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Neural activity recording system promotes the development of diagnostic and therapeutic

programs and neuroscience research. Direct recordings of neural signals from the brain

have helped scientists access to study and unlock the secrets of neural coding gradually.

This can be realised by applying implantable neural recording systems to monitor and

record neural signals. Then, the neural information can be transmitted to the external

device for processing, storage or application. However, the power consumption of the

neural recording system is the primary constraint to monitoring large groups of neurons.

It leads the development of neural recording systems in two directions: ‘high-channel-

count but wired’ and ‘wireless but low-channel-count’. To address the power issue, we

proposed a neural front-end that aims to detect neural spikes by thresholding and out-

put as one-bit digital data so that the afterwards processing can only work on spikes

rather than processing all the data points. The most significant feature is that we in-

duce memristors as trimming devices to tune the threshold voltage for spike detection.

Meanwhile, it contributes to rejecting up to 50mV DC offset from electrodes. The mea-

surement presents that the memristor-based pre-amplifier is capable of achieving above

95% spike detection accuracy with hundreds of nanowatt power consumption per channel.

This design indicates a promising approach to conduct spike-detection on-chip with low

power consumption and demonstrates the potential of a hybrid memristor/CMOS circuit

for power-efficient large-scale neural interfacing application.
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Chapter 1

Introduction

1.1 The Topic Area, Challenges and Motivation

Recording and monitoring neural signals using implantable microsystems is essential to

understanding biological activity and functions. These can be utilised to advance diagnos-

tic and therapeutic solutions [1] and overall neuroscience research [2]. From an application

point of view, the ability to record and process extracellular neural signals can lead to

novel therapeutic neuromodulation solutions for treating disease [3] and new opportuni-

ties in prosthesis [4]. For these purposes, high-density micro-electrode arrays (MEA) and

recording systems are required to acquire and process a large number of neuronal signals

simultaneously in real-time.

With the development of techniques in neuroscience, the micro-electrode arrays can access

a more significant number of neurons chronically in the order of 10,000 [5; 6]. Scientists

are developing higher-density implantable recording systems [7; 8; 9]. Besides, there is a

strong commercial interest in such approaches, with Neuralink [10] proposing a package

with 3072 electrodes and a small recording system that delivers amplification and digi-

tisation capabilities. However, we are supposed to overcome several technical challenges

to construct an extracellular neural signal recording with a high density of up to 10,000

channels. To give a better perspective, the prior arts, followed by the challenges and

motivation of this research field given below.

Neural signal recording can be realised through the approaches shown in Figure 1.1 (in

black). Such signals are transduced by a physical interface consisting of probes and elec-

trodes [11; 12]. These raw neural signals generally range around 50−500µV in amplitude

with 5− 10µV background noise added on top and span around 0.1Hz to 10kHz in fre-

quency [13]. The raw signals are passed to a front-end, which amplifies the signal to the

milli-volt range. The amplified waveform is then filtered in a filter module, removing in-

terference (e.g. power line interference) whilst passing Action Potentials (AP). After that,

the signal is passed into the back-end, which refines the signal and generally attempts to

1



2 Chapter 1 Introduction

extract the computationally important information. One approach is to process the signal

via analogue processing methods [9]. Alternatively, it can be digitised by an ADC and

subsequently post-processed in the digital domain [7; 8]. After that, the neural signal can

be transmitted off-chip for further processing and/or storage.

Proposed front-end pre-amplifier 
Detection of neural spikes and digitalization

Electrode Amp Digital Signal
Processing

DigitizerFilter

Analogue Signal
Processing

Figure 1.1: Structure comparison among the previous works in digital and analogue
forms and our proposed work.

The state-of-the-art in-vivo systems consist of two schemes: ‘high-channel count but wired’

[7; 8; 9] and ‘wireless but low-channel-count’ recording system [14; 15; 16]. As for the wired

system, the front-end channels are on the implanted chip. With tethered cables connected,

the data processing module for high-channel-count is on the external device, which is able

to process further computation. To the best of our knowledge, Neuralink [10] published

a wired recording system that can achieve 3072 recording channels. However, the wire

connection not only limits the mobility of observed animals, but also induces the risk of

infection and device breakage [17]. The alternative solution, a fully wireless system, can

overcome the above challenges. However, the high power/area budget of data transmission

constrain scaling up the system. As for the wireless system, the number of recording

channels is limited to around 100 [15]. It is because the transmission module occupies

20%−50% of the power budget depending on the real-time transmission speed. To reduce

power consumption, scientists focus on these three approaches: resource sharing, power

scheduling and supply voltage reduction [3]. However, following the conventional path will

limit them to enhance an order of magnitude. In this research, we target both wireless

and high-channel-count recording systems.

The systems are required to be low-power to prevent damaging the surrounding tissues and

extend the battery life [18]. The international guideline stated that the power consumption

of the implantable neural interface should be confined within 15−40mW depending on the

depth that the interface is implanted [19]. Chen et al. [20] have studied the state-of-the-art

wireless neural systems and summarised that the transmission module occupies 20%−50%

of total power consumption depending on the volume of signals to be transmitted and
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the system functionalities. The power constraint poses critical challenges to developing

high-channel-count recording solutions, limiting the monitored neurons in the order of

100-1000 simultaneously [21].

As mentioned above, we set the maximum power consumption of the interface to 15mW .

To improve the power efficiency, we proposed a hybrid Complementary Metal–Oxide–

Semiconductor (CMOS)/Memristor design that directly detects and classifies neural sig-

nals. It bypasses several steps in the conventional approach that brings in the possibility of

building both wireless and high-channel-count neural interfaces (Figure 1.1). It is because

we do not need to record the complete waveform or with high resolution of digitisation

by taking advantage of the memristor-based neural signal processing, which is evidenced

in the prior work [22]. Only 1-bit digital signals need to be transmitted off-chip; however,

we target 10,000-channel data. Therefore, we estimated that data transmission account

for 50% of the power budget which is 7.5mW . Additionally, Fassio et al. [23] published

an ultra-low-power biasing circuit that consumes picowatt-level power; thus, we omitted

the power consideration of the biasing circuit temporarily. Therefore, the rest modules

of our system consume 7.5mW . In addition, we target a 10,000-channel system which

indicates we need to constrain the power consumption of each channel to 750nW . The

detailed solution is given in the following section.

1.2 The Proposed Solution

This research presents an alternative paradigm by developing a front-end pre-amplifier

concept that can operate in a start-stop scheme to achieve nanowatt-level power consump-

tion per channel. This processing scheme conducts the amplification from microvolts to

millivolts, spike detection and digitisation at the first stage (Figure 1.1 in orange). Thus,

the requirement on afterwards modules is relaxed to processing digital signals represent-

ing neural spikes rather than the entire signal. This approach led to a design concept

translating a train of analogue signals into digital, reducing the critical data points from

the first stage.

The proposed front-end pre-amplifier consists of an integrating amplifier and a Dynamic

Latch Comparator (DLC), conducting amplification and digitisation. As opposed to tra-

ditional practice where an ‘expensive’ amplifier is used to deliver high gain and low noise,

here, we opt to integrate the microvolt-level signal to millivolts. The integration process

not only filters out noise but also provides amplification; thus, we refer to this as an

integrating amplifier. This fully differential system approach allows for integrating the

difference between the input neural signal and a reference to a voltage level which triggers

a threshold detector. Three operations (amplification, filtering and digitisation) can thus

be realised within a single module. Further back-end processing is possible on the data

emitted by our system in principle.
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One of the most significant features is that the memristor is introduced as a trimming de-

vice to compensate for the offset voltage. Memristors are metal-oxide-metal devices whose

Resistive States (RS) can be controlled by applying appropriate bias voltages. Memristor

has been proven to be compatible with CMOS technique in terms of processes and mate-

rials [24; 25]. Memristor is constructed as a stack by the bottom electrode, active layer

and top electrode, where both top and bottom electrodes can connect with peripheral

and control CMOS circuitry, e.g. the drain/source of the transistor. In addition, mem-

ristors can be directly fabricated on the top of the CMOS circuits (above passivation)

and connect to the transistor through Tungsten via, which increases area efficiency [26].

Being protected by passivation, the CMOS circuit will not be affected by both fabrication

processes and materials of the memristor. We utilised the in-house Pt/Al2O3/TiO2/Pt

memristor in our designs since it can achieve 92 distinct resistive states from 20kΩ and

120kΩ, which can be programming in the precision of 1.09kΩ [27]. Thus, we can tune the

offset with the precision of the microvolt level by operating the memristor as a trimming

device.

In addition, it can be used in various applications ranging from non-volatile memory

[28], neuromorphic networks [29] to programmable resistances [30]. Its non-volatility,

nanometer scale and CMOS-compatible processing [31; 32] add to the benefits of using

memristors in our system as trimming devices. Such a passive trimming element adds no

power dissipation in principle except when the device needs to be programmed to tune the

circuit. Its high non-volatility features the architecture low maintain power consumption,

compared with Dynamic Random-Access Memory (DRAM) approach that needs to be

refreshed to preserve the data [33]. Besides, compared with the flash memory whose

program and erase voltages are typical 15−21V [34], the low programming voltage (below

3V in [27]) simplifies the actual chip design. Incidentally, memristors have also been

demonstrated to discriminate spiking from background activity [22] when used directly as

sensing elements (alas on an already amplified waveform). It is a distinct approach that

nicely complements this programme of research.

Throughout this work, memristors are operated under a ‘write once – read many’ regime

where they are used to trim differential current paths and, as a result, tune the threshold

(for spike detection) voltage of our system. Moreover, to program the device, a pair of

single-transistor switches connecting the devices to an appropriate programming voltage

and a trans-impedance amplifier (all shared across multiple channels) can perform the

programming. In contrast, the main amplifier being programmed is shut down. Our

research focuses exclusively on the function of the channel in regular operation, where the

memristor resistance does not change. Therefore, this specific programming regime will

not issue energy efficiency or complexity in our design.
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1.3 Research Objectives

For this research program, we aim to construct a hybrid CMOS/Memristor neural interface

that can be used for the real-time processing of neural signals. To achieve the aims of the

research, the following objectives are identified:

1. Develop and validate power and area-efficient CMOS/Memristor neural interface

circuitry that can directly detect and classify neural signals.

2. Fabricate and demonstrate that the developed circuitry (single channel) can achieve

sub-microwatts average power consumption with an implementation in silicon.

3. Prove the proposed approach for large-scale neural interfacing application in the

experiment and demonstrate that the developed chip can readout and process neural

signals.

1.4 Contribution

The novel contributions presented in this dissertation are listed below.

1. Made the memristive Verilog-A quadratic model available to Cadence [35].

Previously, our group only had the exponential Verilog-A model under the 10− 17kΩ RS

range, which limits the utilisation of memristor in circuit design. In [35], I converted the

mathematical model from [36] into the Verilog-A model which owns a wider RS range

from 20kΩ to 120kΩ. The methodology of building the Verilog-A model refers to [37].

The Verilog-A model and methodology of integrating memristor into Cadence have been

included in Chapter 3.

2. Established methodology for evaluating performance metric of dynamic

pre-amplifier [38; 39]. The pre-amplifier implements the amplification by integrating

load capacitors. Thus, it features a dynamic operating point, rendering traditional anal-

ysis (AC/DC) unsuitable. In this work, I analysed the transistor-level pre-amplifier and

developed the methodology to complete the performance metric by combining transient

simulation and periodic steady-state analysis. This benchmarking approach is finally

leveraged for providing useful insights and design trade-offs of the memristor-based inte-

grating amplifier in Chapter 4 and Chapter 5.

3. Studied the impact of memristor IV non-linearity on the pre-amplifier

[40]. In this design, I calibrated RS measurements to the operating tail current. The

measurement illustrates that the small deviations from tail current during integration do

not materially change the extreme offset trimming precision or the overall performance.

This was the last conceptual bottleneck identified before practical implementation, which

has now been overcome. It can be accessed in Chapter 4.
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4. Designed memristor-based DC-coupled pre-amplifier [41]. Instead of using

huge capacitors at the input to reject the DC offset (AC-coupled solution), in this work,

we utilised the memristive device to tune the offset in the wider range that can cover up

to 50mV (DC-coupled solution). The full performance metric is elaborated in Chapter 6.

The simulation results present that the DC-coupled pre-amplifier can achieve 95% detec-

tion accuracy while the power consumption is down to ∼ 120nW . Circuit design and

simulation details are given in Chapter 6

5. Designed memristor-based first-order ∆ΣADC. The pre-amplifier operating as

a conventional static amplifier can also be utilised in the ∆ΣADC, which rejects up to

50mV DC offset by calibrating memristors. The designed transistor circuit can achieve

8.51 ENOB under the transient noise in the range of [1Hz, 100MHz] (in Chapter 8).
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378 (2164), 1-18. (doi:10.1098/rsta.2019.0162).

J. Wang, A. Serb, C. Papavassiliou, S. Maheshwari, and T. Prodromakis, (2021) “Analysing
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Conference Proceedings

J. Wang, A. Serb, C. Papavassiliou, and T. Prodromakis (2021) “Accounting for Mem-
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J. Wang, A. Serb, S. Wang, T. Prodromakis, (2022) “Offset Rejection in a DC-Coupled

Hybrid CMOS/Memristor Neural Front-End” accepted by The IEEE International Sym-

posium on Circuits and Systems (ISCAS ).

1.6 Thesis Organisation

The thesis is organised as follows. Chapter 2 presents literature on neural information

processing. The introduction of applied memristive devices in terms of the operational

behaviours and methodology of integration into Cadence presents in Chapter 3. Design

concepts, the basic operation and transistor-level analysis of the pre-amplifier have been

introduced in Chapter 4. The methodology for obtaining the full performance metric of

the AC-coupled memristor-based pre-amplifier is given in Chapter 5, followed by the eval-

uation and design consideration. The pre-amplifier is also utilised to reject DC offset up

to 50mV in the form of the open-loop circuit (in Chapter 6) and ∆ΣADC (in Chapter 8).

The layout design of the single channel pre-amplifier and the testing result of the chip are

included in Chapter 7. Finally, Chapter 9 contains the conclusion and the recommended

future work.



Chapter 2

Neural Information Processing

The neural recording techniques allow scientists to investigate brain activity in depth and

offer the potential to treat neuron disorders. The neural front-end should be designed after

a thorough review of the signals of interest and the techniques employed by the various

modules of the monitoring system. This chapter provides an overview of (i) characteristics

of neural signals, (ii) electrode techniques related to signal acquisition, (iii) the state-of-

the-art front-end designs (in the last five years) which feature a variety of offset rejection

and signal processing techniques, and (iv) the primary reference design for the thesis.

2.1 Neural Signals

Neurons in the nervous system communicate with other nerve cells by passing electrical

and chemical signals. A neuron consists of dendrites, cell body (soma), axon and axon

terminals (Figure 2.1). Dendrites receive signals from other neurons in a neuron cell, while

axon terminals send out messages. After dendrites are excited (by chemical signals), the

cell body transmits information to the axon as an action potential [42]. Action potential

transmission generates transmembrane potential, which the intracellular and extracellular

neural recording can capture. By placing electrodes in the region of interest, intracellular

and extracellular action potentials can be recorded [43]. Consequently, the action potential

can be recorded as the potential difference between the electrode’s tip and ground electrode

[44].

The intracellular neural recording is a highly invasive technique that the transmembrane

potential is measured by penetrating the membrane with the electrodes [45]. This tech-

nique is capable of capturing highly accurate information about the electrophysiology (e.g.

a few ion channels) and obtaining a high amplitude of the intracellular action potential

that is in the range of 70mVpp [46]. However, due to the invasion of electrodes, this tech-

nique will cause irreversible damage to the neurons, so it can only be used for fundamental

8
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Cell Body

Dendrite

Axon

Axon Terminal

Figure 2.1: Dendrites, cell bodies, axons, and axon terminals make up a neuron. More-
over, the transmembrane potential of the neuron can be captured by the electrodes.

discoveries instead of medical interventions. As for the application, it is primarily applied

for in-vitro measurement, while it is not appropriate for long-term or chronic recording

[47].

In contrast, electrodes can be placed in the cortical tissue to record the extracellular

action potential. This technique allows chronic monitoring of large groups of neural

activities. However, compared to the extracellular recording, the recorded intracellular

action potential has a weaker amplitude, ranging from 50µVpp to 500µVpp depending on

the distance between the electrodes and the active neuron [48].

This thesis focuses on extracellular neuron recordings that are more appropriate for

chronic monitoring. The recorded signals from the electrodes comprise extracellular ac-

tion potential and Local Field Potential (LFP). The local field potential is generated by

a group of neurons around the tip of the electrodes (50 - 350 µm) [49]. In addition, when

the neuron is excited asynchronously, the action potential may be cancelled and the net

field potential will be eliminated. Therefore, the LFP can be utilised to reflect the co-

ordination of the population of neurons and the neural network dynamics. However, the

contribution of individual spiking neurons to LFP has yet to be adequately described [45].

The LFP has a frequency of between 1mHz and 200Hz with an amplitude of 500µVpp -

5mVpp.

As for the action potential, it contains both single-unit activity and multi-unit activity.

The single-unit extracellular AP owns a frequency range from 100Hz to 10kHz. As for the

multi-unit spiking, Choi et al. [50] obtained multi-unit activity by utilising a bandpass

filter from 300Hz to 3000Hz. On the other hand, Stark et al. [51] acquired the multi-

unit spiking from the root mean square of the signal in the frequency range of 300Hz to

6000Hz. In addition, Stolerman [52] only provided the vague frequency range of multi-unit

spiking from 400Hz to a few kilohertz. Since the application of this design is to predict

movement and epileptic seizure by counting the action potential that includes both single-
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and multiple-unit spiking, we target the signal of interest in the frequency from 100Hz to

10kHz. The attributes of different neural signals are summarised in Table 2.1.

Table 2.1: Summary of the characteristics of different neural signal modalities.

Modality Amplitude Bandwidth Potential for chronic recording

Intracellular action potential 10-70mVpp 100-10kHz low
Extracellular action potential 50-500µVpp 100-10kHz high

Local field potential 0.5-5mVpp 1m-200Hz high

2.2 Neural Electrode Techniques

Neural electrodes have significantly advanced the field of neuroscience by extracting and

detecting neural signals. In addition, the extracellular action potential and local field

potential are the main focus of this thesis. Spatial integration, stability and functionality

are the three development axes for electrodes [53]. Consequently, we split the evaluation of

innovative electrode approaches into three categories. Instead of describing each electrode

in detail, we briefly describe each direction with a single example.

Spatial integration: interpreting the coordination of the brain demands a considerable

increase in the number of monitored neurons. Moreover, this requires large arrays with

multiplexed recording sites and minimum numbers of footprints [53]. The development

of complementary metal–oxide–semiconductor (CMOS) technology features the probes

with more compact multiplexing circuits (in shank) and I/O connections (in base) [54;

55]. In the thesis, we take the ‘Neuropixels’ as an example. The neuropixels 2.0 probe

[56] contains four shanks and a base presented in Figure 2.2 with the dimensions. On

the shank, 1280 electrodes are assembled, with each electrode containing an analogue

15𝜇m

70𝜇m

12𝜇m× 12𝜇m

250𝜇m

Figure 2.2: Architecture and dimensions of Neuropixels 2.0.
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switch and 1-bit memory. The analogue switches determine which set of 384 electrodes

is recorded concurrently. As for the non-implantable component, the base is fabricated

by 130nm CMOS technology that comprises the electrical components responsible for

multiplexing, amplification, digitisation, and power management units. Pre-processing the

neural signals on the probe base prevents signal degradation during the data transmission

from the probe to external devices. Neuropixels probe has been utilised to track the visual

response in rats for up to two months.

Long-term stability: Access to time-dependent brain functions at the level of single

neuron and the development of cognitive processes demands an implantable probe with

long-term stability [57]. The interfaces should be featured with minimum perturbation to

the brain tissues to achieve stable chronic monitoring. Therefore, scientists have concen-

trated on developing probes with significantly reduced mechanical stiffness than silicon or

micro-wire probes [58; 59; 60]. To realise long-term recording, researchers (i) addressed

the distance between the probe and brain tissues and (ii) designed the probes that ’ap-

pear’ and ’behave’ similarly to the tissues [53]. Mesh electronic probes were introduced

to have similar maximum characteristic dimensions to individual neuronal somatic cells,

with the same bending stiffness values as brain tissue (Figure 2.3). It has been applied

for eight-month tracking of the age-related functional change of mouse neurons [60].

2𝜇m-width
interconnector

20-μm-diameter 
recording site

Figure 2.3: Architecture and dimensions of mesh electrodes.

Multiple functionalities: compared to the above electrodes, the multi-functional can

achieve both recording the neural signals and stimulating the brain region. Multi-functional

electrodes are mainly utilised to treat neurological disorders like Parkinson’s disease and

depression by real-time controlling and correcting the disorders [61]. For example, Shin

et al. [62] proposed a multi-shank Micro-electromechanical systems (MEMS) electrode

that consists of (i) recording sites, (ii) microfluidic channels for chemical delivery, and

(iii) optical waveguides for optical stimulation in the brain. This functional integration

is essential for accurately modulating neural circuits in-vivo. The architecture of the dis-

cussed electrode presents in Figure 2.4. The comparisons of the key characteristics of the
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electrodes in three categories are presented in Table 2.2.

SU-8 waveguide
Signal line

Microfluidic channel

20𝜇m× 20𝜇m
recording site

128𝜇m 30𝜇m

Figure 2.4: The architecture and dimensions of multi-shank electrodes, where SU-8 is
a type of negative photoresist utilised as the core layer for waveguide.

Table 2.2: Comparisons of the novel electrodes.

Technology Multiplexity Stability

Neuropixels [56] 384 recording channels data collection from the same
neuron for more than two
months

Mesh electrodes
[60]

16-128 recording channels tracking of the same neuron
over eight months

multi-shank neu-
ral electrodes [62]

32 recording electrodes, 2-
inlets microfludic mixer and
SU-8 waveguides

causes litter immune re-
sponses over two weeks

After studying different categories of electrodes, we introduce the electrical model of the

electrode-tissue interface that translates the neural activities into electrical signals [63].

The structure of the electrical model is in Figure 2.5 and the example data is shown in

Table 2.3.

Table 2.3: Parameters of the electrical model from the measurement of different mate-
rials.

Parameter Pt Electrode IrOx Electrode

VDL 15.77mV 3.12mV
CDL 200pF 1.2nF
RDL 10MΩ 100MΩ
RE 5kΩ 5kΩ
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VDL

CDL

RDL

RE
Neural 
activities

Electrical 
signals 

Tissue
interface

Electrode
interface

CMOS
interface

Tissue Electrochemical 
double-layer

Electrode CMOS

Figure 2.5: Electrical model of the electrode between the brain tissue and CMOS device,
where VDL, CDL and RDL are the double-layer potential, double-layer capacitance and
resistance, respectively, and RE is the resistance from the electrode to the CMOS device.

2.3 Neural Front-End

2.3.1 Overview of Neural Front-End

Neural signals from biology are transduced by a physical interface consisting of probes

and electrodes. Typically, the amplitude of these raw neural signals ranges from 50 to

500µV , with 5 to 10µV added background noise, and the frequency ranges from 0.1Hz

to 10kHz [13]. The neural signal recording is typically realised through the approaches

shown in Figure 1.1. Raw signals are passed to a front-end, which amplifies the signal

to the millivolt range. The amplified waveform is then filtered band-pass filter, which

eliminates interference (e.g. power line interference) while allowing action potentials to

pass. After that, one approach is to pass the signal into back-end processing in the form of

an analogue signal [64]. Alternatively, and indeed more typically, it can also be digitised

by an ADC and subsequently post-processed in the digital domain [65]. The above belongs

to front-end processing, which is presented in Figure 1.1 (black block diagram).

The signal is then transmitted to the back-end, which refines the signal and generally

attempts to extract the computationally important information. As a rule, the back-

end process consists of either spike detection or spike sorting. Spike detection involves

determining whether a neural action potential (spike) occurs at any given time. The

more complicated spike sorting process is then to also group detected spikes into clusters

depending on the similarity of their shapes, i.e. to identify groups of spikes that are likely

to originate from different neurons [66]. After processing in the back-end module, the

neural signal will usually be transmitted off-chip for further processing and/or storage.

In digital processing systems, data integrity and power consumption increase as the ADC

resolution is improved. Nevertheless, this approach has proved more prevalent and efficient

than the alternative of processing the waveform in the analogue domain. The reason is

primarily the ease of working with clean, digital signals when extracting information in
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the back-end. Once the relevant information has been extracted, the digitally compressed

neural signal waveform is significantly lower than the original analogue waveform.

Before reviewing the state-of-art neural front-end designs, we study the scheme of DC-

offset rejection (AC and DC solutions) and the neural signal processing (spike detection

and spike sorting) in the following.

2.3.2 Offset Rejection: AC-Coupled vs DC-Coupled Solution

One of the challenges of designing a neural front-end is to reject the DC offset from the

electrodes. DC offset exists on the front-end’s input due to the electrochemical effects at

the electrode-tissue interface [67]. The electrical model is presented in Figure 2.5. The

differential DC input is 1−10mV typically and can reach up to 50mV . Such DC offset may

saturate the differential amplifier. Various techniques have been proposed to overcome

the input DC offset, including AC-coupled and DC-coupled solutions [68; 69; 70]. In the

following, we study (i) the AC-coupled solution - closed-loop capacitive feedback network,

(ii) chopper stabilisation, (iii) DC-servo loop and (iv) the DC-coupled solution by inducing

Delta-Sigma ADC in the front-end.

Closed-loop capacitive-feedback network (CFN): This architecture in Figure 2.6

is firstly introduced by Harrison [71] and widely utilised in neural amplifier subsequently

[72; 73]. In this topology, the resistor Rf is realised in MOS or bipolar element. From

the frequency aspect, the large input capacitor Ci is utilised at the input to block the DC

offset from tissue. The parallel design of capacitor Cf and resistor Rf in the feedback

circuit operates as a high-pass pole: −1
RfCf

. The OTA determines the low-pass pole, which

falls in the range of 1Hz. The huge capacitor of Ci is required to attain such a low cutoff

frequency. The mid-band gain of this amplifier is − Ci
Cf

. It leads to a large area, low

mid-band gain and low input impedance of the amplifier.

In summary, the input capacitors (in the order of picofarad) occupy a sizeable on-chip

channel area (in hundreds of µm2) and prevent scaling up. Besides, the highly resistive

triode-biased MOS transistor induces nonlinear behaviour in the presence of a large output

voltage swing and DC operating point drift due to transistor leakage. This non-linearity

causes distortion, process, voltage and temperature (PVT) variations which render the

high-pass pole frequency time-variant.

Chopper-stabilised amplifier. The chopper is the continuous-time modulation tech-

nique in which signal and offset can be modulated at different frequencies [74; 75; 76].

In this review, we go through the principle of the chopper (in Figure 2.7) before induc-

ing the chopper-stabilised ac-coupled amplifier (in Figure 2.8). The input voltage Vin is

transformed to a square wave voltage at the frequency fch by passing through a chopper

(see Vin). After initial signal modulation, the noise and offset are added to the modulated

signal (see V1). The modulated signal is then amplified with an input offset of its own.



Chapter 2 Neural Information Processing 15

OTA

Ci

Ci

Rf

Rf

Cl
Vip

Vin

Von

Vop

Cf

Cf

+

+_

_

Figure 2.6: AC-coupled neural amplifier with capacitive-feedback network (CFN) topol-
ogy. The resistor Rf is a MOS-bipolar pseudo-resistor.

After amplification and the second chopper, the modulated signal is demodulated back

to DC. In contrast, the low-frequency noise and offset are modulated to the harmonics of

the rotor frequency, resulting in a chopper ripple at the amplifier output (see V2). A LPF

is then applied to remove offset and 1/f noise from the modulated low-frequency signal

(see Vout).

Vin
Low-pass

filter

Chopper
modulator

Chopper
demodulator

Vout

t

m1(t)

t

m2(t)

Vos+VN

fch fch

f/fch

Vin

1 3 5

signal

f/fch

V1

1 3 5

modulated signal

offset & noise

f/fch

V2

1 3 5

signal
modulated

offset & noise

f/fch

Vout

1 3 5

signal

V1 V2
A( f )

Figure 2.7: The general block diagram of the chopper shows the principles and signal
transmission in the frequency domain.

On the other hand, the chopper often comes with the ac-coupled amplifier in the neural

front-end that is referred to as a chopper-stabilised amplifier (in Figure 2.8). Compared

to a pure chopper that employs a low-pass filter, the chopper-stabilised amplifier feeds the

demodulated output back to the input. The amplifier then eliminates the low-frequency

errors. Compared to the closed-loop capacitive-feedback network, the chopper-stabilised

amplifier is capable of achieving considerable noise and offset reduction. Nonetheless,
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this architecture still utilises extra large input capacitors and requires extra techniques to

boost the input impedance.

Vin

VREF

Cin
Cf

Rf

-
+

Vout+

Vout-

Figure 2.8: The conventional chopper-stabilised neural amplifier.

DC servo loop (DSL): The general schematic of the DC servo loop in Figure 2.9

illustrates the principle of DC offset cancellation. This system is capable of measuring

the output voltage Vo and comparing it to the intended DC value VREF . The voltage

difference is then sent back to the input through an integrator, yielding a DC output

voltage equal to the desired DC level (VREF ). The transfer function is

Vo(s) = Vi(s)
s

1 + s/Gm
+ VREF (s)

1

1 + s/Gm
(2.1)

This architecture is able to eliminate DC components at the input by incorporating a

high-pass filter for Vi and an integrator with a substantial time constant [77]. And it

functions as a lowpass filter for the VREF , which establishes the DC output level. The

conventional DC-Coupled technique is to induce a DC servo feedback loop in order to

eliminate the DC offset [70]. Pham et al. [70] lowers the large input capacitance by

inducing additional capacitors, resistors, OTAs and chopper stabilisation modules into

the DC servo loop. However, the opamp in the feedback circuit significantly increases the

power consumption, and its various open-loop gain results in a variable high-pass pole.

Even though it is effective at removing DC offset, it can be only applicable to systems

with a restricted number of channels. This is because such a system requires substantial

passive components to generate a low-frequency high-pass pole.

Delta-Sigma modulator (DSM): The delta-sigma modulator has become the main-

stream front-end for achieving low noise level [78]. The block diagram of the one-bit

delta-sigma modulator is in Figure 2.10. The analogue signal at the input will be sampled

by multiple times, which is known as oversampling. Since the sampling rate is multiple

times faster than the digital output, the individual sample is accumulated over time and

then averaged with other input samples. The feedback loop in the modulator operates

different functions to desired signal (signal transfer function - STF) and the noise (noise
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+_

+_

Vi Vo

VREF

Gm

1
s

Figure 2.9: General schematic of DC servo loop.

transfer function - NTF):

Vo = Vi
1

s+ 1
+N

s

s+ 1
(2.2)

It can be obtained that the integrator operates as a low-pass filter for input signals (Vi) and

works as a high-pass filter for the quantisation noise (N) by summing the error voltage.

The quantisation noise is spread to a higher frequency range, and it can be removed by a

digital filter afterwards, which achieves low noise at the final output. The purpose of the

feedback loop is to maintain the average output of the integrator near the reference level

of the comparator, which averages the DC voltage rather than filtering it out. Thus, the

delta-sigma modulator typically induces a chopper stabilisation module to cancel out the

DC offset variation [79].

+_
+Vi(s) Vo(s)

N(S) – quantisation noise

1
s

Figure 2.10: One-bit delta-sigma modulator in s-domain.

2.3.3 Neural Signal Processing: Spike Detection vs Spike Sorting

As the amount of brain data captured using microelectrodes increases, the transmission of

the recorded information poses a growing challenge for microelectronics. The bandwidth

of communication for implantable devices is fundamentally governed by the energy budget

and total amount of heat dissipation permitted to prevent tissue injury. These constraints

restrict the wireless transmission of such a large quantity of data. Consequently, it is

crucial to identify feasible routes for performing a portion of signal processing on-chip

while adhering to a minimal power budget. In this section, we review two processing

schemes, including spike detection only and spike sorting.
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Spike Sorting: The raw data collected from neurons can be effectively filtered into local

field potentials (which reflect the dynamics of neural tissues around the electrodes and are

generated by the input currents of the dendrites of the surrounding neurons) and ’spike

trains’ [80]. The effect of filtering is to make spikes in background noise visible. The

filtered data is then separated into ’spikes’ and ’background noise’ (referred to as spike

detection) using methods such as establishing user-defined thresholds. The spike shape

is affected by a number of factors, such as the distance and orientation of the recording

electrode from the neuron [81]. However, to classify the shapes, several features, such as

spike amplitude and spike width, are selected, and based on these features, the spikes are

classified into ’clusters’ [82]. Each cluster is then linked to a single neuron, while clus-

ters that cannot be recognised are linked to ’multi-unit’ activity (typically characterised

by a lower amplitude) [66]. In summary, the flowchart for spike sorting consists of an

alignment of detected spikes, feature extraction, clustering, and classification, which is

the identification of clusters with original neurons.

Spike Detection: Spike detection is an essential technique that distinguishes spikes (real

brain activity/events) from background noise. Setting a threshold is the most typical

method for performing this operation. The threshold setting can be fixed or adaptable.

Fixed threshold utilises a constant circumstance throughout the duration of the recording.

The adaptive threshold strategy, on the other hand, monitors background changes and

modifies the threshold value accordingly. In any case, the threshold value must be selected

with care because, if the threshold value is too low, noise fluctuations may produce ’false

positive’ events, and if the threshold value is too high, spikes with low amplitudes will be

missed [83]. In the early days [84] of spike detection, the thresholds were manually set by

the user. Whenever the voltage signal exceeded the threshold, a pulse would be created

to represent an increase. If a spike waveform was required, specific user-specified points

would be collected after each threshold.

Selection: The decision between spike sorting and spike detection can be influenced by

the following factors:

• Application: not all applications require precise spike sorting to reflect neuronal

activities. For instance, Kloosterman et al. [85] state that the signal ’read’ by cuff

electrodes derives from the multi-unit activity and that identification of individual

spikes is not necessary. A measure of overall activity over time frames longer than

individual spikes suffices.

• Design constraints and trade-offs: It is of great interest to the neuroscience com-

munity to implement spike sorting algorithms on a low-power device in order to

enable wireless transmission of data and to provide ecologically and safely secure

settings for animal research. Wendler et al. [86] highlight the trade-offs that must

be addressed when creating a neural interface for the future generation. With the

consideration of the power budget of the system, it will be necessary to weigh the
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application and scheme trade-offs carefully.

2.3.4 State-Of-the-Art Neural Front-Ends

The comparison among the state-of-the-art neuron front ends (from 2018 to 2022) and

the specification of our work is presented in Table 2.4. The majority of offset rejection

has shifted from AC-coupled to DC-coupled solutions in order to increase the recording

channel within a limited power and area budget. In the following sections, we reviewed

the AC-coupled front-end from [69] and a DC-coupled solution from [68] as examples.

AC-coupled neural SoC: it includes the functions of recording and detecting spikes

[69]. The analogue pixel comprises AC-coupled capacitive-feedback amplifiers, including

low-noise amplifiers (LNA) and variable gain amplifiers (VGA) and 10-bit SAR ADCs for

neural recording. Besides, the local digital processor conducts spike detection on-chip.

The architecture is presented in Figure 2.11 and the detailed performance is listed in

Table 2.4. The input AC-coupling capacitors are utilised to prevent the DC offset and

provide the proper DC level to the input transistor of LNA in order to bias it in the

correct operation region. In the feedback circuit, the pseudo-resistor determines the high-

pass filter cutoff frequency and the DC input bias of the pixel. The tunable pseudo-resistor

allows the cutoff frequency of the HPF for LFP (5 Hz) and AP to be adjusted (300 Hz),

which features the system with higher flexibility. However, compared with other works

with delta-sigma modulation [68; 87], this offset rejection method still occupies a larger

channel area (shown in Table 2.4).

LNA VGA SAR
ADC

Spike
detection

Vin

VREF

Cin
Cf1

PR1

Cvar
Cf2

PR2

Figure 2.11: AC-coupled capacitive-feedback front-end.

Delta-sigma ADC: This front-end is fabricated under the electrode within an area of

70 × 70µm2 is proposed in [68]. The presented first-order incremental ∆Σ ADC utilises

Gm-C integrator and current feedback. The architecture and its performance are shown

in Figure 2.12 and Table 2.4 respectively. The weak signal without pre-amplification does

not require strict linearity, and thus, it allows us to utilise the Gm-C technique at the

input, which can achieve higher area efficiency. As for the feedback path, the modulator

chooses the current domain, which can avoid adding extra input transistor pair into the
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system. In order to reduce the area, this front-end enables three scale modes of ADC that

can cover the full-scale of ±11.25mV, ±22.5mV and ±45mV. The simple 1-bit ∆Σ ADC

with Gm-C input utilises the three different current sources to accommodate a wider range

of DC input voltage and occupies less area. In order to compensate for the DC offset,

it utilises a dynamic reference voltage VREF that is controlled by the digital module and

can cover the offset of up to ±200mV . It inspires us to design the ∆Σ ADC in our neural

front-end to achieve low noise, low area and low power consumption neural front-end in

Chapter 8.

Gm
1-bit
ADCC

Vin

VREF

VBIAS reset clk

VDD
I11 I22 I45

IFB Feedback (FB)

full scale
mode select

Vout

Figure 2.12: The architecture of one-bit delta-sigma ADC where utilises three scales
of current sources to conduct calibration.

2.4 Main Reference Circuit: Neural Pre-amplifier

Our group has proposed a neural front-end for spike detection which implements adaptive

thresholding by using memristive devices [30]. This design is referred to as the initial

front-end of this thesis. This section covers the design concept and basic operations of the

initial front-end. The author’s work on furthermore performance analysis is in Chapter 4,

and the following designs are in Chapter 5, 6 and 8.

2.4.1 Design Concept

It is important for implantable devices to increase the output data transfer rate and

decrease power consumption. Thus, we keep the necessary functions in implantable devices

and exclude other functions off-chip. It has been proved that it is sufficient to detect

neural spikes and transfer to off-chip [45] since most of the information representing the

extracellular activities is in APs. Therefore, we can include the main processing function

of spike detection and digitisation in the system. The duty cycle of APs is around 2% to

20%, which implies large potential power reduction when the system only processes and
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transmits neural spikes and outputs redundant signal as zero/null [89]. Therefore, the

objective of the processing system is to detect neural spikes and output them as digital

signals.

However, the processing system is fed by the extracellular raw signal collected directly

from the neural interface, which mixes both local field potential and action potential. The

clean and stable AP contributes to higher accuracy of threshold detection of neural spikes.

Since the LFP fluctuates on a large scale and may submerge the desired AP in voltage

amplitude, we need to separate the AP from the raw signal from the aspect of frequency

as the first step.

With action potentials fed into the system, it conducts detection after amplification gen-

erally so that the signal occupies a large voltage range and is less sensitive to noise. The

aim is to output sparse neural spikes; thus, the amplification of discarded data points still

occupies considerable energy. Another challenge is that APs are in the minute amplitude

range that requires an expensive amplifier operating in low distortion and high sensi-

tivity. With the consideration that action potential is in low frequency and sustains in

milli-second, we can integrate the micron-volt signals to milli-volt slowly instead of purely

amplifying. As for spike detection, a simple solution is to conduct threshold detection

that biopotentials amplitude crosses the specified threshold voltage will be detected as a

spike, which requires a reference voltage input. Therefore, we proposed a fully differential

amplifier with appropriately sized load capacitors for enabling signal integration, which

is an input of a train of APs and a reference voltage at each amplifier input terminal,

respectively. Then, the output of the amplifier connects to ADC to realise digitisation,

which output can be transmitted off-chip for further processing and/or storage.

Besides, there are other tricky design concepts that access less power consumption and

high flexibility. Since input signals of interest are sparse, the system is not necessary

to operate on the whole process which can be controlled by fixed external signals or

asynchronous signals. In addition, the spikes provoked by the stimuli last for 1ms typically

[90]. Thus, this architecture is controlled by clocking signals, switching between ‘operate’

and ‘off’ modes, which is a solution to energy reduction. With regard to offset, we induced

memristive devices (whose resistive state can be programmed) in two current branches to

tune the offset instead of designing an expensive offset compensation circuit, making the

circuit more flexible.

2.4.2 Operational Principles

The schematic diagram is presented in Figure 2.13, which is a fully differential amplifier

wrapped by the dynamic latch comparator, while the biasing circuit unit can be shared

with multiple channels. The whole system mainly conducts the threshold detection for

APs and outputs digital signals where ones represent spikes and zero as non-spikes. The
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following part will access to four operation phases in detail and explain the main compo-

nents of the circuit.
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Figure 2.13: The architecture of pre-amplifier. It consists of three parts: (i) the core
integrating amplifier, (ii) the dynamic latch comparator and (iii) the current bias control
unit. Control signals, including clk, clk ana, clk anabar, clk rst are all assumed to be

generated by voltage sources which are strictly periodic.

A completed detection cycle consists of four phases, which have been shown in Figure 2.14:

(i) reset, (ii)integration, (iii) digitisation and (iv) off phase. The detailed operation of each

phase will be explained as follows:

In the reset phase (i) the core amplifier is on (clk ana, clk rst: high, clk, clk anabar:

low) and the load capacitors are discharged (Vmida/b = 0), so that voltage/current in core

amplifier is initialised and cleared before integration commences in the next phase.

In the integrating phase (ii) (clk ana: high, clk anabar, clk rst, clk: low) the reset tran-

sistors (M5&M6) are switched off and the currents flowing through the branches of the

core amplifier drain into the load capacitors. From a ‘large signal’ perspective, Vmida and
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Figure 2.14: Transient simulation of one detection cycle of the neural spike. One
detection with four phases completes in 350ns as an example, which has been labelled
and highlighted with different backgrounds. It contains (i) reset, (ii)integration, (iii)
digitisation and (iv) off phases. (a) presents the control of clocks; (b) compares the
amplifier output (midb) with the drain of the input transistor (drain b); (c) presents the
digital output from DLC. Input signals are set as: ina = 1V + 50µV and inb = 1V .

Vmidb continuously increase during integration. In terms of ‘small signal’, ∆Vmida−midb

increases with time and normal operation is maintained so long as the cascode transistors

M3&M4 remain in the saturation region. The voltage difference between nodes mida

and midb is impacted by the charging speed/current and integration time. Memristors

R1&R2 work as trimming devices and tune the offset of the core with very high sensitivity

(1µV/kΩ shown in [30]). At the end of this phase, Vmida/b should be high enough to suc-

cessfully trigger the DLC and ∆Vmida−midb should be as large as possible for maximising

gain.

In the digitisation phase (iii) (clk ana, clk: high, clk anabar, clk rst: low) clk goes high,

triggering the DLC to perform the conversion of Vmida/b into the final digital outputs. By

convention, we take the output from the branch where output ‘1’ represents a spike while

‘0’ represents the absence of a spike. Shortly after the decision is committed by the DLC,

the core amplifier is turned off as the system re-enters the off phase.

Finally, in the off phase (iv) (clk: high, clk ana, clk anabar, clk rst: low), the tail

current is cut off by setting clk ana to zero. The pre-amplifier is turned off and stops

recording neural signals. clk anabar is also deactivated (goes to high), thus preventing

the accumulated charge across the large gate capacitances of M1&M3 from draining away.

After access to the basic operation of one detection cycle, the test with the differential

input range of ±500µV is presented in Figure 2.15. Input A (ina) is slowly swept between
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Figure 2.15: Pre-amplifier basic functionality test: Input A (ina) is slowly swept be-
tween [1V − 100µV , 1V + 100µV ] over 2ms while the pre-amplifier is carrying out a
conversion every 10µs to detect the relationship between inputs A and B. Input B (inb)
remains stable at 1V throughout. In this test, the amplifier was balanced (R1 = R2).
When Vina < Vinb, the left branch current is larger than the right branch current, in-
ducing Vmida − Vmidb > 0. The DLC captures this relation and generates binary signals:
Vouta = 1 and Voutb = 0, which appears in the bottom panel as a predominantly orange
output trace. Conversely, when Vina > Vinb, Vouta = 0 and Voutb = 1, which appears
as a combined orange/blue output trace. Note: this type of simulation can also be used
to test the offset tuning range and tuning sensitivity on the resistive state of memristive
devices. When R1 > R2, Vina must be lower than Vinb to ensure a balanced output,
creating an offset, this is read in the output trace as an encroachment of the blue region

into the orange (and vice versa for R1 < R2).

[1V − 500µV , 1V + 500µV ] over 2ms while the pre-amplifier is carrying out a conversion

every 10µs to detect the relationship between inputs A and B. Input B (inb) remains stable

at 1V throughout. In this test, the amplifier was balanced (R1 = R2). When Vina < Vinb,

the left branch current is larger than the right branch current, inducing Vmida−Vmidb > 0.

The DLC captures this relation and generates binary signals: Vouta = 1 and Voutb = 0,

which appears in the bottom trace as a predominantly orange output trace. Conversely,

when Vina > Vinb, Vouta = 0 and Voutb = 1, which appears as a combined orange/blue

output trace. This type of simulation can also be used to test the offset tuning range and

tuning sensitivity on the resistive state of memristive devices. When R1 > R2, Vina must

be lower than Vinb to ensure a balanced output, creating an offset. This is read in the

output trace as an encroachment of the blue region into the orange (and vice versa for

R1 < R2).



26 Chapter 2 Neural Information Processing

2.5 Summary

The development of the electrode techniques enables researchers to acquire a larger

amount of neural data. Therefore, the primary responsibility of the front-end designer is

to process the weak signals from the electrodes while adhering to low-noise requirements

and power and area constraints. It necessitates the selection of appropriate DC offset

rejection and signal processing techniques. In this instance, we use a memristive device

in the CMOS technique to compensate for the DC offset while simultaneously integrating

spike detection on-chip to realise a multi-functional front-end.



Chapter 3

Integrating Memristive

Technology into CMOS Design

Memristor is an emerging two-terminal device whose resistance state (RS) can be changed

by the applied bias voltage. It is a programmable and non-volatile device at the nanometer

scale that is compatible with CMOS [31; 32]. Considering that the memristance is tuneable

continuously [27], it can be regarded as an analogue device that processes the continuous

signal. With these characteristics, it can be utilised as a trimming device with the feature

of programmable resistance [30]. In this project, CMOS integrated circuits with memristor

implants operate more flexibly because the RS can be altered by applying a bias voltage,

operating in a ‘write once-read many’ regime.

Previously, we only had the Python model for this device in the range of [20kΩ, 120kΩ],

which is used on our instrument measurement interface. The first step in incorporating the

memristive model into circuit design is to make the memristive Verilog-A model accessible

to EDA tools. It can be utilised to represent the behaviour of memristive devices through

physical equations, laying the foundations to enable the inclusion of these devices into

integrated circuits. This chapter focuses on the specific Verilog-A memristor model (in

the range of 20kΩ to 120kΩ) that uses quadratic fitting as proposed in [36]. In this

project, I converted the mathematical model into a Verilog-A model and made it available

to Cadence, whose methodology refers to [37]. In this chapter, we cover the procedure

and significant parameters of the Verilog-A model. Additionally, the integration of the

memristor model into the Cadence Virtuoso design environment is documented, along

with the methodology for integrating memristors with CMOS designs.

27
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3.1 Verilog-A Memristor Model

The Verilog-A model provided in [37] represents the behaviour of memristive devices

through physical equations. There are two mathematical models for our memristive de-

vice: exponential [37] and quadratic [36]. But we only had the exponential Verilog-A

model, which can reflect the physical device with higher accuracy. However, the RS is

limited to a narrow range of [10kΩ, 17kΩ]. The author applied the quadratic model to

CMOS design to access the wider RS range of 20kΩ to 120kΩ.

1. module analytical (p, n);
2. inout p, n;
3. electrical p, n;
4. parameter real Ap = 0.12340; 
5. parameter real tp = 2.74111; 
6. parameter real An = -0.33000;
7. parameter real tn = 2.59685;
8. parameter real rp0 = -40928.13784;
9. parameter real rp1 = 55117.97865; 
10. parameter real rn0 = 41366.35820;
11. parameter real rn1 = 7789.66771;    
12. parameter real Rinit = 40000; 
13. parameter real eta = 1;
14. parameter real ap=0.225;
15. parameter real bp=4.12;
16. parameter real an=0.2801;
17. parameter real bn=4.10; 
18. real Rmp, Rmn, svp, svn, vin, RS, IVp, IVn, IV; 
19. real first_iteration, R0_last, dt, it; 
20. analog function integer stp; 
21. real arg; input arg;
22. stp = (arg >= 0 ? 1 : 0 );
23. endfunction
24. analog begin
25. if (first_iteration==0) begin
26. it=0; R0_last=Rinit;
27. end
28. dt=$abstime-it;
29. vin=V(p,n);
30. Rmp=rp0+rp1*vin; Rmn=rn0+rn1*vin;
31. if (vin>0) begin
32. svp=Ap*(-1+exp(abs(vin)/tp));
33. RS=(R0_last+svp*Rmp*(Rmp-

R0_last)*dt)/(1+svp*(Rmp-R0_last)*dt);
34. end
35. else begin
36. svn=An*(-1+exp(abs(vin)/tn));
37. RS=(R0_last+svn*Rmn*(Rmn-

R0_last)*dt)/(1+svn*(Rmn-R0_last)*dt);
38. end
39. if (RS>=Rmp && vin>0) RS=R0_last;
40. if (RS<=Rmn && vin<0) RS=R0_last;
41. if (abs(vin)<=0.5) RS=R0_last;
42. IVp=ap*(1/RS)*sinh(bp*vin);
43. IVn=an*(1/RS)*sinh(bn*vin);
44. IV=IVp*stp(vin)+IVn*stp(-vin);
45. I(p, n)<+ IV; 
46. R0_last=RS;
47. first_iteration=1;
48. it=$abstime;
49. end
50. endmodule

Listing 1: the Verilog-A memristor model representing the in-
house fabricated Pt/TiOx/Pt device using quadratic fitting

In this chapter, we convert the quadratic

mathematical model in [36] into the

Verilog-A model (in Listing 1), whose

methodology refers to [37]. The explana-

tion and implementation of the Verilog-A

model in Cadence Virtuoso are given as fol-

lows.

• As a two-terminal device, p, n is de-

fined as the ‘inout’ ports of the mem-

ristor, where the applied bias voltage

(vin) can be used for calculation and

the current through the device will

be output (lines 1-3, 29, 45). The

RS can be accessed through the non-

linear I−V characteristic in lines 42-

44.

• The fitting parameters, switching pa-

rameter (eta) and initial RS (Rinit)

are defined from lines 4 to 17. The

fitting parameters are extracted from

the experimental results of an in-

house fabricated device with a spe-

cific stimulus, while the details can

be found in [37]. The switching di-

rection parameter (eta) is 1 in this

model, indicating the direction that

the positive voltage induces higher

RS. User-defined initial values for

RS should be within the proper

range determined in line 30.

• Lines 20-23 define a ‘step function’, which is then employed in line 44 to determine



Chapter 3 Integrating Memristive Technology into CMOS Design 29

the output current branch. For instance, when vin is positive, the result of ‘stp(vin)’

is one while ‘stp(-vin)’ is zero; thus, the current branch ‘IVp’ will be output.

• Analog block (lines 24-49) indicates two features of the device operation: iteration

and transient. Lines 25 to 27 present the setup of the first iteration. In this case, the

start time is set to zero and the latest RS is taken from the defined parameter Rinit.

The time step can be obtained from lines 28 and 48 by subtracting the absolute time

from the reference time. After deriving RS (lines 31-41), the current through the

device will be updated (lines 42-44) and passed to ports (line 45). Then, the latest

RS and absolute time will be updated for the next iteration (lines 46-48).

• The boundaries of RS can be derived from line 30. Within the RS boundaries,

RS can be calculated under the condition of constant bias voltage in lines 31-38.

However, the switching fails to realise if the latest RS exceeds the boundaries or the

bias voltage drops below 0.5V (lines 39-41).

In conclusion, Verilog-A models can only be used to simulate transients and can be used

to 1) conduct static current-voltage measurements within specific boundaries; 2) gather

transient switching characterisation by applying bias voltages to initial RS. In order

to process the above utilisation, we need to set up two stages: 1) read RS by applying

triangular pulse with 0.5V amplitude, which prevents the device from switching; 2) write,

or we said, change the RS, by applying pulses with defined duration/width, polarity,

amplitude, and numbers of pulses. For extending the application, fitting parameters can

be changed to represent other memristive devices. At this stage, the model does not

incorporate AC analysis/small-signal modelling, noise performance, parasitics and device

variation.

3.2 Integration of Memristor Model into Cadence

3.2.1 Import Verilog-A Model into Cadence

In order to utilise the device in circuit design as well as simulation, cooperating with

electronic devices, we develop a symbol that links to the Verilog-A model so that it can

be incorporated into circuits as an element. The instruction is shown as follows:

• Build the library and refer to chosen technologies. In order to cooperate memristor

with CMOS, users are supposed to be familiar with the behaviour of the memristor

quantitatively, such as the range of high/low resistive state, the allowed range of

applied voltage/current, static I − V characteristics and etc., which allows them to

choose a more suitable technology, as well as define circuit specification with more

realisable. In this case, we integrate the Verilog-A model in Cadence and choose
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0.18um technology with four fabrication metal masks for demonstration, where the

proposed memristor was fabricated with Metal4 as ports.

• In library Manager, we create a cell view in a specific library with Verilog-A type,

named ‘memristor’ in library ‘DesignMethodology’ (Figure 3.1(a)). Then, we paste

the provided Verilog-A code into the text editor and save the file.

• From the toolbar in the text editor, we can access create ‘cellview from cellview’ to

create a symbol from Verilog-A memristor model (Figure 3.1(c).

• We assigned the position of ports on the left and right sides which can be auto-

matically detected from the Verilog-A code, followed by the symbol design (Fig-

ure 3.1(b)).

• The memristor model can be applied to the schematic, operating with transistors,

resistors, capacitors and etc. Besides, the model can be utilised flexibly, where fitting

parameters (shown in Figure 3.1(d)) can be modified to represent other memristor

models. In this case, we only have access to construct a single proposed memristor

with voltage sources to investigate the switching characterisation.

(a)
(b)

(c) (d)

Figure 3.1: The operation sequence of importing memristor into Cadence. (a) Process
of building a new cell view in Verilog-A type for memristor. (b) Symbol of the memris-
tor. (c) Process of creating a symbol for memristor from Verilog-A cell view. (d) The

parameters of the memristor can be modified in the object properties window.

3.2.2 Simulation Setup for Memristor-based Circuit

Considering that the Verilog-A memristor model calculates RS against time and keeps

tracking the change of RS, the model is supposed to run in transient simulation to process
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both write and read operations. In this case, we took a single memristor with voltage

sources as a simulation example that was provoked by a chain of pulses followed by

a triangular wave to conduct the write and read of the memristor, respectively. The

operation steps will be shown as follows:

(a)

Time

V
ol
ta
ge

tw,in

tw, R

Vb

Vread

Vread

(b)

Figure 3.2: (a) Testbench of applying pulse and triangular wave to memristor to con-
duct the write and read operations in the transient simulation. (b) Pulse chain that
provokes the memristor. The input signal sequence can be divided into two parts: trian-
gular wave and pulse. For all the simulations of our device, the read voltage is defined
as Vread = 0.5V with 1ms duration. The pulses can be determined with specific dura-
tion/width (tw,∆R), amplitude (Vb) and the number of pulses to provoke the memristor.
With the combination of two stages, the RS of the memristor model can be tracked for

each stimulus.

• In this demonstration, we built the schematic with memristor, piece-wise linear

(PWL) and pulse voltage sources (Figure 3.2(a)). In the schematic, we have de-

fined the direction that voltage sources are connected to ‘positive’ (p) port of the

memristor. The positive bias voltage (Vb > 0) from ‘p’ provokes the memristor to

higher RS, while the RS will decrease when positive voltage applies at ‘n’ port. In

testbench (Figure 3.2(a)), the proposed model is in OFF transitions under positive

voltage, while negative voltage leads to ON transitions. Two voltage sources gen-

erate triangular waves and pulse alternately to process that the pulse changes RS

of memristor followed by a triangular wave which keeps tracking RS. The detail

of the input signal has been shown in Figure 3.2(b). In this measurement for the

proposed model, the identical triangular wave is defined as 0.5V peak amplitude

(Vread) within 1ms duration. The pulse mainly has three variables: width (tw,∆R),

amplitude (Vb) and the number of pulses.

• After setting up the testbench and running the transient simulation, we are supposed

to record the change of RS. In this case, we need to record every current across

the memristor at Vread = 0.5V . With both read voltage and current, the RS can be

obtained by dividing Vread = 0.5V by read current. For detail operation, users can

1) process the division in Cadence calculator and plot RS; 2) send the RS to the

table and save it as a ‘.csv’ file; 3) process the data in Matlab in order to extract

and plot the RS at Vread = 0.5V .
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The simulation example of the Verilog-A model in Cadence is given in Figure 3.3. This

type of simulation allows us to elaborate on the effect of the resistance state from the

applied pulse width, amplitude and polarity.

1 ss s

(a)

(b)

Figure 3.3: Simulation results for the quadratic memristive Verilog-A model in Cadence.
(a) shows the responses of the model to 1, 10, 100µs pulse widths with constant amplitudes

(±2V ). (b) presents the model response to the voltage ramp from 1V to 3V.

3.3 Summary

This chapter shows the behaviours of memristor from explaining the Verilog-A model in

terms of non-linear I − V relationship and RS switching due to bias voltage. Besides,

the methodology of utilising the memristive device into Cadence for circuit design and

simulation is given. It can be regarded as the foundation for the below chapters that

apply the memristor to the amplifier, including defining and measuring the performance

of the proposed amplifier.
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A Memristor-based Pre-amplifier

Topology

Based on the design requirements and application provided in Chapter 2, this chapter

analyses the pre-amplifier at the transistor level and provides theoretical calculation of

the core memristive OTA. Since the proposed OTA operates in a ’start-stop’ scheme, its

performance metrics are slightly different from the conventional OTA. And the differences

and explanations are given below. In this thesis, we modified the initial front-end (Fig-

ure 2.13) and the proposed schematic is shown in Figure 4.1. In the initial front-end [30],

the clocking signal (clk) is generated by the output of core OTA (mida). On the other

hand, the clk in the proposed OTA is set to be generated by the external clocking module,

which guarantees the DLC capture the sufficient voltage difference from the core OTA.

The next chapter presents a transient simulation for signal detection with more details.

4.1 Transistor Level Analysis

After introducing basic functions of the pre-amplifier in Chapter 2, we analyse the be-

haviour of significant transistors of memristive OTA for afterwards design. The dynamic

OTA operates in four phases: i) initial, ii) integration, iii) digitisation and iv) off.

The input differential pair (M4&M5) provides the main transconductance for the core am-

plifier which converts the effect of gate voltage into current in CMOS device. To achieve

maximum gain, the gm needs to achieve the highest value (for a given bias current), which

indicates the input transistors need to bias to the subthreshold region. In addition, a max-

imum gm makes a contribution to reducing thermal noise component of the input-referred

noise and the use of large input transistors achieves a lower flicker noise component.

The cascode transistors (M6&M7) in the core amplifier mainly contribute to increasing

output resistance and being shield devices to isolate the input pair from memristive devices

33
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Figure 4.1: The schematic of the proposed pre-amplifier. Compared to the initial
design in Figure 2.13, this circuit uses external clk to control that the DLC can be fed

by sufficient voltage difference and increase detection accuracy.

and dynamic voltage changing due to integration. Thus, drains of input pair (drain a/b)

can be maintained at a constant voltage level, which avoids fluctuating input pair.

The memristor, along the current branch, plays as a trimming device in the core amplifier.

Generally, the circuit requires an adjustment circuit to cancel or compensate the inherent

offset voltage to prevent drift after fabrication. But in this case, we do not intend to

cancel the inherent offset; on the other hand, we take advantage of the inherent offset

as part of reference/threshold voltage during threshold detection. The differential output

∆Vmid = Vmidb−Vmida is impacted by the inclined current with the same integration time.
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We applied memristors (R1&R2) that can be programmed to trim the effective resistance

which inclines the balance of two current branches. Thus, it requires that the tuneable

range should cover the range of ∆Vspike,max ± |Vos,max|, where Vspike,max is the maximum

potential of neural spike and Vos,max is the maximum offset voltage of the core amplifier.

As for the bottom transistors (M8&M9), they operate as switches rather than active

loads. During the ‘initial phase,’ the bottom transistors are activated to discharge the

load capacitors (C1&C2) and initialise the status of the input and cascaded pairs. And

they are turned off during the ‘integration phase’ to guarantee that charges flow into the

capacitors to realise integration and amplification. As a result, the design of the bottom

transistors should prioritise minimising parasitics and leakage current.

In this section, we highlight some significant components and preliminary design consid-

erations. The detailed theoretical analysis and calculation of specified indicators are given

below.

4.2 Theoretical Analysis of Performance Metric

Considering that the core amplifier is a dynamic amplifier where the integrated output

signals (mida/b) keep changing the DC operation point, the performance of the amplifier

needs to be re-defined based on the transient analysis since the traditional DC/AC analysis

based on the static operation point is unsuitable for this case. In this section, we assess

the foundation of the performance metric and tailor it to the integrating amplifier. Most

of the indicators mainly depend on the ‘integrating phase’ (iii in Figure 2.14) when the

amplification is processed. Thus, the analysis will be focused on the core amplifier in the

integrating phase.

Furthermore, the bias current (Itail) distributes into differential branches with a slight

incline (∆i) depending on weak input signals. This allows us to conduct both ‘large’ and

‘small’ signal analysis by using transient simulations to obtain the relevant data. Thus, we

define the Vmida, Vmidb and Itail as ‘large’ signals in this case, while the voltage difference

∆Vmid = Vmidb − Vmida and inclined current ∆i belong to ‘small’ signal. The following

access to each performance indicator one by one with the insight of definition foundation

and the derivation of tailored definition. This chapter mainly focuses on the performance

analysis of core OTA, whose parameters are listed in Table 4.1.

4.2.1 Overview of Performance Metric

The indicators are divided into different types in Table 4.1. Moreover, we briefly de-

scribe significant indicators and provide a detailed explanation for the specific ones in the

following sections.
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Table 4.1: Specification of the memristive integrating OTA.

Type Parameter Target

DC
Bias current Input common mode range VICR ≥ 50mV
Input differential voltage range VIDR ≥ 5mV
Offset compensation by memristors VCOMP ≥ VOS+500µV

AC

Open loop voltage gain AOL ≥ 26dB
Bandwidth BW 10kHz
Power supply rejection ratio PSRR ≥ 100dB
Common mode rejection ratio CMRR ≥ 100dB

Transient Sampling rate Fs ≥ 20kHz

Noise Input-referred noise en ≤ 10µVrms

Minimum ratings Power dissipation ≤ 750nW

DC There are two types of input ranges: i) common mode range and ii) differential

voltage range. The input common mode range VICR is defined as the voltage that keeps

the input transistors in the subthreshold region, which analysis is in section 4.2.2. The

input differential voltage range VIDR is relative to the linearity where the output is linear

to the input voltage. Due to the electrode can induce up to 50mV DC offset to the

amplifier, to guarantee the input transistors are in subthreshold region, VICR is required

to be larger than 50mV. As for the differential input, it contains both LFP and AP that

we need to set VICR ≥ VLFP,max + Vspike,max ≈ 5mV .

The other highlighted parameters are relevant to offset. The inherent offset voltage is

dependent on the sizing and layout design. And we determine that the compensated

voltage by memristor VCOMP needs to cover both the spikes and inherent offset of the

circuit (Vspike,max±|Vos,max|), where the amplitude of neural spike is Vspike,max = 500µV .

AC Due to the amplification being realised by integrating the capacitor, the open loop

voltage gain AOL/output voltage ∆mid should be relative to the accumulated charges

in the capacitors. Furthermore, the detailed calculation is in section 4.2.3. We required

the OTA to amplify the minimum spike 50µV to millivolt-level, which requires 20V/V

(26dB) amplification. As for the frequency response, the bandwidth is set in the range

that covers the neural signals which are up to 10kHz. Due to the front-end being required

to reject the DC offset, the OTA should operate as the bandpass filter by applying it into

the open/closed loop network as an AC-coupled front-end. In addition, the OTA can be

applied to the DC-coupled solution described in Chapter 6.

Transient The maximum frequency of the neural spike is 10kHz. According to the

Nyquist theorem, the sampling frequency must be at least twice the signal of interest; we

set the sampling frequency is required to be higher than 20kHz.

Noise Noise from the input amplifier is typically lower than that from electrodes [91].

Moreover, the noise introduced by the electrodes is typically 10µVrms [13]; thus, we target
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the input-referred noise en to be lower than 10µVrms.

Power consumption As estimated in Chapter 1, the maximum power consumption of

the implanted integrated circuit is restricted to 15mW. Moreover, we estimated that the

transmission module occupies 50% of the power budget; the 10,000-channel front-end can

only consume 750nW per channel.

4.2.2 Input Range

As the analysis above, the input transistors M4&M5 are biased in the subthreshold region

to achieve higher voltage gain and lower input-referred noise. It implies two operating

conditions: (1) A minimum drain-source voltage |Vds,min| = 3·VT , where VT is the thermal

voltage and good rule of thumb for ensuring in subthreshold region [92]. (2) the gate-

source voltage |Vgs,4|(< |Vth,4|) that allows the transistor to pass ≈ Itail/2 in subthreshold

region. These two conditions can be unfolded with the aid of Figure 4.2 as follows.

M3

M4 M5

M6 M7

R1 R2

Vdd

clk_anabar
ina inb

mida midb

Vbias

drain_a

Figure 4.2: Part of schematic of core amplifier aiding the input range analysis.

Looking into Figure 4.2 from VDD to the input, the common mode input voltage VCM

reaches the top bounded:

VDD − |Vds,sat,3| − |Vgs,4| ≥ VCM (4.1)

where Vds,sat,x is the drain-source saturation voltage of transistor x. Exceeding the bound-

ary causes M3 to triode and simultaneously encroach on Vgs,4, progressively shutting the

amplifier down.

The bottom boundary hinges on maintaining the input differential pair in the subthreshold

region (|Vds,4| ≥ |Vds,min,4| = 3 · VT ):
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|Vds,4| ≈ (VCM + |Vgs,4|)− (Vclk anabar + |Vgs,6|) ≥ 3 · VT (4.2)

where Vgs,6 is the gate-source voltage allowing the cascode transistor to pass ≈ Itail/2.

This is also treated as approximately constant in this analysis. Under normal operation,

the second term is recognised as Vdrain a. This unfolds to:

VCM ≥ Vclk anabar + |Vgs,6| − |Vgs,4|+ 3 · VT (4.3)

Here, the cascode transistor M6 enforces a specific and relatively fixed value of Vdrain a

under the control of Vclk anabar (similarly for M7 and Vdrain b). Combining Equations 4.1

and 4.3, we can find the approximate value of Vclk anabar above which the input differential

pair runs out of the common mode range:

Vanabar,low = VDD − |Vds,sat,3| − 3 · VT − |Vgs,6| (4.4)

We can see the trade-off between common mode and integration voltage ranges (directly

connected to gain), depending on the clk anabar. If Vclk anabar increases, push the bottom

boundary of VCM to narrow the common input range; meanwhile, it allows large headroom

for the signal integration at nodes miba/b which boosts the voltage gain.

4.2.3 Open Loop Voltage Gain

For a fully differential amplifier, the voltage gain is defined as the ratio of the output am-

plitude difference over the input amplitude difference: ∆Vout/∆Vin. As for the proposed

amplifier, the voltage gain will be translated into ∆Vmid/∆Vin, where ∆Vmid is captured

at the end of integrating phase and ∆Vin is the input difference between APs and refer-

ence voltage in practice. The APs are in low frequency that each spike features of the

order of 100s micron seconds, while a completed detection cycle lasts within hundreds of

nanosecond levels, which implies the input voltage can be regarded constant for analysis.

First, we go through the signal conversion and flow within the core amplifier during the

integrating phase step by step. In this structure, the input pair (M4&M5) contributes

the main transconductance to convert the voltage into current through the device. The

cascode pair (M6&M7) mainly contributes to output resistance and shields the voltage

fluctuation from nodes mida and midb, maintaining the stability of input transistors.

Then, the branch current charges the load capacitors that induce both output voltage

Vmid and the voltage difference ∆Vmid increases gradually, where converts the current

back to voltage and realises amplification. The process of deriving the formula will be

given as follows.
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The input signal and reference voltage are input into the amplifier through M4&M5

where the voltage difference ∆Vin is converted into current difference ∆i. The conversion

degree depends on the transconductance gm of the input pair, which represents the signal

amplification ability. The current difference will be:

∆i = ∆Vin · gm (4.5)

As the branch current drains into load capacitors within the same period, the charges in

the capacitor will be accumulated and the charge difference ∆Q will be increased during

this process. The difference of charge on the load capacitors:

∆Q = ∆i · τ (4.6)

where τ is the integration phase duration. Finally, this gets transformed into the voltage

difference we observe at ∆Vmid through the load capacitance C:

∆Vmid = ∆Q/C (4.7)

Combining the above yields the gain (G):

G =
∆Vmid

∆Vin
=

gm · τ
C

(4.8)

From the view of the ‘large’ signal, currents filling each load capacitor are approximately

constant and equal, and the output Vmid is mainly dependent on the half-tail current

(Itail/2) integration within τ :

Vmid =
Q

C
≈

Itail/2 · τ
C

(4.9)

where Q is the total charge accumulated on each node (mida/b) as a result of the tail

current. Since the load capacitor has discharged clearly in the reset phase, we induce Q to

represent the accumulated charge during integration. Similarly, Vmid represents the ‘large’

voltage signal at node mida/b during integration. We can easily get that the integration

time τ is mainly dependent on the ‘large’ signal integration, and τ can be expressed as:

τ = Vmid · C/Itail/2 (4.10)

Then, we can substitute Equation 4.10 into Equation 4.8 and obtain gain (G) as:
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G =
gm · Vmid

Itail/2
(4.11)

We can divide the formula into two parts: the transconductor efficiency factor of the

input transistor pair (gm/Itail/2) and the ‘large’ signal output voltage (Vmid), both of

which depend on the differential gain of integrating amplifier. The maximum gm/Itail/2

can be obtained when the input transistors are biased in the subthreshold region. As for

the output voltage Vmid, it needs to be integrated large sufficient to boost the gain, while

Vmid should be lower than the voltage that forces the cascode pair (M6&M7) into triode

region.

4.2.4 Noise Performance

The input-referred noise derivation in continuous mode is given in this section. The

standard MOSFET input-referred noise model containing both thermal and flicker noise

is given by the following expression for spectral density [93]:

V 2
in std(f) = 4kTγ

1

gm
+

K

CoxWLf
(4.12)

where k is Boltzmann’s constant, T is the absolute temperature, γ = 2
3 for long-channel

transistors and higher for shorter channel devices, K a typically empirically determined

factor scaling 1/f noise, Cox the gate capacitance, W,L the transistor sizes and f denotes

(linear) frequency.

The analysis of each component in the core amplifier on noise contribution during the

integrating phase will be conducted. The criterion is whether the transistor contributes

to AC signal increment from input to output. M3 is beyond the differential branch and

mainly contributes to common-mode noise. The input pair (M4&M5) induces the primary

increment on the AC signal; thus, it is an effective noise source at mid nodes. The cascode

pair (M6&M7) operates as a ‘common-gate’ that contribute zero increments on AC signal,

which can be omitted in noise analysis. Finally, the reset transistors (M8&M9) are off

during the integrating phase. Similar to continuous mode amplifiers such as the Harrison

[94]: the input differential pair provides substantial gain through its gm, mitigating the

input-referred contributions from downstream elements (primarily the cascode transistors

and the memristive devices). Therefore, in a fully differential amplifier, the input-referred

noise will be doubled and given by:

V 2
in(f) = 2 · (4kTγ 1

gm
+

K

CoxWLf
) (4.13)
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where all the component parameters in terms of gm, K/CoxWL represent the input tran-

sistors M4&M5.

4.2.5 Tuneable Range and Sensitivity

The memristive devices applied in the current branches regulate the charging speed to

load capacitors by modulating the effective output resistance of the core amplifier as seen

by the capacitive load. The calculation of branch resistance will be divided into two parts:

(1) find out the impedance of a drain-degenerated of M6, looking into the source of M6,

which schematic has been shown in Figure 4.3; (2) apply the drain degeneration analysis

again on the source of M4 (Figure 4.1) to calculate the branch impedance.

M6

clk_anabar

R1

VtestItest

(a)

R1

Ro6gmVsg

Vtest

Vsg

+

_

Itest

(b)

Figure 4.3: The circuit diagram of M6 and R1 with a test voltage source presented as
(a) a large signal and (b) a small signal. Ro represents the drain-source resistance.

To obtain the impedance, a test voltage source is applied on the source of M6 in Figure 4.3,

with the assumption of Itest. The effective impedance (Zs6) can be obtained by: Vtest/Itest.

Looking into the current path from the voltage source to R0, R1 and GND, we can obtain:

Vtest = Itest ·R1 + (Itest − gm6Vsg,6) ·Ro6 (4.14)

To obtain the item Vtest/Itest, Equation 4.14 can be translated into:

Zs6 =
Vtest

Itest
=

R1 +Ro6

1 + gm6Ro6
≈ R1 +Ro6

gm6Ro6
=

1

gm6

(
1 +

R1

Ro6

)
(4.15)

where the approximation is induced due to in saturation operation: gm6Ro ≫ 1. Zs6 is

the impedance looking into the source of M6, gm6 is the differential transconductance of

M6, and Ro6 the output resistance of M6.
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Extending this principle to calculate the impedance of M4, as drain-degenerated by the

M6-R1 cascade we obtain:

Zs4 ≈
1

gm4

(
1 +

Zs6

Ro4

)
(4.16)

which eventually unfolds to:

Zs4 ≈
1

gm4
+

1

gm6gm4Ro4
+

R1

gm6Ro6gm4Ro4
(4.17)

A similar expression also applies for the right current branch.

Setting A = 1
gm4

+ 1
gm6gm4Ro4

and B = 1
gm6R06gm4Ro4

we can express the impedances seen

by M3 looking into each current branch as:

Zl ≈ A+BR1 (4.18)

Zr ≈ A+BR2 (4.19)

where Zl = Zs4 is the left current branch impedance and Zr is the right branch impedance.

Next, examining the distribution of tail current across the branches we obtain an expres-

sion for the left branch current il as follows:

il ≈ iT
A+BR2

2A+B(R1 +R2)
(4.20)

where iT = i3 is the tail current. Given that B ≪ 1 (as it is the product of two maximum

FET amplifier gains), il can be further approximated as follows:

il ≈
iT
2

(
1− B

2A
(R1 −R2)

)
(4.21)

Similarly for the right branch current ir:

ir ≈
iT
2

(
1 +

B

2A
(R1 −R2)

)
(4.22)

This yields a total current imbalance of:

il − ir ≈ ∆i = −iT · B

2A
(R1 −R2) (4.23)

which if divided by the common transconductance of the input differential pair transistors

yields the required voltage offset to rebalance the branches as a function of the difference
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in memristor resistive states:

Vos ≈ Vina − Vinb =
∆i

gm4,5
(4.24)

which when fully unfolded yields:

Vos ≈ − (R1 −R2)iT
2Ro,casgm,in(1 + gm,casRo,in)

(4.25)

where we have renamed our variables to explicitly stress the common values of output

impedances and differential transconductances of the input differential pair and cascode

transistors (Ro,cas = output impedance of cascode transistor, gm,in = transconductance

of the input differential pair).

Overall, Equation 4.25 shows that in small-signal conditions, the offset voltage of the

core amplifier is proportional to the difference in memristor resistive states divided by the

maximum transistor gains of the input diff pair and cascode transistors. This division

explains the extreme fineness of tuning achievable.

The tuning range can, in principle, be extended under the rule of Equation 4.25 for as long

as the underlying assumptions hold. We note two important limiting conditions: 1) If the

current imbalance becomes large, the assumption of equal gms on both current branches

collapses. Strictly when this occurs depends on the tightness of the specifications. 2) If

the voltage dropped across the larger of the pair R1,2 becomes comparable to the capaci-

tor voltage range through which the amplifier can integrate while maintaining transistor

saturation (regular operation), eventually, the amplifier will run out of integration voltage

headroom.

4.3 Summary

This chapter accesses to transistor-level analysis for the proposed pre-amplifier and perfor-

mance metric theoretically with equations. Since the proposed memristive OTA operates

dynamically, some indicators differ from the conventional static OTA. We highlighted and

explained simulations to verify the differences and these in the next chapter.



Chapter 5

Methodology of Measuring

Memristor-based AC-Coupled

Pre-amplifier

After defining and analysing the circuit’s performance, the suitably defined performance

parameters from the previous chapter are assessed for an example design in simulation.

Since the capacitor integration and the control signal design are time-varying, the amplifier

evaluation is based on transient simulation and periodic steady-state (PSS) analysis rather

than direct DC/AC analysis. The overview of the simulation setup is listed in Table 5.1.

For each performance, we develop a simulation setup and analysis. Additionally, power

consumption is discussed separately. Pre-amplifier was applied to an open-loop network

(Figure 5.1) to reject the DC offset from electrodes. For these simulations, we used a

commercially available 0.18µm CMOS technology with VDD = 1.8V . The simulation of

this chapter is run based on the schematic in Figure 5.1, where the detailed OTA and

DLC designs are in Figure 4.1 and the sizes of transistors are in Table 7.1. A description

of the methodology and simulation setup will be followed by an evaluation and design

consideration based on the architecture.

5.1 Transient Simulation Setup

As mentioned above, the direct DC/AC simulation cannot be applied to this dynamic

amplifier. DC indicators, transient indicators and power consumption can be obtained

by utilising transient simulation in this design. Thus, the following provides a timing

diagram of the whole detection cycle at first to present the operation and function of

the circuit before analysing detailed performance. The timing diagram of one detection

cycle is presented in Figure 5.2, and the transient simulations are based on this operation

scheme.

44
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Figure 5.1: Block diagram of the proposed neural recording front-end. The open-loop
network OTA filters the raw data to obtain the MUA. The minute signals charge the load
capacitors (CL1,2) to realise the integration and boost the voltage difference of mida &

midb, which triggers the DLC to process digitisation.

Table 5.1: Specification and overview of simulation methodology for the memristor-
based OTA.

Type Parameter Target Simulation

DC
VICR ≥ 100mV

TransientVIDR ≥ 5mV
VCOMP ≥ VOS+500µV

AC

AOL ≥ 26dB

PSS
BW 100Hz-10kHz
PSRR ≥ 100dB
CMRR ≥ 100dB

Transient Fs ≥ 20kHz Transient

Noise en ≤ 10µVrms Transient/PSS

Minimum ratings Power dissipation ≤ 750nW Transient

5.1.1 Input Range

In order to experimentally demonstrate the input range of the amplifier, we performed

a series of experiments querying different potential range limitation factors in practice.

First, we checked the system’s behaviour at different stages as a function of common

mode voltage by running a series of integration cycles whilst sweeping VCM from 0V to

VDD in steps of 0.1V . At each run, the differential input was 50µV and the outputs were

registered after integrating for 70ns. Results were registered at: i) Vmidb, ii) ∆Vmid and iii)

the overall system output after the DLC. Results are shown in Figure 5.3. Note: To check

for possible input signal history dependence during these tests, three integration cycles

with VCM = 1.8V preceded each test integration cycle. We have sample-tested a few runs

with initial VCM between 0.1V and 1.8V and confirm that the history-dependence effect

is negligible.

From the results in Figure 5.3 we can draw three key conclusions: 1) The DLC successfully

triggers for VCM between zero and 1.3V . This means that Vmidb is sufficiently high for the
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Figure 5.2: Transient simulation of one detection cycle of the neural spike. One de-
tection with four phases completes in 250ns, under the condition of Vina = 1V + 50µV
and Vinb = 1V . It contains (i) reset, (ii) integration, (iii) detection and (iv) off phases.
Full detection cycle is presented, including (a) control signals, (b) output of the amplifier
(midb) and drain voltage of input transistor (drain b), (c) differential output of the OTA

(∆Vmid) and (d) digital outputs.

DLC to settle to an output within 30ns of its triggering (which occurs when clk goes high).

2) In this case, the DLC provides the correct answer so long as it triggers, but this might

change towards the edges of the range once we consider noise. 3) The actual analogue

gain of the amplifier remains close to the maximum (≈ 26dB) within a narrower region:

≈ [0.7, 1.2]V . We recommend that the maximum gain area be taken as the effective VCM

range to maximise the chances of correctly capturing small differential inputs under noisy

conditions. Nevertheless, this shows that by de-rating the specification of the amplifier to

higher ∆Vmid we can extend its effective input range.

In order to visualise the effects leading to loss of gain outside the region VCM ∈ [0.7, 1.2]V

we ran some unrestricted integration tests as shown in Figure 5.3 for different values of

VCM . The results are shown in Figure 5.4 where we observe that for VCM between 0.8V

and 1.2V the integration traces follow each other very closely, with traces at 0.7V and

1.3V beginning to show more substantial deviations. We note how excessively low VCM s
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(a)

V(outa)  V(outb)

Figure 5.3: Input range results of pre-amplifier. In this simulation, the common mode
voltage was swept from zero to 1.8V with 0.1V differential input. For VCM ∈ [0− 1.3]V ,
we notice that (a) Vmidb reaches sufficiently high voltage to prompt a stable output from
the (c) DLC for our chosen differential input the output is always correct. However, the

core’s analogue gain in (b) is maximised in the narrower range [0.8, 1.2]V .

shorten the peak without shifting (a result of desaturating the input differential pair but

not changing the integration range) whilst excessively high VCM s shift the peak without

changing its magnitude.

CM = 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3V

Figure 5.4: Intermediate differential output ∆Vmid evolution as a function of VCM .
Differential input voltage is 50µV and the integration phase is not time-constrained (see
Figure 5.3). Voltage traces for different VCM s follow each other closely except in the edge

cases VCM ∈ {0.7V, 1.2}.
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5.1.2 Voltage Gain and Linearity

For amplifier gain analysis, we have run multiple, single data-point amplification transients

sweeping a range of input differential voltages centred around zero. These simulations are

under nominal conditions for this study: no added noise, mismatch or process variation

was included.

There are two main experiments: First, we set an integration phase run where ∆Vin ̸= 0

and the clk signal does not interrupt the integration process but instead lets it run its

course until both Vmida/b saturate. Thus, the crucial features of the resulting waveform

(e.g. position of peaks) are revealed. A key question we seek to answer here is whether

there is an optimum time to stop the amplification from obtaining maximum gain reliably

and, if so, when that occurs. The second experiment uses a fixed clock to explore the gain

linearity for a fixed integration period: we run multiple simulations with ∆Vin swept from

−500µV to 500µV with integration period τ = 70ns. The critical question is whether

the amplifier has a usable linear range centred around the 0V differential input and, if so,

how wide it is.

The first experiment is illustrated in Figure 5.5(a). We observe that for all test inputs ∆Vin

from −500µV to 500µV in the step of 100µV . ∆Vmid increases linearly to a global peak

at 237ns into the integration phase and then gradually decreases to zero. At this point,

both Vmida/b have saturated and any potential difference they had is erased. The peak

occurs because as we keep integrating, the voltage at mida/b nodes eventually increases

to the point where the cascode transistors enter the triode mode. This causes the rate of

voltage accumulation on whichever Vmid node is highest to slow first, allowing the other

node to catch up (and leading to the post-peak drop in ∆Vmid). At this point, we are

past maximum gain and continuing the integration eventually equalises the Vmids.

Next, we note that the peak gain time is nearly perfectly aligned for all input samples; the

maximum peak time difference is only 1ps. The high quality of alignment arises because

the time at which the Vmid voltages start trioding the cascode transistors is determined

primarily by the tail current and not the differential currents. The slight discrepancy is

explained by the fact that the peak gain time is technically determined by the time at

which the first of Vmida/b reaches the point where it triodes its cascode transistor. This

has two critical engineering implications: 1) It allows us to set a universally optimal DLC

triggering time. 2) It states that the optimal trigger time is bounded by the trioding time

obtained for Vmida = min and Vmidb = max (or vice versa), in which case we have the

fastest trioding corner.

The results from the second experiment are shown in Figure 5.5(b). The differential output

voltages ∆Vmid for τ = 70ns are plotted versus input differential voltage ∆Vin. We notice

excellent gain linearity arising again from the minimal effect that the differential voltages

have on the behaviour of the voltages at Vmida,b. For this experiment, the differential
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Figure 5.5: Simulation results of the differential gain analysis. In this simulation, inb
was set at 1V while ina was swept from 1V − 500µV to 1V + 500µV with in steps of
10µV . (a) ∆Vmid throughout an intentionally excessively long integration phase. As
Vmida,b increases, the cascode transistors eventually triode causing the gain to peak and
decrease. Peak gain times occur at t = 237ns and are aligned within 1ps difference.
An indicative integration time leaving a substantial margin for error can be set to, e.g.
220ns (dashed line in (a)). (b) Output voltage difference ∆Vmid at integration time
τ = 220ns vs input differential voltage. A linear curve excellently fits the result. The

gain is constant at approx. G = 20.

input voltage was swept based on a fixed input Vmidb = 1V and a swept input Vinb ∈
[1V−500µV, 1V+500µV ] in the step of 10µV . Results were linearly fitted yielding a gain of

G = 20V/V (26dB) with excellent linearity throughout the range (RMSE = 3.45×10−8).

5.1.3 Input Offset Voltage

In order to access the input offset voltage, we utilise the transient simulation by multiple

transient simulations such as those seen in Figure 2.15. The measurement of offset range

is conducted in transient simulation by feeding a slow-increasing signal and a constant

reference voltage at the inputs and recording the input voltage that changes the outputs

of DLC. By tracking at what difference ∆Vin the outputs flip value, we can obtain an

estimate for the offset. The quality of the estimate is calculated as follows: if at cycle n

we had Vouta = 0 and at cycle n + 1 we obtained Vouta = 1.8, it means that somewhere

between ∆Vin|n and ∆Vin|(n+ 1) we crossed the amplifier’s offset voltage. The tracking

will be applied in ascending and descending phases, after which offset voltage will be
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averaged. Assuming that the amplifier always decides at approximately the same relative

time in each cycle, the interval is fixed and proportional to the total swept range over the

number of sampling cycles.
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Figure 5.6: Pre-amplifier basic functionality test: Input A (ina) is slowly swept between
[1V − 500µV , 1V +500µV ] over 2ms while the pre-amplifier is carrying out a conversion
every 1µs to detect the relationship between inputs A and B. Input B (inb) remains

stable at 1V throughout. In this test, the amplifier was balanced (R1 = R2).

In our case, we run 2000 cycles (1µs/cycle for a total duration of 2ms) and sweep the

input across a range of 1000µV (ascending from −500µV to 500µV and descending from

500µV to −500µV ), yielding an offset estimate resolution of 1µV . After setting up the

transient simulation, we apply this to Monte Carlo simulation that includes both process

and mismatch to obtain the input offset voltage. The result of the Monte Carlo simulation

is presented in Figure 5.7 and the offset voltage is summarised in Table 5.2. The 99.7%

(3σ) of the input offset voltage is within around 200µV . Therefore, we can seek the

tuneable range covering both neural spikes and circuit inherent offset which requires the

input differential is greater than 700µV .

Table 5.2: Results of a normal distribution from Monte Carlo simulation.

Parameters Offset (µV ) Parameters Offset (µV )

Mean 6.58 2σ 138.92

StdDev -0.93 −2σ -125.76

σ 72.75 3σ 205.09

−σ 59.60 −3σ 191.39
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Figure 5.7: Histogram of Monte Carlo simulation with 200 samples of the input offset
voltage.

5.1.4 Tunable Range and Sensitivity

To obtain the tuneable range and sensitivity of implanted memristive devices, multiple

transient simulations such as those seen in Figure 5.6 can be repeated while sweeping

both memristor device resistive states (R1 and R2).

Table 5.3 shows the offset voltage as a function of R1, R2. From there, we observe: 1) The

overall trimming range for this particular design can cover the neural spike amplitude.

2) As expected, the maximum induced offset occurs at the maximum R1, R2 imbalance

corners. 3) The offset sensitivity is close to 2µV/kΩ for any combination of R1, R2. 4)

The table is almost symmetric (as expected). The slight asymmetry indicates that the

common mode voltage influences the offset voltage. This effect will be the subject of a

dedicated study. Finally, the quoted offsets were checked and are the same both on the

upward and the downward slopes, indicating no history dependence.

5.2 PSS Analysis

After transient simulation, we induce periodic steady-state analysis to simulate the fre-

quency response of the proposed front-end. The front-end is operated under a discrete

mode controlled by clock signals. The nodes of mida/b keep increasing during the inte-

gration, which features the amplifier dynamic operation points. Moreover, the DLC is

dynamic that does not have a static operation point. The conventional DC/AC analysis

is not applicable to the proposed front-end. We can use the periodic steady-state anal-

ysis to complete the performance metric in this case. The PSS analysis linearises the

periodic time-varying operating points and executes frequency conversion, which can be



52 Chapter 5 Methodology of Measuring Memristor-based AC-Coupled Pre-amplifier

Table 5.3: The offset voltage of pre-amplifier vs memristor device resistive state is
quoted at 1µV resolution.

R1\R2 1kΩ 10kΩ 20kΩ 40kΩ 60kΩ 100kΩ 140kΩ 190kΩ 240kΩ 250kΩ

1kΩ 0 50 95 160 213 319 406 512 646 701

10kΩ -53 0 48 117 172 266 353 460 519 633

20kΩ -101 -48 0 70 125 219 306 412 542 601

40kΩ -169 -117 -70 0 55 150 237 343 472 501

60kΩ -224 -172 -125 -55 0 95 182 288 419 458

100kΩ -319 -267 -219 -150 -95 0 87 192 323 362

140kΩ -406 -353 -306 -237 -182 -87 0 105 229 265

190kΩ -512 -460 -413 -343 -288 -192 -105 0 128 201

240kΩ -646 -592 -543 -472 -4109 -323 -230 -128 0 101

250kΩ -701 -633 -601 -512 -458 -362 -265 -201 -101 0

used for the periodic small-signal analysis [95]. It can assist us in conducting Fourier

transform based on periodic operation points and provide more visual results in the fre-

quency domain. The frequency data from PSS is utilised in periodic AC (PAC), periodic

transfer function (PXF) and periodic noise (pnoise) that takes the noise folding effects

into account. Thus, periodic analysis can be applied to this dynamic circuit to obtain the

frequency-related performance such as voltage gain, bandwidth, common-mode rejection

ratio (CMRR), power supply rejection ratio (PSRR) and input-referred noise.

The pre-amplifier is dynamic, and its significant state is at 220ns in Fig. 5.2 when

mida&midb trigger the DLC and the outputs of DLC are in metastable point (∆Vout =

5mV ), especially for measuring the performance of voltage gain and noise. Transient

simulation needs to be conducted first to locate the time when the output metastable

point appears. Then, the sample and hold module can be applied to collect the status from

both mida/b and outa/b for PSS analysis. So, the simulator can present the performance

directly, such as 1) mid-band voltage gain and bandwidth of OTA, 2) transfer functions

for both CMRR and PSRR, and 3) noise performance at a significant state.

5.2.1 Open Loop Voltage Gain and Bandwidth

From the results from Figure 5.8(a), the −3dB bandwidth of this system is [8Hz, 16.3kHz]

with 26dB mid-band gain that is eligible to cover the frequency of spikes, which is consis-

tent to the transient simulation result. The open-loop network OTA only sets the lower

cut-off frequency and maintains the initial pre-amplifiers mid-band gain and higher cut-

off frequency. Meanwhile, it rejects the DC offset and allows the memristive devices to

compensate only for the offset arising from PVT variations and mismatch. Compared

to the previous work, the transition to a triggering scheme has reduced the gain in this

implementation. However, this self-triggering regime is more robust on clock jitter and
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Figure 5.8: OTA gain and input noise as a function of frequency. (a) The open-loop
network OTA presents bandpass filtering with a mid-band gain of 26 dB. (b) Output

noise of the detection cycle from (periodic) noise simulation.

5.2.2 Noise Performance and Detection Accuracy

Before analysing pnoise and transient noise, we look into the kickback noise on two voltage

nodes: 1) the input of the core amplifier (ina/b) and 2) the input of the DLC (mida/b).

The kickback noise on the ina/b appears when turning on/off the core amplifier. When

turning on the amplifier, bias current charges the parasitic capacitors of input transistors.

The kickback noise can be discharged in 150ns reset phase (Fig. 5.2), and does not

influence the detection phase. Moreover, the charge distribution induces kickback noise

on the input nodes when we turn off the amplifier, which does not impact the operation

of spike detection. In addition, the voltage changes in latch nodes are coupled to the

input of DLC (mida/b) via the parasitic capacitors of transistors, which happens when

resetting the DLC. Under the same regime, the kickback noise is settled in the reset phase.

Thus, we proved that the 150ns reset phase eliminates the impact of kickback noise on

the detection result.

pnoise analysis The pnoise simulation of the discrete-time system is different from the

continuous-time system. In a discrete-time system, the noise from all phases will be

integrated into the power spectral density (PSD), considering the noise folding effects.

In contrast, the noise of a continuous-time system is only based on one static operation

point within the frequency ranges. To measure the noise, we refer to [96] which illustrates

the principle of measuring the comparator-based circuit where to capture the noise jitter

(shown in Figure 5.9). As shown in Figure 5.9, ‘periodic noise jitter analysis’ captures

the differential output level (internal latching nodes) of the DLC at the threshold point.

In this case, we set the threshold point as 5mV where the comparator is still in unlatch

stage.



54 Chapter 5 Methodology of Measuring Memristor-based AC-Coupled Pre-amplifier

t (s)

ΔV
ou

t(
V

)

Threshold

timing jitter distribution

voltage noise
distribution

Figure 5.9: Principle of periodic noise jitter analysis at the threshold point.

This result can reflect the noise contribution from the OTA and the input stage of the

DLC. Output noise is presented in Figure 5.8(b) and the integrated noise from 1Hz to

10kHz is 9.84 × 10−4V . Since the noise contribution is captured at the ∆Vout = 5mV ,

the input-referred noise is equal to the integrated output noise divided by voltage gain.

And it yields 9.84µVrms input-referred noise. The low fc indicates that the flicker noise

does not affect the system since it is out of the operating frequency range.

Detection Accuracy Transient noise simulation for testing the detection accuracy was

also conducted to complement noise analysis [73]. The principle is that we fit the pre-

amplifier detection accuracy to the Gaussian distribution and determine the input-referred

noise as the distribution’s standard derivation (σ). In this case, the transient noise should

be included in this simulation. Under the condition of noise within the frequency range

of [1Hz,100MHz], we ran 100 detection cycles for different ∆Vin from −200µV to 200µV

in the steps of 10µV respectively and obtained the accuracy in Figure 5.10. The accuracy

is counted when the system outputs the correct answer as expected by the input signal.

After obtaining the discrete data of the detection accuracy versus the differential voltage,

we can fit these discrete data into Gaussian distribution to obtain the input-referred noise

as the standard derivation (σ).

The simulation was taken under two circumstances: R1 = R2 = 10kΩ and R1 = R2 =

250kΩ to test the degree that increasing the RS induces noise and reduces the accuracy.

The results show that the 250kΩ RS only reduce the maximum of 2% accuracy under

the low differential input voltage. It indicates that increased RS to 250kΩ does not

materially impact detection accuracy. In this case, the input-referred noise is 54.36µVrms

from the Gaussian fitting which is much larger than the pnoise result. It is because

the transient result includes the latch stage of the DLC. Under the application scenario

of detecting a spike, we can increase the sampling frequency to improve the detection

accuracy. Considering that one detection cycle is 250ns, the system can reach maximum

4MHz sampling rate.
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Figure 5.10: Detection accuracy of different ∆Vin from transient noise simulation under
the conditions of R1 = R2 = 10kΩ (blue) and R1 = R2 = 250kΩ (orange). The Gaussian

fittings and input-referred noise/standard derivation (σ) are given.

5.2.3 CMRR and PSRR

Both CMRR and PSRR are measured in PXF analysis to complement the performance

metric. In PXF analysis, we sample the output nodes of DLC when ∆Vout = 5mV and

select the response to the common mode voltage source and power supply voltage, respec-

tively. Both CMRR and PSRR in this design are above 100dB within the bandwidth,

presented in Figure 5.11. The performance is summarised in Table 5.4.
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Figure 5.11: CMRR and PSRR of the open-loop network pre-amplifier.
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Table 5.4: Performance metrics of the discrete-mode threshold detection system.

Performance Value

CMOS Tech. 0.18µm

Power Supply 1.8V

Bias Current 3µA

Duration of one detection (i)150 + (ii)70+(iii)30=250ns

Gain (midband) 26dB

Bandwidth 8Hz − 16kHz

CMRR 103dB

PSRR 119dB

InputNoise
9.84µVrms @ input stage
54µV with latching

Memristor tuning range 250kΩ covers ±700µV

Memristor tuning sensivity 2µV/kΩ

Energy (250ns) 1.44pJ

Power (250ns) 5.77µW

5.3 Power Consumption

The power consumption has to be assessed for all operating phases of the pre-amplifier.

The most power-hungry phase is the reset phase since it is the only one with a DC path

between the power supplies. For this reason, the reset phase should be kept as short as

possible. However, during the reset phase, the core amplifier reaches a steady state at

all nodes so that the integrating phase can commence without any history dependence,

i.e. influence from or ‘memory of’ its previous inputs. Next, the cost associated with

the integration and digitisation phases can be split into two main components. First, the

integration cost is equal to charging the core amplifier’s capacitors from GND to their

equilibrium level, where the integration self-terminates (≈ 1.26V in our case. Noted how

this integration cost currently spans both integration and digitisation phases because we

do not stop the integration once we trigger the DLCs). Second, the comparison cost equals

the energy needed to operate the DLC. Finally, during the ‘off’ phase, power dissipation

is mainly down to leakages.

In this design, the tail current in the operation mode (top = 250ns) is Iop = 3.2µA with

a supply voltage of VDD = 1.8V . Thus, the power consumption during operation is

Pop = Iop × VDD = 5.77µW (5.1)

However, we utilised the ‘start-stop’ operation scheme, which has a long duration of off

mode. If we operate the amplifier at sampling rates of 20kHz that is twice the neural

spikes (one detection is in T = 50µs), the total energy consumption is
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E = Pop × top + Ioff × VDD × toff = 1.444pJ (5.2)

where the leakage current is Ioff = 17pA in the off mode (toff = T − top = 49.75µs).

Thus, the average power consumption is

Pavg =
E

T
= 28.88nW (5.3)

In summary, this ‘start-stop’ operation scheme allows the system to achieve ∼ 30nW aver-

age power consumption per channel, whose power consumption is two orders of magnitude

lower than the front-ends reviewed in Table 2.4.

5.4 Clock Skew and Jitter

This section discusses the clock skew and jitter effects on the front-end operation. It is

a dynamic system with a ‘start-stop’ scheme, where the clocking signals control the four

phases: clk ana, clk anabar, clk rst, and clk. Due to the DLC being triggered by clk

signal, we refer to this ‘forced-trigger’ operation, which is compared to the ‘self-trigger’

operation in section 6.7. The clocking signals are presented in Figure 5.12 with jitter

effects presented in dash lines.
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Figure 5.12: Clocking of the AC-coupled front-end with the jitter effect presented
in dash lines. The timing diagram presents four phases: i) reset, ii) integration, iii)

digitisation and iv) off phases.
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Clock Skew means different arrival times of the clocking signal to the different channels.

The propagation delay among channels can be neglected in this circuit for the following

reasons. The operation mode only occupies 250ns in every detection cycle which lasts

for 50µs. The impact from clock skew that shifts the operation mode within the long

detection cycle 50µs can be neglected in this case.

Clock Jitter means the clock signal varies at the ideal edge that the duty cycle of the

clock signals is different to the ideal value, which is presented as dash lines in Figure 5.12.

In this case, we divide the discussion into two parts: i) grey lines and ii) orange lines in

Figure 5.12. As for grey lines, clock jitters affect the reset, digitisation and off phases,

where we have set sufficient time margin that can tolerate 15ns jitters, which is explained

below. All clocking signals control the reset phase while clk rst determines the duration of

this phase mainly. The reset phase is designed for discharging the load capacitors, which

can be completed in 120ns and has a 30ns time margin. The worst acceptable case is

that clk rst shortens the reset phase to 120ns, which indicates the front-end can tolerate

15ns time jitters with the consideration of the reset phase. As for the digitisation phase,

it is controlled by clk ana, clk anabar and clk signals. In this case, mida/b is fed into the

DLC, and digitisation occurs in picoseconds when clk activates and activates the DLC.

The worst acceptable scenario is to shorten the duration of this phase to picoseconds.

Thus, we can obtain that the digitisation phase can tolerate 15ns jitter.
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Figure 5.13: Simulation results of (a) differential output voltage of OTA (∆Vmid) and
(b) output voltage (Vmid). The clk signal occurs at 220ns ideally and samples the output

of OTA, whilst the tolerant variation range is within orange dash lines.
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The most vulnerable part is the integration phase, where the voltage gain depends on

the time (shown in orange dash line in Figure 5.12 and Figure 5.13). It can be observed

in Figure 5.13 that clk are supposed to trigger the DLC before 237ns in order to keep

all transistors in OTA in the saturation region (details are given in section 5.1.2). The

lower boundary of clk can be set at 180ns to guarantee that the output of OTA Vmid

can be integrated to 0.5V to meet the threshold voltage DLC. With the consideration of

symmetry, we determine the tolerant variation range is between 203ns and 237ns with

the ideal triggering time at 220ns. The integration phase lasts for 70ns ideally and its

acceptable range is in ±17ns. Since the integration phase is controlled by clk rst and clk

with two clock edges, the tolerant jitter for each is 8.5ns in this case. In summary, the

time jitters of clk ana and clk anabar are acceptable within 15ns. The jitters of clk rst

and clk are supposed to be confined to 8.5ns.

5.5 Simulation with Spike Train

In this section, we simulate the proposed front-end with a modelled ‘spike train’ with a

maximum amplitude of 500µV and the frequency is 10kHz. The spike train generation

method is in section 5.5.1, followed by the simulation setup and analysis in section 5.5.2.

5.5.1 Spike Train Generation

The spike train generation schemas are presented in Figure 5.14, where the spike train

outputs at the port ‘AP’. In this circuit, we utilise the periodic pulse and switch to

sample the sine wave to model the neural spikes train. The simulation results are present

in Figure 5.15.

V2V1

R

switch

AP

amp = 500uV
freq = 10kHz

Vop = 0
Vcl = 1.8V

V1 = 0
V2 = 1.8V
width = 40us
period = 80us

Figure 5.14: Schematic of spike train generation, where the output is at the port ‘AP’.
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Figure 5.15: The timing diagram of spike train generation. (a) is sine wave with the
amplitude of 500µV and frequency of 10kHz. (b) is the periodic pulse, and (c) is the

generated spike train.

5.5.2 Spike Train Simulation

After generating the spike train, we feed it into the electrode model (in Figure 2.5 and

Table 2.3) to append 15.77mV DC offset. Then, the stimulus will be fed into the circuit

under test to model the practical detection. The diagram of testbench is presented in

Figure 5.16.

Spike Generator Electrode Model

Front-End

ina inb

AP AP_OS

Figure 5.16: The block diagram presents the module and connection of the testbench.

The simulation result of the input signals is given in Figure 5.17. It can be seen in

Figure 5.17(b)-(e) that the glitches occur when the OTA is turned on and off. The

glitches represent the kickback noise that occurs when voltage variation in the circuit is

coupled to the input, thereby perturbing the input signals. However, there exists a reset

phase to discharge the load capacitors and initialise the OTA for detection. Consequently,

the kickback noise can be disregarded in this design. Figure 5.17 (b), (c) and (e) describe
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the two processes: i) the spike is appended with 15.77mV DC offset and ii) the DC offset

is rejected by the highpass module at the input of OTA (in Figure 5.1).
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Figure 5.17: The timing diagram of the control signal and spikes. (a) clk ana controls
the on and off status of the OTA. (b) Spike train (AP ) from spike generator. (c) shows
the spike with 15.77mV DC offset appended. (d) presents the input voltages of OTA. (e)

is the differential input voltage of OTA.

The simulation results of spike detection are presented in Figure 5.18 within 50µs. In

this simulation, the threshold voltage can be determined by setting the memristor RSs

as R1 = 1kΩ and R2 = 5kΩ according to Table 5.3. In this case, we set the detection

cycle as 10µs (sampling rate as 100kHz) to demonstrate that the system can detect the

spike (above 50µV ) and output the digital signal in outb. (Noted that this simulation is

noiseless.)

The practical detection is supposed to consider the noise; thus, we conduct the tran-

sient noise simulation below to determine the detection accuracy under the noise in the

frequency range of [1Hz,100MHz]. Figure 5.19 compares the digital outputs of spike de-

tection in the condition of (b) the noiseless simulation and (c) transient noise simulation,

respectively. The blue lines in Figure 5.19(b)-(c) are the actual signals and we highlight

the output by orange lines for more explicit demonstration. The detection is 100% ac-
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Figure 5.18: Simulation result of spike detection. (a) presents control signals which
are the same as Figure 5.2. (b) presents the differential input voltage ina− inb and the
ideal spike. (c) shows the differential output voltage of OTA, and (d) presents the digital

outputs.
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Figure 5.19: Simulation result of spike detection within 400µs. (a) presents the ideal
spike. (b) is digital output in noiseless simulation, and (c) is obtained from transient

noise simulation.
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curate in noiseless simulation, while it reaches 80% accuracy with the consideration of

noise.

As discussed above, ‘detection accuracy’ refers to the proportion of correct results. The

‘detection accuracy’ is fixed when the circuit is designed. Furthermore, to determine

whether a spike exists, we need to induce a voting module in the back-end. We can utilise

the sampling frequency and ‘detection accuracy’ to determine whether there is a spike.

For example, if the oversampling ratio is 11, accurate detection equal to or greater than

six can be considered a successful capture of the spike. This can be accomplished by using

permutation and combination. We refer to this as ‘spike detection accuracy’. Thus, in

Figure 5.19, the ‘detection accuracy’ is 80% and the ‘spike detection accuracy’ is 87.5%

(correct spike detection: seven out of eight, presented in Figure 5.20(a)). In this case, the

detection cycle is 10µs, and the average power consumption of the front-end is 144nW .

Moreover, when we increase the sampling frequency to 200kHz (each detection cycle is

5µs), the spike detection accuracy reaches 100%, and the average power consumption is

only 288nW .
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Figure 5.20: The timing diagram is to present the spike detection accuracy. The
detection cycle is 10µs in (a) and 5µs in (b), respectively.

5.6 Discussion

From the analysis and simulation of the integrating amplifier, we highlight some key

conclusions:

First, the performance improvement of the integrating amplifier over more traditional

designs relies on the integration process, which enhances the gain and decreases the effec-

tive bandwidth (helping reduce noise in the process). To visualise this, let us consider an

integrating amplifier using the same tail current as a standard OTA first stage. During

integration, the power dissipation is the same, but the gain and bandwidth differ. In this

sense, the design represents a trade-off between gain and bandwidth without changing

power dissipation or using feedback.



64 Chapter 5 Methodology of Measuring Memristor-based AC-Coupled Pre-amplifier

Next, we note that there is a natural trade-off between tail current and integration time

while keeping the overall energy dissipation approximately constant. This is the result of

the fixed duration of the reset phase (just enough to clear any residual charge at the Vmid

nodes) and the fact that energy consumption during the integration phase only depends

on the size of the load caps and the voltage change across them during that phase. Thus,

we can design a wide range of required sampling rates or bandwidths for the same energy

budget.

The trade is not entirely free: Changing the tail current affects gain, bandwidth and noise

performance by altering the gms of all transistors involved and the integration period.

Furthermore, if using real memristor devices with non-linear IV curves, changing the tail

current also changes the static resistance of the memristor devices. Together with changes

in transistor gms, the tuneability range is also affected since it depends on the impedance

balance between memristor and transistors. Thus, whilst the integrating amplifier offers

a lot of design flexibility, the precise design trade-off space is also not trivial, much like it

is for OpAmps. This is a critical subject meriting its dedicated study.

The last design decision to highlight concerns the size of the load capacitors C. The gain

analysis shows that C does not affect the gain, but it does affect the integration period

and, therefore, can be used to adjust the bandwidth if, for some reason, that cannot be

achieved by tweaking the tail current. Effectively it is a design parameter that trades

away energy for design flexibility.

In terms of operation, we note the importance of ensuring that the integrating amplifier

is cleared properly in preparation for each integrating phase to avoid the output’s history

dependence. This means that all node voltages should be equalised across the left and

right branches prior to the commencement of the sensitive integration phase. The current

design achieves this by forcefully flushing the system during the reset phase. However,

more energy-efficient approaches are under development as the rest phase represents a

substantial fraction of the energy budget.

5.7 Summary

In this chapter, we apply the proposed OTA to the open-loop network and conduct the

transient simulation and periodic steady-state analysis to complete the performance met-

ric of the pre-amplifier. This AC-coupled pre-amplifier utilises resistors and large input

capacitors to reject the DC offset. From this design, we derive the design trade-off and de-

sign consideration of this start-stop scheme. Moreover, the proposed AC-coupled front-end

is proven to remove DC offset and achieve 100% spike detection accuracy (in demonstra-

tion), only consuming 288nW average power consumption per channel. Furthermore, this

version pre-amplifier has been fabricated, and its layout design and the testing result are

presented in Chapter 7.



Chapter 6

A Memristor-based DC-Coupled

Pre-amplifier Topology

6.1 The Proposed Circuit

In this chapter, we propose a hybrid CMOS/memristor front-end that can compensate

the input DC offset up to 50mV . The block diagram of the front-end is presented in Fig-

ure 6.1(a). The electrode’s reference voltage and neural signal are fed into the memristive

OTA from nodes of inb and ina, respectively. The tissue-electrode model in Figure 6.1(b)

is referred to Jochum et al. [97]. The simplified schematic is shown in Figure 6.1(c). The

schematic of this OTA is similar to the AC-coupled circuit in Chapter 4 and 5, except

for the position of memristors. The detailed schematic is in Figure 4.1 and the informa-

tion on transistor sizes is in Table 6.1. The memristors are assembled below the input

transistors to tune the branch currents in a wider range, compared to the AC-coupled

solution in Chapter 5. Note that the methodology of simulating the circuit is the same

with Chapter 5 provided.

Table 6.1: Sizes of devices in the proposed architecture, where the bias current of the
core amplifier is Itail = 3µA. R3 is replaced by a diode-connected NMOS. The detailed

schematic is in Figure 4.1.

Devices W/L (µm/µm) Devices W/L (µm/µm)

M1, M2 1.2/2 R3 1/1
M3 1.2/2 M11-M14 2/0.6

M4, M5 16/1 M15,M16 1/0.6
M6, M7 4/1 M17, M18 2/0.6
M8, M9 1/0.6 M19 1/0.6
M10 2/1 C1, C2 100 fF

65
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RHF

RLF

CPE

RRAM
OTA DLC

outamidb

mida

inb

ina

ina inb

clk_ana

mida midb

R1 R2

clk_anabar

clk_rst

(a)

(b) (c)
cl
k

outb

CL1 CL2

Figure 6.1: DC-coupled front-end. (a) Block diagram of the neural recording front-end.
(b) The electrical model of the tissue-electrode interface. (c) Simplified schematic of the

OTA assembled with memristive devices.

6.2 Transient Analysis

This chapter presents a new clocking scheme in Figure 6.2.The system is controlled by

four clocking signals: clk ana, clk anabar, clk rst and clk in Figure 6.2(a). The discrete-

mode front-end is divided into three operation phases: (i) reset, (ii) detection and (iii) off

phase. In the reset phase, the amplifier is switched on and the current branch from V DD

to the ground is connected. The 150ns reset phase helps initialise the amplifier and DLC

and discharge the load capacitors CL1,2.

In the detection phase, the system conducts signal integration and digitisation in DLC.

Once the mida/b integrate above the threshold voltage of DLC (0.5V ), the DLC is trig-

gered and processes the digitisation based on the differential voltage ∆mid = Vmidb−Vmida

(in Figure 6.2(a)-(d)). We highlight that the ‘detection phase’ combines the ‘integration

phase’ and ‘digitisation phase’ in Figure 2.14. In the ‘integration phase’ of the initial

design, the DLC is off until ∆Vmid is integrated to the maximum voltage and the pre-

amplifier enters the ‘detection phase’ (we named this scheme as ‘forced-trigger’). On the

other hand, the DLC is enabled and awaiting activation by the output of the core OTA

(termed ‘self-triggered’). This scheme prevents the jitters of the controlled clocking signals

from fluctuating the input signals of the DLC and causing glitches.
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Once the detection completes, the amplifier is turned off. The duration of APs is about

a few milliseconds, and APs occur from 10 to 120 per second [45]. It indicates that the

front-end can be in the off mode in the interval of spikes to save power consumption.

Besides, the low spike frequency provides much headroom for oversampling.
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Figure 6.2: The timing diagram of one neural detection cycle (250ns). (a) clocking
scheme. (b) input voltage of the front-end from the electrode. (c) the output voltage of
the core amplifier. (d) the differential output voltage of the amplifier. (e) digital outputs

from the DLC. (In this simulation, ina = 1V + 50µV and inb = 1V .)

6.3 PSS Analysis

The primary performance metrics of the front-end are presented in Table 6.2, where most

of the indicators are measured at the nodes of mida/b, presenting the performance of

the memristive amplifier. Moreover, the energy and power consumption is of the whole

front-end. The integration process can amplify the differential input signal from micro-

volt to milli-volt, which makes it recognised by the DLC. The gain is 21.2dB within the

bandwidth of 13.7kHz. The CMRR of the memristive amplifier reaches 98.7dB, while

the PSRR is 63dB from the PXF analysis. Since we stated that the input-referred noise

from discrete mode is not comparable to the conventional amplifier, we can only extract
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that the front-end can operate in accurate DC with 394nV/
√
Hz white noise.

The energy and average power are measured for one detection cycle within 250ns. As

the neural spike is in low frequency and at a low occurrence rate, the average power

consumption also depends on the sampling rate. Therefore, if the front-end operates

under 20kHz sampling rate, the average power can be reduced to 29nW . The discrete-

mode operation with low power consumption provides lots of headroom to increase the

sampling rate and detection accuracy.

Table 6.2: Performance metric of memristor amplifier (The energy and average power
consumption are of one detection cycle with 250ns, including both memristor amplifier

and DLC).

Performance Value

Power Supply 1.8V

Bias Current 3µA

Gain 21.2dB

Bandwidth 13.7kHz

CMRR 98.7dB

PSRR 63.0dB

Input Noise
1/f corner: 21.9Hz

thermal noise: 394nV/
√
Hz

Energy (250ns) 1.44pJ

Power (250ns) 5.77µW

6.4 Tuneable Offset Range

In this simulation, we import the memristor model by Maheshwari et al. [35]. In or-

der to measure the tuneable offset range, a testbench is designed with the resolution of

10µV . For example, if the input voltage is from zero to 1mV , we set the detection to

appear every microsecond and run the simulation for 100 cycles. Then, the digital output

outa/b will switch at some point when the ∆Vin keeps increasing. Furthermore, the ∆Vin

corresponding to the switch point is the offset input voltage.

The tuneable offset range is summarised in Table 6.4, where R1 = 10kΩ and measures

the R2 in the step of 10kΩ till the offset range reaches 50mV . The applied memristor

can reach 130kΩ [27]. We can obtain from the table that: 1) the tuning sensitivity varies

from different R2 that the larger R2 induces lower sensitivity, where the resolution can

reach 19µV/kΩ; 2) 1% RS variation causes maximum 6.7% drift of the offset range. The

accurate RSs that compensate the offset to {1, 10, 50}mV are measured as well (shown in

Table 6.3).
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Table 6.3: The compensated DC offset versus the resistive state of memristors under
R1 = 10 kΩ.

R2 (kΩ) Offset Compensation (mV )

49 1
83.6 10
127.3 50

Table 6.4: Memristor tuneable offset range when R1 = 10kΩ and R2 is from 10kΩ to
130kΩ. The third column presents the tuneable range with 1% RS variation from two

memristors. The offset resolution is 10µV .

R2 (kΩ) Nominal
offset (V)

Tuneable offset with 1%
RS variation (V)

Offset variation
(%)

10 0 −10µ ∼ 10µ /
20 150µ 140µ ∼ 150µ 6.7%
30 340µ 330µ ∼ 340µ 2.9%
40 610µ 600µ ∼ 630µ 3.3%
50 1.09m 1.05m ∼ 1.12m 3.7%
60 2.05m 1.97m ∼ 2.14m 4.4%
70 4.14m 3.94m ∼ 4.35m 5.1%
80 8.08m 7.68m ∼ 8.48m 5.0%
90 14.09m 13.47m ∼ 14.73m 4.5%
100 21.96m 21.10m ∼ 22.84m 4.0%
110 31.41m 30.22m ∼ 32.42m 3.8%
120 41.82m 40.51m ∼ 43.14m 3.2%
130 53.17m 51.66m ∼ 54.70m 2.9%

6.5 Noise Analysis

Kickback noise appears on the inputs of both the memristive amplifier and the DLC. In

Figure 6.1(b), the kickback noise happens when switching on/off the amplifier. When the

amplifier is turned on, the bias current charges the parasitic capacitors of input transistors.

However, it does not impact the detection result because the long reset phase allows the

kickback to be settled before the detection phase. Furthermore, when we turn off the

amplifier, the kickback noise appears due to the charge distribution, which happens in

the off phase and does not influence the spike detection. From Figure 6.2(d), kickback

noise exists on mida/b due to the voltage changes in the latch nodes when resetting the

DLC. Still, it was eliminated before the detection phase.

The detection accuracy is measured using a transient noise simulation with 250 runs.

In order to estimate the noise effect, we apply resistors as memristors because there is

no mature memristor noise model. In this case, we keep R1 as 10kΩ and set R2 ∈
{49k, 83.6k, 127.3k}Ω to imitate the circuit status with {1m, 10m, 50m}V offset compen-

sation. Then, ∆Vin is swept from 10µV to 500µV in the step of 10µV . The detection

accuracy is in Figure 6.3.
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10
(μV)

Figure6.3:Detectionaccuracyoffront-endsystemvsdiferentialinputvoltages∆Vin
from10µVto400µV.Inthiscase,R1=10kΩ,R2∈{10,49,83.6,127.3}kΩinorderto

compensatetheDCofsetof{1m,10m,50m}V.

Whentworesistorsarein10kΩandthe∆Vin=50µV,thedetectionaccuracyreaches

74.4%. Andtheaccuracycanreach100%whenthediferentialinputexceeds200µV.

EventhoughRSisincreasedtocompensatefor10mV ofset,theaccuracyreducesbya

maximumof9%.ThereexistsmoreconsiderableaccuracydownwhentheRSiscapable

ofcovering50mV ofset. Theaccuracyinthissituationreaches58.4%for50µVdifer-

entialinput.However,thedetectionaccuracycanbeimprovedthroughoversampling,as

describedinthefollowingsection.

6.6 Oversampling

Theabovedetectionaccuracyisobtainedwhenthefront-endonlydetectsonceforevery

neuralspike.Increasingthesamplingrateofthefront-endandinducingmajorityvotingon

theback-endcanincreasethespikedetectionaccuracy.Forexample,iftheoversampling

ratiois11,accuratedetectionequaltoorgreaterthansixcanbeconsideredasuccessful

captureofthespike.Assumingtheoversamplingratioism(anoddnumber),thedetection

accuracyisAandinaccuratepossibilityisĀ,theaccuracyis

C
m+1
2

m (A
m+1
2 ·̄A

m−1
2 )+···+Cm−1m (Am−1·̄A)+Cmm(A

m) (6.1)

whichcanbesummarisedas

Accuracy=

m

n=m+1
2

Cnm(A
n·̄Am−n) (6.2)

ThedetectionaccuracyundertheconditionsofR2=83.6k,127.3kΩand∆Vin=50µV

are58.4%and67.6%respectively. Moreover,theinitialvaluecanbeutilisedtoestimate
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the oversampling effect, which is presented in Figure 6.4. It can be estimated that when

we aim to compensate typical 10mV DC offset, the spike detection accuracy can reach

95% when the oversampling ratio is 21. In this case, we simulate the input signal with

a maximum frequency of 10kHz. Conducting 21 times indicates one detection cycle is

∼ 47µs consumes 302.4nW average power of the front-end. Moreover, under the ex-

treme situation of R2 = 127.3kΩ, to guarantee the spike detection accuracy is 95%, the

oversampling ratio needs to reach 95 and the system consumes 1.368µW .
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Figure 6.4: Spike detection accuracy under oversampling. The initial value takes from
Fig. 6.3, where the accuracy of R2 = 83.6kΩ and R2 = 127.2kΩ are 67.6% and 58.4%

respectively under ∆Vin = 50µV .

6.7 Clock Skew and Jitter

In this section, we discuss the clock skew and jitter effects on the operation of the proposed

DC-coupled front-end. This front-end operation is similar to the AC-coupled pre-amplifier

operation (in section 5.4), except for the triggering of the DLC. In this design, DLC is

activated after resetting the OTA and waiting for its output to trigger. Thus, we refer to

this ‘self-trigger’ DLC. There are three phases: i) reset, ii) detection and iii) off phase,

which are controlled by the clocking signals shown in Figure 6.5. The clock skew analysis

has been conducted in section 5.4. And we focus on the jitter analysis in this section.

In the reset phase, the worst case that can be accepted is that the duration is shortened

from 150ns to 120ns when the load capacitors are fully discharged. Thus, for each edge

variation, the tolerant value is (150− 120)/2 = 15ns. The detection phase contains both

integration and digitisation. The detailed operation in Figure 6.2 presents that it takes

20ns to complete the digitisation, which indicates there is no time margin for clock jitters

in this case. In order to design a front-end that is robust to clock jitters, we need to

extend the duration of the detection phase. For instance, to tolerate the 15ns clock jitter,
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Figure 6.5: Clocking of the AC-coupled front-end with the jitter effect presented in
dash line. The timing diagram presents three phases: i) reset, ii) detection and iii) off

phases.

we need to extend the detection phase from 100ns to 130ns. The operation time will

be extended and increase power consumption. For example, if the front-end operates at

the sampling frequency of 20kHz, the power consumption increases from 29nW to 33nW

per channel. It indicates a design trade-off between robustness to clock jitter and power

consumption.

6.8 Spike Train Detection

In this section, we conduct the practical detection of spike train with the same simulation

setup in section 5.5. The detailed simulation within 50µs is given in Figure 6.6, followed

by the spike detection accuracy analysis.

The simulation results are present in Figure 6.6. (a) presents the ideal control signals

which are the same as Figure 6.2. (b) presents the spike with an amplitude up to 500µV .

There are glitches at the edge of the operation mode and off mode represent the kickback

noise. (c) presents the differential input signals of OTA and it can be seen that the

voltage of ina is ∼ 15mV larger than the inb (reference). The OTA is fed with tens of DC

offset and utilises the memristor to compensate. In this case, we set the R1 = 10kΩ and

R2 = 91.2kΩ to compensate the DC offset (15.77mV ) and detection threshold voltage

(50µV ).

This circuit operates with a ‘self-trigger’ DLC, which means the DLC is activated after

the reset phase. After that, the outputs of OTA increase gradually through integration
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and trigger the DLC once the voltage reaches the DLC threshold. The digitisation time,

in this case, is longer than the ‘forced-trigger’ scheme due to the low input voltage of DLC.

Thus, the long settling time can be seen in Figure 6.6(e) compared to the ‘forced-trigger’

scheme in Figure 5.18(d).
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Figure 6.6: Simulation result of spike detection. (a) presents control signals which are
the same as Figure 6.2. (b) is the spike train generated in Figure 5.16. (c) presents the
input voltages of OTA. (d) shows the differential output voltage of OTA, and (e) presents

the digital outputs.

The detection results with the sampling frequency of 100kHz and 200kHz are depicted

in Figure 6.7. The simulation is performed in the presence of [1Hz, 100MHz] transient

noise. Figure 6.7 demonstrates that the spike detection accuracy can reach 87.5% even

though the detection accuracy is 72.5%. It indicates that the user can detect the presence

of a spike with an accuracy of 87.5%. In addition, the spike detection accuracy can

reach 100% with a sampling frequency of 200kHz. According to the clock jitter analysis

in section 6.7, we can extend the operation mode from 250ns to 280ns to enhance the

robustness of clock jitter at the cost of 33nW per channel. Furthermore, if this system is

utilised at a sampling rate of 200kHz, the average power consumption is 323nW .
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Figure 6.7: The timing diagram is to present the spike detection accuracy. The detec-
tion cycle is 10µs in (a) and 5µs in (b), respectively.

6.9 Summary

Memristive devices adjust the offset voltage to eliminate the need for large capacitors and

resistors at the input of a DC-coupled pre-amplifier to reject DC offset. Even though

the primary performance of a memristive amplifier is inferior to that of a conventional

state-of-the-art neural amplifier, it is adequate for use as an integrator followed by a

DLC. Simulations of transient noise have been used to test stability and robustness. The

results indicate that the front-end can compensate for large DC offsets of up to 50mV .

From spike train simulation, it can be derived that the DC-coupled front-end can achieve

100% spike detection accuracy (in demonstration) at the cost of 323nW average power

consumption.



Chapter 7

Layout Design and Chip Testing

This chapter focuses on the layout design of single channel pre-amplifier and chip test

after tape-out. The details and techniques of layout design with the program unit of the

memristive device are provided, followed by the post-layout simulation. In this work, we

used a commercially available 180nm CMOS technology with V DD = 1.8V . Further-

more, the preparation for the chip test, including test strategy and test board design, is

described. We conclude with a demonstration of the results of chip tests and the insights

gained from this experience.

7.1 Layout Design

The pre-amplifier consists of both analogue and digital parts, whereas the analogue layout

design requires high matching and low noise. Firstly, the 1.8V power supply of analogue

and digital modules needs to be separated, and the programming unit is supplied by 5V

voltage source. The most sensitive part of the circuit is the differential input pair and

cascode pair; thus, the bulks are connected to the source of the input pair (in Figure 7.1(a))

with the protection of two guarding rings. There are double protections: i) the guarding

ring surrounds the input pair and the cascode pair, and ii) the others isolate these two

elements from other components to prevent the sensitive circuit from interfering with

other modules (in Figure 7.1(b)).

In addition, we induced interdigitation and common centroid techniques in layout design

to access high matching. The sizes of each component have been shown in Table 7.1, where

the width of the differential input pair (60µm) is three times larger than the cascode pair

(20µm). Thus, we divided the input pair into three parts and distributed them according

to the common centroid in Figure 7.1(b).

The programming circuit in Figure 7.2(a) consists of a memristor and two transmission

gates with the combination of NMOS and PMOS. The transmission gate is utilised to

75



76 Chapter 7 Layout Design and Chip Testing

Table 7.1: Sizes of devices in the proposed architecture, where the bias current of core
amplifier is Itail = 3µA. R3 is replaced by a diode connected NMOS.

Devices W/L (µm/µm) Devices W/L (µm/µm)

M1, M2 3/3 R3 1/1
M3 3/3 M11-M14 2/0.6

M4, M5 60/1 M15,M16 1/0.6
M6, M7 20/1 M17, M18 2/0.6
M8, M9 1/0.6 M19 1/0.6
M10 2/1 C1, C2 100 fF

M4 M5

M6 M7

ina inb

clk_anabar clk_anabar

(a) (b)

Figure 7.1: Differential input and cascode pair in both (a) schematic and (b) layout
view. The bulks of the above components are connected to the source of M4&M5.

isolate the pre-amplifier (1.8V supply voltage) with the high-voltage control signal. In this

case, the terminals A1&A2 connect to the pre-amplifier, while terminals B1&B2 directly

connect to specified pads so that the designated signals can program the memristive

device. Since the programming signal is up to 5V , the pass-transistors are applied to

shield the core circuit from damage by high voltage. In this user-isolation switch, when

ENMEM = 0 and ENBAR = 1, the transmission gates are off and the memristor

can be programmed by the signal from the pad, referring back to Chapter 3. When

ENMEM = 1 and ENBAR = 0, the transmission gates are on so that the memristor is

in the application status. The layout of the switch is shown in Figure 7.2(b).

The ESD (electro-static discharge) cell is utilised for analogue and digital inputs/outputs,

except for memristor programming input. For the input pin, the ESD cell works as a

protection network that makes it operate under passive conditions. For the output pin,

the protection element is supposed to minimise the performance and voltage degradation

of the I/O circuit. The schematic of the ESD cell referring to the 180nm has been shown

in Figure 7.3(a), and the layout following the design instruction is in Figure 7.3(b). An

ESD cell occupies the area of 16.120µm× 30.210µm.

After accessing the essential components of the layout, we provide the layout of the core

circuit in Figure 7.4. In this layout, we included 21 pins which are presented in Table 7.2,

where we separated the analogue power (1.8V ) with memristor program unit (5V ) and

the digital (1.8V ) ones so that we can prevent the sensitive analogue module will be
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N1

N2

P1

P2

A1

MEM

A2

ENMEM ENBAR

B1

B2

(a)

P1 P2

N1 N2

MEM

(b)

Figure 7.2: Schematic and layout of the programming circuit of the memristive device.
(a) Terminals A and B can be the user terminal and programming terminal or in reverse.
The status of memristive in the application or programming is controlled by two signals,
ENMEM and ENBAR. In layout (b), the memristive device is in the middle and

connects to PMOS (upper device) and NMOS (lower device).

R1

PMOS

NMOS

Vdd

PadIn
PadOut

(a) (b)

Figure 7.3: The schematic (a) and layout (b) of ESD Cell based on TSMC180nm
technology.

interfered by the digital one. In addition, it can be seen that the guarding rings are

utilised to isolate modules in terms of the input and cascode pair, the current generation

unit, the programming circuit, the digital DLC circuit and the substantial load capacitors.

The area of the pre-amplifier is 71.280µm× 32.255µm.

The complete layout, including the pads, is presented in Figure 7.5. In this tape-out, we

fit the pre-amplifier into 26 in-line pads, whose total area is 2080.000µm× 283.670µm. In

this design, we utilise the pads provided by the foundry for the power, analogue and digital

signals and also use in-house electrodes directly connected to the memristive devices. It is

because that programming memristor requires a higher current compared to other pins.



78 Chapter 7 Layout Design and Chip Testing

Current Mirror

M4_1

M4_2

M4_3

M5_1

M5_2

M5_3

M6

M7

M8, 9

R1

R2

C1

C2

DLC

Figure 7.4: Layout of the core pre-amplifier circuit with the input and output on the
boundary to connect the ESD cell or the pad directly.

Figure 7.5: Complete layout design of the pre-amplifier. This design has two types of
pads: i) the commercial pad from the foundry and ii) the in-house pad for programming

the memristive devices.

Table 7.2: The pins of the pre-amplifier with the classification of type. There are
some abbreviations: ana in/out represents analogue input/output signal, ana in HV
means high voltage analogue input which is 5V with the supply of VDD MEM. Be-
sides, dig in/out is the digital input/output signal. pwr x, where x = 1.8/5 is the supply

voltage.

No. Pin Name Type No. Pin Name Type

1 GND AMPDLC pwr 12 clk rst dig in
2 clk anabar dig in 13 clk dig in
3 inb ana in 14 outb dig out
4 ina ana in 15 outa dig out
5 VDD AMP pwr 1.8 16 VDD DLC pwr 1.8
6 clk ana dig in 17 ENMEM 1 dig in
7 A2 2 ana in HV 18 ENBAR 1 dig in
8 VDD MEM pwr 5 19 A1 1 ana in HV
9 A1 2 ana in HV 20 A2 1 ana in HV
10 ENBAR 2 dig in 21 GND MEM power
11 ENMEM 2 dig in
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7.2 Post-Layout Simulation

After designing the layout, we extract the layout for the post-layout simulation and make

the performance comparison between the pre-layout and post-layout pre-amplifier. For

the post-layout circuit, the first thing is to determine the inherent offset and utilise the

memristive device to compensate the offset voltage to zero. In order to obtain the inherent

offset voltage, we apply the input voltage ramp in the range of [−200µV ,200µV ] into the

circuit and capture the digital output. The result presents in Figure 7.6. It presents that

the inherent offset voltage is 120µV and we tune the RS of the memristor to compensate

for the offset voltage by R1 = 1kΩ and R2 = 23.8kΩ.

s

(a)

(b)

V(outa) V(outb)

1V

-200µV

+200µV

V(ina) V(inb)

Figure 7.6: The input voltage ramp is applied to the circuit for the post-layout circuit
to determine the inherent offset voltage. The figure shows that the inherent offset voltage

is Vos = Vina − Vinb = 120µV .

After calibrating the inherent offset, we run the transient simulation on this circuit in

Figure 7.7. It can be seen from Figure 7.7(b)-(c) that the output of the core amplifier can

be settled down within phase (ii). Moreover, the afterwards simulation can be based on

this transient simulation setting.

After calibrating the circuit, we apply the same simulation methodology to this circuit

to obtain a full performance metric. The comparison table between pre-layout and post-

layout results presents in Table 7.3.
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(d)

(c)

(b)

(a)

(i) (ii) (iii)(iv)

V(clk_ana) V(clk_anabar) V(clk_rst) V(clk)

V(midb)

V(midab)

V(outa) V(outb)

(iv)

Figure 7.7: Timing diagram for post-layout simulation.

7.3 Strategy of Chip Testing

In this stage, we can access the function testing in terms of effective gain, input range,

PSRR and CMRR, noise, tunable range and sensitivity by feeding continuous signals. In

this stage, we only have access to the functional check of the signal channel pre-amplifier.

7.3.1 Programming Memristive Device

Before utilising the memristor, we need to initialise the device by electroforming to a us-

able resistance range (approximate 25kΩ to 200kΩ, depending on the stack) [27]. Shown

in Figure 7.2(b), the terminals with pass transistors are connected to the core ampli-

fier. Thus, electroforming must be conducted by isolating the memristor with the core

amplifier. The operation steps will be shown as follows.

1. The pass transistor needs to be turned off to ensure that the core amplifier has been
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Table 7.3: Performance metrics comparison between pre-layout and post-layout simu-
lation.

Performance Pre-layout Post-layout

CMOS Tech. 0.18µm

Power Supply 1.8V

Bias Current 3µA

Duration of one
detection

(i)150 + (ii)70+(iii)30=250ns

Gain (midband) 26.0dB 23.2dB

Bandwidth 8Hz − 16kHz 3Hz − 17kHz

CMRR 103.0dB 95.2dB

PSRR 119.0dB 78.6dB

InputNoise
9.84µVrms @ input stage 19.3µVrms @ input stage
54µV with latching 59µV with latching

Memristor tuning
range

250kΩ covers ±700µV 280kΩ covers ±700µV

Memristor tuning
sensivity

2µV/kΩ

Energy (250ns) 1.44pJ 1.60pJ

Power (250ns) 5.77µW 6.39µW

isolated and will not be burned. In this step, ENMEM = 0 and ENBAR = 5V ;

meanwhile, the core amplifier is off.

2. Initialisation of memristive devices. The consecutive 1µs pulses from 8V to 12V

will be applied on the device. It will induce that resistance drops from 106Ω to a

more stable range of [104Ω, 105Ω].

3. Programming the device to a specific resistance. After initialisation, we can provoke

the device by a sequence of 100ns 2V pulses to program the devices to 10kΩ. If the

resistance is read and greater than 10kΩ, we can apply reversed 2V pulses to reduce

the resistance.

Note that the pulse will be followed by the 0.5V triangular wave with a duration of 50ms.

The demonstration waveform has been presented in Figure 5.3. Moreover, we expect to

programme the memristor to 1k − 10kΩ. The above setup and connection are visible in

Table 7.4.

7.3.2 Measurement of the Bias Current

As shown in Figure 5.2, the duration of each phase depends on the change of voltage/cur-

rent controlled by the external voltage sources. Thus, we are supposed to measure branch

currents and integrate voltages at the nodes of mida/b to adjust the ideal control signals

from the circuit simulation.
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Table 7.4: The pin connection for programming memristive devices.

No. Pin Name Connection No. Pin Name Connection

1 GND AMPDLC gnd 12 clk rst gnd
2 clk anabar 1.8V 13 clk gnd
3 inb 1.8V 14 outb float
4 ina 1.8V 15 outa float
5 VDD AMP gnd 16 VDD DLC gnd
6 clk ana gnd 17 ENMEM 1 gnd
7 B2 2 gnd 18 ENBAR 1 5V
8 VDD MEM 5V 19 B1 1 programming pulses
9 B1 2 gnd 20 B2 1 programming pulses
10 ENBAR 2 5V 21 GND MEM gnd
11 ENMEM 2 gnd

Presented in Figure 7.2(a), terminals B1/2 allow us to measure branch currents and

voltages of mida/b when the pass transistors are turned on. In order to get the current

through the memristor, we need to connect the pads of B1/2 to the external current-

sensing device, which acquires the voltage drop across a current-sense resistor. To measure

the branch current, the core amplifier will be biased to a constant state:

• clk ana = 1.8V to allow the bias current to drain into the core amplifier.

• clk anabar = 0.6V to bias the cascode pair (M6&M7) to saturation region.

• ENMEM = 5V and ENBAR = 0 to connect memrisors to current branches of

amplifier.

• clk rst = 1.8V to turn on the reset transistors (M8&M9) to ensure the core amplifier

is in the constant status.

• clk = 0 since we do not need access to DLC.

• ina/b = 1V to ensure the input signal will not incline the branch currents.

The above settings are summarised in Table 7.5. The ‘large’ signal’ of mida/b is required

to calculate the integrating time in phase (ii) in Figure 2.14. In this case, we will keep

the control signals except for the clk rst. The clk rst transitions from 1.8V to 0 to

record the rough duration. When the voltage of mida/b increases from zero to one volt,

we record the time as t1. This helps determine the approximate phase duration, and a

more accurate time setting will be conducted in the next step. By accessing both branch

currents through the memristor and the rough integrating time, we can not determine the

phase setting but verify the function of capacitor integration and the initial error between

two branches through V = i·t
C .
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Table 7.5: The pin connection for measuring branch current.

No. Pin Name Connection No. Pin Name Connection

1 GND AMPDLC gnd 12 clk rst 1.8V
2 clk anabar 0.6V 13 clk gnd
3 inb 1V 14 outb float
4 ina 1V 15 outa float
5 VDD AMP 1.8V 16 VDD DLC 1.8V
6 clk ana 1.8V 17 ENMEM 1 5V
7 B2 2 current sensing 18 ENBAR 1 gnd
8 VDD MEM 5V 19 B1 1 current sensing
9 B1 2 current sensing 20 B2 1 current sensing
10 ENBAR 2 gnd 21 GND MEM gnd
11 ENMEM 2 5V

7.3.3 Determining the Operation Phases

After calibrating the chip, we need to determine three operation phases: (i) reset, (ii)

integration and (iii) digitisation phase by monitoring the analogue (B2 1 &B2 2) or digital

(outa & outb) outputs.

The setup of measuring the reset phase is given in Table 7.6. In this case, we should

monitor the differential voltage of analogue outputs ∆Vmid (from pads B2 1 &B2 2) by

using embed LPC1768. We record the duration that ∆Vmid needs to settle down. In this

measurement, we can try sweeping the Vclk anabar and Vina/b to determine their effects on

the reset time.

Table 7.6: The pin connection for measuring the reset phase.

No. Pin Name Connection No. Pin Name Connection

1 GND AMPDLC gnd 12 clk rst 1.8V
2 clk anabar 0.6V 13 clk gnd
3 inb 1V 14 outb float
4 ina 1V+1mV 15 outa float
5 VDD AMP 1.8V 16 VDD DLC 1.8V
6 clk ana 1.8V 17 ENMEM 1 5V
7 B2 2 mbed sensing 18 ENBAR 1 gnd
8 VDD MEM 5V 19 B1 1 floating
9 B1 2 floating 20 B2 1 mbed sensing
10 ENBAR 2 gnd 21 GND MEM gnd
11 ENMEM 2 5V

Table 7.7 shows the setup of measuring the integration phase. In this measurement, we

need to switch off the bottom transistors to allow integration on the load capacitors and

recording ∆Vmid. In this case, we need to record the below variables: (i) sweep Vclk anabar

and record Vmid versus integration time. (ii) keep ∆Vin and sweep Vinb to measure the
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Vmid so that we can obtain the result similar to Figure 5.4 and the common mode input

range. (iii) keep Vinb and sweep Vina to determine the differential voltage gain (similar to

Figure 5.5).

Table 7.7: The pin connection for measuring the integrating phase.

No. Pin Name Connection No. Pin Name Connection

1 GND AMPDLC gnd 12 clk rst 1.8V → 0V
2 clk anabar 0.6V 13 clk gnd
3 inb 1V 14 outb float
4 ina 1V+1mV 15 outa float
5 VDD AMP 1.8V 16 VDD DLC 1.8V
6 clk ana 1.8V 17 ENMEM 1 5V
7 B2 2 mbed sensing 18 ENBAR 1 gnd
8 VDD MEM 5V 19 B1 1 floating
9 B1 2 floating 20 B2 1 mbed sensing
10 ENBAR 2 gnd 21 GND MEM gnd
11 ENMEM 2 5V

7.3.4 Voltage Gain

Since the gain depends mainly on the integration time, we need to identify the exact

proper duration for the mida/b to reach the voltage to trigger DLC and acceptable gain

with a time margin. Thus, we designed the process of assessing the gain based on the

fabricated device, taking the ideal simulations as a reference. The process accesses the

exact duration of each phase and gains as follows.

1. From capturing the voltage, we can obtain the reference time t1 and gain g1. In the

test, the reset and digitisation time is based on the test result above. At first, we

set the integration phase as t1 for ina = 1V + 1mV and inb = 1V .

2. Test the differential gain gx with the integration time of tx = t1 − 10ns and find if

the peak of gain voltage appear. If the maximum gain appears (corresponding peak

in Figure 5.5), we record the peak as gmax and time as tmax. If the gain decreases

progressively to zero, we can move to the next step.

3. Record the gain gx with the integration time of tx = t1+10ns and find out the peak

gain gmax and tmax.

4. With the consideration of time margin, we need to set the actual integrating time as

t = tmax−20ns and acceptable gain as g with the reason in Section 4.2.3. Eventually,

we will access each phase’s gain and accurate testing time, which can be utilised in

the following testing.
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7.3.5 Noise, CMRR and PSRR

The input-referred noise can be determined by feeding fixed input voltage to the chip for

1000 cycles and recording the digital output, where we can obtain the detection accuracy

directly. Then, we can sweep the differential input voltage to obtain a full map of detection

accuracy versus differential input voltage, followed by the Gaussian fitting to derive the

standard derivation (σ) as the desired input-referred noise. The methodology is similar

to the transient noise simulation in Section 5.2.2.

The testing of CMRR is similar to the differential mode in terms of the setting of control

signals. The control signals are pulses from the wave generator with different duty cycles

within 1µs detection period. As for the input voltage, we keep the input difference to

1mV for higher tolerance to the noise. Meanwhile, change the common voltage Vcm with

5mV per step from 0 to 1.8V . There will be five detection cycles for each Vcm, so we

can average them to obtain a more accurate gain. After acquiring a train of gain from

Vcm ∈ [0, 1.8V ], we can process the data using Matlab. After the analysis, it is possible

to find another common mode voltage Vcm=x that induces more stability to the circuit.

A similar setup can be utilised to measure the PSRR.

7.3.6 Tunable Range and Sensitivity

In this case, we can test the offset tuning range and tuning sensitivity on the resistive state

of memristive devices. Considering the duty cycle in the waveform generator, we set one

detection cycle to 1µs in the tunable testing range. The testing follows the same principle

in Figure 2.15, sweeping input across a range of 2mV with −1mV to 1mV ascending and

1mV to −1mV descending at 1V common voltage. The testing is within 400µs, yielding

an offset estimate resolution of 10µV . In this case, we can only assess outa/b for the

tuneable range.

As for the signal setting:

• Import the DC Vcm=x to inb, while the ina will be the triangular waveform from

Vcm=x − 1mV to Vcm=x + 1mV .

• The control signals are the same as above.

• Program the memristive devices to record the switching boundary of outa/b which

corresponds to the voltage of inb in the tuning range.
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7.4 Precise Signal Generation Board for Chip Test

As mentioned above, to test the pre-amplifier chip, we need to generate precise analogue

signals for ina/b and record the analogue signals from mida/b and digital signals from

outa/b. The embed LPC1768 can record analogue and digital signals with 96MHz, indi-

cating the device can record the signals around every 10ns. Besides, the LPC1768 can

convert the analogue signals to 16-bit digital and operates at 3.3V, which indicates it

can record analogue signal minimum to 50µV . As for the one-bit digital signals can be

directly recorded by embed LPC1768 to present as ones or zeros. In this measurement,

we plan to input the differential voltage down to 50µV to check the circuit functionality

and linearity.

As for the precise analogue input (to ina/b), we design a signal generator that utilises

a 16-bit ADC (DAC8532) and ultra-low offset amplifier (OPA191). The schematic is

presented in Figure 7.8.

OPA191_1
OPA191_2

R1

40kOhm

R2

200Ohm

R3 200Ohm

R5 200Ohm

R4

40kOhm

R6

40kOhm

Vref (from DAC)

Vin (from DAC)
Vtest (to mbed)

2.5V

ina (to test chip)

inb (to test chip)

Figure 7.8: The schematic of utilising two OPA191 to generate and test precise analogue
signals.

The schematic presents that the outputs of DAC (Vref & Vin) feed into OPA191 1. Vref is

directly fed into inb of the chip, while the voltage difference ∆VDAC = Vin−Vref is reduced

by 200 times to micron-volt level by OPA191 1, resulting Vina = Vinb + ∆VDAC/200.

However, due to the device offset and variation, the result feeding in ina/b might be

shifted. To measure the input signal of the chip, we utilise the OPA191 2 to amplify the

∆VDAC by 200 times and record it in embed LPC1768 as Vtest. The principle relies on

the below derivation.

∆Vin = (∆VDAC + Vos,1)×
R2

R1
(7.1)

where, ∆Vin is the differential input to the chip, ∆VDAC is the differential output from

DAC, and Vos,1 is the offset from OPA191 1. Equation 7.1 can be converted as below.

∆VDAC = ∆Vin × R2

R1
− Vos,1 (7.2)

The mbed LPC1768 record the amplified ∆Vin as Vtest. By considering the device offset,
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Vtest is

∆Vtest − 2.5 =
R6

R5
× (∆Vin + Vos,2) (7.3)

where Vos,2 is the offset of OPA191 2. There exist an error between ∆VDAC and ∆Vtest−
2.5, and we set it as a parameter:

∆Verror = ∆VDAC − (∆Vtest − 2.5) (7.4)

In this case, ∆VDAC is set by the embed device and Vtest is recorded directly by the embed

device. Thus, ∆Verror can be derived directly. Combining the Equation 7.2, 7.3 and 7.4,

we obtain a function of Verror

∆Verror = (
R6

R5
− R1

R2
)×∆Vin + (

R6

R5
× Vos,2 + Vos,1) (7.5)

Therefore, the differential input to the chip Vin can be reflected by the recorded signal

∆Verror:

∆Vin =
Verror − R6

R5
× Vos,2 − Vos,1

R6
R5

− R1
R2

(7.6)

7.5 Pre-amplifier Chip Test

In this tape-out, we got the chip that stops at the Metal 4 layer from the foundry, which

allows us to assemble the memristor and memristor wiring on the top. The testing is

conducted on both chips (with and without memristors).

7.5.1 Testing on the Chip without Memristor

The full view of the chip without memristor and memristor pad is presented in Figure 7.9.

It can be seen that the memristor pad is missing, and we can only access the DLC

with floating DLC input. The available circuit which can be accessed, is presented in

Figure 7.10.

To test the DLC module of the chip, we set the pad connection as shown in Table 7.8.

However, the inputs of DLC are floating that we fail to measure the full function of the

DLC.

The measurement results are present in Figure 7.11. In this measurement, we import the

pulse train as the clk into the pre-amplifier chip, where the pulse duration is 10ms with

different pulse widths ∈ {2ms, 4ms, 6ms, 8ms}. It can be seen that the DLC can output

the digital signals based on different pulse width cycles. It indicates that the pre-amplifier

can be powered up adequately. However, the result shows a severe delay in the output,

which the probe card and jumper wires between the chip and the test board might cause.
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Figure 7.9: Full view of the chip without the memristor electrode.

M0

M1

M3

M4

RRAM

CL

Vdd

clk_anabar (pad)

clk_rst(pad)

inb(pad)

MID

Q1
ENBAR(pad)

Q2 ENMEM(pad)

Q3ENBAR(pad) Q4 ENMEM(pad)

B2 (pad)

B1(pad)

M3

M5

M7

M9 C2

midb

DLC

outa
(pad)

outb
(pad)

clk (pad)mida

open circuit

Figure 7.10: The schematic view presents the connection inside the chip where there
exist open circuit due to missing memristor.

In addition, Voutb swings between 0.9V and 1.1V, which the floating input might cause.

However, the reason is still unclear until we can access the nodes of mida/b.

7.5.2 Testing on the Chip with Memristor

The pre-amplifier chip with memristor and memristor electrodes (B2 2 & B2 1) on the

top is presented in Figure 7.12. However, fabricating the memristor directly on the top

shorts all Metal 4 layer, including all the power signals across the padring. It has been

tested that all the power is shorted in this chip.
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Table 7.8: The pin connection for measuring the DLC only.

No. Pin Name Connection No. Pin Name Connection

1 GND AMPDLC gnd 12 clk rst gnd
2 clk anabar 1.8V 13 clk pulses
3 inb 1.8V 14 outb mbed monitoring
4 ina 1.8V 15 outa mbed monitoring
5 VDD AMP 1.8V 16 VDD DLC 1.8V
6 clk ana gnd 17 ENMEM 1 gnd
7 B2 2 / 18 ENBAR 1 5V
8 VDD MEM 5V 19 B1 1 /
9 B1 2 / 20 B2 1 /
10 ENBAR 2 5V 21 GND MEM gnd
11 ENMEM 2 gnd
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Figure 7.11: Testing Result of the DLC with floating inputs with different pulse
widths. In this test, the pulse in the duration of 10ms with four pulse widths
∈ {2ms, 4ms, 6ms, 8ms} are fed into the chip (presented at the top trace of sub-figures).

The digital outputs are presented in the bottom trace of each sub-figure.
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B2_2

B2_1

Figure 7.12: The pre-amplifier chip with the memristor pads and wiring on the top (in
white). But the wirings across the padring short the power.

7.5.3 Circuitry Improvements

To summarise, the chip test cannot be completed in the current stage and we can only

access the DLC with floating input. Nevertheless, we can still gain insights from this chip

testing, improve our layout, and debug the design.

1. Choose the square padring that reduces wiring between the core circuit

and pads. It can be seen that there exists a long wiring route for the in-line padring.

In order to reduce the wiring and potential parasitics, we can apply a square padring for

future tape-out.

2. Wiring for the memristors and pads. There are two options to overcome the short

circuit in the chip. The first option is to deposit an isolation layer to cover the padring

before having direct wiring as Figure 7.12 shown. The second option is to develop a new

wiring route that avoids the Metal 4 layer to connect the memristors and pads, presented

in Figure 7.13. Future testing will be conducted on this chip.

Figure 7.13: The full layout with new wiring route for memristors and electrodes that
prevents shorting circuit.

3. Reduce jumper wires in chip testing. A severe delay on the DLC might be caused

by the long wiring between the chip and the test board. To solve this, we can assemble

the pre-amplifier chip in the package PLCC68. Then, the PLCC68 can be assembled on

the test board and we can directly conduct the testing on the packed chip. The wire

bonding in PLCC68 presents in Figure 7.14.
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Figure 7.14: The full layout with new wiring route that prevents shorting circuit.

7.6 Summary

This chapter covers (i) the layout design and post-layout simulation, (ii) preparation for

the chip test and (iii) test results. However, we cannot test the full functionality of the

preamplifier at this point due to the chip’s open circuit (missing memristors). However,

we can still gain insights from testing on DLC only and develop strategies for improving

the layout design and test strategy going forward. The improvements of the circuit should

be based on the testing results afterwards.



Chapter 8

A Memristor-Based ∆ΣADC

In this chapter, we introduce the ∆ΣADC structure based on the initial design of the

front-end to reduce the input-referred noise through over-sampling and noise shaping.

The proposed ∆ΣADC utilises the initial design as the Gm-C integrator and induces a

current-steering DAC (IDAC) as an extra module. The architecture of the ∆ΣADC is

presented in Figure 8.1. The front-end consists of two loops: (i) a DC cancellation loop

with memristive devices and (ii) a delta-sigma modulator loop filter to shape the noise to

high frequencies.

Vip

Vin

DLC
+

-

Voutp

Voutn

Vop

D/A

Gm ArC
One

Von

Figure 8.1: The block diagram of proposed ∆ΣADC.

The proposed circuit utilises the ArC One as the external device to program the memristor.

ArC One is the platform to validate and calibrate the memristor [98]. The operation of

the ∆ΣADC can be divided into two stages. Stage one is to block the delta-sigma loop,

followed by the ArCOne instrument programs the memristor and cancels the offset based

on the output of DLC. The ArCOne stops programming when the status of Voutp and

Voutn switch, which indicates the DC offset is compensated. The second stage is to block

the Offset modulation loop and turn on the delta-sigma loop to detect the neural spike

with low noise.
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8.1 Architecture of ∆ΣADC

In this thesis, we proposed Gm-C based one-bit continuous-time delta-sigma (CT-∆Σ)

ADC modulator. The CT techniques feature an inherent anti-aliasing filter, which re-

duces system components and energy consumption. However, the first-stage integrator

occupies a large percentage of overall power. As for the integrator, the active-RC inte-

grator produces high linearity at the cost of more power required to run the feedback

network with enough loop gain and phase margin. On the other hand, the Gm-C integra-

tor utilises less power than the active-RC integrator while driving an open capacitive load

loop. The most challenging aspect of developing a Gm-C-based modulator is the limited

linear input range caused by the nonlinear Gm amplifier, which results in a low SNDR.

Nevertheless, this system is applied for the neural signal that input changes are in the

millivolt range. It enables the development of a single-stage OTA without compromising

power to improve linearity.

M0

M1 M2

M3 M4

M5 M6

M7 M8

M9

M10 M11

M12 M13

I1

I2

Vdd Vdd

R1 R2

C1

Vip Vin

Vb1

Vb2

Voutp Voutn

Vb3

VopVon

Vop Von

(a) (b)

Figure 8.2: The schematic of OTA of ∆ΣADC. (a) The OTA is the input and the
integrator interface in the ∆Σ modulator. (b) The IDAC shown on the right creates a

current feedback loop.

The core of ∆Σ modulator is built with a Gm-C integrator, current-steering DAC (IDAC),

and a DLC (shown in Figure 8.1 and Figure 8.2). The sizes of OTA are presented in

Table 8.1 while the sizes of DLC are the same as the previous design in Chapter 5. In this

case, we utilise the oversampling ratio (OSR) of 512 to achieve low quantisation error with

the signal bandwidth of 10 kHz. The OTA operates as the input stage of the channel and
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the integrator interfaces. The OTA consists of a current source (M0), input differential

pair (M1&M2), the active load (M7&M8), and the cascode pairs (M3-M6). It operates

under the bias current of 3 µA. Its output is coupled to the load capacitor (C1), IDAC

and DLC. A high output impedance is essential to preserve the noise transfer function

of the modulator. The output is equipped with cascode pairs (M3-M7) to increase the

output impedance.

Table 8.1: Sizes of devices of OTA in the proposed ∆Σ ADC.

Devices W/L (µm/µm) Devices W/L (µm/µm)

M1, M2 8.5/6 M10, M11 1/5
M3, M4 2/2 M12, M13 1/5
M5, M6 2/5 C1 200 fF
M7, M8 1/18 I1 3µA
M0, M9 3/1 I2 240nA

In this design, we utilise the feedback path constructed in the current domain to eliminate

the need for an additional pair of input transistors. In order to minimise the area even

further, asymmetric current feedback is achieved by utilising the current source solely. The

input of the IDAC is the bitstream output by the quantiser (Voutp&Voutn). A common logic

block generates the control signals for these two blocks from the quantisation bitstream.

The IDAC feeds the regulated current of 240 nA to the output of the OTA (Vop&Von) in

a full-scale mode of 10 mV .

Similar to the above front-end designs, the proposed ∆ΣADC induces a pair of memristive

devices (R1&R2) to compensate for the DC offset. The programming module is the same

as above. In this case, the memristors are put above the input transistors, operating as

source degeneration. Meanwhile, it can compensate the same DC offset (50 mV ) with a

lower resistive state. The offset compensation is summarised in Table 8.2.

Table 8.2: The compensated DC offset versus the resistive state of memristors under
the condition of R1 = 1 kΩ.

R2 (kΩ) Offset Compensation (mV )

5 8.24
10 18.70
15 28.87
20 39.00
25 49.00

8.2 Performance ∆ΣADC

The operation of the ∆ΣADC is given in Figure 8.3 under the sine 10 mVpp input. The

feedback modulation on the nodes of Vop and Von is given by the IDAC. After collecting the

output data, we conduct the Fast Fourier Transform (FFT) to obtain the output spectrum
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Figure 8.3: The timing diagram of ∆ΣADC. (a) the input of the system. (b) the output
of the OTA. The one-bit IDAC provides the modulation. (c) and (d) are the outputs of

the DLC, respectively.

in Figure 8.4(a) with the noise bandwidth of [0.1Hz,100MHz]. The spectrum presents that

the noise is shaped to a higher frequency range so that the front-end can keep the low

noise level in the signal band. It can achieve 60.22 dBc Spurious-Free Dynamic Range

(SFDR) and 53dB Signal-to-Noise And Distortion Ratio (SINAD), which indicates 8.51

Effective Number Of Bits (ENOB). In addition, Figure 8.4(b) presents the SNR versus

the input signal in dB, which indicates the 55 dB Dynamic Range (DR) of the system

(AC input range). As for the DC input range, it is measured at the input differential pair

that the input voltage keeps the input transistor in saturation/sub-saturation region. The

accepted DC input range in this design is 200 mV from 0.85V to 1.05V. The performance

is summarised in Table 8.3.

The transconductance amplifier acts as the input stage for the whole system, making its

noise performance crucial. The input-referred noise of the OTA is 9.56 µVrms, mainly

given by the input differential and the load pairs of the OTA, which occupies the most

area of ∆ΣADC as well. The transistor dimensions and noise contribution are given in

Table 8.4.
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Figure 8.4: Performance of ∆ΣADC. (a) the output spectrum for the input sine wave
of 10 mVpp under the noise simulation. (b) SNR versus input level where indicates 55dB

DR.

Table 8.3: Performance of the proposed ∆ΣADC under the condition of transient noise.

Parameter Value

Fs 10.24 MHz
Rout @Fs 3.10 MΩ
SINAD 53.00 dB
ENOB 8.51 bits
SFDR 60.22 dBc

Input-referred noise of OTA 9.56 µVrms

DC Input Range 0.85-1.05 V
AC Input Range 10 mV

Power 5.50 µW

Table 8.4: The critical transistor dimensions and noise contribution of the OTA.

Transistor W/L (µm/µm) Noise Contribution

M7&M8 18/1 50.2% 4.86 µVrms

M1&M2 8.5/6 48.78% 4.66 µVrms

8.3 Simulation with Spike Train

In this section, we investigate the performance of ∆Σ ADC on a spike train with 15.77mV

DC offset by conducting a transient simulation with a spike train. The timing diagram

presents in Figure 8.5, where (a) shows the spike train in inp and inn is set to 0.9V. The

OTA is operated as a conventional amplifier in this design without switching status. As

a result, the input signal is free of kickback noise (compared with the inputs in both AC-

coupled and DC-coupled front-end). In this simulation, we set R1 = 1kΩ and R2 = 8.5kΩ
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to compensate 15.77mV DC offset. In addition, we get a spectrum from outn presented in

Figure 8.5. In this simulation, the input frequency is 10.07kHz and its amplitude is 500µV

at its maximum. ENOB = 1.34 indicates the resolution is 198µV , significantly lower than

the simulation of pure sine waves (ENOB = 5.33). The DC offset (15.77mV ) needs to

be compensated by high precision memristors of 0.01mV . Nevertheless, the memristors

in this circuit are placed at the source of input transistors to achieve a wider tuneable

offset range, albeit at the expense of precision. Due to the DC input, the SINAD and

ENOB may experience attenuation. Thus, improving the ∆Σ ADC in terms of eliminating

common mode input effect and practical detection remains a future work.
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Figure 8.5: Left: the timing diagram of ∆ΣADC with (a) the spike train input with
15.77mV DC offset. (b) the output of the OTA. (c) and (d) are the outputs of the DLC,
respectively. Right: output spectrum for spike train with the maximum amplitude of

500µV and 15.77mV DC offset.

8.4 Summary

This chapter proposes the DC-coupled continuous-time ∆ΣADC based on our previous

designs. Even though the design of Gm-C based CT-∆ΣADC meets the challenge of

relative low linearity and SNDR, this limitation can be lifted since it is applied for low

input range bio-signal (10mV ). Meanwhile, memristive devices can compensate for the

large DC offset at the input. Under transient noise in the range of [1Hz,100MHz], it

operates as an eight-bit ADC at the front-end. The OTA occupied the most significant

proportion of the total power consumption, contributing to a low input-referred noise

level achieved by the modulator’s loop filter. Compared with the front-end in Chapter 4

- Chapter 6, the OTA operates in a static mode that consumes more power than the

dynamic mode, which uses the start-stop scheme to reduce the power down to microvolt

levels. In summary, the memristor-based amplifier can be applied to the dynamic pre-

amplifier and the static one in ∆Σ ADC. This contributes to rejecting the DC offset with

low power consumption and area efficiency.
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Conclusion and Future Work

9.1 Conclusion

This dissertation performs a theoretical analysis of the core functionality of memristive in-

tegrating amplifiers. It uses industrial CAD-level simulations to provide a specific example

of an integrating amplifier design targeting electrophysiological applications. Throughout

our analysis, the performance enhancement over traditional, continuous-mode amplifiers

could be most intuitively understood as a gain-boosting effect arising from the integration

process. Moreover, we explained how standard amplifier performance metrics, such as gain

and input common mode range, and new metrics, such as offset voltage tuneability range,

can be described by governing equations for use by designers. Finally, we implemented

an exemplar design in commercially available 180nm CMOS and demonstrated typical

values for all studied performance parameters that can be expected from a 0.18µm node

technology.

The memristive device was utilised as a tunable resistor along the differential current

path to compensate for the offset voltage. We also studied the impact of memristor IV

non-linearity on the system, especially for the integration process. We checked whether

transitioning from ideal resistor-based analysis to realistic memristor-based presents a

fundamental conceptual challenge towards the viability of low-power, ultra-low offset

memristive amplifiers. The result was that it still needs to remove the last fundamen-

tal/conceptual roadblock we have identified towards scale-up and, ultimately, commercial

exploitation; the unique challenges are of an engineering nature.

This work is a stepping stone towards de-risking and documenting the memristor-based

integrating amplifier. With a nano-scaled memristor implanted, the circuit does not need

a large module to eliminate the offset voltage after fabrication. However, the memristive

device still has some limitations. The in-house memristor is connected to a switch unit

which needs 8V to 12V to switch the resistance state. In this case, the switch unit induces

noise risk to this sensitive system and increases power consumption. The trade-off induced
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by the integration process, combined with the offset trimming enabled by the memristor,

has the potential to add a robust circuit topology to the arsenal of the analogue designer.

After defining and measuring the key performance metric for integrating amplifier, we

applied the memristor-based pre-amplifier into three types of application circuits: (i)

open-loop network with input capacitors and MOS-bipolar pseudo-resistor as an AC-

coupled solution to reject DC offset, (ii) directly operates in the DC-coupled solution

for DC offset up to 50mV , and (iii) memristor-based ∆Σ ADC. Through measurement,

the AC-coupled and DC-coupled memristor-based pre-amplifier with a ‘start-stop’ scheme

can achieve above 95% detection accuracy while maintaining the power consumption at

hundreds of nanowatt per channel. Moreover, the ∆Σ ADC with static pre-amplifier

operates at 10.24MHz, consuming 5.5µW .

In the tape-out of single channel pre-amplifier, we used in-house memristor electrodes/-

pads that directly connect to the memristor. It is because electroforming the device

requires 8 − 12V that exceeds the maximum tolerance voltage of the chosen commercial

pad. However, the latest version of the hybrid CMOS/memristor chip encounters the

situation that the memristor wiring shorts the power path that cannot be tested. Under

this situation, the chip test can only be conducted on the chip with missing memristors

and memristive pads, where an open circuit exists inside the core amplifier. We can only

access the DLC module with floating inputs. The test results indicate that the chip can

be powered up, but the DLC operates with long delays, which might be due to the long

wiring (i) inside the chip, and (ii) jumper wires between the probe card to the test board.

We can still gain some insights from this chip test regarding the test strategy and layout

design concluded in Chapter 7. Furthermore, the improvement of the circuit design based

on chip tests remains future work.

9.2 Recommendation for Future Work

The research work in this thesis brings new application prospects for the memristive

device, utilising it as the trimming component to reject the DC offset at the input in

the application of neural signal detection. The presented work can be developed in the

following ways.

1. Development of the memristive Verilog-A model. Currently, the memristive

Verilog-A model in Cadence can only trace the RS in transient simulation. Moreover, it

operates as the ideal static resistor in DC/AC simulation (without noise), which restricts

us from exploring the frequency impact on the memristor. Therefore, developing the AC

and noise model for the memristor is recommended, which contributes to higher accuracy

of the performance of the memristor in CMOS circuits. In addition, the neural front-end

should be operated with ultra-low power consumption, especially for the electroforming

and the programming of the memristive devices. In this project, we utilised the device
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that requires 8− 12V for electroforming/activation. It induces the risk of destroying the

circuit in 0.18µm even though we utilised a memristor electrode and separated it from

other signal pads. For future neural front-end development, developing the Verilog-A

model for low-voltage activation is recommended, which contributes to power efficiency.

2. Develop the automated programming interface of the memristor. Currently,

we utilise the memristor for trimming the offset voltage by monitoring the digital out-

put and manually programming using an external device (ArCOne Instrument). It is

recommended to develop an automated programming interface that incorporates a detec-

tion/comparison circuit at the output of the OTA to control the programming module

until the DC offset is completely covered. Note that this can be realised when the mem-

ristor can be electroformed and programmed with a low voltage. In this case, the circuit

can be calibrated at the first stage, followed by the actual operation.

3. Full system development. Current research focuses on the design of a single-

channel pre-amplifier. The design of multiple channels and implementation of the full

system remain future work. The focus should be placed on parasitic analysis in the multi-

channel design. Moreover, a power module is required to generate stable bias current

to different pre-amplifier channels. In addition, the full system requires a controlling

module that generates clocking signals to control the operation of the pre-amplifier with

the consideration of clock skew and jitter.
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