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Key Points:16

• Sand patches can emerge on non-erodible surfaces.17

• Differing surface characteristics control particle behaviour.18

• Field measurements demonstrate the key role of sand transport in bedform ini-19

tiation.20

Corresponding author: Pauline Delorme, p.m.delorme@hull.ac.uk

–1–



manuscript submitted to Geophysical Research Letters

Abstract21

Sand patches are one of the precursors to early-stage protodunes and occur widely in both22

desert and coastal aeolian environments. Here we show field evidence of a mechanism23

to explain the initiation of sand patches on non-erodible surfaces, such as desert grav-24

els and moist beaches. Changes in sand transport dynamics, directly associated with the25

height of the saltation layer and variable transport law, observed at the boundary be-26

tween non-erodible and erodible surfaces lead to sand deposition on the erodible surface.27

This explains how sand patches can form on surfaces with limited sand availability where28

linear stability of dune theory does not apply. This new mechanism is supported by field29

observations that evidence both the change in transport rate over different surfaces and30

in-situ patch formation that leads to modification of transport dynamics at the surface31

boundary.32

Plain Language Summary33

Sand patches can be observed in various environments such as beaches and gravel34

plains in deserts. Expected to be precursors of dunes when sediment supply is limited,35

these bedforms are typically a few centimeters high and present a reverse longitudinal36

elevation profile, with a sharp upwind edge and a smooth downwind tail. Based on field37

measurements, we propose a formation mechanism for these patches associated with the38

sensitive nature of wind-blown sand transport to changing bed conditions: sand salta-39

tion is reduced at the transition from a solid to an erodible surface, hence favouring de-40

position on the patches. This allows us to explain their typical meter-scale length as well41

as their asymmetric shapes.42

1 Introduction43

Isolated low-angle sand patches are commonly observed in desert and coastal re-44

gions on non-erodible surfaces, such as gravel plains or moist beaches (Figure 1, e.g. Lan-45

caster, 1996; Hesp & Arens, 1997; Nield, 2011). These bedforms are typically several cen-46

timeters high, exhibit reverse longitudinal asymmetry compared to mature dunes, and47

can develop rapidly over several hours. Extensive research has explored the physical dy-48

namics and morphology of mature desert sand dunes (Bagnold, 1937, 1941; Lancaster,49

1982; Werner, 1990; Andreotti et al., 2002a; Charru et al., 2013; du Pont, 2015; Wiggs,50

2021). We also have some evidence of the dynamics by which emerging dunes might grow51

into early-stage protodunes and more mature dune forms (Kocurek et al., 1992; Nield52

et al., 2011; Elbelrhiti, 2012; Hage et al., 2018; Montreuil et al., 2020), where the sub-53

tle coupling of topography, wind flow, and sediment transport acts to reinforce their growth54

(Baddock et al., 2018; Delorme et al., 2020; Gadal, Narteau, Ewing, et al., 2020; Lü et55

al., 2021; Bristow et al., 2022). However, our knowledge of the processes resulting in, and56

the relevant time and length scales associated with, the initial deposition of sand on a57

non-erodible surface remains incomplete and unquantified, although such processes pos-58

sibly represent a fundamental stage in the origin of aeolian dunes.59

There are two clear sets of processes by which aeolian dunes are thought to be es-60

tablished (Courrech du Pont et al., 2014; du Pont, 2015). The first is associated with the61

hydrodynamic instability of an erodible granular flat bed with unlimited sand availabil-62

ity (Warren, 1979; Andreotti et al., 2002a; Claudin et al., 2013; Charru et al., 2013). This63

instability results from the combination of the response of wind stress to the modulated64

topographic profile, and the response of sand transport to the spatial variation in that65

wind stress (Charru et al., 2013). The former drives the instability where the wind stress66

maximum is shifted upwind of a dune crest (Claudin et al., 2013; Lü et al., 2021); the67

latter controls the emerging dune size with a relaxation process over a (saturation) length,68

Lsat (Sauermann et al., 2001; Andreotti et al., 2010; Pähtz et al., 2013; Selmani et al.,69

2018). The resulting dune pattern consists of straight-crested bedforms growing in am-70
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Figure 1. Sand patches formed on different surfaces. Brancaster beach Norfolk, UK (a, d

and g), Helga’s dunefield, Namib Desert, Namibia (b, e and h), and Medano Creek, Great Sand

Dunes National Park, Colorado, USA (c, f and i).

plitude with an orientation controlled by the wind regime (Gadal et al., 2019; Delorme71

et al., 2020). The second set of processes is associated with the growth of finger-like dunes72

developing across a non-erodible surface from isolated sand sources (Courrech du Pont73

et al., 2014; Rozier et al., 2019; Gadal, Narteau, Du Pont, et al., 2020). In this case, the74

dunes, well separated by interdunes where sand is scarce, present a finger-like shape and75

grow in length in a direction between those of the dominant winds (Rozier et al., 2019).76

Experiments in wind tunnels have also highlighted the critical role of boundary condi-77

tions in determining saltation dynamics and sand transport rates (e.g. Ho et al., 2012;78

Kamath et al., 2022) and this offers a potential further means by which dunes may es-79

tablish. These experiments have provided evidence for the existence of distinctly differ-80

ent transport rates on erodible and non-erodible or moist surfaces (Neuman & Scott, 1998;81

Ho et al., 2011). Larger sediment fluxes on non-erodible beds have been interpreted as82

a consequence of a negligible feedback between the mobile grains on the flow. This is in83

contrast to the wind velocity ‘focal point’ that exists when saltation takes place over an84

erodible granular bed where the saltating grains comprise a momentum sink on the over-85

lying flow (Bagnold, 1937; Ungar & Haff, 1987; Creyssels et al., 2009; Durán et al., 2011;86

Ho et al., 2014; Valance et al., 2015).87

Here, we propose a new mode for sand patch and protodune initiation associated88

with the sensitive nature of the transport law in response to changing bed conditions.89

We find that sand transport rates responding to non-erodible to erodible bed conditions90

can explain the emergence of isolated, meter-scale sand patches on gravelly interdune91

areas or moist beaches (Figure 1). Our field data in support of this process, quantita-92

tively capturing the emergence of a sand patch and the change in saltation this produces,93

allows us to propose a conceptual model for early-stage protodune growth from a flat94

bed.95
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2 Methods96

Sediment transport measurements were undertaken in the Skeleton Coast National97

Park, Namibia on sand and gravel surfaces between the 13th and 15th September 2019.98

Here, wind speed was measured simultaneously on both surfaces using hotwire anemome-99

ters (DANTEC 54T35 probes) at a height of 0.085 m and a frequency of 0.1 Hz. Co-located100

sediment transport was measured via laser particle counters (Wenglor YH03PCT8, fol-101

lowing the methods of Barchyn et al. (2014)), Sensit contact particle counters and mod-102

ified Bagnold sand traps. Saltation height was measured, using a Leica P20 terrestrial103

laser scanner (TLS) following the methods of Nield and Wiggs (2011), in a 1 m2 area104

immediately upwind of the wind and sand transport instrument arrays, alternating be-105

tween each of the gravel and sand sites. Additional measurements were undertaken to106

quantify both saltation height and surface topographic change during the initial forma-107

tion of a sand patch using Leica P20 and P50 TLS instruments placed downwind of an108

emerging patch at Great Sand Dunes National Park, Colorado, USA on the 15th April109

2019. Details on the data processing methods can be found in the Supplementary In-110

formation.111

3 Evidence for Differing Sand Transport Processes on Surfaces with112

Different Erodibility113

Our measurements show evidence of different particle behavior over the erodible114

and non-erodible beds. We find that the saltation height on the erodible surface is in-115

variant with wind velocity whereas it increases with wind velocity on the non-erodible116

surface, as has been noted by other researchers (Bagnold, 1937, 1941; Creyssels et al.,117

2009; Ho et al., 2012; Martin & Kok, 2017, Figure 2a). This field measured saltation height118

behavior then drives a change in sediment transport law on the erodible and non-erodible119

surface, as confirmed by our three independent measures of sand transport: a vertical120

array of Wenglor laser counters (Figure 2b), Bagnold type sand traps (Figure 2c), and121

Sensit piezoelectric counters (Figure 2d).122

Figures 2 b, c, and d show that for a given wind velocity, the amount of sand trans-123

ported over the non-erodible surface is greater than that transported over the erodible124

surface. According to Bagnold (1937), the velocity of saltating grains over the erodible125

bed is independent of the wind velocity, and consequently the sand flux over an erodi-126

ble surface scales quadratically with the wind speed (Ungar & Haff, 1987; Werner, 1990,127

orange dashed lines Figure 2b and d). However, over the non-erodible bed, the particle128

velocity increases with wind velocity, thereby establishing a cubic dependence of sand129

transport on wind velocity (Ho et al., 2011, black dashed lines Figure 2b and d). Two130

equations can thus be proposed to fit our datasets:131

Qsat = pQref
u2 − u2

t

u2
t

, (1)

for the erodible surface datasets, and,132

Qsat = pQref
u2 − u2

t

u2
t

u

ut
, (2)

for the non-erodible surface datasets, with Qref as the reference flux that is depen-133

dent on the sand characteristics, ut, the threshold velocity, and p, a fitting parameter134

(see Supplementary Information for details on values for each measurement method). Be-135

cause of this change in transport law, to respect mass balance, the transition from non-136

erodible to erodible bed should thus generate sand deposition.137
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Figure 2. Saltation height (a) and sediment flux (Q) as a function of wind velocity on both

surfaces, as measured from Wenglor vertical array (b), Bagnold trap (c), and Sensit counters (d).
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Figure 3. Conceptual model for emergence of a sand patch driven by change in sand trans-

port in the case of limited sand availability surface. (a) Pre-deposition state with the associated

potential saturated sand flux (blue line). (b) Post-deposition state, with red line representing the

actual sand flux.

4 Bedform Development138

4.1 Conceptual Model139

Based on our field measurements, we propose a conceptual model to explain the140

emergence of an isolated sand patch on a flat, non-erodible bed with limited sand avail-141

ability. We consider a flat, non-erodible surface (represented in black on Figure 3a) ad-142

jacent to an erodible zone (in orange). Due to this change in surface characteristics, and143

according to equations 1 and 2, a drop in the saturated sand flux at the transition from144

the non-erodible to erodible surface should occur (blue line on Figure 3a). However, the145

flux does not adjust instantaneously to its new saturated value, but responds with a char-146

acteristic relaxation length, called the saturation length Lsat, to reach Qsat (Sauermann147

et al., 2001; Andreotti et al., 2010; Pähtz et al., 2013; Selmani et al., 2018). The red line148

represents this decrease in sand flux downwind of the non-erodible/erodible bed bound-149

ary (Figure 3b). To respect mass balance, the excess sand transported on the non-erodible150

surface must deposit at the non-erodible/erodible transition following the decrease in sand151

flux over Lsat, which thereby leads to the formation of a sand deposit (Figure 3b). The152

rapid decrease in sand flux at the transition from a non-erodible to erodible surface (red153

line) thus generates a sand patch with an asymmetric shape, possessing a sharp upwind154

edge with a smooth downwind tail (Figure 3b).155

This simple conceptual model assumes a constant wind velocity above threshold,156

and a sharp transition from a non-erodible to erodible surface. In the next section, we157

compare qualitatively the topography of an incipient bedform in the field to the ideal-158

ized patch presented in Figure 3b.159

4.2 Field Evidence160

Sand transport measurements over a centimeter-high initial sand patch are chal-161

lenging in the field as the placement of instruments can modify or destroy the emerg-162

ing bedform by disrupting the windflow. Consequently, we measure concurrently the to-163

pography of an emerging sand patch and the saltation layer height with a non-invasive164

TLS. According to the measurements presented in Figure 2a, we can use the dependence165

of the saltation layer height upon the wind velocity as a proxy for the appropriate trans-166

port law. To confirm that the change in sand flux acts as a driver for sand patch initi-167

ation, we measured the topography and saltation layer height pre-(black) and post-(orange)168

emergence of a sand patch on a sediment availability-limited, non-erodible surface (Fig-169

ure 4; field site and method are described in Supplementary Information). Figure 4 shows170

the height of the saltation layer is constant above the non-erodible surface, whereas it171

decreases over the developing patch due to its erodible sand surface. When sand par-172

ticles start to travel over the erodible surface, each grain impact with the bed generates173
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Wind

Figure 4. TLS measured surface over an hour during the initial development of a sand patch

and the corresponding relative saltation height over the same surface. Measurements were under-

taken in the Great Sand Dunes National Park. The average wind speed measured at 0.1m above

the surface during the experiment was 6.35 m s−1. Relative saltation height is normalized by the

maximum saltation height within each x-minute measurement period (the methods are detailed

in the Supplementary Information).

a particle ejection (splash effect), so that this process is consumes energy. Consequently,174

saltating particles lose energy and experience a lower jump height, causing a decrease175

in the height of the saltation layer (Bagnold, 1937; Ho et al., 2012, 2014; Valance et al.,176

2015).177

As predicted by our conceptual model (Figure 3), the observed initial sand patch178

exhibits a reverse asymmetry, with the steepest slope at the upwind edge. Our field mea-179

surements (Figure 4) show a rapid decrease in saltation height from the upwind edge of180

the patch to a distance 1.4±0.3 m downwind of the patch toe. According to our concep-181

tual model, sand deposition occurs over the saturation length. Although the relation-182

ship between Lsat and the grain diameter is still a matter of debate (Pähtz et al., 2013;183

Pähtz & Durán, 2017; Selmani et al., 2018), here we follow Andreotti et al. (2010) to es-184

timate Lsat as185

Lsat ≈ 2.2
ρs
ρ

d (3)

At the Great Sand Dunes field site, the grain size is d=350 ± 50 µm, mass den-186

sity is ρs =2650 kgm−3, and the air density ρ = 1.2 kgm−3 that yields a saturation length187

of 1.7 ± 0.25 m, in good agreement with our field measurements. This therefore suggests188

that the saturation length sets the length of the incipient sand patch.189

5 Discussion and Conclusions190

Combining field measurements and a simple physically-based model, we propose191

a mechanism to explain the initiation of aeolian sand patches where there is limited sand192

availability. A change in surface characteristics (erodible/non-erodible or dry/moist) is193

critical, and leads to a modification of the sand transport dynamics. In agreement with194

previous studies, we show that the quantity of transported sand, and height of particle195

saltation, drops when encountering an erodible surface. The corresponding decrease in196

sand flux generates deposition in order to satisfy mass balance, thus adding sediment to197

the patch. Moreover, our field measurements demonstrate that the saturation length con-198

trols the size of the emerging deposit associated with the spatial relaxation of flux. Be-199

sides a change in surface mobility, the second critical parameter controlling sand patch200

emergence is the incoming sand flux. In our conceptual model, we assume the incom-201

ing sand flux equals the saturated sand flux associated with the non-erodible surface. How-202

ever, the value of incoming flux depends largely on the sand source availability upwind203
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of the initial patch. Without appropriate sand supply, such incipient bedforms are likely204

to degrade rapidly (Lancaster, 1996; Nield, 2011). The majority of sand patches develop205

in interdune areas (Lancaster, 1996) and beaches (Hesp & Arens, 1997; Nield et al., 2011;206

Baddock et al., 2018; Hage et al., 2018; Montreuil et al., 2020), and in these cases sand207

sources are provided by the surrounding dry sandy surfaces. However, in the case of a208

succession or field of patches, if all the excess sand is deposited on the upwind erodible209

surfaces (as in the case of our conceptual schematics), then sediment supply would be210

further reduced to downwind patches. This condition likely creates a control on sand feed-211

ing of downwind patches and suggests there is a role for temporal wind fluctuations, both212

in strength and direction, in maintaining a broad field of multiple sand patches. As sand213

starts to be deposited, the initial bedform will interact with the wind flow and conse-214

quently the downwind variation of the sand flux will depend not only on the nature of215

the substrate (erodible/ non-erodible) but also on the underlying and developing topog-216

raphy (Claudin et al., 2013; du Pont, 2015; Bristow et al., 2022). Consequently, to de-217

velop the conceptual arguments presented herein and investigate the conditions under218

which the aeolian sand patch is most likely to evolve, the present model needs further219

development to include full coupling between wind, transport and topography. In order220

to examine propagative solutions in a simplified dune model that accounted for these cou-221

plings, Andreotti et al. (2002b) identified flat bedform profiles without slipfaces (patches),222

but these solutions did not account for the change of transport law when bed conditions223

varied. However, these results did show the necessity of an incoming flux for these so-224

lutions to exist. The present study shows, for the first time, that it is possible to develop225

a sand patch on a non-erodible surface without any additional perturbation from the to-226

pography of the bed, and opens the way for study of the evolution of isolated sand patches227

towards larger bedforms and fully developed dunes (Kocurek et al., 1992; Bristow et al.,228

2022).229

Data Availability230

The data used in this manuscript can be found in the NERC National Geological231

Data Center: Huab river valley dataset (https://doi.org/10.5285/99e4446f-c43a-492d-232

83c9-e896206649c0, Nield et al., 2022a) and Great Sand Dunes National Park dataset233

(https://doi.org/10.5285/46e9ff95-27ca-4d3b-b587-fc9ce22c5781, Nield et al., 2022b). Sup-234

plementary figures and text can be found in the supporting information.235
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