϕL, t)

δϕL

. (3.19)

Considering the effect of δϕL on δP during each section of the interferometry
sequence leads to [69]

gs(t) =



sin(ΩR(t+ T )) −T − 2τR < t < −T − τR

−1 −T − τR < t < −τR

sin(ΩRt) −τR < t < τR

1 τR < t < T + τR

sin(ΩR(t− T )) T + τR < t < T + 2τR

(3.20)

Outside the interferometer any laser phase fluctuations have no impact on the
interferometer phase, Φ. Therefore gs(t) = 0 during the period outside ti and tf .

Using this we can evaluate the influence of the laser phase noise on the interfer-
ometric phase:

δΦ =

∫ +∞

−∞
gs(t) dϕL(t) =

∫ +∞

−∞
gs(t)

dϕL(t)

dt
dt. (3.21)

It is more useful now to look in the frequency domain. The Fourier transform of
the sensitivity function is given by

G(ω) =

∫ +∞

−∞
e−iωtgs(t) dt, (3.22)

=
4iΩR

ω2 − Ω2
R

sin

(
ω(T + 2τR)

2

)[
cos

(
ω(T + 2τR)

2

)
+

ΩR

ω
sin

(
ωT

2

)]
(3.23)

where ω is the frequency of the phase noise component. The root mean squared
standard deviation of the interferometric phase noise is(

σRMS
Φ

)2
=

∫ +∞

0

|H(ω)|2SϕL
(ω) dω, (3.24)
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Figure 3.6: Interferometer transfer function for T = 5ms and τR = 20µs. The
frequency term here refers to the frequency within a power spectral density.
Here we can observe areas of ‘gain’ or increased sensitivity to noise (where the
transfer function > 1), and other areas where there is an attenuation effect.

where |H(ω)|2 = ωG(ω) is the transfer function of the interferometer, and SϕL
(ω)

is the power spectral density of the laser phase. Here we can see the interaction
between the laser phase fluctuations and the noise response of the interferometer.

The transfer function behaves as a filter to the interferometric noise. Figure 3.6
shows an example of a transfer function curve. Regular oscillations lead to
zeroes at fk = k/(T + 2τR), where k is an integer. These points represent
frequencies where the laser phase noise is ‘synchronised’ to the interferometer
operation; fluctuating the same for each pulse of the interferometer, cancelling
out any effect on the interferometric phase [69]. The second feature to note is
the low pass filtering effect with corner frequency f0 = (

√
3/3)(ΩR/2π) and slope

≈ 2/(ω/ΩR)
2. This is due to fast oscillations averaging out their effect. The

transfer function provides a useful tool for determining the optimum parameters
to run the interferometer with to minimise fringe noise. The interaction between
the laser phase noise power spectral density and the transfer function allow us
to effectively ignore high frequency noise; and focus efforts in minimising lower
frequency noise.
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The Allan variance13 of the interferometer signal over the period τ is

σ2
Φ(τ) =

1

τ

∞∑
n=1

|H(2πnfc)|2SϕL
(2πnfc), (3.25)

where the cycling frequency fc ≈ 1/(T + 2τR). Here we can see that the
interferometer is only sensitive to noise at multiples of this frequency. In the
case of laser phase noise the sensitivity function is given by

σ2
Φ(τ) =

(π
2

)2 SϕL

τ

T

τR
. (3.26)

Here we can see that the sensitivity of interferometer depends on the Raman
pulse length. While longer pulses would give a more sensitive interferometer
they also reduce signal strength due to atom loss from the velocity dependence
of the beams. Reduced signal strength also reduces the signal-to-noise ratio
(SNR). This becomes a balancing act to find optimal experimental parameters.

3.2.2 Gravity gradiometry

Another analogy we can use is that the Raman laser is being used as a ruler, the
wave-fronts of the light being the regular tick marks of the ruler. We can say
that during the interferometry sequence we measure the position of the atom
relative to this ruler, as the laser phase is imprinted onto the atom. As we have
discussed in the above section, if we have an unstable ruler our measurement
will lose precision. If however we are measuring the distance between two stable
points, as seen in Figure 3.3, this differential measurement is unaffected by the
instability of the ruler. Likewise if we have two gravimeters using exactly the
same Raman laser beam, a differential measurement would be insensitive to the
common laser phase noise. This is the benefit of using gradiometry for noisy
applications.

A measurement of the gravity gradient is a differential measurement of gravity
divided by the separation between the two measurement locations [12]

∆g =
gupper − glower
zupper − zlower

, (3.27)

where gupper,lower are the absolute gravity measurements for the upper and lower
sensors at positions zupper,lower. This is found through the difference in the

13The Allan variance is similar to the variance however measured over different time periods
τ [71, 72].
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interferometric phase shifts

∆Φ = Φupper − Φlower (3.28)

= keff∆gT 2 (zupper − zlower) +
(
∆ϕ0

upper −∆ϕ0
lower

)
. (3.29)

We have (re)introduced the laser phase term ∆ϕ0 for the upper and lower
measurements. This laser phase term is where we will absorb any noise terms
in the experiment. As mentioned previously if this noise is common to both
interferometers then ∆ϕ0

upper = ∆ϕ0
lower and their term vanishes. This ‘common

mode’ noise rejection is why gravity gradiometers are well suited to practical
applications.

Figure 3.7 shows a simulation of an example gradiometric measurement. We
introduce a random vibrational noise, common to both interferometers, in
Figure 3.7b. To make any sense of the noisy data it can be displayed in a
Lissajous plot. To extract the phase differential a parametric ellipse can be
fitted to this data [20]:14

x(t) = A sin(t) +B (3.30a)

y(t) = C sin(t+∆Φ) +D, (3.30b)

where A and C represent the amplitudes of the measured interferometric fringes,
and B and D are the coordinates for the centre of the ellipse. Here we see that
the phase scrambling due to (common) noise does not impede the gradiometric
measurement. It may also be interesting to note that, since now only the phase
relationship matters between the two interferometers, an accurate frequency
chirp is also no longer required. Experimentally the chirp is now only necessary
to maintain resonance. The scrambling by the vibrational noise can probe the
phase relationships of the two interferometers.15

Equation 3.29 also allows us to see the stability required for phase noise not
common mode to both interferometers. This is of particular interest in this thesis
as the final goal of the PLAIN-GG project is to actively maintain the phase
correlation of the Raman beams. For 30Eotvos of sensitivity (= 30× 10−9 s−2),
with 780 nm light, T = 40ms (the maximum time for the chamber described
in Chapter 5), and a baseline separation of 4m, we obtain a phase stability
requirement of ≈ 3mrad during the period of the interferometer. This is
achievable with Raman laser stability [30] and optical stability methods [36].
This is for a single-shot of data. In an actual experiment many data-points
would be collected and averaged relaxing this requirement. It is also possible to
improve this sensitivity requirement using techniques such as large momentum
transfer and composite pulses [74, 75, 76].

14There are also more complicated methods using Bayesian estimators [73].
15Perhaps in very stable environments a chirp would still be required.
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Figure 3.7: Simulation of gravity gradiometer with random common mode
noise added to acceleration detected. Here the ‘upper detector’ measures an
acceleration 10% smaller than the ‘lower detector’. The chirp rates in (a) and
(b) are scaled to the gravitational acceleration experienced by the lower detector.
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In this chapter we have taken a simplified approach to the effect of gravity
gradients on the interferometer sequence. In reality they also induce phase shifts
on each interferometer [12]. We have also assumed no rotations, such as those
induced by Earth’s rotation. Wu [77] includes this in their model.



Chapter 4

Atom trapping

In order to implement the atom interferometry technique described in Chapter 3,
we need the ability to coherently manipulate atoms. At room temperature,
collisional decoherence events are common and prevent any coherent states to
survive long enough to be useful. By sufficiently reducing the temperature of
the atoms we can prevent these events. Isolation from the environment is also a
necessary measure against decoherence. By trapping and cooling atoms to sub-
Kelvin temperatures, we are able to observe coherent effects on a macroscopically
sized sample of atoms.

In this chapter we introduce how laser cooling and trapping of atoms, specifically
85Rb, can be achieved. We then describe methods used to characterise, and
therefore optimise, a MOT. The treatment given here closely follows that in
Foot [41] and Himsworth [78].

4.1 Scattering force

The central idea behind laser cooling is that radiation has momentum: p = ℏk,
where ℏ is the reduced Planck constant, and k is the light’s wave-vector. During
light-matter interaction, the light is able to impart its momentum onto the atom.
This happens in two ways: the absorption of the photon imparts a momentum
‘kick’ in the direction of the light beam, k̂; and spontaneous emission imparts
another kick in a random direction. Under steady illumination from the light, the
atoms undergo successive absorption and emission events: receiving successive
kicks. These kicks average out to slow down the atom. Therefore the magnitude
of this ‘scattering’ force is the product of the photon momentum and the atom’s

45
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scattering rate1

Fscatt = ℏkRscatt, (4.1)

where the scattering rate is the product of the transition linewidth and the
population of the excited state:

Rscatt = Γρ22 =
Γ

2

Ω2/2

δ2 + Ω2/2 + Γ2/4
, (4.2)

where Γ is the transition linewidth, ρ22 is the excited state population2, Ω is
the single photon Rabi frequency, and δ is the detuning. Here the detuning is
the sum of the laser detuning and the Doppler shift: δ = ω − ω0 + kv, where
ω is the laser frequency, ω0 is the transition frequency. The Doppler shift, kv,
is the product of the atom’s velocity, v, and the laser’s wave-vector. The Rabi
frequency, Ω, and the transition linewidth, Γ, are related to the light intensity,
I, and the transition’s saturation intensity, Isat, by

I

Isat
=

2Ω2

Γ2
. (4.3)

The scattering force is therefore

Fscatt(δ) = ℏk
Γ

2

I/Isat

1 + I/Isat + (2δ/Γ)2
. (4.4)

This is only be useful for slowing atoms travelling towards the laser source [79].
By employing multiple pairs of beams in counter-propagating directions we can
attempt to cool atoms along all axes.

4.2 Optical molasses

Atoms in a gas will have a distribution of velocities in all directions. To slow
the atoms down—cooling them— we direct counter propagating beams of equal
intensity and same frequency at the atoms along all three axes.3 Since the
atoms are provided with equal and opposite forces, it can be seen that there is
no net force. However, this is only true for stationary atoms.4 Atoms moving
along beam axis will experience a Doppler shift of the light, imbalancing these

1Since we are only talking about forces in the direction of the light beam k̂, we will drop
the vector notation for simplicity.

2This is the same quantity as in Equation A.6.
3This also has the effect of creating standing waves which we will discuss in Section 4.6.
4This is the aim anyway, as a stationary atom is a cold atom indeed.
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forces. We can detune the laser light to selectively interact with atoms of certain
velocities along k̂. If we detune the light to red (δlaser = ω − ω0 < 0) then
only atoms moving towards the light will become resonant and receive a kick
‘backwards’. Blue detuning the light (δlaser > 0) will have the opposite effect
and kick atoms already travelling in the direction of the light further in that
direction.

Consider a single atom moving along an axis. The force on the atom is the sum
of the scattering forces from the counter-propagating lasers:

Fmolasses = Fscatt(δlaser + kv) + Fscatt(δlaser − kv) (4.5)

≈ 4ℏk2 I

Isat

2vδlaser/Γ[
1 + I/Isat + (2δlaser/Γ)

2]2 (4.6)

≈ −αv, (4.7)

where α is the damping coefficient given by:

α = 4ℏk2 I

Isat

−2δlaser/Γ[
1 + (2δlaser/Γ)

2]2 . (4.8)

We have neglected the term I/Isat ≪ 1 in the denominator as we are dealing
with intensities far below saturation in this treatment [41]. We have assumed
that the Doppler shift is small compared to δlaser and Γ. Figure 4.1 shows these
forces on the atom. At low velocities, |kv| ≪ Γ, we see that a force is exerted
on the atom dampening its movement in either direction. This is analogous to a
particle moving in a viscous sticky liquid, such as treacle, where F ∝ v. This
analogy leads to this technique often being called ‘optical molasses’ [80].

The negative sign in Equation 4.8 is due to the necessity of red, or negative,
detuning: to exhibit damping α must be positive. Figure 4.1 shows two regimes
of detuning which have slightly differing effects on the atoms. The δlaser = −Γ/2
case shows a steeper gradient, hence larger α, about |kv| = 0. This would slow
the atoms more then the δlaser = −3Γ/2 light, which has a flatter gradient about
the origin. However this is able to cool a larger range of velocities, leading to
more atoms being cooled. There is then a trade-off between the size of an atom
trap and its loading rate.

If we extend this model to have counter-propagating beams along all 3 axes we
can begin to cool atoms in all directions. Equation 4.7 and Figure 4.1 imply
that the atom will eventually reach rest. Sadly this is physically unrealistic and
we have not taken into account heating from fluctuations in the forces on the
atom. An absorption event is always followed by an spontaneous emission event;
while this eventually averages to zero force, the fluctuations lead to a cooling
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Figure 4.1: Scattering forces on an atom from two counter-propagating beams.
Plot (a) has laser detuning δ = −3Γ/2 and (b) has δ = −Γ/2. The dashed lines
describe the force from the individual beams and the solid lines are the sum of
the forces on the atom. The positive forces are generated by the +k beam and
the negative forces are generated by the −k beam.

limit. This is called the Doppler cooling limit and will be discussed in more
detail in Section 4.6.

4.3 Trapping force

Due to the optical Earnshaw theorem [81] the scattering force is not enough to
trap and cool atoms.5 A spatially dependent force is needed in addition to the
velocity dependent scattering force. This is introduced though the Zeeman shift:

∆E = µBgFmFB, (4.9)

where µB is the Bohr magneton, gF is the Landé g-factor for a given hyperfine
F level, B is the magnetic field strength, and mF is the Zeeman sub-level that
is being shifted. We will assume the magnetic field only has components in
the z direction. The important factor to note here is that the Zeeman shift

5Briefly, the optical Earnshaw theorem determines that the scattering force alone cannot
trap atoms within the beam overlap region. This is because there cannot be a ‘sink’ of optical
fields. It may be enough to cool the atoms however they would eventually move out of the
beams and be lost to the environment.
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Figure 4.2: Diagram showing how light polarisation depends on magnetic field
vector. The helix in red is the electric field vector as the beam moves from left
to right. We have chosen to show σ− polarisation here. The large blue arrows
inside the helix is the magnetic field direction. If we look at the diagram from
its centre, between the two blue arrows, we can understand how to interpret it.
When the magnetic field is pointing in the same direction of the light (left hand
side of the image) the observer sees σ− polarisation. When looking at towards
the right hand side of the image, where the magnetic field is anti-parallel to the
direction of light, we see the light to be σ+. Inspired by Figure 5.2 in Himsworth
[78].

is proportional to the strength of the magnetic field. We can then engineer a
magnetic field that shifts the atomic energy levels differently depending on the
atom’s position. This is achieved through a quadrupole magnetic field, created
using magnetic coils in an anti-Helmholtz configuration, providing a magnetic
field gradient with a field strength of zero in its centre. The field gradient
provides a spatial dependence to the Zeeman splitting.

The now non-degenerate mF sublevels have transitions that are sensitive to
the light’s polarisation. We will use the same notation and perspective as in
Section 2.3.2 to describe these polarisations. We take the atom’s perspective
looking in the negative magnetic field direction. When the laser’s electric
field vector is rotating anti-clockwise it is σ− polarised and drives ∆mF = −1
transitions. Likewise, when the electric field vector rotates clockwise it is σ+

polarised and drives ∆mF = +1 transitions. Note we have not specified the
direction the light beam in these definitions. When driving these transitions,
the apparent polarisation is determined by the direction of light when compared
to the direction of the magnetic field. Figure 4.2 shows an example of how
the apparent polarisation is dependent on the direction of the magnetic field.
Here we can see how the same circularly polarised light can change apparent
polarisation when the magnetic field direction is flipped—as would happen in
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Figure 4.3: Energy level diagram showing the spatial dependence of the Zeeman
effect in a quadrupole magnetic field. This uses a simplified atom with F = 0
and F ′ = 1. The arrow labelled ω is a red detuned laser frequency (with respect
to m′

F = 0). It can be seen that this laser is only resonant with m′
F = −1 when

the atom is at particular locations on the z axis. To interact with the m′
F = +1

state ω would need to be blue detuned.

the middle of the quadrupole field.

Considering that the scattering force requires red detuned light to cool atoms,
we see from Equation 4.9 that the mF < 0 sublevels would become resonant in
a large enough magnetic field. Figure 4.3 shows how the transition frequencies
change spatially in the magnetic field. We can see here that for red detuned
light σ− polarisation is required to drive a transition in this regime. This light
must also be directed towards the origin. The direction of the magnetic field
here is left ambiguous; only the magnitude is shown. As previously implied, if
the magnetic field points towards the origin point then the incoming light must
be σ−. If the magnetic field is directed away from the origin, the incoming light
would need to be σ+.

We implement this effect into the scattering force by adjusting the detuning
term δ = δlaser + kv + βz, where β is the frequency shift per unit length caused
by the magnetic field gradient dB

dz
:

β =
∆E

ℏ
=

µBgFmF

ℏ
dB

dz
. (4.10)

Following the same two beam addition as with the molasses force, Equation 4.7,
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we arrive at [41]

FMOT = Fscatt(δlaser + kv − βz) + Fscatt(δlaser − kv + βz) (4.11)

= −αv − αβ

k
z. (4.12)

This shows there is a new position-dependent ‘spring’ force proportional to β
centred around the origin. This extra force is able to overcome the limitations
described by the optical Earnshaw theorem to contain the atoms within the
overlapping region of the beams. We have chosen the subscript ‘MOT’ as this is
the force the MOT takes advantage of.

From Equation 4.12 we can see that atoms entering the trapping region would
be slowed down (cooled) and ‘pushed’ towards the centre of the trap. For an
atom to escape the trap, it would need a large enough velocity so that it could
not be slowed sufficiently to then be brought towards the centre.

4.4 The magneto-optical trap

By directing counter-propagating laser beams along all three Cartesian axes
within the quadrupole magnetic field, we can take advantage of the trapping
cooling forces in Equation 4.12 in all three dimensions. Figure 4.4 shows the
arrangement of a typical MOT. In this diagram, for the purposes of labelling
polarisations, we take the perspective of the laser source; σ− polarised light now
has a clockwise rotating electric field vector. Likewise, σ+ polarised light has an
anti-clockwise rotating vector. These beams would still drive the ∆mF = −1
and ∆mF = +1 transitions respectively.

Here we have displayed the direction of the magnetic field vertically to be
towards the centre of the trap. The requires that the beams travelling between
the magnetic coils have σ− polarisations, and for the horizontal beams to be σ+.
If the magnetic field were inverted, so that it travelled vertically away from the
centre, the polarisations would need to be reversed. This is an important feature
of the MOT to keep in mind during construction. It is also worth noting that
these polarisations oppose the requirements for Raman transitions described
in Section 2.3.2: in the notation described there the MOT requires σ+ − σ−

polarised light for all its beams.

Different geometries of MOT exist that differ from this typical six beam con-
figuration. MOT geometries to enable miniaturised systems are of particular
note [82]. For example, pyramidal [83] and tetrahedral [84] MOTs require only
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Figure 4.4: Typical six beam MOT configuration. Two coils of wire, with
current I in anti-Helmholtz configuration, generate a quadrupole magnetic field.
Six counter-propagating laser beams, with labelled polarisations, point towards
the central point of the quadrupole magnetic field.

a single laser beam to generate a cold atom cloud and can be micro-fabricated.
We can generate a six beam MOT with a single laser beam in a similar way
by arranging five mirrors and a λ/4 waveplate [85], seen in Figure 4.5.6 Here
we take the perspective of the laser source when labelling polarisations. Upon
reflection with a mirror, σ− polarised light will gain a π phase shift and change
polarisation to σ+. For the central mirror a λ/4 waveplate is used to counteract
this effect and provide σ− polarisation. The side mirrors are angled at 45◦ so
that beams are generated that counter-propagate along all the three Cartesian
axes with σ+ polarisation. Using a quadrupole magnetic field, this matches
the design of the six beam MOT in Figure 4.4. Because this MOT design only
requires a single laser source, lowering the number of required components, it is
a good candidate for a compact and portable MOT system. This is the design
we use in Chapter 5 to generate the MOT.

6This arrangement is also often also called a pyramidal MOT.
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Figure 4.5: MOT generated with a single beam incident on five mirrors. A
beam with a large enough diameter is able to illuminate all five mirrors and
generate the required beams for a MOT seen in Figure 4.4. A λ/4 waveplate is
placed in front of the central mirror to create the correct polarisation for the
reflected beam.

4.5 Repump laser

For a 85Rb MOT we drive the F = 3 ⇒ F ′ = 4 transition to cool the atom. We
choose this transition as it can only decay back to the starting F = 3 state. Such
a transition is called a ‘closed’ transition. This enables successive atom-laser
interactions without the atom being pumped into a dark state.

Unfortunately, this is not always the case. Each transition has a Lorentzian
shaped absorption probability,7 therefore there is a non-zero probability of
exciting the F = 3 ⇒ F ′ = 3 transition. This probability is increased by the
red detuning of the laser shifting the laser frequency closer to resonance. For

7For rubidium, transitions to the D2 line have line-widths of Γ = 2π× 6.0666MHz [49, 86].
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Figure 4.6: 85Rb D2 hyperfine structure and MOT beam transitions.

δlaser = −3Γ, there is a ≈ 1% chance of exciting the atom to the F ′ = 3 state.8

This is then able to decay to either F = 2, 3 states. In the case where the
atom decays to the F = 2 state, the cooling laser, driving the F = 3 ⇒ F ′ = 4
transition, can no longer interact with the atom. To remove the atom from this
‘dark’ state we need another laser. We use a ‘repump’ laser resonant with the
F = 2 ⇒ F ′ = 3 transition to pump out of the dark state. The atom then can
again decay to either F = 2, 3 states and this repeats until it decays to the
F = 3 state. Here the atom once again interacts with the cooling laser once
again. Figure 4.6 shows this pumping scheme on the 85Rb D2 line.

For the remainder of this thesis, we shall refer to the transition F = 3 ⇒ F ′ = 4
as the cooling transition and the laser that drives it as the cooling laser. Similarly,
we shall call the F = 2 ⇒ F ′ = 3 transition the repump transition and its
accompanying repump laser.

8There is also a chance of exciting the F = 2 state however it is significantly lower. This
state also has the same decay routes and so we can ignore its effect.
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Figure 4.7: Simulation of the polarisation gradient caused by two counter-
propagating, perpendicularly polarised, linearly polarised beams. The data-
points shown are the electric field vector sum along the x̂–ŷ plane at each time at
the marked points on the z axis. The beam travelling in the positive ẑ direction
is polarised along the y axis. The beam travelling in the negative ẑ direction
is polarised along the x axis. Time is in units of the time period of the beam
frequencies.

4.6 Sub-Doppler cooling

As previously mentioned, fluctuations in the laser field lead to the Doppler
cooling limit, described by [41]

TD =
ℏΓ
2kB

, (4.13)

where kB is Boltzmann’s constant.9 For rubidium this limit is TD ≈ 145µK.
However, researchers found during experiments that colder atoms could be
achieved [88]. A method of achieving this is polarisation gradient cooling.

Consider two counter-propagating beams travelling along the z axis. One is
linearly polarised along the the y axis, we shall call this π+ polarised. Likewise
the other beam is linearly polarised along the x axis with π− polarisation. This
combination of polarisations, π− − π+, is often referred to as lin-perp-lin. The
superposition of these two perpendicularly polarised beams leads to a standing
wave of polarisations (not a standing wave of intensity). This polarisation
standing wave leads to spatial periodic changes in the polarisation. Figure 4.7
shows this polarisation gradient. Travelling along the z axis, the polarisation
switches from linearly polarised, to circular, and back to linear. The circular
polarisations shall be taken when looking in the negative ẑ direction.10 Therefore,

9A more rigorous treatment can be found in Castin et al. [87].
10We are not particularly interested in the linearly polarised points.



56 Chapter 4 Atom trapping

the polarisation at y = λ/8 is σ+, and σ− at y = 3λ/8. We see here that every
λ/4 the polarisation swaps to its orthogonal counterpart, and this periodic
pattern repeats every λ/2.11 An atom travelling along the beam paths would
experience a regular polarisation inversion [89].

So far, we have largely considered the atom to be a two level system. The Zeeman
structure in the energy levels of alkali atoms allows the polarisation gradient
cooling effect to happen. Consider an atom with a fine lower (ground) level with
angular momentum J = 1/2, and an upper level with J ′ = 3/2. Conveniently,
this describes the fine structure of the 85Rb D2 line we are interested in. These
levels have 2J + 1 sub-levels fulfilling −J ≤ mJ ≤ J with integer spacing
between each mJ sub-level. Therefore, the ground level has mJ = −1/2, 1/2
sub-levels and the upper level with mJ ′ = −3/2,−1/2, 1/2, 3/2. When exciting
the J = 1/2 ⇒ J ′ = 3/2 transition, polarisation determines the sub-level being
pumped into with selection rule ∆mJ = 0,±1.12 When being driven with σ+ a
∆mJ = +1 transition is driven, and σ− drives a ∆mJ = −1 transition. Linear
polarisations drive ∆mJ = 0 transitions. The coupling strengths between the
lower mJ states and the upper mJ ′ states are then also determined by the
polarisations.

In the presence of σ+ light, the mJ = +1/2 state has a higher coupling strength
than the mJ = −1/2 level, with ratios given by the Clebsh-Gordan coefficients
[89]. The opposite is true for σ− light. The light shift is proportional to the
coupling strength of the transition. For a red-detuned beam, the light shift acts
to increase the transition frequency. As the atom moves through the polarisation
gradient, it periodically experiences positions where the mJ = 1/2 state has a
larger shift than the mJ = −1/2 state and vice versa. Figure 4.8 shows this
spatial light shift oscillation. As the atom enters the σ+ polarised region, the
mJ = 1/2 level is shifted further than the mJ = −1/2 level. This pumps the
atom out of the mJ = −1/2 state into the excited level. Here the atom is
able to spontaneously decay. As determined by the Clebsh-Gordan coefficients,
the atom will preferentially decay into the lower energy state, in this case the
mJ = 1/2, where it will radiate more energy than it absorbed. In the scenario
where it decays to the higher (original) energy state, this process will happen
again until it decays into the lower (dark) state. The atom then moves into the
σ− region, where this process happens again for the mJ = 1/2 state; the state
the atom was just pumped into. These successive events continue to radiate
energy away from the atom, cooling it down.

11The actual polarisations are not important, particularly as the polarisations repeat
spatially. Phase shifting our view along the z axis by λ/4 would appear to give us the opposite
polarisations stated here.

12This is not strictly the case for ∆J = 0 because ∆mF = 0 is forbidden [41].
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Figure 4.8: Energy level diagram demonstrating the Sisyphus cooling effect.
Under the polarisation gradient seen in Figure 4.7, an atom is periodically
pumped into alternating mJ sub-levels. The thick dark blue bar represents the
upper level’s mJ ′ states. The black dotted line represents the unperturbed (prior
to the light shift) energy level of the ground state. The red and blue sinusoidal
lines shows the shifting energy levels of the mJ = −1/2 and mJ = 1/2 states
respectively. The red vertical arrow is the driving laser with frequency ωabs, and
the squiggly blue arrow is the emitted photon of frequency ωem.

This is analogous to rolling a ball up a hill, where potential energy is gained,
for it to suddenly appear back at the bottom of the hill. Any potential energy
gained is lost. This mechanism is also called the Sisyphus effect, named after
the mythological Greek king who was sentenced to roll a boulder up a hill for
eternity, only for it to roll back to the bottom when he reached the top.

Eventually the atom slows enough that the energy loss is equal to the recoil the
atom experiences from spontaneous emission. This leads to the recoil limit [41]

Tr =
h2

kBmλ2
, (4.14)

where h is the Planck constant, and m is the mass of the atom. For 85Rb D2

transitions, Tr ≈ 370 nK. Typically, temperatures on the order of a few µK can
be realistically achieved [90, 91]. Performing this cooling technique requires
isolation from magnetic fields which would act to perturb the mJ sub-levels. For
this reason, we observe temperatures closer to the Doppler limit when using
the MOT, as the magnetic Zeeman shift is much stronger than the Stark/light
shift. This effect it usually used as a separate cooling stage after initially cooling
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atoms in the MOT. Somewhat ironically, in the experiment we call this the
molasses stage.

We also find that reaching the sub-Doppler cooling limit becomes impossible
in practice. During the molasses cooling stage, the temperature of the atoms
follow [41, 89]

T ∝ I

|δ|
. (4.15)

Here we can see that to obtain the coldest atoms we should use the largest
detuning and the lowest laser power. However, it is easy to see that both these
adjustments would decrease the strength of any interaction the laser has with the
atoms, limiting this effect. We observe a limit—above the recoil limit—which
the atoms can be cooled to which further reductions of laser power and increase
of detuning lead to hotter atoms [92]. Furthermore, as the atoms get colder, the
radius of their position wavefunction expands—since the de Broglie wavelength is
inversely proportional to the inverse square root of temperature. Eventually, the
‘size’ of the atoms increase such that it can no longer distinguish the differences
in the polarisation gradient and the Sisyphus cooling method ceases to function
properly. Practically, the limit to the Sisyphus cooling effect is closer to a few
µK in rubidium. In order to get atoms colder—approaching the recoil limit and
below—techniques such as evaporative cooling are required which lead towards
creating a Bose-Einstein condensate.

It may be worth noting that this picture is incomplete; in practice we use
circularly polarised beams in 3D. We have presented a 1D picture using linearly
polarised beams. However, this model is sufficient to understanding this mech-
anism to achieving sub-Doppler temperatures. Dalibard & Cohen-Tannoudji
[89] include the circularly polarised case in their approach. A treatment in 3D
can be found in Gajda & Mostowski [93] and in Castin & Mølmer [94].

4.7 Magneto-optical trap optimisation

The signal strength obtained out a matter-wave interferometer, or any cold
atom experiment, is proportional to the number of atoms seen at the detector.
Furthermore, in the classical limit the signal-to-noise ratio is proportional to
the square root of the number of atoms. Therefore, it is important to obtain
the largest number of atoms possible. We achieve this by varying experimental
parameters such as laser power and frequency. However, in order to measure their
effect we require a measurement tool. This can be achieved through fluorescence
or absorption imaging. For reasons that will be made clear in Chapter 5, we
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only use absorption imaging.

As described in Section 2.2.1, it is also important to obtain the coldest atoms
possible.13 Here we detail how a temperature measurement is achieved through
the use of absorption imaging. Temperature is dependent on experimental
parameters used during the molasses stage of the experiment. In this section
we will explain how the size of a cold atom cloud grows within a MOT, how we
determine the size of an atom trap, and finally how we determine the temperature
of the atom cloud.

4.7.1 Loading rate

When the MOT beams and magnetic field are switched on (and aligned properly)
the atoms with sufficiently low velocities that pass into the beam intersection
begin to be cooled and trapped. The number of atoms captured by the MOT
increases over time. However, after a period of time the number of atoms reaches
a steady state. This steady state is an equilibrium of the MOT cooling and trap-
ping more atoms, and atoms being lost from the trap to the environment. Atoms
are lost through collisions with other atoms in the trap and with background
atoms [95]. The rate of change of the number of trapped atoms is described by
[96]

dN(t)

dt
= R− γLN(t)− β

N(t)2

V
, (4.16)

where N is the total number of atoms in the trap at time t, R is the capture
rate, γL is the loss rate of the trap, β is the loss rate due to two-body collisions
of atoms within the trap, and V is the trapping volume. The loss rate, γL, is
determined by collisions with the background vapour. We can assume the trap
to be low density and therefore neglect the rightmost term in the equation. We
then obtain

dN(t)

dt
= R− γLN(t), (4.17)

which has the solution

N(t) =
R

γL

(
1− e−γLt

)
. (4.18)

We can see that the atom number reaches a steady state R/γL. This steady
state—the total atom number—can be calculated by [97]:

N =
R

γL
= 0.1

A

σ

[
vc

vthermal

]4
, (4.19)

13This also has implications for SNR for matter-wave interferometers. We discuss this in
Chapter 6.
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where A is the surface area of the trap volume, σ ≈ 10−13 cm2 [98] is the collision
cross section, the capture velocity vc is the maximum velocity for an atom to be
captured by the trap, and vthermal = (8kBT/πm)1/2 ≈ 270ms−1 is the average
speed of the background atoms. The capture velocity is [95]

vc =

√
ℏkΓr
2m

, (4.20)

where r is the radius of the trap.

The loading rate of the trap can be a dominant limiting factor in the repetition
rate of experiments involving cold atoms. The initial rate atoms begin filling
the trap is determined by R as seen in Equations 4.16 and 4.17. The loading
rate can be expressed as

R = 0.5nV 2/3v4c

(
m

2kBT

)3/2

(4.21)

where n is density of background rubidium atoms, kB is the Boltzmann constant,
and T is the temperature of the background atoms [99]. We can immediately see
that by increasing the size and capture velocity of the trap that we can increase
the loading rate. The loss rate, γL, is also dependent on the background vapour
pressure. The loss rate can be expressed as [99]

γL = nσ

√
3kBT

m
. (4.22)

We can see here that whilst we may initially gain many atoms due to a larger
background pressure, this also increases the rate of loss by the same mechanism.
So as a higher atom flux entering the trapping volume makes a faster growing
trap, it also decreases the total number of atoms able to trap and how fast it
can reach that number. In order to circumvent this effect, some experiments
rely on a ‘2D’ MOT to load a large amount of atoms directly into the typical
six-beam ‘3D’ MOT [100, 101]. Often the trap lifetime, τ , is discussed rather
than the loading rate where τ = 1/γL.

4.7.2 Absorption imaging

By imaging the shadow of the cold atoms we can obtain information about the
density of the cold atom cloud [102]. Therefore the number of atoms can be
determined. Beer’s law describes the attenuation of light through a non-saturable
absorptive medium [41]

dI(ω)

dz
= −σ(ω)ρI ⇒ I(ω) = I0e

−σ(ω)n, (4.23)
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Figure 4.9: Typical absorption imaging arrangement (not to scale). The
collimated resonant imaging laser has a larger diameter than the atom cloud.
The laser is absorbed by the cold atom cloud and the image of the shadow is
detected by the charge-coupled device (CCD). The red lines represent the image
of the (shadow of the) cold atoms detected by the CCD. The fluorescence can
be used to focus the lens arrangement to be able to target the CCD correctly.

where I(ω) is the intensity of light, of frequency ω, after passing through a
medium of density ρ with absorption cross section σ, and I0 is the intensity of
light before passing through the medium [103]. We will assume I0 is far below
the saturation intensity Isat. Here the column density, n =

∫∞
−∞ ρ(x, y, z) dz,

gives the per unit area density of the medium. For a cloud of atoms with
resonant light, σ(ω0) = σ0 = ℏω0Γ

2Isat
, where c is the speed of light in a vacuum.

To obtain the largest absorption, and hence the best data, we assume that the
light used is resonant with the desired transition: I ≡ I(ω0). Therefore the final
atom number over a measurement area, A, is:

N = nA =
ln
(
I0
I

)
σ0

A. (4.24)

Figure 4.9 shows the experimental arrangement for an absorption imaging system.
In this arrangement each pixel of the CCD is a separate measurement, where
A is equal to the area of each pixel. Therefore the total atom number of the
imaged atom cloud is the sum of the atom numbers across all pixels:

Ntotal =
A

σ0

∑
pixels

ln

(
I0
I

)
. (4.25)

Experimentally this requires two images to be taken; one with the cold atoms
present, I, and another without the cold atoms, I0. The laser intensity must
be kept constant for both exposures and must be resonant with a transition.
If the laser is not resonant less absorption would be seen as σ is dependent on
detuning. A third dark image—where no light is present—should also be taken
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to subtract any offsets from the illuminated images. However we did not do this
during experimentation and may have introduced some of the systematic effects
seen in Chapter 6.

This also requires the atoms to not be fluorescing during imaging. We have
assumed that any fluorescence collected by the CCD is negligible due to the
beam being weak14 and the detector is sufficiently far away that the solid angle is
small. Under normal operation atoms in a MOT fluoresce due to the interaction
with the trapping beams. To image correctly, the trapping beams must be
switched off when the imaging beam is switched on.

4.7.3 Temperature measurement

There are many different methods of measuring the temperature of the atoms in
the MOT [88, 104]. The easiest to implement is often release and recapture.15

This involves releasing the cold atom cloud from the MOT forces after reaching
a steady state, then attempting to trap the same cloud after a variable time.
The ratio between the number of atoms in the steady state and the ‘recaptured’
atoms is measured across a range of delay times, and a fit is used to obtain
the temperature. However, this method is more prone to systematic errors
[78, 82, 105] and requires the ability to measure the atom number during
trapping—which is only possible through fluorescence measurements. We see in
Chapter 5 it is not trivial to measure the fluorescence of our cold atom cloud.
Rather, we must rely on absorption imaging to recover information from the
cloud in our experiment. Here we will discuss the cloud expansion through a
time-of-flight (TOF) technique for measuring temperature. We have chosen this
method mainly due to the restrictions imposed by our vacuum chamber. This is
discussed in more detail in Chapter 5.

Any group of particles in thermal equilibrium have a velocity distribution
determined by the Maxwell-Boltzmann distribution

P (v) =

(
m

2πkBT

) 3
2

exp

[
−mv2

2kBT

]
, (4.26)

where m is the mass of the particle, kB is the Boltzmann constant, T is the
temperature of the distribution, and v is the speed of the particle. Similarly,

14When compared to Isat.
15Very little adjustment needs to be made to the typical MOT setup. The camera used

to image the fluorescence of the atoms can be replaced with a suitable sensor to collect the
fluorescence instead.
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in an ideal trap, we can assume a Gaussian distribution for the density of the
particles before release:

n0(r) =

(
1

2πσ2

) 3
2

exp

[
−r2

2σ2

]
, (4.27)

where r is the radial position of the particle, and σ =
√
kBT/m is the rms

radius of the initial cloud.

As the cloud is released from the trap it will expand in accordance to its velocity
distribution.16 The expansion of the radius of the cloud is described by [107]

σ2(t) = σ2(0) +
kBT

m
t2, (4.28)

where σ(t) is the rms radius of the cloud at time t, and hence σ(0) is the initial
rms radius.17 A detailed derivation of Equation 4.28 can be found in Weiss et al.
[108]. To obtain the temperature, T , from this equation, multiple measurements
must be made of cloud’s radius at different points in time while no external
forces–such as those from a magnetic or optical field—act on the atoms. A
suitable imaging system is required to perform these measurements. This can
be fluorescence or, as previously discussed, absorption imaging.

As shown in Section 4.1, when the atoms interact with the laser a force is applied
to the atoms—this acts to heat the atoms [102]. This prevents a continual
measurement of the cloud expansion as the previous light interactions would
affect subsequent measurements. Since interaction with the laser field disturbs
the atoms, it is not possible to obtain all the measurements for Equation 4.28 at
once. Multiple ‘runs’ are required where the time between releasing the atoms
and making a measurement, t, are varied. This allows a picture of how the
cloud’s radius develops over time to be built up, without the laser interfering
with measurements. By fitting Equation 4.28 to this data, the temperature can
be obtained. It is important to note that the magnetic field must be switched
off during the TOF to remove any state-dependent forces.

16The cloud will also fall due to gravity... unless your lab is in orbit [106].
17It may be helpful to note how this relates the size of the cloud to the speed of the atoms:

v2 = 2kBT/m.
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Chapter 5

Experimental apparatus

This chapter describes the experimental apparatus and methods for the cold
atom experiments; the results of which are shown in Chapter 6. Our aim is to
build towards a gravimeter for use in the PLAIN-GG system. This will form
one of the two gravimeters for the PLAIN-GG gradiometer. We use a novel
compact vacuum chamber design that includes integrated optics for the cold
atom experiments. We characterise the MOT generated within this vacuum
chamber and work towards detecting atoms after they undergo free fall. As will
be seen in Chapter 7, we have yet to observe Raman transitions and hence have
not made a gravimeter. However, detecting the cold atom ensemble after its
free fall is a vital step to realising a gravimeter through atom interferometry,
and shows the viability of this compact chamber as a gravimeter.

The apparatus is comprised of three main parts: the cooling laser source
(described in Section 5.2), the laser switching system (Section 5.3), and the
sensor head (Section 5.1). The cooling laser source supplies laser power of the
desired frequencies through optical fibre to the laser switching system. The
laser switching system turns on and off the laser beams supplied through optical
fibre to the vacuum chamber, where the MOT and absorption imaging system
is located. The experiment is coordinated with a SpinCore1 PulseBlasterUSB—
which we will refer to as the pulseblaster—by sending transistor–transistor logic
(TTL) signals to components of the experiment at specific times.

Fibre deployment of the laser beams to the sensor head is required by the design
of the PLAIN-GG project. While we focus on the development of this chamber
during this thesis, the progress made is with the goals of the PLAIN-GG project
in mind.

1www.spincore.com
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We begin this chapter by describing the apparatus used for the cold atom
experiments within the vacuum chamber; the vacuum chamber is then described.
This is followed by the method used to perform absorption imaging of the cold
atom cloud. This absorption imaging is then used extensively throughout the
MOT characterisation, including for the TOF temperature measurements of the
cold atom cloud where we also detail an additional cooling stage, the molasses
stage. Finally, we describe the method for detecting atoms at the bottom of the
chamber.

5.1 Sensor head

Figure 5.1 shows the optical arrangement of the PLAIN-GG sensor head. This
is designed around the constraints of the compact vacuum chamber, the design
of which is detailed in Section 5.4. The main constraint this optical system is
designed around is that the chamber has only one window for optical access.
Inside the vacuum chamber are mirrors arranged to generate the MOT beams
from a single laser beam, and mirrors to allow for the detection of atoms once
they have fallen to the bottom of the vacuum chamber (the detection area).
Attached to the outside of the chamber are components that are arranged to
direct and detect light going into the chamber in order to generate a MOT,
to image the cold atom cloud with absorption imaging, and to detect the cold
atoms at the bottom of the chamber. Figure 5.2 shows some images of this
setup in the lab.

We are restricted in analysing the cold atoms due to the chamber only having
one window. Through this window atom trapping, imaging, and detection after
falling due to gravity must be achieved and is what led to this optical design.
Fluorescence imaging is difficult because it would require the MOT laser beams
to be illuminating the atoms. The intense MOT beams would then be incident on
the camera sensor and over-expose the image. Furthermore, the closest position
for a fluorescence collecting lens would be ≈ 100mm from the atoms—this
would give a small solid angle and decrease the fluorescence signal strength. For
these reasons we have decided to use absorption imaging as the sole method for
imaging the cold atom cloud. During absorption imaging, the MOT beams are
shut off when using the imaging beam so they do not over-expose the camera.
The intensity of the absorption beam can be controlled to provide the desired
signal strength.

As described in Figure 4.5, we use a single collimated beam to illuminate all
the MOT mirrors. The beam is aligned to be perpendicular to the central
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Figure 5.1: Optical arrangement of sensor head for absorption imaging and
absorption detection (see Chapter 6). The red circle represents the cold atom
cloud formed by the MOT, with corresponding lasers. The yellow circle represents
the cold atom cloud after falling 71mm, with corresponding absorption beam.
The blue lines represent optical fibre, the fibre from the switching system is
polarisation maintaining (PM) and the fibre from the absorption beam is non-
PM. The light blue line at the base of the vacuum chamber is the chamber
window. The optical path for imaging the cold atom cloud is not pictured here,
the imaging path requires focusing the collimating lens on the cold atom cloud.
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(a) (b)

Figure 5.2: Photos of sensor head lab setup. (a) shows the setup before
the magnetic shields, camera, and detection area optics have been positioned.
(b) shows the full setup in the lab. The additional magnetic coil seen is not
used currently. An additional photodiode is also seen attached to the unused
polarising beam splitting cube (PBS) port in Figure 5.1, this was used for
debugging purposes.



Chapter 5 Experimental apparatus 71

retro-reflecting mirror.2 We then take advantage of the retro-reflected beams in
order to image the shadow of the atom cloud. This requires a second lens, to
image the reflected beam, and a camera in order to record the images for analysis.
To provide access to both light input and output we use a PBS and waveplates
to direct the beams correctly. To ensure proper alignment and structural rigidity,
we used a cage mount system to attach the optics to the vacuum chamber,
which has M4 screw holes to allow for a cage mount adapter. The absorption
beam is reflected by two 15mm× 15mm prisms, which are attached using epoxy
resin onto a modified cage mount lens holder. This allows the 7mm diameter
absorption laser beam to pass into and across the vacuum chamber. It is then
reflected back out of the vacuum chamber and directed onto a PD by the second
periscope.

To illuminate the entire MOT area, we used a 100mm focal length lens with a
2 inch diameter, which allows the laser beam’s diameter to first expand to the
desired diameter of 30mm before collimation. The fibre launcher was mounted
on a 3-axis translation stage in order to properly align the light to the collimating
lens. The λ/2 waveplate allows control over the ratio between the orthogonally
polarised cooling and repump laser light intensity. Upon retro-reflection, the
light that passes through the PBS is then re-collimated by the smaller imaging
lens before being detected by a camera. This is the optical path the light takes
when performing the absorption imaging.

In Chapters 2 and 4 we discussed how the Raman transitions and the MOT
require different polarisations of light to function. In order to fulfil these
polarisation requirements, we use a Liquid Crystal waveplate (LC WP), with its
fast axis aligned at 45◦ to the laser beam’s linear polarised axis, which acts as a
variable retarder. Using electronic control, the LC WP is able to change between
λ/4 and λ/2 retardations. When used as a λ/4 waveplate we obtain correct
polarisations for a MOT, and the λ/2 configuration provides the lin-perp-lin
polarisations for Raman transitions. During absorption imaging it was found
that switching from λ/4 to λ/2 configurations was also required to obtain a
clear image of the atom cloud (see Section 5.6). The use and development of
the LC WP is described in more detail in Section 5.5. We choose to use a LC
WP, as opposed to a Pockels cell to avoid requiring high voltage equipment and
the LC WP has a smaller form factor.

In order to provide the magnetic quadrupole field necessary for the MOT, we
attach a pair of electromagnetic coils to the outside of the vacuum chamber in an

2A MOT can still be achieved with small misalignments, however the highest quality atom
cloud is usually generated with this perpendicular alignment. Another reason for wanting this
alignment is that it allows the laser beams to be retro-reflected, a later requirement for both
the Raman beams and the stabilisation laser.
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anti-Helmholtz configuration. These coils were made from 200 turns of 0.56mm
diameter copper wire. The coils were 7mm thick, had an inner diameter of
76mm, were separated by 44mm, and housed in a mount attached to the cage
mount system the optics were mounted on. These were manufactured by the
University of Southampton Physics mechanical workshop. In Figure 5.2a a third
magnetic coil at the bottom of the chamber can be seen. This coil was originally
intended to be used for a quantisation field, however this coil is unused in the
work presented in this thesis.

To provide isolation from any external magnetic fields, which may affect the
Raman transitions, we use 2 layers of µ-metal as magnetic shielding. These
layers were each made of two halves which have gaps to fit around the ion
pump tube—to isolate the atoms from the strong magnetic field caused by the
pump—and the dispenser electrodes. The shields also extend below the vacuum
chamber slightly and have holes to allow optical access through periscopes to
the detection area. Currently we do not include any magnetic coils to adjust or
bias the residual magnetic field within the shielding.

5.2 Cooling laser source

Figure 5.3 shows the laser source system that the subsequent laser control system
relies upon. This system frequency stabilises the two lasers, the repump and
cooling lasers, to the desired frequencies for laser cooling. The repump laser
is spectroscopically locked through frequency modulation (FM) to the repump
transition.3 The cooling laser is phase locked via a beat-note with the repump
laser. We use this to arbitrarily set the cooling lasers frequency detuning from
the cooling transition.4 Bjorklund [109] and Appel et al. [110] have detailed
descriptions of FM and phase locking mechanisms respectively.

This lasers used are two Vescent5 780 nm distributed Bragg reflector (DBR)
lasers. These are used for both the cooling and repump beams. The repump
beam passes through a Vescent D2-210-Rb SAS spectroscopy module—in order
to FM lock [109] the repump laser—the beam is then coupled into an optical
fibre. The cooling beam is coupled into an optical fibre. The two laser beams
exit the rack through separate fibre mating sleeves for easy deployment of the
light. The laser beams are also combined in-fibre and connected to a Vescent
D2-160 PD to obtain a beat note for phase locking [110] the cooling laser. The

3F = 2 ⇒ F ′ = 3
4F = 3 ⇒ F ′ = 4
5www.vescent.com/

www.vescent.com/
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Figure 5.3: Cooling laser source optical arrangement. The red lines represent
laser light originating from their respective lasers. The blue lines represent
optical fibre. The repump beam first passes through a saturated absorption
spectroscopy (SAS) module and is then fibre coupled. The cooling beam is fibre
coupled. Both fibre coupled beams are sent to individual outputs and are also
combined onto a PD to obtain a beat note. This system was designed and built
by members of the Quantum Control group at the University of Southampton.
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fibres used inside the rack are not PM fibres.6

To maintain stability of the optical components, the laser system is encased
within a server rack and actively temperature controlled by a Eurotherm 3216
temperature controller. The optics are placed on an optical breadboard within
the rack. The optical breadboard is heated, from the underside, by electric
heating elements to 25◦C. A PT100 sensor attached to the top of the breadboard
monitors the temperature.

The lasers are controlled by Vescent Integrated Control Electronics (ICE) mod-
ules. Both lasers are temperature controlled by an ICE-QT1 and powered by an
ICE-PB1. The repump laser is controlled, and FM locked, by an ICE-CS1 which
the SAS module (D2-210-Rb) is connected to. The cooling laser is controlled,
and phase locked, by an ICE-CP1 which the D2-160 PD is connected to. This
allows the cooling laser to be set to an arbitrary frequency offset from the repump
transition. To be precise, the repump laser is locked to the cross-over resonance
[41] between the F = 2 ⇒ F ′ = 1, 3 transitions and the actual repump transition
peak is very weak in comparison [111]; this cross-over peak is −46.4MHz from
the repump transition. This doesn’t affect the quality of the trap as having exact
resonance with the repump transition is not too important [78]; the repump
interacts with only ≈ 0.5% of the atoms at a time, therefore a ≈ 7Γ detuning
from resonance—decreasing the excitation probability by ≈ 95%—will still drive
a sufficient amount of atoms to out of the dark state. The ICE-CP1 accepts
an external frequency reference: allowing the cooling frequency offset to be
determined by an external oscillator, a feature integral to the design of the
experiment. This phase locking component is also capable of multiplying this
external reference frequency by a range of powers of 2, relaxing the requirement
for high frequency radio-frequency (RF) components.

We control the phase lock’s offset frequency using a MOGLabs7 XRF agile RF
synthesiser—we shall refer to this device as the Moglabs RF source. This allows
us to change the cooling laser’s frequency during the experiment to desired
values, coordinated by TTL signals from the pulseblaster. We use this method
to turn the cooling laser into a multi-purpose laser throughout the experiment.

In this configuration, we are able to use ≈ 50mW out of the cooling laser fibre
out of the available ≈ 93mW power from the laser aperture. The repump laser
produces ≈ 57mW of light, after the SAS module we couple the remaining
≈ 53mW and are able to use ≈ 33mW out of the fibre.

6This system was originally designed for use in another project.
7www.moglabs.com

www.moglabs.com
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5.3 Laser switching system

Figure 5.4 shows the experimental arrangement of the laser switching system
for controlling the lasers used throughout the experiment. In order to provide
the fastest possible time for shuttering the light (both on and off) we use AOMs
as shutters. We use AOMs rather than Pockels cells, electro-optic modulators
(EOMs), or mechanical shutters as they provide a fast response, variable optical
attenuation, and were readily available to use. The AOMs used are both Gooch
& Housego8 M080-2B/F-GH2 AOMs. The repump beam’s AOM is driven by an
AA Opto-Electronic9 MODA80-B4-33. The cooling beam’s AOM is driven by the
Moglabs RF source to allow analogue control of the laser beam’s power. Since
we can set the cooling laser’s frequency arbitrarily, any frequency shift caused
by the AOM can be disregarded. Therefore, a zero frequency shift arrangement
similar to the repump beam is unnecessary and would waste laser power.

The power to both these AOMs is digitally controlled by two Mini-Circuits10

ZX80-DR230-S+ RF switches, thereby switching the laser beams coupled into
the fibre on or off. The RF switches are controlled by TTL signals from the
pulseblaster. We use this switch on the cooling beam’s AOM, despite being able
to modulate the AOM’s amplitude freely, to help development of the control
software. The pulseblaster also coordinates the amplitude modulation (AM)
and the FM of the Moglabs RF source, and hence the AM and the FM of the
cooling laser.

Due to imperfections in the polarisation optics, some laser power is transmitted
through the PBSs that should be reflected. We use this to fibre couple the
weak undiffracted beam from the cooling laser to use as a resonant absorption
beam—not to be confused with the absorption imaging beam—for detecting
atoms after free fall. This is explained in detail in Section 5.8. We use the
undiffracted beam from the AOM in order to have the absorption beam on while
the cooling or imaging light is off. This also prevents coupling of the repump
light: since the cooling and repump beams are coupled into the same fibre,
they are effectively co-propagating and would also couple into the other fibre
together.

Using this system we are able to obtain ≈ 14.8mW of cooling and ≈ 5.3mW
of repump laser power at the end of the output fibre. As seen in Section 5.1,
we cannot use all this available power in the MOT due to the beams being
orthogonally linearly polarised. The absorption beam power is decreased by the

8www.gandh.com
9www.aaoptoelectronic.com

10www.minicircuits.com

www.gandh.com
www.aaoptoelectronic.com
www.minicircuits.com
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Figure 5.4: Design of laser switching system. The function of the absorption
beam is detailed in Chapter 6. The fibres travelling from the cooling laser source
and to the absorption beam are non-PM, and the fibre travelling to the trap
is PM. The cooling laser beam passes through an AOM, the diffracted order is
coupled into the fibre that leads to the atom trap. The cooling laser beam’s
undiffracted order is also fibre coupled after passing through a neutral density
filter (ND filter). The repump laser beam passes twice through an AOM so that
no net frequency shift is gained, it is then coupled into the same fibre as the
diffracted cooling beam.
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ND filter to provide ≈ 0.4µW out of the fibre; this gives an I/Isat ≈ 1× 10−5

which we would assume to be within the weak probe limit [111].

This system provides very flexible solid state laser control, primarily of the cooling
laser. The cooling laser power and frequency can be controlled through software
commands requiring no manual manipulation or realignment, providing us with
the ability to automate experimentation through software. The experiments and
data collected with the cold atom experiments are performed in this manner,
allowing a large amount of data to be taken without human interference. This
helps to keep the lab environment stable and to perform experiments in quick
succession.

5.4 Vacuum chamber

Bidel et al. [33] demonstrated a compact vacuum chamber capable of absolute
gravimetry [34]. This chamber used a 6 cm falling distance (≈ 110ms) and
achieved a sensitivity of 42µGal/

√
Hz (1µGal = 10−8m/s2).11 They showed it

was possible for a small vacuum chamber to be capable of atom interferometric
inertial measurements. This is the basis for the design of the vacuum chamber
used for the PLAIN-GG project.

In order for the optical fibre interferometer (seen in Figure 1.1 and detailed in
Section 7.2) to stabilise the Raman beams, we require a retro-reflecting mirror
that both the optical interferometer and the Raman beams use to share any
phase noise. The chamber also requires suitable distance to drop the cold atom
ensemble over: we have decided to use a 71mm falling distance (≈ 120ms) to
slightly increase the drop time used in Bidel et al. [33, 34]—slightly increasing
sensitivity—while maintaining a compact design. Figure 5.5 shows the design of
this vacuum chamber. To create a compact laser cooling system, we mount five
MOT mirrors into the vacuum chamber: one central mirror and four tilted at
45◦ to the central mirror arranged with equal spacing around the central mirror.
This central mirror will act as the retro-reflecting mirror for the Raman lasers
and the stabilisation laser for the PLAIN-GG project. This mirror arrangement
allows a single laser beam, as described in Section 4.4, to illuminate all the
MOT mirrors and form a cold atom cloud—removing the need for more optical
components and keeping the system compact. The chamber is then mounted
so that the MOT mirrors are above the chamber window. After the cold atom
ensemble is released from the MOT, the cold atoms fall due to gravity down

11Note that these are the units for an absolute gravimeter, as opposed to the Eotvos for a
differential gravimeter.
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Figure 5.5: Computer Assisted Design (CAD) rendering of the vacuum chamber.
The image on the left is looking through the window towards the mirrors, with
the window removed for clarity. The image on the right is a cut-out view to see
the inside of the vacuum chamber from a side angle.

towards the single window of the chamber. Between the MOT mirrors and the
window, two more mirrors are placed at a distance of 71mm from the MOT
mirrors; these act to direct any light for detecting the atoms at the bottom of
the chamber—this may be through an absorption beam or through detecting
fluorescence. In order not to obscure the MOT light, these detection mirrors
are orientated at 45◦ to the MOT mirrors. Right angled prisms are used for
the side mirrors and the mirrors at the bottom of the chamber, the central
retro-reflecting mirror is a flat square mirror. A λ/4 waveplate is placed in front
of this retro-reflecting mirror to create correct polarisations for the reflecting
MOT beam, seen clearer in Figure 5.1.

All the prisms inside the chamber are 10mm× 10mm dielectric coated prisms
and the central mirror is a square 10mm × 10mm dielectric coated mirror.
The window is 12mm thick anti-reflective coated BK7 glass with a diameter of
53mm, the window recess lip has a diameter of 44mm.12 Around the recess for
the window are M4 screw holes for mounting a cage mount adapter onto the
chamber. The chamber has a 70mm outer diameter and is 120mm tall.

Next to the MOT mirrors are two small 8mm diameter holes which lead to a
small area where the Rubidium dispensers are positioned—these can be seen
in the left image of Figure 5.5. Two SAES13 Rubidium dispensers, fitted in a
V formation in order to share a single electrical (ground) connection, provide
the atomic vapour used in the experiments. By passing an electrical current

12From our investigations discussed in Section 5.6, we suspect that this anti-reflective coating
is only on the outer surface of the window.

13www.saesgetters.com

www.saesgetters.com
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through these dispensers, heating causes Rubidium to be released into the
vacuum chamber. This rear section of the vacuum chamber is also where two
ports for vacuum pumps are located.

The chamber pressure is maintained by a single small MA353G ion pump. To
maintain portability, we power this ion pump with a Ferrovac14 LSA3 battery
powered ion pump controller. When the dispensers are active, the pressure tends
to settle at ≈ 2× 10−9 mbar. When the dispensers are not in use, the chamber
pressure idles at pressures < 10−9 mbar and has gone as low as 2× 10−10 mbar.
These pressures will change according to the temperature of the chamber; due
to several heating effects from the system described later in this chapter, the
chamber is usually at ≈ 25◦C. When the chamber has reached temperatures of
≈ 45◦C, by leaving on the MOT coils on permanently, the idle pressure has been
≈ 2.5× 10−9mbar and reached ≈ 6.5× 10−9mbar when using the dispensers.

5.4.1 Manufacture

These chambers were manufactured by Teledyne e2v15 as off-the-shelf products,
ready for use in cold atom experiments on delivery, making these chambers the
first commercial vacuum chambers purpose built for atom interferometry with
integrated optics. Teledyne e2v handled the machining, assembly, bake-out,
pumping to vacuum, and dispenser activation prior to delivery.

A particular feature of this chamber is the vacuum pumping process. Two
tubes are used to connect the chamber to vacuum pumps, one connecting to a
small and lightweight ion pump, and another to the roughing and turbo pump.
Once the chamber has reached sufficient vacuum—and dispensers activated—the
tube to the roughing and turbo pump is deformed to seal it off, permanently
disconnecting the two pumps and leaving only the ion pump connected. This
process allows the chamber to be more portable at the cost of the inability to
pump the chamber back to a sufficient vacuum if the pressure increases beyond
the level the ion pump can handle.

5.5 Liquid crystal waveplate

In order to trap atoms, and later perform Raman transitions for gravimetry,
we require to be able to switch quickly between λ/4 (MOT) and λ/2 (Raman)

14www.ferrovac.com
15www.teledyne-e2v.com

www.ferrovac.com
www.teledyne-e2v.com
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Figure 5.6: LC WP driver built from the pulseblaster and two arbitrary function
generators. The pulseblaster is used to control the timing of the switching
by triggering the AFG2021. The AFG2021 is programmed with the desired
waveform to perform AM on the TG1010’s 10V (20Vpp) 2 kHz square wave
that drives the LC WP.

retardances. Clearly it is impractical and not fast enough to mechanically switch
between two different waveplates before the atoms would fall and hit the vacuum
chamber window, and it is not possible, with our current optical configuration
of the vacuum chamber, to fulfil both these requirements with static waveplates.
To solve this we use a LC WP which is able to vary its retardance by altering
the driving voltage supplied to it.

The LC WP functions by orientating the nematic liquid crystals to an applied
electric field [112, 113]. Without a force from the electric field, the crystals
relax to a default alignment determined by the manufacturing process. The
balance between this ‘relaxation force’ and the electric field strength determines
the orientation the crystals will move towards. This orientation determines the
magnitude of the waveplate’s birefringence and hence its retardance. However,
the viscous nature of the nematic liquid crystals prevent them from changing their
orientation too fast and they asymptotically approach the desired orientation
[114, 115]. This limits the switching times between different retardances. This
switching is also faster when going from low to high voltage compared to high
to low voltage, as the torque on the nematic liquid crytals is higher from the
electric field compared to relaxing back to their original position. Since we only
care about the switching times from λ/4 to λ/2 retardance (MOT to Raman),
as this must be done quickly before the atoms fall too far, we can choose suitable
voltages for this.

We use a Meadowlark16 liquid crystal variable retarder for the LCWP. It is driven
by a 2 kHz square wave of amplitudes in the range 0-10V. The amplitude of this
square wave determines the retardance of the LC WP. Through AM of the square
wave, we can arbitrarily select the desired retardance during the experiment.
Figure 5.6 shows the experimental setup used to control the retardance of the
LC WP. This is built from two arbitrary function generators: a Tektronix17

16www.meadowlark.com
17www.tek.com

www.meadowlark.com
www.tek.com
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AFG2021 and an AimTTi18 TG1010. This allows arbitrary control of the LC
WP’s driving voltage and hence arbitrary control of the LC WP’s retardance.
Before the AFG2021 detects a TTL trigger signal from the pulseblaster, it
provides a constant chosen voltage to the TG1010 which corresponds to a
desired retardance for the LC WP. After receiving the TTL trigger signal from
the pulseblaster, the AFG2021 outputs the programmed arbitrary waveform to
the TG1010 which changes the LC WP’s retardance correspondingly. Once the
waveform has been completed, the AFG2021 returns to outputting the initial
‘idling’ voltage and awaits the next TTL trigger.

To provide the fastest switching times between retardances, the waveform we
use to AM the LC WP’s driving voltage takes advantage of the Transient
Nematic Effect (TNE) [116, 117, 118]. This effect describes the ability for the
LC WP to reach a desired retardance faster, when the desired retardance’s
corresponding voltage is higher than the current voltage driving the LC WP, by
supplying a greater voltage than the desired retardance’s corresponding voltage.
Figure 5.7 shows this TNE pulse waveform that the AFG2021 outputs for AM
after triggering. The TNE pulse works by applying a large initial voltage, the
TNE voltage, to rapidly accelerate the nematic liquid crystals to the desired
orientation. Once the crystals have reached the desired position, the voltage is
dropped to the voltage corresponding to the desired retardance. This prevents
the crystals from rotating further and maintains the desired retardance for the
chosen period. The allows us to gain the benefits of the faster response times
from the TNE without over-shooting the desired retardance. Since we only
require the switching time from λ/4 to λ/2 retardance to be fast, the initial
voltage is chosen so that the LC WP sits at λ/4 retardance. Hence we call
this the λ/4 voltage, and similarly the λ/2 voltage is when the LC WP is at
λ/2 retardance. The TNE voltage is the voltage used for the period of rapid
acceleration called the TNE interval; this is usually set to the highest voltage
possible (10V in this case) in order to minimise the TNE interval. It is possible
to decrease the time changing from λ/2 to λ/4 retardances by applying 0V to
the LC WP for a small interval, applying the TNE but in reverse, however it is
unnecessary to optimise this response time for this system.

The LC WP is also able to be heated. The viscosity of the nematic liquid
crystals decreases with increasing temperature; therefore, we also can achieve
faster switching times by heating the LC WP. We use a Meadowlark D5020
liquid crystal digital interface controller for temperature control.19 We are able
to safely heat the LC WP up to 50◦C and this is the temperature we heat the

18www.aimtti.com
19This controller is capable of controlling the retardance of the LC WP as well, it however

lacks sufficient timing controls that we require.

www.aimtti.com
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Figure 5.7: TNE pulse waveform example for AM of the LC WP’s driving
square wave. Here the features of the pulse are labelled. The TNE interval and
period are taken with respect to the trigger. This is the shape of the pulse that
would be used for AM of the LC WP’s driving square wave.

LC WP for operation.

The Meadowlark LC WP has a quoted response time of ≈ 5ms from low to high
voltage and ≈ 20ms for high to low voltage. This is the response time when
näıvely stepping the voltage from one to the other. Figure 5.8 shows the LC WP
response using basic and TNE AM waveforms. This was measured by placing a
PD in the camera’s position in Figure 5.1. For demonstration purposes the pulse
period is different in both cases and can be set arbitrarily for different usages.
The main focus of this comparison is the difference in rise times from λ/4 to λ/2
retardances between using the TNE pulse and a basic stepping pulse. We see
that the basic stepping pulse has a rise time of ≈ 90ms whereas the TNE pulse
has a rise time equal to the TNE interval ≈ 1.5ms. We have at times measured
TNE pulse rise times ≈ 0.75ms. We can see that the TNE pulse significantly
improves the switching response time and we will use this waveform whenever
using the LC WP to switch retardances from λ/4 to λ/2. After the AM pulse,
the LC WP takes ≈ 100ms to return to the λ/4 retardance for both pulses. A
90ms response time for the basic switching waveform is impractical to be used
when the cold atom cloud’s drop time in the vacuum chamber is 120ms. This
would mean a maximum of T = 15ms for the atom interferometery and limit



Chapter 5 Experimental apparatus 83

0 20 40 60 80

Time (ms)

2

4

6

8

10

A
M

v
o
lt
a
g
e
(V

)

0.02

0.04

0.06

0.08

0.10

P
D

vo
lt
a
ge

(V
)

(a) TNE operation.
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(b) Basic stepping operation.

Figure 5.8: Graphs comparing (a) TNE operation and (b) basic stepping
waveforms. The blue lines represent the intensity of the light detected by a PD
at the camera position in Figure 5.1, represented on the left axis. The orange
lines represent the AM signal used to control the LC WP, represented on the
right axis. Note that the axis scales are not the same between the two graphs.
Both measurements were taken with the LC WP heated to 50 ◦C. The low PD
level is λ/4 retardance and the high PD level is λ/2 retardance. The parameters
used here were: λ/4 voltage = 1.597V, λ/2 voltage = 1.91V, TNE voltage
= 10V, and TNE interval = 1.494ms. The period used for the TNE pulse was
10ms and the basic pulse had a 150ms period.
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our sensitivity—for comparison, Bidel et al. [33] uses T = 48ms. Therefore, the
TNE pulse should be used as it provides a significant decrease of response time.

The TNE parameters were found by iterating the variables in the order: λ/4
voltage, TNE interval, and λ/2 voltage while looking at the PD signal. The
TNE voltage was always fixed at the maximum 10V. When iterating these
variables, we took advantage of the non-linearity of the LC WP’s retardance
response to voltage in order to find points of inflection. This non-linearity occurs
because particular voltages correspond to particular angles of the nematic liquid
crystals, and as they rotate the retardance the crystals provide changes from
0 to λ periodically. This is seen in our setup, where the detected laser beam’s
power depends on the light’s polarisation entering the PBS, as an oscillating
signal when sweeping the voltage from 0V to 10V at the camera’s position. In
our experimental setup, these points of inflection corresponded to either λ/4
or λ/2 retardances—the minima and maxima respectively. If the λ/4 voltage
was set too low, it would pass through this point of inflection and would need
to be adjusted. Similarly if the TNE interval were set too high, it would pass
a different point of inflection and need to be reduced—since this point can be
clearly seen in the time domain it is very simple to set the TNE interval. If the
λ/2 voltage was set too high, it would also pass an inflection when the LC WP
is relaxing back to the λ/4 operation.

A frustrating aspect of the LC WP is that it required regular recalibration:
where the TNE pulse’s parameters (apart from the TNE voltage) would need to
be adjusted. Over time the voltages required to maintain proper polarisations
shifted slightly. The TNE interval depends on the voltage difference between
the TNE voltage and the λ/4 and λ/2 voltages. A larger difference means a
faster response time can be achieved—a behaviour described by the TNE. For
example if λ/4 voltage = 9V and the TNE voltage = 10V, the response time
would be slower compared to if the λ/4 voltage = 1V. While the nematic liquid
crystals have a larger angle to rotate, they experience a larger torque initially
and since the λ/2 voltage tends to be close to the λ/4 voltage the nematic liquid
crystals don’t need to rotate such a large angle. Since the TNE interval—and
hence the response time—depend on these voltages this also shifts slightly as the
voltages shift. We are unsure of what causes these small shifts as they happen
over long time-scales; and since the rest of the experiment can still function
with small changes in polarisations, it was not a priority to investigate. This
instability is possibly caused by general wear and tear from use, fluctuations of
the temperature of the LC WP, or inherent instability of the LC WP.
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(a) λ/4 waveplate (b) λ/2 waveplate

Figure 5.9: Images of chamber mirrors with different LC WP settings. The
main mirror visible in the centre of the image is a side mirror, with the central
mirror at the bottom of both images. Due to the polarisation changing the
intensity of light detected at the camera, both images were taken with different
laser intensities to properly expose the camera. The most notable fringes that
are present in (a) but not in (b) are the large pitched fringes on the side mirror
and the ‘cross-stitched’ pattern on the central mirror. These fringes would be
observed to move on short timescales. It may be worth noting that these are
not absorption images but are single exposures of the camera.

5.6 Absorption imaging

During development, we discovered interference fringes present on any absorption
images we recorded when using a λ/4 waveplate for atom trapping. We determ-
ined this is due to reflections from the inner surface of the vacuum chamber
window—the interface between the glass and the vacuum—and the fraction of
useful reflected light from the MOT mirrors that passes through the PBS. The
outer surface of the window—the interface between the air and the window,
which adds a π phase shift on reflection—could not create this effect as the light
it reflects is orthogonally polarised to the useful light. However, these fringes
vanished when using a λ/2 waveplate with its fast and slow axes in the same
orientation as the λ/4 waveplate. This showed that the LC WP could be used
to remove these fringes in the absorption images. The LC WP hence became an
integral part of the imaging system. Figure 5.9 shows images of the chamber
windows with and without using the LC WP to switch retardances. Here we
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can see the fringes present in both images, and how the λ/2 case has much less
pronounced fringes on the mirror’s image. Despite absorption imaging removing
features common to the images used, the fringes present in the λ/4 case remain
in the final absorption image; in particular the ‘cross-stitch’ interference pattern
seen on the central mirror, and the prominent fringes on the side mirror. The
absorption imaging is unable to remove these features because the interference
fringes are very sensitive to any vibration or change in polarisation—they can be
seen slowly moving and shifting—and in the areas of deconstructive interference
there is simply no light for the camera to detect. When using the λ/2 retardance
for absorption imaging, no such disruptive interference patterns are seen in the
final image. Changing the LC WP’s retardance to λ/2 also allows more light
to pass through the PBS towards the camera. This increases the brightness
of the images and providing increased flexibility of the imaging laser beam’s
power. It is unclear where the fringes in the λ/2 case arise from, in particular
those seen surrounding the central mirror at the bottom of the image, these
may be caused by other reflections from interfaces. Thankfully, these fringes
remain static—during the imaging period—and are able to be ‘subtracted’ by
the absorption imaging technique and do not effect our results.

While this interference fringe problem was improved by the LC WP switching,
it would be preferable if the fringes were not present at all. A possible solution
to this is to alter the design of the vacuum chamber to tilt the window by a
small angle. This would direct any unwanted reflections from the window away
from the absorption imaging camera.

When imaging the atoms trapped by the MOT with the camera in Figure 5.1,
the laser light reflecting off the central mirror would pass through the cold atoms
twice. We will assume that this, and the reflected light from the side mirrors,
does not create any additional effects that would change the absorption cross
section, σ. Therefore, the absorption detected from the light reflecting off the
central mirror would indicate a cloud twice as large. To compensate for this we
make a small adjustment to Equation 4.25:

Nretro =
A

2σ0

∑
pixels

ln

(
I0
I

)
=

1

2
Ntotal. (5.1)

We will use this equation to determine the atom number when imaging the central
mirror and Equation 4.25 when imaging the trap from the side mirrors. The
camera we are using has a pixel area of A = 5.3µm× 5.3µm = 2.8× 10−11m2,20

and the absorption cross sectional area is σ0 ≈ 1.2457× 10−13m2 [49].

In order to obtain the absorption images, we require a coordinated sequence of

20We see in Section 6.2.1 that the effective pixel size due to the imaging optics is 10.6µm.
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Parameter Time Description

tMOT 2 s Atom trapping time
Cooling rise time 10µs Rise time of cooling AOM
Cooling fall time 6µs Fall time of cooling AOM
Repump rise time 10µs Rise time of repump AOM
Repump fall time 10µs Fall time of repump AOM
Repump pump time 100µs Pumping during imaging sequence
Cooling to imaging time 15µs To decrease power to imaging power
Imaging to cooling time 15µs To increase power to cooling power
Imaging exposure time 45 ns To expose camera
LC WP rise time 1.4ms To swap to λ/2 retardance
LC WP fall time 110ms To decay to λ/4 retardance
Camera delay 85µs Time between trigger and exposure
Camera reset time 72.5ms Delay between successive images

Table 5.1: Table showing the imaging sequence’s calibration parameters. These
values were measured and saved to properly coordinate the imaging sequence
seen in Figure 5.10. The rise and fall times are used to ensure laser beams or
devices are in their desired state before the next event can occur.

events; these include atom trapping, turning off the MOT lasers (and possibly
the MOT coils), switching the LC WP to the correct polarisation, beginning the
camera exposure, exposing the camera, retrieving the recorded image, performing
a second ‘background’ exposure, retrieving the background image, and finally
applying Equations 4.25 and 5.1 to the recorded images. The timings are handled
by the pulseblaster which sends TTL signals to the relevant devices. Figure 5.10
shows the sequence used to image the atoms. Table 5.1 shows the parameters
used to coordinate the imaging sequence properly. The AOM rise and fall time
here are much longer than the typical response time of an AOM—typically these
are ≈ 100 ns. This is due to the RF signal being switched by the RF switches
which have a slower response time. We also see that the camera has a limited
frame rate, requiring ≈ 75ms between each image—this is possibly caused by
the software used to record the images rather than the camera’s hardware. This
and the LC WP fall time limit how fast the background image can be taken
after the atom’s image. The cooling laser’s frequency is changed ≈ 1ms before
it is used as an imaging beam to ensure the locking system has enough time to
successfully change the lock-point.

After the experimental sequence is performed, two images recorded by the
camera are sent to a computer for analysis. Here we use the first image recorded
to provide values of I and the second background image for I0. After applying
Equation 4.25 for an image of the side mirrors or Equation 5.1 for an image of the
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Figure 5.10: Representation of the absorption imaging timing sequence, not to
scale. After the atoms are released from the MOT, the LC WP first begins to
switch its retardance from λ/4 to λ/2. This is the longest period in the imaging
sequence, apart from the LC WP decay, which limits the delay between recording
the absorption image and switching off the MOT. During the imaging sequence,
the repump is briefly switched on to pump any atoms out of the dark F = 2
state; the frequency of the cooling laser is also changed to be resonant with the
cooling transition—turning the cooling laser into the imaging laser—the camera
is then triggered. Due to uncertainty in the delay between the camera being
triggered and beginning the exposure, we allow an exposure much larger than
the time the imaging laser will be exposing the camera for; this allows much
more precise control of the exposure period. After the first exposure, the image
recorded is sent a computer. This period is lengthy and allows time for the LC
WP to decay back to λ/4 retardance to be ready for the background imaging.
To minimise any differences between the two images, apart from the cold atoms
being present, the background imaging sequence is perform exactly as the first
imaging sequence. timage is the time including the rise time of the LC WP and
the exposure period.
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(a) Central mirror.
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(b) Side mirror.

Figure 5.11: Examples of absorption images of the cold atom cloud from imaging
the central mirror (a) and a side mirror (b). The atom number for (a) was found
using Equation 5.1, and Equation 4.25 was used for (b). The total atom number
in (a) is 1.3× 106 atoms and in (b) is 1.6× 106 atoms. The discrepancy between
the measured atom numbers could be explained by these measurements being
taken on different occasions with slightly different experimental parameters.

central mirror to each pixel, we obtain an image of the cold atoms. Figure 5.11
show examples of these images, showing the cold atom cloud’s profile from both
angles. The side angle shows the cloud looks ‘squashed’, this is most likely due
to the up-down MOT forces being stronger from both the construction of the
quadrupole magnetic field, and because the cooling beam’s Gaussian intensity
profile indicates a higher intensity of light on the central MOT mirror compared
to the side mirrors. We found that ≈ 0.87mW of imaging laser power yielded
the best absorption imaging measurements without over-exposing the camera.
The intensity of this beam is therefore ≈ 0.12mW/cm2 which is much less than
the saturation intensity of Isat ≈ 3.90mW/cm2.

In Section 4.7.2 we mentioned how we neglected to incorporate a dark image
subtraction into our calculations. If we estimate that this dark image has a
uniform pixel value of 1, we then obtain atom numbers ≈ 2.5% larger than we
originally calculated. This percentage doubles to ≈ 5% for a pixel value of 2,
and a pixel value of 10 raises this significantly to ≈ 35%. The dark areas of
the images, where only scatter from the inside of the vacuum chamber, can
give us an estimate of this value; we find this to be a pixel value of 5, which
gives an estimated adjustment to our atom numbers of ≈ 15%. We will not
be incorporating this adjustment into the atom numbers given throughout this
thesis, however it is worth keeping in mind that the atom numbers shown may
be slightly larger because of this.
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5.6.1 An imaging problem

The first image, collecting values of I, is consistently brighter than the back-
ground I0 image. This means that a negative atom number is calculated in places
where no (or little) absorption is detected; this is obviously unrealistic. This
brightening is caused by a ‘pre-exposure’ of the image by the high intensity MOT
laser beams being incident on the CCD sensor before the image exposure. It is
possible to apply this pre-exposure effect to the background image in attempt
to have equal brightness. However, this requires an pre-exposure period of ≈ 1 s,
in which case the fluctuations of laser power act to ruin the absorption image.
Taking a ‘blank‘ image before imaging the cold atom cloud in order to remove
the brightening effect is also not possible due to the lengthy reset time seen in
Table 5.1. Performing this blank image while the MOT lasers are active also
does not remove the brightening effect.

To prevent this affecting our overall atom number, and because the negative
numbers are present only on pixels that detect no absorption, we decided to
ignore any negative atom number and reset any of these measurements to zero.
While this does not solve the actual problem, this occurs on the pixels that
do not detect any cold atoms and would not contribute to any measurements.
Because of this, it is possible that the atom number we detect is much lower
than the actual value. However, the absorption imaging can still reliably show
any relative changes in atom number and shape; this makes this system still
appropriate for characterising the MOT and making progress towards realising
an atom interferometer. To further reduce the effect of noisy pixels on the image,
any measurements of total atom number use a cropped image to focus on the
atom cloud.

5.7 Molasses stage

In order to cool the cold atom cloud closer to the sub-Doppler cooling limit,
we perform an additional cooling stage after the MOT. This molasses stage
takes advantage of the Sisyphus effect described in Section 4.6 to cool down
the atoms to orders of magnitude below the Doppler cooling limit. This is
required in order to obtain the coldest and most dense sample of atoms for atom
interferometry, and to detect the atoms at the bottom of the chamber. Here we
use the absorption imaging system to employ the TOF technique (Section 4.7.3)
to measure the temperature of the atoms.

Figure 5.12 shows the experimental sequence used for performing the molasses
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Figure 5.12: Representation of the molasses and TOF timing sequence, not
to scale. After the MOT loading time the molasses stage occurs. During the
molasses stage the MOT coil current is turned off, the repump light is left on,
the intensity of the cooling beam is gradually decreased, and the cooling laser’s
frequency is detuned further from resonance. Once the molasses stage had
finished, the absorption imaging sequence is used to image the size of the atom
cloud. The TOF time, tTOF, is measured from the end of the molasses period,
tmol, to when the imaging laser is turned on.

stage and TOF technique. We follow the results from Ji et al. [90] where they
found the most effective molasses stage method was to gradually decrease the
cooling laser’s intensity, and quickly increase its frequency detuning. After
the period where the cooling laser’s intensity is ramped down—which lasts
≈ 3ms—we then maintain this lower power for ≈ 2.5ms to further cool the
atoms. After performing this sequence, absorption images of the atom cloud are
obtained. From these images the size of the atom cloud can be measured. By
repeating these measurements several times and varying tTOF, we can build up
a picture of how the cloud expands over time. We can then apply Equation 4.28
to this data to find the temperature of the cold atom cloud.

Since we are mostly interested in the vertical temperature of the atom cloud—as
this temperature relates to the performance of the gravimeter—we aim the
camera at one of the chamber’s side mirrors. This allows us to see both the
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Figure 5.13: Representation of the experimental sequence for detecting atoms
at the bottom of the vacuum chamber, not to scale. After the molasses stage,
the atoms are allowed to fall to the bottom of the chamber. During this time the
cooling laser’s frequency is shifted to resonant with the cooling transition. After
the atom ensemble has fallen the 71mm distance between the MOT mirrors
and the detection mirrors, a dip in the signal where the the atom ensemble has
fallen into the beam and absorbing light is detected.

vertical and horizontal size of the atom cloud as it expands, and hence measure
temperature in both directions.

5.8 Detection area atom detection

For a gravimeter to function, the atom ensemble must be detected after falling
for a distance. Here is where the population of states would be measured after
atom interferometry. While we have not implemented the atom interferometry,
we must be able to detect atoms after they have been released from the MOT
and fallen to the bottom of the chamber if the sensor head is to be used as an
inertial sensor

To detect the atoms at the bottom of the chamber, we use a resonant absorption
beam that passes through the area where the atoms fall through and is then
detected by a PD. Figure 5.13 shows the experimental sequence for this detec-
tion. Since the absorption beam is the undiffracted cooling laser’s beam (see
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Figure 5.4), its power is related to the cooling beam’s AOM. When the cooling
beam is switched off using the AOM, the absorption beam is at maximum power.
We also employ a 100µs state preparation time where the repump is used to
pump all the atoms into the F = 3 ground state to increase the absorption
detected at the bottom of the chamber.





Chapter 6

Finding a needle in a haystack

This chapter shows the results of the cold atom experiments using the apparatus
described in Chapter 5. As we mentioned in that chapter, in order for the
experiment to demonstrate the ability to be used as an atom interferometer, we
must be able to detect the cold atom ensemble after it has undergone free fall.
To be able to detect the atom ensemble, it must be denser than the surrounding
background rubidium gas. Intuitively, this provides two foci of optimisation:
increasing the atom number and decreasing the cloud’s temperature (or size
after TOF).

We begin this chapter by characterising how the experimental variables affect
the number of atoms trapped in the MOT. This is followed by measurements
of the temperature of the cold atom cloud and characterisation of the molasses
stage. Detection of the atom ensemble after free fall is then shown—where we
find the proverbial needle.

6.1 Magneto-optical trap characterisation

We create the MOT in the vacuum chamber by directing the cooling and repump
lasers at the MOT mirrors after collimation. Using a large enough diameter
beam we are able to illuminate all the MOT mirrors with a single laser beam
containing both MOT lasers with the correct polarisation of the cooling beam.
We then run electrical current through the MOT coils such that they generate
a quadrupole magnetic field. The polarity of this field is chosen to match
the polarisation requirements described in Section 4.4. Rubidium vapour is
introduced into the vacuum chamber by running 4A through the chamber’s

95
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Rubidium dispensers. These dispensers are left on consistently while performing
any experiments. Prior to the development of the absorption imaging system,
we were able to detect the presence of cold atoms by imaging their shadow in
the reflected MOT laser beams when attempting to trap the atoms. This gave
a signal not ideal for characterisation, due to the cooling beam being detuned
from resonance; however, it was enough to help detect the presence of the cold
atoms.

The design of the vacuum chamber presents some constraints and additional
challenges to optimising the MOT when compared with less restrictive chambers.
Due to the MOT mirrors being fixed inside the chamber, the only variables
we have control over are those concerning the laser and magnetic field: laser
intensity, laser frequency, and the magnetic field gradient. While we technically
have some control of the alignment of the laser and since the Raman beams
(which would take the same optical path as the MOT beams) require retro-
reflection, we will only use MOT beams that are retro-reflected along the main
chamber axis.

The first aspect of the system to characterise and optimise is the absorption
imaging system—as our measurements of the cold atom cloud are dependent
on this system. In Section 4.7.2, we assumed to use resonant light to image
the atoms to ensure the correct absorption cross section. Because we have
arbitrary control over the cooling laser’s frequency, we are able to ensure this
assumption remains correct. Figure 6.1 shows how the atom number measured
by the absorption imaging is affected by different detunings of the imaging and
cooling beams. We also see in this graph how different cooling beam detunings
affect the trap’s atom number. The data were taken in a random order to
remove any time-based biases—this will be the case for all similar measurements
in this thesis—and the imaging and cooling frequencies were varied on separate
occasions; which is why the maximum atom number for both series is different.
We have plotted a Lorentzian distribution as this is the line shape we would
expect from an atomic transition:

y(x) = A
γ2

(x− x0)2 + γ2
+ y0, (6.1)

where A is the amplitude of the curve, the scale parameter γ = FWHM/2,
x0 is the position of the curve’s peak, and y0 is an offset fitting parameter
to take into account erroneous atom number measurements from noise. We
fit this Lorentzian to the measured atom number from varying the imaging
beam’s frequency as we expect the cold atom’s transition linewidths to exhibit
more ideal Lorenzian distributions as opposed to the Doppler broadened Voigt
distributions. When the absorption light is not resonant, due to the atomic
transition probabilities being Lorenzian shaped, less light is scattered from the
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Figure 6.1: Figure showing atom number as the frequency of the imaging and
cooling lasers, blue and orange respectively, are varied. A Lorentzian curve
is fitted to the imaging laser’s frequency with a Full Width Half Maximum
(FWHM) of 1.3 ± 0.01Γ. A Gaussian curve is fitted to the cooling laser’s
detuning with a FWHM of 1.1± 0.01 Γ and centred at −1.31± 0.004 Γ. The x
axis is scaled by assuming the centre-point of the Lorentzian is resonance and
dividing the frequency used to define the laser’s set point by Γ.
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beam. This increases the light detected on the CCD, therefore decreasing the
total atom number measured.

For the cooling laser’s frequency we fit the Gaussian distribution

y(x) = A exp

(
−(x− x0)

2

2σ2

)
+ y0, (6.2)

where the standard deviation σ = FWHM/2
√
2. We use a Gaussian here because

we are primarily interested in the centre of this peak, as this determines the
best laser detuning to obtain the largest atom number. A theoretical model for
this line shape can be derived through the the scattering force (Equation 4.4).
As the detuning of the cooling laser is changed, the range of atomic velocities
that can be effectively cooled through the scattering force changes. At small red
detunings, very low velocities can be trapped; these atoms are already very cold
and there are proportionally few of them. As the detuning is increased to the
red, it eventually reaches a point where the maximum number of atoms can be
effectively cooled and trapped. Continuing beyond this point, the MOT begins
to attempt to trap faster moving atoms; however, because the capture velocity
(Equation 4.20) remains constant the MOT is unable to trap the atoms that are
faster then the maximum capture velocity.

The important features we wished to use this data for is to find the centres of
each of the peaks as this provides the frequencies to set their corresponding
lasers to. Hence, we shall use a detuning of δcooling = −1.31Γ for the cooling
beam for our measurements. From Equation 4.7, this detuning corresponds
to a maximum force around a velocity of ≈ 1ms−1; from Equation 4.20, this
indicates we have a MOT with trapping radius of ≈ 0.1mm. We would expect,
with the size of the laser beams and the MOT mirrors, a trapping radius of
at least 2.5mm with a maximum radius of 5mm. This would correspond to a
maximum capture velocity of ≈ 7ms−1. Our measurements of the atom numbers
give total atom numbers between 1-2× 106 usually, with the highest total atom
number measured being ≈ 4× 106. Using Equation 4.19, with A = 4πr2 and
r = 5mm, gives an expected atom number of N ≈ 2× 108. Using a trapping
radius of r = 1.5mm, gives N ≈ 1.6× 106 which is much closer to our measured
value; implying this is our actual trapping radius.1 This difference could be
caused by the previously mentioned pre-exposure issue decreasing the number
of atoms seen, or because we are unable to use the entire trapping area. This
smaller trap size could be caused because we are illuminating the MOT mirrors
unevenly due to the laser’s Gaussian intensity profile, therefore we do not have
the ideal six beam MOT in our experiment. Using a top-hat beam shaper could
fix this and provide a larger trap.

1A trapping radius of r = 0.1mm gives N ≈ 30 which clearly is not the system we have
here.
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The FWHM of the Lorentzian distribution is slightly larger than the expected Γ;
here we have observed a FWHM of 1.3± 0.01Γ. If this were caused by Doppler
broadening, this would suggest that the temperature of the atoms are on the
order of ≈ 20mK. This is significantly hotter that we would expect from atoms
in a MOT—we see in Section 6.3 that we measure temperatures closer to 100µK.
The Vescent 780 nm DBR laser we are using has a quoted linewidth of ≈ 200 kHz,
this addition to the natural linewidth Γ could explain this broadening.

For completeness, in our system the phase lock offset frequency that matches
resonance—hence the frequency we will set the imaging laser’s frequency to—is
δimaging = 2873.6 + 80MHz = 2953.6MHz; the additional 80MHz term is the
frequency shift caused by the AOM. Taking into account the AOM shift and
the repump to the crossover peak −46.4MHz from resonance, the predicted
offset is ≈ 2949MHz [49]. This is very close to our measured value with a
≈ 5MHz difference. Since the error signal generated appears to blur the F = 2
transition lines together, forming an error signal that spans ≈ 90MHz, this sub
Γ discrepancy could be explained by an offset in the repump’s lock-point from
the cross-over’s resonance.

The errors for each data set were found by taking a series of atom number
measurements and finding the standard error, with the average of the atom
number measurements used as the data point’s centre. This is the method we
will use to determine our errors in similar measurements. The data points where
there are no cold atoms present in the image are dominated by noise on the
pixels or fluctuations of the imaging laser beam power. This appears to add an
offset to the measurements. Ideally, this offset would be cancelled out by the
noise having an equal chance to imitate a ‘negative’ atom number. However due
to the pre-exposure problem described in Section 5.6, this balance is disrupted
and we only obtain the noise that results in a positive atom number. Here
we can see an offset of y0 ≈ 2.5× 105. This could also indicate that the total
atom number we measure is larger than the actual atom number. However,
because we crop the absorption image tightly to focus on the cold atom cloud as
a way to compensate for the pre-exposure problem, when the cold atom cloud
is present in the absorption image the noise that causes this offset no longer
dominates the measured value. Therefore, we have decided not to subtract this
value as this offset may not be present or as large in the presence of actual
absorption features. We would also expect, from the pre-exposure problem, to
obtain atom numbers which are lower than the actual value—further reducing
the need for subtracting this offset. The atom numbers measured can then be
interpreted similar to a lower bound for the total atom number. Other factors
that could account for this offset issue is that we neglected to obtain a ‘dark’
exposure to subtract from the two exposures used for the absorption imaging.
While we expect this effect to be small it may be significant enough to have
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Figure 6.2: Cooling AOM power calibration. An exponential curve has been
fitted to this dataset in order to convert between AOM power and laser power.

effected our results. Furthermore, the effect of many beams interacting with
the atoms during absorption imaging may not be a negligible effect. Since the
absorption cross section, σ0, is proportional to the scattering rate [49], the atoms
are scattering (and hence absorbing) light from the other five beams rather than
the one we are using for imaging. This would lead to less absorption detected
and therefore less atoms detected. While this does not change the observed offset
detected, it may mean that there are many more atoms present then measured.

To finish optimising the absorption imaging system we determine the best laser
beam power to use. We do not control the laser beam’s power directly; we
control it by altering the RF power supplied to the laser beam’s corresponding
AOM. Therefore, we must first understand the relation between the AOM’s RF
power and the laser beam’s power entering the vacuum chamber. Figure 6.2
shows how the cooling AOM’s RF power is related to the cooling laser’s power.
Here we fit the function

log10

(
y(x)

yref

)
= mx+

y0
yref

, (6.3)

where m is a scale constant, y0 is an offset parameter, and the reference constant
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yref = 1mW. This function is chosen to allow us to convert continuously between
AOM power and laser power. From the fit we find m = 0.085± 0.002 dBm−1,
y0 = −1.92± 0.06mW. This was measured by placing a PD in the beam path,
varying the AOM’s RF power, and measuring the voltage detected for each RF
power. We have assumed a linear voltage response to the laser power which
was measured by placing a ThorLabs2 power monitor sensor immediately after
the PBS. The scale begins at ≈ 10 dBm as the PD was unable to detect any
difference in laser power below this point. This issue in detection at low powers
also leads to the discrepancy in the fit in this regime. During the experiment,
this isn’t very useful as we control the AOM through its RF power. As a result,
following data were taken using the decibel scale and the calibration applied
afterwards; this calibration spaces the data points logarithmically. Scaling data
by this calibration then hides some information at the lower powers, however
nothing of interest tends to occur there. Somewhat often realignment was
required to correct for drifts and to maintain reliable optical powers during the
course of the experimentation.

The MOT laser beams are delivered to the vacuum chamber optics (Figure 5.1)
by a PM fibre from the laser switching system (Figure 5.4) in orthogonal linear
polarisations. This prevents all of the power from both the cooling and repump
lasers reaching the MOT mirrors after passing through the PBS. The λ/2
waveplate between the fibre and the PBS allows us to control the power ratio
of the two MOT beams. This makes it difficult to properly characterise the
role each laser plays in the MOT. The lowest powers we found to generate an
atom cloud were 3mW of cooling and 0.3mW of repump. This was found by
carefully rotating the λ/2 waveplate and monitoring the atom number. Once
the maximum atom number was found the power of each beam after reflecting
off the PBS was recorded. When more laser power was available we found 4mW
of cooling and 0.5mW of repump was optimum. These powers are quite less
then the maximum power available out the fibres; however, since the cooling
and repump beams have orthogonal polarisations, this maximum fibre output
power was only available when extinguishing the other beam. This is unsuitable
for trapping and hence a balance between the two beams is required. Overall,
because we were always working with the maximum available laser power, any
attempt to characterise the laser power’s effect on atom number indicated that
higher powers would result in more atoms trapped. This would of course reach a
limit where losses would become dominant, however we never reached that point.
For completeness, Figure 6.3 shows how varying the power of the cooling beam
affects atom number. After setting the laser powers with the λ/2 waveplate, the
laser powers are controlled by controlling the power to their respective AOMs.
In the current laser control system, we do not have analogue control over the

2www.thorlabs.com

www.thorlabs.com
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Figure 6.3: Scan of cooling laser power against atom number. The power shown
is the cooling AOM’s RF power.
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repump AOM’s power, we only have analogue control of the cooling AOM.

For measurements of atom number, where a series of measurements have been
made to find the average value and the standard error, there are data points with
large error bars that do not appear to follow the general trend of the data. This
can occur when, occasionally, the camera is knocked out of synchronisation with
the rest of the experiment. In this scenario the camera misses a TTL trigger from
the pulseblaster and hence does not take an image, or the computer does not
successfully receive the recorded image from the camera. On subsequent triggers
the recorded images become muddled; where the I0 images are recorded as I
images and vice verse. Because of the method we use to record many absorption
images in sequence, this affects only that particular data point. Usually this
loss of synchronisation occurs after the first few measurements; the erroneous
measurements then tend to give vastly different values. This shifts the average
value of the collected data points and the increased range of measured values
then increases the standard error when compared to measurements that remain
synchronised.

We have seen in Equation 4.12 that the MOT force depends on the magnetic
field gradient. Figure 6.4 shows how this magnetic field gradient affects the
MOT’s atom number. From the Gaussian fit, the maximum atom number is
found at 13.2± 0.3G/cm which corresponds to a coil currents of ≈ 1.3A and
≈ 1A for the bottom and top coils respectively. We choose a Gaussian here in
order to find the centre of this distribution. The measurements of magnetic field
gradient were performed by taking measurements of the magnetic field strength
with a Hall probe along the central axis of the magnetic field coils. The coils
used were exact duplicates of the ones used in the MOT, including the metal
support structure. Since it is impossible to measure the magnetic field inside
the vacuum chamber, we assume any difference caused by interactions with
the structure of the chamber is negligible. The atom numbers were measured
separately by using the same coil currents used that generated the measured
magnetic field gradients.

We observe larger atom numbers here than generally seen throughout the rest
of the data, this is most probably because the data gathered here was done over
a shorter amount of time. This prevented the vacuum chamber from heating up
and increasing the pressure within the vacuum chamber. The lower pressure
decreases the losses from the MOT and therefore increases the steady state
population of the MOT. For the longer time-scale experiments, where there a
significantly larger number of datapoints, this heating effect becomes significant
and the increased pressure decreases the atom number in the MOT.

Figure 6.5 shows the atom number as a function of the time the MOT is active
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Figure 6.4: Graph showing how the MOT’s atom number is related to the
magnetic field gradient. The Gaussian fit (Equation 6.2) shows the maximum
atom number is at 13.2± 0.31G/cm.
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Figure 6.5: Atom number as the time the MOT is active for, tMOT, is varied.
Equation 6.4 has been fitted to the data. From the fit the rise time is ≈ 0.3 s.

for, tMOT. From this we can find the loading rate of the MOT. We have fitted a
slightly modified version of the theoretical model in Equation 4.18 to the data:

N(t) =
R

γL
(1− e−γL(t−t0)) + y0, (6.4)

where t0 is a time offset fitting parameter. Here we find the loading rate of the
trap to be R = 1.96± 0.004× 106 s−1 and the loss rate γL = 3.29± 0.085 s−1.
Since with absorption imaging we are unable to view the trap directly as the
MOT loads—a feat fluorescence imaging is capable of—this measurement was
performed by varying the MOT trapping time, tMOT, and then performing the
absorption imaging.

Figure 6.6 shows the time between switching on the Rubidium dispenser and
creating a trap with the maximum atom number. This was performed by
continually attempting to trap atoms in the MOT then performing the absorption
imaging measurement, as a result we were unable to use our usual method of
obtaining errors. Before the dispensers have been switched on, we observe noisy
measurements where the measured atom number is dominated by noise on the
pixels and fluctuations in laser power. After the dispensers have been turned on,
there is a quick rise in the measured atom numbers. Here the Rubidium vapour
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Figure 6.6: Figure showing time required between dispenser activation and
saturation. The vertical lines shows the times when the dispensers were turned
on and off.

begins entering the MOT’s trapping region and we begin detecting the cold
atom cloud. As more vapour is added to the chamber and more vapour is able to
enter the trapping volume, the atom number rises as there are more Rubidium
atoms available to trap. The atom number then reaches a stable value as the
chamber reaches an equilibrium between the rate the dispensers are releasing
atoms to the environment and the rate the ion pump is removing Rubidium
from the chamber. The number of atoms entering the trapping area during this
event appears to follow a sigmoidal function, beginning slowly then after a short
time quickly increasing the atom number before slowing down again closer to the
equilibrium. The slow start could be explained by both the dispensers needing a
short time to heat up enough to properly emit atoms and it can take some time
before the atoms are able to travel from the dispensers to the area within the
MOT mirrors. Once the dispensers are turned off, this equilibrium is disturbed
as the vapour is pumped away by the ion pump. This leaves fewer and fewer
atoms available for the MOT to trap which decreases the measured atom number.
Because the ion pump relies on atoms entering it through ballistic collisions to
be pumped out of the environment, some atoms remain in the chamber. Over
time these atoms eventually make their way into the pump however on short
time scales we are still able to trap some of them. This can be seen here as the
measurements reach a new stable atom number measurement that is slightly
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larger than what was measured before the dispensers were turned on.

We can see that the chamber becomes saturated with Rubidium vapour at
≈ 180 s. The time for the chamber to pump away the Rubidium vapour is
≈ 100 s. Because of this we make sure to leave the dispensers on for 3 minutes
before beginning any experiments involving the MOT.

6.2 Temperature measurement

In order to detect the cold atom ensemble after it has fallen to the bottom
of the chamber (the detection area), we require that the atoms within it are
distinguishable from the background vapour. For this to be the case, the density
of the cold atoms must be higher than the background vapour’s density by an
appreciable amount in order to obtain a reasonable SNR. Since the cold atom
cloud’s density after some TOF is related to its temperature (Equation 4.28),
we can find a maximum temperature requirement for the cold atom cloud to be
detected at the bottom of the chamber.

The density of the background atoms is

ρb =
P

kBTb

, (6.5)

where P is the pressure of Rubidium in the vacuum chamber, kB is Boltzmann’s
constant, and Tb ≈ 300K is the temperature of the background atoms. The
radius of the cold atom cloud, σ(t), is described by Equation 4.28; assuming the
cloud is spherical, its density is

ρcloud =
N

4
3
πσ3(t)

, (6.6)

where N is the cloud’s atom number and t is the expansion time of the cloud.

The SNR is found by calculating the ratio between the number of atom contrib-
uting to the signal, and the number of atoms contributing towards the noise.
Assuming the cold atom cloud is cold enough that its transition linewidth is not
Doppler broadened, the SNR is

SNR =
ρcloud

ρb
Γ

∆ωD
/2

, (6.7)

where Γ is the transition linewidth, and ∆ωD ≈ 0.5GHz is the Doppler broadened
transition linewidth. The factor of 2 arises from the background atoms having
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equal populations in its ground states, and the cold atoms begin prepared into
one state. For the atom cloud to be detectable, for a certain SNR, its density
must be larger than this portion of background atoms:

ρcloud > ρb
Γ

∆ωD

SNR

2
. (6.8)

Rearranging this gives the cold atom’s maximum temperature to be

T < m

[
2N/

(
4
3
πSNRρb

Γ
∆ωD

)]2/3
− σ2(0)

kBt2
. (6.9)

For a SNR = 2, assuming a conservative N = 1×106 atoms, a maximum chamber
pressure P = 1 × 10−8mbar = 1 × 10−6 Pa, an initial radius σ(0) = 0.25mm,
and a free fall time t = 120ms, a minimum temperature of T < 13µK is
required. Considering similar experiments are able to reach temperatures of
≲ 5µK [33, 91, 119], temperatures < 13µK are certainly feasible.

6.2.1 Camera calibration

In Section 4.7.3 we described a TOF method for measuring the temperature of
the cold atom cloud. This involves taking measurements of the size of the cloud
during its expansion. While the absorption imaging system is capable of making
these measurements, we must first calibrate the imaging optics so we know how
much distance each pixel represents. We can then take images of the cold atom
cloud, measuring the size of the cloud at each time, to find the temperature of
the cloud.

The lens system in Figure 5.1 consists of the Ximea MQ013RG-E2 camera
(which has pixels of dimensions 5.3µm× 5.3µm), a 45mm lens, and a 100mm
lens; with 145mm spacing between the two lenses, and the camera is placed
45mm away from the smaller lens so that it is at the lens’ focus. By imaging
an object of known size, we can calibrate the scale of the camera’s pixels. For
this we use a Edmund Optics3 1951 USAF test target which has features with
standardised dimensions. This target is placed 100mm away from the 100mm
lens in the imaging system so that the target is at the focal point of the lens.
Figure 6.7 shows the image of the test target taken with this imaging system.

From this image of the test target, we can measure how many pixels the features
span. We use the group 2 element 6 line series for this which has line spacings
of 0.14mm. Figure 6.8 shows the horizontal and vertical pixel profiles of this
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Figure 6.7: Figure showing image of Edmund Optics 1951 USAF test target
taken with Ximea MQ013RG-E2 through a 45mm and 100mm lens system.
This image appears to be inverted along its horizontal axis; to improve contrast
and remove shadows the test target was imaged from behind. It can be seen
that the focus deteriorates towards the edges of the image; the centre of the
image was prioritised for sharpness.
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(b) Vertical pixel profile.

Figure 6.8: Figure showing pixel calibration of the absorption imaging system.
Data is gathered from the ‘group 2, element 6’ lines of Figure 6.7. The blue
line is the average pixel data of a series of slices of the line widths and spacings.
The orange line is a triple Gaussian fit (Equation 6.10). Lower grey values
correspond to darker points of the image, and larger grey values correspond
to brighter points on the image. From the fits we find the three lines to be
13.2± 0.1 pixels apart for both the horizontal and vertical profiles.

line series. These data were gathered by taking an average of pixel slices across
the lines’ lengths from Figure 6.7. To find the line spacing, we have fitted a
triple Gaussian distribution to the datasets:

y(x) = A1 exp

(
−(x− x0 −∆x)2

2σ2
1

)
+ A2 exp

(
−(x− x0)

2

2σ2
2

)
+ A3 exp

(
−(x− x0 +∆x)2

2σ2
3

)
+ y0,

(6.10)

where A1,2,3 is the amplitude for the three single Gaussian distributions, similarly
σ1,2,3 are the standard deviations for the individual Gaussian distributions, and
∆x is the separation between each Gaussian peak. Once again, this distribution
is chosen as we are only interested in the separation between the lines of the
image. From this fit, we find ∆x = 13.2± 0.1 pixels for both the horizontal and
vertical lines. This gives the distance each pixel represents to be 10.6± 0.1µm
along both axes. From the lenses used we would expect that each pixel represents
5.3µm × 100/45 = 11.8µm. This small discrepancy could be from the lenses
possibly not being positioned exactly 145mm which would alter the magnification

3www.edmundoptics.co.uk
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Figure 6.9: Absorption images of the atom cloud at varying TOFs. The TOFs
are indicated above the image. The sample of atoms in these images had a
temperature of ≈ 6.5µK.

slightly. We confirmed the validity of this calibration by measuring the MOT
mirrors in the vacuum chamber as they are of known size, 10mm × 10mm,
and finding the mirrors to be correctly sized on the images when using this
calibration. Using this calibration of the pixel size, accurate measurements of
the cold atom cloud’s size can be achieved. Since the atoms fall over a relatively
short distance, we will assume this calibration is valid even as the atoms move
out of the focal plane of the lens system.

6.2.2 Time-of-flight measurements

Figure 6.9 shows absorption images of the atom cloud expanding—and falling
due to gravity—on a side MOT mirror. This image series was collected by
performing the sequence described in Section 5.7 multiple times and varying the
TOF, tTOF, for each sequence. The atom clouds in this series of images were
cooled with the molasses stage after being prepared in the MOT. From these
images, it can be seen that as the cloud expands it starts to become too diffuse
for the absorption imaging to detect it clearly.

We can see in the 1.3ms image of Figure 6.9 (and in Figure 5.11), the shape of
the cold atom cloud does not follow an ideal Gaussian distribution. However,
as described in Section 4.7.3, the velocity distribution still follows a Gaussian
distribution. As the cloud expands, the shape of the cloud becomes dominated
by the motion of the atoms and hence the Gaussian velocity distribution begins
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to shape the cloud. Therefore, in the larger t regime—which provides us with
the information to find the cloud’s temperature—the shape of the cloud follows
a Gaussian distribution more closely. This can be seen clearer in the ≥ 7.1ms
images in Figure 6.9. While trapping, due to the magnetic field having different
strengths along the MOT’s ‘major’ axis compared to the other axes, the atom
cloud is not symmetrical or Gaussian.

To find the rms radius of the atom cloud, we fit the 2-dimensional Gaussian as
we would expect the cloud to follow a Gaussian distribution:

z(x, y) = A exp

(
−(x− x0)

2

2σ2
x

− (y − y0)
2

2σ2
y

)
+ z0, (6.11)

where x0 and y0 are the coordinates of the centre of the cloud, z0 is an offset,
and σx,y is the rms radius of the cloud along its respective axis. From this fit
we can simultaneously obtain the radii of both the cloud’s dimensions, allowing
us to find both the vertical and horizontal temperatures. We assume that both
of the horizontal temperatures—for Figure 6.9 this includes the direction facing
towards the camera and the direction horizontal across the page—are equal due
to any cooling forces on the atoms being equal in both these directions. We
then use a modified version of Equation 4.28 to find the temperature:

σ2(t) =

{
σ2(0) + kBT (t+ t0)

2/m t+ t0 ≥ 0

σ2(0) t+ t0 < 0
(6.12)

where t0 is a time offset. This time offset allows us to account for us being unable
to take measurements at TOFs less than the minimum time for an absorption
image to be taken—this is mostly governed by the TNE interval. This is seen
during the experiment by the atom cloud remaining static until TOFs greater
than this minimum time are reached; this is visible in Figure 6.9 by the first
image having a TOF of 1.3ms. We fix the t+ t0 < 0 value to be the initial radius
to prevent unrealistic behaviours of the parabola which may occur more often
with this time offset adjustment. This is done with the experiment primarily to
allow for a variable time delay for the initial image; this is mainly dependent on
the LC WP’s rise time changing when recalibrating. This allowed us to more
easily create an automated data collection procedure. Since the temperature
measurement is dependent on the rate at which the cloud expands, the time
offset does not affect the temperature measurement.

Figure 6.10 shows two examples of TOF measurements of atom clouds with
different temperatures. Equation 6.12 has been fitted to each data set in order
to measure the temperature. For the data with the hotter atom cloud (the MOT
series), we can see that the data points begin to level off and the fit deviates.
This is because at these later times the hot cloud has already dispersed too much
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Figure 6.10: Examples of typical TOF measurements of the cold atom cloud
before the molasses cooling stage (MOT series) and after the molasses cooling
stage (molasses series). From the fits, the MOT series has a temperature of T =
116.2± 38.8µK, and the molasses series has a temperature of T = 6.5± 1.2µK.
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to be detectable on the absorption images—this can be seen in the 20ms image
from Figure 6.9. This can also be seen as clouds of radius of ≈ 0.7mm are the
maximum size we are able to measure; hotter atoms would reach this size quicker
than colder clouds. In this scenario the Gaussian fit tends to start fitting to noise.
The errors of the radii are derived from the covariance of the fitting parameters
of the Gaussian fit; however, because Gaussians are well known for being able
to fit well to most distributions, the Gaussian is also able to fit well to noise.
This rarely occurs when an atom cloud is present as the absorption signal from
the atom cloud is larger than any noise signal. In the cases where the Gaussian
does preferentially fit to noise, because we take many TOF data points to create
a picture of how the cloud expands, this erroneous radius measurement makes
little contribution to the final temperature measurement. It is worth noting that
these datapoints, while unphysical, are still being used in the fitting algorithm
as when we are automating data collection it is difficult to automatically discern
which data is erroneous or not. For a colder atom cloud, the Gaussian fit is
able to track the expansion to longer time scales. While the colder clouds will
eventually become too diffuse to detect on the absorption image, this tends to
happen beyond or at the longest TOF time period we use for measurements.
Due to this fitting behaviour, measurements of higher temperature atom clouds
tend to have a greater uncertainty than measurements of colder atom clouds
for the same set of TOFs. For measurements performed later in this chapter
(Section 6.3), we perform the measurements with consistent TOFs where this
behaviour presents itself in our measurements of hotter clouds. Since the atom
cloud diffuses at the same size regardless of how far the cloud has fallen, we can
rule out this diffusion occurring due to the cloud falling out of the focal plane of
the imaging system.

We focus mainly on the vertical temperature of the atom cloud as it is the
temperature that most effects the number of atoms detected at the bottom of
the chamber. In most cases, we find that the vertical and horizontal temperatures
are similar to each other.

6.3 Molasses stage characterisation

During the molasses stage, as seen in Figure 5.12, the cooling laser beam’s power
is ramped down from the power used for the MOT to a chosen power and its
frequency is further detuned from resonance. After this period where the cooling
beam’s power is decreased, it maintains that lower power for a small period
while the detuning remains constant. The repump laser’s frequency is unchanged
and its power remains on during the cooling’s ramp period, after which the
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Figure 6.11: Temperature of the cold atom cloud as the molasses ramp period
is changed. It is worth noting that this is not the temperature of the atoms at
each point of the ramp.

repump laser beam’s power is shut off. This sequence has several variables we
can control and vary to characterise their effect on the atom cloud’s temperature
and atom number: the ramp period, the cooling laser beam’s final power after
the ramp, the cooling laser’s frequency during the molasses stage, and the period
the cooling beam remains at the lower power level after the ramp for. Before the
molasses stage, typical temperatures of the atom cloud are ≈ 150µK; after the
molasses cooling stage, temperatures of the atom cloud tend to be ≈ 7µK with
the lowest temperatures measured to be ≈ 5µK. Similar to the atom number
measurements for the MOT characterisation, temperature measurements are
taken in a random order and multiple temperature measurements are used to
find an average value for each data point. From these multiple measurements,
both the standard error and the error from the TOF fitting are used to find the
error of each data point.

Figure 6.11 shows how the atom cloud’s temperature is dependent on the ramp
period of the molasses stage. We can see here that temperatures in both the
horizontal and vertical directions tend to be similar to each other. At ramp
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periods ≲ 0.3ms, the atoms appear to undergo rapid cooling. However, at
slightly longer ramp periods the atoms experience a large heating effect. This
heating effect heats the cold atoms to much higher temperatures than the atoms
are cooled to within the MOT. A possible explanation for this effect is that if
the light shift is decreased too rapidly,4 the mJ state the atom is preferentially
pumped into has a smaller energy difference from the upper J level than when
the atom was pumped into the initial mJ state. For example, let us say the
atom begins in the mJ = +1/2 state at time t0, the atom then moves into an
area of σ− polarisation. Here the atom will be preferentially pumped into the
mJ = −1/2 state. Usually this would cool the atoms; however, if the light shift
has decreased such that the mJ = −1/2 state is at a higher energy level than the
mJ = +1/2 state was at t0 then the energy lost through spontaneous emission
will be less than the energy that was absorbed. This means that the atom
will continue to radiate less energy than it absorbs, therefore heating the atom.
However, this would appear to contradict the cooling effect seen at short periods
as this heating effect should be present at these very short periods. We would
usually expect to see the decay of the magnetic field to be a limiting factor in the
rate we can cool the atoms during the molasses stage. This would be indicated
by an initial constant temperature as the atoms still mainly experience the MOT
forces rather than the sub-Doppler Sisyphus cooling effect; however we do not
see this behaviour here. This heating effect appears to become less dominant
at periods of ≳ 0.75ms. Here the effect of the molasses stage appears to not
cool the atoms below the temperature the MOT cools the cloud to, this MOT
temperature can be seen at the 0ms ramp period. At ramp periods ≳ 1ms,
the Sisyphus cooling effect becomes dominant and the atoms begin to reach
minimum temperatures at ≈ 1.5ms ramp periods; longer periods have little or
no further cooling effect.

Figure 6.12 shows this molasses ramp period’s effect on the cloud’s total atom
number. Because we are not trapping any more atoms from the background
atmosphere during the molasses stage—only further cooling the ones we have
already trapped and cooled with the MOT—this and subsequent atom number
graphs can be seen to describe how many atoms are lost during the molasses
stage. Here we can see a general trend where the atom loss reaches a minimum
at a ramp period of ≈ 3ms. Shorter ramp periods lose atoms likely due to
only a small velocity selection being able to be successfully cooled in this time.
It is possible that this is not detected during the temperature measurement
because these hotter atoms would have dispersed into the background during
these measurements and therefore not contributed to the shape of the atom

4The light shift is a proportional to the square of the Rabi frequency; and the Rabi frequency
is proportional to the magnitude of the electric field. i.e. the light shift is proportional to the
square of the magnitude of the electric field.
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Figure 6.12: Total atom number of the cold atom cloud as the molasses ramp
period is varied. It is worth noting that this is not the cloud’s atom number at
each point of the ramp.



118 Chapter 6 Finding a needle in a haystack

cloud. At the longer time periods, the usual loss rates of the MOT due to
collisions with the background atoms (and with other atoms within the cloud)
act to remove atoms from the cloud. Because we find the coldest and most
numerous atom cloud with a ramp period of 3ms, this is the ramp period we
use during the experiment.

There is also a large amount of noise present in Figure 6.12. It is unclear what
causes this instability as we would expect the data points of the noise to also
have much larger error bars—as seen in previous atom number measurements.
This noise doesn’t appear to be randomly distributed and lies within a consistent
boundary. These two factors could indicate that the ‘noisy’ data points are not
caused from instabilities in the experiment and could be replicated. Repeat
measurements of this data set returned results with similar distributions of
data. This apparent noise effect may be caused by a long period of instability
within the experiment from an unknown source. It is unlikely that an atom loss
mechanism has such strong frequency dependence.

Figure 6.13 shows how the temperature of the atom cloud changes as the final
power of the cooling beam’s power ramp is varied. The laser’s power is ramped
linearly from the power used for the MOT to the power indicated on the graph.
We can see more clearly that the horizontal temperatures are consistently lower
than the vertical temperatures, however they both follow the same general
trend. Here we see that as the power is decreased, we have a mostly linear trend
towards a minimum temperature at ≈ 0.5mW. This agrees with the theoretical
prediction in Equation 4.15. As the power is decreased, the energy difference
between the mJ states is decreased and the atom radiates less energy every
emission event, allowing the atom to cool down further. Further reductions in the
laser power are less effective at cooling and lead to an increase in temperature;
this could be a similar effect that is seen when the ramp period is too small. A
smaller ramp power imitates a faster ramp as the gradient of the ramp can be
the same. This characteristic temperature behaviour for a change in laser power
can also be seen in Lett et al. [92].

Figure 6.14 shows the dependence of the cloud’s total atom number on the
power of the laser at the end of the ramp. Here we see the same large ‘noisy’
distribution seen in Figure 6.12; this is also most likely due to the same effect.
Because changing the ramp powers can imitate a different ramp period, if this
effect is not due to instability within the system, we would also expect to observe
it here. Also by this logic, it is subject to the same atom loss mechanisms as the
ramp period. We see in Figure 6.11, that there is a significantly larger range
of temperatures when compared to Figure 6.13. This could explain why the
changing ramp power does not appear to affect the total atom number, as we
are sampling a very small section of the ramp periods. From these results, we
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Figure 6.13: Temperature of the cloud as the cooling beam’s power ramp end
point is varied during the molasses stage.
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Figure 6.14: Atom number of the cloud as the cooling beam’s power ramp end
point is varied during the molasses stage.
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Figure 6.15: Graph showing how the temperature and atom number of the cloud
varies as the cooling beam detuning is varied during the molasses stage. The
temperature is represented by the blue and orange series and the left vertical
axis. The atom number is described by the purple series and the right vertical
axis.

find the optimal power the ramp finishes at to be 0.72mW.

Figure 6.15 shows how the cooling laser’s frequency effects the atom cloud’s
temperature. The cooling laser’s frequency is immediately stepped from the
frequency used during the MOT stage to the frequency shown on the graph
once we begin the molasses stage. At detunings closer to resonance than −2 Γ,
the temperatures appear not be changed much (or at all) after the MOT. This
is expected as the Sisyphus effect is only dominant with large red detunings.
At ≈ −2 Γ there is a very sharp step to significantly lower temperatures, where
larger red detunings are able to cool atoms to temperatures < 10µK. We see
in Figure 6.1 that we can no longer trap atoms in the MOT when the cooling
laser has a frequency detuning < −2Γ. We can see in Equation 4.4, that the
scattering force decreases as the detuning is increased. Once the scattering
force—which cools the atoms to Doppler limited temperatures—is no longer
dominant, the sub-Doppler mechanisms (e.g. the Sisyphus cooling effect) are
able to be the dominant mechanism in cooling the atoms. The energy lost by the
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atoms in each absorption-emission event in the Sisyphus effect is proportional
to the light shift the atom experiences; this light shift is inversely proportional
to the magnitude of the detuning [41]. This matches the trend of our results at
larger red detunings beyond ≈ −2 Γ. This behaviour can also be seen in Lett et
al. [92]. We can see that the effect of changing detuning is very similar to that
of changing laser power as they both effect the magnitude of the light shift.

Figure 6.15 also shows how the cooling laser’s frequency affects the total atom
number of the cloud. Here we observe a similar shape to the temperature
measurements, where there is a sudden change in response around −2 Γ. Notably,
the atom number is close to zero in the region > −2Γ. This explains the lack
of (significant) error bars on the temperature measurements within this region.
Here the Gaussian fitting would not be fitting to any significant amount of
atoms, and then fitting Equation 6.12 would remain close to the initial guess
used. While this may be caused by similar effects to the temperature response,
at the near resonant detunings (> −2Γ) because there is not such a strong
cooling effect it is possible that the atom cloud had become too diffuse to detect
the total atom number properly. Once the molasses cooling became effective
(< −2 Γ) the atoms were able to remain dense enough for the absorption imaging
to detect the cloud properly. Because the Gaussian fitting for measuring the
radius of the atom cloud is able to use a large number of pixels to fit, it would
still be able to fit to a low number of atoms to show the temperature accurately.
We would also expect the near resonant light—where the scattering force is
dominant—to continue to cool atoms at temperatures near the Doppler cooling
limit. The absence of the quadrupole magnetic field would result in no new
atoms being trapped. Since there is no mechanism for adding more atoms into
the cold atom cloud—as would usually be the case for the MOT—only the loss
mechanisms remain and therefore atoms are lost from the MOT. At ≈ −4.5 Γ,
the maximum number of atoms are able to remain in the trap. At larger red
detunings (< −4.5 Γ), there is a steady increase in the loss of atoms. We choose
to use a frequency detuning of −4.5Γ during the experiment to maximise the
atom number. Whilst this does not necessarily provide the coldest atoms, the
loss of more atoms in this regime would cause a more significant loss of SNR
compared to the small change in temperature.

Figure 6.16 shows how the period of time the cooling and repump beams are
left on after the molasses ramp period affects the temperature of the cold atom
cloud. Here we can see a small decrease in temperature from ≈ 10µK to ≈ 5µK
until about 5ms, as the atoms are able to continue to undergo cooling through
the Sisyphus effect. Beyond the period of time shown on the graph, the atoms
appear to undergo an extremely large heating effect. We have not shown this
to instead have more clarity on the data shown as the measured temperatures
were on the scale of > 1mK, accompanied with errors proportional to the data
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Figure 6.16: Graph showing the temperature of the cold atom cloud as a
function of the period the cooling and repump lasers are left on after the cooling
power is ramped down during the molasses stage.
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point’s temperature. We do not believe that this is an actual heating effect,
but rather erroneous measurements caused by loss of signal through loss of
detectable atoms. To combat this loss of atoms we use a period of 2.5ms in the
experiment; during this period the laser beams are able to cool the atoms down
further while not losing too many atoms. The errors appear to increase as the
duration is increased and the temperature is decreased; this may be due to small
fluctuations of experimental parameters, such as laser powers, however we were
able to consistently obtain these measurements. This may be due to a similar
effect to the large variance in atom number measurements seen in Figures 6.12
and 6.14, as lower atom numbers would lead to a lower SNR and fluctuations
would also affect the measurement’s error.

Despite the molasses stage not being able to exhibit a trapping force like that
seen in the MOT, we observed that the atom cloud would not begin expanding
until being released from the molasses stage. If this were not the case we would
expect to see the cloud to have already undergone expansion and seen a small
increase in radius, and a shape closer resembling a Gaussian distribution as
opposed to the ‘squashed’ cloud we see initially. As seen in Figure 6.9, we can
observe the expansion clearly, even for a very cold cloud, within the time-scales
used for the molasses stage (≈ 5ms). This would also be accompanied by the
atoms falling due to gravity—seen by the position of the atom cloud moving
across the image. However, we observed neither of these effects even when testing
long molasses stage periods of ≈ 20ms. While not obvious from Chapter 4, the
viscous force during the molasses stage prevents the atoms from moving quickly
and provides confinement [120].

6.4 Finding the needle

Once the cold atoms are released from the cooling stages, they fall due to gravity
towards the window of the vacuum chamber. Here, the pair of periscopes direct
the absorption laser through a section of the atom’s trajectory and then onto the
PD. After a free fall period of ≈ 120ms, the cold atoms fall into the path of the
absorption beam. Figure 6.17 shows the decrease in laser beam power detected
by the PD as the atom cloud passes through the resonant light. This shows
that the MOT loading and the molasses cooling stages are effective in creating a
dense enough atom cloud to be detected at the bottom of the chamber. Hence,
it may be possible to eventually perform atom interferometry for gravimetry
within this chamber. In order to analyse the magnitude of this dip in signal,
assuming the ramp of the laser beam’s power is constant during the period
where the atom cloud intersects the beam, we fit a Gaussian—representing the
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Figure 6.17: Absorption signal of atoms falling through the vacuum chamber
detection area. The time axis is measured at 120ms from the end of the molasses
stage.
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distribution of the atoms—on a linear ramp:

y(x) = A exp

(
−(x− x0)

2

2σ2

)
+Bx+ y0, (6.13)

where B is the gradient of the ramp. This ramp is required as the small
fluctuations in the laser power cause a small gradient to be present on the signal.
Usually these fluctuations would not affect measurements; however, because
the absorption dip is ≈ 0.2% of the total PD signal this instability becomes
significant. This gradient varies in magnitude and sign and is low frequency
enough to not show any sharp features such as points of inflection. Using the
residuals of the data and the fit we can find an estimate of the standard deviation
of the noise. The ratio between this and the amplitude of the dip in the signal,
A, can provide us with an SNR of ≈ 3. Using reasonable experimental values
for the atom cloud temperature of 10µK and 1× 106 atoms, we arrive at the
same SNR. While we have measured larger number of atoms, it is possible
that some are lost—possibly through collisions with background atoms—which
reduces the number of atoms that reach the detection area. We have also
measured lower temperatures; however, the errors associated with many of the
TOF measurements are on the order of a few µK. This could indicate there is
a temperature instability in our system; this is possibly caused by laser beam
power fluctuations during the molasses cooling stage.

From this absorption signal we can determine some properties of the detected
atom cloud. The amount of absorption is related to the number of atoms, we
can quantify the relative size of the dip in the signal with

D =
−A

Bx0 + y0
= 1− I0

I
, (6.14)

where A,B, x0, y0 are the amplitude, ramp, central position, and offset of the fit
in Equation 6.13. From this, we can approximate the number of atoms detected
using Equation 4.24; from the dip in Figure 6.17 we obtain an atom number of
N ≈ 0.5× 106. This is a reasonable number of atom that agree with the lower
end of atom numbers we have detected previously. We have measured relative
dip sizes of ≈ 0.5% which gives us an atom number of N ≈ 1.5 × 106 This
matches atom numbers commonly detected by the absorption imaging. The
discrepancy between the two could be the result of the atom number fluctuations
seen throughout the molasses stage, or from inefficient hyperfine state pumping.

TOF measurements for temperature are often performed with a probe beam
beneath the atomic cloud. As the atoms fall through the beam—and cause
absorption—the size of the cloud can be determined and hence the temperature.
This is commonly performed with either a small diameter Gaussian beam or a
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‘light sheet’ [88, 108, 120, 121]. We can perform this same TOF measurement
using our absorption signal. Here we find the radius of the cloud after free fall
to be σ(0.12) = 3mm. Assuming the cloud started at a radius of σ(0) = 0.3mm,
from Equation 4.28 we arrive at a temperature of T ≈ 5µK. Which is amongst
the coldest of the temperatures we have detected. It is worth noting that we
can only gain information about the vertical temperature of the cloud due to it
falling through the beam.

Increasing the SNR of this measurement would require increasing the number
of atoms detected; the signal is proportional to the atom number whereas the
noise is proportional to the square root of the atom number. One method of
detecting more atoms is to ensure that they are all in the appropriate state
to be measured. In our case, atoms in the F = 2 state are transparent to the
wavelength used here, as such we can pump atoms into the ‘bright’ F = 3 state
where we can drive this resonant transition. We also perform hyperfine state
pumping of the atom cloud with the MOT beams as a precursor to the effect
the Raman lasers would present. Figure 6.18 shows how the magnitude of the
absorption dip is affected by the pumping time of the cooling laser. This is
performed by leaving only the cooling beam on, with the frequency (−4.5Γ)
and power (0.5mW) used during the molasses stage, after the molasses stage.
We fit the exponential function to find the rate of this decay:

y(x) = A exp(λ(x− x0)), (6.15)

where A is the amplitude and λ is the scale constant. Here we can see the cooling
laser quickly pumps the cold atoms into the dark F = 2 state; preventing the
resonant absorption laser interacting with the atoms. From the fit, we find this
pumping rate to be λ = −2.5 ± 0.3 kHz, which is close to the scattering rate
of ≈ 4 kHz. The data with values > 0 after ≈ 1.5ms are likely caused by the
absorption dip fit (Equation 6.13) fitting to fluctuations in the signal that may
appear similar to a decrease in signal due to absorption of the falling cloud.

Figure 6.19 shows how the magnitude of the absorption dip is affected by the
pumping time of the repump laser. This is performed by leaving both the
cooling—with the frequency and power used during the molasses stage—and
repump beams on after the molasses stage ends. The time axis represents the
time the repump beam is turned off relative to the time the cooling beam is
switched off (at t = 0). Here we can see a rapid increase in the size of the signal’s
dip size before the cooling beam is switched off while the repump beam is left
on. Both the effects of the cooling and repump state pumping can be seen here;
in the negative time domain where the cooling beam is dominant, the atoms
are pumped into the dark F = 2 state (as in Figure 6.18), whereas when only
the repump is active the atoms are pumped into the F = 3 state which would
give the maximum absorption signal. From the fit, we find the pumping rate to
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Figure 6.18: Periscope signal absorption dip size (Equation 6.13) as the optical
pumping time—using the cooling beam—is varied. The exponential (Equa-
tion 6.15) is fitted to the data. Before the pumping with the cooling laser
beam, only the molasses lasers had been active. The size of the signal dip
is calculated with Equation 6.14. From the exponential fit, we find the time
constant λ = −2.5± 0.3 kHz.
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Figure 6.19: Periscope signal absorption dip size (Equation 6.13) as the time
the repump beam is on for is varied relative to when the cooling beam is turned
off. The exponential (Equation 6.15) is fitted to only the data points in the
negative time period. In the negative time period both the repump and cooling
beam are on, in the positive time period only the repump is left active. The
size of the signal dip is calculated with Equation 6.14. From the exponential fit,
we find the time constant λ = 1.33± 0.09 kHz.
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be λ = 1.33± 0.09 kHz; this differs from our calculated on resonance scattering
rate of ≈ 205 kHz. This difference is most likely due to the saturation intensity,
Isat, being hard to calculate when multiple decay routes exist [122].5 The large
distribution of data points may be due to fluctuations in the temperature and
atom number of the atom cloud affecting the number of atoms being detected
by the absorption laser. The transition period in the centre, between the two
regimes, can be interpreted as these points being samples of the decay seen in
Figure 6.18. As the time the cooling is left on for after the repump is turned
off is decreased, there is less time for the cooling laser to be able to pump the
atoms into the dark state. Eventually both lasers are turned off together and
no atoms are pumped into the dark state.

Successfully observing atoms at the bottom of the chamber, and the hyperfine
state pumping effect of both individual MOT beams, shows the ability for
this system to be able to successfully perform and observe Raman transitions
of the cold atom cloud; and therefore, eventually atom interferometry for
measurements of gravity in the PLAIN-GG system. For an atom interferometry
experiment, one would ideally perform state pumping into specific Zeeman
sub-levels—ideally the magnetically insensitive mF = 0 state(s). To make the
steps to atom interferometry would first require observing Raman transitions
and Rabi oscillations. This requires a new laser system to be implemented into
our current experimental apparatus.

5This was calculated with resonant light and Isat = cϵ0Γ
2ℏ2/4|ϵ̂ · d|2, where c is the speed

of light, ϵ0 is the permittivity of free space, ϵ̂ is the unit polarisation vector of the light field,
and d is the atomic dipole moment. [49].



Chapter 7

Progress towards Raman
interferometry

This chapter documents the progress made towards realising a laser system for
driving Raman transitions and the fibre stabilisation system to stabilise the
phase of the Raman beams for the PLAIN-GG project. Both of these areas of
development are incomplete and the results shown are preliminary. We begin
this chapter by describing the Raman laser system that was built for use with
the apparatus described in Chapter 5. We then describe the development of the
optical fibre interferometer designed to stabilise the phase of the Raman beams
between the sensor heads of the PLAIN-GG project.

7.1 Raman interaction laser

Figure 7.1 shows the optical arrangement used for the Raman laser system. This
system uses seed light from a Toptica1 DL pro and generates the sidebands used
for the Raman transitions with a iX blue2 NIR-MPX800-LN-10 fibre EOM. The
EOM is driven by a Rohde & Schwarz3 SMC100A signal generator whose signal
is amplified by a Qubig4 RF amplifier. We use the carrier and a sideband as the
pair of Raman beams to stimulate the Raman transitions described in Chapter 2.
The modulated light is then amplified by a TA. Using high laser beam powers
increases the Rabi frequency, allowing for shorter interferometry pulses, which

1www.toptica.com
2photonics.ixblue.com
3www.rohde-schwarz.com
4www.qubig.com
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Figure 7.1: Raman laser experimental arrangement. The seed laser sends light
to a SAS setup and through a fibre EOM. After passing through the EOM, a
tapered amplifier (TA) then amplifies the laser beam. A small portion of this
amplified light is coupled into an optical spectrum analyser (OSA) and the rest
is fibre coupled into a PM fibre. The fibre coupled light then passes through a
AOM switch before being sent to the vacuum chamber. This Raman light enters
the vacuum chamber in Figure 5.1 at the camera’s position. This system was
designed and built by Max Carey.
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approximate closer to the ideal instantaneous pulses. Before sending this light
to the vacuum chamber—where the Raman transitions take place—we use an
AOM switch to quickly shutter the light. The AOM used is a Gooch & Housego
R23080-1-LTD and driven by an AA Opto-Electronic MODA80-B4-33. The
AOM’s RF signal is digitally controlled by TTL signals from the pulseblaster
through a Mini-Circuits ZX80-DR230-S+ RF switch. By using a flip mirror
in the camera’s position in Figure 5.1 we are able to alternate optical access
between the camera and the Raman laser to the vacuum chamber.

The SAS system is used to make sure the Raman carrier frequency is far detuned
from the F = 2, 3 ⇒ F ′ = 2, 3 transitions. We use a Fabry-Pérot cavity as an
OSA after the laser light has been modulated to observe the successful generation
of the sidebands. We do not bother with suppression of the unused sideband as
it would have minimal effect on the interferometry pulses [123].

Unfortunately, we were unable to observe any Raman transitions successfully
due to equipment failure. We discovered a small fleck of dust on the surface
of the optical fibre leading to the EOM. This had caused heating of the fibre
optic and which gradually damaged the fibre. The gradual damage of the fibre
reduced the fraction of light able to transmit through the fibre and seed the TA.
This unnoticed drop of seed power then lead to damage of the TA’s gain chip
while we continued to run the TA at high current. This left the setup unusable
without replacement components, which we were unable to obtain in a timely
manner.

Our initial experiments would have involved FM of the EOM’s driving frequency
as the size of the absorption signal after the atoms undergo free fall is measured
(Figure 6.17). By using long Raman pulses (100µs) we pump the ensemble’s
average population into a state depending on the frequency difference between the
carrier and the sidebands from the ground level’s hyperfine energy splitting (as
described in Section 2.2.1). From this we would expect to observe spectroscopic
features of a resonant Raman transition or, in the case of weak magnetic
fields existing in the chamber, any mF sub-level spitting. In order for the the
carrier and sideband to interact with the atoms when the beams are counter-
propagating, we allow the atoms to fall a short time to increase the frequency
difference required between the carrier and the sideband. This ensures that the
carrier cannot excite the transition we want the sideband to excite and vice
verse. Hence the detected Raman transition resonance depends on the TOF
between releasing the atoms from the MOT and turning on the Raman laser.

Once the correct frequency difference between the carrier and the sideband
are found, work towards observing Rabi flopping can then begin. This would
involve varying the period the Raman laser is switched on for and measuring the
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size of the absorption signal in the detection area. This leads towards realising
atom interferometry, and would likely require mechanical stabilisation/damping
apparatus to observe the interferometry fringes that may otherwise be dominated
by noise.

7.2 Fibre phase lock interferometer

The principles of gradiometry (described in Section 3.2.2) rely on the two atom
ensembles experiencing identical phase noise of the Raman beams. Usually this
is achieved through line-of-sight between the two ensembles, where the same
Raman beam can drive transitions in both ensembles. In the PLAIN-GG project
we cannot use line-of-sight to maintain the Raman beam’s phase coherence
between the two ensembles. We have chosen to use a Michelson interferometer
whose arms are actively phase stabilised by an AOM in order to maintain the
phase coherence of the Raman beams between the two chambers. At the ends of
the interferometer arms would be the atom ensembles, and the retro-reflecting
mirrors of the chambers where mechanical noise of the environment would
manifest as phase noise. The aim of this system is not to eliminate the phase
noise, but rather to imprint the phase noise from the passive arm/chamber
onto the actively stabilised arm/chamber whilst also cancelling this arm’s noise.
This would mean the two atom ensembles would experience identical Raman
phase noise as if they had line-of-sight. As mentioned in Section 3.2.2, for
a sensitivity of 30Eötvös we require a maximum phase difference of 3mrad;
hence this is the stability we aim for. A similar method of phase stabilisation
has already been shown to reach much better stability and over much larger
distances [36, 124, 125], indicating that this endeavour is feasible.

Because the Raman beams can only be active for very short periods during the
experiment, direct phase stabilisation of the Raman beams themselves would be
impractical. Instead, we stabilise the phase of the light from a HeNe—whose
wavelength (633 nm) does not interact with Rubidium—travelling the same path
as the Raman beams. We require to be able transfer the phase stability of the
HeNe’s light to the Raman beams for this stabilisation method to function;
however, we have not yet demonstrated this. We hypothesise this to be possible
as the AOMs constantly maintain the phase coherence of the two arms through
measurements of the phase of the HeNe’s light. Once the Raman beams are
activated, they pass through the same path of the HeNe’s beam which is being
phase stabilised. The HeNe can be seen as a phase measurement laser in this
aspect.
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Figure 7.2 shows the design of the fibre Michelson interferometer for stabilising
the phase of the HeNe’s laser beam. We perform this stabilisation through FM of
one of the AOMs that are present on each arm of the interferometer. To monitor
the effect of this stabilisation where the phase of the Raman light is important,
we also form an optical Mach-Zehnder interferometer. The signal from the optical
Mach-Zehnder interferometer simulates the optical phase difference between
the two PLAIN-GG sensor heads. In order to detect the phase of the light,
we use different RF frequencies to drive the AOMs and perform heterodyne
interferometry. We used Gooch & Housego 3200-125 for the AOMs and the
Moglabs RF source was used to drive both of them. The Moglabs RF source has
built-in PID controllers to allow for feedback control of the driving RF signals.
To measure the phase of the beat notes, we use a Liquid instruments5 Moku:Lab
phasemeter which uses a digital phase-locked loop to monitor the phase of an
input frequency; which, at 40MHz, has a precision of 10µrad/

√
Hz.

The optical fibre interferometer produces two signals: one which takes a path of
a Michelson interferometer, and one which takes the path of a Mach-Zehnder
interferometer.6 The signal of the Mach-Zehnder interferometer is used to find
the difference in the light’s phase at the position where the atom ensembles
would be in the PLAIN-GG project. Therefore, we aim to reduce the noise of
the beat note’s phase at the Mach-Zehnder’s PD. The signal of the Michelson
interferometer is used as a feedback signal to stabilise the light’s phase.

We use a double-passed AOM setup to prevent any decrease of fibre coupling
efficiency when modulating frequency of the AOMs [126].7 Counter-intuitively,
we stabilise the interferometer through FM of the AOM’s RF signal as opposed to
modulating the phase of the RF signal. We do this as we found phase modulation
using the Moglabs RF source built-in PID to not produce any stabilising effect.8

We suspect phase modulation did not work due to quirks with the Moglabs
RF source’s PID as firmware updates changed other behaviours of the PID.
Implementing an external PID circuit may allow us to use phase modulation,
however, at the cost of the convenience and flexibility of the buit-in PID. We use
AOMs that require higher driving frequencies to increase the spatial separation

5www.liquidinstruments.com
6This is an optical Mach-Zehnder, not to be confused with the matter-wave Mach-Zehnder

in Chapter 3.
7We plan to eventually propagate 780 nm light down this same optical path. However,

the angle that AOMs diffract light at is wavelength dependent. Luckily, the difference in
angular deflection between 633 nm and 780 nm light is ≈ 2mrad. Furthermore, we can use
small free space path lengths to further reduce the small path deviation from the slight angle
difference. We assume that this small path deviation would be negligible in the operation of
the stabilisation interferometer.

8A change of frequency, f , is also a change of phase, ϕ: ϕ =
∫
f(t) dt and vice verse

f = f0 +
dϕ
dt .

www.liquidinstruments.com


136 Chapter 7 Progress towards Raman interferometry

Chamber
analogues

Double pass AOMs

Lock-in amplifier PID

40MHz beat note
(Michelson)

20MHz beat note
(Mach-Zehnder)

Frequency doubler

2x2 fibre
splitter

200MHz

210MHz

4MHz

HeNe

Phasemeter

M
irror

Back side
polished mirror

50:50
B
S

PD

L
en
s

λ/4
waveplate

PBS

AOM

F
ib
re

cou
p
ler

FM signal

λ
/2

w
avep

late

Beam blocker

Figure 7.2: Current experimental arrangement of the optical fibre phase stabilisa-
tion interferometer. Light from the HeNe is split down two arms of interferometer.
Along the paths are double passed AOM setups. The light is then coupled back
into fibre and it is then directed towards setups which mimic the retro-reflecting
mirror in the vacuum chamber (Figure 5.1). Some of this light is allowed to pass
through the retro-reflecting mirrors and this light from both of the interferometer
arms is then combined to form a Mach-Zehnder optical interferometer. The
retro-reflected light passes back through the fibres and through the AOMs where
its frequency is further shifted. This light is then combined in fibre and directed
onto a PD. A phasemeter is used to measure the phase of the beat notes detected
by the PDs. The top arm of the interferometer can be seen as a master reference
arm that the lower slave arm is a locked to through the feedback loop. The light
from the HeNe passes through an optical isolator (not shown) before being fibre
coupled. We use a 50:50 Beam Splitter (50:50 BS) on both the Mach-Zehnder
interferometer arms despite only requiring one because we plan to use AM to
stabilise the amplitude of the beams—this is not yet implemented.
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between the diffracted order and the zeroth diffracted order. This helps in
blocking out the zeroth order beam without reducing the power in the diffracted
order. The frequency shift caused by the AOMs would not be a problem for
the Raman beams as their exact frequency is largely unimportant; only the
frequency difference between the two Raman beams is important and both the
carrier and sideband would experience the same shift. The choice of a 10MHz
difference between the RF driving the AOMs is mostly arbitrary, a large shift
is used to be able to distinguish and filter the different frequencies detected
however this could be performed at higher or lower frequencies.

7.2.1 Preliminary results

Figure 7.3 shows the phase of the two beat note signals when the feedback
control is active and after it has been deactivated. Here it can be seen that the
Michelson signal, the signal used to lock to, remains stable while locked. The
Mach-Zehnder signal, while not as stable as the Michelson, does not wander
freely and mainly stays centred around the Michelson signal. This could be
caused by noise introduced by the 50:50 BS cubes. After the PID has been
deactivated both signals freely roam. The difference between the signals remains
generally the same regardless of the PID being active or not.

We can divide the apparatus into sections of noise sources; in particular the
fibres and ‘chamber’ mirrors. The beat note generated from the light that has
taken the Mach-Zehnder interferometer’s path is affected by the difference of
fibre noise and the 50:50 BS noise between the two arms. Whereas the light
that has taken the Michelson interferometer’s path contains twice the fibre noise
difference and the chamber mirror noise difference. We will refer to the signals
generated by the light that takes the different interferometer paths the Mach-
Zehnder and Michelson signals respectively. The difference between these two
signals is therefore comprised of the fibre noise and the mirror noise differences.
An improvement to this system is already clear; the mechanical vibrations of
the chamber mirrors is usually the mechanism of introducing Raman phase
noise within a matter-wave interferometer, however the Mach-Zehnder signal
currently does not contain this information. Altering the experimental design
for the Mach-Zehnder signal to contain this information is required. However,
the current Mach-Zender signal is still able to provide information about the
effectiveness of this method for stabilising the noise from the fibres between the
two chambers.

It can be seen that while the PID lock is engaged there appear to be more high
frequency fluctuations of both phases. This may be caused by ‘ringing’ of the
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Figure 7.3: Time evolution of the phase of the beat notes when locked and
unlocked. The signals are named after the optical interferometer path the light
that generated the signal took. The region to the left of the dashed vertical
line is when the phase lock was engaged. The region to the right of the dashed
vertical line is when the phase lock was disengaged. This lock was achieved with
a PID gain of 100.

PID loop where over-corrections of the signal prevent the signal ever reaching a
point of stability. However, changes to the gain of the PID made little to no
easily observable changes to this signal. A better set of tools to view the noise
and stability of this signal is the noise spectra and Allan deviation [72].

Figure 7.4 shows the phase noise spectra of the signals at varying PID gains.
This is essentially the Fourier transform of the phase signal (Figure 7.3) and
can be used to find particular physical processes that effect the signal.9 We
will refer to the PID gain’s magnitude here, the sign of the gain is largely
irrelevant and affects the sign of the error signal’s gradient that the PID locks

9The power spectral density is often used to describe the frequency components of a signal
in the same manner. We have chosen to show the amplitude spectral density as its units are
more intuitive to work with here. In any case, the power spectral density and the amplitude
spectral density show the same information: the power spectral density is the square of the
amplitude spectral density.
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Figure 7.4: Measurements of the phase spectral power density at different PID
gains labelled in the legend.
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to. This gain is a global gain setting that effects the proportional, integral, and
differential gains simultaneously. A PID gain of 0 is the unlocked case. Here we
can see the effect different PID gains have on suppressing or creating different
frequencies contributing to the phase difference between the two interferometer
arms. In particular, we can see the low frequency (< 10Hz) noise tends to
become suppressed at higher gains. We can also observe the ringing effect of
the PID as the noise increases at higher frequencies (> 10Hz) with increasing
gains; in particular the peak at 220Hz at a gain of -500. Gains of -100 and
larger appear to give this ringing effect which can also be seen by the flattening
of the spectra at frequencies ≳ 10Hz. The spectrum of the difference signal is
not included as the PID had no significant effect on its spectra.

Using Equation 3.29 we can arrive at an estimate for the performance of a
gradiometer with the phase noise presented by this optical interferometer. The
PID gain of −50 does not produce a high frequency ‘ringing’ peak seen in the
higher gain series and produces a maximum phase noise, at higher frequencies, of
20mrad/

√
Hz on the Mach-Zehnder signal—the signal that represents the phase

noise between the two chambers. Using Equation 3.29 we can estimate how this
value of phase noise would affect the sensitivity of a gravity gradiometer: for a
baseline of 4m, 780 nm light, and T = 40ms we estimate an ideal sensitivity of
200E/

√
Hz.

This would only meet the 30E sensitivity target described in Sections 1.1
and 3.2.2 after an integration time of 11 hours.10 This is not practical for
obtaining a large number of measurements in a reasonable time frame. It is
clear that the phase noise difference must be further reduced in order to obtain
a practical gravity gradiometer.

To avoid the effect of these peaks the transfer function of the atom interferometer
could be engineered so that the regular oscillations of the transfer function that
lead to zeroes sit on the frequencies that have the most significant contributions
to noise. Another possibility to reduce the effect of this noise is by reducing
the Rabi frequency, thus reducing the transfer function’s corner frequency and
allowing for the effect of the high frequency noise to be attenuated. However,
higher Rabi frequencies tend to be ideal in most interferometers as longer
interferometry pulses introduce other sources of errors into the measurement
[38]. Higher Rabi frequencies allow the atom interferometry pulses to more
closely approximate to the ideal instantaneous pulse.

The Allan deviation, σy, is also a useful tool for characterising the stability
of a signal [127]. This is performed by monitoring the signal for an extended

1040× 103 seconds
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Figure 7.5: Measurements of the phase Allan deviation at different PID gains
labelled in the legend.

period of time. The signal is then divided into varying lengths of time τ where
statistics of the signal at varying time intervals can be determined. We use the
overlapped variable τ estimator to calculate the Allan deviation [72, 128]:

σ2
y(nτ0, N) =

1

2n2τ 20 (N − 2n)

N−2n−1∑
t=0

(xi+2n − 2xi+n + xi)
2 , (7.1)

where xi is the phase at time iτ , 1/τ0 is the sampling rate of the instrument, N
is the number or measurements, and n is a factor that determines how many
samples are overlapped.

Figure 7.5 shows the Allan deviation of the phase of the interferometery signals
with varying PID gains. The Allan deviation shows how much the signal is likely
to change after the indicated time period. For example, an Allan deviation—or
instability—of 10−1 at an averaging time of 1 s means the phase will change by
10−1 rad after a second.
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In the < 0.02 s timescales the unlocked signal’s Allan deviation is lower than the
signals with a high PID gain. This shows how the phase of the unlocked signal
does not contain the short timescale noise that the locked signals follow seen
in Figure 7.3. Because the unlocked signal is able to wander freely, the longer
timescale Allan deviation is significantly larger that its locked counterparts. This
is as expected as only a shift in lockpoints would change the locked signals. We
can also see the PID ringing effect when the gain is too high; in particular the
-500 gain setting which also seems to cause lockpoint jumping at longer timescales.
The -10 gain setting appears to follow most closely the short timescale Allan
deviation, implying no PID ringing is present, and still reaches the lowest Allan
deviations measured at the longest timescales.

The Allan deviation is not as applicable here to interpreting the effect of Raman
phase noise on an atom interferometry sequence compared to the phase noise
spectra, however it does provide some valuable insights. During the periods
in between the interferometry pulses during the atom interferometry sequence,
where the Raman beams are turned off, any phase shift does not yet become
imprinted onto the atom’s state. During this period the Raman beam’s phase is
able to change without affecting the interferometry fringe provided the phase
returns to its original value before the next interferometry pulse is performed.
However we only see these improvements of stability at periods ≳ 100ms when
locked; and the maximum period the atom interferometry that can be performed
over in our system is 2T = 120ms. As discussed in Section 3.2.2, for this
locking mechanism to provide suitable performance for atom interferometry the
instability at periods less than the 2T time must be reduced to 10−3 rad; which
we have not achieved here.

From these results the current iteration of the optical fibre interferometer for
stabilising the phase of the light is unsuitable for meeting the requirements
of the PLAIN-GG project—even if we assume that we can transfer the phase
stability imparted to the HeNe light to the Raman light. However, we have
demonstrated that it is capable of manipulating the phase coherence of the light
passing through the interferometer to varying degrees. This system still requires
a large amount of optimisation in order to reach the desired lower stability levels
such as seen in Foreman et al. [36].

7.2.2 Improvements required

Currently the chamber analogues do not fully imitate the PLAIN-GG chambers.
The mirrors are currently only coupled together through the optical bench,
however the gradiometer’s chambers would be coupled together directly and
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mounted vertically. Different noise sources might be present or absent in this
arrangement and this should be represented in the analogues. As previously
mentioned, the design of the analogues also needs to be altered slightly to enable
us to detect the phase noise the chamber mirrors can introduce. This would
also allow us to investigate the effect of the fibres and chamber mirrors on the
phase noise separately.

The frequency separation of the AOM’s driving RF will also require investigation.
Currently the 10MHz frequency shift is largely arbitrary. However, there could
be a frequency separation which provides a more stable system.

A possible reason we observe a large amount of PID ‘ringing’ is that we are
over-correcting for the fibre noise. The noise of the Michelson signal consists of
twice the noise the fibre introduces into the system, however the Mach-Zehnder
signal is only affected by this noise once. The locking feedback loop then acts
‘twice’ to correct for the fibre noise; creating more noise in the process. We
suspect a frequency divider circuit can be implemented to half the Michelson
beat note signal to remove this overcorrection. Furthermore, the PID behaviour
of the Moglabs RF source requires further investigation. Firmware updates of
this device would often change the PID behaviour and moving to an external
PID, whose behaviour is more well known, would be ideal.

The final test of this system is to observe transferring the phase stability of
the optical interferometer to the Raman light while detecting the phase noise
of the HeNe’s light. Until this is successfully observed, the feasibility of the
current design of the PLAIN-GG project is uncertain. It is also possible that
this scheme of creating common mode Raman phase noise in the between the
two atom interferometers is not feasible. Further investigation into this would
be required.





Chapter 8

Conclusion

The current design of atom interferometric gravity gradiometers requires line-of-
sight between the atomic test masses [4, 18, 65]. Line-of-sight allows the same
laser beams that perform the interferometry to impart identical noise profiles to
both atomic test masses; allowing this noise to be eliminated in the differential
measurement—this is the working principle behind a gradiometric measurement.
This noise rejection makes a gradiometer ideal for field applications; where
mechanical noise from the environment might prevent accurate measurement
by an absolute measurement device. Unfortunately several factors limit the
portability of atomic interferometric gravity gradiometers, such as the stability of
the lasers and optical systems, and of the bulk arising from the vacuum chambers
used. The sensitivity of a gradiometer is dependent on the separation between
the atomic test masses and therefore a large vacuum chamber arrangement
is usually favoured—usually leading to increased bulk from a larger vacuum
chamber. Therefore, there is a trade-off between portability and sensitivity.
Efforts have been made to create a portable atom interferometry system for
gravity gradiometry that is suitable for field applications [15, 25, 26, 27, 77].
Most recently and notably, a measurement outside the lab has been achieved
by a portable system [28]. Usually, these systems have tended to find use
in fundamental—lab based—endeavours where the sensitivity of the device is
focused on [2, 12, 129, 130, 131, 132]. Somewhat ironically, atom interferometers
for absolute gravity measurement have found more success in field applications
[29, 32, 34, 133, 134].

To retain the sensitivity a large baseline gradiometer can provide while reducing
bulk from the vacuum chamber, we take a different approach to atom interfer-
ometric gravity gradiometry in the PLAIN-GG project. We separate the two
atomic test masses onto two identical separate vacuum chambers, effectively
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creating two absolute gravimeters, however this breaks the line-of-sight that
maintains the phase coherence of the interacting laser beams. To facilitate the
laser phase coherence between the atomic test masses an optical fibre Michelson
interferometer is proposed to correct for any differences in laser phase between
the two chambers—maintaining the condition for common noise rejection. In
this thesis we have demonstrated a compact and commercially available vacuum
chamber with integrated optics to be viable for atom interferometric gravity
measurements and for use in the PLAIN-GG project. We have also briefly
explored the optical fibre interferometer design for stabilising the Raman beams
for the PLAIN-GG project.

In Part I, we introduced the theory behind atom interferometry and how it is
used for measurements of a gravity gradient. In Chapter 2 we described how
a multi-level atom can be turned into an ideal two-level atom with long state
lifetimes through Raman transitions. Using these Raman transitions, we showed
in Chapter 3 how one can perform atom interferometry. We then described how
we can use atom interferometry to perform measurements of local gravity, and
then measurements of the gravity gradient. To perform atom interferometry we
require cold and trapped atoms, in Chapter 4 we detailed how this could be
achieved with a MOT. Here we also described tools to characterise the MOT
and the atoms trapped by it; specifically, how to perform measurements of
the number of atoms in the cold atom cloud, and measurements of the cloud’s
average temperature.

Part II begins with Chapter 5 which details the apparatus and experimental
methods used for creating such a MOT and cold atoms. This apparatus is the
foundation for which the PLAIN-GG sensor head is to eventually be built with.
In this chapter we described the first commercially available vacuum chamber
with integrated optics designed for atom interferometric gravity measurements.
This chamber contains mirrors and a waveplate arranged to create MOT beams,
space for 120ms drop time, and mirrors to collect light for state readout after
the drop. In this chapter we also detail a laser system capable of generating light
for atom trapping and for performing absorption imaging of the cold atom cloud.
This absorption imaging system is used extensively in the characterisation of
the MOT for both measurements of atom number and temperature.

Chapter 6 shows the results of the characterisation of the MOT. We first
characterised the effect that several of the MOT parameters have on the atom
cloud’s total atom number. This is then followed by the characterisation of
the effect the molasses cooling stage has on the atom cloud’s temperature.
Here we find we are able to generate an atom cloud of ≈ 1.5 × 106 atoms
and of temperatures ≈ 7µK. This cloud is sufficiently dense enough to then be
detectable by an absorption beam after the 120ms free fall. Fundamentally there
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is little difference between this detection and the state detection after performing
atom interferometry with the Raman beams. Therefore, this system is capable
of performing atom interferometry and hence measurements of gravity. In order
to perform inertial measurements through atom interferometry, implementation
of the interferometry pulses via Raman transitions is necessary.

In Chapter 7 we briefly described the Raman laser system that was built and
the immediate plans for using that system to build towards realising atom
interferometry. Unfortunately, we were unable to observe any Raman transitions.
Failure of several items of equipment hindered progress and prevented successful
observation of any Raman transitions. Finally, we described a prototype optical
fiber interferometer system for phase stabilising the Raman beams between the
sensor heads of the PLAIN-GG project. Here we showed some preliminary results
which indicate we currently do not meet the criteria for providing sufficient
phase stabilisation and further work is required.
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Appendix A

Additional algebra

A common annoyance among students of maths and physics is the ominous
phrase “this is left as an exercise for the reader”. As a perpetual student myself,
and having felt annoyance at that phrase many times, I felt it unfair to risk
providing the same emotion to a reader. While I now know what I have derived
in this thesis; there was once a time when I did not. The following is mostly my
own working-outs and small algebraic steps between equations that helped me
understand the broad brush-strokes of derivations in previous chapters. There
is nothing particularly spectacular hidden in these pages and this section can
be skipped without any loss of content. My hope is that this may provide
assistance to a someone attempting and struggling to wrap their head around
these concepts as I once did. Some steps may be small and inconsequential to
the broader picture but are left in for clarity.

A.1 Raman Transitions

A.1.1 Applying transformation to the time-dependent
Schrödinger equation

Apply transformation substitution, |Ψ′(t)⟩ = T̂ |Ψ(t)⟩ ⇒ |Ψ(t)⟩ = T̂ † |Ψ′(t)⟩, to
the TDSE:

iℏ
∂

∂t

(
T̂ † |Ψ′(t)⟩

)
= Ĥ

(
T̂ † |Ψ′(t)⟩

)
. (A.1)
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The product rule on the left-hand side of the equation gives

iℏ
(

∂

∂t
T̂ † |Ψ′(t)⟩+ T̂ † ∂

∂t
|Ψ′(t)⟩

)
= Ĥ

(
T̂ † |Ψ′(t)⟩

)
(A.2)

Premultiplying by T̂ and performing some algebra:

iℏ

T̂
∂

∂t
T̂ † |Ψ′(t)⟩︸ ︷︷ ︸

move to other side

+ T̂ T̂ †︸︷︷︸
=I

∂

∂t
|Ψ′(t)⟩

 = T̂ ĤT̂ † |Ψ′(t)⟩ (A.3)

iℏ
∂

∂t
|Ψ′(t)⟩ = T̂ ĤT̂ † |Ψ′(t)⟩ − iℏT̂

∂

∂t
T̂ † |Ψ′(t)⟩ (A.4)

iℏ |Ψ′(t)⟩ =
(
T̂ ĤT̂ † − iℏT̂

∂

∂t
T̂ †
)

︸ ︷︷ ︸
Transformed Hamiltonian, Ĥ′

|Ψ′(t)⟩ (A.5)

A.2 The Bloch sphere picture

We begin by introducing the density matrix,

ρ = |Ψ⟩ ⟨Ψ| =
(
c1
c2

)(
c∗1 c∗2

)
=

(
|c1|2 c1c

∗
2

c2c
∗
1 |c2|2

)
=

(
ρ11 ρ12
ρ21 ρ22

)
, (A.6)

where the off diagonal elements are the coherences of the system. The following
closely follows the derivation found in Himsworth [78] and another derivation
can be found in Foot [41]. Dunning [40] contains a full derivation including
the laser phase terms. We have chosen to ignore the laser phase terms here for
brevity. The Hamiltonian (Equation 2.3) can be represented in its matrix form1,

Ĥ = ℏ
(

ω1
Ω∗

2
eiωEMt

Ω
2
e−iωEMt ω2

)
, (A.7)

where the diagonal elements are from the unperturbed Hamiltonian, Ĥ0, and the
off-diagonal elements from the perturbation, V̂ (t). Substituting this Hamiltonian
and the density matrix, ρ, into the Liouville form of the TDSE,

iℏρ̇ =
[
Ĥ, ρ

]
, (A.8)

1Here we have also used the rotating wave approximation to ignore any fast oscillating
terms
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we obtain the rate of change for the density matrix populations:

˙ρ11 =
i

2
Ωρ12e

−iωEMt − i

2
Ω∗ρ21e

−iωEMt + γρ22 (A.9a)

˙ρ22 =
i

2
Ω∗ρ21e

−iωEMt − i

2
Ωρ12e

−iωEMt − γρ22 (A.9b)

˙ρ12 =iρ12ω − i

2
Ω∗e−iωEMt(ρ11 − ρ22)−

γ

2
ρ12 (A.9c)

˙ρ21 =− iρ21ω +
i

2
Ω∗e−iωEMt(ρ11 − ρ22)−

γ

2
ρ21, (A.9d)

where γ is the natural decay rate of |2⟩ to |1⟩ through spontaneous emission2 and
the γ/2 terms are known as the transverse relaxation rates [78]. By transforming
into a rotating frame by making the following substitutions,

ρ̃12 =ρ12e
−iωEMt (A.10a)

ρ̃21 =ρ21e
−ωEMt (A.10b)

ρ̃11 =ρ11 (A.10c)

ρ̃22 =ρ22, (A.10d)

we can remove any fast oscillating terms and arrive at the following equations:

˙̃ρ11 = −iΩ

2
(ρ̃21 − ρ̃12) + γρ̃22 (A.11a)

˙̃ρ22 = +
iΩ

2
(ρ̃21 − ρ̃12)− γρ̃22 (A.11b)

˙̃ρ12 = −iρ̃12δ −
iΩ

2
(ρ̃22 − ρ̃11)−

γ

2
ρ̃12 (A.11c)

˙̃ρ21 = +iρ̃21δ +
iΩ

2
(ρ̃22 − ρ̃11)−

γ

2
ρ̃21, (A.11d)

where δ = ωEM − ω12 is the laser detuning from the transition resonance, ω12.

To map these onto the Bloch sphere we use can use the Pauli spin matrices

u =

(
0 1
1 0

)
ρ̃ = ρ̃12 + ρ̃21 (A.12a)

v =

(
0 −i
i 0

)
ρ̃ = −i (ρ̃12 − ρ̃21) (A.12b)

w =

(
1 0
0 −1

)
ρ̃ = ρ̃11 − ρ̃22. (A.12c)

2|1⟩ is assumed to be the lowest ground state of the system and hence cannot spontaneously
decay. We therefore have no decay term associated with it.
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By substituting Equations A.11 into the time derivative of these equations we
arrive at the OBEs

u̇ = δv − γ

2
u (A.13a)

v̇ = −δu+ Ωw − γ

2
v (A.13b)

ẇ = −Ωv + γ(1− w). (A.13c)

We can now define the optical Bloch vector by ignoring the decay terms (γ = 0):

R = ux̂+ vŷ + wẑ, (A.14)

where x̂, ŷ, and ẑ are the unit vectors on the Bloch sphere. Equations A.13 can
then be written as

Ṙ = R× (Ωx̂+ δẑ). (A.15)

Here we can see that the Rabi frequency, modified by the laser detuning, behaves
as a torque on the current state of the atom. Therefore the laser pulses shown
previously can be represented as rotations on the Bloch sphere.

A.3 Atom interferometry

This section describes certain mathematical details of the matter-wave Mach-
Zehnder interferometer sequence shown in Chapter 3. It is useful to have in
mind the Bloch sphere (Section 2.2) picture in mind throughout these steps.
This geometrical representation helped me greatly in building an intuitive
understanding of the interferometry sequence.

Here we will first build tools for propagating the atomic wavefunction, |Ψ(t)⟩,
through the interferometry sequence. Followed by a run through of the whole
sequence to see that we arrive at the expected phase dependent interferometer
output: Equation 3.13. This has been adapted mainly from Saywell [38].

A.3.1 Solving the Shrödinger equation with matrix ex-
ponentials

Assuming a general time independent Hamiltonian, Ĥ, the following equation

|Ψ(t)⟩ = exp

[
−i

ℏ
Ĥ · (t− t0)

]
|Ψ(t0)⟩ (A.16)
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is a solution to the TDSE. We check this by substituting it into the TDSE:

∂

∂t
|Ψ(t)⟩ = −i

ℏ
Ĥ |Ψ(t)⟩ . (A.17)

Beginning with the left hand side of the equation; we can expand the exponential3

|Ψ(t)⟩ =
[
I +

(
−i

ℏ
Ĥ · (t− t0)

)
+

1

2!

(
−i

ℏ
Ĥ · (t− t0)

)2

+ . . .+
1

n!

(
−i

ℏ
Ĥ · (t− t0)

)n ]
|Ψ(t0)⟩

(A.18)

We then differentiate with respect to time, remembering |Ψ(t0)⟩ is constant,

∂

∂t
|Ψ(t)⟩ =

[(
−i

ℏ
Ĥ

)
+

∂

∂t

1

2!

(
−i

ℏ
Ĥ · (t− t0)

)2

+
∂

∂t

1

3!

(
−i

ℏ
Ĥ · (t− t0)

)3

+ . . .

+
∂

∂t

1

n!

(
−i

ℏ
Ĥ · (t− t0)

)n ]
|Ψ(t0)⟩

(A.19)

=

[(
−i

ℏ
Ĥ

)
+

2

2!

(
−i

ℏ
Ĥ · (t− t0)

)
· −i

ℏ
Ĥ

+
3

3!

(
−i

ℏ
Ĥ · (t− t0)

)2

· −i

ℏ
Ĥ + . . .

+
n

n!

(
−i

ℏ
Ĥ · (t− t0)

)n−1

· −i

ℏ
Ĥ

]
|Ψ(t0)⟩ .

(A.20)

Factoring out −i
ℏ Ĥ and tiding up the factorials we arrive at

∂

∂t
|Ψ(t)⟩ = −i

ℏ
Ĥ

[
I +

(
−i

ℏ
Ĥ · (t− t0)

)
+

1

2!

(
−i

ℏ
Ĥ · (t− t0)

)2

+ . . .+
1

n!

(
−i

ℏ
Ĥ · (t− t0)

)n ]
|Ψ(t0)⟩ .

(A.21)

Which can then be described succinctly with a familiar matrix exponential,

∂

∂t
|Ψ(t)⟩ = −i

ℏ
Ĥ exp

[
−i

ℏ
Ĥ · (t− t0)

]
|Ψ(t0)⟩ , (A.22)

3exp(x) is, rather misleadingly, shorthand for the infinite sum of x0 + x1 + x2/2! + x3/3! +
. . .+ xn/n!. Turns out real numbers aren’t the only thing you can substitute for x. In our
case we even put a matrix in there!
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which is identical to the TDSE, Equation A.17, when substituting in the wave-
function, Equation A.16, into the right hand side.

We can then call the exponential in Equation A.16 the propagator operator:

Û(t, t0) = exp

[
−i

ℏ
Ĥ · (t− t0)

]
, (A.23)

which propagates an initial state, |Ψt0⟩, through time to the final state, |Ψ(t)⟩.

Equation A.16 is only valid when the Hamiltonian is constant. As we will see in
Appendix A.3.2 this assumption breaks down and we need to solve the TDSE
again.

Now lets use the rotating frame Hamiltonian:

ĤR =
ℏ
2

(
δ ΩRe

−iϕL

ΩRe
iϕL −δ

)
=

ℏ
2
Ω · σ̂ (A.24)

and express it as the product of the field vector, Ω = ΩR cos(ϕL)x̂+ΩR sin(ϕL)ŷ+
δẑ, and the vector of Pauli matrices, σ̂ = (σ̂x, σ̂y, σ̂z)

T, where ϕL is the laser
phase, ΩR is the two photon Rabi frequency, and δ is the laser detuning. Those
familiar with the Bloch sphere will recognise these vectors. We will not derive
these vectors here as they are only used as a shortcut to the result we are looking
for — this will make more sense in a couple of steps. If you are confused of the
derivation or physical meaning of Omega please refer to Section 2.2 in the main
body of the text.

As a quick proof that ĤR can be expressed this way we simply perform the dot
product:

Ω · σ̂ = ΩR cos(ϕL)σ̂x + ΩR sin(ϕL)σ̂y + δσ̂z (A.25)

= ΩR cos(ϕL)

(
0 1
1 0

)
+ ΩR sin(ϕL)

(
0 −i
i 0

)
+ δ

(
1 0
0 −1

)
(A.26)

=

(
δ ΩR cos(ϕL)− iΩR sin(ϕL)

ΩR cos(ϕL) + iΩR sin(ϕL) −δ

)
(A.27)

Ω · σ̂ =

(
δ ΩRe

−iϕL

ΩRe
iϕL −δ

)
. (A.28)

Which satisfies the Hamiltonian.

We can now represent the propagator operator as such:

Û = exp

[
−i

ℏ
ℏ
2
Ω · σ̂ · (t− t0)

]
= exp

[
−iΩ · σ̂

2
(t− t0)

]
. (A.29)
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We can then apply the identity exp(iαn̂ · σ̂) = I cos(α) + in̂ · σ̂ sin(α), where I
is the identity matrix, to retrieve a computable matrix. First lets clearly define
the different variables used in the identity:

α =
−|Ω|
2

(t− t0) =
−
√

Ω2
R + δ2

2
(t− t0) and n̂ =

Ω√
Ω2

R + δ2
. (A.30)

Substituting these into the identity results in

Û = I cos(α) +
i√

Ω2
R + δ2

ΩR cos(ϕL)
ΩR sin(ϕL)

δ

 ·

σ̂x

σ̂y

σ̂z

 sin(α) (A.31)

= I cos(α) +
i√

Ω2
R + δ2

(ΩR cos(ϕL)σ̂x + ΩR sin(ϕL)σ̂y + δσ̂z) sin(α) (A.32)

= I cos(α) +
i√

Ω2
R + δ2

[(
0 ΩR cos(ϕL)

ΩR cos(ϕL) 0

)

+

(
0 −iΩR sin(ϕL)

iΩR sin(ϕL) 0

)
+

(
δ 0
0 −δ

)]
sin(α)

(A.33)

=

 cos(α) + iδ√
Ω2

R+δ2
sin(α) iΩR√

Ω2
R+δ2

(cos(ϕL)− i sin(ϕL)) sin(α)

iΩR√
Ω2

R+δ2
(cos(ϕL) + i sin(ϕL)) sin(α) cos(α)− iδ√

Ω2
R+δ2

sin(α)


(A.34)

Û =

cos(α) + iδ√
Ω2

R+δ2
sin(α) iΩR√

Ω2
R+δ2

e−iϕL sin(α)

iΩR√
Ω2

R+δ2
eiϕL sin(α) cos(α)− iδ√

Ω2
R+δ2

sin(α)

 . (A.35)

Some symmetry can be seen here. We then can make the necessary substitutions
to obtain Û in the form:

Û =

(
C∗ −iS∗

−iS C

)
. (A.36)

The reasoning for the choice of the off-diagonal terms will become apparent
when we eventually use this operator. We define these terms as so:

C = cos

(
−
√

Ω2
R + δ2

2
(t− t0)

)
− iδ√

Ω2
R + δ2

sin

(
−
√

Ω2
R + δ2

2
(t− t0)

)
(A.37)

⇒ C = cos

(√
Ω2

R + δ2

2
(t− t0)

)
+

iδ√
Ω2

R + δ2
sin

(√
Ω2

R + δ2

2
(t− t0)

)
(A.38)
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−iS =
iΩR√
Ω2

R + δ2
eiϕL sin(α) (A.39)

S =
−ΩR√
Ω2

R + δ2
eiϕL sin(α) (A.40)

=
ΩR√

Ω2
R + δ2

eiϕL sin(−α) (A.41)

⇒ S = eiϕL
ΩR√

Ω2
R + δ2

sin

(√
Ω2

R + δ2

2
(t− t0)

)
(A.42)

Using Û and applying appropriate values for the various variables, now absorbed
within C and S, we can obtain operators for the beam-splitter and mirror pulses
in the interferometer sequence. As previously alluded to, when the Hamiltonian
is time dependent such as in free evolution, we will need a slightly different
formulation seen in Appendix A.3.2.

A.3.2 Free evolution operator

From Equation 2.22, we introduce time dependence into the Hamiltonian through
the Doppler shift:

δDoppler(t) = keff · v(t) = keff · (v0 + at) , (A.43)

where v0 it the initial velocity of the atom at time t = t0, and a is the acceleration
the atom is experiencing. The rotating frame Hamiltonian (Equation 2.33)
therefore becomes

ĤR =
ℏ
2

(
δ(t) ΩRe

−iϕL

Ω∗
Re

+iϕL −δ(t)

)
=

ℏ
2

(
keff · (v0 + at) ΩRe

−iϕL

Ω∗
Re

+iϕL −keff · (v0 + at)

)
.

(A.44)

During free evolution, there is no light field to interact with i.e. ΩR = 0. The
Hamiltonian is therefore

ĤR =
ℏ
2

(
δ(t) 0
0 −δ(t)

)
. (A.45)
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Substituting this into the TDSE gives

iℏ
∂

∂t

(
c1(t)

c2(t)

)
=

ℏ
2

(
δ(t) 0
0 −δ(t)

)(
c1(t)

c2(t)

)
(A.46)

iℏ
∂

∂t

(
c1(t)

c2(t)

)
=

ℏ
2

(
δ(t)c1(t)

−δ(t)c2(t)

)
(A.47)

iℏ
∂

∂t

(
c1(t)

c2(t)

)
=

ℏ
2

(
keff · (v0 + at) c1(t)

−keff · (v0 + at) c2(t)

)
. (A.48)

This has solutions

c1(t) = c1(t0) exp

(
− i

2

∫ t+t0

t0

δ(τ) dτ

)
= c1(t0) exp

(
− i

2

∫ t+t0

t0

keff · (v0 + aτ) dτ

)
(A.49a)

c2(t) = c2(t0) exp

(
+
i

2

∫ t+t0

t0

δ(τ) dτ

)
= c2(t0) exp

(
+
i

2

∫ t+t0

t0

keff · (v0 + aτ) dτ

)
.

(A.49b)

Performing the integration:(
c1(t)

c2(t)

)
=

exp
(
− i

2
keff ·

[
v0τ + 1

2
aτ 2
]t+t0

t0

)
c1(t0)

exp
(
+ i

2
keff ·

[
v0τ + 1

2
aτ 2
]t+t0

t0

)
c2(t0)

 (A.50)

=

(
exp
(
− i

2
keff ·

[
v0(t+ t0) +

1
2
a(t+ t0)

2 − v0t0 − 1
2
at20
])
c1(t0)

exp
(
+ i

2
keff ·

[
v0(t+ t0) +

1
2
a(t+ t0)

2 − v0t0 − 1
2
at20
])
c2(t0)

)
(A.51)

=

(
exp
(
− i

2
keff ·

[
v0t+

1
2
a (t2 + 2tt0)

])
c1(t0)

exp
(
+ i

2
keff ·

[
v0t+

1
2
a (t2 + 2tt0)

])
c2(t0)

)
. (A.52)

Something to keep in mind; since we have integrated between t0 and t+ t0, when
using this result the period of free evolution t will be already offset from t0.

For the first period of free evolution: t = T1. This gives the wavefunction as

|Ψ⟩FE1 =
(
exp
(
− i

2
keff ·

[
v0T1 +

1
2
a (T 2

1 + 2T1t0)
])
c1(t0)

exp
(
+ i

2
keff ·

[
v0T1 +

1
2
a (T 2

1 + 2T1t0)
])
c2(t0)

)
. (A.53)

Similarly, for the second period of free evolution: t = T2 and t0 ⇒ T1 + t0.

|Ψ⟩FE2 =
(
exp
(
− i

2
keff ·

[
v0T2 +

1
2
a (T 2

2 + 2T2(T1 + t0))
])
c1(T1 + t0)

exp
(
+ i

2
keff ·

[
v0T2 +

1
2
a (T 2

2 + 2T2(T1 + t0))
])
c2(T1 + t0)

)
. (A.54)

For completeness we have also applied the change of t0 to the state populations,
however these are largely unimportant here as we are mainly interested in the
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phases of the populations. The value of these populations will also be dependent
on the previous sequences of interferometer.

From Equations A.53 and A.54, we find the phases of the atomic states to be

1

2
ϕT1 =

1

2
keff ·

(
v0T1 +

1

2
a
[
T 2
1 + 2T1t0

])
(A.55)

1

2
ϕT2 =

1

2
keff ·

(
v0T2 +

1

2
a
[
T 2
2 + 2T2(T1 + t0)

])
, (A.56)

which we can see are identical to Equations 3.12.

A.3.3 Total interferometer phase

Steps between Equation 3.10 and Equation 3.13. We shall do this step by step.
Initial state:

|Ψ(t0)⟩ =
(
c1(t0)
c2(t0)

)
=

(
1
0

)
. (A.57)

It may be worth to note that we will use t0 quite liberally here. It does not
mean the start of the sequence, as we have implied here, but rather the start
of the pulse or period we are transforming the state with. We begin with the
initial beam-splitter operation:

|Ψ⟩π/2 = Ûπ/2 |Ψ(t0)⟩ (A.58)

=
1√
2

(
1 −ie−iϕL

−ieiϕL 1

)(
1
0

)
(A.59)

=
1√
2

(
1− ie−iϕL × 0
0− ie+iϕL × 1

)
(A.60)

=
1√
2

(
1

−ieiϕL

)
=

1√
2

(
1

ei(ϕL−π
2 )

)
. (A.61)

We then apply the first period of free evolution. For simplicity we will use
the phase terms defined in Equations 3.12 for the phase gained during the free
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evolutions.

|Ψ⟩FE1 = ÛFEÛπ/2 |Ψ(t0)⟩ = ÛFE |Ψ⟩π/2 (A.62)

=

(
e−

i
2
ϕT1 0

0 e+
i
2
ϕT1

)
1√
2

(
1

−ieiϕL

)
(A.63)

=
1√
2

(
e−

i
2
ϕT1

−ieiϕLe+
i
2
ϕT1

)
(A.64)

=
1√
2

 e−
i
2
ϕT1

−ie
i

(
ϕL+

ϕT1
2

)
 =

1√
2

 e−
i
2
ϕT1

e
i

(
ϕL−π

2
+

ϕT1
2

)
 (A.65)

Apply mirror pulse.

|Ψ⟩π = ÛπÛFEÛπ/2 |Ψ(t0)⟩ = Ûπ |Ψ⟩FE1 (A.66)

=

(
0 −ie−iϕL

−ieiϕL 0

)
1√
2

 e−
i
2
ϕT1

−ie
i

(
ϕL+

ϕT1
2

)
 (A.67)

=
−i√
2

e−iϕL(−i)e
i

(
ϕL+

ϕT1
2

)
eiϕLe−

i
2
ϕT1

 (A.68)

=
−i√
2

(
−iei

ϕT1
2

ei(ϕL− 1
2
ϕT1)

)
(A.69)

=
1√
2

(
−ei

ϕT1
2

−iei(ϕL− 1
2
ϕT1)

)
=

1√
2

(
−ei

ϕT1
2

ei(ϕL−π
2
− 1

2
ϕT1)

)
(A.70)

Second period of free evolution.

|Ψ⟩FE2 = ÛFEÛπÛFEÛπ/2 |Ψ(t0)⟩ = ÛFE |Ψ⟩π (A.71)

=

(
e−

i
2
ϕT2 0

0 e+
i
2
ϕT2

)
1√
2

(
−ei

ϕT1
2

−iei(ϕL− 1
2
ϕT1)

)
(A.72)

=
1√
2

(
−ei

ϕT1
2 e−

i
2
ϕT2

−iei(ϕL− 1
2
ϕT1)e+

i
2
ϕT2

)
(A.73)

=
1√
2

(
−ei(

1
2
ϕT1

− 1
2
ϕT2)

−iei(ϕL− 1
2
ϕT1

+ 1
2
ϕT2)

)
=

1√
2

(
−ei(

1
2
ϕT1

− 1
2
ϕT2)

ei(ϕL−π
2
− 1

2
ϕT1

+ 1
2
ϕT2)

)
(A.74)
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Final beam-splitter pulse.

|Ψ⟩final = Ûπ/2ÛFEÛπÛFEÛπ/2 |Ψ(t0)⟩ = Ûπ/2 |Ψ⟩FE2 (A.75)

=
1√
2

(
1 −ie−iϕL

−ieiϕL 1

)
1√
2

(
−ei(

1
2
ϕT1

− 1
2
ϕT2)

−iei(ϕL− 1
2
ϕT1

+ 1
2
ϕT2)

)
(A.76)

=
1

2

(
−ei(

1
2
ϕT1

− 1
2
ϕT2) − ie−iϕL(−i)ei(ϕL− 1

2
ϕT1

+ 1
2
ϕT2)

−iei(ϕL− 1
2
ϕT1

+ 1
2
ϕT2) − ieiϕL(−1)ei(

1
2
ϕT1

− 1
2
ϕT2)

)
(A.77)

=
1

2

(
−ei(

1
2
ϕT1

− 1
2
ϕT2) − e−iϕLei(ϕL− 1

2
ϕT1

+ 1
2
ϕT2)

−iei(ϕL− 1
2
ϕT1

+ 1
2
ϕT2) + ieiϕLei(

1
2
ϕT1

− 1
2
ϕT2)

)
(A.78)

= −1

2

(
ei(

1
2
ϕT1

− 1
2
ϕT2) + e−iϕLei(ϕL− 1

2
ϕT1

+ 1
2
ϕT2)

iei(ϕL− 1
2
ϕT1

+ 1
2
ϕT2) − ieiϕLei(

1
2
ϕT1

− 1
2
ϕT2)

)
(A.79)

= −1

2

(
ei(

1
2
ϕT1

− 1
2
ϕT2) + ei(

1
2
ϕT2

− 1
2
ϕT1)

eiϕL

(
iei(

1
2
ϕT2

− 1
2
ϕT1) − ie−i( 1

2
ϕT2

− 1
2
ϕT1)

)) (A.80)

We can then apply the following trigonometric identities:

cos(x) =
eix + e−ix

2
(A.81)

to c1, and

sin(x) =
eix − e−ix

2i
= −ieix − ie−ix

2
(A.82)

to c2. We obtain the final wave-function

|Ψ⟩final =

(
− cos

(
1
2
ϕT1 − 1

2
ϕT2

)
eiϕL sin

(
1
2
ϕT2 − 1

2
ϕT1

)) =

(
− cos

(
1
2
ϕT2 − 1

2
ϕT1

)
eiϕL sin

(
1
2
ϕT2 − 1

2
ϕT1

)) . (A.83)

The population of the excited level of the atom is therefore

P2 = sin2

(
1

2
ϕT2 −

1

2
ϕT1

)
(A.84)

Using the trigonometric identity

sin2(x) =
1

2
− 1

2
cos(2x), (A.85)

we arrive at Equation 3.13:

P2 =
1

2
− 1

2
cos(ϕT2 − ϕT1) =

1

2
− 1

2
cos(Φ). (A.86)
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A.3.4 Bloch sphere phases

The atomic state on the Bloch sphere can also be represented by polar coordin-
ates:

|Ψ⟩ = cos

(
θ

2

)
|1⟩+ eiϕ sin

(
θ

2

)
|2⟩ , (A.87)

where θ is the polar angle, angle from ẑ ≡ |1⟩ and R, and ϕ is a azimuthal angle,
the angle of R along the x̂–ŷ plane. Here ϕ represents the phase difference
between the two atomic states: Therefore we can calculate the phase at each
stage of the interferometry sequence:

eiϕ = eiϕ|2⟩/eiϕ|1⟩ (A.88)

where ϕ|1,2⟩ is the phase of the respective state.

The atom’s phase after the first beam-splitter pulse is

eiϕ = ei(ϕL−π
2 )/ei×0 (A.89)

ϕ = ϕL − π

2
. (A.90)

First free evolution phase:

eiϕ = ei(ϕL−π
2
+ 1

2
ϕT1)/e−i 1

2
ϕT1 (A.91)

ϕ = ϕL − π

2
+ ϕT1 . (A.92)

Mirror pulse:

eiϕ = ei(ϕL−π
2
− 1

2
ϕT1)/− ei

1
2
ϕT1 (A.93)

= ei(ϕL−π
2
− 1

2
ϕT1)/ei

1
2
ϕT1

±π (A.94)

ϕ = ϕL − π

2
− ϕT1 ∓ π. (A.95)

Second period of free evolution:

eiϕ = ei(ϕL−π
2
− 1

2
ϕT1

+ 1
2
ϕT2)/− ei(

1
2
ϕT1

− 1
2
ϕT2) (A.96)

= ei(ϕL−π
2
− 1

2
ϕT1

+ 1
2
ϕT2)/ei(

1
2
ϕT1

− 1
2
ϕT2

±π) (A.97)

ϕ =

(
ϕL − π

2
− 1

2
ϕT1 +

1

2
ϕT2

)
−
(
1

2
ϕT1 −

1

2
ϕT2 ± π

)
(A.98)

= ϕL − π

2
− 1

2
ϕT1 +

1

2
ϕT2 −

1

2
ϕT1 +

1

2
ϕT2 ∓ π (A.99)

= ϕL − π

2
− ϕT1 + ϕT2 ∓ π (A.100)

= ϕL − π

2
+ ϕT2 − ϕT1 ∓ π. (A.101)
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And final atomic phase after the final beam-splitter:

eiϕ = eiϕL/e±iπ (A.102)

ϕ = ϕL ∓ π. (A.103)

A.4 Interferometry with varying laser phase

Same method as Appendix A.3.3 however using ϕ1, ϕ2, and ϕ3 for the phases of
the beam-splitter, mirror, and final beam-splitter pulses respectively.

|Ψ⟩π/2 = Ûπ/2 |Ψ(t0)⟩ (A.104)

=
1√
2

(
1 −ie−iϕ1

−ieiϕ1 1

)(
1
0

)
(A.105)

=
1√
2

(
1

−ieiϕ1

)
(A.106)

Apply free evolution:

|Ψ⟩FE1 = ÛFE |Ψ⟩π/2 (A.107)

=

(
e−

i
2
ϕT1 0

0 e+
i
2
ϕT1

)
1√
2

(
1

−ieiϕ1

)
(A.108)

=
1√
2

(
e−

i
2
ϕT1

−iei(ϕ1+
1
2
ϕT1)

)
. (A.109)

So far same as previous calculations. It will now begin to deviate slightly with
the mirror pulse:

|Ψ⟩π = Ûπ |Ψ⟩FE1 (A.110)

=

(
e−

i
2
ϕT2 0

0 e+
i
2
ϕT2

)
1√
2

(
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2
ϕT1

−iei(ϕ1+
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2
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)
(A.111)

=
1√
2

((
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) (
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−ieiϕ2e−i 1

2
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)
(A.112)

=
1√
2

(
−ei(ϕ1−ϕ2+

1
2
ϕT1)

−iei(ϕ2− 1
2
ϕT1)

)
. (A.113)
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Second free evolution:

|Ψ⟩FE2 = ÛFE |Ψ⟩π (A.114)

=
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2
ϕT1 0

0 e+
i
2
ϕT1

)
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−ei(ϕ1−ϕ2+

1
2
ϕT1)
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(A.115)

=
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(A.116)
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. (A.117)

Final beamsplitter:

|Ψ⟩final = Ûπ/2 |Ψ⟩FE2 (A.118)

=
1√
2

(
1 −ie−iϕ3

−ieiϕ3 1
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)
(A.119)

=
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(A.120)
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. (A.121)

To make sense of this we can find the population of state two:

P2 = c∗2c2 (A.122)

=

1
4

(
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ac = −iei(
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⇒ P2 =
1
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(ac+ ad+ bc+ bd) (A.136)
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=
1
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where ϕoffset = ϕ1 − 2ϕ2 + ϕ3.
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Scientific Posters

Figure B.1 shows the poster taken to the following events: QLM Summer School
2018, Young Atom Opticians 2018, International Conference on Atomic Physics
2018, and the Frontiers of Matter Wave Optics 2018 conference and summer
school.
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Phase Locked Atomic INterferometers for Gravity Gradiometry
Chester Camm*, Andrei Dragomir, and Matt Himsworth
Integrated Atom Chip Group, University of Southampton *c.camm@soton.ac.uk

● Gravity cannot be shielded, a device which can measure changes in gravity would be very useful
● Absolute measurements of gravity are problematic due to the equivalence principle
● A gradiometer measures the change of gravity between two points
● Such a device can measure density variations along a line intersecting the two chosen points
● This can be used to detect subterranean features such as unmapped underground tunnels
● Provides an invaluable tool for civil engineering
● Additional applications can be found in archaeology, deep sea exploration, and inertial navigation

Gravity Gradiometry
Problems
● Current gradiometers are large and bulky
● Measurements take a long time
● Impractical for many applications
● Most gradiometers measure only one axis

Atom Interferometry

● Gravity measurements require using an inertial test mass
● Classical gravity measurements use weights of known mass but these are prone to degradation and 
manufacture tolerances
● Cold atoms also give the advantage of increased sensitivity from atom interferometry
● This gives unparalleled sensitivity in gravity and inertial measurements [1]

Current Gradiometers

● A requirement for this to work is that the atom clouds 
experience phase coherent Raman
beams.
● This is solved by having line of sight between the clouds 
and a single beam is used to
interrogate both clouds; limiting exibility of geometry
● The also requires the vacuum chamber to be large in 
order to accommodate drop distance,
large enough separation of clouds, and line of sight [2]

Our Idea

● We propose a solution to the size and flexibility issues presented
● Here we split the atom clouds into separate chambers and connect them with 
an optical fibre system
● This fibre system also acts as a stability mechanism to maintain phase 
coherence between the two vacuum chambers
● Now we are able to freely orientate the two measurement points to explore the 
desired gravitational axes
● Line of sight is no longer required which reduces weight and bulk making 
system more practical.
● We aim to ensure instability of the fibre arms not main noise and to maintain 
phase noise to <1 mrad
● Modular design enables simple integration of more sensor heads - leading to 
full tensor measurements

Exploration into whether the residual phase noise in the optical interometer and 
other common-mode noise sources are the limiting factors in using separate, but 
correlated, gravimeters.

Fibre Stabilisation
● The fibre arms act as an optical interferometer.
● Using AOMs to modulate the phase of
the interferometer we can maintain
correlation between the two atom clouds
● This technique used in atomic clocks for distributing optical 
phase and demonstrates the required
stability levels for this endeavour [3]

Summary
● We aim to improve practicality of quantum gravity gradiometers
● This shall be achieved by separating the atom clouds into separate chambers
● The chambers will be connected by a fibre interferometer that will be used to maintain stability
● This will increase portability and flexibility
● However there will be a reduction of sensitivity of measurements due to shorter drop times
● Exploring residual phase noise in optical interferometer
● The regime between uncorrelated accelerometers, and the fully coherent single chamber 
gradiometers are to be explored. 

[1] A. Peters, K. Y. Chung and S. Chu, Metrologia, 38, 1 (2001).
[2] J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. 
Kasevich, Phys. Rev. A 65, 3 (2002)
[3] S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. 
Diddams, and J. Ye Phys. Rev. Lett. 99, 15 (2007)
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Figure B.1: Poster advertising the concept and aims of the Phase Locked
Atomic Interferometers for Gravity Gradiometry project.
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