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Abstract. In this paper, we propose and study a modified inertial Halpern method for finding a common

element of the set of solution of split generalized equilibrium problem which is also a fixed point of Bregman
relatively nonexpansive mapping in p-uniformly convex Banach spaces which are also uniformly smooth. Our

iterative method uses step-size which does not require prior knowledge of the operator norm and we prove a strong

convergence result under some mild conditions. We display a numerical example to illustrate the performance
of our result. The result presented in this article unifies and extends several existing results in the literature.

1. Introduction

Let C and Q be nonempty, closed and convex subsets of two real Banach spaces E1 and E2 with its dual spaces
E∗1 and E∗2 respectively. Let A : E1 → E2 be a bounded linear operator. The Split Feasibility Problem (SFP)
introduced and studied by Censor and Elving [15], consists of finding a point

x∗ ∈ C such that Ax∗ ∈ Q.(1.1)

The SFP is known to have useful applications in many fields such as phase retrieval, medical image reconstruction,
radiation therapy treatment planning, signal processing, among others, see [1, 15, 36]. In 2003, Byrne [13] in
the framework of Euclidean spaces proposed a CQ algorithm of the form

xn+1 = PC(I − γA∗(I − PQ)A)xn, n ≥ 1,(1.2)

where γ ∈
(
0, 2

L

)
with L being the spectral radius of the operator A∗A, A∗ is the adjoint of A, PC and PQ are

metric projections of C and Q, respectively. Byrne [13] proved that the sequence generated by (1.2) converges
weakly to a solution of the SFP (1.1).

In 2008, Schopfer et al. [42] extended SFP (1.1) to the framework of p-uniformly convex real Banach spaces
which are also uniformly smooth. Schopfer [42] proposed the following iterative scheme: for x1 ∈ E1, set

xn+1 = ΠCJ
E∗

1
q

[
JE1
p (xn)− γnA∗JE2

p (Axn − PQ(Axn))
]
, n ≥ 1,(1.3)

where ΠC denotes the Bregman projection of E1 onto C and JEp is the duality mapping. Note that Algorithm
(1.3) generalizes Algorithm (1.2). Several optimization problems such as Split Variational Inequality Problem
(SVIP), Split Variational Inclusion Problem (SVIP), Split Minimization Problem (SMP), Split Equilibrium
Problem (SEP), among others have been defined in terms of SFP (1.1), (see for example [1, 2, 3, 4, 22, 23, 29, 44]
and the references therein).

Let C be a nonempty, closed and convex subset of a real Banach space E and F : C × C → R be a bifunction,
where R is the set of real numbers. The Equilibrium Problem (EP ) is to find z∗ ∈ C such that

F (z∗, x) ≥ 0, ∀ x ∈ C.(1.4)

We denote by EP (F ), the set of solutions of (1.4). Equilibrium problems is known to have a great influence on
the development of several branches of pure and applied sciences. It has been shown that EP theory provides a
novel and unified treatment of a wide class of problems which arise in economics, finance, image reconstruction,
ecology, transportation, network, elasticity and optimization. Since the introduction of EP (1.4) by Blum and
Oettli [8], many authors have used different iterative algorithms such as Halpern, viscosity, hybrid, cyclic,
shrinking and many others to approximate solutions of EP (1.4) and related optimization problems in both
Hilbert and Banach spaces, (see [1, 2, 3, 4, 10, 11, 8, 13, 22, 29] and other references contained therein).
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An important generalization of the EP (1.4) is the Generalized Equilibrium Problem (GEP) (see [24]) defined
as: Find z∗ ∈ C such that

F (z∗, x) + φ(z∗, x)− φ(z∗, z∗) ≥ 0, ∀ x ∈ C;(1.5)

where C is a nonempty, closed and convex subset of a real Banach space E, F : C × C → R is a bifunction and
φ : C × C → R is a mapping. We denote by GEP (F, φ) the set of solutions of (1.5).

Remark 1.1. The GEP (1.5) reduces to EP (1.4) when the mapping φ is taken to be the zero mapping i.e. φ ≡ 0.

To solve EP (1.4) and GEP (1.5), we need the following assumptions:
Assumption 1.3:
(i) F (x, x) = 0, ∀ x ∈ C;
(ii) F is monotone, i.e. F (x, y) + F (y, x) ≤ 0, ∀ x, y ∈ C;
(iii) For each x, y, z ∈ C; lim supt→0 F (tz + (1− t)x, y) ≤ F (x, y);
(iv) For each x ∈ C, y 7−→ F (x, y) is convex and lower semicontinuous.

Assumption 1.4:
(i) φ is skew-symmetric, i.e., φ(x, x)− φ(x, y)− φ(y, x)− φ(y, y) ≥ 0, ∀ x, y ∈ C;
(ii) φ is convex in the second argument;
(iii) φ is continuous.

Motivated by SFP (1.1), Kazmi and Rizvi [23] introduced the so called SEP in Hilbert spaces, which is to:

find u∗ ∈ C such that F (u∗, x) ≥ 0, ∀ x ∈ C;(1.6)

and

v∗ = Au∗ ∈ Q solves G(v∗, y) ≥ 0, ∀ y ∈ Q;(1.7)

where C and Q are nonempty, closed and convex subsets of real Hilbert spaces H1 and H2 respectively, F :
C × C → R and G : Q×Q→ R are bifunctions with a bounded linear operator A : H1 → H2.

Let T : C → C be a mapping, a point x ∈ C is called a fixed point of T , if Tx = x. We denote by Fix(T )
the set of all fixed points of T . The fixed point problem has been studied due to its various applications to
problems arising from differential and integral equations. Also, fixed point iterative schemes have been employed
by researchers for obtaining a solution of some nonlinear optimization problems (see [1, 33, 38, 43]).

Recently, Abass et al. [1] introduced an iterative algorithm that does not require any knowledge of the operator
norm for finding a common solution of split equilibrium problem and fixed point problem for an infinite family
of quasi-nonexpansive multi-valued mappings in real Hilbert spaces. Using our iterative algorithm, we state and
prove a strong convergence result for approximating a common solution of split equilibrium problem and fixed
point problem for infinite family of quasi-nonexpansive multi-valued mappings which also solves some variational
inequality problem in real Hilbert spaces. Let C and Q be nonempty, closed and convex subsets of real Banach
spaces E1 and E2 respectively. The split generalized equilibrium problem is to find u∗ ∈ C such that

F (u∗, x) + φ(u∗, x)− φ(u∗, u∗) ≥ 0, ∀ x ∈ C,(1.8)

and such that

y∗ = Au∗ ∈ Q solves G(v∗, y) + ψ(v∗, y)− ψ(v∗, v∗) ≥ 0, ∀ y ∈ Q.(1.9)

We denote the solution set of (1.8)-(1.9) by

SGEP (F, φ,G, ψ) := {u∗ ∈ C : u∗ ∈ GEP (F, φ) and Au∗ ∈ GEP (G,ψ)}.

In 2018, Phuengrattana and Lerkchayaphum [38] introduced the following shrinking projection method for
solving the common solution of split generalized equilibrium problem and fixed point problem of multivalued
nonexpansive mappings in real Hilbert spaces as follows:

un = KF,φ
rn (I − γA∗(I −KG,ψ

rn ))A)xn,

zn = α
(0)
n xn + α

(1)
n y

(1)
n + · · ·α(n)

n y
(n)
n , y

(i)
n ∈ Siun,

Cn+1 = {p ∈ Cn : ||zn − p|| ≤ ||xn − p||},
xn+1 = PCn+1

x1, n ∈ N,

(1.10)
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where {Si} is a countable family of nonexpansive multivalued mappings, {α(i)
n }, {rn} ∈ (0,∞) and γ ∈ (0, 1

L ),
where L is the spectral radius of A∗A, and A∗ is the adjoint of A. They proved a strong convergence result for
(1.10).

In the framework of a 2-uniformly convex and uniformly smooth real Banach space, Alansari et al. [7] introduced
a hybrid algorithm together with an inertial method to approximate a common solution of GEP, variational
inequality and fixed point problems. A strong convergence result was established. For more results on GEP,
readers should consult ([20, 35] and the references therein).

Very recently, Reich and Tuyen [40] introduced two new self adaptive algorithms for solving split common null
point problem with multiple output sets in Hilbert spaces.

One of the best ways to speed up the convergence rate of iterative algorithms is to combine the iterative scheme
with the inertial term. This term which is represented by θn(xn − xn−1), is a remarkable tool for improving
the performance of algorithms and it is known to have some nice convergence characteristics. Thus, there are
growing interests by authors working in this direction (see [3, 4, 7, 35]).

In this article, we consider the following problem:

x∗ ∈
m⋂
j=1

Fix(Sj) ∩GEP (F, φ) :

N⋂
i=1

Aix
∗ ∈ (GEP (Fi, φi)).(1.11)

Motivated by the results of [1], [40], [38] and other related results in literature, we introduce a self-adaptive
modified inertial Halpern iterative method for finding a common element of the set of solution of split generalized
equilibrium problem which is also a fixed point problem of Bregman relatively nonexpansive mapping in the
framework of p-uniformly convex Banach spaces which are also uniformly smooth. We present some consequences
of our result and also display some numerical examples to show the applicability of our result. The result discuss
in this article extends and complements many related results in literature.
Our proposed method is endowed with the following features:

(1) We considered approximating the solution of problem (1.11) in a p-uniformly convex Banach spaces
which is more general than the results of [7, 20, 35, 38].

(2) Our method uses self-adaptive stepsizes and the implementation of our method does not require the
prior knowledge of the norm of the bounded linear operator A, (see [38]).

(3) The sequences generated by our proposed method converges strongly to the solution of the problem
(1.11) in p-uniformly convex and uniformly smooth Banach spaces which is desirable to the weak con-
vergence result obtained in [49].

(4) We were able to dispense with the condition
∞∑
n=1

θn||xn−xn−1|| <∞ which is often used when employing

the inertial method during the course of obtaining our strong convergence result, (see [3, 4]).

(5) Another observation in the algorithm defined in our paper is that it does not require at each step of
the iteration process, computation of subsets of Cn, Qn and Dn (or Cn+1) as in the case of [7, 38]
and the computation of the projection of the initial point onto their intersection, which leads to a high
computational cost of iteration processes. All these also limit the usefulness of such algorithms in real
world applications.

Remark 1.2. We will like to emphasize that approximating a common solution of GEPs, SFPs and
fixed point problem have some possible applications to mathematical models whose constraints can be
expressed as SFPs and GEPs. In fact, this happens in practical problems like signal processing, network
resource allocation, image recovery, among others (see [21]).

2. Preliminaries

We state some known and useful results which will be needed in the proof of our main theorem. In the sequel,
we denote strong and weak convergence by ”→” and ”⇀”, respectively.

Let E be a real Banach space, given a function f : E → R,
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(i) f is called Gâteaux differentiable at x ∈ E, if there exists an element of E, denoted by f ′(x) or ∇f(x)
such that

lim
t→0

f(x+ ty)− f(x)

t
= 〈y, f ′(x)〉, y ∈ E,

where f ′(x) or ∇f(x) is called Gâteaux differential or gradient of f at x. We say f is Gâteaux differen-
tiable on E if f is Gâteaux differentiable at every x ∈ E;

(ii) f is called weakly lower semicontinuous at x ∈ E, if xk ⇀ x implies f(x) ≤ lim inf
k→∞

f(xk). We say that f

is weakly lower semicontinuous on E, if f is weakly lower semicontinuous at every x ∈ E.

Let K(E) := {x ∈ E : ‖x‖ = 1} denote the unit sphere of E. The modulus of convexity is the function
δE : (0, 2]→ [0, 1] defined by

δE(ε) = inf

{
1− ‖x+ y‖

2
: x, y ∈ K(E), ‖x− y‖ ≥ ε

}
.

The space E is said to be uniformly convex if δE(ε) > 0 for all ε ∈ (0, 2]. Let p > 1, then E is said to be p-
uniformly convex (or to have a modulus of convexity of power type p) if there exists cp > 0 such that δE(ε) ≥ cpεp
for all ε ∈ (0, 2]. Note that every p-uniformly convex space is uniformly convex. The modulus of smoothness of
E is the function ρE : R+ := [0,∞)→ R+ defined by

ρE(τ) = sup

{
‖x+ τy‖+ ‖x− τy‖

2
− 1 : x, y ∈ K(E)

}
.

The space E is said to be uniformly smooth if ρE(τ)
τ → 0 as τ → 0. Let q > 1, then a Banach space E is said

to be q-uniformly smooth if there exists κq > 0 such that ρE(τ) ≤ κqτ
q for all τ > 0. It is known that E is

p-uniformly convex if and only if E∗ is q-uniformly smooth, where p and q satisfy 1
p + 1

q = 1, (see [17]).

Let p > 1 be a real number, the generalized duality mapping JEp : E → 2E
∗

is defined by

JEp (x) = {x ∈ E∗ : 〈x, x〉 = ‖x‖p, ‖x‖ = ‖x‖p−1},

where 〈., .〉 denotes the duality pairing between elements of E and E∗. In particular, if p = 2, then JE2 is called
the normalized duality mapping. If E is p-uniformly convex and uniformly smooth, then E∗ is q-uniformly
smooth and uniformly convex. In this case, the generalized duality mapping JEp is one-to-one, single-valued and

satisfies JEp = (JE
∗

q )−1, where JE
∗

q is the generalized duality mapping of E∗. Furthermore, if E is uniformly

smooth then the duality mapping JEp is norm-to-norm uniformly continuous on bounded subsets of E, (see [18]
for more details).

Let f : E → (−∞,+∞] be a proper, lower semicontinuous and convex function, then the Frenchel conjugate of
f denoted by f∗ : E∗ → (−∞,+∞] is defined as

f∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ E, x∗ ∈ E∗}.

Let the domain of f be denoted as domf = {x ∈ E : f(x) < +∞}, hence for any x ∈ int(domf) and y ∈ E, we
define the right-hand derivative of f at x in the direction y by

f0(x, y) = lim
t→0+

f(x+ ty)− f(x)

t
.

Definition 2.1. [12] Let f : E → (−∞,+∞] be a convex and Gâteaux differentiable function. The function
∆f : E × E → [0,+∞) defined by

∆f (x, y) := f(y)− f(x)− 〈∇f(x), y − x〉(2.1)

is called the Bregman distance with respect of f , where 〈∇f(x), y〉 = f0(x, y).

It is well-known that Bregman distance ∆f does not satisfy the properties of a metric because ∆f fail to satisfy
the symmetric and triangular inequality property. Moreover, it is well known that the duality mapping JpE is the
sub-differential of the functional fp(.) = 1

p ||.||
p for p > 1, see [16]. From (2.1), one can show that the equality

called three-point identity is satisfied:

∆p(x, y) + ∆p(y, z)−∆p(x, z) = 〈JpE(z)− JpE(y), x− y〉, ∀ x, y, z ∈ E.
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In addition, if f(x) = 1
p ||x||

p, where 1
p + 1

q = 1, then we obtain

∆f (x, y) = ∆p(x, y) =
1

p
‖y‖p − 1

p
‖x‖p − 〈y − x, JpE(x)〉

=
1

p
‖y‖p − 1

p
‖x‖p − 〈y, JpE(x)〉+ 〈x, JpE(x)〉

=
1

p
‖y‖p − 1

p
‖x‖p − 〈y, JpE(x)〉+ ‖x‖p

=
1

p
‖y‖p +

1

q
‖x‖p − 〈y, JpE(x)〉.(2.2)

Let T : C → C be a nonlinear mapping,

(i) a point p ∈ C is called an asymptotic fixed point of T, if C contains a sequence {xn} which converges

weakly to p such that lim
n→∞

‖Txn−xn‖ = 0. We denote by ˆFix(T ) the set of asymptotic fixed points of T ;

(ii) T is said to be Bregman quasi-nonexpansive, if

Fix(T ) 6= ∅ and ∆p(u, Tx) ≤ ∆p(u, x), ∀ x ∈ C, u ∈ Fix(T );

(iii) T is said to be Bregman relatively nonexpansive, if

ˆFix(T ) = Fix(T ) 6= ∅ and ∆p(u, Tx) ≤ ∆p(u, x), ∀ x ∈ C, u ∈ Fix(T ).

(iv) T is said to be Bregman firmly nonexpansive mapping (BFNE) if

〈JEp (Tx)− JEp (Ty), Tx− Ty〉 ≤ 〈JEp (x)− JEp (y), Tx− Ty〉, ∀ x, y ∈ C,

(v) T is said to be Bregman strongly nonexpansive mapping (BSNE) with ˆFix(T ) 6= ∅ if

∆p(y, Tx) ≤ ∆p(y, x), ∀ y ∈ ˆFix(T )

and for any bounded sequence {xn}n≥1 ⊂ C,

lim
n→∞

(∆p(y, xn)−∆p(y, Txn)) = 0

implies

lim
n→∞

∆p(Txn, xn) = 0.

Let C be a nonempty, closed and convex subset of E. The metric projection

PCx := argmin
y∈E
||x− y||, x ∈ E,

is the unique minimizer of the norm distance, which can be characterized by a variational inequality:

〈JpE(x− PCx), z − PCx〉 ≤ 0, ∀ z ∈ C.(2.3)

Also, the Bregman projection from E onto C denoted by ΠC also satisfies the property

∆p(x,ΠC(x)) = inf
y∈C

∆p(x, y), ∀ x ∈ E.(2.4)

Let C is a nonempty, closed and convex subset of a p-uniformly convex and uniformly smooth Banach space E
and x ∈ E. Then the following assertions hold: see [17],
z = ΠCx if and only if

〈JpE(x)− JpE(z), y − z〉 ≤ 0, ∀ y ∈ C;(2.5)

∆p(ΠCx, y) + ∆p(x,ΠCx) ≤ ∆p(x, y), ∀ y ∈ C.(2.6)

We now give some results that will help us in the proof of our main result.

Lemma 2.2. [16] Let E be a Banach space and x, y ∈ E. If E is q-uniformly smooth, then there exists Cq > 0
such that

‖x− y‖q ≤ ‖x‖q − q〈JqE(x), y〉+ Cq‖y‖q.
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Lemma 2.3. [42] Let E be a p-uniformly convex Banach space, the metric and Bregman distance have the
following relation for all x, y ∈ E

τ‖x− y‖p ≤ ∆p(x, y) ≤ 〈x− y, JpE(x)− JpE(y)〉,(2.7)

where τ > 0 is a fixed number.

Lemma 2.4. [46] Let E be a real q-uniformly smooth Banach space, then there exists a constant Cq > 0 such
that x, y ∈ E and α ∈ (0, 1), we have

||αx+ (1− α)y||q ≤ α||x||q + (1− α)||y||q − [αq(1− α) + α(1− α)q]||x− y||q.

Lemma 2.5. [43] Let E be a real p-uniformly convex and uniformly smooth Banach space. Let Vp : E∗ × E →
[0,+∞) be defined by

Vp(x
∗, x) =

1

q
‖x∗‖q − 〈x∗, x〉+

1

p
‖x‖p, ∀ x ∈ E, x∗ ∈ E∗.

Then the following assertions hold:
(i) Vp is nonnegative and convex in the first variable.

(ii) ∆p(J
E∗

q (x∗), x) = Vp(x
∗, x), ∀ x ∈ E, x∗ ∈ E∗.

(iii) Vp(x
∗, x) + 〈y∗, JE∗

q (x∗)− x〉 ≤ Vp(x∗ + y∗, x),∀ x ∈ E, x∗, y∗ ∈ E∗.
Also for all x∗ ∈ E, we have

∆p

(
x∗, JE

∗

q

( N∑
i=1

tiJ
E
p (xi)

))
≤

N∑
i=1

ti∆p(x
∗, xi),(2.8)

where {xi}Ni=1 ⊂ E and {ti}Ni=1 ⊂ (0, 1) with
N∑
i=1

t1 = 1.

Lemma 2.6. [17] Let E be a real p-uniformly convex and uniformly smooth Banach space. Suppose that {xn}
and {yn} are bounded sequences in E. Then lim

n→∞
∆p(xn, yn) = 0 implies lim

n→∞
||xn − yn|| = 0.

Proposition 2.7. [42] Let E be a p-uniformly convex Banach space. Then for x, y ∈ E, there exists a fixed
contant τp such that

τp‖x− y‖p ≤ ∆p(x, y) ≤ 〈x− y, JpEx− J
p
Ey〉.

Lemma 2.8. [24] Let C be a closed and convex subset of E. If F : C × C → R is a bifunction satisfying
Assumption 1.3 and φ : C × C → R satisfying Assumption 1.4, then dom(KF,φ

r ) = E.

Lemma 2.9. [24] Let C be a nonempty, closed and convex subset of a real reflexive Banach space E. Let
F : C × C → R be a bifunction satisfying Assumption 1.3 and φ : C × C → R satisfying Assumption 1.4. Let
KG,φ
r : E → 2C be the resolvent associated with F and φ defined as follows:

KF,φ
r (x) = {z ∈ C : F (z, y) + 〈JpE(z)− JpE(x), y − z〉

+ φ(z, y)− φ(z, z) ≥ 0, ∀ y ∈ C}, ∀ x ∈ E.(2.9)

Then, the following holds:
(a) KF,φ

r is single-valued;
(b) KF,φ

r is Bregman firmly nonexpansive type mapping, i.e., for all x, y ∈ E,

〈JpE(KF,φ
r x)− JpE(KF,φ

r y),KF,φ
r x−KF,φ

r y〉 ≤ 〈JpE(x)− JpE(y),KF,φ
r x−KF,φ

r y〉;

(c) Fix(KF,φ
r ) = Sol(GEP ) is closed and convex;

(d) ∆p(q,K
F,φ
r x) + ∆p(K

F,φ
r x, x) ≤ ∆p(q, x), ∀ q ∈ Fix(KF,φ

r ) and x ∈ E;
(e) KF,φ

r is Bregman quasi-nonexpansive.

Lemma 2.10. [31] Let E be a Banach space, r > 0 be a constant and f : E → R be a uniformly convex function
on bounded subsets of E. Then

f

( n∑
k=0

αkxk

)
≤

n∑
k=0

αkf(xk)− αiαjρr(||xi − xj ||),

for all i, j ∈ {0, 1, 2, · · · , n}, xk ∈ rB, αk ∈ (0, 1) and k = 0, 1, 2 · · · , n with
∑k
k=0 αk = 1, where ρr is the gauge

of uniform convexity of f.
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Lemma 2.11. [39] Let E be a uniformly convex and uniformly smooth Banach space. if x0 ∈ E and the sequence
{∆p(xn, x0)} is bounded, then the sequence {xn} is also bounded.

Lemma 2.12. [47] Let {an}, {γn}, {δn} and {tn} be sequences of nonnegative real numbers satisfying the
following relation:

an+1 ≤ (1− tn − γn)an + γnnan−1 + tnsn + δn, ∀n ≥ 0,

where
∞∑

n=n0

tn = +∞,
∞∑

n=n0

δn < +∞, for each n ≥ n0 (where n0 is a positive integer) and {γn} ⊂ [0, 1
2 ], lim sup

n→∞
sn ≤

0. Then, the sequence {an} converges strongly to zero.

Lemma 2.13. [28] Let Γn be a sequence of real numbers that does not decrease at infinity, in the sense that
there exists a subsequence {Γnk}k≥0 of {Γn} which satisfies Γnk ≤ Γnj+1 for all j ≥ 0. Also, consider a sequence
of integers {τ(n)}n≥n0

defined by

τ(n) := max{k ≤ n | Γnk ≤ Γnk+1}.
Then {τ(n)}n≥n0

is a nondecreasing sequence satisfying limn→∞ τ(n) =∞. If it holds that Γτ(n) ≤ Γτ(n)+1 for
all n ≥ n0 then we have

Γτ (n) ≤ Γτ(n)+1.

3. Main Result

First we give the following remark.

Remark 3.1. We adopt the notations C = C0, E = E0, φ = φ0, F = F0, and A0 = I, where I is the identity
mapping.

Now, we present our theorem and its proof.

Theorem 3.2. Let E,Ei, i = 1, 2, · · ·N be real Banach spaces and C,Ci be nonempty, closed and convex
subsets of E and Ei respectively. For i = 1, 2, · · ·N, let F : C × C → R, Fi : Ci × Ci → R be bifunctions and
φ : C × C → R, φi : Ci × Ci → R be nonlinear mappings. Suppose Ai : E → Ei, i = 1, 2, · · ·N be linear
bounded operators and Sj be finite family of Bregman relatively nonexpansive mappings such that Γ :=

{
x∗ ∈

m⋂
j=1

Fix(Sj)∩GEP (F, φ)∩
N⋂
i=1

A−1
i (GEP (Fi, φi))

}
6= ∅. Assume that {θn} ⊂ [0, 1

2 ], {αn}, {βn}, {µi,n}, {δn,j}mj=0

and {γn} are sequences in (0, 1) such that
N∑
i=0

µi,n = 1, αn+βn+γn = 1, αn ≤ b < 1, (1−αn)a < γn, a ∈ (0, 1
2 ).

Let u, x0, x1 ∈ E and {xn} be the sequence generated as follows:

wn = JqE∗

[
JpE(xn) + θn

(
JpE(xn−1)− JpE(xn)

)]
,

yn = JqE∗

[
N∑
i=0

µi,n
(
JpE(wn)− λi,nA∗i J

p
Ei

(IEi − (KFi,φi
ri,n )Ai(wn)

)]
,

un = JqE∗

[
δn,0J

p
E(yn) +

m∑
j=1

δn,jJ
p
ESj(yn)

]
,

xn+1 = JqE∗

(
αnJ

p
E(u) + βnJ

p
E(xn) + γnJ

p
E(yn)

)
.

(3.1)

Now, suppose for ε > 0, the step size λi,n is chosen in such a way that

λi,n ∈
(
ε,
( q||Ai(wn)− (KFi,φi

ri,n )Ai(wn)||p

Cq||A∗i J
p
Ei

(IEi − (KFi,φi
ri,n )Ai(wn))||q∗)

− ε
) 1
q−1

)
; n ∈ Ω,(3.2)

where the index set Ω := {n ∈ N : (Aiwn − (KFi,φi
ri,n )Aiwn) 6= 0}, otherwise λi,n = λ, λ is any nonnegative real

number. The sequence {αn}, {βn}, {µn} and {θn} satisfies the following conditions:

(1) lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞,

(2) 0 < c < θn < γn ≤ 1
2 ,∀ n ≥ 1,

(3) 0 < lim inf
n→∞

γn, βn ≤ lim sup
n→∞

γn, βn < 1,
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(4) min
i=0,1,···N

{infn{ri,n}} = r > 0,

(5)
m∑
j=1

δn,j = 1 and lim inf
n→∞

δn,0δn,j > 0. Then, {xn} generated by (3.1) converges strongly to x∗ ∈ Γ, where

x∗ = ΠΓu.

Proof. Let x∗ ∈ Γ, then we have from (3.1) and (2.2) that

∆p(x
∗, yn) = ∆p(x

∗, JqE∗

[ N∑
i=0

µi,n(JpE(wn)− λi,nA∗i J
p
Ei

(IEi − (KFi,φi
ri,n )))

]
Aiwn)

=
||x∗||p

p
− 〈x∗,

N∑
i=0

µi,n(JpE(wn)− λi,nA∗i J
p
Ei

(IEi − (KFi,φ
ri,n ))Aiwn)〉

+

||
N∑
i=0

µi,n(JpE(wn)− λi,nA∗i J
p
Ei

(IEi − (KFi,φi
ri,n )))Aiwn)||q∗

q

≤ ||x
∗||p

p
− 〈x∗, JpEwn〉+

N∑
i=0

µi,nλi,n〈Aix∗, JpEi(I
Ei − (KFi,φi

ri,n )))Aiwn)〉

+

N∑
i=0

µi,n||(JpE(wn)− λi,nA∗i J
p
Ei

(IEi − (KFi,φi
ri,n )))Aiwn)||q∗

q

≤ ||x
∗||p

p
− 〈x∗, JpEwn〉+

||wn||q∗
q

+

N∑
i=0

µi,nλi,n〈Aix∗, JpEi(I
Ei − (KFi,φi

ri,n )))Aiwn)〉

−
N∑
i=0

µi,nλi,n〈Aiwn, JpEi(I
Ei − (KFi,φi

ri,n )))Aiwn)〉

+

N∑
i=0

µi,n
Cq
q
λqi,n||A

∗
i J

p
Ei

(IEi − (KFi,φi
ri,n )Aiwn)||q∗

= ∆p(x
∗, wn)−

N∑
i=0

µi,nλi,n〈Aix∗ −Aiwn, JpEi(I
Ei − (KFi,φi

ri,n )))Aiwn)

+

N∑
i=0

µi,n
Cq
q
λqi,n||A

∗
i J

p
Ei

(IEi − (KFi,φi
ri,n )Aiwn)||q∗.(3.3)

Observe from (2.3) that for any x∗ ∈ ∆, where ∆ is the solution set of GEP, we have

〈Aix∗ −Aiwn, JpEi
(
IEi − (KFi,φ

ri,n )Aiwn〉 = 〈Aix∗ − (KFi,φ
ri,n )Aiwn, J

p
Ei

(
IEi − (KFi,φ

ri,n )Aiwn〉〉

+ 〈(KFi,φi
ri,n )Aiwn −Aiwn, JpEi

(
IEi − (KFi,φ

ri,n )Aiwn〉

= ||(IEi − (KFi,φi
ri,n ))Aiwn||p

+ 〈Aix∗ − (KFi,φ
ri,n )Aiwn, J

p
Ei

(
IEi − (KFi,φ

ri,n )Aiwn〉

≤ −||(IEi − (KFi,φi
ri,n ))Aiwn||p.(3.4)

On substituting (3.4) into (3.3) and applying (3.2), we obtain

∆p(x
∗, yn) ≤ ∆p(x

∗, wn)−
N∑
i=0

µi,nλi,n
(
||(IEi − (KFi,φi

ri,n ))Aiwn||p

− Cq
q
λq−1
i,n ||A

∗
i J

p
Ei

(IEi − (KFi,φi
ri,n )Aiwn)||q∗

)
(3.5)

≤ ∆p(x
∗, wn).(3.6)
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From (2.8), (3.1) and (3.6), we get

∆p(x
∗, xn+1) = ∆p(x

∗, JqE∗(αnJ
p
E(u) + βnJ

p
E(xn) + γnJ

p
E(un))

≤ αn∆p(x
∗, u) + βn∆p(x

∗, xn) + γn∆p(x
∗, un)

≤ αn∆p(x
∗, u) + βn∆p(x

∗, xn) + γn

(
δn,0∆p(x

∗, yn) +

m∑
j=1

δn,j∆p(x
∗, Sjyn)

)

≤ αn∆p(x
∗, u) + βn∆p(x

∗, xn) + γn

(
δn,0∆p(x

∗, yn) +

m∑
j=1

δn,j∆p(x
∗, yn)

)
≤ αn∆p(x

∗, u) + βn∆p(x
∗, xn) + γn∆p(x

∗, yn)

≤ αn∆p(x
∗, u) + βn∆p(x

∗, xn) + γn∆p(x
∗wn)

≤ αn∆p(x
∗, u) + βn∆p(x

∗, xn) + γn((1− θn)∆p(x
∗, xn) + θn∆p(x

∗, xn−1))

= αn∆p(x
∗, u) + (βn + γn)∆p(x

∗, xn)− γnθn∆p(x
∗, xn) + γnθn∆p(x

∗, xn−1)

= αn∆p(x
∗, u) + (1− αn)∆p(x

∗, xn)− γnθn∆p(x
∗, xn) + γnθn∆p(x

∗, xn−1)

= αn∆p(x
∗, u) + (1− αn − γnθn)∆p(x

∗, xn) + γnθn∆p(x
∗, xn−1)

≤ max{∆p(x
∗, u),∆p(x

∗, xn),∆p(x
∗, xn−1)}, ∀ n ≥ 1

By induction,

∆p(x
∗, xn) ≤ max{∆p(x

∗, u),∆p(x
∗, x1),∆p(x

∗, x0)}.

Hence, {∆p(x
∗, xn)} is bounded. Consequently, {∆p(x

∗, yn)}, {∆p(x
∗, un)} and {∆p(x

∗, wn)} are bounded.
Thus, we conclude from Lemma 2.11 that {xn}, {un}, {yn} and {wn} are bounded. Next, we show that
for each j ∈ {1, 2, · · · ,m}, lim

n→∞
||JpE(yn) − JpESj(yn)|| = 0. Let tj := supn∈N{||J

p
E(yn), ||JpESj(yn)||} and let

ρtj : [0,∞)→ [0,∞] be the gauge of uniform convexity of fq. Then by Lemma 2.10, we obtain

∆p(x
∗, un) = ∆p

(
x∗, JqE∗

(
δn,0J

p
E(yn) +

m∑
j=1

δn,jJ
p
ESj(yn)

))

= Vp
(
x∗, δn,0J

p
E(yn) +

m∑
j=1

δn,jJ
p
ESj(yn)

)
≤ 1

p
||x∗||p − δn,0〈x∗, JpE(yn)〉 −

m∑
j=1

δn,j〈x∗, JpESjyn〉+
δn,0
q
||JpE(yn)||q

+
1

q

m∑
j=1

δn,j ||JpESj(yn)||q − δn,0δn,jρ∗tj ||J
p
Eyn − J

p
ESjyn||

= δn,0
1

p
‖x∗‖p +

m∑
j=1

δn,j
1

p
‖x∗‖p +

δn,0
q
‖yn‖p +

1

q

m∑
j=1

δn,j‖Sjyn‖p

− δn,0〈x∗, JpEyn〉 −
m∑
j=1

δn,j〈x∗, JpESjyn〉 − δn,0δn,jρ
∗
tj‖J

p
Eyn − J

p
ESjyn‖

= δn,0∆p(x
∗, yn) +

m∑
j=1

δn,j∆p(x
∗, Sjyn)− δn,0δn,jρ∗tj‖J

p
Eyn − J

p
ESjyn‖

≤ ∆p(x
∗, yn)− δn,0δn,jρ∗tj‖J

p
Eyn − J

p
ESjyn‖.(3.7)
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Now, we prove that the sequence {xn} converges strongly to an element in the solution set. Using (3.1), (3.7)
and Lemma 2.5 (iii), we get

∆p(x
∗, xn+1) = ∆p(x

∗, JqE∗(αnJ
p
E(u) + βnJ

p
E(xn) + γnJ

p
E(un))

= Vp(x
∗, αnJ

p
E(u) + βnJ

p
E(xn) + γnJ

p
E(un))

≤ Vp(x∗, αnJpE(u) + βnJ
p
E(xn) + γnJ

p
E(un))

− αn(JpE(u)− JpE(x∗))− 〈−αn(JpE(u)− JpE(x∗)), JqE∗(αnJ
p
E(x∗)

+ βnJ
p
E(xn) + γnJ

p
E(un))− x∗〉

= Vp(x
∗, αnJ

p
E(u) + βnJ

p
E(xn) + γnJ

p
E(un)

+ αn〈JpE(u)− JpE(x∗), xn+1 − x∗〉
= ∆p(x

∗, JqE∗(αnJ
p
E(x∗) + βnJ

p
E(xn) + γnJ

p
E(un))

+ αn〈JpE1
(u)− JpE(x∗), xn+1 − x∗〉

= αn∆p(x
∗, x∗) + βn∆p(x

∗, xn) + γn∆p(x
∗, un)

+ αn〈JpE(u)− JpE(x∗), xn+1 − x∗〉(3.8)

≤ αn∆p(x
∗, x∗) + βn∆p(x

∗, xn) + γn∆p(x
∗, wn)

+ αn〈JpE(u)− JpE(x∗), xn+1 − x∗〉
≤ αn∆p(x

∗, x∗) + βn∆p(x
∗, xn) + γn[(1− θn)∆p(x

∗, xn) + θn∆p(x
∗, xn−1)]

+ αn〈JpE(u)− JpE(x∗), xn+1 − x∗〉
= (1− αn − γnθn)∆p(x

∗, xn) + γnθn∆p(x
∗, xn−1) + αn〈JpE(u)− JpE(x∗), xn+1 − x∗〉.(3.9)

Case 1: Assume that {∆p(x
∗, xn)} is monotone decreasing, that is ∆p(x

∗, xn+1) ≤ ∆p(x
∗, xn) since ∆p(x

∗, xn) ≤
M, for all n ≥ 1, where M := max{∆p(x

∗, u),∆p(x
∗, x1),∆p(x

∗, x0)}, which means {∆p(x
∗, xn)} is bounded.

Then {∆p(x
∗, xn)} is convergent. Thus,

lim
n→∞

(
∆p(x

∗, xn)−∆p(x
∗, xn+1)

)
= lim
n→∞

(
∆p(x

∗, xn−1)−∆p(x
∗, xn)

)
= 0.(3.10)

From (3.5), (3.6), (3.7) and (3.8), we obtain that

∆p(x
∗, xn+1) ≤ βn∆p(x

∗, xn) + γn∆p(x
∗, un) + αn〈JpE(u)− JpE(x∗), xn+1 − x∗〉

≤ βn∆p(x
∗, xn)− γn

N∑
i=0

µi,nλi,n
(
||(IEi − (KFi,φi

ri,n ))Aiwn||p

− Cq
q
λq−1
i,n ||A

∗
i J

p
Ei

(IEi − (KFi,φi
ri,n )Aiwn)||q∗

)
+ γn∆p(x

∗, wn)

+ αn〈JpE(u)− JpE(x∗), xn+1 − x∗〉 − γnδn,0δn,jρ∗tj‖J
p
Eyn − J

p
ESjyn‖

≤ (1− αn)∆p(x
∗, xn) + γnθn(∆p(x

∗, xn−1)−∆p(x
∗, xn))

− γn
N∑
i=0

µi,nλi,n
(
||(IEi − (KFi,φi

ri,n ))Aiwn||p

− Cq
q
λq−1
i,n ||A

∗
i J

p
Ei

(IEi − (KFi,φi
ri,n )Aiwn)||q∗

)
+ αn〈JpE(u)− JpE(x∗), xn+1 − x∗〉

− γnδn,0δn,jρ∗tj‖J
p
Eyn − J

p
ESjyn‖.(3.11)

From (3.10) and (3.11), we get

γn

N∑
i=0

µi,nλi,n
(
||(IEi − (KFi,φi

ri,n ))Aiwn||p

− Cq
q
λq−1
i,n ||A

∗
i J

p
Ei

(IEi − (KFi,φi
ri,n )Aiwn)||q∗

)
− γnδn,0δn,jρ∗tj‖J

p
Eyn − J

p
ESjyn‖

≤ (1− αn)∆p(x
∗, xn)−∆p(x

∗, xn+1) + γnθn(∆p(x
∗, xn−1)−∆p(x

∗, xn))

+ αn〈JpE(u)− JpE(x∗), xn+1 − x∗〉.(3.12)
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By passing limit on (3.12), we obtain that

lim
n→∞

(
||(IEi − (KFi,φi

ri,n ))Aiwn||p −
Cq
q
λq−1
i,n ||A

∗
i J

p
Ei

(IEi − (KFi,φi
ri,n )Aiwn)||q∗

)
= 0.(3.13)

Observe that by the choice of our step size, it holds that

λq−1
i,n <

q||Aiwn − (KFi,φi
ri,n )Aiwn||p

Cq||A∗i J
p
Ei

(IEi − (KFi,φi
ri,n )Aiwn)||q∗

− ε.(3.14)

From (3.14), we get

εCq
q
||A∗i J

p
Ei

(IEi − (KFi,φi
ri,n )Aiwn)||q∗ <

(
||Aiwn − (KFi,φi

ri,n )Aiwn||p

− Cq
q
λq−1
i,n ||A

∗
i J

p
Ei

(IEi − (KFi,φi
ri,n ))Aiwn)||q∗

)
.(3.15)

By passing the limit as n→∞ on (3.13) and (3.15), we obtain that

lim
n→∞

||A∗i J
p
Ei

(IEi − (KFi,φi
ri,n )Aiwn)||∗ = 0.(3.16)

Similarly, from (3.13), (3.14) and condition (i) of (3.1), we have that

lim
n→∞

||Aiwn − (KFi,φi
ri,n ))Aiwn|| = 0.(3.17)

Also, from (3.12) and condition (5) of (3.2), we get

lim
n→∞

ρ∗tj‖J
p
Eyn − J

p
ESjyn‖ = 0.(3.18)

Then we prove that lim
n→∞

‖JpEyn − J
p
ESjyn‖ = 0. In fact, if not, Suppose that ε0 > 0 and subsequence {nk} of

{n} such that ‖JpEyn − J
p
ESjyn‖ ≥ ε0. Since ρ∗tj is nondecreasing, we have ρ∗tj (ε0) ≤ ρ∗tj (‖J

p
Eyn − J

p
ESjyn‖) for

all k ∈ N. Letting k →∞, we have ρ∗tj (ε0) ≤ 0. This contradicts to the uniform convexity of fq on bounded sets,
hence

lim
n→∞

‖JpEyn − J
p
ESjyn‖ = 0.(3.19)

Since JqE∗ is uniformly continuous on bounded subset of E∗, we obtain

lim
n→∞

‖yn − Sjyn‖ = 0.(3.20)

Also, we have

‖JpE(un)− JpE(yn)‖ ≤
m∑
j=1

δn,j‖JpE(Sjyn)− JpE(yn)‖ → 0.(3.21)

Since JqE∗ is uniformly continuous on bounded subset of E∗, we obtain

lim
n→∞

‖un − yn‖ = 0.(3.22)
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Let vn := JqE∗

(
βn

1−αn J
p
Exn + γn

1−αn J
p
E(un)

)
, we obtain from (2.2) and Lemma 2.4 that

∆p(x
∗, vn) =

1

p
||x∗||p −

〈
βn

1− αn
JpExn +

γn
1− αn

JpE(un), x∗
〉

+
1

q

∣∣∣∣∣∣∣∣ βn
1− αn

JpExn +
γn

1− αn
JpE(un)

∣∣∣∣∣∣∣∣
≤ 1

p
||x∗||p −

〈
βn

1− αn
JpExn +

γn
1− αn

JpE(un), x∗
〉

+
1

q

[∣∣∣∣∣∣∣∣ βn
1− αn

JpExn +
γn

1− αn
JpE(un)

∣∣∣∣∣∣∣∣
−
(( βn

1− αn
)q(

1− βn
1− αn

)
+

γn
1− αn

(
1− γn

1− αn
))]
||JpE(xn)− JpE(un)||q

=
βn

1− αn

(
1

p
||x∗||p − 〈JpE(xn), x∗〉+

1

q
||xn||p

)
+

γn
1− αn

(
1

p
||x∗||p − 〈JpE(un), x∗〉

+
1

q
||(un)||p

)
− 2γnβ

q
n

(1− αn)q+1

∣∣∣∣∣∣∣∣JpE(xn)− JpE(un)

∣∣∣∣∣∣∣∣q
=

βn
1− αn

∆p(x
∗, xn) +

γn
1− αn

∆p(x
∗, un)

− 2γnβ
q
n

(1− αn)q+1

∣∣∣∣∣∣∣∣JpE(xn)− JpE(un)

∣∣∣∣∣∣∣∣q
≤ βn

1− αn
∆p(x

∗, xn) +
γn

1− αn
∆p(x

∗, xn) +
γnθn

1− αn
(
∆p(x

∗, xn−1)−∆p(x
∗, xn)

)
− 2γnβ

q
n

(1− αn)q+1

∣∣∣∣∣∣∣∣JpE(xn)− JpE(un)

∣∣∣∣∣∣∣∣q
= ∆p(x

∗, xn) +
γnθn

1− αn
(
∆p(x

∗, xn−1)−∆p(x
∗, xn)

)
− 2γnβ

q
n

(1− αn)q+1

∣∣∣∣∣∣∣∣JpE(xn)− JpE(un)

∣∣∣∣∣∣∣∣q.(3.23)

From (3.1) and (3.23), we obtain

∆p(x
∗, xn+1) ≤ αn∆p(x

∗, u) + (1− αn)∆p(x
∗, vn)

≤ αn∆p(x
∗, u) + (1− αn)∆p(x

∗, xn) + γnθn
(
∆p(x

∗, xn−1)−∆p(x
∗, xn)

)
− 2γnβ

q
n

(1− αn)q+1

∣∣∣∣∣∣∣∣JpE(xn)− JpE(un)

∣∣∣∣∣∣∣∣q,
which implies that

0 ≤ 2γnβ
q
n

(1− αn)q+1

∣∣∣∣∣∣∣∣JpE(xn)− JpE(un)

∣∣∣∣∣∣∣∣q
≤ αn∆p(x

∗, u) + (1− αn)∆p(x
∗, xn)−∆p(x

∗, xn+1)

+ γnθn
(
∆p(x

∗, xn−1)−∆p(x
∗, xn)

)
→ 0, as n→ ∞.

Hence,

lim
n→∞

∣∣∣∣∣∣∣∣JpE(xn)− JpE(un)

∣∣∣∣∣∣∣∣q = 0.

Since JqE∗ is uniformly norm-to-norm continuous on bounded subsets, we obtain

lim
n→∞

∣∣∣∣∣∣∣∣xn − un∣∣∣∣∣∣∣∣ = 0,(3.24)

which implies from Proposition 2.7 that

lim
n→∞

∆p(xn, un) = 0.(3.25)
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Also, from (3.1) and (3.25), we obtain that

∆p(xn, xn+1) ≤ αn∆p(xn, u) + βn∆p(xn, xn) + γn∆p(xn, un))→ 0 as n→∞.
Hence, from Lemma 2.6, we obtain that

lim
n→∞

||xn − xn+1|| = 0.(3.26)

Let wn = JqE∗

(
JpExn + θn(JpE(xn−1)− JpE(xn)

)
. It then follows that

JpEwn − J
p
E1
xn = θn

(
JpE(xn−1)− JpE(xn)

)
.

Then by the uniform continuity of JpE on bounded subsets of E, we get that

||JpEwn − J
p
Exn||∗ =||θn

(
JpE1

(xn−1)− JpE1
(xn)

)
||∗

≤ θn||JpE1
(xn−1)− JpE(xn)||∗ → 0 as n→∞.(3.27)

By the uniform continuity of JqE∗ on bounded subsets of E∗ and (3.27), we obtain that

lim
n→∞

||wn − xn|| = 0.(3.28)

Moreso, from (3.1) and (3.16), we obtain that

||JpE(yn)− JpE(wn)|| ≤
N∑
i=0

µi,nλi,n||A∗i || ||J
p
Ei

(IEi − (KFi,φi
ri,n )Aiwn)|| → 0 as n→∞.

By the uniform continuity of JqE∗ on bounded subsets of E∗, we obtain that

lim
n→∞

||yn − wn|| = 0.(3.29)

Thus, from (3.28) and (3.29), we obtain that

lim
n→∞

||yn − xn|| = 0.(3.30)

Also, using (3.22) and (3.30), we get

lim
n→∞

‖un − xn‖ = 0.(3.31)

Since {xn} is bounded, there exists a subsequence {xnk} which converges weakly to z ∈ E. From (3.28), (3.30)
and (3.31), there exist subsequences {wnk} of {wn} which converges weakly to z ∈ E, {ynk} of {yn} which also
converges weakly to z ∈ E and lastly, {unk} of {un} which converges weakly to z ∈ E. Using the fact that Ai
for i = 0, 1, 2, · · ·N is a bounded linear operator, we get Aiwnk ⇀ Aiz ∈ Ei as k → ∞. By applying (3.17),
we obtain that Aiz ∈ Fix(KFi,φi

ri,n ) for all i = 0, 1, · · ·N. Now by the Bregman relatively nonexpansivity of each

Sj , j = 1, 2, · · ·m, we obtain that z ∈
m⋂
j=1

Fix(Sj). Hence, we conclude that z ∈ Γ.

Next, since xnk ⇀ z ∈ Γ, then for any z = ΠΓu we get from (2.5) that

lim sup
n→∞

〈JpE(u)− JpE(x∗), xn − x∗〉 = lim
j→∞
〈JpE(u)− JpE(x∗), xnj − x∗〉

= 〈JpE(u)− JpE(x∗), z − x∗〉
≤ 0.(3.32)

Furthermore, since

〈JpE(u)− JpE(x∗), xn+1 − x∗〉 = 〈JpE1
(u)− JpE1

(x∗), xn+1 − xn〉
+ 〈JpE1

(u)− JpE1
(x∗), xn − x∗〉.

Hence, from (3.26) and (3.32), we obtain that

lim sup
n→∞

〈JpE1
(u)− JpE1

(x∗), xn+1 − x∗〉 ≤ 0.(3.33)

By applying Lemma 2.12, (3.9) and (3.33), we obtain that {xn} converges strongly to x∗.

Case 2: Assume that {∆p(x
∗, xn)} is non-monotone. Set Υn = ∆p(x

∗, xn) as stated in Lemma 2.13 and
let τ : N → N be a mapping for all n ≥ n0, (for some n0 large enough) defined by τ(n) := max{k ∈ N : k ≤
n,Υk ≤ Υk+1}. Then τ is non-decreasing sequence such that τ(n)→∞ as n→∞. Thus

0 ≤ Υτ(n) ≤ Υτ(n)+1, ∀ n ≥ n0,
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this implies that

∆p(x
∗, xτ(n)) ≤ ∆p(x

∗, xτ(n)+1), n ≥ n0.

Now following the process as estimated in Case 1 above, we obtain that

lim
τ(n)→∞

||yτ(n) − uτ(n)|| = 0

lim
τ(n)→∞

||uτ(n) − xτ(n)|| = 0

lim
τ(n)→∞

||wτ(n) − xτ(n)|| = 0

lim
τ(n)→∞

||(I − Si(KFi,φi
ri,τ(n)

)Aiwτ(n)|| = 0

lim
τ(n)→∞

〈JpE(u)− JpE(x∗), xτ(n)+1 − x∗〉 ≤ 0.

(3.34)

From (3.1) and Υτ(n) ≤ Υτ(n)+1, we have

∆p(z, xτ(n)+1) ≤ (1− αn − θτ(n)γτ(n))∆p(z, xτ(n)) + µτ(n)θτ(n)∆p(v, xτ(n)−1)

+ ατ(n)〈JpE1
(u)− JpE(z), xτ(n)+1 − z〉.

Hence, we obtain

∆p(z, xτ(n)) ≤ ∆p(z, xτ(n)+1) ≤ 〈JpE(u)− JpE(z), xτ(n)+1 − z〉.

Hence, from (3.34), we get

lim
τ(n)→∞

∆p(z, xτ(n)) = 0,

and

∆p(z, xτ(n)+1) = 0.

Thus,

lim
τ(n)→∞

Υτ(n) = lim
τ(n)→∞

Υτ(n)+1 = 0,(3.35)

for all n ≥ n0, we have that Υτ(n) ≤ Υτ(n)+1, if n 6= τ(n) (that is, τ(n) < n), since Υk+1 ≤ Υk for some
τ(n) ≤ k ≤ n. Hence, we obtain for all n ≥ n0,

0 ≤ Υn ≤ max
{

Υτ(n),Υτ(n)+1

}
= Υτ(n)+1.

This implies that lim
n→∞

Υn = 0 which implies that lim
n→∞

∆p(z, xn) = 0 n→∞. Hence {xn} → z = ΠΓu as n→
∞. �

Corollary 3.3. Let E,Ei, i = 1, 2, · · ·N be real Banach spaces and C,Ci be nonempty, closed and convex
subsets of E and Ei respectively. For i = 1, 2, · · ·N, let F : C × C → R, Fi : Ci × Ci → R be bifunctions and
φ : C → R, φi : C → R be nonlinear mappings. Suppose Ai : E → Ei, i = 1, 2, · · ·N be linear bounded operators

such that Γ :=
{
x∗ ∈ GEP (F, φ) ∩

N⋂
i=1

A−1
i (GEP (Fi, φi))

}
6= ∅. Assume that {θn} ⊂ [0, 1

2 ], {αn}, {βn}, {µi,n}

and {γn} are sequences in (0, 1) such that
N∑
i=0

µi,n = 1, αn+βn+γn = 1, αn ≤ b < 1, (1−αn)a < γn, a ∈ (0, 1
2 ).

Let x0, x1 ∈ E and {xn} be sequence generated as follows:
wn = JqE∗

[
JpE(xn) + θn

(
JpE(xn−1)− JpE(xn)

)]
,

yn = JqE∗

[
N∑
i=0

µi,n
(
JpE(wn)− λi,nA∗i J

p
Ei

(IEi − (KFi,φi
ri,n )Ai(wn)

)]
,

xn+1 = JqE∗

(
αnJ

p
E(u) + βnJ

p
E(xn) + γnJ

p
E(yn)

)
.

(3.36)

Now, suppose for ε > 0, the step size λi,n is chosen in such a way that

λi,n ∈
(
ε,
( q||Ai(wn)− (KFi,φi

ri,n )Ai(wn)||p

Cq||A∗i J
p
Ei

(IEi − ((KFi,φi
ri,n )Ai(wn))||q∗)

− ε
) 1
q−1

)
; n ∈ Ω,(3.37)

where the index set Ω := {n ∈ N : Aiwn − ((KFi,φi
ri,n )Aiwn) 6= 0}, otherwise λi,n = λ, λ is any nonnegative real

numbers. Then the sequence {αn}, {βn}, {µn} and {θn} satisfies the following conditions:
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(1) lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞,

(2) 0 < c < θn < γn ≤ 1
2 ,∀ n ≥ 1,

(3) 0 < lim inf
n→∞

γn, βn ≤ lim sup
n→∞

γn, βn < 1,

(4) min
i=0,1,···N

{infn{ri,n}} = r > 0. Then, {xn} generated by (3.36) converges strongly to x∗ ∈ Γ, where

x∗ = ΠΓu.

Corollary 3.4. Let E,Ei, i = 1, 2, · · ·N be real Banach spaces and C,Ci be nonempty, closed and convex subsets
of E and Ei respectively. For i = 1, 2, · · ·N, let F : C × C → R, Fi : Ci × Ci → R be bifunctions. Suppose Ai :

E → Ei, i = 1, 2, · · ·N be linear bounded operators such that Γ :=
{
x∗ ∈ GEP (F ) ∩

N⋂
i=1

A−1
i ∩GEP (Fi))

}
6= ∅.

Assume that {θn} ⊂ [0, 1
2 ], {αn}, {βn}, {µi,n} and {γn} are sequences in (0, 1) such that

N∑
i=0

µi,n = 1, αn + βn +

γn = 1, αn ≤ b < 1, (1− αn)a < γn, a ∈ (0, 1
2 ). Let x0, x1 ∈ E and {xn} be sequence generated as follows:

wn = JqE∗

[
JpE(xn) + θn

(
JpE(xn−1)− JpE(xn)

)]
,

yn = JqE∗

[
N∑
i=0

µi,n
(
JpE(wn)− λi,nA∗i J

p
Ei

(IEi − (KFi
ri,n)Ai(wn)

)]
,

xn+1 = JqE∗

(
αnJ

p
E(u) + βnJ

p
E(xn) + γnJ

p
E(yn)

)
.

(3.38)

Now, suppose for ε > 0, the step size λi,n is chosen in such a way that

λi,n ∈
(
ε,
( q||Ai(wn)− (KFi,φi

ri,n )Ai(wn)||p

Cq||A∗i J
p
Ei

(IEi − (Si(K
Fi
ri,n)Ai(wn))||q∗)

− ε
) 1
q−1

)
; n ∈ Ω,(3.39)

where the index set Ω := {n ∈ N : Aiwn − ((KFi
ri,n)Aiwn) 6= 0}, otherwise λi,n = λ, λ is any nonnegative real

numbers. Then the sequence {αn}, {βn}, {µn} and {θn} satisfies the following conditions:

(1) lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞,

(2) 0 < c < θn < γn ≤ 1
2 ,∀ n ≥ 1,

(3) 0 < lim inf
n→∞

γn, βn ≤ lim sup
n→∞

γn, βn < 1,

(4) min
i=0,1,···N

{infn{ri,n}} = r > 0. Then, {xn} generated by (3.38) converges strongly to x∗ ∈ Γ, where

x∗ = ΠΓu.

4. Numerical example

In this section, we present a numerical example to illustrate the performance of our method.

Example 4.1. Let E,Ei = R2 for i = 0, 1, 2 with E = E0. We define the mappings F = F0 : R2 × R2 → R,
F1 : R2×R2 → R and F2 : R2×R2 → R respectively by F (x, y) = −3x2 + xy+ 2y2, F1(x, y) = −4x2 + xy+ 3y2

and F2(x, y) = −5y2 + 2y + 5xy − 5xy2 for each x = (x1, x2) ∈ R2 and y = (y1, y2) ∈ R2. Also, for i = 0, 1, 2,
let φ0 = φ : R2 × R2 → R, φ1 : R2 × R2 → R and φ2 : R2 × R2 → R be defined by φ(x, y) = x2 − xy,
φ1(x, y) = 2x(x− y) and φ2(x, y) = 5y2 − 2x respectively for each x = (x1, x2) ∈ R2 and y = (y1, y2) ∈ R2. By
some simple calculations, we obtain the following for some r > 0 :

v = KF,φ
r u =

1

4r + 1
u, y = KF1,φ1

r x =
1

1 + 5r
x and w = KF2,φ2

r z =
z − 2r

1 + 5r
.

Now, for j = 1, 2, · · · , N, let Sj : N2 → R2 be defined by

Sj(x) = PQj (x) =

{
bi + r

x−bj
‖x−bj‖ , if‖x− bj‖ < r,

x, otherwise



16 1,3 H.A. ABASS, 1 K. O. OYEWOLE, 1O. K. NARAIN, 4,5 L. O. JOLAOSO AND 2 B. I. OLAJUWON

where Qj are close balls in R2 centered at bj ∈ R2 with radius r > 0, that is

Qj = {x ∈ R2 : ‖x− bj‖ < r}.

It is easy to see that PQj is nonexpansive, hence Bregman relatively nonexpansive. Let Ai : R2 → R be given

by Ai(x) = x
i+1 where x = (x1, x2) ∈ R2. For this experiment, let αn = 1

150n+1 , βn = 1
2n+13 , γn = 1− αn − βn,

ri,n = r = 0.5 λi,n = 3.5n(i+1)
n+1 . and βi,n = 6

7i + 1
1029 . Let En = ‖xn+1 − xn‖2 = 10−4, be the stopping criterion.

We consider the following cases for initial values of x0 and x1 :

Case 1 x0 = (0.5, 0.35) and x1 = (0.78, 1.25);
Case 2 x0 = (1.5, 2.35) and x1 = (3.78, 1.25);
Case 3 x0 = (0, 3) and x1 = (4, 2);
Case 4 x0 = (−4,−4) and x1 = (−10,−20);

The results of this experiment are reported in Figure 1.
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Figure 1. Example 4.1. Top left: Case 1, Top right: Case 2, Bottom left: Case 3, Bottom
right: Case 4.

We also display an example in `3 space which is a uniformly convex and 2-uniformly smooth Banach space but
not a Hilbert space.

Example 4.2. Let E,Ei = `3 for i = 0, 1, 2 with E = E0. We define the mappings F = F0 : `3 × `3 → R,
F1 : `3 × `3 → R and F2 : `3 × `3 → R respectively by F (x, y) = −3x2 + xy + 2y2, F1(x, y) = −4x2 + xy + 3y2

and F2(x, y) = −5y2 + 2y + 5xy − 5xy2 for each x = (x1, x2, x3, · · · ) ∈ `3 and y = (y1, y2, y3, · · · ) ∈ `3.
Also, for i = 0, 1, 2, let φ0 = φ : `3 × `3 → R, φ1 : `3 × `3 → R and φ2 : `3 × `3 → R be defined by
φ(x, y) = x2 − xy, φ1(x, y) = 2x(x − y) and φ2(x, y) = 5y2 − 2x respectively for each x = (x1, x2, x3, · · · ) ∈ `3



SPLIT GENERALIZED EQUILIBRIUM AND FIXED POINT PROBLEMS. 17

and y = (y1, y2, y3, · · · ) ∈ `3. By some simple calculations, we obtain the following for some r > 0 :

v = KF,φ
r u =

1

4r + 1
u, y = KF1,φ1

r x =
1

1 + 5r
x and w = KF2,φ2

r z =
z − 2r

1 + 5r
.

Now, for j = 1, 2, · · · , N, let Sj : `3 → `3 be defined by

Sj(x) = PQj (x) =

{
bj + r

x−bj
‖x−bj‖ , if‖x− bj‖ < r,

x, otherwise

where Qj are close balls in `3 centered at bj ∈ `3 with radius r > 0, that is

Qj = {x ∈ `3 : ‖x− bj‖ < r}.
It is easy to see that PQj is nonexpansive, hence Bregman relatively nonexpansive. Let Ai : `3 → `3 be given by

Ai(x) = x
i+1 where x = (x1, x2, x3, · · · ) ∈ `3. For this experiment, let αn = 1

150n+1 , βn = 1
2n+13 , γn = 1−αn−βn,

ri,n = r = 0.5 λi,n = 3.5n(i+1)
n+1 . and βi,n = 6

7i + 1
1029 . Let En = ‖xn+1 − xn‖2 = 10−4, be the stopping criterion

5. Application

Let C be a nonempty, closed and convex subset of a Banach space E with dual space E∗. The indicator function
is denoted iC and defined by

iC =

{
0, if x ∈ C
∞, if x /∈ C.

It is well known that the subdifferential ∂iC is maximal monotone. Moreover,

∂iC(x) = NC(x) = {y ∈ E∗ : 〈x− z, y〉 ≥ 0, ∀z ∈ C},
where NC(x) is called the normal cone at x.

For r > 0, denote by Kr the resolvent of ∂iC and y = Kr(x) for x ∈ E, that is

1

r
(x− y) ∈ ∂iC(y) = NC(y).

Then, we obtain

〈Jx− y, y − z〉 ≥ 0, ∀z ∈ C.
It follows that y = PC(x) where PC is the metric projection onto C. Under this settings, we obtain a corollary
of our main theorem for approximating a solution of split feasibility problem with multiple output set. That is
the solution of the problem:

find x ∈ C and Aix ∈ Qi, ∀ i = 1, 2, · · ·N.

Corollary 5.1. Let E,Ei, i = 1, 2, · · ·N be real Banach spaces and C = C0, Ci be nonempty, closed and

convex subsets of E and Ei respectively. Suppose Υ :=
{
x∗ ∈ C ∩

N⋂
i=1

A−1
i Ci

}
6= ∅. Assume that {θn} ⊂

[0, 1
2 ], {αn}, {βn}, {µi,n} and {γn} are sequences in (0, 1) such that

N∑
i=0

µi,n = 1, αn + βn + γn = 1, αn ≤ b <

1, (1− αn)a < γn, a ∈ (0, 1
2 ). Let u, x0, x1 ∈ E and {xn} be the sequence generated as follows:

wn = JqE∗

[
JpE(xn) + θn

(
JpE(xn−1)− JpE(xn)

)]
,

yn = JqE∗

[
N∑
i=0

µi,n
(
JpE(wn)− λi,nA∗i J

p
Ei

(IEi − PCi)Ai(wn)
)]
,

xn+1 = JqE∗

(
αnJ

p
E(u) + βnJ

p
E(xn) + γnJ

p
E(yn)

)
.

(5.1)

Now, suppose for ε > 0, the step size λi,n is chosen in such a way that

λi,n ∈
(
ε,
( q||Ai(wn)− PCiAi(wn)||p

Cq||A∗i J
p
Ei

(IEi − PCi)Ai(wn))||q∗)
− ε
) 1
q−1

)
; n ∈ Ω,(5.2)

where the index set Ω := {n ∈ N : Aiwn −PCiAiwn 6= 0}, otherwise λi,n = λ, λ is any nonnegative real number.
The sequence {αn}, {βn}, {µn} and {θn} satisfy the following conditions:

(1) lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞,
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(2) 0 < c < θn < γn ≤ 1
2 ,∀ n ≥ 1,

(3) 0 < lim inf
n→∞

γn, βn ≤ lim sup
n→∞

γn, βn < 1,

(4) min
i=0,1,···N

{infn{ri,n}} = r > 0. Then, {xn} generated by (5.1) converges strongly to x∗ ∈ Υ, where

x∗ = PΥu.

5.1. Application to image restortion problems. In this section, we apply our method to image deblurring
and denoising. General image reovery problem can be formulated by the inversion of the following observation
model:

(5.3) b = Ax+ v,

where x ∈ Rn, x, v and b are unknown original image, unknown additive random noise and known degrded
observation, respectively, and A is a linear operator that depends on the concerned image recovery problem. This
model (5.3), is approximately equivalent to several different formulations available for optimization problems.
In the literature, there is a growing interest in using the l1 norm in solving these types of problems. The l1
regularization problem is given by

(5.4) min
x

1

2
‖Ax− b‖22 such that ‖x‖1 ≤ t,

where t is a positive constant, x ∈ Rn, y ∈ Rk and A is a k × n matrix.
Next, we use our algorithm to approximate the solution of the following convex minimization problem:

(5.5) find x ∈ arg min
x∈Rn

1

2
‖Ax− b‖22 such that ‖x‖1 ≤ t,

where b is the degraded image, and A is an operator representing the mask. We start the process by setting
t = m.

Let C = {x ∈ Rk : ‖x‖1 ≤ t} and Qi = {yi}. Then the minimization problem can be seen as the problem (SFP).
We make use of the subgradient projection since the projection onto the closed convex set C does not have a
close form. Let c(x) = ‖x‖1 − t and denote the level set Cn by

Cn = {x ∈ C : c(xn) + 〈dn, x− xn〉 ≤ 0},
where dn ∈ ∂c(xn). Then the projection onto Cn can be calculated by the following formula;

PCn(u) =

{
u, ifx ∈ Cn
u− c(xn)+〈dn,x−xn〉

‖dn‖2 dn.

The subdifferential at xn is given by

∂c(xn) =


1, xn > 0,

[−1, 1], xn = 0,

−1, xn < 0.

Example 5.2. For this experiment we use [6, Algorithm 4] and Algorithm 5.1 to solve (5.5). We consider the
blur function in MATLAB ”special (’motion’, 30, 60)” and add random noise. The test images are cameraman,

kids and pout (see 2) and the stopping criterion of the algorithm is ‖xn+1−xn‖
‖xn+1‖ < 10−4. Each subplot contains

four images, the original image, the blurred image, the restored image by [?, Algorithm ] and the restored image
by Algorithm 5.1. As we can see from Figure 3, our proposed algorithm is competitive and promising.

The results of this experiment for the cameraman for various values of n are reported in Figure 3. The signal to
noise ration (SNR) is defined as

EN = SNR = 10 log
‖x‖2

‖x− xn‖2
where x and xn are the original and estimated image at iteration. All codes were written with MATLAB 2022a
on a personal dell latitude laptop with 8gig/256gig, RAM/ROM respectively and 2.4ghz processor speed.

Acknowledgement: The first author acknowledge with thanks the bursary and financial support from De-
partment of Science and Technology and National Research Foundation, Republic of South Africa Center of
Excellence in Mathematical and Statistical Sciences (DSI-NRF COE-MaSS) Post-Doctoral Bursary. Opinions
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Figure 2. Example 5.2. First, Cameraman, Second: Kids, Third: Pout.
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Figure 3. Example 5.2. Top left: Case 1, Top right: Case 2, Bottom left: Case 3, Bottom
right: Case 4.

expressed and conclusions arrived are those of the authors and are not necessarily to be attributed to the
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