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Abstract

We study a novel setting in Online Markov Decision Processes (OMDPs)
where the loss function is chosen by a non-oblivious strategic adver-
sary who follows a no-external regret algorithm. In this setting, we
first demonstrate that MDP-Expert, an existing algorithm that works
well with oblivious adversaries can still apply and achieve a pol-
icy regret bound of O(

√
T log(L) + τ2

√
T log(|A|)) where L is

the size of adversary’s pure strategy set and |A| denotes the size
of agent’s action space. Considering real-world games where the sup-
port size of a NE is small, we further propose a new algorithm:
MDP-Online Oracle Expert (MDP-OOE), that achieves a policy regret
bound of O(

√
T log(L) + τ2

√
Tk log(k)) where k depends only

on the support size of the NE. MDP-OOE leverages the key bene-
fit of Double Oracle in game theory and thus can solve games with
prohibitively large action space. Finally, to better understand the
learning dynamics of no-regret methods, under the same setting of no-
external regret adversary in OMDPs, we introduce an algorithm that
achieves last-round convergence to a NE result. To our best knowledge,
this is the first work leading to the last iteration result in OMDPs.
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1 Introduction

Reinforcement Learning (RL) [1] provides a general solution framework for
optimal decision making under uncertainty, where the agent aims to min-
imise its cumulative loss while interacting with the environment. While RL
algorithms have shown empirical and theoretical successes in stationary envi-
ronments, it is an open challenge to deal with non-stationary environments in
which the loss function and/or the transition dynamics change over time [2].
In tackling non-stationary environments, we are interested in designing learn-
ing algorithms that can achieve a no-regret guarantee [3, 4], where the regret
is defined as the difference between the accumulated total loss and the total
loss of the best fixed stationary policy in hindsight.

There are online learning algorithms that can achieve no-external regret
property with changing loss function (but not changing transition dynamics),
either in the full-information [3, 4] or the bandit [5, 6] settings. However, most
existing solutions are established based on the key assumption that the adver-
sary is oblivious, meaning the changes in loss functions do not depend on the
historical trajectories of the agent. This crucial assumption limits the appli-
cability of no-regret algorithms to many RL fields, particularly multi-agent
reinforcement learning (MARL) [7]. In a multi-agent system, since all agents
are learning simultaneously, one agent’s adaption of its strategy will make the
environment non-oblivious from other agents’ perspectives. Therefore, to find
the optimal strategy for each player, one must consider the strategic reactions
from others rather than regard them as purely oblivious. As such, studying
no-regret algorithms against a non-oblivious adversary is a pivotal step in
adapting existing online learning techniques into MARL settings.

Another challenge in online learning is the non-convergence dynamics in
a system. When agents apply no-regret algorithms such as Multiplicative
Weights Update (MWU) [8] or Follow the Regularized Leader (FTRL) [9] to
play against each other, the system demonstrates behaviours that are Poincaré
recurrent [10], meaning the last-round convergence can never be achieved [11].
Recent works [12, 13] have focused on different learning dynamics in normal-
form games that can lead to last-round convergence to a Nash equilibrium (NE)
while maintaining the no-regret property. Yet, when it comes to OMDPs, it still
remains an open challenge of how the no-regret property and the last-round
convergence can be both achieved, especially against the strategic adversary.
The focus of OMDPs is often on regret bound analysis against oblivious adver-
sary [3–5], in which last-round convergence property is impossible to achieve
due to the adversary’s fixed behaviour. When a non-oblivious adversary is con-
sidered, the focus is on finding stationary points of the system [14, 15] rather
than analysing the dynamic leading to the last round convergence to a NE.
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Markov decision processes (MDPs) provide a popular tool to formulate
stochastic optimization problems [1], yet it is often that only a relaxation of
real models can satisfy the Markovian assumption. In situations where the
reward function can change over time and thus the Markovian assumption is
not satisfied, OMDPs offer a general solution by applying existing experts’
algorithms to more adversarial MDPs [3]. OMDPs algorithms provide the agent
with a performance guarantee under the assumption that the adversary is
oblivious [4, 16], thus limiting its application in settings where the adversary
is also a learning agent.

In this paper, we relax the assumption of the oblivious adversary in OMDPs
and study a new setting where the loss function is chosen by a strategic agent
that follows a no-external regret algorithm. This setting can be used in appli-
cations within economics to model systems and firms [17], for example, an
oligopoly with a dominant player, or ongoing interactions between industry
players and authority (e.g., a government that acts as an order-setting body).
Another motivating example is the stochastic inventory control problem [18].
In each period, based on the current inventory, the store manager needs to
decide the number of items to order from the supplier. The manager faces the
dilemma: having too many items will increase the inventory cost while running
out of items will lead to revenue loss. Since both the item price and the inven-
tory cost can change over time, the problem can be considered as OMDPs.
Furthermore, the supplier can decide the item price based on the total demand
of the item as well as its capacity to maximise its profit, thus making it a
non-oblivious strategic adversary.

Under this setting, we study how the agent can achieve different goals such
as no-policy regret and last-round convergence.

Our contributions are at three folds:

• We prove that the well-known MDP-Expert (MDP-E) algorithm [3] can still
apply by achieving a policy regret bound of O(

√
T log(L)+τ2

√
T log(|A|)),

and the average strategies of the agents will converge to a NE of the game.
• For many real-world applications where the support size of NE is

small [19, 20], we introduce an efficient no-regret algorithm, MDP-Online
Oracle Expert (MDP-OOE), which achieves the policy regret bound of
O(τ2

√
Tk log(k) +

√
T log(L)) against non-oblivious adversary, where k

depends on the support size of the NE. MDP-OOE inherits the key benefits
of both Double Oracle [19] and MDP-E [3]; it can solve games with large
action space while maintaining the no-regret property.

• To achieve last-round convergence guarantee for no-external regret algo-
rithms, we introduce the algorithm of Last-Round Convergence in OMDPs
(LRC-OMDPs) such that in cases where the adversary follows a no-external
regret algorithm, the dynamics will lead to the last-round convergence to a
NE. To the best of our knowledge, this is the first last-iteration convergence
result in OMDPs.
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Table 1: The scope of our contribution in this work.

Non-oblivious adversary within
a two-player game framework

Oblivious adversary in
Markov Decision Processes

Regret w.r.t best pol-
icy in hindsight

MDP-OOE (our contribution)

O(τ2
√
Tk log(k) +

√
T log(L))

OMDPs: (MDP-E) [3]

RegT = O(τ2
√
T log(|A|))

Regret w.r.t. value of
the game

SGs:(UCSG) [21]

RegT = Õ(D3S5|A|+DS
√

|A|T ) OMDPs

2 Related Work

The setting of OMDPs with no-external regret adversary, though novel, shares
certain aspects in common with existing literature in online learning and
stochastic game domains. Here we review each of them.

Many researchers have considered OMDPs with an oblivious environment,
where the loss function can be set arbitrarily. The performance of the algorithm
is measured by external regret: the difference between the total loss and the
best stationary policy in hindsight. In this setting with stationary transition
dynamics, MDP-E [3] proved that if the agent bounds the “local” regret in each
state, then the “global” regret will be bounded. Neu et al. [5, 16] considered the
same problem with the bandit reward feedback and provided no-external regret
algorithms in this setting. Dick et al. [4] studied a new approach for OMDPs
where the problem can be transformed into an online linear optimization form,
from which no-external regret algorithms can be derived. Cheung et al. [22]
proposed a no-external regret algorithm in the case of non-stationary transition
distribution, given that the variation of the loss and transition distributions
do not exceed certain variation budgets.

In a non-oblivious environment, Yu et al.[23] provided an example demon-
strating that no algorithms can guarantee sublinear external regret against a
non-oblivious adversary. Thus, in OMDPs with non-oblivious opponents (e.g.,
agents using adaptive algorithms), the focus is often on finding stationary
points of the system rather than finding a no-external regret algorithm [14].
In this paper, we study cases where the adversary follows an adaptive no-
regret algorithm, and tackle the hardness result of non-oblivious environments
in OMDPs.

The problem of the non-oblivious adversary has also been studied in the
multi-armed bandit setting, a special case of OMDPs. In this setting, Arora et
al. [24] considered m-memory bounded adversary and provided an algorithm
with a policy regret bound that depends linearly on m, where the policy regret
includes the adversary’s adaptive behaviour (i.e., see Equation (1)). Compared
to their work, our paper considers strategic adversary which turns out to be
∞-memory bounded adversary. Thus the algorithm suggested in [24] can not
be applied. Recently, Dinh et al. [12] studied the same strategic adversary in
full information normal-form setting and provided an algorithm that leads to
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last round convergence. However, both of the above works only studied the
simplified version of OMDPs, thus they do not capture the complexity of the
problem. We argue that since strategic adversary setting has many applications
due to the popularity of no-regret algorithms [25–27], it is important to study
no-regret methods in more practical settings such as OMDPs.

Stochastic games (SGs) [28, 29] offer a multi-player game framework where
agents jointly decide the loss and the state transition. Compared to OMDPs,
the main difference is that SGs allow each player to have a representation of
states, actions and rewards, thus players can learn the representations over
time and find the NE of the stochastic games [21, 30]. The performance in
SGs is often measured by the difference between the average loss and the value
of the game (i.e., the value when both players play a NE), which is a weaker
notion of regret compared to the best fixed policy in hindsight in OMDPs.
Intuitively, the player can learn the structure of the game (i.e., transition
model, reward function) over time, thus on average, the player can calculate
and compete with the value of the game. In non-episodic settings, the Upper
Confidence Stochastic Game algorithm (UCSG) [21] guarantees the regret of
RegT = Õ(D3S5|A| + DS

√
|A|T ) with high probability, given that the oppo-

nent’s action is observable. However, to compete with the best stationary
policy, knowing the game structure does not guarantee a good performance
(i.e., the performance will heavily depend on the strategic behaviour of oppo-
nents). Tian et al. [30] proved that in the SG setting, achieving no regret with
respect to the best stationary policy in hindsight is statistically hard. Our set-
tings can be considered as a sub-class of SGs where only the agent controls the
transition model (i.e., single controller SGs), based on this, we try to overcome
the above challenge.

We summarise the difference between our setting and OMDPs and SGs in
Table 1. Compared to OMDPs, we relax the assumption about the oblivious
environment and study a non-oblivious counterpart with a strategic adver-
sary. Compared to SGs, we relax the assumption of knowing the opponent’s
action in a non-episodic setting and our results only require observing the loss
functions. Furthermore, the performance measurement is with respect to the
best stationary policy in hindsight, which is proved to be statistically hard in
SGs [30]. Intuitively, since we consider the problem of single controller SGs,
it can overcome the hardness result. Guan et al. [15] studied a similar setting
to our paper, where only one player affects the transition kernel of the game.
By viewing the game as an online linear optimisation, it can derive the mini-
max equilibrium of the game. There are two main challenges of the algorithm.
Firstly, it requires both players to pre-calculate the minimax equilibrium of
the game and fixes to this strategy during the repeated game. Thus, in the sit-
uation where the adversary is an independent agent (i.e., it follows a different
learning dynamic), the proposed algorithm can not be applied. Secondly, and
most importantly, the no regret analysis is not provided for the algorithm in
[15], thus the algorithm can not be applied in an adversary environment. We
fully address both challenges in this paper.
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3 Problem Formulations & Preliminaries

We consider OMDPs where at each round t ∈ N, an adversary can choose the
loss function lt based on the agent’s policy history {π1, π2, . . . , πt−1}. Formally,
we have OMDPs with finite state space S; finite action set for the agent at
each state A; and a fixed transition model P . The agent’s starting state, x1, is
distributed according to some distribution µ0 over S. At time t, given state xt ∈
S, the agent chooses an action at ∈ A, then the agent moves to a new random
state xt+1 which is determined by the fixed transition model P (xt+1|xt, at).
Simultaneously, the agent receives an immediate loss lt(xt, at), in which the loss
function lt : S×A→ R is bounded in [0, 1]|A|×|S| and chosen by the adversary

from a simplex ∆L := {l ∈ R|A|×|S||l =
∑L

i=1 xili,
∑L

i=1 xi = 1, xi ≥ 0 ∀i}
where {l1, l2, . . . , lL} are the loss vectors of the adversary. We assume zero-
sum game setting where the adversary receives the loss of −lt(xt, at) at round
t and consider popular full information feedback [3, 4], meaning the agent can
observe the loss function lt after each round t.

Against the strategic adversary, the formal definition of no-external regret
becomes inadequate since the adversary is allowed to adapt to the agent’s
action. In this paper, we adopt the same approach in [24] and consider policy
regret. Formally, the goal of the agent is to have minimum policy regret with
respect to the best fixed policy in hindsight:

RT (π) = EX,A

[
T∑
t=1

lπtt (Xt, At)

]
− EX,A

[
T∑
t=1

lπt (Xπ
t , A

π
t )

]
, (1)

where lπtt denotes the loss function at time t while the agent follows π1, . . . , πT
and lπt is the adaptive loss function against the fixed policy π of the agent.
We say that the agent achieves sublinear policy regret (i.e., no-policy regret
property) with respect to the best fixed strategy in hindsight if RT (π) satisfies:

lim
T→∞

max
π

RT (π)

T
= 0.

In a general non-oblivious adversary, we prove by a counter example that it
is impossible to achieve an algorithm with a sublinear policy regret 1. Suppose
the agent faces an adversary such that it gives a very low loss for the agent if
the action in the first round of the agent is a specific action (i.e., by fixing the
loss function to 0), otherwise the adversary will give a high loss (i.e., by fixing
the loss function to 1). Against this type of adversary, without knowing the
specific action, the agent’s policy regret in Equation (1) will be O(T ). Thus,
in general non-oblivious adversary cases, we will have a hardness result in
policy regret. To resolve the hardness result, we study the strategic adversary
in OMDPs.

1In the multi-armed bandit setting, it is also impossible to achieve sublinear policy regret against
all adaptive adversaries (see Theorem 1 in [24]).
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Assumption 1 (Strategic Adversary) The adversary flows a no-external regret
algorithm such as for any sequence of πt:

lim
T→∞

max
l

RT (l)

T
= 0, where RT (l) = EX,A

[
T∑
t=1

l(Xt, At)

]
− EX,A

[
T∑
t=1

lπtt (Xt, At)

]
.

The rationale of Assumption 1 comes from the vanilla property of no-
external algorithms: without prior information, the adversary will not do
worse than the best-fixed strategy in hindsight [12]. Thus, without the priority
knowledge about the agent, the adversary will have an incentive to follow a
no-external regret algorithm. In the same way as the full information feedback
assumption for the agent, we assume that after each round t, the adversary
observes the agent’s stationary policy distribution dπt .

For every policy π, we define P (π) the state transition matrix induced
by π such that P (π)s,s′ =

∑
a∈A π(a|s)P as,s′ . We assume through the paper

that we have the mixing time assumption, which is a common assumption in
OMDPs [3, 4, 16]:

Assumption 2 (Mixing time) There exists a constant τ > 0 such that for all
distributions d and d′ over the state space, any policy π,∥∥dP (π)− d′P (π)

∥∥
1
≤ e−1/τ∥∥d− d′∥∥

1
,

where ‖x‖1 denotes the l1 norm of a vector x.

Denote vπt (x, a) the probability of (state, action) pair (x, a) at time step
t by following policy π with initial state x1. Following Assumption 2, for
any initial states, vπt will converge to a stationary distribution dπ as t goes
to infinity. Denote dΠ the stationary distribution set from all agent’s deter-
ministic policies. With a slight abuse of notation, when an agent follows an
algorithm A with use π1, π2, . . . at each time step, we denote vt(x, a) =
P [Xt = x,At = a] , dt = dπt . Thus, the regret in Equation (1) can be
expressed as

RT (π) = E

[
T∑
t=1

〈
lπtt ,vt

〉]
− E

[
T∑
t=1

〈
lπt ,v

π
t

〉]
.

Assumption 2 allows us to define the average loss of policy π in an online MDP
with a loss l as ηl(π) = 〈l,dπ〉 and the accumulated loss Qπ,l(s, a) is defined as

Qπ,l(s, a) = E

[ ∞∑
t=1

(
l(st, at)− ηl(π)

)∣∣∣s1 = s, a1 = a, π

]
.

As the dynamic between the agent and adversary is zero-sum, we can apply
the minimax theorem [31]:
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Algorithm 1 MDP-Expert (MDP-E)

1: Input: Expert algorithm Bs (i.e., MWU) for each state
2: for t = 1 to ∞ do
3: Using algorithm Bs with set of expert A and the feedback Qπt,lt(s, .)

for each state s
4: Output πt+1 and observe lt+1

5: end for

min
dπ∈∆dΠ

max
l∈∆L

〈l,dπ〉 = max
l∈∆L

min
dπ∈∆dΠ

〈l,dπ〉 = v. (2)

The saddle point (l,dπ) that satisfies Equation (2) is the NE of the game [32]
and v is the called the value of the game. Our work is based on no-external
regret algorithms in normal-form games such as Multiplicative Weights
Update [8], which is described as

Definition 1 (Multiplicative Weights Update) Let k1,k2, ... be a sequence of feed-
back received by the agent. The agent is said to follow the MWU if strategy π̃t+1 is
updated as follows

π̃t+1(i) = π̃t(i)
exp(−µtkt(ai))∑n

i=1 π̃t(i) exp(−µtkt(ai))
, ∀i ∈ [n], (3)

where µt > 0 is a parameter, n is the number of pure strategies (i.e., experts) and
π̃0 = [1/n, . . . , 1/n].

We also consider ε-Nash equilibrium of the game:

Definition 2 (ε-Nash equilibrium) Assume ε > 0. We call a point (l,dπ) ∈ ∆L ×
∆dΠ

ε-NE if:
max
l∈∆L

〈l,dπ〉 − ε ≤ 〈l,dπ〉 ≤ min
dπ∈∆dΠ

〈l,dπ〉+ ε.

Under the setting of OMDPs against the strategic adversary who aims to
minimise the external regret (i.e., Assumption 1), we study several properties
that the agent can achieve such as no-policy regret and last round convergence.

4 MDP-Expert against Strategic Adversary

When the agent plays against a non-oblivious opponent, one challenge is that
the best fixed policy π is not based on the current loss sequence [l1, l2, . . . ]
of the agent but a different loss sequence [lπ1 , l

π
2 . . . ] induced by the policy π.

Thus, to measure the regret in the case of a non-oblivious opponent, we need
information on how the opponent will play against a fixed policy π. Under
Assumption 1, we prove that existing MDP-E [3] method, which is designed
for the oblivious adversary, will have no- policy regret property against the
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non-oblivious strategic adversary in our setting. Intuitively, MDP-E maintains
a no-external regret algorithm (i.e., MWU) in each state to bound the local
regret, thus the global regret can be bounded accordingly. The pseudocode of
MDP-E is given in Algorithm 1. The following lemma links the relationship
between the external-regret of the adversary and the regret with respect to
the policy stationary distribution:

Lemma 1 Under MDP-E played by the agent, the external-regret of the adversary
in Assumption 1 can be expressed as:

RT (l) = EX,A

[
T∑
t=1

l(Xt, At)

]
− EX,A

[
T∑
t=1

lπtt (Xt, At)

]

=

T∑
t=1

〈l,dπt〉 −
T∑
t=1

〈lt,dπt〉+O
(
τ2
√
T log(|A|)

)
.

Proof It is sufficient to show that for any sequence of lt

EX,A

[
T∑
t=1

lt(Xt, At)

]
−

T∑
t=1

〈lt,dπt〉 = O(τ2
√
T log(|A|)),

where lt denotes the loss vector of the adversary when the agent follows π1, π2, . . .
(i.e., the same as lπtt ).

Using the consequence of Lemma 5.2 in [3] 2, for any sequence of lt we have:

EX,A

[
T∑
t=1

lt(Xt, At)

]
−

T∑
t=1

〈lt,dπt〉

=

T∑
t=1

〈lt,vt − dπt〉 ≤
T∑
t=1

|〈lt,vt − dπt〉| ≤
T∑
t=1

‖vt − dπt‖1

≤
T∑
t=1

2τ2

√
log(|A|)

t
+ 2e−t/τ

≤ 4τ2
√
T log(|A|) + 2(1 + τ) = O

(
τ2
√
T log(|A|)

)
.

(4)

The proof is complete. �

Based on Lemma 1, we can tell that the sublinear regret will hold if and only
if the adversary maintains a sublinear regret with respect to the agent’s policy
stationary distribution. As we assume that after each time t, the adversary can
observe the stationary distribution dπt , then by applying standard no-external
regret algorithm for online linear optimization against the feedback dπt (i.e.,
MWU), the adversary can guarantee good performance for himself. Thus, the
Assumption 1 for the adversary is justifiable.

In the rest of the paper, without loss of generality, we will study the case
where the external-regret of the adversary with respect to the agent’s policy

2For the completeness of the paper, we provide the lemma in Appendix A.
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stationary distribution has the following bound (i.e., the adversary follows
optimal no-external regret algorithms such as MWU, FTRL with respect to
policy stationary distribution of the agent 3):

max
l∈∆L

(
T∑
t=1

〈l,dπt〉 −
T∑
t=1

〈lt,dπt〉

)
=

√
T log(L)

2
.

The next lemma provides a lower bound for the performance of a fixed policy
of the agent against a strategic adversary.

Lemma 2 Suppose the agent follows a fixed stationary strategy π, then the adversary
will converge to the best response to the fixed stationary strategy and

T∑
t=1

〈lπt ,dπ〉 ≥ Tv −
√
T log(L)

2
.

Proof From Lemma 1, if the adversary follows a no-regret algorithm to achieve good
performance in Assumption 1, then the adversary must follow a no-external regret
algorithm with respect to the policy’s stationary distribution. Without loss of gen-
erality, we can assume that the adversary follows the Multiplicative Weight Update
with respect to the policy’s stationary distribution dπ. Then following the property
of Multiplicative Weight Update in an online linear problem, we have:

max
l∈L
〈l,dπ〉 −

1

T

T∑
t=1

〈lπt ,dπ〉 ≤
√

log(L)

2T
.

From the famous minimax theorem [31] we also have:

max
l∈L
〈l,dπ〉 ≥ min

dπ∈dΠ

max
l∈L
〈l,dπ〉 = v.

Thus we have:
T∑
t=1

〈lπt ,dπ〉 ≥ T max
l∈L
〈l,dπ〉 −

√
T log(L)

2

≥ Tv −
√
T log(L)

2
.

(5)

�

From Lemma 2, we can prove the following theorem:

Theorem 1 Suppose the agent follows MDP-E Algorithm 1, then the regret with
respect to the stationary distribution will be bounded by

T∑
t=1

〈
lπtt ,dπt

〉
−

T∑
t=1

〈
lπt ,dπ

〉
≤
√
T log(L)

2
+ 3τ

√
T log(|A|)

2
.

3If the adversary does not follow the optimal bound (i.e., irrational), then regret bound of the
agent will change accordingly.
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Proof From Lemma 2, it is sufficient to show that

T∑
t=1

〈
lπtt ,dπt

〉
≤ Tv + 3τ

√
T log(|A|)

2
.

Since the agent uses a no-regret algorithm with respect to the stationary distribution
(i.e., MDP-E), following the same argument in Theorem 5.3 in [3] we have:

T∑
t=1

〈
lπtt ,dπt

〉
≤ T min

dπ

〈
l̂,dπ

〉
+ 3τ

√
T log(|A|)

2
,

where l̂ = 1
T

∑T
t=1 l

πt
t . From the minimax equilibrium, we also have

min
dπ
〈l̂,dπ〉 ≤ max

l∈∆L

min
dπ∈dΠ

〈l,dπ〉 = v.

Thus, the proof is complete. �

Now, we can make the link between the stationary regret and the regret of
the agent in Equation (1).

Theorem 2 Suppose the agent follows MDP-E Algorithm 1, then the agent’s regret
in Equation (1) will be bounded by

RT (π) = O(
√
T log(L) + τ2

√
T log(|A|)).

Proof Using the consequence of Lemma 5.2 in [3], for any sequence of lt we have:

T∑
t=1

〈lt,vt − dπt〉 ≤
T∑
t=1

|〈lt,vt − dπt〉| ≤
T∑
t=1

‖vt − dπt‖1

≤
T∑
t=1

2τ2

√
log(|A|)

t
+ 2e−t/τ

≤ 4τ2
√
T log(|A|) + 2(1 + τ) = O

(
τ2
√
T log(|A|)

)
.

(6)

Thus we have

T∑
t=1

|〈lt,vt − dπt〉| ≤ 2(1 + τ) + 4τ2
√
T log(|A|). (7)

Furthermore, if the agent uses a fixed policy π then by Lemma 2, we have:

|
T∑
t=1

〈lt,dπ − vπt 〉| ≤ 2τ + 2.

Since the agent uses MDP-E, a no-external regret algorithm, following the same
argument in Theorem 4.1 in [3] we have:

T∑
t=1

〈lπtt ,dπt〉 ≤ T min
dπ
〈l̂,dπ〉+ 3τ

√
T log(|A|)

2
≤ Tv + 3τ

√
T log(|A|)

2
.
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Along with Lemma 2, we have:

T∑
t=1

〈lπtt ,dπt〉 −
T∑
t=1

〈lπt ,dπ〉 ≤

(
Tv + 3τ

√
T log(|A|)

2

)
−

(
Tv −

√
T log(L)

2

)

= 3τ

√
T log(|A|)

2
+

√
T log(L)

2
.

Using the above two inequalities, we can bound the regret of the agent with
respect to the regret of the policy’s stationary distribution:

RT (π) = Ex,a

[
T∑
t=1

lπtt (xt, at)

]
− Ex,a

[
T∑
t=1

lπt (xπt , a
π
t )

]

=

T∑
t=1

〈lπtt ,vt〉 −
T∑
t=1

〈lπt ,vπt 〉

≤
T∑
t=1

(
〈lπtt ,dπt〉+ |〈lπtt ,vt − dπt〉|

)
−

T∑
t=1

(
〈lπt ,dπ〉 − |〈lπt ,vπt − dπ〉|

)
≤

T∑
t=1

〈lπtt ,dπt〉 −
T∑
t=1

〈lπt ,dπ〉+ 2(1 + τ) + 4τ2
√
T log(|A|) + 2 + 2τ

≤
√
T log(L)

2
+ 3τ

√
T log(|A|)

2
+ 4(1 + τ) + 4τ2

√
T log(|A|)

= O(
√
T log(L) + τ2

√
T log(|A|)).

(8)

The proof is complete. �

We note that Theorem 2 will hold true for a larger set of adversaries outside
Assumption 1 (e.g., FP [33]) satisfying the following property: for every fixed
policy of the agent, the adversary’s policy converges to the best response with
respect to this fixed policy. With this property, we can bound the performance
of the agent’s fixed policy in Lemma 2 and thus derive the regret bound of the
algorithm. Note that the regret bound in Theorem 2 will depend on the rate
of convergence to the best response against the agent’s fixed policy.

As we have shown in previous theorems, the dynamic of playing a no-regret
algorithm in OMDPs against a strategic adversary can be interpreted as a two-
player zero-sum game setting with the corresponding stationary distribution.
From the classical saddle point theorem [8], if both players follows a no-regret
algorithm then the average strategies will converge to the saddle point (i.e., a
NE).

Theorem 3 Suppose the agent follows MDP-E, then the average strategies of both
the agent and the adversary will converge to the εt-Nash equilibrium of the game with:

εT =

√
log(L)

2T
+ 3τ

√
log(|A|)

2T
.
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Proof Since the agent and the adversary use no-regret algorithms with respect to
the policy’s stationary distribution, we can use the property of regret bound in a
normal-form game to apply. Thus we have:

max
l∈L
〈l, d̂π〉 −

1

T

T∑
t=1

〈lπtt ,dπt〉 ≤
√

log(L)

2T
,

1

T

T∑
t=1

〈lπtt ,dπt〉 −min
dπ
〈l̂,dπ〉 ≤ 3τ

√
log(|A|)

2T
,

where d̂π = 1
T

∑T
t=1 dπt and l̂ = 1

T

∑T
t=1 l

πt
t . From this, we can prove that

〈l̂, d̂π〉 ≥ min
dπ
〈l̂,dπ〉 ≥

1

T

T∑
t=1

〈lπtt ,dπt〉 − 3τ

√
log(|A|)

2T

≥ max
l∈L
〈l, d̂π〉 −

√
log(L)

2T
− 3τ

√
log(|A|)

2T
,

and,

〈l̂, d̂π〉 ≤ max
l∈L
〈l, d̂π〉 ≤

1

T

T∑
t=1

〈lπtt ,dπt〉+

√
log(L)

2T

≤ min
dπ
〈l̂,dπ〉+ 3τ

√
log(|A|)

2T
+

√
log(L)

2T
.

Thus, with εt =

√
log(L)

2T + 3τ

√
log(|A|)

2T , we derive

max
l∈L
〈l, d̂π〉 − εt ≤ 〈l̂, d̂π〉 ≤ min

dπ
〈l̂,dπ〉+ εt.

By definition, (l̂, d̂π) is εt-Nash equilibrium. �

With the sublinear convergence rate to an NE, the dynamic between MDP-
E and no-regret adversary (i.e., MWU) provides an efficient method to solve
the single-controller SGs.

5 MDP-Online Oracle Expert Algorithm

As shown in the previous section, we can bound the regret in Equation (1) by
bounding the regret with respect to the stationary distribution. In MDP-E,
the regret bound (i.e., O

(√
T log(L) + τ2

√
T log(|A|)

)
) depends on the size of

pure strategy set (i.e., |A|) thus it becomes less efficient when the agent has a
prohibitively large pure strategy set.

Interestingly, a recent paper by Dinh et al. [20] suggested that in normal-
form games, it is possible to achieve a better regret bound where it only
depends on the support size of NE rather than |A|. Unfortunately, extending
this finding for OMDPs is highly non-trivial. The method in [20] is designed for
normal-form games only; in the worst scenario, its regret bound will depend on

the size of the pure strategy set, which is huge under our settings (i.e., |A|S).
In this section, we provide a no-policy regret algorithm: MDP-Online Ora-

cle Expert (MDP-OOE). It achieves the regret bound that only depends on
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the size of NE support rather than the size of the game. We start by presenting
the small NE support size assumption.

Assumption 3 (Small Support Size of NE) Let (dπ∗ , l
∗) be a Nash equilibrium of

the game of size |A|S × L. We assume the support size of (dπ∗ , l
∗) is smaller than

the game size: max
(
| supp(dπ∗)|, | supp(l∗)|

)
< min(|A|S, L).

Note that the assumption of the small support size of NE holds in many
real-world games [20, 34–37]. In addition, we prove that such an assumption
also holds in cases where the loss vectors [l1, ..., lL] are sampled from a con-
tinuous distribution and the size of the loss vector set L is small compared to

the agent’s pure strategy set, that is, |A|S � L, thus further justifying the
generality of this assumption.

Lemma 3 Suppose that all loss functions are sampled from a continuous distribution
and the size of the loss function set is small compared to the agent’s pure strategy set

(i.e., |A|S � L). Let (dπ∗ , l
∗) be a Nash equilibrium of the game of size |A|S × L.

Then we have:
max

(
| supp(dπ∗)|, | supp(l∗)|

)
≤ L.

Proof Within the set of all zero-sum games, the set of zero-sum games with non-
unique equilibrium has Lebesgue measure zero [11]. Thus, if the loss function’s entries
are sampled from a continuous distribution, then with probability one, the game has
a unique NE. Following the Theorem 1 in [38] for games with unique NE, we have:

| supp(dπ∗)| = | supp(l∗)|.

We also note that the support size of the NE can not exceed the size of the game:

| supp(dπ∗)| ≤ |A|S; | supp(l∗)| ≤ L.

Thus we have:

max
(
| supp(dπ∗)|, | supp(l∗)|

)
= | supp(l∗)| ≤ L.

�

Since the pure strategy set of the adversary L is much smaller compared
to the pure strategy set of the agent |A||S|, the support size of NE will highly
likely be smaller compared to the size of the agent’s strategy set. Thus the
agent can exploit this extra information to achieve better performance.

We now present the MDP-Online Oracle Expert (MDP-OOE) algorithm
as follows. MDP-OOE maintains a set of effective strategy Ast in each state.
In each iteration, the best response with respect to the average loss function
will be calculated. If all the actions in the best response are included in the
current effective strategy set Ast for each state, then the algorithm continues
with the current set Ast in each state. Otherwise, the algorithm updates the
set of effective strategies in steps 8 and 9 of Algorithm 2. We define the period
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of consecutive iterations as one time window Ti in which the set of effective
strategy Ast stays fixed, i.e., Ti :=

{
t
∣∣ |Ast | = i

}
. Intuitively, since both the

agent and the adversary use a no-regret algorithm to play, the average strategy
of both players will converge to the NE of the game. Under the small NE
support size assumption, the size of the agent’s effective strategy set is also

small compared to the whole pure strategy set (i.e., |A|S). MDP-OOE ignores
the pure strategies with poor average performance and only considers ones
with high average performance. The regret bound with respect to the agent’s
stationary distribution is given as follows:

Algorithm 2 MDP-Online Oracle Expert

1: Initialise: Sets A1
0, . . . A

S
0 of effective strategy set in each state

2: for t = 1 to ∞ do
3: πt = BR(l̄)
4: if πt(s, .) ∈ Ast−1 for all s then
5: Ast = Ast−1 for all s
6: Using the expert algorithm Bs with effective strategy set Ast and

the feedback Qπt,lt(s, .)
7: else if there exists πt(s, .) /∈ Ast−1 then
8: Ast = Ast−1 ∪ πt(s, .) if πt(s, .) /∈ Ast−1

9: Ast = Ast−1∪a if πt(s, .) ∈ Ast−1 where a is randomly selected from
the set A/Ast−1.

10: Reset the expert algorithm Bs with effective strategy set Ast and
the feedback Qπt,lt(s, .)

11: end if
12: l̄ =

∑T
i=T̄i

lt
13: end for

Theorem 4 Suppose the learning agent uses Algorithm 2, then the regret with respect
to the stationary distribution will be bounded by:

T∑
t=1

〈
lπtt ,dπt

〉
−
〈
lπtt ,dπ

〉
≤ 3τ

(√
2Tk log(k) +

k log(k)

8

)
,

where k is the number of time windows.

Proof We first have:

Es∼dπ [Qπt,lt(s, π)] = Es∼dπ,a∼π[Qπt,lt(s, a)]

= Es∼dπ,a∼π[lt(s, a)− ηlt(πt) + Es′∼Ps,a [Qπt,lt(s
′, πt)]]

= Es∼dπ,a∼π[lt(s, a)]− ηlt(πt) + Es∼dπ [Qπt,lt(s, πt)]

= ηlt(π)− ηlt(πt) + Es∼dπ [Qπt,lt(s, πt)].
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Thus we have:

〈lπtt ,dπ〉 − 〈l
πt
t ,dπt〉 =

∑
s∈S

dπ(s)
(
Qπt,lt(s, π)−Qπt,lt(s, πt)

)
. (9)

Let T1, T2, ..., Tk be the time window that the BR(l̄) does not change. Then in that
time window, the best response to the current l̄ is inside the current pure strategies
set in each state. In each time window, following Equation (9) we have:

T̄i+1∑
t=|T̄i|

〈lπtt ,dπ〉 − 〈l
πt
t ,dπt〉 =

∑
s∈S

dπ(s)

T̄i+1∑
t=|T̄i|

(
Qπt,lt(s, π)−Qπt,lt(s, πt)

)
. (10)

Since during each time window, the pure strategies Ast does not change, thus we have:

min
π∈Π

T̄i+1∑
t=|T̄i|

〈lπtt ,dπ〉 = min
π∈As|T̄i|

T̄i+1∑
t=|T̄i|

〈lπtt ,dπ〉.

Thus, in each state s of a time window, the agent only needs to minimize the loss
with respect to the action in As|T̄i|. Put it differently, the expert algorithm in each

state does not need to consider all pure action in each state, but just the current
effective strategy set. For a time window Ti, if the agent uses a no-regret algorithm
with the current effective action set and the learning rate µt =

√
8 log(i)/t, then the

regret in each state will be bounded by [25]:

3τ

(√
2|Ti| log(Ast ) +

log(Ast )

8

)
≤ 3τ

(√
2T i log(i) +

log(i)

8

)
.

Thus, the regret in this time interval will also be bounded by:

T̄i+1∑
t=|T̄i|

〈lπtt ,dπt〉 − 〈l
πt
t ,dπ〉 ≤ 3τ

(√
2|Ti| log(i) +

log(i)

8

)
. (11)

Sum up from i = 1 to k in Inequality (11) we have:

T∑
t=1

〈lπtt ,dπt〉 − 〈l
πt
t ,dπ〉 =

k∑
i=1

T̄i+1∑
t=|T̄i|

〈lπtt ,dπt〉 − 〈l
πt
t ,dπ〉

≤
k∑
i=1

3τ

(√
2|Ti| log(i) +

log(i)

8

)
≤ 3τ

(√
2Tk log(k) +

k log(k)

8

)
.

(12)

The proof is complete. �

In Algorithm 2, each time the agent updates the effective strategy set Ast
at state s, exactly one new pure strategy is added into the effective strategy
set for each state, thus the number k will be at most |A|. Therefore, we have
the regret w.r.t the stationary distribution in the worst case will be:

3τ

(√
2T |A| log(|A|) +

|A| log(|A|)
8

)
.

However, as shown in [20, Figure 1], the number of iterations in DO method
(respectively the number of time windows in our setting) is linearly dependent
on the support size of the NE, thus with Assumption 3, Algorithm 2 will be
highly efficient.
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Remark 1 The regret bound in Theorem 4 will still hold in the case we consider the
total average lost instead of the average lost in each time window when calculating
the best response in Algorithm 2.

Proof We prove by induction that

min
π∈Π

T̄k∑
t=1

〈lπtt ,dπt〉 − 〈l
πt
t ,dπ〉 ≤

k∑
j=1

 T̄j∑
t=T̄j−1+1

〈lπtt ,dπt〉 − 〈l
πt
t ,dπj 〉

 ,
where dπj denotes the best response in the interval [1, T̄j ].

For k = 1, the claim is obvious. Suppose the claim is true k. We then have:

min
π∈Π

T̄k+1∑
t=1

〈lπtt ,dπt〉 − 〈l
πt
t ,dπ〉 =

T̄k+1∑
t=1

〈lπtt ,dπt〉 − 〈l
πt
t ,dπk+1〉

=

T̄k∑
t=1

〈lπtt ,dπt〉 − 〈l
πt
t ,dπk+1〉+

T̄k+1∑
t=T̄k+1

〈lπtt ,dπt〉 − 〈l
πt
t ,dπk+1〉

≤ min
π∈Π

T̄k∑
t=1

〈lπtt ,dπt〉 − 〈l
πt
t ,dπ〉+

T̄k+1∑
t=T̄k+1

〈lπtt ,dπt〉 − 〈l
πt
t ,dπk+1〉

≤
k∑
j=1

 T̄j∑
t=T̄j−1+1

〈lπtt ,dπt〉 − 〈l
πt
t ,dπj 〉

+

T̄k+1∑
t=T̄k+1

〈lπtt ,dπt〉 − 〈l
πt
t ,dπk+1〉 (13a)

=

k+1∑
j=1

 T̄j∑
t=T̄j−1+1

〈lπtt ,dπt〉 − 〈l
πt
t ,dπj 〉

 ,
where the inequality (13a) dues to the induction assumption. Thus, for all k we have:

min
π∈Π

T̄k∑
t=1

〈lπtt ,dπt〉 − 〈l
πt
t ,dπ〉 ≤

k∑
j=1

 T̄j∑
t=T̄j−1+1

〈lπtt ,dπt〉 − 〈l
πt
t ,dπj 〉

 .
In other words, the Algorithm 2 will have a similar regret bound when using the best
response with respect to the total average strategy of the adversary. �

Given the regret with respect to policy’s stationary distribution in Theorem
4, we can now derive the regret bound of Algorithm 2 with respect to the true
performance:

Theorem 5 Suppose the agent uses Algorithm 2 in our online MDPs setting, then
the regret in Equation (1) can be bounded by:

RT (π) = O(τ2
√
Tk log(k) +

√
T log(L)).

The full proof is given in Appendix A. Notably, Algorithm 2 will not only
reduce the regret bound in the case the number of strategies set k is small,
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but it also reduces the computational hardness of computing expert algorithm
when the number of experts is prohibitively large.

MDP-Online Oracle Algorithm with ε-best response. In Algorithm
2, in each iteration the agent needs to calculate the exact best response to the
average loss function l̄. Since calculating the exact best response is computa-
tionally hard and maybe infeasible in many situations [39], an alternative way
is to consider ε-best response. That is, in each iteration in Algorithm 2, the
agent can only access to a ε-best response to the average loss function, where
ε is a predefined parameter. In this situation, we provide the regret analysis
for Algorithm 2 as follows.

Theorem 6 Suppose the agent only accesses to ε-best response in each iteration
when following Algorithm 2. If the adversary follows a no-external regret algorithm
then the average strategy of the agent and the adversary will converge to ε-Nash
equilibrium. Furthermore, the algorithm has ε-regret.

The full proof is given in Appendix A. Theorem 6 implies that by following
MDP-OOE, the agent can optimise the accuracy level (in terms of ε) based
on the data that it receives to obtain the convergence rate and regret bound
accordingly.

6 Last-Round Convergence to NE in OMDPs

In this section, we investigate OMDPs where the agent not only aims to min-
imize the regret but also stabilize the strategies. This is motivated by the fact
that changing strategies through repeated games may be undesirable (e.g., see
[12, 40]). In online learning literature, minimizing regret and achieving the
system’s stability are often two conflict goals. That is, if all player in a system
follows a no-regret algorithm (e.g., MWU, FTRL) to minimise the regret, then
the dynamic of the system will become chaotic and the strategies of players
will not converge in the last round [10, 12].

To achieve the goal, we start by studying the scenarios where the agent
knows its NE of the game π∗. We then propose an algorithm: Last-Round
Convergence in OMDPs (LRC-OMDP) that leads to last-round convergence
to NE of the game in our setting. This is the first algorithm to our knowl-
edge that achieves last-round convergence in OMDPs where only the learning
agent knows the NE of the game. Notably, this goal is non-trivial to achieve.
For example, if the agent keeps following the same strategy (i.e., the NE),
then while the system might be stabilised (i.e., the adversary converges to
the best response), yet this is still not a no-regret algorithm. Moreover, we
notice that understanding the learning dynamics even when the NE is known is
still challenging in the multi-agent learning domain. The AWESOME [41] and
CMLeS [42] algorithms make significant efforts to achieve convergence to NE
under the assumption that each agent has access to a precomputed NE strat-
egy. Compared to these algorithms, LRC-OMDP enjoys the key benefit that
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it does not require the adversary to know its NE. Importantly, the adversary
in our setting can be any type of strategic agent who observes the history and
applies a no-regret algorithm to play, rather than being a restricted opponent
such as a stationary opponent in AWESOME or a memory-bounded opponent
in CMLeS.

Algorithm 3 Last-Round Convergence in OMDPs

1: Input: Current iteration t
2: Output: Strategy πt for the agent
3: for t = 1, 2, . . . , T do
4: if t = 2k − 1, k ∈ N then
5: πt = π∗

6: else if t = 2k, k ∈ N then
7: π̂t(s) = argmina∈AQπ∗,lt(s, a) ∀s ∈ S
8: αt =

v−ηlt−1
(π̂t)

β ; dπt = (1− αt)dπ∗ + αtdπ̂t
9: Output πt via dπt

10: end if
11: end for

The LRC-OMDP algorithm can be described as follow. At each odd round,
the agent follows the NE strategy π∗ so that in the next round, the strategy of
the adversary will not deviate from the current strategy. Then, at the following
even round, the agent chooses a strategy such that dπt is a direction towards
the NE strategy of the adversary. Depending on the distance between the cur-
rent strategy of the adversary and its NE (which is measured by v−ηlt−1

(π̂t)),
the agent will choose a step size αt such that the strategy of the adversary will
approach the NE. Note here that β is a constant parameter and depends on
the specific no-regret algorithm adversary follows, there is a different optimal
value for β. In case where the adversary follows the MWU algorithm, we can
set β = 1.

We first introduce the condition in which the system achieves stability
through the following lemma:

Lemma 4 Let π∗ be the NE strategy of the agent. Then, l is the Nash Equilibrium
of the adversary if the two following conditions hold:

Qπ∗,l(s, π
∗) = argmin

π∈Π
Qπ∗,l(s, π) ∀s ∈ S and ηl(π

∗) = v.

Proof Using the definition of accumulated loss function Q we have

Es∈dπ [Qπ∗,l(s, π)] = Es∈dπ,a∈π[Qπ∗,l(s, a)]

= Es∈dπ,a∈π[l(s, a)− ηl(π∗) + Es′∼Psa [Qπ∗,l(s
′, π∗)]]

= Es∈dπ,a∈π[l(s, a)− ηl(π∗)] + Es∈dπ [Qπ∗,l(s, π
∗)]

= ηl(π)− ηl(π∗) + Es∈dπ [Qπ∗,l(s, π
∗)].

(14)
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Thus we have

ηl(π)− ηl(π∗) = Es∈dπ [Qπ∗,l(s, π)−Qπ∗,l(s, π∗).] (15)

Since we assume that

Qπ∗,l(s, π
∗) = argmin

π∈Π
Qπ∗,l(s, π) ∀s ∈ S,

we have
Qπ∗,l(s, π) ≥ Qπ∗,l(s, π

∗) ∀s ∈ S, π ∈ Π. (16)

It implies that

Es∈dπ [Qπ∗,l(s, π)−Qπ∗,l(s, π∗)] ≥ 0 ∀π ∈ Π. (17)

Therefore we have
ηl(π) ≥ ηl(π∗) ∀π ∈ Π. (18)

Along with the assumption ηl(π
∗) = v, we have the following relationship:

argmin
π∈Π

ηl(π) = ηl(π
∗) = v. (19)

Now we prove that for the loss function l that satisfies Equation (19), then l is NE
for the adversary. Let (π∗, l∗) be one of the NE of the game. Since the game we are
considering is a zero-sum game, (π∗, l∗) satisfies the famous minimax theorem:

min
π∈Π

max
l1∈L
〈l1,dπ〉 = max

l1∈L
min
π∈Π
〈l1,dπ〉 = v where 〈l,dπ〉 = ηl(π). (20)

From Equation (19) we have

v = min
π∈Π
〈l,dπ〉 ≤ 〈l,dπ∗〉. (21)

Further, since l∗ is the NE of the game, then we have

v = 〈l∗,dπ∗〉 = max
l1∈L
〈l1,dπ∗〉 ≥ 〈l,dπ∗〉. (22)

From Inequalities (21) and (22) we have

v = 〈l,dπ∗〉 = min
π∈Π
〈l,dπ〉 = max

l1∈L
〈l1,dπ∗〉. (23)

Thus, by definition (l, π∗) is the Nash equilibrium of the game. In other words, the
loss function l satisfies the above assumption is the NE of the adversary. �

The above lemma implies that if there is no improvement in the Q-value
function for every state and the value of the current loss function equals the
value of the game, then there is last-round convergence to the NE. In situations
where there is an improvement in one state, the following lemma bounds the
value of a new strategy:

Lemma 5 Assume that ∀π ∈ Π, dπ(s) > 0. Then if there exists s ∈ S such that

Qπ∗,lt(s, π
∗) > argmin

π∈Π
Qπ∗,lt(s, π),

then for πt+1(s) = argmina∈AQπ∗,lt(s, a) ∀s ∈ S:

ηlt(πt+1) < v.
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Proof From the minimax theorem, we have:

ηlt(π
∗) ≤ ηl∗(π∗) = v ∀l ∈ L.

From the proof of Lemma 4 we have:

ηlt(π)− ηlt(π
∗) = Es∈dπ [Qπ∗,lt(s, π)−Qπ∗,lt(s, π

∗)] ∀π ∈ Π.

Since the construction of the new strategy πt+1 we have:

Es∈dπt+1
[Qπ∗,lt(s, πt+1)−Qπ∗,lt(s, π

∗)] < 0,

thus we have:
ηlt(π) < ηlt(π

∗) ≤ 0.

The proof is complete. �

Based on the above lemmas, we can bound the relative entropy distance
between the current strategy of the adversary and a Nash equilibrium:

Lemma 6 Assume that the adversary follows the MWU algorithm with non-
increasing step size µt such that limT→∞

∑T
t=1 µt =∞ and there exists t′ ∈ N with

µt′ ≤ 1
3 . Then we have:

RE
(
l∗‖l2k−1

)
− RE

(
l∗‖l2k+1

)
≥ 1

2
µ2kα2k(v − ηl2k−1

(π̂2k)) ∀k ∈ N : 2k ≥ t′.

Proof Using the definition of relative entropy we have:

RE
(
l∗‖l2k−1

)
− RE

(
l∗‖l2k+1

)
=
(
RE(l∗‖l2k+1)− RE(l∗‖l2k)

)
+
(
RE(l∗‖l2k)− RE(l∗‖l2k−1)

)
=

(
n∑
i=1

l∗(i) log

(
l∗(i)

l2k+1(i)

)
−

n∑
i=1

l∗(i) log

(
l∗(i)
l2k(i)

))
+(

n∑
i=1

l∗(i) log

(
l∗(i)
l2k(i)

)
−

n∑
i=1

l∗(i) log

(
l∗(i)

l2k−1(i)

))

=

(
n∑
i=1

l∗(i) log

(
l2k(i)

l2k+1(i)

))
+

(
n∑
i=1

l∗(i) log

(
l2k−1(i)

l2k(i)

))
.

Following the update rule of the Multiplicative Weights Update algorithm we have:

RE(l∗‖l2k+1)− RE(l∗‖l2k−1)

=
(
−µ2k〈l∗,dπ2k 〉+ log(Z2k)

)
+
(
−µ2k−1〈l∗,dπ2k 〉+ log(Z2k−1)

)
≤

(
−µ2kv + log

(
n∑
i=1

l2k(i)eµ2k〈ei,dπ2k
〉
))

+ (−µ2k−1v + log(Z2k−1)) (24a)

=

(
−µ2kv + log

(
n∑
i=1

l2k−1(i)e
µ2k−1〈ei,dπ2k−1

〉
eµ2k〈ei,dπ2k

〉
)
− log(Z2k−1)

)
+ (−µ2k−1v + log(Z2k−1)) ,

where Inequality (24a) is due to the fact that 〈l∗,dπ〉 ≥ v ∀π. Thus,

RE(l∗‖l2k+1)− RE(l∗‖l2k−1)
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≤

(
−µ2kv + log

(
n∑
i=1

l2k−1(i)e
µ2k−1〈ei,dπ2k−1

〉
eµ2k〈ei,dπ2k

〉
))
− µ2k−1v

≤

(
−µ2kv + log

(
n∑
i=1

l2k−1(i)eµ2k−1veµ2k〈ei,dπ2k
〉
))
− µ2k−1v (25a)

= −µ2kv + log

(
n∑
i=1

l2k−1(i)eµ2k〈ei,dπ2k
〉
)
,

where Inequality (25a) is the result of the inequality:

〈l,dπ∗〉 ≤ v ∀l.
Now, using the update rule of Algorithm 3

dπ2k = (1− α2k)dπ∗ + α2kdπ̂2k
,

we have

RE(l∗‖l2k+1)− RE(l∗‖l2k−1)

≤ −µ2kv + log

(
n∑
i=1

l2k−1(i)eµ2k((1−α2k)〈ei,dπ∗ 〉+α2k〈ei,dπ̂2k
〉)
)

≤ −µ2kα2kv + log

(
n∑
i=1

l2k−1(i)eµ2kα2k〈ei,dπ̂2k
〉
)
.

Denote f(l2k−1) = 〈l2k−1,dπ̂2k
〉, we then have

RE(l∗‖l2k+1)− RE(l∗‖l2k−1)

≤ −µ2kα2kv + log

(
n∑
i=1

l2k−1(i)eµ2kα2k〈ei,dπ̂2k
〉
)

= µ2kα2k(1− v) + log

(
n∑
i=1

l2k−1(i)e−µ2kα2k(1−〈ei,dπ̂2k
〉)
)

(27a)

≤ µ2kα2k(1− v) + log

(
n∑
i=1

l2k−1(i)(1− (1− e−µ2kα2k )(1− 〈ei,dπ̂2k
〉))

)
(27b)

= µ2kα2k(1− v) + log
(

1− (1− e−µ2kα2k )(1− 〈l2k−1,dπ̂2k
〉)
)

≤ µ2kα2k(1− v)− (1− e−µ2kα2k )(1− 〈l2k−1,dπ̂2k
〉) (27c)

= µ2kα2k(1− v)− (1− e−µ2kα2k )(1− f(l2k−1)),

Equation (27a) is created by adding and subtracting µ2kα2k on the first and second
terms.

Inequalities (27b, 27c) are due to

βx ≤ 1− (1− β)x ∀β ≥ 0 l ∈ [0, 1] and log(1− x) ≤ −x ∀x < 1.

We can develop Inequality (27c) further as

RE(l∗‖l2k+1)− RE(l∗‖l2k−1)

≤ µ2kα2k(1− v)−
(

1− e−µ2kα2k

)
(1− f(l2k−1))

≤ µ2kα2k(1− v)−
(

1−
(

1− µ2kα2k +
1

2
(µ2kα2k)2

))
(1− f(l2k−1)) (28a)
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= µ2kα2k(f(l2k−1)− v) +
1

2
(µ2kα2k)2(1− f(l2k−1))

≤ µ2kα2k(f(l2k−1)− v) +
1

2
µ2kα2kµ2k

v − f(l2k−1)

β
(1− f(l2k−1)) (28b)

≤ µ2kα2k(f(l2k−1)− v) +
1

2
µ2kα2k (v − f(l2k−1)) (28c)

= −1

2
µ2kα2k(v − f(l2k−1)) ≤ 0.

Here, Inequality (28a) is due to ex ≤ 1 + x + 1
2x

2 ∀l ∈ [−∞, 0], Inequality (28b)
comes from the definition of αt:

αt =
v − f(l2k−1)

β
, β ≥ 1− f(l), f(l2k−1) ≤ 1.

Finally, Inequality (28c) comes from the choice of k at the beginning of the proof,
i.e., µ2k ≤ 1. �

we finally reach the last-round convergence of LRC-MDP in Algorithm 3.

Theorem 7 Assume that the adversary follows the MWU algorithm with non-
increasing step size µt such that limT→∞

∑T
t=1 µt =∞ and there exists t′ ∈ N with

µt′ ≤ 1
3 . If the agent follows Algorithm 3 then there exists a Nash equilibrium l∗ for

the adversary such that limt→∞lt = l∗ almost everywhere and limt→∞πt = π∗.

Proof We focus on the regret analysis with respect to the stationary distribution dπt .
Let l∗ be a minimax equilibrium strategy of the adversary (l∗ may not be unique).
Following the above Lemma, for all k ∈ N such that 2k ≥ t′, we have

RE(l∗‖l2k+1)− RE(l∗‖l2k−1) ≤ −1

2
µ2kα2k(v − f(l2k−1)), (29)

where we denote f(l2k−1) = 〈l2k−1,dπ̂2k
〉. Thus, the sequence of relative entropy

RE(l∗‖l2k−1) is non-increasing for all k ≥ t′

2 . As the sequence is bounded below by
0, it has a limit for any minimax equilibrium strategy l∗. Since t′ is a finite number
and

∑∞
t=1 µt =∞, we have

∑∞
t=t′ µt =∞. Thus,

lim
T→∞

T∑
k=

⌈
t′
2

⌉µ2k =∞.

We will prove that ∀ε > 0, ∃h ∈ N such that when the agent follows Algorithm 3 and
the adversary follows MWU algorithm, the adversary will play strategy lh at round
h and v − f(lh) ≤ ε. In particular, we prove this by contradiction. That is, suppose
that ∃ε > 0 such that ∀h ∈ N, v − f(lh) > ε. Then ∀k ∈ N,

α2k(v − f(l2k−1)) =
(v − f(l2k−1))2

β
>
ε2

β
.
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Let k vary from
⌈
t′

2

⌉
to T in Equation (29). By summing over k, we obtain:

RE(l∗‖l2T+1) ≤ RE(l∗‖lt′)−
1

2

T∑
k=

⌈
t′
2

⌉µ2kα2k(v − f(l2k−1))

≤ RE(l∗‖lt′)−
1

2

e2

β

T∑
k=

⌈
t′
2

⌉µ2k.

Since limT→∞
∑T

k=
⌈
t′
2

⌉ µ2k = ∞ and RE(l∗‖lT+1) ≥ 0, it contradicts our

assumption about ∀h ∈ N, v − f(lh) > ε.
Now, we take a sequence of εk > 0 such that limk→∞ εk = 0. Then for each k,

there exists ltk ∈ ∆n such that v − εk ≤ f(ltk ) ≤ v. As ∆n is a compact set and ltk
is bounded then following the Bolzano-Weierstrass theorem, there is a convergence
subsequence lt̄k . The limit of that sequence, l̄∗, is a minimax equilibrium strategy
of the row player (since f(l̄∗) = f(limk→∞ lt̄k ) = limk→∞ f(lt̄k ) = v). Combining

with the fact that RE(l̄∗‖l2k−1) is non-increasing for k ≥
⌈
t′

2

⌉
and RE(l̄∗‖l̄∗) = 0,

we have limk→∞RE(l̄∗‖l2k−1) = 0. We also note that

RE(l̄∗‖l2k)− RE(l̄∗‖l2k−1) = −µ2k−1〈l̄∗,dπ2k−1〉+ log

(
n∑
i=1

l2k−1(i)eµ2k−1〈ei,dπ∗ 〉
)

≤ −µ2k−1v + log

(
n∑
i=1

l2k−1(i)eµ2k−1v

)
= 0,

following the fact that 〈l̄∗,dπ〉 ≥ v for all π ∈ Π and 〈l,dπ∗〉 ≤ v for all l. Thus, we
have limk→∞RE(l̄∗‖l2k) = 0 as well. Subsequently, limt→∞RE(l̄∗‖lt) = 0, which
concludes the proof. �

The Algorithm 3 also applies in the situations where the adversary follows
different learning dynamics such as Follow the Regularized Leader or linear
MWU [12]. In these situations, Algorithm 3 requires adapting the constant
parameter β so that the convergence result still holds. Since both the agent
and the adversary converge to a NE, the NE is also the best fixed strategy in
hindsight. Consequently, LRC-OMDP is also a no-regret algorithm where the
regret bound depends on the convergence rate to the NE.

7 Experiment

In this section, we aim to demonstrate the effectiveness of our practical use
algorithm MDP-OOE compared to the well-known MDP-E algorithm [3].

We consider random games in which the entries of the transition matrix
are first sampled from a uniform distribution U(0, 1), then follow the normal-
ization. Similarly, the entries of the loss vectors from the adversary lt are also
sampled from a uniform distribution U(0, 1). Following Lemma 3, by fixing a
small number of loss vectors L, we can bound the size of the Nash support of
our games. Thus, we fix the number of loss vectors L = 3 and consider dif-
ferent games with the number of actions in each state in the set [3, 100, 500].
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Fig. 1: Performance comparisons in average payoff in random games

We then run MDP-E and MDP-OOE against the same opponent following a
no-regret MWU algorithm and measure the average payoff of the two algo-
rithms 4. For each setting, we run 5 seeds where each seed considers an MWU
adversary with a different starting strategy.

As we can see in Figure 1, MDP-OOE outperforms MDP-E in all games we
consider. The difference in performance between the MDP-OOE and MDP-E
becomes more significant when a larger action set is considered (See Figure
B2 in the Appendix). Intuitively, since the performance of MDP-OOE only
depends on the support size of the NE, a large size of the action set will
not affect its performance. In contrast, a large action set will significantly
affect the performance of MDP-E as it considers the whole action set in the
strategy update. We observe a similar performance in other settings with a
different number of loss vectors as shown in Figure B1 in the Appendix B. The
advantage of MDP-OOE in term of average payoff over MDP-E match our
expectation as the support size of the NEs in these games are much smaller
than the action set by design. Interestingly, even when the action set is small
(i.e., A = 3), MDP-OOE still outperforms MDP-E in our experiments.

Note here that since we consider two-player zero-sum games and both the
agent and the opponent follow no-regret algorithms, the average payoff of
MDP-OOE and MDP-E will eventually converge to the value of the game, as
shown in Figure 1.

8 Conclusion

In this paper, we have studied a novel setting in Online Markov Decision
Processes where the loss function is chosen by a non-oblivious strategic adver-
sary who follows a no-external regret algorithm. In this new setting, we
then revisited the MDP-E algorithm and provided a sublinear regret bound
O(
√
T log(L) + τ2

√
T log(|A|)). We suggested a new algorithm of MDP-OOE

4W.l.o.g, we consider the payoff (i.e., -the loss) for the agent in our experiments so that the
agent aims to maximize the payoff.
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that achieves the policy regret of O(
√
T log(L) + τ2

√
Tk log(k)) where the

regret does not depend the size of strategy set |A| but the effective strategy
set k. Finally, in tackling non-convergence property of no-regret algorithms
in self-plays, we provided the LRC-OMDP algorithm for the agent that leads
to the first-known result of the last-round convergence to a NE against the
strategic adversary.

Our paper offers several interesting directions for future research. Firstly,
while MDP-OOE achieves better performance both in theory (when k is small)
and in experiments compared to MDP-E, it still requires the calculation of best
response oracles in each iteration, thus increasing its time complexity. Even
though Theorem 6 provides an alternative to using ε-best response, further
research can be done to improve the efficiency of MDP-OOE algorithm with
regards to the best response oracle. Secondly, LRC-OMDP provides the first
last-round convergence to a NE against a strategic adversary, yet it requires
a strong assumption of knowing the agent’s NE before playing. While this
assumption is common in literature [41, 42], relaxing this assumption could fur-
ther enhance the application of LRC-OMDP algorithm in practical situations.
Thirdly, since our experiment section only serves as a validation test for the
performance between MDP-E and MDP-OOE, further experiments on real-
world and large-size games are needed to demonstrate the efficiency of both
MDP-E and MDP-OOE algorithms against the strategic adversary. Finally,
our paper provides a new direction to tackle the hardness result of playing
against the non-oblivious adversary. In the future, apart from the strategic
adversary, other important types of adversary should be considered to study
relevant regret bound and convergence properties.
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Appendix A Proofs

We provide the following lemmas and proposition:

Lemma 7 (Lemma 3.3 in [3]) For all loss function l in [0, 1] and policies π,
Ql,π(s, a) ≤ 3τ .

Lemma 8 (Lemma 1 from [16]) Consider a uniformly ergodic OMDPs with mixing
time τ with losses lt ∈ [0, 1]d. Then, for any T > 1 and policy π with stationary
distribution dπ, it holds that

T∑
t=1

|〈lt,dπ − vπt 〉| ≤ 2τ + 2.

This lemma guarantees that the performance of a policy’s stationary dis-
tribution is similar to the actual performance of the policy in the case of a
fixed policy.

In the other case of non-fixed policy, the following lemma bound the per-
formance of policy’s stationary distribution of algorithm A with the actual
performance:

Lemma 9 (Lemma 5.2 in [3]) Let π1, π2, . . . be the policies played by MDP-E

algorithm A and let d̃A,t, d̃πt ∈ [0, 1]S be the stationary state distribution. Then,

‖d̃A,t − d̃πt‖1 ≤ 2τ2

√
log(|A|)

t
+ 2e−t/τ .

From the above lemma, since the policy’s stationary distribution is a com-
bination of stationary state distribution and the policy’s action in each state,
it is easy to show that:

‖vt − dπt‖1 ≤ ‖d̃A,t − d̃πt‖1 ≤ 2τ2

√
log(|A|)

t
+ 2e−t/τ .

Proposition 8 For the MWU algorithm [8] with appropriate µt, we have:

RT (π) = E

[
T∑
t=1

lt(πt)

]
− E

[
T∑
t=1

lt(π)

]
≤M

√
T log(n)

2
,

where ‖lt(.)‖ ≤ M . Furthermore, the strategy πt does not change quickly: ‖πt −

πt+1‖ ≤
√

log(n)
t .
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Proof For a fixed T , if the loss function satisfies lt(.)‖ ≤ 1 then by setting µt =√
8 log(n)
T , following Theorem 2.2 in [25] we have:

RT (π) = E

[
T∑
t=1

lt(πt)

]
− E

[
T∑
t=1

lt(π)

]
≤ 1

√
T log(n)

2
. (A1)

Thus, in the case where lt(.)‖ ≤M , by scaling up both sides by M in Equation (A1)
we have the first result of the Proposition 8. For the second part, follow the updating
rule of MWU we have:

πt+1(i)− πt(i) = πt(i)

(
exp(−µtlt(ai))∑n

i=1 πt(i) exp(−µtlt(ai))
− 1

)

≈ πt(i)

(
1− µtlt(ai)
1− µtlt(πt)

− 1

)
(A2a)

= µtπt(i)
lt(πt)− lt(ai)
1− µtlt(πt)

= O(µt),

where we use the approximation ex ≈ 1+x for small x in Equation (A2a). Thus, the
difference in two consecutive strategies πt will be proportional to the learning rate

µt, which is set to be O
(√ log(n)

t

)
. Similar result can be found in Proposition 1 in

[3]. �

Theorem (Theorem 5) Suppose the agent uses Algorithm 2 in our online MDPs
setting, then the regret in Equation (1) can be bounded by:

RT (π) = O(τ2
√
Tk log(k) +

√
T log(L)).

Proof First we bound the difference between the true loss and the loss with respect
to the policy’s stationary distribution. Following the Algorithm 2, at the start of
each time interval Ti (i.e., the time interval in which the effective strategy set does
not change), the learning rate needs to restart to O(

√
log(i)/ti), where i denotes the

number of pure strategies in the effective strategy set in the time interval Ti and ti
is relative position of the current round in that interval. Thus, following Lemma 5.2
in [3], in each time interval Ti, the difference between the true loss and the loss with
respect to the policy’s stationary distribution will be:

ti∑
t=ti−1+1

|〈lt,vt − dπt〉| ≤
ti∑

t=ti−1+1

‖vt − dπt‖1

≤
Ti∑
t=1

2τ2

√
log(i)

t
+ 2e−t/τ

≤ 4τ2
√
Ti log(i) + 2(1 + τ).
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From this we have:
T∑
t=1

|〈lt,vt − dπt〉| =
k∑
i=1

ti∑
t=ti−1+1

|〈lt,vt − dπt〉|

≤
k∑
i=1

(
4τ2
√
Ti log(i) + 2(1 + τ)

)
≤ 4τ2

√
Tk log(k) + 2k(1 + τ).

Following Lemma 1 from [16], we also have:
T∑
t=1

|〈lt,dπ − vπt 〉| ≤ 2τ + 2.

Thus the regret in Equation (1) can be bounded by:

RT (π) ≤

(
T∑
t=1

〈dπt , lt〉+

T∑
t=1

|〈lt,vt − dπt〉|

)
−

(
T∑
t=1

〈lπt ,dπ〉 −
T∑
t=1

|〈lt,dπ − vπt 〉|

)

=

(
T∑
t=1

〈dπt , lt〉 −
T∑
t=1

〈lπt ,dπ〉

)
+

T∑
t=1

|〈lt,vt − dπt〉+

T∑
t=1

|〈lt,dπ − vπt 〉|

≤ 3τ

(√
2Tk log(k) +

k log(k)

8

)
+

√
T log(L)√

2
+ 4τ2

√
Tk log(k) + 2k(1 + τ) + 2τ + 2

= O(τ2
√
Tk log(k) +

√
T log(L)).

(A3)
The proof is complete. �

Theorem (Theorem 6) Suppose the agent only accesses to ε-best response in each
iteration when following Algorithm 2. If the adversary follows a no-external regret
algorithm then the average strategy of the agent and the adversary will converge to
ε-Nash equilibrium. Furthermore, the algorithm has ε-regret.

Proof Suppose that the player uses the Multiplicative Weights Update in Algorithm
2 with ε-best response. Let T1, T2, . . . , Tk be the time window that the players does
not add up a new strategy. Since we have a finite set of strategies A then k is finite.
Furthermore,

k∑
i=1

Tk = T.

In a time window Ti, the regret with respect to the best strategy in the set of strategy
at time Ti is:

T̄i+1∑
t=T̄i

〈lπtt ,dπt〉 − min
π∈AT̄i+1

T̄i+1∑
t=|T̄i|

〈lπtt ,dπ〉 ≤ 3τ

(√
2Ti log(i) +

log(i)

8

)
, (A4)

where T̄i =
∑i−1
j=1 Tj . Since in the time window Ti, the ε-best response strategy stays

in ΠT̄i+1 and therefore we have:

min
π∈AT̄i+1

T̄i+1∑
t=|T̄i|

〈lπtt ,dπ〉 − min
π∈Π

T̄i+1∑
t=|T̄i|

〈lπtt ,dπ〉 ≤ εTi.
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Then, from the Equation (A4) we have:
T̄i+1∑
t=T̄i

〈lπtt ,dπt〉 − min
π∈Π

T̄i+1∑
t=|T̄i|

〈lπtt ,dπ〉 ≤ 3τ

(√
2Ti log(i) +

log(i)

8

)
+ εTi. (A5)

Sum up the Equation (A5) for i = 1, . . . k we have:

T∑
t=1

〈lπtt ,dπt〉 −
k∑
i=1

min
π∈Π

T̄i+1∑
t=|T̄i|

〈lπtt ,dπ〉 ≤
k∑
i=1

3τ

(√
2Ti log(i) +

log(i)

8

)
+ εTi

=⇒
T∑
t=1

〈lπtt ,dπt〉 − min
π∈Π

k∑
i=1

T̄i+1∑
t=|T̄i|

〈lπtt ,dπ〉 ≤ εT +

k∑
i=1

3τ

(√
2Ti log(i) +

log(i)

8

)
(A6a)

=⇒
T∑
t=1

〈lπtt ,dπt〉 − min
π∈Π

T∑
t=1

〈lπtt ,dπ〉 ≤ εT +

k∑
i=1

3τ

(√
2Ti log(i) +

log(i)

8

)

=⇒
T∑
t=1

〈lπtt ,dπt〉 − min
π∈Π

T∑
t=1

〈lπtt ,dπ〉 ≤ εT + 3τ

(√
2Tk log(k) +

k log(k)

8

)
.

(A6b)

Inequality (A6a) is due to
∑

min ≤ min
∑

. Inequality (A6b) comes from Cauchy-
Schwarz inequality and Stirling’ approximation. Using Inequality (A6b), we have:

min
π∈Π
〈l̄,dπ〉 ≥

1

T

T∑
t=1

〈lπtt ,dπt〉 − 3τ

(√
2k log(k)

T
+
k log(k)

8T

)
− ε. (A7)

Since the adversary follows a no-regret algorithm, we have:

max
l∈∆L

T∑
t=1

〈l,dπt〉 −
T∑
t=1

〈lπtt ,dπt〉 ≤
√
T

2

√
log(L)

=⇒ max
l∈∆L

T∑
t=1

〈l, d̄π〉 ≤
1

T

T∑
t=1

〈lπtt ,dπt〉+

√
log(L)

2T
.

(A8)

Using the Inequalities (A7) and (A8) we have:

〈l̄, d̄π〉 ≥ min
π∈Π
〈l̄,dπ〉 ≥

1

T

T∑
t=1

〈lπtt ,dπt〉 − 3τ

(√
2k log(k)

T
+
k log(k)

8T

)
− ε

≥ max
l∈∆L

T∑
t=1

〈l, d̄π〉 −
√

log(L)

2T
− 3τ

(√
2k log(k)

T
+
k log(k)

8T

)
− ε.

Similarly, we also have:

〈l̄, d̄π〉 ≤ max
l∈∆L

T∑
t=1

〈l, d̄π〉 ≤
1

T

T∑
t=1

〈lπtt ,dπt〉+

√
log(L)

2T

≤ min
π∈Π
〈l̄,dπ〉+ 3τ

(√
2k log(k)

T
+
k log(k)

8T

)
+ ε.

Take the limit T →∞, we then have:

max
l∈∆L

T∑
t=1

〈l, d̄π〉 − ε ≤ 〈l̄, d̄π〉 ≤ min
π∈Π
〈l̄,dπ〉+ ε.

Thus (l̄, d̄π) is the ε-Nash equilibrium of the game. �
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Fig. B1: Performance comparisons in average payoff in random games with
L = 7
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Fig. B2: Performance comparisons in average payoff in random games

Appendix B Experiments

We provide further experiment results to demonstrate the performance of
MDP-OOE and MDP-E.

In Figure B1, by considering the different number of loss vectors (L = 7),
we test whether the performance difference between MDP-OOE and MDP-E
is consistent with regard to the number of loss vectors. As we can see in Figure
B1, MDP-OOE also outperforms MDP-E with the number of loss functions
L = 7. The result further validates the advantage of MDP-OOE over MDP-E
in the setting of a small support size of the NE.

In Figure B2, we consider a larger set of agent’s action in each state
(A = 500). As we can see in Figure B2, the difference in performance between
MDP-OOE and MDP-E becomes more significant when a larger action set is
considered in both cases when L = 3 and L = 7, as expected by our theoretical
results.
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processes under bandit feedback. In: NeurIPS, pp. 1804–1812 (2010)

[6] Neu, G., Olkhovskaya, J.: Online learning in mdps with linear function
approximation and bandit feedback. arXiv e-prints, 2007 (2020)

[7] Yang, Y., Wang, J.: An overview of multi-agent reinforcement learn-
ing from game theoretical perspective. arXiv preprint arXiv:2011.00583
(2020)

[8] Freund, Y., Schapire, R.E.: Adaptive game playing using multiplicative
weights. Games and Economic Behavior 29(1-2), 79–103 (1999)

[9] Shalev-Shwartz, S., et al.: Online learning and online convex optimization.
Foundations and trends in Machine Learning 4(2), 107–194 (2011)

[10] Mertikopoulos, P., Papadimitriou, C., Piliouras, G.: Cycles in adversarial
regularized learning. In: Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 2703–2717 (2018). SIAM

[11] Bailey, J.P., Piliouras, G.: Multiplicative weights update in zero-sum
games. In: Proceedings of the 2018 ACM Conference on Economics and
Computation, pp. 321–338 (2018)

[12] Dinh, L.C., Nguyen, T.-D., Zemhoho, A.B., Tran-Thanh, L.: Last round
convergence and no-dynamic regret in asymmetric repeated games. In:
Algorithmic Learning Theory, pp. 553–577 (2021). PMLR

[13] Mertikopoulos, P., Lecouat, B., Zenati, H., Foo, C.-S., Chandrasekhar, V.,
Piliouras, G.: Optimistic mirror descent in saddle-point problems: Going
the extra (gradient) mile. In: ICLR 2019-7th International Conference on
Learning Representations, pp. 1–23 (2019)



Springer Nature 2021 LATEX template

OMDPs with Non-oblivious Strategic Adversary 33

[14] Leslie, D.S., Perkins, S., Xu, Z.: Best-response dynamics in zero-sum
stochastic games. Journal of Economic Theory 189, 105095 (2020)

[15] Guan, P., Raginsky, M., Willett, R., Zois, D.-S.: Regret minimization
algorithms for single-controller zero-sum stochastic games. In: 2016 IEEE
55th Conference on Decision and Control (CDC), pp. 7075–7080 (2016).
IEEE
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