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Childhood asthma is a chronic respiratory disease with substantial heterogeneity in its 
pathophysiology, presentation, trajectory and risk factors, particularly in early life. With the 
difficulty of obtaining an objective diagnosis before the age of five, the ability to predict childhood 
asthma could facilitate the identification of high-risk children, reduce misdiagnoses of probable 
asthmatics or encourage the implementation of primary prevention strategies and personalised 
asthma management. To promote the prediction of childhood asthma, a systematic review of 
existing prognostic prediction models for childhood asthma was conducted and demonstrated 
that current models have mainly been developed using traditional regression-based methods, 
with few independently validated and none being used in routine clinical practice. With the 
exploration of regression-based methods suggested to have been exhausted, this thesis aimed to 
explore novel approaches of data integration to improve current childhood asthma predictions 
using machine learning methods. 

Using data from the Isle of Wight Birth Cohort (IOWBC, n=1456), the Childhood Asthma 
Prediction in Early-life (CAPE) and Childhood Asthma Prediction at Preschool-age (CAPP) models 
were developed to predict school-age asthma at 10 years using state-of-the-art machine learning 
methods. The CAPE and CAPP models used clinical and environmental data available from the first 
two year and first four years of life, respectively. Genome-wide genotype and methylation data 
were used to develop a polygenic risk score (PRS) and two novel methylation risk scores (MRS) (a 
newborn MRS, nMRS, and childhood MRS, cMRS) to predict childhood asthma, respectively. 
These genomic models were subsequently incorporated with the CAPE and CAPP models using a 
step-wise approach. The generalisability of all developed models was evaluated using data from 
the Manchester Asthma and Allergy Study (MAAS).  

The CAPE and CAPP models demonstrated superior performance against their respective 
benchmark regression-based models based on area under the curve, with the CAPP model also 
surpassing the current best performing validated model, the Paediatric Asthma Risk Score (AUC: 
CAPE=0.71 vs. 0.64, CAPP=0.82 vs. PARS=0.80). The models offered good generalisability in MAAS 
and offered excellent sensitivity to predict a subgroup of individuals presenting with a persistent 
wheeze phenotype. Individually, the PRS and novel MRSs demonstrated moderate predictive 
ability (AUC: PRS=0.64, nMRS=0.61, cMRS=0.61). The integration of these genomic risk scores with 
the CAPE and CAPP models showed marginal improvement in performance (integrated 
CAPE=0.75, integrated CAPP=0.84). Overall, the incorporation of genetic and epigenetic data to 
predict the broad phenotype of asthma offered limited predictive improvement.  

Using machine learning approaches, the CAPE and CAPP models were able to improve upon 
the current regression-based models for the prediction of childhood asthma. Coupled with the 
excellent sensitivity of the CAPE and CAPP models to predict a subgroup of individuals presenting 
with a persistent wheeze phenotype, this thesis suggests further exploration of the utility of 
machine learning methods focused on predicting asthma endotypes is warranted. 
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Chapter 1 Introduction 

1.1 Childhood asthma 

1.1.1 Defining asthma 

Asthma is a chronic condition primarily affecting the conducting airways. However, asthma is not 

a single disease entity. Rather, it is a syndrome, used to describe a set of clinical characteristics, 

which may stem from a variety of pathological mechanisms1-3. Alongside variation in its 

pathophysiology, asthma presents with significant heterogeneity in its time of onset, presentation 

of symptoms, disease trajectory, severity, triggers and therapeutic response. As a result, 

establishing a single definition of asthma is challenging. The latest definition offered by the Global 

Initiative for Asthma (GINA) describes asthma as: 

“A heterogeneous disease, usually characterised by chronic airway inflammation. It is 

defined by the history of respiratory symptoms such as wheeze, shortness of breath, 

chest tightness and cough that vary over time and in intensity, together with variable 

expiratory airflow limitation.” 

Global Initiative for Asthma (GINA) report, 20212 

This definition offers only a general description based on typical clinical features of asthma that 

may distinguish it from other respiratory conditions. However, not only are these characteristics 

not observed in all asthmatics, they are also non-specific to asthma, resulting in a multitude of 

potential differential diagnoses2,4. Consequently, the presence of these characteristics merely act 

as criteria for deducing the probability of a patient’s respiratory condition being asthma rather 

than confirming a diagnosis of asthma5. 

Despite sharing the same definition, childhood and adult asthma can be considered as two 

distinct forms of asthma6,7. For example, childhood asthma is associated with different 

phenotypes (observable characteristics) and risk factors, and characteristically presents with a 

male predominance before puberty, lower mortality and greater chance of remission compared 

to adult asthma7. Alongside the inherent heterogeneity of asthma, childhood asthma, the focus of 

this report, presents with an additional clinical complexity. This complexity may be accredited to 

limitations in diagnosing asthma in early life2. It may also be a result of the pathological 
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mechanisms of paediatric asthma being entangled amongst the natural maturation of the 

respiratory and immune systems throughout childhood2,5,8. 

1.1.2 Burden of childhood asthma  

Asthma affects approximately 339 million people worldwide, across all ages2. Whilst mortality 

remains low, asthma ranks 28th among the top global causes of disease burden when evaluated 

based on disability adjusted life years (DALYs), which accounts for both morbidity and mortality9. 

The distribution of the burden of asthma presents with bimodal peaks in childhood (age 10-14) 

and elderly age (age 75-89), although the prevalence of asthma is greatest in childhood10. In fact, 

asthma is the most common chronic disease in children, affecting 1 in 11 children in the UK (the 

main population focused on within this thesis )11. Notably, although the prevalence of childhood 

asthma is greater in high-income and westernised countries3, severity is greater in low-income 

countries12. 

The economic burden of asthma can be categorised into direct and indirect costs. Direct costs are 

associated with the use of healthcare resources. In the UK, the National Health Service (NHS) 

spends approximately one billion pounds each year to care for asthmatic individuals of all ages11. 

Individuals with severe asthma, accounting for only 5% of the asthmatic population, consume 50% 

of the total asthma-related healthcare resources13,14. Specifically for preschool children with 

asthma or wheeze, a study conducted in 2003 estimated a total cost of 53 million pounds annually 

to the UK health service, 65% of which was expended on primary care15. Indirect costs refer to 

financial losses related to absence or reduced work productivity. A number of studies have 

reported that such indirect costs can exceed direct costs incurred (mainly in severe and 

uncontrolled asthma cases), and are what largely drive the economic burden of asthma, 

accounting for up to 75% of the total costs of asthma16. In the case of childhood asthma, indirect 

costs account for losses incurred by both the child and their parents/ caregivers.  

In addition to the economic impact of the disease, childhood asthma can also have a large impact 

on the quality of life of both the patient and caregiver17. For example, emotional distress, absence 

from school/work, hospitalisation due to asthma exacerbations and limitations to normal 

activities can have a significant impact in reducing quality of life. 
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1.1.3 Pathophysiology  

Asthma is characterised by airflow limitation caused by bronchoconstriction, airway hyper-

responsiveness, oedema and chronic airway inflammation leading to a narrowing of the airway. 

Acute asthma is usually a result of bronchospasm -the spontaneous contraction of the bronchial 

wall muscle1,2.  

Airway hyper-responsiveness, a hallmark of asthma, refers to an exaggerated form of 

bronchoconstriction in response to various stimuli, structural changes to the airway and neuro-

dysfunction18-20. Hyperplasia and hypersecretion of airway mucosal glands encourage the 

formation of obstructive mucosal plugs which can further obstruct and narrow the airway18-20.  

Inflammation in the airway can not only contribute towards the narrowing of the airway but can 

also encourage airway hypersensitivity, which further drives inflammation and hyper-

responsiveness in the airway18-22. Airway obstruction observed in asthma is largely reversible, 

either spontaneously or supported by medication. However, chronic inflammation leading to 

airway remodelling can result in obstructions of the airway becoming (partly) irreversible18. For 

example, chronic inflammation can promote permanent structural changes through the 

thickening of the sub-basement membrane, fibrosis of the airway sub-epithelium, as well as 

hypertrophy and hyperplasia of airway smooth muscle1,23.  

However, these hallmark physiological changes observed in asthmatic patients can stem from a 

range of mechanistic pathways and be driven by a variety of genetic and environmental factors19.  

1.1.3.1 Asthma phenotypes and endotypes 

The term asthma is limited by its non-specific description, accounting for a range of respiratory 

patterns. Childhood asthma usually manifests in infancy and persists into later life. However, 

symptoms can be persistent or intermittent, with severity improving or worsening with age and 

driven by different distinct underlying mechanisms (Figure 1.1)2,24.  
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Figure 1.1 Asthma phenotypes and endotypes  

Numerous phenotypes and endotypes of asthma have been proposed, characterised 

by variations in severity and age of onset. Figure adapted from Wenzel et al.24, with 

permission from Springer Nature.  

Phenotypes of asthma have been identified in order to untangle some of the heterogeneity 

observed in asthma. The initial classification of asthma identified two main phenotypes based on 

clinical observations for the time of onset and triggers of asthma – extrinsic (allergic) asthma and 

intrinsic (non-allergic) asthma25. Allergic asthma is characterised by early onset, high severity, a 

history of individual or familial allergic disease, atopy and identifiable triggers. Non-allergic 

asthma is characterised by late/adult onset, low severity, female-bias, and absence of allergic 

sensitisation1,25. In line with this early categorisation, childhood asthma has largely been 

considered an allergic disease of atopic pathology, and has established itself as the final feature of 

the atopic march (atopic dermatitis, allergic rhinitis and asthma) which is often present in atopic 

children26. 
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Atopy refers to an exaggerated tendency to produce increased levels of immunoglobulin E (IgE) 

antibodies upon exposure to known allergens. Exposure to an allergen stimulates chronic 

eosinophilic airway inflammation and the production of specific IgE antibodies by B-lymphocytes. 

The allergen binds to specific IgE antibodies that are bound to mast cells and stimulates mast cell 

degranulation. The release of inflammatory mediators (e.g. histamine and leukotrienes) from 

mast cells in the airway epithelium stimulates airway inflammation and bronchial smooth muscle 

contraction20,27.  

However, studies suggest that only two-thirds of all asthma involves allergic mechanisms28. 

Furthermore, although atopic and non-atopic asthma can be identified as two clinical profiles, 

studies indicate similarities in their underlying pathologies29. For example, Humbert et al. 

identified similarities in the elevation of serum IgE, levels of T-helper (Th) 2 cytokines and 

response to inhaled corticosteroids (ICS) between allergic and non-allergic asthmatics29. Other 

suggested phenotypic groupings related to childhood asthma include late-onset eosinophilic, 

exercise-induced and neutrophilic asthma24. A number of unbiased clustering approaches have 

also been used to identify distinct phenotypes of childhood asthma30-33 and wheeze34,35. Despite 

differences in terms of the methodologies and predictive features considered in each study 

resulting in a different number of clusters being identified, the identified clusters did display 

similar characteristics between studies. 

The ability to stratify asthmatic patients based on their phenotypes in an unbiased way can offer 

some clinical insight, with studies attempting to identify differences in treatment response 

between clusters33. However, phenotypes do not provide insight into the underlying mechanisms 

of each stratum in order to guide targeted intervention. Rather, the classification of asthmatics 

into endotypes (defined as subtypes of a condition based on distinct functional pathophysiological 

mechanisms) may be of greater clinical use24,36. Two main endotypes have been identified in 

childhood asthmatics – Th2-high and Th2-low (Figure 1)24. The Th2-high subgroup 

characteristically presents with increased expression of Th2 pro-eosinophilic cytokines, atopy and 

sub-epithelial membrane thickening. In contrast, the Th2-low subgroup is characteristic of 

neutrophilic or paucigranulocytic inflammation. Unlike Th2-low, Th2-high asthmatics have been 

further identified as responsive to ICS. As a result, stratification of asthmatic patients into these 

endotype groupings could inform the implementation of therapeutic IgE or eosinophilic 

interventions. With the growing emergence of non-allergic asthma, a non-Th2 endotype has also 

been identified24,25,37. 
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The relationship between asthma phenotypes and endotypes can be quite complex, reflective of 

the complexity of asthma itself. Each asthma phenotype may include more than one endotype; 

similarly, each endotype may account for multiple phenotypes36,37. However, whilst different 

asthma phenotypes and endotypes have been suggested, no consensus classifications have yet 

been established.  

1.1.4 Diagnosis of childhood asthma 

Due to the heterogeneous and non-specific expression of asthma, clinical guidelines are cautious 

in their diagnostic strategy, specifying an aim to deduce the probability for having asthma rather 

than to confirm a definitive diagnosis5. The British Thoracic Society and Scottish Intercollegiate 

Guidelines Network (BTS/SIGN) diagnostic algorithm for asthma comprises of a combination of 

clinical and objective tests5. However, both components present with high false positive and false 

negative rates for diagnosis.  

Structured clinical tests comprise of a detailed family history of atopic disease, physical 

examination of symptoms and exposure to triggers. Clinical symptoms of asthma include 

wheezing, dyspnoea, chest tightness, coughing and nocturnal disturbances5. The experience of 

any of these symptoms in isolation generally offers poor predictive value, as the clinical symptoms 

of asthma are neither sensitive nor specific to asthma. For example, despite being the primary 

symptom observed in asthma, wheeze affects half of all preschool children. In these children, 

wheeze is often transient, with only one-third of individuals going on to develop asthma38,39. The 

probability of an asthma diagnosis increases with the presence of multiple symptoms. However, 

whilst most asthmatic children present with one or a combination of symptoms, only a quarter of 

children with asthma-like symptoms will have asthma whilst some individuals remain 

asymptomatic. For the remaining children displaying symptoms, alternative diagnoses include, 

but are not limited to, viral respiratory infection, cystic fibrosis, primary ciliary dyskinesia, 

developmental abnormalities or foreign body obstruction5. As a result, there is a substantial risk 

of misdiagnosis3.  

Lung function tests, including spirometry, fraction of exhaled nitric oxide (FeNO) in tidal breath 

and bronchoprovocation tests assess the hallmark physiological characteristics of asthma: variable 

airflow limitation, airway inflammation and bronchial hyper-responsiveness, respectively2,5. 

Despite being the most objective methods for diagnosing asthma, performing reproducible lung 

function tests on preschool children (<5 years old) is challenging2.  
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Therefore, due to the difficulty of differentiating asthma from transient wheeze in early life, a 

clinical diagnosis of asthma cannot be reliably made until five years of age2,8,18. Prior to this, 

preschool children with a high or intermediate probability of asthma are initially identified based 

on an evaluation of a structured clinical assessment (presence of asthma-like symptoms, a family 

history of atopic disease and an absence of an alternative diagnosis)5. The diagnostic algorithm 

specifies two main approaches for diagnosing asthma in this group of suspected asthmatics – 

watchful waiting with review or monitored initiation of treatment. Due to viral respiratory 

infections being common at preschool age, children with mild, intermittent symptoms may be 

reviewed after a defined period, without intervention, to see whether the child’s condition 

resolves by itself. In contrast, other symptomatic children may be offered a therapeutic trial of 

low-dose ICS and as-needed short-acting beta agonists (SABA) for 2-3 months. Children that 

demonstrate an improvement whilst on treatment, followed by worsening upon treatment 

cessation, are likely to be asthmatic5. 

1.1.5 Childhood asthma management 

Despite the inability to provide a definitive diagnosis in childhood, preschool children presenting 

with asthma-like symptoms follow a similar management protocol as if diagnosed3,40. This 

comprises of both non-pharmacological and pharmacological interventions to achieve one of the 

three main goals of asthma management - primary prevention, secondary prevention or asthma 

control5.  

Asthma prevention is mainly driven through non-pharmacological interventions5. These include 

parent/patient education to reduce exposures to modifiable risk factors (detailed in Chapter 

1.1.6) and addressing comorbidities of asthma. Non-pharmacological interventions can be 

implemented either before or after the onset of asthma, with the aim of reducing the incidence 

(primary prevention) or the impact of asthma (secondary prevention), respectively5.  

Conversely, pharmacological interventions aim to control asthma. Asthma guidelines describe a 

phased therapeutic approach, which targets treatment at a level corresponding to a patient’s 

asthma severity in order to achieve early control5. The level of treatment can then be stepped-up 

or stepped-down to maintain control with the minimum pharmacological dose. Pharmacological 

intervention can be classified as reliever and controller medication. Reliever medication begins 

with SABAs for immediate relief of symptoms via bronchodilation. Controller medications aim to 
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prevent symptoms from re-emerging. In preschool children, this may be achieved with the use of 

ICS or leukotriene receptor antagonists2,5,14. 

1.1.6 Risk factors for childhood asthma 

Studies have identified a multitude of risk factors associated with the development of childhood 

asthma41,42. However, the heterogeneity of asthma also extends to its risk factors –different risk 

factors may contribute towards the risk of developing asthma or act as triggers for asthmatic 

episodes in different children. Risk factors of asthma include a genetic predisposition that cannot 

be changed (non-modifiable risk factor) as well as environmental exposures for which the size of 

the risk incurred may be altered (modifiable risk factor). One of the main goals of non-

pharmacological interventions remains to alter the exposure to, and thus the subsequent effect 

of, modifiable risk factors in order to encourage primary and secondary childhood asthma 

prevention. 

The contribution of genetic predisposition to the development of asthma has been widely 

established, with a family history of asthma and/or allergy being an important criteria used to 

identify preschool children at high risk of developing asthma in clinical practice5. Children with a 

history of familial asthma or allergy have been associated with an increased risk of developing 

asthma themselves43-45. The risk associated with parental asthma has shown to be additive, with 

the odds of developing childhood asthma being three and six times greater if one or both parents 

had asthma, respectively46. Maternal asthma and/or allergy has been found to confer a greater 

risk for the development of asthma compared to that observed from the paternal line46. However, 

Arshad et al. identified that the risk incurred by a parental history may in fact be a sex-linked 

association, with maternal asthma increasing the risk of childhood asthma in female children 

whilst paternal asthma conferred a greater risk in males. They also found a similar risk pattern 

with parental atopy47. Although the asthma risk associated with a family history of asthma or 

allergy primarily stems from a parental history of asthma, sibling associations have also been 

found (but these may also result from shared environment exposures)48. 

Reported estimates for the heritability of asthma from family and twin studies range between 25-

80%49. Genome-Wide Association Studies (GWAS) have been extensively used to untangle the 

genetic predisposition of asthma, with 23 studies identifying associations of over 200 loci for 

childhood asthma onset50. The GSDMB-ORMDL3 locus on chromosome 17q12-21 is the most 

replicated asthma locus to have been identified51. A recent GWAS conducted using data from UK 



Chapter 1 

 

9 

 

Biobank indicated that genetics may have a potentially more important role in the development 

of childhood asthma compared to adult asthma52. In this study, Pividori et al. identified a larger 

number of single nucleotide polymorphisms (SNPs), with overall larger effect sizes, to be 

associated with childhood onset asthma compared to adult onset asthma; of the 61 independent 

asthma loci identified, 23 were specific to childhood onset asthma and 37 loci were associated 

with both childhood and adult onset asthma52. Furthermore, based on the SNPs identified in the 

study, the estimated heritability was three times greater for childhood onset asthma (33%) than 

adult onset asthma (10%). Interestingly, genes related to adult onset asthma were highly 

expressed in the lungs and spleen whilst genes associated with childhood onset asthma were 

highly expressed in the skin. With the latter genes identified to be involved with epithelial barrier 

function, allergy and immune system regulation, it emphasises the association of childhood 

asthma with other allergic diseases such as atopic dermatitis52. 

Following the identification of these genetic biomarkers associated with childhood asthma, 

attempts to construct polygenic risk scores (PRS) to predict the risk of asthma have been made. 

Polygenic risk scores aim to estimate an individual’s overall genetic risk through the summation of 

risk alleles (weighted by their allele effect size) across the genome. For example, Belsky et al. 

constructed a PRS consisting of 15 SNPs associated with asthma using data from the Dunedin 

Longitudinal Study birth cohort53. Based on their PRS, a one-standard-deviation increase in 

genetic risk corresponded to childhood onset (<age 9) asthmatic cases having a 20% higher risk of 

experiencing life-course persistent asthma (at age 13-38) (relative risk=1.20).  

Epigenetic modifications, including DNA methylation, histone modifications, chromatin 

remodelling and non-coding RNA have been shown to alter gene activity which may subsequently 

contribute to the development of disease54. For example, Woodruff et al. identified the 

upregulated expression of the POSTN, CLCA1 and SERPINB2 genes to be associated with Th2 

inflammation in samples of epithelial airway brushings in mild-to-moderate asthmatics compared 

to healthy controls55. Epigenetics may also explain some of the mechanisms underlying the 

complex gene-environmental interactions contributing to asthma development. Environmental 

exposures, such as traffic pollution and house dust mite, have been associated with differential 

DNA methylation of the Ten-Eleven Translocation 1 (TET1) enzyme, which has been suggested to 

be involved in the development of asthma56. Similarly, a range of other environmental risk factors, 

including, but not limited to breastfeeding57, season of birth58, urban living59 and maternal 

smoking60 have all been associated with altered methylation levels in genes related to both allergy 

and asthma.  
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Despite extensive research into the genetics of childhood asthma, many of the SNPs significantly 

associated with childhood asthma to date are common variants, present in both asthmatics and 

non-asthmatic individuals61, and the proportion of estimated heritability accounted for by these 

common variants is lower than the total estimated heritability of childhood asthma65. This 

unaccounted heritability of disease is referred to as “missing heritability”62,63. A number of factors 

have been suggested to account for this, including the non-additive effects of genetic variants, 

complex gene-gene and gene-environment interactions, as well as genetic effects stemming from 

rare or yet to be discovered variants62-64. Suggestions that epigenetic modifications can be 

inherited have led to the epigenome also becoming a popular explanation for the missing 

heritability of risk present in childhood asthma65. Some studies have suggested that the 

inheritance of epigenetic signatures may persist across multiple generations65, however, the 

extent of any such effects in humans remains unclear. As a result, a child’s risk of developing 

asthma may be influenced by exposure to environmental risk factors, both directly by the child, 

but also indirectly through inherited epigenetic signals from parental or grandparental exposures. 

Such transgenerational effects may also contribute towards the missing heritability observed from 

GWAS. 

The sex of an individual is also a potential risk factor for the development of asthma. In early life, 

males have an increased risk of developing asthma and present with more severe symptoms 

compared to females66. However, during puberty, a gender switch in the development of asthma 

is observed, with post-pubertal females demonstrating a greater risk of developing asthma, of 

greater severity, and requiring hospital admissions compared to males67. One suggested 

explanation for the observed gender reversal has been attributed to hormonal changes, whereby 

the increase in oestrogen exposure in females during puberty may drive airway inflammation67. 

Furthermore, childhood asthma is more prevalent in African American and Hispanic groups. 

Whilst some of the risk linked to ethnicity has been associated with genetic ancestry49, individuals 

of these specific populations are likely to present with other risk factors of asthma such as low 

socioeconomic status, poor education and exposure to outdoor pollutants42,68. 

Tobacco smoke exposure is a well-established risk factor of asthma. Parental smoking, particularly 

maternal smoking either during or prior to pregnancy, significantly increases the risk of childhood 

asthma onset69. For example, maternal smoking during pregnancy was found to be associated 

with a 2.6 times increased risk of developing asthma in the first year of life70. Prenatal maternal 

smoking has further been associated with other risk factors of childhood asthma such as low 
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birthweight, increased risk of recurrent chest infections, immune dysfunction and poor pulmonary 

development71. The effect of maternal smoking on childhood asthma has been suggested to be 

mediated through its role as an environmental pollutant, its impact on foetal growth as well as 

through epigenetic mechanisms60,72. 

In addition, allergy and atopy are well-described risk factors of childhood asthma development. 

Allergy describes the clinical manifestations following an exaggerated immune response to foreign 

antigens. Whilst different phenotypes of childhood asthma have been suggested, childhood 

asthma is still largely categorised as an allergic disease, particularly in early life24. Children 

presenting with other allergic diseases, primarily eczema or hay fever, have an increased risk of 

developing asthma. The atopic march describes the common pattern of development for this triad 

of allergic diseases observed in early life - first eczema, followed by hay fever and finally asthma26, 

although studies in longitudinal birth cohorts have demonstrated that this sequential pattern is 

not typical for most children who develop asthma73. A parental history of any of these allergic 

diseases also increase the risk of childhood asthma development44.  

Conversely, atopy refers to the susceptibility to produce specific IgE antibodies in response to 

allergen exposure and has been identified as a hallmark characteristic of childhood onset asthma, 

used to distinguish between different asthma phenotypes. Sensitisation to environmental 

allergens is commonly detected through a skin prick test (SPT) or measure of specific IgE in blood 

through a radioallergosorbent test (RAST) or enzyme-linked immunosorbent assay (ELISA)27. 

Based on SPTs for a panel of 12 allergens, Arshad et al. identified that sensitisation to at least one 

allergen was significantly associated with a 4.56 times increased risk of developing asthma at 

preschool age (4 years old)74. The risk associated with allergic sensitisation demonstrated a linear 

relationship, whereby an individual’s risk of developing asthma (as well as eczema and allergic 

rhinitis) increased with the number of positive SPTs. Although children were found to be 

sensitised to different allergens, the study identified that 94% of atopic children could be 

identified based on the four most common allergens (house dust mite, grass pollen, cat, and the 

fungus Alternaria alternata) alone. Sensitisation to the most common allergen, house dust mite, 

has further been associated with an eight times greater risk of developing asthma at 4 years74. A 

number of randomised controlled trials have shown that delayed exposure to house dust mite in 

early life is associated with a reduced risk of allergic sensitisation and allergic disease in 

childhood41,75.  
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In contrast, recent randomised control trials, such as LEAP (Learning Early about Peanut Allergy)76 

and EAT (Enquiring about Tolerance)77, have supported the recommendation for the early 

introduction of solid foods for the prevention of allergic disease, specifically food allergy. Between 

these trials, the early introduction of dietary foods resulted in a significantly lower prevalence of 

any food allergy, peanut allergy and egg allergy. In the EAT trial, early introduction of solid food at 

12 and 36 months resulted in a 22% and 12% decreased risk of a child being atopic in the first 

three years of life, respectively (but these results were not statistically significant)77. Moreover, no 

significant associations were found in relation to the development of asthma, eczema or allergic 

rhinitis in these studies. 

Despite conflicting findings reported in the literature, a number of systematic reviews and meta-

analyses have identified significant protective benefits of breastfeeding for the development of 

asthma, early life wheeze and other allergic diseases78-80. Some studies suggest that these 

protective benefits are universal for all breastfed children whilst others indicate only a skewed 

benefit towards infants with a genetic predisposition for allergic diseases78-80. These protective 

benefits may stem directly from breastmilk exposure through its known immunoregulatory 

effects, or indirectly by promoting cow’s milk protein allergen avoidance, or both75,81. 

Furthermore, the complex composition of breastmilk compared to formula food may promote 

immune tolerance by facilitating the colonisation of a more diverse gut microbiota82. 

The hygiene hypothesis suggests that reduced microbial exposure in early life can hinder the 

development of the immune system, reducing a child’s immune tolerance and increasing their 

susceptibility for allergic and other immunological diseases83,84. Improved sanitation, dietary 

changes and widespread immunisation are factors suggested to reduce microbial exposure. As a 

result, the hygiene hypothesis has been used as a suggested explanation for the increasing 

prevalence of asthma observed in westernised countries83,84. Factors such as: breastfeeding82, 

increased family size or number of siblings48, vaginal delivery85, living on a farm in early life86, 

exposure to household pets and day-care attendance48, all of which promote microbial exposure 

within the first few years of life, have been associated as protective risk factors of childhood 

asthma42,83.  

Whilst early life microbial exposures may offer protective benefits against the development of 

childhood asthma, lower respiratory tract infections with respiratory syncytial virus (RSV) and 

human rhinovirus (HRV) have been significantly associated with persistent wheeze within the first 

five years of life and are common causes of hospitalisation87. Jackson et al. identified that children 
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who experienced wheeze due to RSV or HRV infections in the first three years of life were 

approximately 3 and 10 times more likely to develop asthma at age 6, respectively88.  

Other risk factors related to foetal growth, such as childhood obesity, birthweight, prematurity 

and maternal age, have also been suggested as potential risk factors of childhood asthma41,69. 

Based on studies that have identified distinct body mass index (BMI) trajectories in childhood, a 

rapid increase in BMI within the first two years of life as well as those trajectories indicative of 

childhood obesity, were associated with an increased risk of childhood asthma development89,90. 

Despite conflicting results, some studies have identified low birthweight, prematurity and 

maternal age to be significantly associated with childhood asthma, possibly due to their impact on 

infant lung growth and susceptibility to respiratory infections91,92.  

Indeed, clinical symptoms are the most obvious risk factors for diagnosing asthma. Clinical 

symptoms, such as recurrent wheeze, cough and nocturnal symptoms, observed in early life have 

shown to be predictive risk factors for the future development of asthma at school age, with the 

presence of multiple symptoms often conferring an increased risk5. Therefore, the consideration 

of clinical symptoms alongside both modifiable and non-modifiable risk factors is important to 

assist in the diagnosis, prediction and potential prevention of childhood asthma.  

1.2 Predicting health outcomes  

With the economic burden of many chronic non-communicable diseases, such as asthma, rising, 

already challenged healthcare services need to ensure the efficient and cost-effective utilisation 

of healthcare resources whilst continuing to improve the accuracy of diagnosis and treatment93. 

Predictive risk modelling of diseases has become a prominent area of research in healthcare – 

utilised for the purpose of forecasting widespread, highly burdensome diseases, such as seasonal 

influenza94 or global pandemics95,96, diagnosing diseases and generating individual risk 

predictions97.  

Prediction models can either be diagnostic (estimating the probability of currently having the 

outcome) or prognostic (estimating the probability of developing the outcome in the future)98. For 

both, the aim of individual predictive risk modelling in healthcare is to provide an objective 

measure to support physicians in their clinical decision-making. Identifying individuals at risk of 

developing disease in an accurate and more objective manner may enable physicians to initiate 

early prevention strategies and efficiently direct personalised, targeted care towards those most 
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at risk. As a result, predictive models could help to reduce unnecessary wastage of healthcare 

resources as well as limit unnecessary exposure to treatments and their associated risk of adverse 

effects. Predictive modelling could further encourage individual awareness of one’s own risk of 

disease. Engaging individuals with a quantifiable risk prediction may motivate significant lifestyle 

changes, avoidance of potential modifiable risk factors and improve adherence to treatments. 

Such patient engagement could help individuals to curb their natural disease trajectory more 

effectively and manage their disease outside the bounds of healthcare services93,99-101.  

1.2.1 Predictive risk models in other disease areas 

The development of predictive risk models has rapidly increased across a variety of healthcare 

areas. A systematic review conducted in 2011 identified that new predictive risk models were 

being developed at a rate of one every three weeks99. Models for predicting an individual’s risk of 

disease were first developed for cardiovascular disease (CVD); to date, over 350 different 

prediction models have been developed102. For example, the Framingham Score is one of the 

most established risk scores for CVD in clinical practice and is suggested in numerous guidelines as 

an assistive tool for clinical decision-making103. In addition, predictive risk models have been 

developed in adults for type 2 diabetes99, hospital readmissions104, acute chronic obstructive 

pulmonary disease (COPD) exacerbations105,106 and post-transplantation outcomes107, to name a 

few. Predictive modelling studies specifically focusing on paediatric patients have also been 

developed in areas such as oncology108, respiratory conditions109 and childhood obesity110. 

However, in some disciplines, such as obesity, only a few paediatric models have been 

implemented into clinical practice for predicting the risk of childhood disease110. 

1.2.2 The need for predicting childhood asthma 

Approximately 80% of childhood asthmatics develop symptoms before the age of six7,111. 

However, there are no objective respiratory tests available to accurately diagnose asthma before 

this age. As a result, children who present with asthma-like symptoms in these early years of life 

are either diagnosed as having viral induced wheeze and left untreated or considered as probable 

asthmatics and prescribed asthma medications. 

Some studies suggest that there is a current transition from an era of under-diagnosis - where 

asthmatic children were often untreated and at risk of developing more severe asthma, to an era 

of over-diagnosis – where increasingly, non-asthmatic children are cautiously treated as probable 
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asthmatics, resulting in unnecessary exposure to treatment and increased burden on healthcare 

services112,113. For example, despite their effective management of asthma-symptoms, treatment 

with ICS has been associated with impaired bone development and stunted growth velocity in 

children within the first two years of use, even at low doses114. Yet, both under and over-

diagnoses of childhood asthma are common occurrences. 

Prediction models for asthma can help to identify preschool children at high-risk of developing 

asthma at school-age and distinguish them from those whose symptoms are transient. Early 

knowledge of a child’s asthma risk may offer physicians support in deciding to prescribe or 

withhold medication112. Risk prediction tools can also be powerful mechanisms for promoting 

asthma management outside of healthcare service intervention by allowing parents to 

understand their child’s asthma risk in a quantifiable and meaningful way. Additionally, prediction 

tools can enable physicians to initiate a conversation with parents and encourage methods of 

actively managing their child’s pulmonary health, e.g. by reducing their child’s exposure to 

modifiable risk factors112,115. Childhood asthma and poor lung function in early childhood have 

also been strongly associated with the development of COPD in later life116. Therefore, informed 

actions taken following the identification of children at risk of developing childhood asthma may 

not only help to prevent or curb the progression of the child’s asthma throughout childhood, but 

may also reduce the risk of developing other respiratory diseases later in adulthood.  

1.2.3 Methods to predict health outcomes 

The aim of predictive modelling is to provide insight into the probability of an event outcome 

rather than to determine causality between features (predictors) and an outcome117. The process 

of predictive modelling comprises of development and application. The development process of a 

prediction model is referred to as the training phase, in which a model is chosen and optimised to 

predict an outcome of choice based on a representative dataset118. The optimised model is then 

applied to make predictions on new data. Although there is a large variety of methods which can 

be employed for predictive modelling, they can be broadly classified into two approaches - 

statistical and machine learning approaches. 

The primary aim of traditional statistical methods is to make inferences on the relationship 

between variables and the outcome using existing insight of the problem domain and data from a 

representative sample of the problem population. These are generally parametric methods, 
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where assumptions are made on the underlying distribution of the data. Traditional statistical 

methods can then be used to make predictions based on these inferences118.  

Regression models are the most commonly applied statistical approach for predictive modelling. 

The simplest regression method is the simple linear regression, whereby predictions of a 

dependent variable (outcome) are made based on a linear relationship between itself and a single 

independent variable (predictor). In a regression analysis, the relationship between the predictor 

and outcome is quantified by the regression coefficient. In many situations, including healthcare, 

multiple variables are related to an outcome. Hence, multiple linear regression, which predicts an 

outcome based on its relationship with a set of predictors, is more commonly used. In this 

situation, the regression coefficient for each predictor is calculated based on the average effect of 

a unit increase of the predictor on the outcome, fixing the effect of all the other predictors 

included in the model. It is assumed that each predictor included in the model has an additive 

influence on the outcome. However, it is possible to incorporate interaction terms into the model 

to relax this additive assumption. Linear regression is used when the outcome is a continuous 

variable whilst logistic regression is used for binary outcomes118.  

However, there are important limitations of regression models. First, regression methods assume 

that the data is linearly separable. If the data is not truly linearly separable, the regression model 

will demonstrate poor predictive accuracy. Another limitation centres on the assumption that 

error terms for each observation are uncorrelated and have constant variance across the 

dependent variable. Deviations from these assumptions can result in predictors erroneously being 

considered statistically significant and an underestimation in the true standard error of the model. 

Regression models are also highly affected by outliers and extreme values. Finally, an important 

limitation of regression models is that they are also affected by multicollinearity between 

predictors which are highly correlated with each other. The collinearity between predictors can 

reduce the ability of a model to identify significant predictors and can lead to erroneous estimates 

of the individual effect size of each predictor on the outcome118. 

In contrast to traditional statistical methods, the primary goal of machine learning approaches is 

to make accurate predictions. This is achieved by machine learning algorithms recognising 

relationships present within a subset of training data and evaluating the predictive performance 

of the model on a separate test dataset. The focus is on whether relationships are present within 

the data, with less concern over understanding these relationships. It is this distinction which has 

driven the exploration of machine learning across a variety of fields – compared to statistical 
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methods, they are better able to address the complex, often non-linear relationships that 

underpin many real-world problems117,118.  

A variety of machine learning algorithms exist, including both parametric and non-parametric (no 

assumptions made on the underlying distribution of the data) algorithms. These algorithms range 

from highly interpretable models with low complexity to highly complex, black-box models which 

are difficult to interpret119. However, due to the focus on making accurate predictions rather than 

explaining identified relationships between predictors and the outcome, many machine learning 

approaches often sacrifice model interpretability for an improvement in prediction accuracy. It is 

important to note that there is no consensus distinction between traditional regression-based and 

machine learning-based models. Whilst some distinguish these methods by whether the 

prediction outcome is continuous or classifying distinct classes, others consider whether the 

methods are parametric or non-parametric. In addition, many do not consider simpler models 

such as logistic regression as machine learning models. Throughout this thesis, traditional 

statistical and regression-based models refer to those models which require assumptions to be 

made on the distribution of the data, including logistic regression models. Machine learning-based 

models refer to those which use non-parametric and more complex algorithms.  

Particularly with the growth of electronic health records, access to big data has fuelled the 

popularity of utilising machine learning methodologies in healthcare120. Given the complex 

interactions between biological variables, the exploration of machine learning methods which 

focus merely on identifying relationships within data rather than attempting to untangle 

mechanisms of complex interactions, may hold promise in improving prediction accuracy 

compared to traditional statistical methods. Numerous studies have compared the utilisation of 

these two approaches of predictive modelling for healthcare; although not always consistent, 

machine learning approaches have demonstrated comparable, if not superior, predictive 

performance compared to traditional statistical methods across a number of disease areas121-123.  

1.3 Machine learning 

Machine learning is a branch of artificial intelligence that utilises principles of statistics, 

mathematics and computer science to develop algorithms that learn directly from data and 

experience118. Algorithms under the umbrella of machine learning can be broadly classified into 

two categories: supervised and unsupervised learning. Supervised learning methods utilise 

labelled data, whereby each observation has data for both a set of predictive features and an 
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assignment of its outcome. Supervised learning methods can be further classified based on the 

type of outcome being predicted – classification algorithms predicting outcomes into discrete 

categories and regression algorithms predicting continuous outcomes. Conversely, unsupervised 

learning methods aim to identify underlying patterns within data, without any prior information 

about the outcome. Examples of unsupervised learning include clustering and dimensionality 

reduction. There is also another branch of machine learning, called semi-supervised learning. This 

refers to a process of supervised learning conducted on a small initial training subset, followed by 

unsupervised learning on the remaining training dataset118,124.  

1.3.1 Predictive modelling for classification 

Prediction models developed for classification purposes using machine learning are an example of 

supervised machine learning. The process comprises of two phases: training – to develop and 

optimise a learning algorithm; and testing – to evaluate the performance and generalisability of 

the model on unseen data. When developing a classification model, the model learns patterns 

from the training data and is evaluated on the test set118,119.  

Machine learning algorithms can be described based on two main criteria – interpretability and 

flexibility (Figure 1.2)118. Interpretability refers to the ability to understand how the interactions 

between predictors led to the classification output. Model flexibility refers to the ability for an 

algorithm to fit numerous forms of its defining function, optimising itself based on the complexity 

of the data. For example, when linear regression is applied for the purpose of making predictions 

rather than inferences, it may be considered to be a machine learning method118. Models 

developed using linear regression are considered to be easily interpretable due to the additive 

effect of each predictor, quantified by the regression coefficient. But these models are inflexible - 

they are limited to construct linear decision boundaries, irrespective of whether the data is in fact 

linearly separable. In contrast, support vector machines (SVMs) are considered highly flexible 

models, with the potential to apply different kernel functions to accommodate complex data 

patterns. Kernel functions allow complex, non-linearly separable data to be mapped into higher 

dimensional spaces where they become separable118. However, this complexity makes it difficult 

to understand how the output of the SVM was derived from the input variables provided. Hence, 

SVMs are considered to be difficult to interpret “black-box” algorithms.  
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Figure 1.2 The interpretability-flexibility trade-off for supervised machine learning algorithms 

Algorithms that offer a greater degree of flexibility tend to have lower model 

interpretability. Figure adapted from James et al.118, with permission from Springer 

Nature. 

Irrespective of the algorithm used, the training process aims to, either directly or indirectly, 

reduce the error in the training data118. As a result, it is expected that performance in the training 

dataset will be superior to that of the test set. This concept can be exploited to identify problems 

of overfitting in a developed model. Overfitting refers to the process of a model learning the 

patterns of the training data too well such that, when applied to a set of similar unseen data, the 

model is unable to make accurate predictions125. In practice, this would be evident from a low 

classification error in the training data but a large error in the test data. Models subject to 

overfitting are not generalisable. 

The problem of overfitting stems from the trade-off between bias and variance during model 

development (Figure 1.3). Bias refers to the ability of a model to make accurate real-life 

approximations. In contrast, variance refers to the extent to which a model would change given 

alterations to the training data118. Ideally, a model should have low bias and low variance. 

However, there is always a trade-off between these two parameters. For example, in the case of a 

non-linear classification problem, an inflexible model, such as one developed by linear regression, 

may not be able to account for the full complexity of the data with a simple linear separation. 

Such underfitting of the training data can result in a model with high bias118. However, this model 
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may present with low variance due to small changes in the training data only having a small 

influence on the position of the decision boundary and the subsequent classifications made. In 

contrast, models developed by SVMs for example, have greater flexibility to recognise and learn 

complex patterns in the data, thus improving the classification accuracy and reducing model bias. 

However, in order to accommodate the complexity of the data, the model becomes dependent on 

the properties of the training dataset. As a result, the model will have high variance, with small 

changes in the training data potentially having a large impact on the decision boundary118. 
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Figure 1.3 The bias-variance trade-off for classification model predictions 

In each target space, the green circle represents accurate predictions. Each target 

depicts one of the four main prediction patterns (red dots) that can be offered by a 

classification model in terms of bias and variance. Whilst the top-left target shows 

the ideal prediction pattern of low bias and low variance, prediction models generally 

present as one of other targets due to the bias-variance trade off. Figure reproduced 

based on Doroudi et al.126 (copyright license: CC-BY-NC 4.0). 

A number of approaches to address the common problem of overfitting and establish a balance 

between model bias and variance have been suggested118. These approaches include using 

datasets with large sample sizes (>1000 samples) where available; using resampling methods (e.g. 

cross validation or bootstrapping) where available datasets are small; reducing noise in the data 

by applying feature selection methods; and encouraging unbiased training using techniques for 

class imbalance. 
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1.3.2 Resampling methods 

The bias-variance trade-off is a significant problem, particularly when models are developed using 

small datasets. Withholding a portion of the dataset for testing purposes further reduces the 

number of observations available for model training. To address this, resampling techniques, such 

as cross validation and bootstrapping, are used to artificially increase the number of observations 

used for model training from the available data118. Cross-validation is an iterative process 

whereby all observations are used for both training and testing. In this process, the data is divided 

into k-folds; a model is trained on (k-1) folds and evaluated on the remaining fold. The training 

and testing process is repeated k-times using a different fold as the test set each time (Figure 1.4). 

This process can be applied to identify tuning parameters in a bid to construct a generalisable 

model and reduce overfitting. This process can also be used to establish a generalised estimate of 

the performance of a model.  

Similarly, bootstrapping is the process whereby multiple training datasets of equal size are 

produced from the original dataset. This technique resamples with replacement - as a result, 

approximately 80% of the original dataset forms a new dataset for model training. The remaining 

20%, known as the out-of-bag samples, are used as the test set to evaluate the performance of a 

model118. With both resampling techniques, the number of observations used to train a model is 

maximised in order to better recognise patterns and make accurate predictions (reducing bias). In 

addition, by training a model on multiple sets of data, the model becomes less dependent on the 

properties of the training data, lowering the potential for overfitting (reducing variance) and 

increasing the generalisability of the model. 
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Figure 1.4 Example of how cross-validation may be used to develop a machine learning model 

The dataset is split into a training and test set. Using the training set, all aspects 

related to model development (such as the tuning of model parameters) are 

performed within a cross-validation framework. Based on the collective results 

obtained from each cross-validation fold, the final model is defined and applied to 

the unseen test data. An evaluation of the model on the test data provides an 

indication of how well the model performs and generalises. Figure reproduced from 

Pedregosa et al.127 (copyright license: BSD). 

1.3.3 Feature selection 

A fundamental consideration for modelling is the input data that is used. Technological advances 

and data storage capabilities have facilitated the collection of large amounts of data with 

increasing ease and speed118. As a result, researchers are increasingly faced with large amounts of 

potential input data available for analyses. Additionally, data is often heterogeneous, comprising 

of different data types. Whilst the combination of different data types can offer a holistic 

understanding of the problem in question compared to single-data-type analyses (particularly in 
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areas such as healthcare and bioinformatics), data integration has often posed a significant 

hurdle128. Whilst advancements in machine learning have facilitated a number of approaches to 

tackle data integration, there are still many challenges to integrate heterogeneous data types (e.g. 

the curse of dimensionality), with no gold-standard method identified128,129. 

Regardless of whether data is heterogeneous or of a single data type, the utilisation of high 

dimensional data is a known problem in statistical modelling. High dimensional data refers to an 

input feature space where the number of features is very large, often much larger than the 

number of observations118. Not only is this computationally costly, it can also subject models to 

the “curse of dimensionality”. This refers to the phenomenon whereby, as the number of features 

considered in a model increases, noise introduced into the training data encourages the model to 

overfit on the training data. This subsequently compromises the test performance and future 

generalisability of the model130.  

Despite the availability of data for a large number of features, not all available features are 

required for modelling a specific problem. Candidate features can be evaluated for their relevance 

and redundancy. Feature relevance refers to the strength of the relationship between the feature 

and the outcome. In contrast, redundancy evaluates the relationship between features; a 

redundant feature is one that is dependent or often highly correlated with another feature that 

can fully explain its relationship with the outcome131. Based on these evaluation criteria, methods 

have been proposed to reduce the dimensionality of data during model development. These 

methods can be classified into: feature selection – which identifies a subset of the most 

informative candidate features from the original feature set; and feature extraction – which 

performs transformations on the original features to extract a reduced set of new features that 

can explain the patterns of the original feature set131.  

Feature selection methods aim to make the distinction between relevant and redundant features 

in order to obtain a subset of useful features to be carried forward for modelling. These methods 

are often more interpretable than feature extraction methods. There are three main types of 

feature selection methods – filter, wrapper and embedded methods131. Filter methods, such as 

mutual information-based feature selection, information gain or relief, have the lowest 

computational cost and are independent of machine learning algorithms132. These methods 

evaluate feature relevance based on a specified evaluation criterion, such as Akaike information 

criterion, Bayesian information criterion, mean squared error or correlation coefficients131. 

Wrapper methods, such as Recursive Feature Elimination (RFE) or genetic algorithms, are 
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computationally expensive feature selection methods; they train a chosen modelling algorithm on 

each possible subset of features to identify the subset of features which offer the maximal 

predictive accuracy133. Finally, embedded methods perform feature selection within the model 

construction process and are usually model specific. For example, least absolute shrinkage and 

selection operator (LASSO) and Elastic Net employ a regularisation step within a regression model 

in order to shrink the coefficients of less important features131. In this way, embedded methods 

are able to reduce dimensionality whilst retaining all candidate features as inputs in the model. 

Compared to traditional statistical methods, machine learning approaches are more robust to 

concerns of multicollinearity between predictors. As a result, machine learning approaches 

utilising robust feature selection methods may offer the opportunity to recognise patterns within 

data and potentially identify novel predictors, which may have been previously overlooked by 

regression-based approaches117,118,123. 

1.3.4 Addressing the data imbalance problem 

The fundamental aspect of supervised machine learning is the process of learning from given data 

examples to predict unseen data118,119. In the case of a two-class problem, optimal learning would 

occur when an equal number of examples of both classes were available for the algorithm to 

learn. In fact, most algorithms assume that the distribution of classes are balanced and the cost of 

misclassification is consistent between classes134. However, obtaining a perfectly balanced dataset 

is unrealistic in many real-world settings. Often in classification problems, particularly in 

healthcare, the event of interest belongs to the minority class. For data with a significant class 

imbalance, the accuracy of modelling algorithms can be substantially limited due to the bias 

towards predicting the majority class134.  

The problem of imbalanced data is well documented, with numerous methods suggested to 

address the problem134. Whilst the obvious solution would be to collect additional data for 

examples of the minority class, this is not always feasible depending on research costs (extrinsic 

imbalances) or the nature of the dataspace e.g. low event prevalence (intrinsic imbalances)134. 

Other approaches addressing this issue include sampling methods, the generation of synthetic 

data, cost-sensitive learning, active learning and kernel-based methods134. The utilisation of 

rebalancing methods has been shown to improve the performance of modelling algorithms and 

should not be overlooked when dealing with imbalanced data135.  



Chapter 1 

 

26 

 

Sampling methods involve introducing or removing examples of the original dataset in a random 

or informed manner. Oversampling refers to the replication of examples belonging to the minority 

class, which are then added to the original training dataset. Undersampling involves the removal 

of examples of the majority class from the original training dataset. Whilst undersampling can 

improve the class imbalance, this method forces a decrease in sample size and the removal of 

potentially useful training data, hence is not often preferred134. 

Although replicating existing examples of the minority class addresses the data imbalance, the 

addition of duplicate examples can result in overfitting134. To overcome this problem, 

oversampling methods, which generate synthetic data for the minority class, have been proposed. 

The Synthetic Minority Oversampling TEchnique (SMOTE), which generates synthetic examples 

based on the k-nearest neighbours of existing minority examples, has shown to be highly effective 

and is widely implemented136. Suggested improvements upon SMOTE include borderline-

SMOTE137 and ADAptive SYNthetic sampling (ADASYN)138. These methods also generate synthetic 

examples but focus on increasing the number of difficult to classify minority examples. Other 

methods to address the data imbalance problem, which do not require alterations to the dataset, 

have been proposed. One example is cost-sensitive learning, whereby the algorithm penalises 

classifications based on a cost matrix. Often, penalties are only incurred on misclassifications, with 

higher penalties given for misclassifications of the minority class compared to the majority 

class139.  

Another important consideration for handling imbalanced data is the correct use and reporting of 

performance measures134. The success of modelling algorithms is generally evaluated by a 

measure of accuracy, the proportion of correct classifications. However, accuracy can be 

misleading when dealing with imbalanced data. For example, consider a two-class classification 

problem in which all examples of the minority class were misclassified. For a balanced dataset, the 

reported accuracy would be 50%, clearly highlighting that the performance of the model was no 

better than chance. However, for an imbalanced dataset with only one-tenth of examples 

belonging to the minority class, the reported accuracy would be 90%, suggesting at first glance 

that the model offered excellent predictions. In such situations, reporting the balanced accuracy 

(the average proportion of correct classifications for each class) may be more appropriate. Other 

performance measures, such as the F1-score, recall, precision and area under the receiver 

operating characteristic (ROC) curve are less influenced by class imbalances and should also be 

reported in such situations (discussed in Chapter 2.3.6)134. 
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1.3.5 Handling missing data 

Missing data is a common problem that can influence both the development and application of 

modelling algorithms. There are three main patterns of missing data. First, data can be “missing 

completely at random” (MCAR), where there is no underlying systematic difference between 

missing and non-missing data. Second, data can be “missing at random” (MAR), where any 

underlying systematic differences between missing and non-missing data can be explained by 

differences in the non-missing data. Finally, data can be “missing not at random” (MNAR), where 

any systematic differences identified between the missing and non-missing data cannot be 

explained by the non-missing data140-142.  

A simple solution to deal with missing data is to remove observations with missing data and 

proceed with complete data analyses. However, such an approach can introduce bias into the 

analyses, particularly if data is MNAR140. Complete data analyses can also substantially reduce 

sample size and study power, resulting in a potential loss of precision and under-fitting142. 

There are numerous methods for handling missing data140,142-144. Simple approaches include single 

imputation methods such as mean imputation or last measure carried forward144. More complex 

approaches include multiple imputation methods such as Multivariate Imputation by Chain 

Equation (MICE), which involves the generation of multiple imputed datasets upon which the 

results of an analysis are pooled across each dataset145,146. Such methods aim to address the 

inherent uncertainty of the missing data values. Other methods include maximal likelihood 

estimation and approaches utilising machine learning algorithms, such as nearest neighbour 

estimation144,147 and missForest148.  

Despite the potential benefits of imputing missing data, imputation should be performed with 

caution when there is a substantial proportion of missing data141. It has been suggested that 

analyses may be subject to bias when the proportion of missing data exceeds 10%141,142. However, 

a few studies have showed that very large proportions of missing data alone may not introduce 

bias, emphasising that other considerations also need to be made, such as assumptions of missing 

data patterns141 or the fraction of missing information149. 

1.3.6 Use of machine learning for disease prediction 

Machine learning has been widely applied across healthcare to address medical problems 

including: disease diagnosis122,150, predicting health outcomes, such as mortality, the development 



Chapter 1 

 

28 

 

of disease or other comorbidities151-153, as well as predicting adherence to treatment154 and the 

utilisation of healthcare resources155. Ensemble machine learning approaches (e.g. random forest) 

have commonly shown robust performance as classification tools in disease areas, such as 

Alzheimer’s disease156 and cardiovascular disease153. SVM, a more recently developed machine 

learning approach, has also established itself as a powerful classification tool and has been 

applied to the prediction of diseases such as diabetes151 and inflammatory bowel disease157. In 

addition, unsupervised clustering approaches have been applied to stratify patients with similarly 

presenting conditions157 as well as to identify different disease and comorbidity trajectories152.  

Particularly within healthcare, data is often heterogeneous, sourced from different modalities, 

such as questionnaires, images, recordings and a variety of omics analyses. Although methods 

that are able to integrate multiple data structures for single analyses are not yet well established, 

machine learning approaches used to integrate heterogeneous data have been applied to a 

number of areas of biomedicine129. 

1.3.7 Use of machine learning in asthma  

Supervised machine learning approaches have also been applied to predict the presence of 

asthma158, as well as the chance of future asthma exacerbations159. Studies have also applied 

machine learning methods to optimise the management of healthcare resources, for example by 

predicting post-exacerbation hospitalisation and clinical decision making at triage in adults 

presenting to the emergency department with asthma exacerbations105.  

Unsupervised machine learning approaches have also been employed in an attempt to untangle 

some of the underlying heterogeneity seen in the pathophysiology and treatment of asthma; by 

stratifying asthmatic individuals, personalised asthma care may be encouraged. For example, 

unsupervised cluster analyses of severe asthmatics within the Severe Asthmatic Research 

Program (SARP) identified four distinct groups of patients with variable responses to treatment 

with corticosteroids30. Similarly, a topological data analysis of multi-omic data collected from 

severe asthmatics identified six distinct asthma endotypes160. The latter study highlights the 

benefits of performing integrated analyses using multiple datatypes in order to gain a greater 

understanding of disease mechanisms than what is possible with single data type (modality) 

analyses alone. This was further supported by a recent study which explored a potential 

methodology to integrate different data types to classify childhood asthmatics using supervised 
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machine learning methods; the study demonstrated the predictive benefit offered by integrating 

multiple data modalities compared to using single modality data alone161.  

Although the majority of machine learning applications within the asthma field have focused on 

adult asthma, prediction models have also targeted paediatric populations. For example, Patel et 

al. used clinical and environmental data collected at emergency department triage from 29,392 

patients to predict the need for hospitalisation required by children with asthma exacerbations155. 

Similarly, Goto et al. used clinical data from 52, 037 children admitted to an emergency 

department to predict two clinical outcomes at triage - the need for critical care or 

hospitalisation162. This study compared four machine learning algorithms against a conventional 

triage approach (reference model). The machine learning models demonstrated significantly 

superior ability to predict a child’s need for hospitalisation compared to the reference model. 

They also offered better performance compared to the reference model to predict the need for 

critical care, but these improvements were not significantly different. Furthermore, using data 

from 112 patients from a hospital paediatric department in Greece, Chatzimichail et al. attempted 

to apply a number of feature selection methods and modelling algorithms to predict childhood 

asthma163-166. However, these studies remain as exploratory methodological studies due to the 

lack of independent replication. 

1.3.8 The promise of explainable machine learning models  

Despite the increasing adoption of complex machine learning methods to solve a variety of 

healthcare problems, their reputation as “black-box” algorithms have often posed a major hurdle 

for clinical application and utility. In an environment where decision making is critical and 

accountability is high, machine learning models assisting clinical decision-making need to be able 

to explain how predictions were made167.  

As explained in Chapter 1.3.1, complex machine learning models that may offer greater predictive 

performance are often less interpretable. Researchers are therefore faced with a trade-off 

between developing complex machine learning models that may offer superior performance and 

developing simpler models which offer poorer performance but are highly interpretable167. It is 

due to the importance of the latter that simpler regression and decision tree models have often 

shown to dominate the field of disease prediction.  

Recently, novel approaches to increase the explainability of machine learning models have been 

proposed. For example, novel models, such as Generalized Additive Models plus Interactions 
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(GA2M), offering both high performance and interpretability, have been proposed167. Other 

approaches involve extracting explanations for “black-box” prediction models post-hoc using 

techniques, such as SHapley Additive exPlanations (SHAP)168 and Locally Interpretable Model-

agnostic Explanations (LIME)169. The benefit of these post-hoc techniques is that they can be used 

on any machine learning model168, thus allowing researchers to address the issues of model 

interpretability and “user trust” whilst also taking advantage of the improved performance 

offered by complex models167.  

1.4 Aims 

Current prediction models, across healthcare settings, are commonly based on traditional 

regression methods, due to their ease and high interpretability making them a popular choice 

among the clinical community. However, for the proportion of models which have undergone 

validation in independent populations, these models often demonstrate poor/modest 

generalisability. In part, this may be due to limitations inherent in the traditional statistical 

methods used. Machine learning approaches for prediction have been increasingly explored. 

Despite some conflicting studies assessing their benefit over traditional methods, numerous 

studies have shown machine learning methods to offer superior predictive capability compared to 

traditional regression methods. However, only a few studies have explored the application of 

machine learning for prediction in the context of childhood asthma. 

Predicting a child’s risk of developing asthma is important to tailor asthma management in a bid 

to curb the progression and severity of the disease. Early prediction and effective intervention 

prior to disease development could also promote asthma prevention. However, the difficulty in 

predicting the development of childhood asthma stems from its complex pathophysiology and 

highly heterogeneous presentation, particularly in early childhood. Utilising information from a 

variety of available data modalities, such as questionnaires, clinical tests and -omic analyses, have 

already shown able to untangle clinical questions on the identification and categorisation of 

asthma phenotypes and endotypes in a hope to tailor future asthma management on an 

individual level30,161. Given the increasing availability of different data types emerging from both 

research and clinical settings, such integrative analyses may also promote more accurate 

predictions to be made in early life regarding the development of childhood asthma at school-age.  

The Isle of Wight Birth Cohort (IOWBC) is the earliest European birth cohort established to study 

the natural history and development of asthma and other allergic diseases in early life170. With a 
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rich collection of life-course data (detail in Chapter 2.1.1), the IOWBC offers the unique 

opportunity to develop prediction models for childhood asthma using a rich variety of clinical, 

environmental and genomic biomarker data collected in the early years of life.  

Therefore, the aim of this thesis is to use methods of machine learning and data integration to 

develop two prediction models for childhood asthma development in the IOWBC. One model will 

aim to predict the risk of school-age asthma in early life, for the future purpose of asthma 

prevention, whilst the other will aim to predict the risk of school-age asthma by preschool-age, for 

the purpose of asthma management. To achieve this, the following objectives will be met: 

1. Identification and critical evaluation of current risk models available for predicting 

childhood asthma; 

2. Evaluation of the generalisability of existing childhood asthma prediction models 

within a single population; 

3. Identification of readily available clinical features predictive of the development of 

school-age asthma;  

4. Comparison of machine learning algorithms and independent selection of two 

optimised clinical prediction models for school-age asthma for wide-spread clinical use;  

5. Generation and interpretation of personalised risk score probability estimates based 

on the chosen models; 

6. Generation of polygenic and epigenetic risk scores for childhood asthma 

development;  

7. Evaluation of any predictive improvement following the integration of the genomic 

risk scores with the clinical asthma prediction models.
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Chapter 2 Methods 

Detailed descriptions of the datasets and main methods used throughout this thesis to develop 

and independently validate the childhood asthma prediction models using machine learning and 

data integration processes are outlined in this chapter. Additional methods specifically used to 

address certain thesis aims are further described within the relevant chapters.  

2.1 Datasets 

2.1.1 Development dataset: Isle of Wight Birth Cohort (IOWBC) 

The IOWBC, also known as the second generation (F1) cohort, is based on the Isle of Wight (IoW), 

off the south coast of England, UK. It is a whole population, single-centre prospective cohort study 

established in 1989 to explore the natural history and development of asthma and other allergic 

diseases in early life170. Between 1989 and 1990, 1509 women gave birth to 1536 children on the 

Isle of Wight. From these births, 1456 children were recruited into the IOWBC study and followed 

up from birth and at 1, 2, 4, 10, 18 and 26 years, with high retention rates of 94.0%, 84.5%, 83.7%, 

94.3%, 90.2% and 70.9%, respectively170. The IOWBC cohort comprises of individuals 

predominantly of Caucasian ethnicity (98%).  

2.1.1.1 Clinical and environmental data 

In the IOWBC, allergic disease and exposure-related data was collected through hospital records, 

physical examinations and study specific questionnaires. From the 10 year follow-up, 

questionnaires were standardised with the International Study of Asthma and Allergies in 

Childhood (ISAAC) questionnaire created in 1995171.  

At each follow-up, demographic and lifestyle information as well as pregnancy and birth 

characteristics, environmental exposures and indicators of asthma and allergy status were 

collected (total number of variables: at birth=70; 1-year=124; 2-year=110; 4-year=115; 10-

year=306; 18-year=430; 26-year=460). Specifically, this included data on family history; 

gestational factors, breastfeeding and early life diet; household pets; exposure to tobacco 

smoking; housing characteristics; socioeconomic status as well as height, weight and BMI. Clinical 

symptoms for which data was collected included: wheeze, cough, nasal symptoms, nocturnal 

symptoms, chest infections, eczema, allergic rhinitis, food allergy and asthma. In addition, a skin 
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prick test (SPT) was performed in infants with allergy-related symptoms at 1 and 2 years, and in all 

participants from the 4-year follow-up onwards. Sensitisation to the following 13 common inhaled 

and food allergens was assessed: house dust mite (Dermatophagoides pteronyssinus), grass pollen 

mix, tree pollen mix, cat and dog epithelia, Alternaria alternata, Cladosporium herbarium, milk, 

hen's egg, soya, cod, wheat, and peanut. A positive SPT was confirmed if the mean wheal 

diameter was at least 3mm greater than the negative control (physiologic saline). An individual 

was considered atopic following at least one positive SPT. Lung function tests, including 

spirometry and methacholine bronchial challenges, were performed from the 10-year follow-up. 

Bronchial challenge consisted of the serial administration of incremental doses of methacholine, 

from 0.0625mg/mL to 16mg/mL. In line with ATS guidelines, a child was deemed to have a 

positive test for bronchial hyper-responsiveness if <4.0mg/mL caused a 20% fall in FEV1 (forced 

expiratory volume in 1 second) from the baseline FEV1 value14,172.  

Candidate predictors considered for inclusion in the prediction models were shortlisted based on 

knowledge of risk factors associated with childhood asthma published in the literature (detailed in 

Chapter 1.1.6). The list of candidate predictors was further filtered to include only data which was 

available in the development and validation cohorts. Where applicable, information on these risk 

factors was extracted from the IOWBC across three distinct time-points: i) at birth, ii) in early life 

(combination of 1 and 2-year follow-up data) and iii) at preschool age (4-year follow-up data). In 

total, data for 54 candidate predictors were extracted from the IOWBC and considered during the 

development of the childhood asthma prediction models (Table A1). 

For candidate predictors collected at the early-life time-point, categorical data was combined 

based on the highest level of exposure reported at either the 1-year or 2-year follow-up. Early life 

BMI was reported as BMI at the 1-year follow-up. Measures of child BMI (collected at 1-year and 

4-years) were standardised against the British 1990 growth reference173. Furthermore, based on 

expert opinion and a significant chi-squared test of association (X2= 37.55, p-value= 3.293e-10, 

performed on individuals within the IoW 3rd Generation (F2) cohort (n=181)), data on “frequent 

wheeze” was used as a surrogate variable to account for the commonly evaluated predictor, 

“wheeze apart from cold”. Based on a cluster analysis using information on i) family income at 10 

years of age; ii) the number of children in the index child’s bedroom; and iii) the British 

socioeconomic classes, socioeconomic status in the IOWBC was categorised into five distinct 

clusters174.  
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2.1.1.2 Genotype data 

Blood samples were collected from the child at multiple time-points - from heel pricks at 7 days of 

age (collected on Guthrie cards) and in later childhood at 10, 18 and 26 years. DNA from the 

peripheral blood samples of 1067 individuals in the IOWBC were isolated and underwent genome-

wide genotyping using the Illumina InfiniumOmni2.5-8v1.3 microarray. Blood samples collected at 

the 18 year time-point were used for genotyping; where unavailable, blood samples collected at 

age 7 days, 10 years or 26 years were used. Standard quality control for genome-wide association 

studies (GWAS) had been performed to exclude samples with low call rate (<97%) and SNPs with 

call rate <95%, minor allele frequency (MAF) <0.005 and significant deviation from Hardy-

Weinberg equilibrium (p-value <1x10-8) prior to imputation. Alleles had also been updated to 

match the direction (forward) and coordinates of the reference dataset, GRCh37175. Data were 

pre-phased (EAGLE2)176 and imputed (PBWT)177 using the Sanger Imputation Services (Oxford, 

UK). 

Further quality control was performed to prepare the imputed genotype data for the analyses 

conducted in this thesis. This included the retention of data with an imputation quality >80%. 

SNPs were again filtered to exclude those with call rate <95%, MAF<0.01 and significant deviation 

from Hardy-Weinberg equilibrium (p-value <1x10-6). Samples were further filtered to remove 

those with call-rate <97%, extreme heterozygosity (±3SD of the mean F-coefficient) and gender 

mismatch. One individual of each related pair (3rd degree relations or closer, pi-hat ≥0.125) was 

also excluded. Population structure was assessed by principal component analysis (PCA), 

comparing the IOWBC with the European descent (CEU), Yoruba (YRI), Hans Chinese (CHB) and 

Japanese (JPT) HapMap3 reference populations178. Non-European individuals were excluded 

based on a visual inspection of the PCA plot (Figure A1). A final dataset of 977 individuals with 

genotype data for 7,236,427 SNPs was retained for downstream analyses. 

In addition, five candidate variants of the filaggrin gene (R501X, 2282del, S3247X, 3702delG and 

R2447X) had previously undergone genotyping in the IOWBC using GoldenGate Genotyping 

Assays (Illumina, Inc, SanDiegom CA) on the BeadXpress Veracode platform per Illumina’s 

protocol179. In brief, 1,248 blood samples (from 1,211 individuals and 37 replicates) were 

fragmented, hybridised to allele-specific primer sets and subject to extension/ligation reactions. 

Samples were sourced from a similar mixture of time points as described for the genome-wide 

genotype data. Samples were then hybridised to the Veracode bead pool for processing by the 
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BeadXpress reader. Allele determination was based on a GenCall score >0.25. Scores below this 

quality threshold were deemed “no calls”.  

For downstream analyses conducted in this thesis, quality-controlled genotype data for the R501X 

variant of the filaggrin gene (n=924) was added to the quality controlled imputed genome-wide 

genotype profiles detailed above, resulting in a final dataset of 924 genotype profiles consisting of 

7,236,428 SNPs.  

2.1.1.3 Methylation data 

Genome-wide DNA methylation data was measured at birth from blood samples collected on 

Guthrie cards (n=885). DNA from Guthrie cards was extracted using the Gensolve kit, following 

the procedure described by Beyan et al.180. 500ng of isolated genomic DNA from each sample was 

then bisulphite-treated using the EZ 96-DNA methylation kit (Zymo Research, Irvine, CA, USA). 

This process facilitates the deamination of unmethylated cytosines (converting them to thymine) 

at CpG islands whilst leaving methylated cytosines unchanged. DNA methylation profiling was 

then performed using the Illumina Infinium MethylationEPIC BeadChips following the 

manufacturer’s standard protocol. In this process, the DNA methylation levels at 863,904 CpG 

sites were estimated as beta values - the ratio of the methylated probe intensity and the overall 

intensity (Equation 2.1). DNA methylation beta values range from 0 (completely unmethylated 

CpG) to 1 (completely methylated CpG). Due to funding limitations, Guthrie DNA methylation data 

was collected and profiled (sent to the same service provider) in seven batches. 

𝛽𝛽 =
𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑀𝑀𝑀𝑀𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑦𝑦 𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑦𝑦

𝑈𝑈𝑠𝑠𝑈𝑈𝑀𝑀𝑀𝑀ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑀𝑀𝑀𝑀𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑦𝑦 𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀𝑦𝑦 + 𝑈𝑈𝑀𝑀𝑀𝑀ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑀𝑀𝑀𝑀𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑦𝑦 𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑦𝑦 + 100
 

Equation 2.1 DNA methylation beta value estimation 

Next, DNA methylation data underwent a number of pre-processing steps. Beta values were 

normalised using the CPACOR method181. Illumina Background Correction was applied to intensity 

values prior to the exclusion of CpGs with intensity values with detection p-values ≥10-16 and 

samples with call-rate <95%. Using the minfi package182, gender was inferred based on the 

difference in median total intensity of CpGs on the X and Y chromosomes. Individuals whose 

predicted gender directly contradicted their reported gender, as well as those who deviated ±4SD 

from the main gender clusters, were excluded. One individual of each set of repeat samples and 

related pair of individuals (3rd degree relations or closer, pi-hat ≥0.125) were retained. Quantile 

normalisation was applied to intensity values using the DASEN method183, incorporating control 
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probe adjustment and global correction reduction. As DNA methylation was measured in seven 

batches, batch effects were removed using ComBat (sva package)184. SNP-associated and cross-

hybridised probes were removed185. A total of 765 individuals with DNA methylation profiles 

consisting of 694,571 CpGs were retained for further analyses.  

2.1.2 Replication dataset: Manchester Asthma and Allergy Study (MAAS) 

The Manchester Asthma and Allergy Study (MAAS) is an unselected birth cohort which was 

established to study the development of asthma and other atopic disorders in childhood186. 

Participants were recruited into the study from 50 square miles of South Manchester and 

Cheshire (within the maternity catchment area of the Wythenshawe and Stepping Hill Hospitals). 

Between 1995 and 1997, 1211 women (≤10 weeks pregnant) were recruited into the study and 

1184 children were subsequently followed up at 1, 3, 5, 8, 11, 13-16 and 18 years. The MAAS 

cohort consists of a stable mixed urban-rural population (~89% Caucasian). The 13-16 year follow-

up questionnaires were harmonised with the Isle of Wight cohort as part of the STELAR (Study 

Team for Early Life Asthma Research) Consortium187.  

2.1.2.1 Clinical and environmental data 

Medical records and validated questionnaires were used to collect data on family history, clinical 

symptoms of asthma and allergy as well as environmental exposures186,188. SPT for house dust 

mite (Dermatophagoides pteronyssinus), cat, dog, grass pollen, moulds, milk, and egg were 

performed from the 3-year follow-up onwards; tree pollen and peanut allergens were also tested 

from the 8 year follow-up onwards. A mean wheal diameter at least 3mm greater than the 

negative control (physiologic saline) was used to confirm a positive SPT. An individual was 

considered atopic following at least one positive SPT. Lung function tests were also performed 

from the three-year follow-up. From the 8-year follow-up, methacholine bronchial challenges 

(0.0625-16.0 mg/mL) were performed using a 5-step protocol in line with ATS guidelines. 

Bronchial hyper-responsiveness was confirmed by a 20% fall in FEV1 from the baseline 

measurement. 

In accordance with the candidate predictors considered in the IOWBC, information in MAAS was 

assessed at birth (recruitment), in early life (combination of 1 and 3 year follow-ups) and at 

preschool age (5 year follow-up). 
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2.1.2.2 Genotype data 

DNA samples from 919 individuals underwent genome-wide genotyping using the Illumina 610 

quad chip, with genotypes called using the Illumina GenCall application following the 

manufacturer’s instructions. Prior to imputation, data was quality controlled to exclude SNPs with 

call rate <95%, MAF<0.005 and significant deviation from Hardy-Weinberg equilibrium (p-value 

<3x10-8). Alleles had also been updated to match the direction (forward) and coordinates of 

reference dataset, GRCh37175. Samples with low call-rate (<97%), outlier autosomal 

heterozygosity, gender mismatch and non-European ethnicity were excluded. One individual from 

each pair of siblings or cryptic relations was also excluded. Genotypes were then imputed using 

IMPUTE version 2.1.2, with the 1000 Genomes and HapMap Phase 3 reference genotypes178.  

For analyses performed as part of this thesis, imputed genotype data was further quality 

controlled to exclude SNPs with low imputation quality (INFO<0.80), MAF<0.01 and significant 

deviations from Hardy–Weinberg equilibrium (p-value ≤ 1 × 10−8). A final dataset of 852 

individuals with genotype profiles of 7,353,200 SNPs were retained for downstream analysis. 

2.2 Prediction outcome: School-age asthma 

The prediction outcome of interest in this thesis is the development of school-age asthma. In the 

developmental dataset (IOWBC), school-age asthma was defined by a combination of a doctor 

diagnosis of asthma ever and at least one episode of wheezing or use of asthma medication in the 

last 12 months170. For each analysis, all participants with a reported asthma outcome at age 10 

were considered (n=1368, asthma prevalence=14.6%). 

To validate the prediction models in MAAS, the outcome of school-age asthma was constructed to 

fully correspond with the definition used in the developmental dataset. Data on school-age 

asthma was assessed at both 8 (n=1018, asthma prevalence=14.1%) and 11 years (n=898, asthma 

prevalence=12.9%) in MAAS. 
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2.3 Machine learning approaches 

2.3.1 Feature selection 

As previously discussed, feature selection methods aim to identify a subset of the most predictive 

features, reducing model dimensionality and noise, in order to improve computational demand 

and potentially improve prediction accuracy. Two feature selection methods, Recursive Feature 

Elimination (RFE) and Boruta, were compared to identify a subset of predictors with high 

classification accuracy from the list of 54 candidate predictors. Both are wrapper methods which 

utilise the random forest algorithm. A variation of the random forest algorithm (balanced random 

forest)189, which randomly under-samples the majority class in each bootstrap, was used to 

account for the class imbalance present in the dataset.  

2.3.1.1 Recursive feature elimination 

Recursive Feature Elimination (RFE) is an example of a backward elimination process. RFE was 

initially developed as a wrapper method utilising the SVM algorithm190. Given its in-built 

estimation of feature importance and easy application without the need for hyperparameter 

tuning, the random forest algorithm has also been used for RFE and has shown competitive 

performance191.  

RFE aims to identify a subset of important features through an iterative process of evaluating the 

relative importance of features and removing those deemed least important. Initially, all 

candidate features are used to train the wrapper algorithm of choice (e.g. random forest). 

Features are each assigned a weighting and ranked based on a specified importance criterion. The 

lowest ranking feature is removed from the pool of candidate features. This process is repeated, 

whereby the remaining features are used to retrain the random forest algorithm and update the 

feature importance ranking. In this manner, the lowest ranking features are recursively eliminated 

until only a single feature remains. At each elimination step, one or multiple features can be 

removed at a time190,191.  

RFE using the random forest algorithm can be applied within a k-fold cross validation framework 

(RFECV), whereby, for each split, RFE is performed on (k-1) partitions and the model’s 

performance is tested on the kth partition. The optimal subset of features can then be identified 

by the subset demonstrating the best cross-validation performance (Pseudocode 1).  
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A key aspect of RFE is that the subset of selected features does not necessarily consist of the 

features with the highest individual importance rankings; instead the selected features have the 

top ranking when considered as part of the feature subset190. Hence, this method aims to 

overcome the limitations of univariate and filter methods that consider features independently, 

ignoring their potential inter-relationships. In addition, due to re-evaluating feature importance 

after each elimination step, RFE has been suggested to be a beneficial feature selection method in 

the presence of highly correlated features191. However, this has not shown to extend well in highly 

dimensional datasets with a large number of correlated features191,192. 

2.3.1.2 Boruta 

The Boruta algorithm aims to identify a subset of relevant features among the original candidate 

feature list by evaluating the importance of each feature compared to random variables. By 

comparing original candidate features against random variables, the idea is to account for any 

correlations between the trees in a random forest that may artificially increase the true 

importance of features. Truly relevant features are expected to have higher importance than any 

randomly generated variable. 

To implement Boruta, the feature space is extended to contain both the original features and a 

set of shadow features (shuffled replicates of the original features). The importance of each 

feature is evaluated as a Z-score, computed as the average loss of accuracy divided by the 

standard deviation across the trees in a random forest. A hit is assigned to each original feature 

that has a higher Z-score than the maximal Z-score reported amongst all of the shadow features. 

This process is repeated for a number of iterations. A statistical two-sided test of equality is then 

performed to evaluate whether the observed number of hits for a feature was higher than 

expected over the iterations. Features that demonstrate high feature importance (Z-score) more 

times than expected are considered important and included in the feature selection subset 

(Pseudocode 2)193,194.  

2.3.2 Model Development  

To identify the best algorithm for this classification problem, the predictive performance of eight 

supervised machine learning classifiers were compared: support vector machines (SVM) with 

three different kernel functions (linear, radial basis function and polynomial), decision tree, 
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random forest, naive Bayes classifier, multilayer perceptron (MLP), and K-Nearest Neighbours 

(KNN).  

2.3.2.1 Support vector machine 

SVM is an example of a highly flexible classification algorithm. SVMs aim to construct a separating 

hyperplane between outcome classes (Figure 2.1)118. The hyperplane is constructed with the aim 

of maximizing the separation between the data points closest to the decision boundary (support 

vectors). In theory, the larger the margin between the decision boundary and the support vectors, 

the better the classifier. However, data is often not linearly separable. In such cases, a soft 

margin, which allows for a degree of misclassification of the support vectors, can be applied to 

obtain the best classification195,196. The addition of a soft-margin has also shown to be beneficial 

even when data is linearly separable. In the construction of the soft margin, slack variables (ξ) for 

each example, are used to assign a degree of error to the classifications, allowing examples to fall 

within the margin (ξ between 0-1) or be misclassified (ξ>1). However, to control the use of slack 

variables, a cost parameter is introduced with the aim of maximising the margin whilst minimising 

the amount of slack196. The cost parameter (C) is a regularization term that assigns a penalty to 

misclassifications. This regularisation term is a hyperparameter of the SVM, which can be tuned in 

order to provide the optimal classification based on a given dataset. Classifiers with larger values 

of C incur higher penalties for misclassifications and therefore have smaller margins (often 

resulting in the risk of overfitting)119. 

Particularly for non-linearly separable data, the accuracy of a classifier can be improved with a 

non-linear decision boundary. This flexibility of the decision boundary can be achieved using the 

kernel trick, whereby the data in the original feature space is mapped onto a higher dimensional 

space, which in turn, enables a linear hyperplane to be constructed. When projected back onto 

the original feature space, the decision boundary appears non-linear119,196. Different kernels such 

as the radial basis function (RBF) or polynomial function can be used for this purpose. The RBF 

and polynomial kernels specify a gamma (ɣ) hyperparameter, which is a scaler property to 

determine the influence of each data point on the classification. Larger values for ɣ encourage the 

classifier to overfit onto the training data. Whilst the RBF kernel projects data onto infinite 

dimensions, the polynomial kernel determines dimensionality by a degrees (d) hyperparameter. 

Large values of d increase the flexibility of the classifier but can lead to overfitting119,196. 
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Figure 2.1 Schematic of the support vector machine classifier 

The thick blue line indicates the decision boundary which has been constructed to 

separate examples which belong to two different classes (green and orange circles). 

The dotted blue lines depict the margin which has been constructed to maximise the 

separation between the decision boundary and the support vectors (green and 

orange circles with bolded outlines). With a soft margin, the size of the margin is 

increased by allowing some examples to be within the margin (circles outlined with 

red dashes) or be misclassified (circles with a solid red outline). Slack variables are 

assigned to examples found within the margin or those which are misclassified (ξ). A 

cost function (C) is used to penalise misclassifications, and is used as a regularisation 

term to maximise the size of the margin whilst minimising the amount of slack. Figure 

reproduced based on Ben-Hur et al.196 (copyright license: CC-BY). 

In this comparative analysis of machine learning models, the linear, radial basis function (RBF), 

and polynomial kernels were each used to construct three different SVM classifiers. 
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2.3.2.2 Decision tree 

The decision tree is a highly interpretable machine learning algorithm which aims to stratify the 

predictor space using a number of splitting rules. Starting at the top (root node) of the tree, each 

point at which the predictor space is stratified by a variable is referred to as an internal node. The 

final nodes at the bottom of the tree, at which no further separations are made, are referred to as 

leaves or terminal nodes and provide the final classification (Figure 2.2)118. 

 

Figure 2.2 Schematic of the decision tree algorithm 

Starting at the top (root node), a decision tree is split into branches (grey lines) based 

on the feature that generates the best class separation. At the end of each branch 

(internal nodes), another split occurs based on the feature offering the best 

separation out of the remaining features. This process is repeated until no further 

splitting can occur or the node is pure (leaf/ terminal nodes). The nodes outlined in 

red provide an example for how an example may be classified into its class (orange or 

green). Figure produced based on James et al.118. 

The splitting at each internal node is determined using a top-down greedy search strategy, 

whereby the features that generate the best separation of the outcome classes are chosen at 

each node. A number of criteria can be used to define the separation at each node, with the Gini 

index or entropy being the most commonly used metrics. The degree to which the outcome 

classes are separated at a node is referred to as the node purity; a node with perfect separation 

of the outcome classes is considered a pure node. The node purity is tested for all remaining 

features at each subsequent node along the branch. In this way, the features demonstrating the 

best separation are found higher up in the tree structure. For continuous features, the splitting 
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threshold is determined using recursive binary splitting. This process assesses all possible 

thresholds to identify the cut-off value offering the purest separation. Categorical features are 

split by their defined categories or, if ordinal, can be stratified into two distinct categories similar 

to continuous features. Tree-based algorithms work well with categorical features but tend to 

favour features with multiple levels, due to their increased chance of identifying a good 

separation of the data119,197. When the separation of the previous node cannot be improved upon 

further, the stratification process stops, and the node becomes a leaf node. 

The splitting criterion determining the construction of the decision tree algorithm is highly 

dependent on the training data. As a result, these models are considered highly unstable and 

often generalise poorly. The stratification stopping criterion used in the construction of the 

decision tree aims to reduce this instability. A number of stopping criteria, such as attaining node 

purity, reaching a maximum tree depth or having a minimum number of cases in the node can be 

specified. Additionally, whilst the growth of the tree will automatically stop when no further 

improvement in the splitting criteria can be obtained, it is possible to specify a certain criteria 

upon which splitting is allowed (e.g. a minimum of n samples are required at the node for a 

further split to occur). These, alongside other pruning methods, aim to reduce the complexity of 

the model in order to prevent overfitting and reduce the variance of the model118,197. 

2.3.2.3 Random forest 

The random forest algorithm is an example of an ensemble classifier that aggregates the decisions 

of multiple decision trees in an aim to reduce the variance observed by individual decision trees198 

(Figure 2.3). 
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Figure 2.3 Schematic of the random forest algorithm 

The random forest model aggregates the decisions of multiple decision trees to make 

a final classification (bagging). To construct each decision tree, only a subset of 

features and a subset of samples (bootstrapping with replacement) are used. Each 

decision tree will have low bias and high variance but the overall variance of the 

ensemble model will be low. Figure produced based on James et al.118. 

For the development of each decision tree, a bootstrapped dataset the same size as the original 

dataset is created using a resampling process whereby samples are randomly selected with 

replacement from the original dataset118. Unlike the decision tree algorithm, for each tree in the 

random forest, only a random subset of variables is considered for stratifying the predictor space 

at each internal node in order to reduce the correlation between the trees. Although each 

decision tree will still have low bias and high variance, the process of bootstrapping and 

aggregating decisions across multiple trees to make a final classification (known as bagging) aims 

to offer predictions with low variance and high accuracy118,198. Hyperparameters, including those 

of a decision tree algorithm (detailed in Chapter 2.3.2.2), can be tuned in the construction of a 

random forest model to maximise performance. 

2.3.2.4 Naïve Bayes classifier 

Based on conditional probability (Equation 2.2), the naïve Bayes algorithm is one of the simplest 

supervised machine learning algorithms. It is underpinned by the assumption that each feature is 

independent of the others in determining the outcome class. The implementation of the naïve 
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Bayes algorithm requires assumptions to be made on the prior probability distribution of each 

class. Commonly, a Gaussian and multinomial/Bernoulli distribution is assumed for continuous 

and categorical features, respectively118. 

 

Equation 2.2  Conditional probability estimation underpinning the Naive Bayes algorithm 

Bayes theorem calculates the conditional class probability given a predictor, P(A|B). 

P(B|A) is the probability of the predictor given the class (likelihood).  

P(A) is the prior probability of the class.  

P(B) is the prior probability of the predictor.  

2.3.2.5 Multilayer perceptron 

The multilayer perception (MLP) is categorised as a simple feed-forward artificial neural network. 

Neural networks are particularly well-suited to distinguish non-linearly separable data through a 

network of interconnected nodes119,199. The architecture of the MLP consists of a minimum of 

three layers; an input layer, at least one hidden layer and an output layer (Figure 2.4). Within the 

input layer, the number of neurons is equivalent to the number of features. The input neurons 

serve only to pass the input vector to the nodes in the next layer. Each neuron is fully connected, 

with an assigned weight, to each neuron in the next layer, for all hidden layers. The final 

classification of the outcome is determined based on the output node with the greatest signal. 

𝑃𝑃(𝐴𝐴|𝐵𝐵) =
𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)  
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Figure 2.4 Schematic of the multilayer perceptron algorithm 

A multilayer perceptron consists of an input layer, with a neuron for each input 

feature (X1 to Xn); an output layer with a neuron for each outcome class (e.g. Y1 and 

Y2 for a two-class outcome); and a hidden layer. The hidden layer can comprise of 

one or more layers of neurons. Each neuron is fully connected to the neurons in the 

next layer. Figure reproduced based on Gardner et al.199, with permission from 

Elsevier. 

The strength of the signal at each node is determined by the sum of the weights inputting the 

output node, modified by a non-linear activation function118. During the training process, the 

connection weights between neurons are optimised to minimize the error of the output layer 

through a process of backpropagation. The error of the output layer for each combination of 

weights can be considered as an error surface. The backpropagation algorithm aims to locate the 

global minimum of the error surface through gradient descent. In this process, small weights are 

randomly assigned to the neurons and the local gradient of the error surface is calculated. The 

weights are adjusted in the direction of the steepest local gradient and the local gradient is 

recalculated. This is repeated until the adjusted weights converge to the global minimum199.  

However, as well as the global minimum, the error surface can have multiple local minima. 

Depending on the random starting point of the back-propagation algorithm, there is potential for 
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the algorithm to get trapped at a local minimum, unable to find the global minimum. To address 

this, there are two main tuning hyperparameters of the MLP algorithm, the learning rate and 

momentum. The learning rate addresses the step size taken during gradient descent. Step sizes 

which are too large can result in erratic changes in the weights due to large variation in the local 

gradients calculated. In contrast, finding the global minimum using small step sizes can be time-

consuming. The momentum parameter provides assistance in the gradient descent if the 

algorithm gets stuck at a local minimum by adding a proportion of the previous weight-change to 

the change in the current weight199. 

2.3.2.6 K-nearest neighbours 

K-nearest neighbours (KNN) is an instance-based learning algorithm. It aims to classify an 

unknown data point based on the k-data points in closest proximity (nearest neighbours) for 

which the class labels are known118 (Figure 2.5). First, the conditional probability of the unknown 

data point belonging to each class is calculated. The calculated probability is then used to assign 

the classification to the class with the largest probability (i.e. the modal class of the k-nearest 

neighbours). As a result, the classifications made by this algorithm are highly dependent on the 

number of neighbours considered. Whilst very small values of k can be subject to noise and 

affected by outliers, larger values of k can bias classifications against the minority class118.  

The nearest neighbours used to classify a given data point are determined using a distance 

measure, commonly calculated by either Euclidean or Manhattan distance. The influence of each 

neighbour on the classification can be uniform for all neighbours or weighted by the inverse of 

their distance118. 
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Figure 2.5 Schematic of the K-Nearest Neighbours algorithm 

An unknown example (blue star) is classified based on the k-nearest examples. The 

dashed red circle identified the nearest neighbours (k=5) used to classify the 

unknown example. In this example, when k=5, the example would be classified as 

belonging to the green class. Figure reproduced based on James et al.118, with 

permission from Springer Nature. 

2.3.3 Hyperparameter tuning 

Each of the machine learning algorithms described have a set of hyperparameters which can be 

tuned to promote optimal classifications based on a given training dataset. Different algorithms 

have different tuning parameters, but not all the parameters are important for tuning 

purposes200.  

Grid search is a hyperparameter search strategy that conducts an exhaustive search of each 

combination of hyperparameters to identify the optimal set of hyperparameters based on a 

specified performance measure within a cross-validation framework. Grid search is a popular 

search strategy but can be computationally expensive depending on the algorithm and the size of 

the hyperparameter space explored. In addition, it is possible for the performance of the grid 

search to be compromised by the consideration of a large number of hyperparameters200.  

In contrast, a random search strategy involves the random selection of a specified number of 

hyperparameter combinations to be evaluated. As this method is not an exhaustive search across 
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all possible hyperparameter combinations, it is substantially faster and less computationally 

demanding compared to grid search. However, there is potential for the random search to miss 

the optimal hyperparameter set. Yet, studies indicate that random search is beneficial for the 

quick evaluation of a large hyperparameter search space with a focus on important tuning 

parameters, and is often able to identify the optimal hyperparameter set200.  

When large parameter spaces are being evaluated, it is suggested that a dual search strategy may 

be used to combine the advantages of both the random and grid search approaches. In this dual 

search strategy, a random search can first be conducted to quickly evaluate and narrow down a 

large hyperparameter search space. An exhaustive grid search can then be employed across the 

condensed search space to definitively identify the best hyperparameter set200.  

To tune the hyperparameters of the eight machine learning algorithms compared in this thesis, a 

grid search was used (Table A2). However, due to the large hyperparameter space considered for 

the models developed using the SVM algorithm, the dual search strategy was used to reduce 

computation time. Other than distinguishing between the continuous and categorical variables, 

the naïve Bayes model did not require any hyperparameters to be tuned. Hyperparameter tuning 

was only performed during model training; it was not performed on the random forest algorithm 

during feature selection as the default parameters are claimed to offer good predictive accuracy 

when applied across many problem settings. 

2.3.4 Imputation 

There are a number of methods available for imputing missing data143. A comparison of 

imputation methods addressing the problem of missing medical data identified missForest and 

MICE as the overall two best imputation methods; these methods demonstrated the lowest 

imputation error in two large datasets containing both continuous and categorical data, across 

different simulated proportions of missingness143. Hence, these two methods were compared in 

this thesis to impute missing data among the predictors identified from the feature selection.  

2.3.4.1 MissForest 

MissForest imputation is underpinned by the random forest algorithm and is a type of single 

imputation148. Initially, all missing values are assigned a placeholder value based on an imputation 

method such as mean imputation. The variables in the dataset are then ordered in ascending 

order of the proportion of missing data. For each variable with missing data, xi, the dataset can be 
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separated into: yobs = examples with observed values for xi; ymis = examples with missing values for 

xi; xobs = the remaining variables for examples with observed values for xi; and xmis = the remaining 

variables for examples with missing values for xi.  

Starting with the variable with the lowest proportion of missing data, a random forest algorithm is 

trained using the features, Xobs, and outcome, yobs. The trained model is then applied to the 

features, xmis, to predict values for ymis. The training and prediction steps are conducted in a 

cyclical manner for each variable with missing values. Once all missing values have been imputed, 

this whole process is iterated until a specified stopping criterion has been met. The stopping 

criterion is defined as the first point at which the difference between the newly imputed data and 

the imputed dataset generated from the previous iteration increases for both continuous and 

categorical variable types. The aim of the stopping criterion is to ensure that the properties of the 

new imputed dataset does not vary greatly from the non-imputed dataset. Once the stopping 

criterion has been met, a single imputed data matrix is returned for subsequent analyses148. 

2.3.4.2 Multivariate Imputation by Chain Equations  

Multivariate Imputation by Chain Equation (MICE) is a type of multiple imputation used under the 

assumption that data is MAR. Unlike single imputation methods, which generate a single 

estimation for each missing value, multiple imputation utilises the distribution of the observed 

data in order to suggest multiple estimates for each missing value. By generating a set of plausible 

estimates, multiple imputation aims to account for the statistical uncertainty associated with the 

imputation146.  

MICE can perform imputation on datasets containing variables of mixed datatypes. For each 

variable, a different imputation model can be used depending on its datatype. In this thesis, the 

recommended imputation models were used – ‘norm’, a Bayesian linear regression model for 

numerical data; ‘logreg’, a logistic regression for binary data; and ‘polyr’, a proportional odds 

model for ordinal data201. In the implementation of MICE, all missing values are initially assigned a 

placeholder value based on mean imputation or random sampling (with replacement) of the 

observed data for each variable. For the first variable with missing data, x1, the placeholder values 

are removed and x1 is regressed on the remaining variables [x2, x3, …, xi]. The regression is limited 

to only those examples for which x1 was observed. The missing values for x1 are then predicted 

from the posterior predictive distribution generated by the imputation model. This process is 

repeated for the remaining missing variables, where for example, x2 is regressed on the remaining 
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variables ([x3, x4, …, xi] and the newly imputed variable (x1)), again, limited to examples with 

observed data for x2. Once all variables with missing data have been imputed, one cycle is 

complete. Numerous cycles are performed in order to converge the distribution parameters of 

each variable and create a single dataset of stable imputation estimates. To generate multiple (m) 

imputed datasets, this entire process is repeated m times145,146. 

Following the imputation stage and the generation of multiple imputed datasets, subsequent 

analyses should be conducted on each of the m-imputed datasets and the results should be 

pooled. The pooled results provide estimates with confidence intervals, addressing the statistical 

uncertainty of the imputation145,146. However, due to the need to tune each of the machine 

learning algorithm to establish a single model with a single set of tuned parameters, a single 

imputed dataset was required for model development. To form a single imputed dataset, the 

imputed values generated across the m-imputed datasets (m=5) were averaged, with the mean 

and modal imputed values taken for the continuous and categorical variables, respectively. 

2.3.5 Resampling 

There are numerous methods for handling class imbalances within a dataset134. Synthetic data 

generation methods such as SMOTE have demonstrated superior performance over random 

oversampling sampling and complete data analyses136. Numerous improvements of SMOTE, such 

as ADASYN, have been suggested in an attempt to tailor the oversampling procedure towards 

generating examples of the minority class which may promote a more accurate definition of the 

classification decision boundary134,135,138. Therefore, ADASYN was used in this study to help 

improve the class imbalance of the data.  

2.3.5.1 Oversampling: Adaptive synthetic sampling 

ADAptive SYNthetic (ADASYN) sampling is an example of a synthetic data generation approach 

based on the KNN algorithm. However, rather than randomly oversampling examples of the 

minority class, ADASYN prioritises the generation of difficult to classify examples of the minority 

class. To facilitate this, the synthetic examples generated through ADASYN are informed by a 

density distribution of weights for examples belonging to the minority class. The weight assigned 

to each example is determined by the ratio of examples belonging to the minority class in its k- 

nearest neighbours. These weights correspond to the learning difficulty of each example and 

subsequently determines the number of synthetic examples of the minority class that needs to be 
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generated. For example, a difficult to classify example of the minority class (i.e. one that is similar 

to examples of the majority class) will have a small ratio of minority examples within its k-nearest 

neighbours, therefore will have a large weight. A greater number of synthetic examples will be 

generated based on this minority example. As a result, the learning model will have a greater 

opportunity to learn from difficult to classify examples of the minority class in addition to 

reducing the bias of the model by correcting for the class imbalance138. 

ADASYN can specify the construction of datasets with varying degrees of class balance. In datasets 

with a large class imbalance, oversampling the minority class can result in the construction of a 

dataset with a large proportion of synthetic data. To address this issue, different degrees of 

oversampling was performed in this thesis – the minority class was oversampled by 25%, 50%, 

100%, 150%, 200%, 250% and 300% (resulting in up to 75% of the minority class consisting of 

synthetic data). 

2.3.5.2 Random undersampling 

Alongside oversampling the minority class, undersampling is another approach to balance the 

class proportions of a dataset. Undersampling involves the exclusion of examples of the majority 

class. In this thesis, examples of the majority class (non-asthmatic individuals) were randomly 

excluded to achieve a training dataset with 1:1 class ratio.  

2.3.6 Predictive performance measures 

Predictions made by a prediction model can be categorised into four main groups - true positive 

(TP) – correctly predicting those with the disease as having the disease; false negative (FN) – 

incorrectly predicting those with the disease as being disease-free; true negative (TN) – correctly 

predicting those without the disease as being disease-free; and false positive (FP) – incorrectly 

predicting those without the disease as having the disease. These results from a prediction model 

can be summarised in a confusion matrix and can be used to calculate numerous metrics to 

evaluate the predictive performance of the model (Figure 2.6)202,203.  

The accuracy of a model is defined by the proportion of correctly made predictions. Sensitivity, 

also termed recall or the true positive rate (TPR), is the proportion of individuals with the disease 

who are correctly predicted to have the disease. The positive predictive value (PPV), also termed 

precision, refers to the proportion of individuals correctly identified with the disease out of the 

total number with a positive prediction. Specificity refers to the proportion of individuals without 
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the disease who are correctly predicted as being disease-free. The false positive rate (FPR) is the 

proportion of individuals incorrectly predicted to have the disease, calculated as (1-specificity). 

The negative predictive value (NPV) measures the proportion of individuals correctly predicted as 

being disease-free out of the total number with a negative prediction. A good predictive model 

should ideally have high sensitivity and high specificity. However, with the optimisation of either 

parameter promoting misclassification, there is an unavoidable trade-off between sensitivity and 

specificity. 

 

Figure 2.6 Schematic of a confusion matrix and formula for the main metrics used to evaluate 

model performance 

Figure produced based on James et al.118. 

A Receiver Operating Characteristic (ROC) curve, a plot of the TPR against FPR across all outcome 

probability classification threshold cut-offs, graphically demonstrates the discriminative 

performance of a model (Figure 2.7). The area under the ROC curve (AUC) is one of the most 

widely reported performance metric used to evaluate and compare prediction models204. The AUC 
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ranges between 0 and 1; models with an AUC of 0.5 are considered to be no better than a random 

guess. The higher the AUC, the better the predictive performance of a model, with a model with 

an AUC of 1 considered to have perfect predictive performance. Models with a lower AUC (less 

than 0.5 and nearing zero) are considered to have poor predictive performance117. Whilst 

confusion matrices to assess model performance can be evaluated at any threshold cut-offs, it is 

common for performance to be reported at a classification threshold of 0.5 or at the threshold 

which maximises model informedness, the Youden’s index (Figure 2.7)204,205. The Brier score, 

which measures the mean squared difference between the predicted probability of the outcome 

and the observed outcome, also evaluates overall model performance by considering both model 

discrimination and calibration characteristics; the score ranges from 0 to 1, with a lower Brier 

score indicative of a better performing model205.  

In some instances, the misclassification of diseased individuals as disease-free is preferred over 

unnecessarily exposing healthy individuals to treatments with potentially severe adverse effects. 

In such situations, models should have a low negative likelihood ratio (LR-), the probability of a 

false negative prediction against a true negative prediction. Conversely, when the benefits of 

treatment outweigh their potential risks, it may be preferred that a predictive model favours to 

rule in the disease. A high positive likelihood ratio (LR+) –the probability of true positive 

predictions against false positive predictions, indicates the ability for a model to rule in disease202. 

When dealing with highly imbalanced data, reporting measures of accuracy can be misleading 

(discussed in Chapter 1.3.5). In such cases, measures of balanced accuracy (the average accuracy 

for each outcome class), F1-score (the harmonic mean of precision and recall), or prevalence 

insensitive measures such as sensitivity, specificity and AUC are more appropriate for evaluating 

the performance of a model134. Hence, all performance metrics detailed above were reported 

when evaluating the prediction models developed in this thesis. 
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Figure 2.7 Schematic of a Receiver Operating Characteristic curve 

The area under the ROC curve (AUC) is a plot of the true positive rate against the 

false positive rate across all classification threshold cut-offs. The dashed grey line 

indicates a model that is no better than chance (AUC=0.5). A model with good 

performance (orange line) has an AUC greater than 0.5, with better models having 

curves towards the top-left corner. The solid green line represents a perfect 

classification model (AUC=1.0). Poor models will have curves towards the bottom-

right corner of the plot. Figure reproduced based on Hajian-Tilaki204 (copyright 

license: CC-BY-NC 4.0). 
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2.3.7 Interpreting “black box” machine learning models 

As previously described, a number of methods have recently been proposed to address the poor 

interpretability of “black-box” machine learning models that significantly hinder their application 

in healthcare167,168,206. Shapley Additive exPlanations (SHAP) is a tool, which unifies a number of 

model interpretability methods, capable of explaining the decisions of any machine learning 

model168.  

SHAP is often considered an extension of Shapley values, a concept rooted in coalitional game 

theory, which aims to determine the average contribution of each feature in offering a certain 

prediction. Shapley values are defined as the average marginal contribution of a feature value 

across all possible coalitions (all possible combinations of features in the model). The average 

contribution of each predictor is approximated based on the difference in the predictions 

obtained from the inclusion and exclusion (random assignment) of the predictor, averaged across 

all possible coalitions of the model. As a result, the Shapley value for each predictor is not the 

difference in the prediction if that feature was removed. Rather, it is the contribution of the 

feature to the prediction of a particular instance compared to the average prediction for the 

dataset. SHAP computes the Shapley values for each predictor of the original model and 

represents them in a linear model, as an additive feature attribution method168,206.  

In this thesis, SHAP was used for three purposes: i) to infer feature importance and effect 

(direction of risk for developing asthma) for the subset of predictors identified from the feature 

selection process; ii) to gain insight into the global explanation of each prediction model; and iii) 

to obtain local explanations of individual predictions. 

2.4 Software 

For this thesis, all data cleaning and encoding was performed using R statistical programming 

language (version 3.5.1)207. Quality control of the IOWBC genotype data was performed using 

Bash script and PLINK (version 1.90)208,209. DNA methylation data in the IOWBC was pre-processed 

using R (version 3.6.1) and specific packages as detailed in Chapter 2.1.1.3. 

The development of asthma prediction models using machine learning approaches (detailed in 

Chapter 5 and Chapter 6), was primarily conducted using Python scripting language (version 

3.6.8). The scikit-learn127 and boruta193 packages were used to perform feature selection using the 

RFE and Boruta methods, respectively. The balanced random forest algorithm used for feature 
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selection was sourced from the imbalanced-learn package189. All machine learning algorithms 

were developed and tuned using the scikit-learn package127, except the naïve Bayes algorithm 

which used the mixed-naïve-Bayes package210. Oversampling by ADASYN was also performed 

using the imbalanced-learn package189. SHAP values were computed for the random forest 

algorithm used during RFE as well as to explain individual predictions made by the final asthma 

prediction models using the SHAP packages TreeExplainer211 and KernelExplainer168,212, 

respectively. The statistical programming language R (version 3.5.1)207 was used to implement 

MICE imputation (mice package201).  

R statistical programming language was used for the remaining analyses performed in this 

thesis207. This included all analyses for the validation of existing models detailed in Chapter 4 (R 

version 3.5.1) and to construct the polygenic and methylation risk scores for childhood asthma 

detailed in Chapter 6 (R version 3.6.1). 

In addition, the IRIDIS High Performance Computing Facility and associated support services at the 

University of Southampton were utilised to undertake this work. 



Chapter 3 

 

59 

 

Chapter 3 Systematic Review of Existing Childhood 

Asthma Prediction Models 

3.1 Introduction 

Asthma symptoms usually manifest in early life. However, with no clear disease trajectory or 

definitive test to confirm an asthma diagnosis before the age of 5 (as previously discussed in 

Chapter 1), it is difficult to predict which preschool children will develop asthma later in childhood 

and which children will see their symptoms subside. Unsurprisingly, there is a window of 

uncertainty in clinical decision-making40, resulting in both under- and over-diagnosis of probable 

asthmatic preschoolers112,113. Prediction models which can identify true future asthmatics from a 

group of high-risk, symptomatic preschool children can assist physicians in providing early 

diagnoses and interventions. However, models which can also identify future asthmatics within a 

general population of preschoolers have the additional benefits of identifying late-onset 

asthmatics and stratifying individuals by asthma risk to subsequently promote asthma prevention 

among moderate/low-risk children. Besides being cost-effective, such strategies, as already 

demonstrated in other disease areas93,99-101, could promote personalised asthma care, limit 

unnecessary exposure to the adverse effects of asthma medications, and reduce the wastage of 

healthcare resources112. 

In addition, to be of clinical value, the performance of any predictive model needs to be 

reproducible in independent populations with comparable performance characteristics. Although 

several prediction models for childhood asthma exist, not all have been validated in independent 

populations. Surprisingly, none have yet been incorporated into clinical practice213-215. 

3.1.1 Objectives  

In this chapter, a systematic review has been conducted to critically evaluate existing prediction 

models for school-age asthma development by assessing their predictive performance, statistical 

methodology and potential clinical utility (addressing Aim 1 of this thesis, detailed in Chapter 1.4). 

Where relevant, external validation studies of these models are also assessed. Finally, potential 

issues, which might be responsible for the lack of clinical utility of existing asthma prediction 

models, are identified and recommendations for future research priorities presented. 



Chapter 3 

 

60 

 

3.2 Methods 

This systematic review (PROSPERO registration number: CRD42019146638) was conducted in 

accordance with the guidelines reported in the Preferred Reporting Items for Systematic reviews 

and Meta-Analyses (PRISMA) statement216. 

3.2.1 Search strategy  

An electronic search of three databases: Medline, Embase, and Web of Science Core Collection 

was performed on 26th July 2019. Free-text and MeSH terms were used to identify articles related 

to predictive modelling for childhood asthma (Table B1-3). 

All articles underwent a two-stage duplicate removal: first electronically using EndNote X8.2217 

followed by a manual removal of remaining duplicates. Two independent reviewers conducted a 

title and abstract screening to assess the relevance of the remaining articles. Discrepancies were 

resolved through discussion among the reviewers. A full-text and additional screening of citations 

in selected papers and reviews of prediction models for childhood asthma were conducted. 

Identified studies underwent data extraction and qualitative analysis. 

3.2.2 Study selection  

Articles were included if they met the following criteria: the study detailed the development of a 

novel prediction model or updated a pre-existing model; the target population was children aged 

≤5 years; the main prediction outcome was future childhood asthma or wheeze persistence at 

school-age (6-13 years old); and at least two risk predictors were used to construct the model. 

Models developed in both general and high-risk populations were considered. Validation studies 

which improved upon existing models were included. Studies which externally validated existing 

models in populations unrelated to that in which they were developed were also included.  

Articles were excluded if a final prediction score was not developed or studies failed to report any 

performance measures for model evaluation. Conference papers, randomised control trials, 

letters, editorials and non-English articles were excluded.  
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3.2.3 Data extraction  

Information on study design, candidate predictors, statistical methodology for model 

development and the prediction outcome were collected from model derivation studies.  

Model performance was evaluated using prediction measures of: discrimination, sensitivity, 

specificity, positive and negative predictive values (PPV and NPV, respectively) and positive and 

negative likelihood ratios (LR+ and LR-, respectively) (described in Chapter 2.3.6). Where absent, 

likelihood ratios were calculated using reported sensitivity and specificity. Where applicable, 

performance measures were collected from both derivation and validation studies in order to 

assess model generalisability. The Prediction model Risk Of Bias ASsessment Tool (PROBAST) 

checklist218 was used to critically appraise the risk of bias and applicability of each article. 

3.3 Results 

The literature search identified 4187 articles (Figure 3.1). Following the removal of 1204 duplicate 

articles, 2983 articles underwent title and abstract screening. The screening process identified 59 

articles for full-text review. Of these, 25 studies were deemed relevant. An additional citation 

screening of relevant articles and the seven identified review articles on childhood asthma 

prediction models identified a further three studies. These 28 studies were classified into two 

categories based on the methods used for developing the prediction models: logistic regression-

based (n=20) and machine learning approaches (n=4). The remaining four studies were external 

validations of previously developed models.
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Figure 3.1 PRISMA flow diagram of the systematic review search strategy 

a Citation screening of articles and existing reviews identified three additional studies  
b Included in the final qualitative analysis 
c One study transformed a diagnostic model into a prediction model upon external 

validation (considered a developmental study in this review). 
d Validated the developmental study model (n=2) or an existing model (n=3). 
e Excluded from the main qualitative analysis
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3.3.1 Regression-based models 

Twenty-one regression-based, specifically logistic regression, prediction models were described in 

20 studies (Figure 3.1). Thirteen of the 21 models were novel whilst eight were modifications of 

existing models: six modified the Asthma Predictive Index (API)219-224; one updated the PIAMA risk 

score225 and one adapted the Obstructive Airway Disease (OAD) risk score226. Additionally, nine 

studies externally validated six prediction models, detailed within either developmental (n=5) or 

independent validation studies (n=4)227-230. 
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Table 3.1 Summary of existing childhood asthma prediction models developed using regression-based approaches 

Risk score Year Target 
population, 
age 

Prediction 
population, 
age 

Study size, 
prevalence 
(n,%)a 

Sensitivity 
(%)  

Specificity 
(%) 

PPV 
(%) 

NPV 
(%) 

LR+ LR- Discrimination 

Independently validated prediction models 

Loose Asthma Predictive 
Index (API)c 219  

2000 General 
population, 
≤3 

6, 8, 11, 13  986 (57.1) 41.60 84.70 59.10 73.20 2.72 h 0.69 h -  

Stringent Asthma 
Predictive Index (API)b,c 
219  

2000 General 
population, 
≤3 

6, 8, 11, 13   1002 (57.1) 15.70 97.40 76.60 68.30 6.04 h 0.87 h - 

Prevalence and 
Incidence of Asthma and 
Mite Allergy (PIAMA)d,f,i 
231 

2009 High-riskl, 0-4 7-8 2171 (11.1) 19.00 97.00 42.00 91.00 6.33 h 0.84 h 0.72 

Persistent Asthma 
Predictive Score (PAPS)f 
232 

2011 High-riskl, <2 6 200 (47.5) 42.40 89.60 66.70 75.90 4.06 0.64 0.66 

Predicting Asthma Risk 
in Children (PARC) 
Toold,f,i 233 

2014 High-riskl, 1-3  6-8 1226 (28.1) 72.00 71.00 49.00 86.00 2.47 0.40 0.74 

Paediatric Asthma Risk 
Score (PARS)f,i 234 

2018 High-riskj, ≤3 7 589 (16.1) 68.00 77.00 37.00 93.00 3.02 0.41 0.80 
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Risk score Year Target 
population, 
age 

Prediction 
population, 
age 

Study size, 
prevalence 
(n,%)a 

Sensitivity 
(%)  

Specificity 
(%) 

PPV 
(%) 

NPV 
(%) 

LR+ LR- Discrimination 

Exploratory prediction model studies 

Modified Asthma 
Predictive Index 
(mAPI)b,c,e 223,224 

2004 High riskj, 2-3 4-6  259 (28.2) 17.00 99.00 - - 21.00 0.84 - 

Singer et al. risk score 
(API + FeNO)b,d 221 

2013 High riskk, ≤ 4 6-10  166 (41.0) 75.00 62.30 58.00 78.20 1.99 h 0.40 h - 

Modified Asthma 
Predictive Index 
(m2API)b,c 223 

2014 High riskj, 1-3 6, 8, 11 259 (28.2) 30.00 98.00 - - 16.00  0.71 - 

University of Cincinnati 
(ucAPI)b 220  

2014 High riskj, 3 7 589 (17.5) 44.00 94.10 60.30 89.30 7.50 0.60 - 

Klaassen et al. (API + 
biomarkers)b,d,i 222 

2015 High riskl, 2-4 6 198 (38.4) 88.00 90.00 90.00 89.00 8.80 h 0.13 h 0.86 

Recurrent Wheeze Score 
(Isle of Wight, IoW) 235 

2003 High riskl, 4 10 1034 (12.1) 52.50 84.60 68.40 73.70 3.41 h 0.56 h - 

Eysink et al.(RAST)d 236 2005 High riskk, 1-4 6 123 (26.8) - - - - - - 0.87 

Obstructive Airway 
Disease (OAD) score for 
asthmah 237 

2007 General 
population m, 
2 

10 449 (21.6) 55.60 86.40 52.90 87.60 4.09 h 0.51 h 0.78 

Combined IgE antibodies 
and OAD (OAD + IgE)b 226 

2010 General 
population m, 
2 

10 371 (50.0) - - - - - - - 

Updated PIAMAb,f  225 2013 High-riskk, 0-4 6-7 5048 (5.5) 63.80 73.90 12.40 97.20 2.44 0.49 0.75 
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Risk score Year Target 
population, 
age 

Prediction 
population, 
age 

Study size, 
prevalence 
(n,%)a 

Sensitivity 
(%)  

Specificity 
(%) 

PPV 
(%) 

NPV 
(%) 

LR+ LR- Discrimination 

Lødrup Carlsen et al. 238 2010 General 
population, 
at birth 

10 607 (11.0) 64.00 67.00 19.00 94.00 1.94h 0.54h 0.72 

Clinical Asthma 
Prediction Score 
(CAPS)d,f,i 239 

2013 High-riskl, 1-5 6 438 (42.7) - - 74.30 78.40 - - 0.73 

Boersma et al. 240 2017 High riskl, 1-3 6 116 (62.9) - - - - - - 0.79 

Szentpetery et al.g 241 2017 General 
population, 
1-4 

8 2339 (5.0) - - - - - - - 

MAAS Asthma 
Prediction Tool (MAAS-
APT)d,f,i 242  

2018 High-riskl, 3 8-11  336 (34.8) 47.00 93.00 75.00 78.00 6.30 0.60 0.79 

PPV: positive predictive value; NPV: negative predictive value; LR+: positive likelihood ratio; LR-: negative likelihood ratio; MAAS: Manchester Asthma and 

Allergy Study, RAST (radio-allergosorbent test). 
a Prevalence = proportion of cases with the outcome included in the selected study sample – for the IoW model which details a stratified outcome of 

wheeze, prevalence of persistent wheeze is reported; prevalence for the loose and stringent API refers to the reported active asthma in at least one survey 

within the prediction window.  
b Prediction models which modified a previous model.  
c The loose and stringent API, mAPI and m2API were evaluated at 6, 8, 11 and 13 (loose and stringent API only) years. Study details and performance 

measures are given for asthma prediction in at least one survey within the prediction window for the loose and stringent API and at age 6 for the 
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mAPI/m2API.  
d Internal validation during model development was performed using bootstrapping (API+biomarkers, API+FeNO, MAAS-APT, RAST, PIAMA and CAPS) or 

leave-one-out cross validation (PAPS). Where applicable, the internal validation performance measures are reported. Unbootstrapped discrimination was 

reported for the API+biomarkers (AUC=0.95), RAST (AUC=0.87), and PIAMA risk score (AUC=0.74). 
e Performance measures extracted from Chang et al.’s study.  
f Models provided performance measures over a range of thresholds. Performance measures are reported at the threshold recommended in their 

developmental study.  
g The study initially developed a diagnostic model targeting and predicting childhood asthma at age 6. For external validation in the BAMSE cohort, this 

model was transformed into a prediction model targeting children between ages 1-4 to predict asthma at age 8. The latter model was considered as a 

developmental study in this review and study details are reported for the BAMSE population in which the prediction model was evaluated.  
h Where unreported, likelihood ratios were calculated based on reported sensitivity and specificity as: LR+ = sensitivity/ 1- specificity, LR- = 1- sensitivity/ 

specificity.  
i Model calibration was evaluated in the study. 

High-risk study cohort specified by parental history of allergy/asthma (j), presence of asthma-like symptoms (k), presence of asthma-like symptoms, 

specifically wheeze (l). 
m Nested case-control study within a general population birth cohort of children age 2 with obstructive airway disease.  
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3.3.1.1  Target population 

Of the 21 models carried forward for qualitative analysis (Table 3.1), six were developed in the 

general population219,226,237,238,241 and 15 within high-risk populations, the latter restricting 

inclusion to children with a parental history of allergy/asthma (four models)220,223,224,234 or asthma-

like symptoms (11 models225,236, with nine specifically targeting children experiencing 

wheeze221,222,231-233,235,239,240,242). Only one model was derived based on predictors initially 

associated with childhood asthma within a low-income, Puerto-Rican population241.  

3.3.1.2 Predictors  

Thirty-eight different predictors were used among the 21 identified models, including seven 

variations of wheeze and two different measures for both allergic sensitisation and pulmonary 

function (Table 3.2). The number of predictors used to construct the models ranged between 

three and ten. Twenty out of 38 predictors were each included in just one of the 21 models (last 

column, Table 3.2). For example, familial pollen allergy was a predictor in Eysink et al.’s model 

alone, while race was only included in the PARS model. A history of parental asthma and personal 

eczema were the most frequently used predictors of childhood asthma, each incorporated into 14 

models. Three studies used data only available in early life (≤2 years)226,232,237 whilst another only 

used predictor data collected at birth238. Predictor information was mainly collected from parent-

reported questionnaires or standard clinical assessments. Sixteen models required data from 

additional clinical tests such as blood or skin prick tests (SPT) to assess allergic sensitisation status 

(14 models); measures of pulmonary function (two models); biomarkers of volatile organic 

compounds (VOCs) in exhaled breath condensate (one model); and gene expression in peripheral 

blood (one model). 
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Table 3.2 Summary of predictors included in the regression-based childhood asthma prediction models 
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Subject characteristics                       

Sex            X X X  X   X   5 

Age         X       X X     3 

Race                     X 1 

Gestation length            X X         2 

Clinical Symptoms                       

Any wheeze         X             1 

Early wheeze X    X                X 3 

Frequent wheeze   X X   X     X X   X      6 

Early frequent wheeze  X                    1 

Exercise-induced                X    X  2 

Aeroallergen-induced                 X      1 

Wheeze without cold X X X X X X X     X X   X X    X 12 

Eczema X X X X X X X     X X  X X  X  X X 14 
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Allergic rhinitis X X   X X X            X   6 

Shortness of breath                X    X  2 

Nasal symptoms        X              1 

Nocturnal symptoms                 X     1 

Cough on exertion                    X  1 

Recurrent chest 
infection 

       X              1 

Respiratory tract 
infection 

           X          1 

Hospital admission for 
respiratory symptoms 

         X X       X    3 

Number of BO 
episodes 

         X X           2 

Duration of BO          X X           2 

Disturbances to 
activity 

               X      1 

Obesity                   X   1 
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Familial 
characteristics 

                      

Parental asthma X X X X X X X X     X  X X X  X  X 14 

Familial allergy to 
pollen 

        X             1 

Parental inhaled 
medication 

           X          1 

Alcohol intake during 
pregnancy 

             X        1 

Environmental 
exposures 

                      

Parental education            X X         2 

Ease of acquiring a 
babysitter 

             X        1 

Family network              X        1 
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Clinical tests                       

Blood eosinophilia X X X X                  4 

Specific IgE (RAST or 
other assay) 

  X X  X   X  X    X  X X    8 

Skin prick test (SPT)       X X            X X 4 

Fraction of exhaled 
nitric oxide (FeNO) 

    X                 1 

Lung function (VE)c              X        1 

Exhaled volatile 
organic compounds 

     X                1 

Gene expression      X                1 

Totalb 6 6 6 6 6 7 6 4 4 3 4 8 7 5 3 10 5 3 6 5 6  
a Total number of models that use each predictor 
b Total number of predictors included in each model 
c VE = minute ventilation 

BO = bronchial obstruction 
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3.3.1.3 Outcome 

The prediction outcome in most studies (19/20) was school-age asthma, yet nine different 

definitions of asthma were used (Table 3.3). Seventeen studies included asthma-like symptoms, 

twelve included a doctor diagnosis and nine incorporated objective pulmonary tests as 

components in their asthma definition. One study used persistent wheeze, determined through 

the frequency of wheezing episodes, as the prediction outcome235. The most common definition 

(in 5/20 studies) specified a combination of asthma-like symptoms, use of asthma medications 

and/or objective respiratory tests. All studies identified a child’s asthma status by evaluating the 

outcome criteria within the last 12 months except one which evaluated the asthma criteria across 

two consecutive years231. 

Table 3.3 Summary of the main asthma definitions used amongst the childhood asthma 

prediction model developmental studies 

Asthma outcome definitions  Number of studies Study reference  

Doctor diagnosis only  1 221  

Symptoms only  1 235 

Doctor diagnosis and symptoms  4 219,225,241,242 

Doctor diagnosis and medication  2e 223 

Symptoms and medication 2 233,240 

Doctor diagnosis, symptoms, 
medication 

1 231 

Symptoms, medication, lung 
function testsa  

5 222c,d, 220c,d, 236 d, 239c,d, 238b 

Doctor diagnosis, symptoms, lung 
function testsa 

1 234b,d 

Doctor diagnosis, symptoms, 
medication, lung function testsa  

3 237b, 226b, 232c 

a Lung function tests comprised of one or a combination of: exercise challenge tests 

(b), spirometry assessing reversibility to bronchodilators (c) and bronchial hyper-

responsiveness to methacholine or histamine (d).  
e The asthma outcome for the mAPI was extracted from the m2API study which 

evaluated the model’s performance. 
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3.3.1.4 Model construction 

The API and its modifications are clinical indices requiring a combination of major and minor 

criteria to be met. The other prediction models are weighted scoring systems based on 

derivations of each predictor’s regression coefficients, with the exception of two unweighted 

scoring systems235,241. 

3.3.1.5 Performance measures 

Three studies failed to report any model performance measures detailed in Chapter 3.2.3. Of 

these, the modified Asthma Predictive Index (mAPI), developed within a randomised clinical trial 

protocol, did not evaluate the model’s performance224. Performance measures for the mAPI were 

extracted from the study by Chang et al.223 which evaluated and compared the mAPI against 

another modified API (m2API)223. The other two studies only reported single performance 

measures of population attributable risk241 and Nagelkerke R2 226. 

Discriminative ability was reported for 12 models and ranged between 0.66 and 0.87. Sixteen 

models reported sensitivity (range: 15.7-88%) and specificity (range: 62.3-99%). PPV and NPV 

were reported for 15 models, ranging between 12.4-90% and 68.3-97.2%, respectively. Likelihood 

ratios were reported for eight models and derived for an additional eight models using reported 

sensitivity and specificity. The ability to rule in disease (LR+) ranged from 1.94-21 whilst the ability 

to rule out disease (LR-) ranged from 0.13-0.87.  

3.3.1.6 Validation 

Nine studies performed external validation: four validated the loose and/or stringent API, two 

validated the PIAMA and PARC models whilst the PAPS and PARS models were each validated 

once (Table 3.4). Upon validation, most models demonstrated a trade-off between improvements 

in sensitivity at the expense of specificity, resulting in increased false positive predictions and a 

decline in PPV and LR+ estimates compared to their derivation models. Whilst the PARS model 

showed comparable performance upon validation, only the PARC model demonstrated superior 

performance, with improvement in LR+ (2.47 vs 2.63) and AUC (0.74 vs 0.83) compared to its 

developmental model. 
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Table 3.4 Summary of the performance of the childhood asthma prediction models upon independent validation 

De
ve

lo
pm

en
ta

l 
m

od
el

 

Au
th

or
 

Po
pu

la
tio

n 
ge

og
ra

ph
y 

Ri
sk

 g
ro

up
 

Va
ria

tio
n 

in
 p

re
di

ct
or

s 

Va
ria

tio
n 

in
 o

ut
co

m
e 

St
ud

y 
si

ze
 

St
ud

y 
as

th
m

a 
pr

ev
al

en
ce

 (%
) 

Ta
rg

et
 a

ge
 

Pr
ed

ic
tio

n 
ag

e 

Se
ns

iti
vi

ty
 (%

) 

Sp
ec

ifi
ci

ty
 (%

) 

PP
V 

(%
) 

N
PV

 (%
) 

LR
+ 

LR
- 

Di
sc

rim
in

at
io

n 

Loose 
API 

Castro-Rodriguez 
et al.219 

USA General 
population 

  986 57.1 ≤3 6-13 41.6 84.7 59.1 73.2 2.72a 0.69 a - 

 Rodriguez-
Martinez et al.227 

Colombia High risk - - 93 22.5 1-3 5-6 71.4 33.3 23.8 80 1.07 0.86 - 

 Leonardi et al.230 UK General 
population 

  1731 11.5 2-3 7 57 80 26 94 2.85 a 0.54 a 0.68 

      1291 10.5 2-3 10 57 81 25 94 3.00a 0.53a 0.69 

 Devulapalli et al.237 Norway General 
population 

  459 21.1 3 10 59.8 79 43.9 87.7 2.85 a 0.51 a - 
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Stringent 
API 

Castro-Rodriguez 
et al.219 a 

USA General 
population 

  1002 57.1 ≤3 6-13 15.7 97.4 76.6 68.3 6.04b 0.87b - 

 Rodriguez-
Martinez et al.227 

Colombia High risk - - 93 22.5 1-3 5-6 42.9 79.2 37.5 82.6 2.06 0.72 - 

 Leonardi et al.230 UK General 
population 

 - 1683 11.5 2-3 7 37 93 40 93 5.29b 0.68b 0.65 

      1257 10.5 2-3 10 32 94 35 92 5.33b 0.72b 0.63 

 Caudri et al.231 Netherlands High risk   1177 11.7 0-4 7-8 20 92 25 90 2.50b 0.87b 0.62 

 Devulapalli et al.237 Norway General 
population 

  459 21.1 3 10 56.7 83 47.8 87.4 3.34b 0.52b - 

PIAMA Caudri et al.231 a Netherlands High risk   2171 11.1 0.4 7-8 19 97 42 91 6.33b 0.84b 0.74 

 Hafkamp-de Groen 
et al.225 

Netherlands High risk   2877 6.0 1-4 6 - - - - - - 0.74 

 Rodriguez-
Martinez et al.227 

Colombia High risk -  123 53.6 1-3 5-6 54.5 78.9 75.0 60 2.59 0.58 - 
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PARC Pescatore et al.233 a UK High risk   1226 28.1 1-3 6-8 72 71 49 86 2.47 0.40 0.74 

 Grabenhenrich et 
al.228 

Germany High risk  - 140 20.0 3 8 82 69 40 94 2.63 0.26 0.83 

 Pedersen et al.229 UK High risk  - 2690 14.0 1.5-3.5 7.5 69 76 32 94 2.87 0.41 0.77 

PAPS Dupuy et al.232 a France High risk   200 47.5 <2 6 42.4 89.6 66.7 75.9 4.06 0.64 0.66 

 Dupuy et al.232 France High risk - - 227 18.9 <2 13 62.8 67.4 31 88.6 1.93b 0.55b 0.65 

PARS Biagini Myers et 
al.234 a 

USA High risk   589 16.1 ≤3 7 68 77 37 93 3.02 0.41 0.80 

 Biagini Myers et al. 
234 

UK General 
population 

  1098 - 2 10 67 79 36 93 3.25 0.41 0.79 

PPV: positive predictive value; NPV: negative predictive value; LR+: positive likelihood ratio; LR-: negative likelihood ratio. 
a Prediction models as reported in the developmental studies; unmarked rows refer to performance reported in the external validation studies. 
b Likelihood ratios calculated based on reported sensitivity and specificity as: LR+ = sensitivity/ 1- specificity, LR- = 1- sensitivity/ specificity. 

 Used altered definitions in the external validation study compared to the original developmental study – predictors= exclusions or surrogate variables 

used; outcome= variation in components used to determine asthma. 
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3.3.1.7 Critical appraisal 

The overall risk of bias was deemed high for all 21 models due to: i) predictor and outcome bias 

(21 and 17 models respectively), predominantly due to the subjective interpretation of their 

definitions, particularly those based on parent-reported information; and ii) biased analysis due to 

an inappropriate number of candidate predictors, inappropriate handling of missing data, failure 

in reporting performance measures (e.g. calibration) or failure in treating models for potential 

overfitting or performance optimisation as detailed in the PROBAST checklist (Table 3.5). The 15 

studies which used high-risk developmental populations presented with low risk of bias (assuming 

their intended use in settings similar to their developmental study) but high concern regarding 

applicability to a general population. 

3.3.2 Machine learning approaches  

Four studies which utilised machine learning approaches to develop five prediction models for 

childhood asthma within a single paediatric hospital population of diagnosed asthma patients 

were identified163-166. These studies presented with ambiguity in their study design with regards to 

unclear predictor definitions, time-points of predictor measurements and population 

characteristics. Additionally, due to limitations of using an asthma diagnosis as a predictor, the 

small study size for machine learning applications, and signs of overfitting in the reported results, 

these studies were excluded from the main qualitative analysis. However, they were included in 

the review to highlight novel methodologies currently being explored for childhood asthma 

prediction (Table 3.6). 
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Table 3.5 Critical appraisal for the bias and applicability of each study using the PROBAST checklist 
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Risk of bias 

Participants L L H H H H H H H L L H H L H H H H L H H 

Predictors H H H H H H H H H H H H H H H H H H H H H 

Outcome H H H H H L H H H L L H H H U H H H H H H 

Analysis H H H H H H H H H H H H H H H H H H H H H 

Overall  H H H H H H H H H H H H H H H H H H H H H 

Concern regarding applicability 

Participants L L H H H H H H H L L H H L H H H H L H H 

Predictors L L L L L H L L L L L L L L L L L L L L L 

Outcome L L L L L L L L L L L L L L L L L L L L L 

Overall  L L H H H H H H H L L H H L H H H H L H H 
Risk of bias and applicability were assessed as: H = high, L=low, U= unclear using the criteria outlined in the PROBAST checklist218. For each domain, the risk 
of bias or concern of applicability is considered: high - if ≥1 signalling question in the PROBAST criteria was answered “no” or “probably no”; low – if the 
answer to all signalling questions was “yes”; unclear – if relevant information was missing to answer the signalling question and none of the signalling 
questions were answered “no”. The overall risk of bias and applicability were deemed low if all domains were evaluated as low risk, high risk if ≥1 domain 
was considered high-risk, unclear if ≥1 domain was considered unclear and all other domains were low-risk.
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Table 3.6 Summary of the identified childhood asthma prediction models developed using machine learning approaches 

Study Feature 
selection 

Number of 
predictors 

Study 
size 

Model 
Algorithm 

Accuracy Sensitivity Specificity PPV NPV LR+ LR- AUC External 
validation 

163 Correlation 
analysis 

10 112 Multilayer 
Perceptron 

1.00 1.00 1.00 - - NAa 0.00a - No 

164 Genetic 
algorithm 

4 112 Artificial Neural 
Network 

0.95 - - - - - - - No 

165 Principal 
Component 
Analysis 

18 112 Least-square 
Support Vector 
Machine 

0.96 0.95 0.96 - - 21.64a 0.05a - No 

166 Partial least 
square 
regression 

9 112 
 

Multilayer 
Perceptron 

0.97 0.96 1.00 - - NAa 0.04a - No 

166 Partial least 
square 
regression 

9 112 Probabilistic 
Neural Network 

0.97 1.00 0.80   5.00a 0.00a - No 

PPV: positive predictive value; NPV: negative predictive value; LR+: positive likelihood ratio; LR-: negative likelihood ratio; AUC=area under the curve.  
a Likelihood ratios calculated based on reported sensitivity and specificity as: LR+ = sensitivity/ 1- specificity, LR- = 1- sensitivity/ specificity, NA= undefined 

- Not reported  
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3.4 Discussion 

This review identified 26 models for predicting childhood asthma at school-age, but none have 

been widely implemented into standard clinical practice. Only the API is mentioned in asthma 

management guidelines2 and has been utilised with caution (upon modification), in the 

recruitment of participants into clinical trials224. Against this background, a critical evaluation of 

these studies aimed to identify potential problems surrounding the lack of applicability of these 

models. The key issues centred on: the choice of population for model derivation and/or 

validation, predictor and outcome definitions, methodologies employed for predictor selection, 

methods of data collection, study power, and the interpretability of models.  

3.4.1 Choice of population 

The performance of any predictive model is highly dependent on its developmental setting and 

may not generalise well in alternative risk populations. Fifteen of the twenty-one regression-

based models were developed in high-risk populations. High-risk populations, which have a higher 

asthma prevalence compared to the general population, are commonly used for model 

development in the hope of increasing the power for predictor selection and the detection of true 

asthmatics. However, such models may overestimate asthma risk within the general population. 

At present, only PARS has assessed this and was able to show comparable predictive performance 

in high risk and general populations (with the general population validation of PARS utilising the 

IOWBC used in this thesis). In contrast, the loose and stringent API, developed in a general 

population, demonstrated a substantial improvement in sensitivity, although at the cost of 

increasing false positive predictions, when validated in high-risk populations (Table 3.4). 

3.4.2 Population-specific predictors  

Most models were developed in European/predominantly Caucasian cohorts. Exposures specific 

to less developed countries, such as poverty and pollution, are typically not considered as 

important predictors of asthma in these models due to inadequate representation of such 

populations within the study cohorts243. For example, Szentpetery et al. initially developed a 

diagnostic model, identifying gun violence and an unhealthy diet as predictors of childhood 

asthma in a Puerto Rican population. However, when validated as a prediction model in a Swedish 
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cohort, data for these two predictors were unavailable, potentially due to low concern for these 

risk factors in this population, and were excluded from the model241.  

3.4.3 Prediction window  

Due to the transient nature of asthma-like symptoms in early life, the evaluation of clinical 

predictors from 4-5 years of age is more predictive of school-age asthma38. However, for 

prediction models developed with the intention of preventing asthma development rather than 

targeting children for early therapeutic intervention, predictions made at 4-5 years may already 

be too late. Four models used predictor data available before age 2226,237,238, but only one was 

externally validated232. The model developed by Lødrup Carlsen et al. only used predictor data 

collected at birth, however the need to perform neonatal lung function tests (rarely conducted 

outside of a research setting) greatly impairs its potential clinical applicability238.  

3.4.4 Data collection  

Most studies collected predictor information through parent-completed questionnaires, a method 

prone to recall bias and misclassifications. For example, studies have shown that less than 60% of 

parents are able to correctly identify wheeze244, with around one third of parents changing their 

answer after watching a recording of wheeze245. Such under/overestimations of parent-reported 

predictors can result in poor model performance compared to models that use data collected 

from physicians, healthcare records or objective measurements.  

3.4.5 Predictor availability  

Thirty-eight different predictors indicative of well-documented asthma risk factors were used 

across the 21 regression-based models. This variation reflects the inherent heterogeneity of 

childhood asthma across different populations and variability in predictor availability between 

studies. Sixteen models required additional clinical tests, most commonly blood and SPTs to 

determine a child’s atopic status. These tests were the main amendment in four of the seven 

modified prediction models. Four other studies demonstrated that the addition of IgE as a 

predictor in their models improved predictive power compared to their models without 

IgE226,236,239,240. Whilst the predictive value of information on allergic sensitisation is well 

established in the literature246, it is important to note that SPT are not routinely performed in 

children not suspected to be atopic, particularly in early life, and blood testing to measure levels 
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of eosinophilia or serum IgE are invasive tests which require the use of additional healthcare 

resources. One modification of the API included biomarkers of VOCs in exhaled breath 

condensate and gene expression222; despite ranking second in terms of AUC (AUC=0.86, 

unbootstrapped AUC=0.95), the use of this model is unlikely to be feasible outside of a 

specialist/research setting. Models developed with predictors which are not readily available, or 

which require the use of additional healthcare resources, can be limited in their generalisability 

and potential clinical implementation.  

3.4.6 Predictor selection  

Methodology for the selection of predictors varied between the 20 regression-based studies. 

Models used either a priori knowledge219,223,224, univariate analysis219, multivariate regression 

analysis221,225 or a combination of univariate and multivariate regression220,231,235,240,242. Despite the 

latter two-stage combination approach being an established method used across biomedical 

research, this method can introduce significant bias to the feature selection process due to 

inconsistencies between univariate and subsequent multivariate analyses247,248. To address this, 

some studies adopted a stepwise backward or forward selection multivariate regression 

approach222,234,236,238,239,241, and the PARC model233 utilised LASSO (Least Absolute Shrinkage and 

Selection Operator) - a regularisation method which shrinks the effect size of less important 

predictors to zero, thus only selecting a subset of the most predictive features131. However, none 

of these studies fully address the issue of multicollinearity between candidate predictors that can 

introduce noise and subsequently reduce model performance.  Among the four machine learning 

studies identified, supervised and unsupervised machine learning algorithms were used for 

feature selection163-166. Indeed, machine learning algorithms, particularly those such as random 

forest, recursive feature elimination and genetic algorithms, are more robust in handling the 

relatedness between predictors and may promote better predictor selection compared to 

regression-based methods131,132. 

3.4.7 Outcome 

Childhood asthma is often considered an umbrella term describing a syndrome of different 

respiratory symptoms1. In a study reviewing 122 childhood asthma cohort studies, van Wonderen 

et al. identified 60 different outcome definitions of childhood asthma. Differences in definitions 

resulted in only 61% agreement in the classification of individuals as asthmatic/non-asthmatic and 

large variation in asthma prevalence between 15-51%249. This was reflected in this current review 
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which identified the use of nine different asthma outcome definitions across the 20 regression-

based studies. With models developed to predict childhood asthma already predicting a 

subjective entity, the use of different asthma definitions only amplifies the variation of the 

classification outcome. This may have led to an artificial variation in the prevalence of asthma 

across studies influencing the construction, optimisation and subsequent performance of the 

predictive models.  

Variation in outcome definitions also pose a problem for evaluating the generalisability of a model 

and comparing the performance between models. For example, Rodriguez-Martinez et al. 

conducted a comparative validation of the API and PIAMA risk score using outcome definitions as 

described in their respective developmental studies. They showed that, because children are 

frequently prescribed asthma medication without the doctor always explicitly confirming a 

diagnosis of ‘asthma’, the true asthma outcome for some patients varied between the two model 

validations - some patients classified as non-asthmatics for analysis with the API were reclassified 

as asthmatic for the analysis with the PIAMA risk score227. Hence, a consensus on an objective 

definition acceptable to the clinical and research community is essential.  

3.4.8 Study power 

Upon critical appraisal, at least eight studies were identified as lacking sufficient power to develop 

stable prediction models; these studies had a ratio of candidate predictors to total number of 

cases lower than recommended (at least 20 cases per candidate predictor) to achieve sufficient 

power225,231,233,235,238,239,242. Underpowered studies risk important predictors not being selected 

(under-fitting –Type II error), the incorrect selection of predictors (overfitting –Type I error) as 

well as the misrepresentation of the associated directionality between predictors and the 

outcome205.  

Compared to traditional regression methods, machine learning approaches possess superior 

power and resolution for pattern recognition. By allowing a larger number of candidate predictors 

to be considered and being more robust to the relatedness between predictors, there is potential 

to identify novel predictors and exclude redundant predictors which may have been previously 

overlooked by traditional feature selection approaches 117,118,123. Despite the potential benefits 

offered by machine learning methods, the four machine learning studies identified in this review 

remain underpowered163-166. Further studies are necessary to determine whether machine 
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learning approaches can develop better performing childhood asthma prediction models over 

regression-based methods. 

3.4.9 Validation  

Models tend to perform best within their developmental population. External validation studies, 

which assess the true performance of models in independent populations, are essential to assess 

the generalisability of a model. However, only six of the 21 identified regression-based models 

were externally validated. None of the five machine learning models described in the four 

identified studies were externally validated (Table 3.6). Whilst the PARS and PARC models 

demonstrated comparable performance when validated, the other models demonstrated poorer 

predictive performance, particularly in terms of PPV and likelihood ratios (Table 3.4). This may be 

due to inconsistencies between the derivation and validation study designs, mainly with regards 

to the predictor/outcome definitions and the exclusion or use of surrogate variables for 

unavailable predictor information. Validation of all existing models within a single independent 

population using a single outcome definition is necessary to standardise inconsistencies in study 

design and population effect to facilitate a comparative analysis between models. However, this 

remains difficult in practice due to the need for a reference population of sufficient size with data 

available for all 38 predictors.  

3.4.10 Interpretability 

At present, a quantitative evaluation of the performance of existing models is difficult as not all 

studies report the standard performance measures. Discrimination (AUC) is often used to 

compare the overall performance between models, with a discriminative threshold of 0.80 

considered to identify a very good predictive model202. Three developmental models reached this 

threshold but only one, PARS, was externally validated. The good generalisability of PARS 

(AUC=0.79) has facilitated its transformation into an online interactive tool and mobile app for 

use by both physicians and parents234. 

However, using discrimination alone to compare model performance is inappropriate as models 

with similar AUC can show large variations in sensitivity and specificity. There is a clear trade-off 

between optimising both of these performance measures, with no one model able to achieve 

both high sensitivity and specificity. Therefore, clear aims of whether a model intends to optimise 

towards higher sensitivity or specificity for the future application of prevention or asthma 
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symptom management, respectively, would benefit the evaluation of a model’s predictive power 

and viability202.  

Finally, the API and its modifications provide a dichotomous outcome of asthma risk, whilst the 

remaining regression-based models present asthma risk across a range of potential scores, often 

stratifying individuals into groups of low, medium or high risk. However, physicians are already 

able to make similar predictions upon clinical assessment which may explain the lack of clinical 

uptake of existing models. The exploration of novel approaches, such as machine learning, for the 

development of prediction models with greater probabilistic resolution of an individual’s asthma 

risk is warranted.  

Yet, existing prediction models are not redundant – the use of well-performing, externally 

validated models could be considered for use in clinical trials to support the stratification of 

participants for inclusion or treatment allocation. These models are likely to offer superior 

predictions compared to trials currently utilising the API224 or, more frequently, parental history, 

to assess asthma risk. 

3.5 Conclusions and future recommendations  

Based on the findings of this review, a number of key considerations are needed for the 

development of future prediction models. 

1. Study design and data availability 

Improving model generalisability across all population settings could be achieved by standardising 

predictor and outcome definitions across settings and addressing issues of population bias and 

data availability. Whilst the perfect solution would be to establish a single, general population, 

prospective cohort of sufficient size for model development alongside an independent reference 

population for validation, this is unrealistic.  

Instead, studies should specify and closely match the developmental population of the model for 

its future application. Data should be collected using objective measurements and high-quality, 

standardised questionnaires with unambiguous descriptions which are consistent across both 

clinical and research settings. Where parent-reported data is used, clinical jargon should be 

deconstructed and/or be supported by auditory or visual aids to minimise recall bias and 

misclassification wherever possible.  
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In addition, only easily derivable and commonly available clinical predictors should be used. 

Whilst biomarkers can have high predictive power, their predictive benefit needs to be measured 

against the cost of test availability across different healthcare settings, patient/physician time and 

demand on healthcare resources. Yet, the exploration and identification of novel biomarkers, 

particularly in early life, may encourage the transition from asthma management to prevention.  

2. Isolating predictors for model development  

Due to the heterogeneity of childhood asthma, a number of candidate predictors have been 

associated with childhood asthma. One approach to identifying predictors for model development 

is to isolate a subset of the most frequently used predictors from previous studies. For example, 

parental asthma, eczema, wheeze without cold, specific IgE, frequent wheeze, allergic rhinitis and 

gender have been used in at least a quarter of existing models (Table 3.2). However, as previously 

discussed, population-specific influences and predictor selection methodological limitations exist 

in these studies. A better approach would be for future studies to utilise a robust predictor 

selection method (such as recursive feature elimination), which is sufficiently powered and able 

to address the multicollinearity between predictors, in order to distinguish strong predictors from 

redundant variables within their specific population.  

3. Model development methodologies 

The majority of existing studies have utilised regression-based methods and have developed a 

number of similar prediction models, few generalising well in independent populations, and none 

widely implemented into clinical practice. Alternative methods such as machine learning 

approaches have advantages over these statistical methods as already discussed, particularly with 

regards to addressing frequently overlooked concerns of predictor relatedness, distinguishing 

between predictive and redundant predictors, and improving the resolution of predictions. Such 

methods had not been adequately implemented at the time of this systematic review, hence 

future studies using robust study designs are needed to assess their potential benefits for 

childhood asthma prediction. Subsequent to this review, a number of studies applying machine 

learning approaches for the prognostic prediction of childhood asthma have been identified250,251. 

Whilst these studies often reported high predictive accuracy, overfitting appeared to be a 

common problem, with many studies subject to small sample sizes and none of the studies 

externally validating their machine learning models to assess model generalisability (discussed 

further in Chapter 5). 
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It is crucial for any developed model to undergo external validation within a population similar to 

its future application. Unvalidated models are not clinically useful and are largely limited as 

exploratory studies. Reporting of all standard performance measures in both the development 

and validation populations are necessary to evaluate a model’s generalisability and subsequently 

promote its clinical application for predicting school-age asthma.  
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Chapter 4 External Validation of Existing Prediction 

Models in IOWBC 

4.1 Introduction 

Twenty-six prediction models for childhood asthma were identified by the systematic review 

conducted in Chapter 3. The five machine learning models identified at the time of the review 

were regarded as exploratory studies due to limitations in study design and external validation. Of 

the remaining regression-based models, only six have undergone validation in independent 

cohorts. It is known that performance measures reported in the developmental population for 

prognostic models are often overly optimistic. Hence, the validation of any developed prediction 

model in independent populations is essential to provide insight into the model’s true predictive 

power and generalisability252,253.  

Whilst external validation in any independent population is encouraged, the generalisability of a 

model can vary depending on the independent population chosen. This is largely due to data 

availability and differences in data collection time-points and definitions of both predictors and 

the outcome. Performance is also influenced by the underlying characteristics of the population. 

Furthermore, there is often a lack of commonality between studies in terms of the populations 

used for development and/or validation (when conducted) as well as an inconsistency in reported 

performance measures. As the populations chosen for validation often differ, it is difficult to 

conduct accurate comparisons between models. Therefore, external validation of all existing 

models within a single independent population is necessary to standardise potential variations in 

study design and population effects arising from the use of different study populations. Validation 

in a single independent cohort would promote direct and accurate comparisons between models. 

4.1.1 Objectives 

To address the second aim of this thesis (detailed in Chapter 1.4), all existing prediction models 

for childhood asthma identified by the systematic review (and for which data was available) were 

implemented and compared within the single population of the IOWBC.  
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4.2 Methods  

All 21 of the existing regression-based models were considered for validation in the IOWBC 

(detailed in Chapter 2.1.1). Models were selected for validation if information for all predictors 

included in the model were available in the IOWBC (Table 3.2). To maximise the models 

considered for validation, surrogate variables were used, where deemed appropriate based on 

expert clinical opinion and statistical testing to identify strong associations between predictors 

(detailed in Chapter 2.1.1.1).  

For each model selected for validation, only individuals with complete predictor and outcome 

data were included in the analysis. For each individual, the risk score of each model was 

calculated and the prediction compared against his or her reported asthma diagnosis at age 10 

(defined in Chapter 2.2).  

Performance accuracy and measures of sensitivity, specificity, positive and negative predictive 

values, likelihood ratios, F1-score and AUC were calculated based on the optimal cut-off threshold 

specified in the original model publications.  

4.3 Results 

Of the 21 regression-based prediction models developed for childhood asthma, five models had 

data available for implementation in the IOWBC - ucAPI220, uPIAMA225, Szentpetery et al.’s risk 

score241, PARS234 and IoW235. The implementation of the first four models can be considered to be 

external validation analyses. The IoW model was initially developed in the IOWBC to predict an 

outcome of persistent wheeze; therefore, although its inclusion in this analysis cannot be 

considered as an independent validation, it was included to assess the model’s ability to predict 

the outcome of childhood asthma. The model developed by Szentpetery et al. did not report any 

of the standard performance metrics in its developmental study, therefore it was not possible to 

evaluate the generalisability of the model itself. However, the model was still considered in order 

to promote direct comparison with the other models within this single population. 

For the five selected models, data on all predictors were available in the IOWBC, except for race 

and wheeze apart from cold. As described in Chapter 2.1.1.1, data on frequent wheeze was used 

as a surrogate variable for wheeze apart from cold. Similarly, a Caucasian ethnicity was assumed 

for all individuals in order to prevent a substantial loss in sample size. Genotype data in the 

IOWBC confirmed that the prevalence of non-Caucasian individuals was <2%, therefore this 

assumption is unlikely to have biased the analysis. 
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Generalisability could be evaluated for three models – model performance reported in the 

developmental studies (original studies) and the current validation in the IOWBC varied 

depending on the performance metric evaluated (Table 4.1). Sensitivity was consistently lower 

upon implementation of the models in the IOWBC, yet specificity remained comparable, if not 

higher, upon validation. The ucAPI validated poorly - validation performance was either poorer (5 

performance measures) or comparable (2 performance measures) compared to its developmental 

performance. In contrast, the uPIAMA and PARS models validated well, with comparable AUC 

with their original studies (0.75 vs. 0.75 and 0.77 vs. 0.80, respectively), and improvements in 

validation performance across four performance measures each (Figure 4.1, Table 4.1).  

Comparing between the five models implemented in the IOWBC, the IoW model demonstrated 

similar discriminative ability (AUC=0.73) to the uPIAMA and PARS models. Predictors of parental 

asthma and SPTs were common between these models (detailed in Chapter 3.3.1.2). In contrast, 

the ucAPI and Szentpetery et al. risk score only offered modest discrimination (AUC=0.59 and 

0.63, respectively).  

The IoW model outperformed the other four models in terms of accuracy, specificity, PPV and 

positive likelihood ratio, yet it had the lowest model sensitivity (15%). The PARS model 

demonstrated superior predictive performance for the remaining performance measures, 

including AUC (Table 4.1).
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Figure 4.1 ROC curves comparing the performance of existing childhood asthma prediction 

models in the IOWBC 
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Table 4.1 Summary of the performance of existing childhood asthma prediction models validated in the single population of the IOWBC 

 ucAPI Updated PIAMA Szentpetery et al. PARS IoW 

 Original 220 IOWBC 
(n=740) 

Original 225 IOWBC 
(n=1045) 

Original 241 IOWBC 
(n=998) 

Original 234 IOWBC 
(n=913) 

Original 235 IOWBC 
(n=804) 

AUC - 0.59 0.75 0.75 - 0.63 0.80 0.77 - 0.73 

Accuracy  - 0.85 - 0.82 - 0.85 - 0.85 - 0.86 

Balanced Accuracy - 0.59 - 0.67 - 0.51 - 0.72 - 0.57 

Sensitivity  0.44 0.22 0.64 0.42 - 0.04 0.68 0.53 0.53 0.15 

Specificity  0.94 0.95 0.74 0.92 - 0.99 0.77 0.90 0.85 0.98 

PPV 0.60 0.44 0.12 0.57 - 0.38 0.37 0.47 0.68 0.58 

NPV 0.89 0.88 0.97 0.86 - 0.86 0.93 0.92 0.74 0.87 

LR+ 7.50 4.85 2.44 5.13 - 3.47 3.02 5.46 3.41 a 7.87 

LR- 0.60 0.82 0.49 0.63 - 0.97 0.41 0.52 0.56 a 0.57 

F1 score 0.51 a 0.29 0.20 a 0.49 - 0.07 0.48 a 0.50 0.59 a 0.24 

The performance of existing childhood asthma prediction models were compared between what was reported in their developmental populations and upon 
validation in the IOWBC. Values in bold identify the model that offered the highest performance for each performance measure. 
PPV: positive predictive value; NPV: negative predictive value; LR+: positive likelihood ratio; LR-: negative likelihood ratio; AUC=area under the curve. 
a Where unreported, likelihood ratios were calculated based on reported sensitivity and specificity as: LR+ = sensitivity/ 1- specificity, LR- = 1- sensitivity/ 
specificity; F1 score was calculated based on reported sensitivity and precision (PPV) as: F1 score=2*((precision*recall)/ (precision + recall)). 
- Performance not reported 
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4.4 Discussion 

Only five of the existing 21 childhood asthma prediction models were able to be implemented in 

the IOWBC, with four being external validations in an independent population from which the 

model was developed. The poor applicability of the remaining 15 models is a direct result of the 

unavailability of predictor information.  

There is an argument for the unavailability of predictor data being a limitation of the chosen 

validation population rather than being a sign of poor model generalisability. It is important to 

note that the subjects of the IOWBC were recruited in 1989, and the IOWBC is therefore the 

earliest established European birth cohort focusing on research into allergic diseases170. The 

International Study of Asthma and Allergies in Childhood (ISAAC) only outlined standardised 

methodologies and questionnaires, aimed at promoting consistent asthma and allergy research 

worldwide, in 1995171. Standardised ISAAC questionnaires, were only available for implementation 

at the time of the 10-year follow-up for the IOWBC F1 cohort, but were available from the 

initiation of the IoW 3rd Generation (F2) cohort. For example, wheeze apart from cold is an 

example of data recommended for collection by the ISAAC questionnaire – this variable was 

unavailable at the early IOWBC follow-ups but was available in the F2 cohort, prompting a chi-

squared test of association to be conducted between the variable itself and its surrogate variable, 

frequent wheeze (detailed in Chapter 2.1.1.1). Younger cohorts widely utilise these guidelines and 

often collect similar data. Therefore, despite the early IOWBC data collection questionnaires being 

similar to the later recommended ISAAC questionnaires, inconsistencies in data collection may 

account for some of the data unavailability evident in this analysis. However, missing predictors 

were often those that required additional medical tests, with the absence of data on blood 

eosinophilia hindering the replication of most models. Only one model was not replicable due to 

the absence of phenotypic information alone237.  

Despite being indicative of future severe exacerbations and poor asthma control, blood 

eosinophilia is not regularly measured in children, particularly within primary care settings254. 

Hence, the poor applicability of existing models in the IOWBC is more likely a result of the 

inclusion of predictor data not routinely collected in clinical or research settings. Whilst additional 

clinical testing or the inclusion of biomarkers in predictive models may improve prediction 

accuracy, at present, a number of models developed using only easily available clinical predictors 

have shown competitive predictive performance (detailed in Chapter 3). As a result, models that 

require information collected through highly specialised, or non-routine testing have repeatedly 
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been criticised for their poor potential for widespread clinical application, regardless of the 

predictive benefit they may possess. This analysis reinforces the idea that biomarkers should 

demonstrate significant predictive benefit in order to be considered for inclusion in a model.  

Four of the five models implemented in the IOWBC can be considered to be external validation 

analyses. However, it was not possible to assess the generalisability of the model developed by 

Szentpetery et al. as none of the standard performance measures were reported in their 

developmental study for comparison. This highlights the importance of reporting commonly 

evaluated metrics during the development of a model, particularly since the assessment of 

generalisability is crucial for determining the future clinical viability of a model. The ucAPI 

demonstrated poorer performance upon validation compared to its developmental study - a 

common conclusion of external validation studies, often due to variations in predictor and 

outcome definitions and underlying population characteristics between development and 

validation studies. Conversely, both the uPIAMA and PARS models demonstrated good overall 

generalisability in the IOWBC despite poorer performance reported for some performance 

measures.  

Existing childhood asthma prediction models were replicated in the IOWBC in order to directly 

compare model performance, having standardised any study or population-effects that may 

influence the performance of a model. The replication analysis identified that in the IOWBC, the 

uPIAMA, PARS and IoW models demonstrate similar predictive performance. Interestingly, all 

three models included predictors of parental asthma and two included SPTs (IoW and PARS). This 

reinforces the predictive potential of family history and atopy as risk factors for the development 

of childhood asthma (discussed in Chapter 1.1.6). However, both of these predictors were 

included in the ucAPI, and SPT was also a predictor in the model developed by Szentpetery et al. 

As these models demonstrated comparatively poorer performance, the inclusion of these 

predictors alone cannot foreshadow the predictive potential of a model. Notably, all models 

performed with poor/moderate sensitivity and PPV. For each performance measure evaluated, 

the best performance was demonstrated by either the IoW or PARS models. Given that the 

IOWBC was the developmental population of the IoW model, it is unsurprising that the model 

demonstrated superior predictive performance compared to the other models which were 

developed in different populations. Hence, the apparent superior performance of the IoW model 

demonstrated in this analysis should be treated with caution. In contrast, the PARS model, which 

was developed in Cincinnati, USA, demonstrated the best predictive performance based on a 

number of performance measures compared to the other models. This comparative analysis 
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suggests that the PARS model has good generalisability and is superior to the other four models 

when implemented in the IOWBC.  

4.5 Conclusion 

This analysis provides an initial single-population comparison of existing childhood asthma 

prediction models. However, the analysis was limited by the inability to implement 15 of the 21 

models due to predictor unavailability, and the fact that the chosen population was not 

independent from the developmental population of the IoW model. Potential to conduct this 

analysis in MAAS (for which data was available in this thesis) was also hindered by the absence of 

key predictor data, such as blood eosinophilia, and one of the 21 prediction models (MAAS-APT) 

also being developed using that cohort. The process of validating all models in a single population 

needs to be conducted in a population that has data available for a greater proportion of the 38 

predictors used amongst the 21 models, and which has not been used to develop any of the 

existing models, in order to perform a more comprehensive and objective comparison. 
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Chapter 5 Development of Childhood Asthma Prediction 

Models using Machine Learning 

5.1 Introduction 

Due to the highly heterogeneous nature of childhood asthma (previously discussed in Chapter 1), 

both under-diagnosis and over-treatment of asthma are common, particularly in early life112,113. 

The ability to predict the development of school-age asthma can help to identify high-risk 

preschool children and distinguish them from children whose symptoms are likely to be 

transient38. Furthermore, early prediction of asthma susceptibility will be critical for the successful 

implementation of potential primary prevention strategies to reduce the risk of developing 

asthma. The systematic review conducted in Chapter 3 identified twenty-one regression-based 

models for predicting childhood asthma109. However, none of these models have been 

implemented into standard clinical practice, possibly due to relatively weak predictive power, 

poor (or unknown) generalisability and the need for specialised clinical testing for gene expression 

and VOCs in exhaled breath condensates. The review further proposed that regression-based 

methods for predicting childhood asthma may have been exhausted, with the identified models 

offering similar predictive power to each other and being unable to be significantly improved 

upon. 

Machine learning approaches have increasingly been applied to a wide range of healthcare 

problems due to their ability to integrate large quantities of heterogeneous data, handle complex 

interactions between variables and identify patterns within data118. Particularly for disease 

prediction, where interactions between biological variables are complex, machine learning 

approaches have the potential to identify novel predictors which may have been previously 

overlooked by regression-based approaches117,118,123. Furthermore, application of methods to 

reduce model overfitting may address the poor generalisability of existing prediction models in 

independent populations. Machine learning approaches have shown promise in predicting a 

variety of clinical asthma outcomes, phenotypes and decisions105,155,158,159,255, including the 

diagnostic or prognostic prediction of school-age asthma development161,163-166,251,256-258. While 

these studies tend to offer improved predictive performance, none of these studies support their 

findings with external validations of their models or explain how their “black-box” models (where 

relevant) arrive at their predictions. Without these two components, machine learning models 
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will fail to obtain the trust of physicians and continue to be limited in their clinical utility, 

regardless of the superior prediction accuracy they may offer167,250 (discussed in Chapter 1.3). 

5.1.1 Objectives 

In this chapter, machine learning approaches are utilised in an attempt to improve upon the 

performance of traditional regression methods and develop explainable and independently 

validated prediction models for childhood asthma. Two prognostic prediction models, the 

Childhood Asthma Prediction in Early-life (CAPE) and Childhood Asthma Prediction at Preschool-

age (CAPP) models, were developed to predict school-age asthma at 10 years, within the general 

population of the IOWBC, using information available within the first two years and first four 

years of life, respectively.  

In line with the aims of this thesis (detailed in Chapter 1.4), the optimal subset of clinical features 

predictive of school-age asthma were identified for each model (Aim 3). Using these selected 

features, a number of machine learning models were constructed and compared in order to 

identify the optimal machine learning algorithm for predicting childhood asthma (Aim 4). Finally, 

global and local interpretations of the final machine learning models were made in an attempt to 

explain how predictions were deduced (Aim 5). 
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5.2 Methods 

5.2.1 Developmental study population 

The IOWBC (n=1456) was used as the developmental population for constructing the CAPE and 

CAPP models, (described in Chapter 2.1.1). For both models, 1368 participants with a defined 

prediction outcome of school-age asthma were included in the analyses (detailed in Chapter 2.2).  

As described in Chapter 2.1.1.1, data for 54 candidate predictors extracted from the IOWBC were 

considered during the development of the clinical prediction models (Table A1). Only candidate 

predictor data available from the birth and early-life time-points were considered for the 

development of the CAPE model whilst predictors across all three time-points (birth, early life and 

4-year follow-up) were considered for the development of the CAPP model.  

Pre-processing of candidate predictor data was performed to prepare the data for model 

construction. Potentially extreme outliers (±4SD) present among the continuous variables were 

removed. Further transformation of continuous data was not required as histograms for each 

continuous variable demonstrated a Gaussian data distribution (Figure A2). One-hot-encoding 

was used to encode categorical variables without an ordinal interpretation (nominal variables) 

into separate binary variables. 

All stages of model development were performed independently for the CAPE and CAPP models 

(Figure 5.1). 
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Figure 5.1 Workflow for the development and validation of the CAPE and CAPP models 

Models were developed using data from the Isle of Wight Birth Cohort (IOWBC), 

n=1368 (14.7% asthmatic). (A) Feature selection was performed using only 

individuals with complete data for all candidate predictors. (B) Models, using eight 

machine learning classifiers, were first developed using only individuals with 

complete data for the subset of features identified from feature selection. (C) Three 

training process optimisation strategies were assessed on the best performing model 

identified at (B): 1) imputation, 2) oversampling and 3) random undersampling. (D) 

All combinations of optimisation strategies were applied to the dataset of all 

individuals in the IOWBC not allocated to the validation dataset (IOWBC training 

dataset) in a step-wise approach – n=1113 (15.0% asthmatic) for the early life 

training dataset and n=1185 (14.9% asthmatic) for the preschool training dataset. 

Models were redeveloped for all algorithms using each optimised training datasets. 

(E) The best models for use in early life (CAPE tool) and at preschool age (CAPP tool) 

were selected based on performance in the holdout validation set. (F) Selected 

models were externally validated in the independent population of the Manchester 

Asthma and Allergy Study (MAAS). 
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5.2.2 Feature selection 

For each model, feature selection was performed on the complete dataset of all available 

candidate predictors (without any missing values). Two wrapper feature selection methods were 

compared - recursive feature elimination within a five-fold cross-validation (RFECV) (described in 

Chapter 2.3.1.1), and Boruta (described in Chapter 2.3.1.2). Both methods utilised a variation of 

the random forest algorithm (described in Chapter 2.3.1). Continuous variables were standardised 

to zero mean and unit variance prior to feature selection. 

The best feature selection method was chosen based on a combination of factors. First, the 

subsets of selected features were evaluated for their biological plausibility and complexity for 

model construction. Next, the ability of each method to handle the potential presence of 

multicollinearity was assessed by evaluating the presence of highly correlated features within the 

selected feature subsets (based on their Pearson’s correlation coefficient). Feature importance 

was assessed using the feature importance attribute of the random forest algorithm. Further 

insight into the direction and magnitude of risk associated with each predictor was then extracted 

using SHAP (detailed in Chapter 2.3.7).  

5.2.3 Complete-case machine learning models development 

As described in Chapter 2.3.2, eight supervised machine-learning classifiers were compared to 

identify the best algorithm for this classification problem: three SVMs with different kernel 

functions, decision tree, random forest, naive Bayes classifier, MLP, and KNN. The models were 

initially developed using data on individuals with complete data for the subset of features 

identified through the feature selection process (Figure 5.1, Stage B). 

Independently, for the CAPE and CAPP models, the complete dataset was split (ratio of 2:1, 

preserving class proportions) into a training and holdout validation dataset for model 

development and evaluation, respectively. The continuous variables in the training data were 

standardised to a mean of zero and unit variance, and the same standardisation properties 

applied to the holdout validation set. Within the training process, the hyperparameters for each 

model were tuned using a grid search, within a 5-fold cross validation (detailed in Chapter 2.3.3). 

For each model, the set of hyperparameters with the highest average balanced accuracy score 

across the folds was selected. The optimal tuning parameters were used to train each model on 

the entire training set. The trained models were then used to make predictions on the holdout 
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validation set. Performance measures for each model (detailed in Chapter 2.3.6), were reported 

for both the training and validation datasets. 

5.2.4 Exploration of model optimisation techniques 

Three optimisation techniques of imputation, oversampling and undersampling were 

implemented to address the issues of missing data and class imbalance that were observed in the 

early life and preschool training datasets. The best performing algorithm identified from the 

complete data model development stage was used to assess whether each optimisation 

technique offered any predictive benefit (Figure 5.1, Stage C). The early life and preschool holdout 

validation datasets were not modified, thus remained as single unseen complete datasets that 

could be used to evaluate and compare the predictive performance of each model, trained on 

either the complete or optimised training datasets. 

5.2.4.1 Imputation of missing data 

To increase the number of training examples and reduce potential biases introduced through the 

complete data analyses, imputation was performed. Two imputation methods, missForest 

(detailed in Chapter 2.3.4.1) and MICE (detailed in Chapter 2.3.4.2), were compared. Missing data 

was randomly introduced to the complete training dataset (20% of the dataset). The missing 

values were then imputed using the two imputation methods. After the implementation of each 

imputation strategy, the continuous variables in the training dataset were standardised to a mean 

of zero and unit variance, and the same standardisation properties applied to the test dataset. 

The best performing machine learning algorithm identified from the complete data model 

development stage was then retrained on each imputed training dataset. The best imputation 

method was determined based on the model that offered the most similar performance to the 

model trained using the complete training dataset. 

5.2.4.2 Handling the class imbalance 

To reduce the class imbalance observed in the early life and preschool training datasets, which 

was skewed towards controls (1:7 and 1:6 case: control ratio, respectively), oversampling using 

ADASYN was implemented (detailed in Chapter 2.3.5.1). To identify the optimal degree of 

oversampling required, seven levels of oversampling were evaluated, increasing the number of 

the minority class (asthma cases) by 25%, 50%, 100%, 150%, 200%, 250% and 300%. 

The impact of oversampling in addition to random undersampling of the majority class (non-

asthmatic controls) was also assessed (detailed in Chapter 2.3.5.2). The aim of combining both 
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oversampling and undersampling was to obtain a balanced training dataset, with a 1:1 ratio of 

asthmatic and non-asthmatic examples. 

5.2.5 Implementation of optimisation strategies for final model development 

Each optimisation technique was considered for widespread implementation if it demonstrated 

improvements in the predictive performance of the best performing model chosen from the 

complete model development stage. Upon signs of improvement, the optimisation techniques 

were applied to the training datasets across all possible combinations: i) complete training data 

with oversampling; ii) complete training data with undersampling; iii) complete training data with 

oversampling and undersampling; iv) imputed training data; v) imputed training data with 

oversampling; vi) imputed training data with undersampling; and vii) imputed training data with 

oversampling and undersampling. 

Specifically, if imputation was deemed beneficial, the best imputation method was first used to 

impute missing data for all 1368 individuals not allocated to the holdout validation dataset for the 

early life and preschool models, independently. The continuous variables in the imputed training 

dataset were then standardised to a mean of zero and unit variance, and the same 

standardisation properties were applied to the holdout validation dataset. Next, if oversampling 

demonstrated a predictive improvement, ADASYN was applied to the complete or imputed 

training dataset across all seven levels of oversampling previously evaluated. Finally, if shown to 

offer a predictive improvement, random undersampling was applied to each training dataset to 

obtain a 1:1 class balance. The eight machine learning algorithms were then redeveloped and 

tuned on each of the optimised training datasets (as previously described) in order to identify the 

best CAPE and CAPP models (Figure 5.1, Stage D). 

5.2.6 Evaluation of model performance 

Performance measures of discrimination, sensitivity, specificity, positive and negative predictive 

values (PPV and NPV, respectively), positive and negative likelihood ratios (LR+ and LR-, 

respectively), balanced accuracy and F1-score were reported for each machine learning algorithm 

in both the training and validation datasets (defined in Chapter 2.3.6).  

The best CAPE and CAPP models were selected based on: i) their discriminative performance in 

the validation set; and ii) a judgement on any potential signs of overfitting (large differences in 

model performance reported for the training and test sets). Although the ability to correctly 
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identify both future asthmatics and non-asthmatics is important, the expert opinion of a 

consultant respiratory physician and research professor suggested that the ability for a model to 

detect true future asthmatics was preferred over identifying true non-asthmatics. Therefore, 

where the selection of the best model based on the above criteria was not clear, performance 

measures indicating the ability to rule in asthma cases (e.g. sensitivity, PPV and F1-score) were 

also considered (Figure 5.1, Stage E). 

Upon selection of the final CAPE and CAPP models, performance in the validation and test (MAAS) 

sets were reported at the optimal threshold that maximised the Youden’s Index, with 2000 

bootstrap samples used to calculate 95% confidence intervals for the performance measures. The 

Brier score was also calculated for these selected models. 

5.2.7 External validation 

The generalisability of the CAPE and CAPP models was assessed through an external validation 

using the MAAS cohort (detailed in Chapter 2.1.2) (Figure 5.1, Stage F). In this independent test 

set, data for model predictors and the asthma outcome (evaluated at age 8 and 11 years) were 

closely matched to maximise the similarity of the definitions used in the IOWBC (Table A3). Data 

cleaning also corresponded to processes conducted in the developmental cohort (detailed in 

Chapter 5.2.1). Only individuals with complete data for the predictors and outcome were used in 

the external validation analyses. 

Model generalisability was assessed in MAAS among three risk groups – unselected, moderate 

and high risk based on a parental history of allergic disease (asthma, eczema or allergic rhinitis), 

with zero, one or two parents affected, respectively. 

5.2.8 Sensitivity analyses 

Sensitivity analyses were conducted to comprehensively evaluate the CAPE and CAPP models, 

including evaluations of: i) the robustness to predict an alternative definition of school-age 

asthma; ii) the resolution of the predictions to identify individuals presenting with distinct wheeze 

phenotypes throughout childhood; and iii) the performance of the machine learning models 

compared to similar regression-based models. 

5.2.8.1 Assessing the robustness to predict an alternative asthma definition 

The robustness of the CAPE and CAPP models was evaluated using an alternative definition of 

school-age asthma that incorporated an objective outcome measure. Using this alternative 
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asthma definition, a child was considered asthmatic if they presented with wheeze in the last 12 

months and had bronchial hyper-responsiveness (BHR) (defined in Chapter 2.1.1.1). Due to the 

requirement for both the presence of wheeze and positive BHR to confirm asthma at age 10, 

individuals who were reported to have no wheeze at age 10, irrespective of whether BHR was 

assessed, could be assigned as non-asthmatic. As such, although BHR was only assessed in 784 

individuals in the IOWBC, an alternative asthma status could be obtained for 1312 individuals.  

5.2.8.2 Ability to predict distinct wheeze phenotypes 

The resolution of the asthma predictions to distinguish between individuals presenting with 

distinct wheeze phenotypes throughout childhood and adolescence was assessed. The 

identification and assignment of individuals in the IOWBC and MAAS into one of five distinct 

wheeze phenotypes through a latent class analysis has previously been described34. Briefly, using 

wheeze data available across five time-points, a latent class analysis of 7,719 individuals from five 

UK birth cohorts (including the IOWBC and MAAS) identified five distinct phenotypes of wheeze: 

never/infrequent wheeze, early onset preschool remitting, early onset mid-childhood remitting, 

persistent, and late-onset wheeze (full details on the analysis can be found in reference 34). For 

each individual, the latent class analysis provided probabilities of belonging to each wheeze 

phenotype. In this analysis, each individual was categorised to their most probable wheeze 

phenotype. The ability for the models to predict these distinct wheeze phenotypes was then 

assessed based on the proportion of individuals offered a positive asthma prediction in each 

phenotype group.  

5.2.8.3 Comparison with regression-based methods 

To evaluate the hypothesis that machine learning methods may offer more accurate predictions 

of childhood asthma than regression-based methods, the CAPE and CAPP machine learning 

models were directly compared with equivalent logistic regression models developed using the 

same predictors. Where data was available in the IOWBC, the performance of the machine 

learning models were also compared against their existing regression-based benchmark models. 

5.2.8.3.1 Derivation of equivalent logistic regression models for the CAPE and CAPP models 

To directly compare if the use of more complex machine learning algorithms can offer more 

accurate prediction of childhood asthma than regression-based methods, CAPE and CAPP 

equivalent logistic regression models were constructed. The logistic regression equivalent models 
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were developed using the same predictors and training datasets used to construct the CAPE and 

CAPP machine learning models. To construct the logistic regression models, the scikit-learn 

logistic regression algorithm was used (‘lbfgs’ solver)127. No further regularisation of the predictor 

coefficients was applied during the construction of the logistic regression models in order to 

support direct comparison with previously published work.  

5.2.8.3.2 Comparison of the CAPE and CAPP models with current benchmark models 

The developed machine learning models were further compared against currently published 

models. The API, the most widely known asthma prediction tool, was unable to be replicated due 

to the absence of data on blood eosinophil counts in the IOWBC. Of the remaining validated 

models, the PAPS (Persistent Asthma Predictive Score)232 and PARS (Paediatric Asthma Risk 

Score)234 were considered the best performing models comparable with the CAPE and CAPP 

models, offering predictions in early life and at preschool age, respectively. However, PAPS was 

also unable to be replicated as specific IgE tests were not performed in the IOWBC. PARS was able 

to be replicated in both the IOWBC and MAAS. 

Replication of the PARS model in the IOWBC is detailed in Chapter 4, and the same method was 

applied in MAAS (predicting asthma in the IOWBC at age 10: n=913, in MAAS at age 8 years: 

n=552, in MAAS at age 11 years: n=487). First, the performance of the PARS model was compared 

against CAPP based on AUC. Next, among the subset of individuals with predictions from both the 

CAPP and PARS models, differences in predictions made by the two models were compared. In 

the IOWBC, only individuals in the test set (i.e. not used to train the model) were assessed. 

Reclassification tables were used to evaluate the differences in predictions on an individual level, 

for asthmatics and non-asthmatic individuals separately259. The tables present the differences in 

prediction classification using the CAPP model compared to the PARS model. The net proportion 

of individuals reclassified by the CAPP model to a more appropriate prediction group was 

summarized by the net reclassification indices for true future asthmatics and non-asthmatics 

separately (NRIevent and NRInon-event, respectively, Equation 5.1)259:  

𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑃𝑃(𝑢𝑢𝑢𝑢|𝑀𝑀𝑒𝑒𝑀𝑀𝑠𝑠𝑀𝑀) − 𝑃𝑃(𝑦𝑦𝑑𝑑𝑑𝑑𝑠𝑠|𝑀𝑀𝑒𝑒𝑀𝑀𝑠𝑠𝑀𝑀) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑛𝑛𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑃𝑃(𝑦𝑦𝑑𝑑𝑑𝑑𝑠𝑠|𝑠𝑠𝑑𝑑𝑠𝑠 𝑀𝑀𝑒𝑒𝑀𝑀𝑠𝑠𝑀𝑀) − 𝑃𝑃(𝑢𝑢𝑢𝑢|𝑠𝑠𝑑𝑑𝑠𝑠 𝑀𝑀𝑒𝑒𝑀𝑀𝑠𝑠𝑀𝑀) 

Equation 5.1 Calculations to deduce the net reclassification indices for events and non-events  

In the context of this thesis, an event=asthmatic, non-event=non-asthmatic, 

up=reclassified as asthmatic; down=reclassified as non-asthmatic.  



Chapter 5 

 

107 

 

5.2.9 Explaining the “black-box” models 

SHapley Additive exPlanations (SHAP) (detailed in Chapter 2.3.7) were used to evaluate feature 

importance and provide global explanations for how predictions were made by the CAPE and 

CAPP models. Based on the global explanations of each model, the CAPE and CAPP models were 

redeveloped using the subset of features shown to offer the greatest contribution to the model 

predictions. Examples of using SHAP to explain individual predictions were also provided. 

5.3 Results 

In the IOWBC, 1368 individuals had an asthma outcome at age 10 and were included in the study 

(prevalence of asthma at age 10 was 14.69%). Based on data available in the IOWBC, 54 candidate 

predictors corresponding to known risk factors of childhood asthma were extracted across three 

time-points – birth, early life (1 and 2-year follow-ups), and preschool age (four-year follow-up). 

Descriptive statistics and hypothesis testing identified that asthmatic children were significantly 

more likely to be male, have a lower birthweight, be atopic and experience asthma-like symptoms 

both in early life and at preschool age compared to non-asthmatic children in the IOWBC at age 

10 (Table A4). 

5.3.1 Comparability between the IOWBC and datasets used for model development 

Feature selection was performed on individuals with complete data for all candidate features for 

both the early life (n=490 with 39 predictors) and preschool (n=373 with 54 predictors) models. 

Asthma prevalence among those with complete data for each group (14.29% and 14.75%, 

respectively) was similar to the 1368 individuals analysed in the IOWBC (14.69%). 

Both the early life and preschool complete datasets were largely comparable with the total 

IOWBC analysed, based on the hypothesis tests used to compare differences between asthmatic 

and non-asthmatic children in each dataset (Table A4). However, the statistically significant 

differences in gender (X2=5.41, p-value=0.02), birthweight (X2=2.49, p-value=0.01) and early life 

polysensitisation (X2=24.23, p-value<0.01), which were observed between asthmatic and non-

asthmatic children in the total IOWBC analysed, were not observed in either the early life or 

preschool complete datasets. Similarly, in contrast to the total IOWBC analysed, the complete 

preschool dataset showed no statistically significant difference between asthmatic and non-

asthmatic children in terms of eczema or monosensitisation evaluated at age 4. However, as the 
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same trends were reflected in the complete datasets (except birthweight in the preschool 

complete-case dataset), it is likely that the lack of significance observed was due to low statistical 

power. Additionally, in contrast to the total IOWBC analysed, there was a statistically significant 

difference for a history of paternal eczema in the early life complete dataset (X2=5.08, p-

value=0.02). Notably, in both the early life and preschool complete datasets, the proportion of 

asthmatic children with a reported history of maternal asthma was substantially lower than that 

observed in the total IOWBC (7.14%, 5.45% and 14.43%, respectively); however, no significant 

difference was observed between the asthmatic and non-asthmatic individuals in the original 

IOWBC, the early life or preschool complete datasets (Table A4). 

The correlation matrix constructed to assess the candidate features for the presence of 

multicollinearity showed that the majority of features were uncorrelated (Figure A3). Two main 

clusters of highly correlated features were evident. The features within these clusters were 

related to the presence of asthma-like symptoms at the early life and preschool time-points, 

suggesting that individuals demonstrating asthma-like symptoms were likely to have presented 

with multiple symptoms. As expected, as frequent wheeze was used as a surrogate for wheeze 

without cold, these predictors were perfectly correlated (r=1, p<0.01). Some of the features that 

were repeated across multiple time-points were observed to be highly correlated, either 

positively or negatively. For example, individuals whose parents were non-smokers in early life 

were also reported as non-smokers when the child was of preschool-age (r= 0.93, p<0.01). 

5.3.2 Feature selection 

Feature selection using the RFECV method, identified optimal subsets of 8 and 12 features, 

attaining an average cross-validation balanced accuracy score of 65% and 75%, for the early life 

and preschool models, respectively (Figure 5.2, Table 5.1). Six predictors were common between 

the early life and preschool model feature subsets. Predictors of wheeze and cough were both 

represented in the feature subsets, but at the later 4-year follow-up time point for the preschool 

model. Nocturnal symptoms, atopy and polysensitisation were additional features selected for 

the preschool model.
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Figure 5.2 Feature selection using Recursive Feature Elimination for the early life and preschool models 

The optimal set of predictors for inclusion in the early life (A) and preschool (B) models was identified as the subsets of features that reached the highest 

cross-validation balanced accuracy (red line).
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Table 5.1 Predictors selected for inclusion in the early life and preschool models by RFE 

Model Average balanced 
accuracy (%) 

Features (n) 

Early life  
 

64.49 (8) - Maternal age, birthweight, total breastfeeding 
duration, age of solid food introduction, BMI at 1 year, 
early life wheeze, early life cough and maternal 
socioeconomic status 

Preschool  74.93 (12) - Maternal age, birthweight, total breastfeeding 
duration, age of solid food introduction, BMI at 1 year, BMI 
at 4 years, preschool wheeze, preschool cough, preschool 
nocturnal symptoms, preschool atopy status, preschool 
polysensitisation and maternal socioeconomic status 

The Boruta feature selection method identified preschool cough as the only predictive feature for 

the preschool model. For the early life model, no predictive features were selected suggesting 

that none of the candidate features were better than random variables at predicting school-age 

asthma. 

Based on the comparison between the two feature selection methods, RFE was chosen as the 

best feature selection method to support the development of both the early life and preschool 

models. This was primarily due to the lack of features selected as predictive of asthma at age 10 

by the Boruta method. The RFE method was also deemed to be a robust feature selection method 

as the selected feature subsets appeared able to account for collinearity between candidate 

features. For example, the early life and preschool subsets both identified predictors which were 

represented across multiple time-points and sometimes presented to be highly correlated with 

each other; however, when selected, the predictor was only selected at one of the time-points. 

Only BMI was repeated as a predictor in the preschool model, evaluated at both 1 and 4 years. 

Using the in-built feature importance measure of the random forest algorithm, all of the 

candidate features considered for the early life (Table A5) and preschool models (Table A6) were 

ranked by their predictive importance. Rather than just identifying the top ranking features (as 

selected for the early life model), the RFE method appeared to identify a selective subset of 

important features for the preschool model, which together demonstrated the optimal predictive 

performance. 

SHAP summary plots were generated in an attempt to uncover the contribution of each predictor 

selected by RFE for inclusion in the early life and preschool models (Figure 5.3). The random forest 

algorithm and the complete dataset used during RFE were used to generate the plots. Unlike the 
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feature importance attribute of the random forest algorithm, SHAP summary plots provided 

insight into the importance, direction and magnitude of risk associated with each predictor 

included in the models. Based on SHAP, the presence of cough was considered the most 

important predictor in both the early life and preschool models, offering the greatest impact on 

the final classification. This was followed by the presence of other asthma related symptoms and 

markers of atopy (the latter for the preschool model only). There is a clear indication that the 

presence of these predictors contribute towards an individual being predicted as asthmatic. 

Whilst the direction of risk for the other predictors appear less discrete, they still offer some 

insight. For example, in both models, a shorter duration of total breastfeeding appears to offer a 

higher contribution to a prediction of asthma than a longer duration of breastfeeding. 
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Figure 5.3 SHAP feature importance values for the early life and preschool models 

SHAP summary plots of the features selected during RFE for the early life (A) and 

preschool models (B). Predictors are listed in descending order of their SHAP value. 

The higher the SHAP value, the larger its contribution (importance) on model 

predictions. Each dot in each predictor row corresponds to a separate individual. The 

placing of the dot along the x-axis represents the contribution of the predictor in the 

individual’s asthma prediction. The colour of the dot refers to the feature value, with 

higher values coloured red and lower values in blue. For example, early life cough 

offers the highest contribution to the random forest model, with higher values 

(presence of early life cough) having a positive contribution towards a prediction of 

asthma. The absence of early life cough (blue dots) reduces its contribution to the 

model delivering a prediction of asthma. 
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5.3.3 Complete machine learning model development 

Complete data for the eight predictors selected for the CAPE model was available for 765 

individuals. Following the stratified train-test split, 510 (68 asthmatics) and 255 (34 asthmatics) 

individuals were allocated to the initial training and holdout validation sets, respectively. Similarly, 

complete data for the 12 predictors selected for inclusion in the CAPP model was available for 548 

individuals, of whom 365 (51 asthmatics) and 183 (25 asthmatics) individuals were assigned to the 

initial training and holdout validation sets, respectively. 

All eight machine learning algorithms trained on the complete early life training dataset 

demonstrated modest discriminative performance in the holdout validation set, with AUC ranging 

between 0.54 and 0.62 (Figure 5.4A, Table 5.2). Whilst the MLP model demonstrated the best 

performance in terms of AUC and specificity, the model showed significant signs of overfitting, 

unable to correctly identify any future asthmatic children in the validation set (0% sensitivity, PPV 

and F1-score). The random forest model demonstrated the best sensitivity, at 29%. However, the 

decision tree and KNN models each demonstrated the best performance across four different 

performance measures. Whilst the decision tree model reported the best balanced accuracy, NPV, 

LR- and F1 score, the KNN early life model demonstrated the best specificity, PPV, LR+ and overall 

accuracy (Table 5.2). 

In contrast, the preschool models developed using the complete training dataset demonstrated 

superior discriminative ability compared to the early life models, with AUC ranging between 0.61 

and 0.78 in the holdout validation set (Figure 5.4B, Table 5.3). The KNN model performed with the 

best discrimination and specificity. Yet, whilst the linear SVM demonstrated equivalent 

discrimination and comparable specificity (0.92 vs 0.97), its sensitivity was more than double that 

of the KNN model (0.40 vs 0.16, respectively). The SVM using the RBF kernel, decision tree and 

random forest models all demonstrated the best performance in terms of PPV and LR+ (0.50 and 

6.32, respectively). Although these three models reported equivalent PPV, a PPV of 0.5 indicates 

that, of those individuals predicted to have school-age asthma by the model, the probability that 

the individual will actually have asthma is only 50%. In comparison to the other models, the naïve 

Bayes model correctly predicted the most future asthmatic cases and reported the best 

performance across five different performance measures (balanced accuracy, sensitivity, NPV, LR- 

and F1-score) (Table 5.3). 
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Figure 5.4 ROC curves comparing the performance of the early life and preschool models developed using complete training datasets 



Chapter 5 

 

115 

 

Table 5.2 Performance of the eight machine learning algorithms developed using the complete early life training dataset 

 Accuracy Balanced 
Accuracy 

AUC  Sensitivity Specificity  PPV NPV LR+ LR- F1 Score TN, FP, FN, TP a 

SVM (Linear) 0.87 0.50 0.64 0.00 1.00 - 0.87 - 1.00 - 442, 0, 68, 0 

 0.87 0.50 0.58 0.00 1.00 -  0.87 -  1.00 - 221, 0, 34, 0 

SVM (RBF) 0.90 0.65 0.89 0.31 1.00 0.91 0.90 68.25 0.69 0.46 440, 2, 47, 21 

 0.85 0.55 0.59 0.15 0.96 0.36 0.88 3.61 0.89 0.21 212, 9, 29, 5 

SVM (Polynomial) 0.98 0.93 0.97 0.87 1.00 1.00 0.98 - 0.13 0.93 442, 0, 9, 59 

 0.78 0.56 0.54 0.26 0.86 0.23 0.88 1.89 0.86 0.24 190, 31, 25, 9 

Decision Tree 0.99 0.96 1.00 0.91 1.00 1.00 0.99 - 0.09 0.95 442,0, 6,62 

 0.82 0.59 0.59 0.26 0.91 0.31 0.89 2.93 0.81 0.29 201,20, 25,9 

Random Forest 0.92 0.86 0.88 0.78 0.94 0.65 0.97 12.30 0.24 0.71 414, 28, 15,53 

 0.73 0.55 0.56 0.29 0.80 0.19 0.88 1.48 0.88 0.23 177, 44, 21,10 
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 Accuracy Balanced 
Accuracy 

AUC  Sensitivity Specificity  PPV NPV LR+ LR- F1 Score TN, FP, FN, TP a 

Naïve Bayes 0.84 0.65 0.69 0.40 0.91 0.40 0.91 4.28 0.66 0.40 401, 41, 41, 27 

 0.80 0.55 0.60 0.21 0.90 0.23 0.88 1.98 0.89 0.22 198, 23, 27, 7 

MLP 0.88 0.56 0.81 0.13 1.00 0.82 0.88 29.25 0.87 0.23 440,2, 59,9 

 0.85 0.49 0.62 0.00 0.99 0.00 0.87 0.00 1.01 0.00 218,3, 34,0 

KNN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - 0.00 1.00 442, 0, 0, 68 

 0.87 0.54 0.59 0.09 0.99 0.50 0.88 6.50 0.92 0.15 218, 3, 31, 3 

PPV: positive predictive value; NPV: negative predictive value; LR+: positive likelihood ratio; LR-: negative likelihood ratio; AUC=area under the curve. 

Shaded rows report performance in the training set, unshaded rows report performance in the holdout validation set, bold= highest model performance. 
a The final column presents the confusion matrix for the model classifications, where TN=true negatives, FP=false positives, FN=false negatives, TP=true positives.  
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Table 5.3 Performance of the eight machine learning algorithms developed using the complete preschool training dataset 

 Accuracy Balanced 
Accuracy 

AUC  Sensitivity Specificity  PPV NPV LR+ LR- F1 Score TN, FP, FN, TP a 

SVM (Linear) 0.88 0.67 0.86 0.39 0.96 0.63 0.91 10.26 0.63 0.48 302, 12, 31, 20 

 0.85 0.66 0.78 0.40 0.92 0.45 0.91 5.27 0.65 0.43 146, 12, 15, 10 

SVM (RBF) 0.92 0.71 0.90 0.43 1.00 0.96 0.92 135.45 0.57 0.59 312, 2, 29, 22 

 0.86 0.60 0.76 0.24 0.96 0.50 0.89 6.32 0.79 0.32 152, 6, 19, 6 

SVM (Polynomial) 0.98 0.92 0.99 0.84 1.00 1.00 0.98 - 0.16 0.91 314, 0, 8, 43 

 0.83 0.70 0.77 0.52 0.88 0.41 0.92 4.32 0.55 0.46 139, 19, 12, 13 

Decision Tree 0.94 0.79 0.97 0.59 0.99 0.94 0.94 92.35 0.41 0.72 312, 2, 21, 30 

 0.86 0.60 0.61 0.24 0.96 0.50 0.89 6.32 0.79 0.32 152, 6, 19, 6 

Random Forest 0.92 0.73 0.90 0.47 0.99 0.89 0.92 49.25 0.53 0.62 311, 3, 27, 24 

 0.86 0.65 0.74 0.36 0.94 0.50 0.90 6.32 0.68 0.42 149, 9, 16, 9 
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 Accuracy Balanced 
Accuracy 

AUC  Sensitivity Specificity  PPV NPV LR+ LR- F1 Score TN, FP, FN, TP a 

Naïve Bayes 0.86 0.78 0.83 0.67 0.89 0.50 094 6.16 0.37 0.57 280, 34, 17, 34 

 0.83 0.76 0.68 0.68 0.85 0.41 0.94 4.48 0.38 0.52 134, 24, 8, 17 

MLP 0.88 0.74 0.84 0.55 0.93 0.57 0.93 8.21 0.48 0.56 293, 21, 23, 28 

 0.84 0.71 0.77 0.52 0.89 0.43 0.92 4.83 0.54 0.47 141, 17, 12, 13 

KNN 0.90 0.65 0.91 0.31 0.99 0.89 0.90 49.25 0.69 0.46 312, 2, 35, 16 

 0.86 0.56 0.78 0.16 0.97 0.44 0.88 5.06 0.87 0.24 153, 5, 21, 4 

PPV: positive predictive value; NPV: negative predictive value; LR+: positive likelihood ratio; LR-: negative likelihood ratio; AUC=area under the curve. 

Shaded rows report performance in the training set, unshaded rows report performance in the holdout validation set, bold= highest model performance. 
a The final column presents the confusion matrix for the model classifications, where TN=true negatives, FP=false positives, FN=false negatives, TP=true positives. 
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5.3.4 Exploration of model optimisation techniques 

Based on the performance of the early life and preschool models developed using complete 

training datasets, the best performing model was selected to assess whether addressing the 

extent of missing data and class imbalance present in the training datasets could improve the 

predictive performance of the developed models. AUC was the main criteria used to select this 

best performing model. Whilst the preschool linear SVM and KNN models offered equivalent AUC, 

the preschool linear SVM was chosen due its superior sensitivity. 

5.3.4.1 Imputation 

The missForest and MICE imputation methods were first compared on the complete preschool 

training dataset, into which 20% of missing data was randomly introduced. Of the two imputation 

methods compared, the linear SVM developed using the MICE imputed training dataset 

performed most similarly to the linear SVM trained on the complete preschool training dataset – 

classifications on the holdout validation set only differed by one false-positive prediction (Table 

5.4). All performance measures generated through the MICE-imputed strategy were either 

equivalent or marginally inferior to those reported based on the complete data strategy. 

Interestingly, compared to the linear SVM developed using the complete training dataset 

(observed real-world data), the missForest imputed training dataset (containing estimates for 20% 

of the same training dataset) was better able to correctly predict true asthmatics in the validation 

set (also observed real-world data). Furthermore, the linear SVM developed using the missForest 

imputation method demonstrated superior predictive performance in terms of balanced accuracy, 

AUC, sensitivity, NPV, LR- and F1-score compared to both of the models developed using the 

complete or MICE-imputed training datasets (Table 5.4). 

Due to the improvement in predictive performance observed in the holdout validation dataset, 

the missForest imputation method was initially pursued. However, the implementation of the 

preschool linear SVM on the missForest imputed training dataset demonstrated concerning 

performance patterns between the training and holdout sets, whereby the holdout performance 

was consistently higher compared to the training performance (Table 5.5) – an inversion of the 

train-test performance pattern expected of machine learning models. Further investigations 

identified that this train-test performance pattern fluctuated with different splits of the training 

and holdout validation datasets. Consequently, the MICE imputation method appeared to be a 
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more robust imputation method as it generated similar predictive performance to the 

performance observed using the real training data in the complete data analysis. Moreover, the 

inverted train-test performance pattern was not observed. Therefore, the MICE imputation 

method was carried forward for final model development. 



Chapter 5 

 

121 

 

Table 5.4 Comparison of imputation methods using the preschool linear SVM on the complete preschool training dataset 

 Accuracy Balanced 
Accuracy 

AUC  Sensitivity Specificity  PPV NPV LR+ LR- F1 Score TN, FP, FN, TP a 

Complete data 0.88 0.67 0.86 0.39 0.96 0.63 0.91 10.26 0.63 0.48 302, 12, 31, 20 

 0.85 0.66 0.78 0.40 0.92 0.45 0.91 5.27 0.65 0.43 146, 12, 15, 10 

MICE 0. 90 0.70 0.88 0.43 0.97 0.71 0.91 15.05 0.59 0.54 305, 9, 29, 22 

 0.85 0.66 0.77 0.40 0.92 0.43 0.91 4.86 0.65 0.42 145, 13, 15, 10 

missForest 0.88 0.69 0.85 0.41 0.96 0.64 0.91 10.78 0.61 0.50 302, 12, 30, 21 

 0.84 0.74 0.79 0.60 0.87 0.43 0.93 4.74 0.46 0.50 138, 20, 10, 15 

PPV: positive predictive value; NPV: negative predictive value; LR+: positive likelihood ratio; LR-: negative likelihood ratio; AUC=area under the curve. 

Shaded rows report performance in the training set, unshaded rows report performance in the holdout validation set. 
a The final column presents the confusion matrix for the model classifications, where TN=true negatives, FP=false positives, FN=false negatives, TP=true positives. 
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Table 5.5 Implementation of the imputation methods for the preschool linear SVM 

 Accuracy Balanced 
Accuracy 

AUC  Sensitivity Specificity  PPV NPV LR+ LR- F1 Score TN, FP, FN, TP a 

Initial Model 0.88 0.67 0.86 0.39 0.96 0.63 0.91 10.26 0.63 0.48 302, 12, 31, 20 

 0.85 0.66 0.78 0.40 0.92 0.45 0.91 5.27 0.65 0.43 146, 12, 15, 10 

MICE  
Imputation  

0.87 0.64 0.82 0.31 0.97 0.64 0.89 10.32 0.71 0.42 979, 30, 122, 54 

 0.85 0.66 0.81 0.40 0.92 0.45 0.91 5.27 0.65 0.43 146, 12, 15, 10 

MissForest  
Imputation  

0.86 0.62 0.75 0.27 0.97 0.59 0.88 8.17 0.76 0.37 976, 33, 129, 47 

 0.85 0.66 0.79 0.40 0.92 0.45 0.91 5.27 0.65 0.43 146, 12, 15, 10 

PPV: positive predictive value; NPV: negative predictive value; LR+: positive likelihood ratio; LR-: negative likelihood ratio; AUC=area under the curve. 

Shaded rows report performance in the training set, unshaded rows report performance in the holdout validation set. 
a The final column presents the confusion matrix for the model classifications, where TN=true negatives, FP=false positives, FN=false negatives, TP=true positives. 
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5.3.4.2 Imbalanced data 

Regardless of the degree of oversampling applied to the complete training dataset (Table A7), the 

discriminative ability of the preschool linear SVM remained constant (AUC: 0.77-0.79). 

Improvements in F1-score, balanced accuracy, NPV and LR- were observed, however, the main 

benefit offered by oversampling was an improvement in model sensitivity (Figure 5.5, Table 5.6). 

Oversampling offered up to a 36% improvement in sensitivity compared to using the complete 

training dataset without oversampling. However, improvements in model sensitivity were only 

observed after oversampling the number of asthma cases by at least 200%. Specificity did reduce 

by up to 12% upon oversampling, yet this reduction was considered modest compared to the 

observed improvement in sensitivity. 

As the main impact of oversampling was on the sensitivity of the preschool linear SVM, the effect 

of oversampling was similarly assessed on the preschool model that initially demonstrated the 

best sensitivity, the naïve Bayes model (Table 5.3). Interestingly, the improvement in sensitivity 

observed for the preschool linear SVM was not observed for the preschool naïve Bayes model –

only a 4% improvement in sensitivity was observed across all degrees of oversampling. Thus, the 

impact of oversampling the training dataset on model performance appeared to be model 

dependent (Table A8, Figure A4). 

Although oversampling increased the proportion of asthma cases within the training dataset, due 

to the low prevalence of asthma within the IOWBC, even a 300% increase in the number of 

asthma cases (which would result in 75% of asthma cases being synthetic data points) did not fully 

rectify the class imbalance (cases=204 and controls=314, ratio=2:3). Therefore, random 

undersampling of non-asthmatic controls was applied to completely balance the classes in the 

training dataset oversampled by 300% - the model trained on this dataset had demonstrated the 

best overall performance based on a combination of AUC and sensitivity (Table 5.6). Compared to 

the preschool linear SVM developed on the oversampled dataset, the model retrained on the 

oversampled and undersampled dataset (class ratio 1:1) offered improved performance in terms 

of both sensitivity (0.80 vs 0.76) and AUC (0.82 vs 0.78) (Figure 5.6, Table 5.7). For the other 

performance measures (apart from NPV), a modest reduction was observed. 
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Figure 5.5 Effect of oversampling on the performance of the preschool linear SVM 
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Table 5.6 Performance of the preschool linear SVM upon the application of oversampling  

 Accuracy Balanced 
Accuracy 

AUC  Sensitivity Specificity  PPV NPV LR+ LR- F1 Score TN, FP, FN, TP a 

Initial Model 0.88 0.68 0.86 0.39 0.96 0.63 0.91 10.26 0.63 0.48 302, 12, 31, 20 

 0.85 0.66 0.78 0.40 0.92 0.46 0.91 5.27 0.65 0.43 146, 12, 15, 10 

Oversampled 
cases 25% 0.86 0.66 0.85 0.36 0.96 0.66 0.88 9.40 0.67 0.46 302, 12, 41, 23 

 0.85 0.66 0.78 0.40 0.92 0.46 0.91 5.27 0.65 0.43 146, 12, 15, 10 

Oversampled 
cases 50% 0.85 0.67 0.83 0.38 0.96 0.71 0.86 9.86 0.65 0.49 302, 12, 48, 29 

 0.85 0.66 0.77 0.40 0.92 0.46 0.91 5.27 0.65 0.43 146, 12, 15, 10 

Oversampled 
cases 100% 0.83 0.70 0.83 0.44 0.96 0.76 0.84 9.90 0.59 0.56 300, 14, 57, 45 

 0.84 0.65 0.78 0.40 0.91 0.40 0.91 4.21 0.66 0.40 143, 15, 15, 10 

Oversampled 
cases 150% 0.81 0.74 0.83 0.59 0.90 0.69 0.84 5.58 0.46 0.64 281, 33, 53, 75 

 0.78 0.62 0.75 0.40 0.84 0.29 0.90 2.53 0.71 0.33 133, 25, 15, 10 
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 Accuracy Balanced 
Accuracy 

AUC  Sensitivity Specificity  PPV NPV LR+ LR- F1 Score TN, FP, FN, TP a 

Oversampled 
cases 200% 0.90 0.76 0.84 0.63 0.88 0.72 0.83 5.36 0.42 0.67 277, 37, 57, 96 

 0.83 0.75 0.79 0.64 0.85 0.41 0.94 4.40 0.42 0.50 135, 23, 9, 16 

Oversampled 
cases 250% 0.80 0.78 0.86 0.72 0.84 0.72 0.84 4.49 0.34 0.72 264, 50, 51, 128 

 0.80 0.78 0.77 0.76 0.80 0.38 0.96 3.87 0.30 0.51 127, 31, 6, 19 

Oversampled 
cases 300% 0.79 0.78 0.84 0.71 0.84 0.74 0.82 4.46 0.34 0.72 264, 50, 59, 145 

 0.80 0.78 0.78 0.76 0.80 0.38 0.96 3.87 0.30 0.51 127, 31, 6, 19 

PPV: positive predictive value; NPV: negative predictive value; LR+: positive likelihood ratio; LR-: negative likelihood ratio; AUC=area under the curve. 

Shaded rows report performance in the training set, unshaded rows report performance in the holdout validation set. 
a The final column presents the confusion matrix for the model classifications, where TN=true negatives, FP=false positives, FN=false negatives, TP=true positives. 
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Figure 5.6 Effect of oversampling and undersampling on the preschool linear SVM
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Table 5.7 Performance of the preschool linear SVM upon the application of oversampling and random undersampling 

 Accuracy Balanced 
Accuracy 

AUC  Sensitivity Specificity  PPV NPV LR+ LR- F1 Score TN, FP, FN, TP a 

Initial Model 0.88 0.68 0.86 0.39 0.96 0.63 0.91 10.26 0.63 0.48 302, 12, 31, 20 

 0.85 0.66 0.78 0.40 0.92 0.46 0.91 5.27 0.65 0.43 146, 12, 15, 10 

Oversampled cases 
300% 0.79 0.78 0.84 0.71 0.84 0.74 0.82 4.46 0.34 0.73 264, 50, 59, 145 

 0.80 0.78 0.78 0.76 0.80 0.38 0.96 3.87 0.30 0.51 127, 31, 6, 19 

Oversampled 300%, 
undersampled  0.78 0.78 0.85 0.80 0.77 0.78 0.79 3.47 0.26 0.79 157, 47, 41, 163 

 0.74 0.77 0.82 0.80 0.73 0.32 0.96 3.01 0.27 0.46 116, 42, 5, 20 

PPV: positive predictive value; NPV: negative predictive value; LR+: positive likelihood ratio; LR-: negative likelihood ratio; AUC=area under the curve. 

Shaded rows report performance in the training set, unshaded rows report performance in the holdout validation set. 
a The final column presents the confusion matrix for the model classifications, where TN=true negatives, FP=false positives, FN=false negatives, TP=true positives. 
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5.3.4.3 Implementation of optimisation strategies for final model development 

The application of imputation, oversampling and random undersampling all demonstrated 

improvements in predictive performance compared to the preschool linear SVM initially 

developed using the complete training dataset. Therefore, as described in Chapter 5.2.5, all three 

training optimisation strategies were implemented for the selection of the final early life (CAPE) 

and preschool (CAPP) models. Due to computational constraints, and supported by its suboptimal 

performance compared to the other machine learning algorithms developed using the complete 

training datasets, the polynomial SVM was not carried forward for model redevelopment. In 

general, the preschool models which were developed offered improved performance (AUC 

ranged from 0.16-0.84) compared to the early life models (AUC ranged from 0.42-0.71) (further 

detail available at: https://doi.org/10.5258/SOTON/D1943).  

5.3.5 Childhood Asthma Prediction in Early-life (CAPE) Model 

The best performing early life model selected as the CAPE model was developed using an SVM 

classifier (RBF kernel, C=45.1 and gamma=0.005), trained on the complete early life training set, 

undersampled to balance class proportions (n=136, 68 asthmatics and 68 non-asthmatics). The 

model performed with an AUC=0.71 and Brier score=0.21 (Figure 5.7). Based on the threshold cut-

off that maximised the Youden’s Index (threshold=0.42), classifications of asthma and no asthma 

were made and performance measures evaluated (Table 5.8). Based on this threshold, the CAPE 

model demonstrated moderate predictive power, with 71% accuracy balanced between the two 

classes, 74% sensitivity and 68% specificity in the early life holdout validation set. However, the 

model offered low PPV (26%), suggesting that a large number of false positive predictions were 

common. 

5.3.5.1 External validation of the CAPE model 

In MAAS, 1018 and 898 individuals had a defined asthma outcome at ages 8 and 11, respectively. 

The distribution of predictor data was largely similar between the IOWBC and MAAS (Table A9). 

However, a smaller proportion of individuals in MAAS were reported to have frequent wheeze in 

early life or at preschool age compared to in the IOWBC, likely due to discrepancies in the 

definitions used between the two cohorts. Individuals in MAAS were also more likely to have 

mothers with higher socioeconomic status compared to those in the IOWBC; this difference 
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between cohorts may stem from individuals in the MAAS cohort being recruited from an affluent 

area186.  

To predict the development of asthma at the 8-year and 11-year time-points in MAAS, complete 

data on the eight CAPE predictors was available for 322 and 299 individuals, respectively. The 

CAPE model demonstrated moderate generalisability, maintaining an AUC of 0.71 at both 8 and 

11 years in the unselected MAAS cohort (Table 5.8, Figure 5.7). Although the model showed good 

generalisability overall, up to a 7-9% reduction in PPV was observed at the same classification 

threshold evaluated in the IOWBC. Similarly, in the high-risk subgroups, despite a 3-4% increase in 

PPV, overall predictive performance decreased (Table 5.8).  

5.3.6 Childhood Asthma Prediction at Preschool-age (CAPP) Model 

The best performing classification algorithm selected as the CAPP model was an SVM classifier 

(linear kernel, C=0.33), trained on the complete preschool training dataset, with asthmatic cases 

oversampled by 300% and non-asthmatic controls undersampled to balance class proportions 

(n=408, 204 asthmatics, 204 non-asthmatics). This preschool model performed with an AUC of 

0.82 and Brier score of 0.18 (Figure 5.7). Based on the threshold cut-off that maximised the 

Youden’s Index (threshold=0.73), classifications of asthma and no asthma were made and 

performance measures evaluated (Table 5.9). Using this classification threshold, the CAPP model 

offered good predictive power, with 80% accuracy balanced between the two classes, 72% 

sensitivity and 88% specificity in the preschool holdout validation set. Compared to the CAPE 

model, the CAPP model also offered improved PPV (47%). 

5.3.6.1 External validation of the CAPP model 

For validation of the CAPP model in MAAS at the 8-year and 11-year time-points, complete data 

for the 12 CAPP predictors was available for 282 and 267 individuals, respectively. The model 

demonstrated good generalisability in predicting asthma at both 8 and 11 years (AUC=0.83 and 

0.79, respectively) in the unselected MAAS subgroup (Table 5.9, Figure 5.7). PPV also remained 

comparable in MAAS (PPV=0.45 and 0.41, respectively), with further improvements reported in 

the high-risk subgroup validations at both time-points (Table 5.9).
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Table 5.8 Performance of the CAPE model to predict school-age asthma in the IOWBC and MAAS 

 Dataset Sample size 
(# asthmatic) 

Balanced 
Accuracy 

AUC Sensitivity Specificity PPV NPV LR+ LR- F1 Score 

IOWBC:  
10 years 

Training a 136 (68) 0.65 0.76 0.56 0.75 0.69 0.63 2.24 0.59 0.62 

 Testing  255 (34) 0.71 
(0.62-0.78) 

0.71 
(0.61-0.80) 

0.74 
(0.56-0.88) 

0.68 
(0.62-0.74) 

0.26 
(0.21-0.32) 

0.94 
(0.91-0.97) 

2.29 
(1.69-3.01) 

0.39 
(0.18-0.63) 

0.38 
(0.31-0.46) 

MAAS:  
8 years 

Unselected 322 (38) 0.67 
(0.60-0.74) 

0.71 
(0.63-0.79) 

0.84 
(0.71-0.95) 

0.51 
(0.45-0.56) 

0.19 
(0.16-0.21) 

0.96 
(0.93-0.99) 

1.71 
(1.40-2.03) 

0.31 
(0.10-0.57) 

0.30 
(0.26-0.35) 

 Medium-
risk 

208 (31) 0.66 
(0.59-0.73) 

0.71 
(0.61-0.80) 

0.87 
(0.74-0.97) 

0.46 
(0.39-0.53) 

0.22 
(0.19-0.25) 

0.95 
(0.91-0.99) 

1.61 
(1.31-1.95) 

0.28 
(0.06-0.59) 

0.35 
(0.30-0.40) 

 High-risk 81 (16) 0.57 
(0.45-0.67) 

0.64 
(0.47-0.80) 

0.81 
(0.63-1.00) 

0.32 
(0.22-0.43) 

0.23 
(0.18-0.28) 

0.88 
(0.75-1.00) 

1.20 
(0.86-1.56) 

0.58 
(0.00-1.35) 

0.36 
(0.27-0.43) 

MAAS:  
11 years 

Unselected 299 (32) 0.68 
(0.60-0.74) 

0.71 
(0.62-0.79) 

0.84 
(0.72-0.97) 

0.51 
(0.45-0.57) 

0.17 
(0.14-0.20) 

0.96 
(0.94-0.99) 

1.72 
(1.39-2.05) 

0.31 
(0.07-0.58) 

0.28 
(0.24-0.33) 

 Medium-
risk 

192 (25) 0.67 
(0.59-0.74) 

0.71 
(0.62-0.80) 

0.88 
(0.76-1.00) 

0.47 
(0.40-0.54) 

0.20 
(0.17-0.23) 

0.96 
(0.92-1.00) 

1.65 
(1.34-2.03) 

0.26 
(0.00-0.57) 

0.32 
(0.27-0.37) 

 High-risk 72 (12) 0.58 
(0.44-0.69) 

0.60 
(0.43-0.76) 

0.83 
(0.58-1.00) 

0.33 
(0.22-0.45) 

0.20 
(0.15-0.25) 

0.91 
(0.78-1.00) 

1.25 
(0.85-1.66) 

0.50 
(0.00-1.39) 

0.32 
(0.23-0.40) 

a The CAPE model was developed using an SVM classification algorithm using a radial basis function kernel (C=45.1, gamma=0.0054), trained on the complete training 
dataset, with controls under-sampled to obtain a 1:1 class ratio.  
Performance in the IOWBC validation and MAAS test sets are evaluated at thresholds of 0.42. In MAAS, performance was evaluated in the unselected population and 
among medium and high risk subgroups (defined as the child having at least one parent or both parents with allergic disease (asthma, eczema or allergic rhinitis), 
respectively. 
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Table 5.9 Performance of the CAPP models to predict school-age asthma in the IOWBC and MAAS 

 Dataset Sample size 
(# asthmatic) 

Balanced 
Accuracy 

AUC Sensitivity Specificity PPV NPV LR+ LR- F1 Score 

IOWBC:  
10 years 

Training a 408 (204) 0.78 0.85 0.80 0.77 0.78 0.79 3.47 0.26 0.79 

 Testing  183 (25) 0.80 
(0.70-0.89) 

0.82 
(0.71-0.91) 

0.72 
(0.52-0.88) 

0.88 
(0.83-0.92) 

0.47 
(0.38-0.62) 

0.95 
(0.92-0.98) 

5.99 
(3.79-10.11) 

0.32 
(0.13-0.54) 

0.56 
(0.45-0.70) 

MAAS:  
8 years 

Unselected 282 (33) 0.73 
(0.64-0.81) 

0.83 
(0.75-0.90) 

0.55 
(0.36-0.70) 

0.91 
(0.88-0.95) 

0.45 
(0.33-0.59) 

0.94 
(0.92-0.96) 

6.17 
(3.64-10.69) 

0.50 
(0.33-0.69) 

0.49 
(0.36-0.62) 

 Medium-
risk 

178 (26) 0.70 
(0.60-0.80) 

0.80 
(0.70-0.88) 

0.50 
(0.31-0.69) 

0.90 
(0.85-0.95) 

0.46 
(0.32-0.63) 

0.91 
(0.89-0.94) 

5.07 
(2.77-9.95) 

0.55 
(0.34-0.77) 

0.48 
(0.32-0.63) 

 High-risk 70 (13) 0.73 
(0.59-0.87) 

0.80 
(0.62-0.94) 

0.54 
(0.23-0.77) 

0.93 
(0.86-0.98) 

0.64 
(0.40-0.90) 

0.90 
(0.84-0.95) 

7.67 
(2.92-39.46) 

0.50 
(0.24-0.81) 

0.58 
(0.32-0.78) 

MAAS:  
11 years 

Unselected 267 (29) 0.73 
(0.63-0.82) 

0.79 
(0.68-0.88) 

0.55 
(0.38-0.72) 

0.90 
(0.87-0.94) 

0.41 
(0.29-0.55) 

0.94 
(0.92-0.96) 

5.71 
(3.44-9.85) 

0.50 
(0.30-0.71) 

0.47 
(0.33-0.62) 

 Medium-
risk 

169 (22) 0.72 
(0.61-0.82) 

0.76 
(0.61-0.88) 

0.55 
(0.36-0.73) 

0.89 
(0.84-0.94) 

0.43 
(0.29-0.59) 

0.93 
(0.90-0.96) 

5.01 
(2.75-9.65) 

0.51 
(0.30-0.74) 

0.48 
(0.32-0.63) 

 High-risk 64 (10) 0.75 
(0.59-0.90) 

0.73 
(0.47-0.94) 

0.60 
(0.30-0.90) 

0.91 
(0.83-0.98) 

0.55 
(0.31-0.86) 

0.92 
(0.87-0.98) 

6.48 
(2.40-32.40) 

0.44 
(0.11-0.80) 

0.57 
(0.30-0.78) 

a The CAPP model was developed using an SVM classification algorithm using a linear kernel (C=0.33), trained on the complete training dataset, with cases oversampled 
by 300% and controls under-sampled to obtain a 1:1 class ratio.  
Performance in the IOWBC validation and MAAS test sets are evaluated at thresholds of 0.73. In MAAS, performance was evaluated in the unselected population and 
among medium and high risk subgroups (defined as the child having at least one parent or both parents with allergic disease (asthma, eczema or allergic rhinitis), 
respectively.  
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Figure 5.7 ROC curves comparing the performance of the CAPE and CAPP machine learning models, their equivalent regression models and PARS 

Discriminative performance of each model is evaluated in the IOWBC holdout validation sets at age 10 (A) and upon validation in MAAS at age 8 years (B) 

and 11 years (C). 
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5.3.7 Sensitivity analysis 

5.3.7.1 Predicting an alternative asthma definition 

Asthma status, based on the alternative asthma definition incorporating BHR, was available for 

1312 of the 1368 individuals analysed in the IOWBC (prevalence 8.61%). Despite an overall 92.3% 

agreement, there was a statistically significant difference between the two asthma definitions 

(p<0.01). This stemmed from a 97.6% agreement for labelling non-asthmatics but only a 53.8% 

agreement for labelling asthmatics (Figure 5.8). 

A labelled asthma status using the alternative asthma definition was available for 248 out of the 

255 individuals in the CAPE holdout validation dataset (20 asthmatic) and 179 out of the 183 

individuals in the CAPP validation dataset (18 asthmatic). The CAPE and CAPP models were less 

robust to predict the alternative asthma outcome (CAPE AUC=0.67 vs 0.71 and CAPP AUC=0.79 vs 

0.82). The CAPE and CAPP models were robust in correctly predicting non-asthmatics using the 

alternative asthma definition (similar NPV). However, neither model was robust in predicting 

asthmatics. Despite both models demonstrating an increased sensitivity to predict asthmatics, the 

corresponding increase in false positive predictions resulted in the PPV reducing by approximately 

50% for both models, likely due to disagreement between the original and modified asthma 

definitions (Table 5.10, Figure 5.8).  
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Figure 5.8 Agreement between the original and alternative asthma definitions 

Of the 1368 individuals in the IOWBC included in the main study, 1312 individuals 

had their asthma status defined using the two asthma definitions: original definition 

used in the analysis (doctor diagnosis asthma ever and wheeze or use of asthma 

medication in the last 12 months) and an alternative definition (wheeze in the last 12 

months and BHR). Each stacked bar represents the classification of individuals as 

asthmatic (left, n=160) or non-asthmatic (right, n=1152) based on the original asthma 

definition. Each bar shows the proportion of individuals for whom the alternative 

asthma definition assigned the same asthma status (green stacks) or opposing 

asthma status (orange stacks) compared to the original asthma definition. 
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Table 5.10 Performance of the CAPE and CAPP models to predict an alternative definition of school-age asthma 

 Asthma definition a 
(% asthmatic) 

Balanced 
Accuracy 

AUC Sensitivity Specificity PPV NPV LR+ LR- F1 score 

CAPE  IOWBC 
Original (13.3%) 

0.71 
(0.62-0.78) 

0.71 
(0.61-0.80) 

0.74 
(0.56-0.88) 

0.68 
(0.62-0.74) 

0.26 
(0.21-0.32) 

0.94 
(0.91-0.97) 

2.29 
(1.69-3.01) 

0.39 
(0.18-0.63) 

0.38 
(0.31-0.46) 

 IOWBC 
Alternative (8.1%) 

0.70 
(0.62-0.76) 

0.67 
(0.56-0.78) 

0.90 
(0.75-1.00) 

0.49 
(0.43-0.56) 

0.13 
(0.11-0.16) 

0.98 
(0.96-1.00) 

1.77 
(1.44-2.12) 

0.20 
(0.00-0.49) 

0.23 
(0.20-0.27) 

 MAAS 8YR  
Alternative (5.0%) 

0.61 
(0.51-0.68) 

0.69 
(0.55-0.82) 

0.87 
(0.67-1.00) 

0.34 
(0.29-0.40) 

0.07 
(0.05-0.08) 

0.98 
(0.95-1.00) 

1.32 
(1.02-1.57) 

0.39 
(0.00-0.97) 

0.12 
(0.09-0.14) 

 MAAS 11YR 
Alternative (3.0%) 

0.60 
(0.45-0.69) 

0.58 
(0.37-0.75) 

0.86 
(0.57-1.00) 

0.33 
(0.28-0.39) 

0.03 
(0.02-0.04) 

0.99 
(0.97-1.00) 

1.29 
(0.84-1.61) 

0.43 
(0.00-1.34) 

0.06 
(0.04-0.08) 

CAPP IOWBC 
Original (13.7%) 

0.80 
(0.70-0.89) 

0.82 
(0.71-0.91) 

0.72 
(0.52-0.88) 

0.88 
(0.83-0.92) 

0.47 
(0.38-0.62) 

0.95 
(0.92-0.98) 

5.99 
(3.79-10.11) 

0.32 
(0.13-0.54) 

0.56 
(0.45-0.70) 

 IOWBC 
Alternative (10.1%) 

0.77 
(0.68-0.85) 

0.79 
(0.67-0.89) 

0.83 
(0.67-1.00) 

0.71 
(0.64-0.78) 

0.25 
(0.19-0.31) 

0.97 
(0.95-1.00) 

2.92 
(2.11-4.07) 

0.23 
(0.00-0.48) 

0.38 
(0.30-0.46) 

 MAAS 8YR 
Alternative (5.3%) 

0.68 
(0.56-0.78) 

0.70 
(0.57-0.82) 

0.79 
(0.57-1.00) 

0.57 
(0.51-0.63) 

0.09 
(0.07-0.12) 

0.98 
(0.96-1.00) 

1.83 
(1.29-2.39) 

0.38 
(0.00-0.77) 

0.17 
(0.12-0.21 

 MAAS 11YR 
Alternative (2.4%) 

0.71 
(0.53-0.81) 

0.68 
(0.40-0.87) 

0.83 
(0.50-1.00) 

0.58 
(0.52-0.64) 

0.05 
(0.03-0.06) 

0.99 
(0.98-1.00) 

1.98 
(1.15-2.63) 

0.29 
(0.00-0.88) 

0.09 
0.05-0.12) 

a The outcome of school-age asthma was defined as follows: original asthma definition= doctor diagnosis of asthma ever plus the presence of wheeze or use 

of asthma medication in the last 12 months; alternative asthma definition= current wheeze and bronchial hyper-responsiveness. Both asthma outcomes 

were evaluated at age 10 in the IOWBC among in individuals in the respective validation sets for each model. 
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5.3.7.2 Predicting wheeze phenotypes 

In the CAPE and CAPP holdout validation datasets, 213 and 167 individuals had a defined wheeze 

phenotype, respectively. Both models showed excellent power to predict the persistent wheeze 

phenotype, with 100% and 90% of cases correctly identified by the CAPE and CAPP models, 

respectively (Figure 5.9). For external validation in MAAS, 237 and 216 individuals with complete 

predictor and school-age asthma data for the CAPE and CAPP models, respectively, also had a 

defined wheeze phenotype. Among these individuals, the CAPE and CAPP models were able to 

offer a positive prediction to 90% and 57% of individuals with a persistent wheeze phenotype 

(Figure 5.9).
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Figure 5.9 Predictions of wheeze phenotypes using the CAPE and CAPP models 

The proportion of individuals assigned to each wheeze phenotype is presented for 

those offered a negative (non-asthmatic) or positive (asthmatic) prediction by either 

the CAPE (A) or CAPP model (B) in the IOWBC holdout validation datasets. Results 

were externally validated in MAAS for both the CAPE (C) and CAPP (D) models. 
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5.3.7.3 Comparison with regression methods 

Both the CAPE and CAPP models outperformed their equivalent logistic regression models (Table 

5.11, Figure 5.7). There was a substantial decline in predictive performance of the CAPE-logistic 

regression model (AUC=0.71 to 0.59), with predictions being no better than chance in MAAS at 8 

and 11 years (AUC=0.47 and 0.49, respectively). Predictive power of the CAPP-logistic regression 

model was also lower compared to the CAPP-machine learning model (AUC=0.82 to 0.76, 

PPV=0.47 to 0.33). 

Whilst the benchmark regression-based model for the CAPE model (Persistent Asthma Predictive 

Score, PAPS)232 was unable to be replicated due to lack of data on key predictors in the IOWBC, 

the model comparable with the CAPP model, PARS (Paediatric Asthma Risk Score)234, was 

replicated in the IOWBC and MAAS. In line with the replication of PARS conducted in Chapter 4, all 

individuals with complete data for the PARS predictors and the asthma outcome were included in 

the analysis (predicting asthma in the IOWBC at age 10: n=913, in MAAS at age 8 years: n=552, in 

MAAS at age 11 years: n=487). PARS demonstrated good predictive power in both the IOWBC and 

MAAS (AUC IOWBC=0.77, MAAS 8YR=0.79, MAAS 11YR=0.76) (Figure 5.7). Positive net 

reclassification indices among individuals with predictions available for both the CAPP and PARS 

models indicate that reclassifications made by the CAPP model offered equal, if not greater, 

accuracy to predict future asthmatics than the PARS model in both the IOWBC (Table 5.12) and 

MAAS (Table 5.13). For example, 32% of true asthmatic individuals who were incorrectly 

predicted as non-asthmatic by PARS were correctly reclassified by the CAPP model in the IOWBC. 
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Table 5.11 Comparison of the CAPE and CAPP models developed using machine learning and traditional logistic regression algorithms 

 Algorithm (dataset) BA AUC Sensitivity Specificity PPV NPV LR+ LR- F1 score 

CAPE  SVM a  
(IOWBC test set) 

0.71 
(0.62-0.78) 

0.71 
(0.61-0.80) 

0.74 
(0.56-0.88) 

0.68 
(0.62-0.74) 

0.26 
(0.21-0.32) 

0.94 
(0.91-0.97) 

2.29 
(1.69-3.01) 

0.39 
(0.18-0.63) 

0.38 
(0.31-0.46) 

 Logistic regression b 
(IOWBC test set) 

0.62 
(0.54-0.71) 

0.59 
(0.48-0.70) 

0.44 
(0.27-0.59) 

0.80 
(0.75-0.85) 

0.25 
(0.17-0.35) 

0.90 
(0.88-0.93) 

2.22 
(1.33-3.43) 

0.70 
(0.49-0.91) 

0.32 
(0.21-0.43) 

 Logistic regression  
(MAAS 8YR) 

0.60 
(0.52-0.68) 

0.47 
(0.36-0.59) 

0.39 
(0.24-0.55) 

0.80 
(0.75-0.85) 

0.21 
(0.13-0.29) 

0.91 
(0.89-0.93) 

2.00 
(1.15-3.02) 

0.75 
(0.55-0.96) 

0.28 
(0.17-0.38) 

 Logistic regression  
(MAAS 8YR) 

0.58 
(0.50-0.67) 

0.49 
(0.36-0.61) 

0.38 
(0.22-0.53) 

0.79 
(0.74-0.84) 

0.18 
(0.10-0.25) 

0.91 
(0.89-0.94) 

1.79 
(0.96-2.84) 

0.79 
(0.57-1.01) 

0.24 
(0.14-0.34) 

CAPP 
SVM c 

0.80 
(0.70-0.89) 

0.82 
(0.71-0.91) 

0.72 
(0.52-0.88) 

0.88 
(0.83-0.92) 

0.47 
(0.38-0.62) 

0.95 
(0.92-0.98) 

5.99 
(3.79-10.11) 

0.32 
(0.13-0.54) 

0.56 
(0.45-0.70) 

 Logistic regression d 
(IOWBC test set) 

0.77 
(0.68-0.85) 

0.76 
(0.63-0.88) 

0.80 
(0.64-0.96) 

0.74 
(0.67-0.80) 

0.33 
(0.26-0.41) 

0.96 
(0.93-0.99) 

3.08 
(2.24-4.34) 

0.27 
(0.05-0.50) 

0.47 
(0.38-0.56) 

 Logistic regression  
(MAAS 8YR) 

0.72  
(0.64-0.78) 

0.77 
(0.67-0.85) 

0.82 
(0.70-0.94) 

0.61 
(0.55-0.67) 

0.22 
(0.18-0.26) 

0.96 
(0.94-0.99) 

2.12 
(1.68-2.66) 

0.30 
(0.10-0.52) 

0.35 
(0.29-0.41) 

 Logistic regression  
(MAAS 8YR) 

0.71 
(0.62-0.78) 

0.76 
(0.64-0.86) 

0.79 
(0.66-0.93) 

0.62 
(0.56-0.68) 

0.20 
(0.17-0.25) 

0.96 
(0.93-0.99) 

2.10 
(1.62-2.67) 

0.33 
(0.11-0.59) 

0.32 
(0.26-0.39) 

The CAPE and CAPP machine learning and equivalent logistic regression models were evaluated at age 10 in the IOWBC, in individuals in the respective holdout 

validations sets for each model. Validation in MAAS was performed to evaluate the prediction of asthma at 8 years (MAAS 8YR) and 11 years (MAAS 11YR). Performance 

measures were evaluated at the optimal model thresholds, which maximised the Youden’s Index: a=0.42, b=0.48, c=0.73, d=0.42. 
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Table 5.12 Reclassification table comparing changes in prediction categorisation between the PARS and CAPP models in the IOWBC 

  Predicted risk (CAPP model)   Reclassified by CAPP (%) 

Predicted risk  

(PARS model) 
No asthma  Asthma Total 

  
Increased risk Decreased risk 

Correctly 
reclassified 

NRI 

No asthma at age 10 (n=149) 

No asthma 130 9 b 139       

Asthma 1 a 9 10   9(6%) 1(<1%) 1(<1%) -0.05 

Total 131 18 149           

Asthma at age 10 (n=25) 

No asthma 7 8 a 15       

Asthma 0 b 10 10   8(32%) 0(0%) 8(32%) 0.32 

Total 7 18 25           

        Total 17 1 9   

Reclassification table comparing the change in individual asthma predictions with the CAPP model instead of the PARS model (reference model). For the PARS model, 

categorisations of predictions as asthmatic and non-asthmatic were based on the optimal threshold (cut-off=7) as defined in the original publication234. Results are 

presented separately for individuals who were asthmatic and non-asthmatic at age 10. Values in bold identify the number of individuals who were reclassified into a 

more appropriate (a) or less appropriate (b) risk group by the CAPP model with respect to the risk classifications made by the PARS model. NRI=net reclassification index 

is given separately for true asthmatics and non-asthmatics.
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Table 5.13 Reclassification table comparing changes in prediction categorisation between the PARS and CAPP models in MAAS 

   Predicted risk (CAPP model)   Reclassified by CAPP (%) 

 Predicted risk (PARS model) No asthma  Asthma Total   Increased risk Decreased risk Correctly reclassified NRI 

MAAS 8YR (PARS AUC=0.86 vs CAPP=0.83) 

No asthma 
(n=213) 

No asthma 173 14 b 187   
    

Asthma 21 a 5 26   14(7%) 21(10%) 21(10%) 0.03 
Total 194 19 213           

Asthma 
(n=28) 

No asthma 5 7 a 12   
    

Asthma 7 b 9 16   7(25%) 7(25%) 7(25%) 0.00 

Total 12 16 28   21 28 28   

MAAS 11YR (PARS AUC=0.78 vs CAPP=0.79) 

No asthma 
(n=215) 

No asthma 170 14 b 184   
    

Asthma 24 a 7 31   14(7%) 24(11%) 24(11%) 0.05 
Total 194 21 215           

Asthma 
(n=26) 

No asthma 8 7 a 15   
    

Asthma 4 b 7 11   7(27%) 4(15%) 7(27%) 0.12 

Total 12 14 26   21 28 21   

Reclassification table comparing the change in individual asthma predictions with the CAPP model instead of the PARS model (reference model). For the PARS model, 
categorisations of predictions as asthmatic and non-asthmatic were based on the optimal threshold (cutoff=7) as defined in the original publication234. Results are 
presented separately for individuals who were asthmatic and non-asthmatic at ages 8 and 11. Values in bold identify the number of individuals who were reclassified 
into a more appropriate (a) or less appropriate (b) risk group by the CAPP model with respect to the risk classifications made by the PARS model. NRI=net reclassification 
index is given separately for true asthmatics and non-asthmatics. 
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5.3.8 Explaining the “black-box” models 

Based on the SHAP values generated for each model, only a subset of predictors were shown to 

have a major contribution on the predictions – early life cough and wheeze for the CAPE model 

and preschool cough, atopy and polysensitisation for the CAPP model (Figure 5.10). The 

contributions of these predictors over others in the models were reinforced upon the extraction 

of local explanations for individual predictions (examples presented in Figure 5.11). 

Redevelopment of the CAPE and CAPP models, including only those predictors shown to offer 

major contributions to the classifications, showed similar performance for the CAPP model but a 

decline in performance for the CAPE model (10% fall in AUC) (Figure 5.12, Table A10, Table A 11). 
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Figure 5.10 Global interpretations of the CAPE and CAPP models based on SHAP 

The stacked bar plot shows the mean absolute SHAP value of each feature across all samples in the IOWBC validation sets for the CAPE (A) and CAPP (B) 

models. The bars show the impact each feature has on the model offering a prediction of asthma (Class 1 – red bars) and no asthma (Class 0 – blue bars). 

The order of the bars corresponds to the contribution (feature importance) each predictor makes in determining the output of the models (top to bottom = 

highest to lowest contribution).



Chapter 5 

 

145 

 

 

Figure 5.11 Local interpretation of individual predictions made by the CAPE and CAPP models based on SHAP 

Example explanations of the predictions offered by the CAPE (A) and CAPP (B) models for two randomly selected individuals in the IOWBC validation sets are 

shown. (A) The individual was offered a predicted probability (f(x)) of 0.65 for developing school-age asthma at age 10. The plot shows that frequent early 

life wheeze and early life cough positively contributed to increase the probability of the individual being classified as asthmatic. Low maternal 

socioeconomic status, higher than average BMI and earlier than average introduction of solid foods into the diet negatively impacted a prediction of 

asthma, contributing to a reduction in the overall predicted probability of asthma. (B) The individual was offered a predicted probability of 0.72 for 

developing school-age asthma by the CAPP model. Having preschool cough and being both atopic and polysensitised at age 4 contributed to an increase in 

the predicted probability of asthma. The base value is the reference point the feature contributions take effect from and is defined as the prediction that 

would be made for an asthmatic individual if none of the features of the current output were known.
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Figure 5.12 ROC curves comparing the performance of the original and SHAP feature restricted CAPE and CAPP models 

Performance is presented for the CAPE (A) and CAPP (B) models in the IOWBC using all features selected through RFE (dark blue line) and the subset of 

predictors identified as offering the major contributions to model predictions (light blue line) – CAPE= early life cough and wheeze, CAPP= preschool cough, 

atopy and polysensitisation. 
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5.4 Discussion 

5.4.1 Summary of findings 

Two models, predicting school-age asthma at age 10 within the general population of the IOWBC, 

were developed using machine learning classification methods. The CAPE model uses an RBF SVM 

classifier and eight predictors to predict school-age asthma in early life. The CAPP model uses a 

linear SVM classifier and twelve predictors available within the first four years of life. Both 

machine learning models offered superior predictive power and generalisability upon external 

validation compared to equivalent models developed using logistic regression methods as well as 

existing regression-based models. Whilst the primary prediction outcome was school-age asthma, 

both models demonstrated greater sensitivity to predict individuals likely to experience persistent 

wheeze throughout childhood.  

5.4.2 Comparisons with existing models 

To date, twenty-one regression-based prediction models have been developed for childhood 

asthma (reviewed in Kothalawala et al.109 and detailed in Chapter 3), of which only six have been 

externally validated. A recent systematic review further identified 10 studies that developed 

prediction models for childhood asthma using machine learning approaches, but only eight 

specifically predicted school-age asthma (5-14 years)250. Another study published after the review 

directly compared the performance of a current regression-based asthma prediction model 

(PARS) with a conditional inference tree-based decision rule model using the same predictors251. 

However, none of these studies have externally validated the machine learning models which 

they have proposed. 

Similar to the CAPE and CAPP models, most published asthma prediction models are very good at 

ruling out asthma rather than ruling in asthma. This may be due to asthma being inherently highly 

heterogeneous, with the non-specific and transient nature of symptoms used to define asthma 

resulting in frequent misdiagnoses. However, the difficulty for many existing prediction models to 

rule in asthma is also likely a consequence of low study power due to low asthma prevalence109. 

Even if existing models offer good PPV, this often degrades upon validation. Indeed, despite 

having similar asthma prevalence to existing studies in the original training set, the machine 

learning-based CAPP model offered a 30% improvement in sensitivity compared to the best 
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regression model described to date (sensitivity: CAPP=0.72, loose API=0.42)219 and further 10% 

improvement in PPV compared to its benchmark model, PARS. This is consistent with Owora et 

al.’s novel tree-based model offering better predictive performance compared to an equivalent 

regression-based PARS model (AUC=0.85 vs 0.71)251. Many of the other machine learning models 

also demonstrated greater performance to predict asthma than existing regression-based 

models250. However, with low sample sizes and indications of overfitting in many of these studies, 

the lack of external validation renders it impossible to evaluate any superior performance offered 

by these models, especially since they were all developed in high-risk populations.  

Whilst improvements in the CAPE and CAPP models over comparable regression-based models 

may stem from the use of more complex machine learning algorithms, it is important to 

acknowledge that the improved performance may be a result of the optimised training techniques 

that were applied to train and develop the CAPE and CAPP models on balanced datasets. Existing 

models have often been developed using highly imbalanced datasets and failed to address the 

imbalance using resampling methods. The analyses conducted in Chapter 5.3.4.2 highlighted that 

for the same model, the application of oversampling and undersampling has potential to improve 

predictive performance. However, this was also demonstrated to be model dependent. Of the 

asthma prediction models identified to date, only one study addressed the issue of class 

imbalance; in that study, Bose et al. compared a number of undersampling methods but observed 

only marginal improvements in the performance of their machine learning model in their 

dataset258. As class balance techniques have not been applied to studies that have developed 

asthma prediction models using logistic regression methods, it is difficult to ascertain whether the 

improved performance of the CAPE and CAPP models is due to the use of more sophisticated 

methods or merely the use of a dataset that offers a better balance of training opportunities to 

predict each outcome class. 

Within this study, the comparison of the machine learning models with equivalent logistic 

regression models aimed to account for differences in the training dataset and directly compare 

the algorithms used to develop the models. As the CAPP machine learning model was more 

generalisable and retained its positive predictive power upon replication compared to its 

equivalent logistic regression model, it supports the hypothesis that the use of more complex 

machine learning algorithms may be able to address limitations of logistic regression models that 

often struggle to identify true asthmatics and present with modest generalisability.  

Furthermore, reclassification tables comparing the CAPP and PARS models were suggestive of the 

CAPP model being able to predict future asthmatics better than PARS, with a greater proportion 
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of correct reclassifications than incorrect reclassification made by the CAPP model in both IOWBC 

and MAAS. However, this needs to be confirmed within a larger cohort. The moderate but limited 

predictive power of the CAPE model compared to the CAPP model was unsurprising given the 

known difficulty of predicting the future development of childhood asthma in the first few years 

of life2. Yet, using machine learning approaches, the CAPE model was also able to offer improved 

discriminative performance compared to its existing regression-based benchmark model.  

5.4.3 Predictor selection and availability 

Both the CAPE and CAPP models include data collected across multiple time-points. Given the 

variable nature of asthma development and risk throughout early childhood, the consideration of 

predictors across multiple time-points allowed identification of a novel combination of predictors 

that together improved the ability of the models to predict asthma. Whilst data collected across 

multiple time-points may hinder the utility of the prediction models, the selected predictors are 

all typically reported during routine health visits or tracked in child health records. Only the 

predictors of atopy and polysensitisation, which require a SPT, may restrict the applicability of the 

CAPP model in primary care. However, these predictors are well-established in the literature, 

were shown to make large contributions to the predictions (Figure 5.10), and resulted in a 10% 

reduction in AUC when excluded from the model (Table A12). Hence, the predictive benefit 

offered by the inclusion of sensitisation was deemed to outweigh the potential reduction in 

applicability. 

Of the predictors selected for inclusion in the two models, some were well-established risk factors 

with a clear inferred direction of asthma risk (Figure 5.3). Others were predictors which have not 

previously been used in asthma prognostic prediction models and offer a less clear direction of 

asthma risk (maternal age at the time of the child’s birth, age of solid food introduction and total 

breastfeeding duration). The selection of these newly selected predictors, over others that have 

more established biological relevance in the literature (such as parental asthma, eczema or 

allergic rhinitis), may be cautiously accepted by the clinical community. However, RFE identifies 

the subset of features that collectively offer the best predictive accuracy rather than devising a 

comprehensive list of childhood asthma risk factors, which may be biologically sound but lacking 

in predictive power190. In fact, the predictors of wheeze and cough were among those repeatedly 

included in the majority of machine learning models identified to date250. The predictors of atopy, 

polysensitisation and wheeze were also included in Owora et al.’s machine learning model, 

however, in this model, the predictors were taken from the PARS model rather than being 
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identified from an independent feature selection251. It is also important to acknowledge the 

possibility that the selection of these newly selected predictors may stem from an inherent bias of 

the random forest algorithm to assign greater importance to features which are continuous or 

which have a large number of categories260. However, as the CAPE and CAPP models developed 

using these selected predictors demonstrated improved performance against existing prediction 

models, any bias stemming from the feature selection process did not appear to limit the 

inclusion of features that were truly predictive of school-age asthma.  

5.4.4 Prediction generalisability, robustness and resolution 

In the unselected MAAS cohort, the CAPE and CAPP models showed similar performance to 

predict asthma across school ages as observed in the IOWBC (despite the marginal decline in the 

PPV of the CAPE model). Validation in medium and high-risk MAAS subgroups showed the PPV of 

both models to increase with the number of allergic parents, suggesting that confidence in ruling 

in asthma improves in high-risk groups; but replication in a larger study population is required. 

The lack of a clear definition for asthma is an unavoidable limitation in epidemiological studies249. 

The asthma definition used in this study aimed to account for children with a clinical indication of 

asthma (physician diagnosed) who were actively symptomatic, but also those potentially 

asymptomatic at the time of assessment due to the use of symptom-relieving medications. Whilst 

both models were robust in predicting non-asthmatics using the alternative asthma definition of 

wheeze and bronchial hyper-responsiveness (BHR), they had reduced power to predict true 

asthmatics (~50% decline in PPV). The latter may be explained by objective tests, such as 

spirometry and BHR, being influenced by treatment; potential asthmatics on controller 

medications, whom the models are trained to identify as asthmatic, may be considered as non-

asthmatic with the alternative definition, resulting in greater false positive predictions. It is also 

possible that the arbitrary nature of the discrete PC20 cut-off used confirm a positive BHR could 

have censored the resulting asthma diagnoses. For example, upon challenge, some individuals 

may have experienced a substantial decline in FEV1, but if their FEV1 failed to decline past 20%, it 

would not have been possible to calculate the PC20 needed to identify BHR. This limitation in the 

alternative asthma definition may have been avoided if a continuous measure of BHR, such as 

that obtained using a dose-response slope, was used.   

As the aim of this study was to compare whether machine learning approaches could improve 

upon existing regression-based models that predict childhood asthma, the primary prediction 

outcome for this study was restricted to school-age asthma rather than predicting asthma 
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phenotypes. However, acknowledging the importance of exploring specific sub-phenotypes of 

asthma, the resolution of the machine learning models to predict an individual’s childhood 

wheeze trajectory was explored. Notably, both the CAPE and CAPP models showed excellent 

sensitivity to predict individuals with a persistent wheeze phenotype; these individuals would 

likely benefit from early primary or secondary asthma prevention/ management.  

To promote the clinical use of complex machine learning methods, studies must address the 

major hurdle of model interpretability. Studies such as Bose et al.’s have attempted to address 

the issue of model interpretability using feature importance measures that generate an 

importance ranking for the predictors included in the model. However, feature importance is 

limited in that it is unable to offer insight into the direction of the predictor’s effect or provide 

information on how predictors interact to deduce individual predictions. By using SHAP, such 

information was extractable from the CAPE and CAPP “black-box” machine learning models, and 

enabled both global and local explanations of model predictions to be uncovered. 

5.4.5  Strengths and limitations 

This study had a number of strengths. First, each model was developed to make timely 

predictions to identify future asthmatics within a general population, rather than among those 

already considered at high-risk (mainly those experiencing wheeze or with a familial history of 

asthma/allergy). Second, by utilising machine learning methods, new predictors of school-age 

asthma were selected, and the models which were subsequently developed offered improved 

predictive performance over current regression-based methods. Third, to our knowledge, this is 

the first study to externally validate childhood asthma prediction models developed using 

machine learning approaches. The models demonstrated good generalisability to predict school-

age asthma across multiple time-points, without degrading the predictive power to rule in asthma 

(particularly with the CAPP model). Fourth, the two models displayed excellent sensitivity to 

predict a subgroup of individuals with persistent wheeze. Finally, this study used SHAP to address 

one of the key issues preventing the uptake of machine learning methods in clinical practice - the 

inability to interpret the models and explain the individual predictions made261. 

However, this study was limited by both model development and validation being conducted in 

UK birth cohorts with predominantly Caucasian populations, potentially limiting generalisability 

among populations from different genetic and environmental backgrounds. Machine learning also 

requires large datasets – the introduction of more data would undoubtedly improve the 
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performance of the developed machine learning models further. To retain a sample size 

appropriate for machine learning, feature selection was conducted before performing a train-test 

split. This decision could have resulted in information leakage, potentially biasing the 

performance seen in the IOWBC holdout validation sets. To mitigate any bias, external replication 

was performed to evaluate the models– as performance in MAAS was similar to that observed in 

the IOWBC, data leakage was not deemed a significant problem. A valid alternative approach 

would have been to perform a nested cross-validation, enabling all the data to be used for 

training and testing whilst simultaneously obtaining confidence intervals to assess the 

generalisability of the predictions. In addition, as there is no gold standard threshold for asthma 

prediction models, performance measures for the CAPE and CAPP models were evaluated at the 

classification threshold that maximised the Youden’s index. Whilst this is in line with methods 

used among current studies, the threshold cut-off used for classification will impact the 

performance being reported. Hence, until a consensus is reached within the clinical community on 

the most appropriate threshold to use, performance measures stemming from the confusion 

matrix (detailed in Chapter 2.3.6) must be evaluated with an appreciation that different 

thresholds have been used between studies. Finally, whilst genomic data was available in the 

IOWBC, only clinical, environmental and simple biomarker (such as SPTs) predictors were 

considered. It is possible that the consideration of genomic predictors might significantly improve 

childhood asthma predictions further222,256; however, the aim of this study was to explore 

whether machine learning methods could surpass the predictive ceiling that existing logistic 

regression methods appeared to be limited to. Hence, to provide a fair comparison with existing 

regression-based models, asthma genomic biomarkers were not incorporated at this stage of the 

study.  

5.4.6 Conclusion 

Using machine learning, the CAPE and CAPP models were able to surpass the predictive 

performance of similar models developed using traditional regression-based methods. Both 

models were generalisable in an independent population, with the CAPP model also 

demonstrating superior predictive power to rule in true asthmatics compared to its benchmark 

model (and was retained upon validation). Both models also demonstrated excellent sensitivity to 

predict a subgroup of persistent wheezers. Nevertheless, continued exploration of machine 

learning methods, and the identification and integration of novel genomic biomarkers, may offer 

the potential to further improve the prediction of childhood asthma.  
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Chapter 6 Exploration of Childhood Asthma Genomic 

Biomarkers 

6.1 Introduction 

The CAPE and CAPP models developed in Chapter 5 were primarily developed using demographic, 

clinical and environmental predictors of childhood asthma reported in the literature, with some 

predictors shown to offer a large effect on future asthma development (discussed in Chapter 1 

and Chapter 5). Furthermore, to maximise the potential clinical utility of the CAPE and CAPP 

models, only easily collectable and readily available data from health records or patient 

questionnaires was considered261. However, it is well-established that the consideration of 

biomarkers for asthma and allergy can facilitate the diagnosis, prediction and identification of 

asthma phenotypes, as well as aiding drug discovery and directing personalised asthma 

treatment37,262,263. For example, individuals with an early onset allergic asthma phenotype are 

more likely to present with elevated levels of blood eosinophils, serum IgE and FeNO37. Such 

biomarkers can be used as predictive markers to identify future asthmatics (with indications of 

specific asthma endotypes) who would likely benefit from therapeutics directly targeting the 

biological mechanisms that underpin these biomarkers37. For example, omalizumab, the first 

biologic to be approved for the treatment of severe asthma, is a monoclonal antibody which binds 

to circulating IgE; guidelines suggest the drug should be administered specifically to severe allergic 

asthmatics with elevated serum IgE levels and evidenced allergic sensitisation (e.g. through SPTs), 

and be avoided in those presenting with non-allergic asthma phenotypes263. 

A number of existing childhood asthma prediction models have incorporated biomarkers of 

asthma or allergy in the form of SPTs to measure allergic sensitisation, blood tests which measure 

blood eosinophilia; RAST tests (or other assays) to measure specific IgE levels; or FeNO to provide 

an indication of airway inflammation (Table 3.2). One study even assessed whether the addition 

of VOCs from exhaled breath condensates and gene expression data could improve predictions 

made by the original API222. In line with this, biological data in the form of SPTs (the only 

biomarker data collected from individuals up to the 4-year follow-up in the IOWBC which was also 

available in MAAS) was also considered during the development of the CAPE and CAPP models in 

Chapter 5. Indeed, the inclusion of SPTs offered a clear predictive benefit, with the exclusion of 
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predictors derived from SPTs resulting in a 10% reduction in the discriminative performance (AUC) 

of the CAPP model.  

Over the last few decades, advances in omic technologies have furthered the investigation of 

molecular and genomic biomarkers of asthma264. It is well-established that alongside 

environmental factors, there is a large genetic contribution towards the susceptibility of 

developing asthma43,265,266. As discussed in Chapter 1.1.6, genetic studies (from twin and 

candidate gene studies to recent well-powered genome-wide association studies using large 

sample sizes) have identified a multitude of genetic variants significantly associated with asthma, 

including variants which only confer modest effects50,63. Similarly, epigenetic studies, which 

investigate chemical changes to the DNA sequence (methylation or histone modifications) that 

may affect gene expression and potentially explain interactions between genetic and 

environmental factors, have identified differential methylation profiles between asthmatic and 

non-asthmatic individuals267-269 (discussed in Chapter 1.1.6). The identification of genomic markers 

able to differentiate between asthmatic and non-asthmatic individuals from large-scale genome-

wide and epigenome-wide association studies (i.e. GWAS and EWAS to identify disease associated 

SNPs and differentially methylated CpG sites, respectively) have the potential to be combined into 

genomic risk scores and exploited to further evaluate the risk of developing childhood asthma53,63.  

6.1.1 Objectives 

In this chapter, genomic risk scores were developed to predict school-age asthma. Specifically, 

polygenic and epigenetic risk scores were constructed in the IOWBC using available genome-wide 

genotype and methylation data based on previously published lists of SNPs and CpGs found to be 

significantly associated with childhood asthma, respectively. 

In line with the final two aims of this thesis (as described in Chapter 1.4), the performance of each 

genomic risk score to predict school-age asthma was assessed in the IOWBC and independently 

validated MAAS (where data was available) (Aim 6). These genomic risk scores were then 

integrated into the clinical models developed in Chapter 5 to assess whether the addition of 

asthma genomic biomarkers could offer any improvement in predictive performance (Aim 7).  
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6.2 Methods 

6.2.1 Construction of a childhood asthma polygenic risk score 

Of the 924 individuals with genotype data available in the IOWBC (data collection and quality 

control has been described in Chapter 2.1.1.2), 908 individuals had a defined asthma status at age 

10 (141 asthmatic, 767 non-asthmatic) and were used to construct the polygenic risk score (PRS). 

6.2.1.1 Candidate predictors for the PRS 

To construct the PRS, 128 independent SNPs associated with asthma (annotated to 161 asthma 

target genes and 47 gene enriched pathways) were considered. These SNPs were identified from 

a recent study conducted by El-Husseini et al. which provided an updated summary of 

independent SNPs associated with asthma from published GWAS between 2007 and 2019270. In 

brief, SNPs with genome-wide significance (p<5x10-8) were identified and tested for independence 

in European populations using the LDmatrix tool on LDlink271. The study considered SNPs to be 

independent if the linkage disequilibrium (LD) correlation (r2) was less than 0.05.  

The list of 128 SNPs was summarised from a combination of different asthma GWASs. Therefore, 

to construct the PRS specifically for childhood asthma, summary statistics for the 128 SNPs were 

extracted from a single GWAS study recently conducted by Ferreira et al.272. This was the largest 

GWAS that used data from UK Biobank (similar population to the IOWBC and MAAS) to identify 

SNPs associated with the most relevant childhood onset asthma phenotype. SNPs were included 

in the construction of the PRS if genotype data (post quality control) was available in the IOWBC 

and summary statistics were available in Ferreira et al.’s GWAS. Where data for a SNP was 

unavailable in either the IOWBC or within the GWAS summary statistics, the closest proxy SNP in 

high LD (r2>0.8) within the European British in England and Scotland (GBR) population, with data 

available in the IOWBC, was sourced using the LDproxy tool on LDlink273.  

The summary statistic data extracted for each SNP from the GWAS included: i) effect size - to 

weight each SNP in the PRS, and ii) p-value - to determine the inclusion of SNPs in the score using 

the thresholding method. Where proxy SNPs were used, the effect size and p-value of the original 

SNP were used.  
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6.2.1.2 Calculation of the PRS 

The childhood asthma PRS was constructed using the clumping and thresholding method using 

PRSice274 and confirmed using the allele scoring ‘--score’ command in PLINK (version 1.90)208,209. 

For this method, clumping is first performed to ensure that the SNPs which will be included in the 

PRS are independent by grouping nearby SNPs together and removing those in high LD. Next, 

thresholding is the process in which SNPs are included into the score based on whether they are 

below a pre-specified p-value threshold. Using the thresholding method, a number of scores are 

constructed across a range of p-value thresholds and the best score is selected based on a 

specified criteria. For both tools, the PRS was calculated as the sum of an individual’s risk alleles 

weighted by the allele effect size for each SNP as estimated from the GWAS study (Equation 6.1).  

𝑃𝑃𝑁𝑁𝑃𝑃 =  �𝑋𝑋𝑖𝑖𝛽𝛽𝑖𝑖

𝑁𝑁

𝑖𝑖

 

Equation 6.1  Formula for calculating a weighted polygenic risk score 

The PRS is calculated as the sum of all SNPs included in the score (N). For each SNP in 

the PRS (i), the dosage of the risk allele (X) is weighted by its GWAS effect size 

estimate (β).  

By default, PRSice performs clumping and removes SNPs in high LD (r2>0.1) within a 250kb 

window and calculates scores across all possible p-value thresholds. In contrast, when using 

PLINK, the parameters for clumping and thresholding need to be specified. As all SNPs considered 

for the PRS were already deemed independent, in low LD (r2<0.05) with each other, it was not 

necessary to perform clumping as an additional step in PLINK. Furthermore, guided by a tutorial 

on calculating PRSs using PLINK and PRSice, a range of p-value thresholds (p-value<0.001, 0.05, 

0.1, 0.2, 0.3, 0.4, 0.5 and 1.0) were evaluated when using PLINK274. 

To select the best PRS from all the scores calculated from the thresholding method, PRSice uses 

Nagelkerke’s R2 goodness of fit statistic which evaluates how well the score explains the variance 

in the binary phenotype. Whilst Nagelkerke’s R2 was considered, in line with the selection of the 

best CAPE and CAPP models in Chapter 5, the final PRS was selected as the score which offered 

the highest AUC across 2000 bootstrapped samples.  
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6.2.2 Construction of childhood asthma epigenetic risk scores 

Of the 765 individuals in the IOWBC with methylation data collected from Guthrie cards (data 

collection and quality control has been described in Chapter 2.1.1.3), 747 individuals also had a 

defined asthma status at age 10 (124 asthmatic, 623 non-asthmatic) and were used to construct 

the methylation risk score (MRS). 

6.2.2.1 Candidate predictor for the MRS 

To construct the MRS in the IOWBC, CpGs significantly associated with childhood asthma were 

extracted from a recent EWAS meta-analysis for childhood asthma published by Reese et al.267 In 

this study, two separate EWAS meta-analyses for childhood asthma (7-17 years of age) were 

performed. The first was a prospective EWAS which used DNA methylation data from cord blood 

samples (newborn EWAS) whilst the second was a cross-sectional EWAS which used peripheral 

blood samples collected between 7-17 years (childhood EWAS). Two MRSs – a newborn MRS 

(nMRS) and childhood MRS (cMRS) - were constructed using significant CpGs identified from each 

EWAS meta-analysis. Of the 9 CpGs found to be significantly associated with asthma from the 

newborn EWAS, data for only 6 CpGs was available in the IOWBC after pre-processing of the 

methylation data. For the childhood MRS, the EWAS identified 164 CpGs associated with asthma, 

of which 157 has data available in the IOWBC.  

To ensure that only independent CpGs were included in each MRS, the correlation between the 

CpGs considered for each model were evaluated. Due to the skewed distribution at some CpGs, 

Spearman’s rank correlation coefficient was used to evaluate correlation between CpG sites (CpGs 

with R2>0.8 were considered highly correlated). Independence between CpGs was also evaluated 

based on the distance between CpGs and their regional positions if found within the same CpG 

island; studies have identified that nearby CpGs (<2000 base pairs from each other) are often co-

methylated and CpGs found within the same region of a CpG island are suggested to be non-

independent275,276. Where correlated pairs of CpGs were identified, the CpG with the higher p-

value reported from the EWAS meta-analysis was discarded. 

A feature selection of the independent CpGs considered for each MRS was then performed by RFE 

using a random forest algorithm within a 5-fold cross validation. For feature selection, the beta 

values for each CpG were first standardised. In line with the feature selection performed in 

Chapter 5, the optimal subset of CpGs to include in each MRS was selected based on the average 

balanced accuracy score within a stratified five-fold cross-validation.  
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6.2.2.2 Calculation of the MRS 

As no gold-standard method has yet been established for calculating MRSs277, five different 

calculations identified from the literature were compared (Equation 6.2-6.6). For each MRS, the 

best score was selected as the calculation which offered the highest AUC across 2000 

bootstrapped samples.  
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Equation 6.2  MRS 1 

Algorithm as reported by Fernandez-Sanles et al.278. Score is calculated as the sum of 

the beta value (β) multiplied by the effect size as reported in the EWAS meta-analysis 

(w), for all CpGs included in the score (N).  

𝑀𝑀𝑁𝑁𝑃𝑃 2 = #𝑋𝑋 {𝑋𝑋 ∈ 𝑀𝑀} 

Equation 6.3  MRS 2 

Algorithm as reported by Guan et al.279. Score is calculated as the count (#) of the 

number of CpGs (X) that were hypermethylated or hypomethylated (M). A CpG was 

considered hyper (hypo)-methylated if methylation levels were in the upper (lower) 

quartile of the distribution among controls. 
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Equation 6.4  MRS 3 

Algorithm as reported by Yu et al.280, where N denotes the number of CpGs 

considered in the MRS, β is the methylation (beta) value of the CpG and µc and σc are 

the mean methylation (beta) value and standard deviation among non-asthmatic 

controls, respectively. Each CpG in the score was weighted (w), with 

hyper(hypo)methylated CpGs assigned a weight of +1(-1).  
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Equation 6.5  MRS 4 

Algorithm as reported by Yu et al.280, where N denotes the number of CpGs 

considered in the MRS, β is the methylation (beta) value of the CpG and µc and σc are 
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the mean methylation (beta) value and standard deviation among non-asthmatic 

controls, respectively. Each CpG in the score was weighted (w) using the effect size 

reported in the EWAS meta-analysis.  

𝑀𝑀𝑁𝑁𝑃𝑃 5 =  �
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Equation 6.6  MRS 5 

Algorithm as reported by Elliot et al.281, where βi is the methylation (beta) value of 

each CpG, βN is the average effect size across all CpGs and Y denotes the difference 

between the CpG methylation value and the median methylation level reported 

among non-asthmatic controls (reference methylation beta value). For CpGs 

associated with an increased methylation level in asthmatics, Y= beta value – 

reference methylation beta value. For CpGs associated with a decreased methylation 

level in asthmatics, Y= reference methylation beta value –beta value. 

6.2.3 Genomic biomarkers for childhood asthma prediction 

To evaluate the predictive performance of each genomic biomarker, univariable prediction 

models were first developed. Next, the genomic biomarkers were integrated with the CAPE and 

CAPP models developed in Chapter 5 to assess whether the addition of each genomic marker 

could further improve the prediction of childhood asthma.  

6.2.3.1 Univariable genomic prediction models 

Prediction models using machine learning approaches were developed for each genomic risk 

score – a PRS prediction model, a nMRS prediction model and a cMRS prediction model. The same 

method used for the construction of the CAPE and CAPP models in Chapter 5 was applied. 

Individuals with data for each risk score and the asthma outcome were considered for the 

development of each model. The dataset was split into a training and holdout validation set (2:1 

ratio, preserving class proportions). As each model consisted of a single feature (the genomic risk 

score), no feature selection was performed. Models were developed using all 7 machine learning 

algorithms and trained on the complete training dataset as well as the optimised training datasets 

which applied oversampling and/or undersampling to address the class imbalance (strategies i-iii, 

as detailed in Chapter 5.2.5). The model offering the best AUC in the hold-out validation set was 



Chapter 6 

160 

 

considered as the best model. Performance measures were evaluated as described in Chapter 

5.2.6.  

6.2.3.2 Integration of the genomic biomarkers with the CAPE and CAPP models 

The genomic biomarkers were integrated with the clinical models (CAPE/ CAPP) in a stepwise 

manner, whereby the following models were developed: i) clinical model plus PRS; ii) clinical 

model plus nMRS; iii) clinical model plus cMRS; iv) clinical model plus PRS and nMRS; and v) 

clinical model plus PRS and cMRS. The models were integrated by adding the relevant genomic 

risk scores as additional predictors to each clinical model’s existing feature set.  

The integrated CAPE and CAPP models were then retrained using the same algorithm and training 

dataset characteristics as identified in Chapter 5.3.5 and Chapter 5.3.6, respectively. Specifically, 

for each integrated CAPE model, the dataset of individuals with complete data for all features was 

split into a training and hold-out validation set (2:1 ratio, preserving class proportions) and the 

training dataset was undersampled to balance class proportions. In contrast, for each integrated 

CAPP model, the dataset of individuals with complete data for all features was split into a training 

and hold-out validation set (2:1 ratio, preserving class proportions) and the number of cases in 

the training dataset was oversampled by 300% and the number of controls further undersampled 

to balance class proportions. Both sets of integrated models were developed using support vector 

machine algorithms, with the hyperparameters for each model being tuned using a grid search 

(RBF kernel for the integrated CAPE model and linear kernel for the integrated CAPP models). 

6.2.3.3  External validation of the genomic and integrated childhood asthma prediction 

models 

The generalisability of the genomic risk scores and the integrated CAPE and CAPP models was 

assessed in the unselected MAAS cohort. Only individuals with complete data for the predictors in 

each model and the asthma outcome were used in the external validation analyses. 

A PRS was calculated for each individual in MAAS using the SNPs included in the best PRS 

calculated in the IOWBC (described in Section 6.2.1.2). Even if proxy SNPs were used in the 

IOWBC, the presence of the original SNP detailed in the curated list of 128 independent asthma 

SNPs was first evaluated. Where SNPs were unavailable in MAAS, proxy SNPs were sourced as 

detailed in Section 6.2.1.1. If proxy SNPs were unavailable, SNPs with missing data were excluded 

from the cohort’s PRS.  
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The MRSs and their subsequent integrated CAPE and CAPP models were unable to be validated in 

MAAS due to the unavailability of suitable methylation data samples (DNA methylation in MAAS 

was measured in cord blood samples using the Illumina 27K microarray). 

6.3 Results 

6.3.1 Childhood asthma polygenic risk score  

From the list of 128 independent SNPs considered for inclusion in the PRS, GWAS summary 

statistics were unavailable for 3 SNPs. Of the remaining 125 SNPs, data for 105 SNPs were 

available in both the IOWBC and GWAS summary statistics and an additional 11 SNPs were 

accounted for using proxy SNPs, resulting in a total of 116 SNPs available to construct the PRS. In 

total, nine of the 128 SNPs were excluded due to the lack of proxy SNPs in high LD (R2>0.8) being 

available in the IOWBC genotype data. Based on a ranking of the 125 SNPs by GWAS effect size, 

one of the nine excluded SNPs had the largest reported effect size (rs115468973 in HLA-DRB6) – 

the remaining 8 were middle-to-low ranking SNPs (further detail available at: 

https://doi.org/10.5258/SOTON/D1943). 

Using PRSice, multiple scores were evaluated across a range of p-value thresholds. The best 

performing PRS consisted of 105 SNPs, calculated using a p-value threshold of p<0.047 (R2=0.027, 

AUC=0.61) (Table A13, Figure 6.1A-B). Based on this 105-SNP PRS, individuals with asthma had a 

slightly higher mean PRS compared to those without asthma (Figure 6.1C). A quartile plot of all 

908 individuals with a PRS calculated in the IOWBC demonstrated that an increasing PRS was 

associated with an increased risk of developing school-age asthma, with individuals in the highest 

quartile being 2.22 times more likely to develop asthma at age 10 compared to those in the 

lowest quartile (Figure 6.1D). 
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Figure 6.1 Evaluation of the best performing childhood asthma PRS in the IOWBC 

Evaluation of PRSs constructed across a range of p-value thresholds identified a 105-

SNP PRS, including SNPs with p-value less than 0.047, to explain the greatest degree 

of variance in the asthma phenotype (A). Discriminative ability of the 105-SNP PRS is 

presented using a ROC curve (B). The histogram presents the distribution of the PRS 

among asthmatic and non-asthmatic individuals in the IOWBC (C). The quantile plot 

illustrates the risk of developing school-age asthma at age 10 among individuals with 

increasing PRS, with respect to individuals with a PRS in the lowest quartile (D). 
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6.3.2 Childhood asthma methylation risk score  

6.3.2.1 Newborn MRS 

All six candidate CpGs considered for inclusion in the nMRS were deemed to be independent from 

one another - none of the CpGs were highly correlated (Figure A5), within 2000 base pairs from 

each other or found within the same CpG island. Feature selection using RFE selected all six CpGs 

for inclusion in the nMRS, offering the maximal balanced accuracy score of 0.58 (Figure 6.2A). 

Whilst all five calculations described in Table 6.1 offered similar discriminative performance, the 

best nMRS was calculated using MRS 1, achieving an AUC of 0.55 (95% CI: 0.50-0.60). 

6.3.2.2 Childhood MRS 

Of the 157 candidate CpGs considered for inclusion in the cMRS, 22 CpGs were within 2000 base 

pairs of another CpG; of which 12 CpGs were located within the same region of the same CpG 

island as another CpG. However, only one pair of CpGs were found to be highly correlated (r=0.93, 

Figure A6-7). Removal of the CpG with the higher p-value within this correlated pair of CpGs 

resulted in 156 independent CpGs for consideration in the feature selection. RFE selected 110 

CpGs for inclusion in the cMRS, offering a balanced accuracy score of 0.58 (Figure 6.2B). Although 

all five calculations offered similar discriminative performance (Table 6.1), the best cMRS was 

calculated using MRS 2, achieving an AUC of 0.54 (95% CI: 0.49-0.59).  
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Figure 6.2 Feature selection for the identification of CpGs for inclusion in the newborn and childhood methylation risk scores 

The optimal subset of features for inclusion in each model was identified as the subset which offered the best balanced accuracy score (red line). 
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Table 6.1 Performance of the newborn and childhood methylation risk scores calculated using five different equations 

MRS Newborn MRS – 6 CpGs  
AUC (95% CI) 

Childhood MRS – 110 CpGs  
AUC (95% CI) 

1 0.55 (0.50-0.60) 0.53 (0.48-0.59) 

2 0.54 (0.48, 0.59) 0.54 (0.49, 0.59) 

3 0.49 (0.44, 0.55) 0.53 (0.48, 0.59) 

4 0.53 (0.48, 0.59) 0.53 (0.48, 0.59) 

5 0.52 (0.47, 0.58) 0.53 (0.48, 0.59) 

The scores offering the best discriminative performance, and which were used in subsequent analyses, are highlighted in bold.  
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6.3.3 Genomic biomarkers for childhood asthma prediction 

6.3.3.1 PRS machine learning model 

Of the 908 individuals with a PRS, 641 individuals were allocated to the training dataset (16% 

asthmatic) and 267 allocated to the hold-out validation set (16% asthmatic). The best performing 

PRS model was developed using an SVM classifier (linear kernel, C=0.15), trained on the complete 

training dataset, oversampled by 100% and undersampled to balance class proportions (n=412, 

206 asthmatics and 206 non-asthmatics). The model performed with an AUC=0.64 (Figure 6.3). 

Based on the threshold cut-off that maximised the Youden’s Index (threshold=0.53), 

classifications of asthma were made and performance measures evaluated (Table 6.2). Based on 

this threshold, the PRS model demonstrated moderate performance, with good specificity (76%) 

but modest sensitivity (identifying only half of future asthmatics) in the holdout validation set.  

To validate the PRS in MAAS, data was available for 102 of the 105 SNPs included in the PRS (10 

SNPs were accounted for by proxy SNPs, further detail available at: 

https://doi.org/10.5258/SOTON/D1943). 807 and 767 individuals had PRS data and a defined 

asthma status at 8 and 11 years of age, respectively. The PRS model demonstrated good 

generalisability to predict asthma (AUC=0.61) at both ages 8 and 11 in MAAS, offering a similar 

AUC as reported in the IOWBC (Figure 6.3, Table 6.2). 
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Figure 6.3 ROC curves comparing the performance of the univariate PRS machine learning 

model in the IOWBC and MAAS 
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Table 6.2 Performance of the PRS univariable machine learning childhood asthma prediction model in the IOWBC and MAAS 

 Dataset Sample size 
(# asthmatic) 

Balanced 
Accuracy 

AUC Sensitivity Specificity PPV NPV LR+ LR- F1 Score 

IOWBC:  
10 years 

Training 412 (206) 0.56 0.59 0.60 0.52 0.56 0.57 1.25 0.77 0.58 

 Testing  267 (38) 0.65 
(0.56-0.73) 

0.64 
(0.54-0.73) 

0.53 
(0.37-0.68) 

0.76 
(0.71-0.82) 

0.27 
(0.20-0.35) 

0.91 
(0.88-0.94) 

2.23 
(1.48-3.25) 

0.62 
(0.42-0.84) 

0.36 
(0.26-0.45) 

MAAS:  
8 years 

Unselected 807 (110) 0.57 
(0.53-0.62) 

0.61 
(0.56-0.67) 

0.34 
(0.25-0.43) 

0.81 
(0.78-0.84) 

0.22 
(0.16-0.27) 

0.89 
(0.87-0.90) 

1.75 
(1.24-2.33) 

0.82 
(0.71-0.94) 

0.26 
(0.20-0.33) 

MAAS:  
11 years 

Unselected 767 (99) 0.57 
(0.52-0.62) 

0.61 
(0.55-0.67) 

0.33 
(0.25-0.43) 

0.80 
(0.77-0.83) 

0.20 
(0.16-0.26) 

0.89 
(0.87-0.90) 

1.67 
(1.22-2.31) 

0.83 
(0.71-0.94) 

0.25 
(0.19-0.32) 

The PRS univariable model was developed using an SVM classification algorithm using a linear kernel (C=0.15). The model was trained on the complete training dataset, 

with cases oversampled by 100% and controls under-sampled to obtain a 1:1 class ratio.  

Performance measures in the IOWBC holdout validation set and unselected MAAS dataset are evaluated using a classification threshold of 0.53. 

 



Chapter 6 

 

169 

 

6.3.3.2 MRS machine learning models 

Of the 747 individuals with MRSs calculated, 508 were allocated into the training dataset (18% 

asthmatic) and 239 allocated to the hold-out validation set (14% asthmatic). The best performing 

nMRS model was developed using a KNN algorithm (k=9), trained on the complete training set, 

oversampled by 100% and undersampled to balance class proportions (n=360, 180 asthmatics and 

180 non-asthmatics). The model offered modest performance with an AUC=0.57 (Figure 6.4, Table 

6.3). In contrast, a MLP classifier training on the complete training dataset, oversampled 150% 

and undersampled to balance class proportions offered the best performance for the cMRS model 

(AUC=0.63, Figure 6.4, Table 6.3). 

 

Figure 6.4 ROC curves comparing the performance of the univariable MRS machine learning 

models in the IOWBC 
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Table 6.3 Performance of the univariable newborn and childhood MRS machine learning childhood asthma prediction models in the IOWBC 

 Dataset Sample size 
(# asthmatic) 

Balanced 
Accuracy 

AUC Sensitivity Specificity PPV NPV LR+ LR- F1 Score 

Newborn 
MRS 

Training‡ 360 (180) 0.67 0.73 0.70 0.64 0.66 0.68 1.94 0.47 0.68 

 Testing  239 (34) 0.58 
(0.50-0.66) 

0.57 
(0.47-0.66) 

0.74 
(0.56-0.88) 

0.43 
(0.36-0.50) 

0.18 
(0.14-0.21) 

0.91 
(0.86-0.95) 

1.30 
(1.00-1.62) 

0.61 
(0.29-1.00) 

0.29 
(0.23-0.34) 

Childhood 
MRS 

Training‡ 450 (225) 0.59 0.62 0.60 0.58 0.59 0.59 1.44 0.69 0.59 

 Testing  239 (34) 0.61 
(0.52-0.70) 

0.63 
(0.53-0.74) 

0.50 
(0.32-0.68) 

0.71 
(0.65-0.78) 

0.22 
(0.16-0.30) 

0.90 
(0.87-0.93) 

1.74 
(1.13-2.55) 

0.70 
(0.46-0.94) 

0.31 
(0.22-0.41) 

The newborn MRS was developed using a KNN algorithm, trained on the complete training dataset, with cases oversampled by 100% and controls undersampled to 

balance class proportions. The hyperparameters of the model were: 'n_neighbours': 9, 'p': 1, 'weights': 'uniform'. 

The childhood MRS was developed using a MLP algorithm, trained on the complete training dataset, with cases oversampled by 150% and controls undersampled to 

balance class proportions. The hyperparameters of the model were: 'activation': 'tanh', 'alpha': 1e-07, 'hidden_layer_sizes': (6, 6), 'learning_rate': 'constant', 

'learning_rate_init': 0.1, 'solver': 'lbfgs'. 

Performance was evaluated at the classification thresholds that maximised the Youden’s Index (newborn MRS=0.44 and childhood MRS=0.58). 
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6.3.3.3 Integration of genomic biomarkers to the CAPE and CAPP models 

In the IOWBC, individuals with complete data for all predictors included in the integrated models 

were used. For the integration of the PRS with the CAPE model, applying the same characteristics 

to the training dataset (complete training dataset, undersampled to balance class proportions) 

resulted in a very small training dataset unsuitable for model training. Therefore, the number of 

asthma cases was oversampled by 100% prior to undersampling in order to obtain a dataset of 

similar size to the CAPE training dataset detailed in Chapter 5.3.6. 

Overall, for both the CAPE and CAPP models, the integration of each genomic biomarker (either 

individually or in combination) did not significantly improve the discriminative performance of the 

models in the IOWBC (Table 6.4-6.5, Figure 6.5). However, marginal improvement in model 

discrimination was observed for the CAPE model upon the integration of the cMRS (AUC=0.75 vs 

0.71). Similarly, for the CAPP model, marginal improvement was observed upon the integration of 

both the PRS and cMRS (AUC=0.84 vs 0.82). 

Whilst the models integrated with the nMRS or cMRS were unable to be assessed in MAAS, the 

CAPE and CAPP models integrated with the PRS data were able to be replicated (Table 6.4-6.5). 

For the CAPE model, the addition of the PRS resulted in a slight decrease in model performance in 

the holdout validation set, and this was replicated when predicting asthma at age 8 in MAAS. 

When predicting asthma at age 11, the integrated CAPE model demonstrated equivalent 

performance to the original CAPE model (AUC=0.71) (Figure A8). However, for the CAPP model, 

whilst the addition of the PRS resulted in a slight reduction in AUC in the IOWBC holdout 

validation set, slight improvements in AUC were observed when predicting asthma at age 8 (AUC: 

CAPP=0.83 vs CAPP+PRS=0.85) and 11 years in MAAS (AUC: CAPP=0.79 vs CAPP+PRS=0.81) (Figure 

A9). 
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Figure 6.5 ROC curves comparing the performance of all integrated CAPE and CAPP models in the IOWBC 
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Table 6.4 Performance of all integrated CAPE models in the IOWBC and MAAS 

 Dataset Sample size 
(# asthmatic) 

Balanced 
Accuracy 

AUC Sensitivity Specificity PPV NPV LR+ LR- F1 Score 

CAPE Training 136 (68) 0.65 0.76 0.56 0.75 0.69 0.63 2.24 0.59 0.62 

 Testing  255 (34) 0.71 
(0.62-0.78) 

0.71 
(0.61-0.80) 

0.74 
(0.56-0.88) 

0.68 
(0.62-0.74) 

0.26 
(0.21-0.32) 

0.94 
(0.91-0.97) 

2.29 
(1.69-3.01) 

0.39 
(0.18-0.63) 

0.38 
(0.31-0.46) 

 MAAS 
8YR 

322 (38) 0.67 
(0.60-0.74) 

0.71 
(0.63-0.79) 

0.84 
(0.71-0.95) 

0.51 
(0.45-0.56) 

0.19 
(0.16-0.21) 

0.96 
(0.93-0.99) 

1.71 
(1.40-2.03) 

0.31 
(0.10-0.57) 

0.30 
(0.26-0.35) 

 MAAS 
11YR 

299 (32) 0.68 
(0.60-0.74) 

0.71 
(0.62-0.79) 

0.84 
(0.72-0.97) 

0.51 
(0.45-0.57) 

0.17 
(0.14-0.20) 

0.96 
(0.94-0.99) 

1.72 
(1.39-2.05) 

0.31 
(0.07-0.58) 

0.28 
(0.24-0.33) 

CAPE+PRS Training 186 (49) 0.65 0.75 0.61 0.69 0.67 0.64 2.00 0.56 0.64 

 Testing  180 (24) 0.63 
(0.53-0.71) 

0.65 
(0.52-0.76) 

0.75 
(0.58-0.92) 

0.51 
(0.43-0.58) 

0.19 
(0.15-0.23) 

0.93 
(0.88-0.97) 

1.52 
(1.11-1.93) 

0.49 
(0.17-0.88) 

0.30 
(0.23-0.36) 

 MAAS 
8YR 

270 (33) 0.54 
(0.45-0.62) 

0.65 
(0.53-0.77) 

0.70 
(0.55-0.85) 

0.38 
(0.31-0.44) 

0.13 
(0.11-0.16) 

0.90 
(0.85-0.95) 

1.12 
(0.84-1.40) 

0.81 
(0.40-1.29) 

0.23 
(0.18-0.27) 

 MAAS 
11YR 

266 (29) 0.61 
(0.53-0.68) 

0.71 
(0.61-0.80) 

0.83 
(0.69-0.97) 

0.39 
(0.33-0.45) 

0.14 
(0.12-0.17) 

0.95 
(0.91-0.99) 

1.35 
(1.10-1.62) 

0.44 
(0.10-0.83) 

0.24 
(0.20-0.28) 

CAPE+ 
nMRS 

Training 92 (46) 0.72 0.75 0.61 0.83 0.78 0.68 3.50 0.47 0.68 

 Testing  156 (23) 0.70 
(0.60-0.81) 

0.70 
(0.56-0.82) 

0.57 
(0.35-0.78) 

0.83 
(0.77-0.89) 

0.37 
(0.26-0.50) 

0.92 
(0.88-0.96) 

3.41 
(1.99-5.78) 

0.52 
(0.26-0.77) 

0.45 
(0.31-0.59) 
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 Dataset Sample size 
(# asthmatic) 

Balanced 
Accuracy 

AUC Sensitivity Specificity PPV NPV LR+ LR- F1 Score 

CAPE+ 
cMRS 

Training 92 (46) 0.71 0.76 0.59 0.83 0.77 0.67 3.38 0.50 0.67 

 Testing  156 (23) 0.74 
(0.63-0.83) 

0.75 
(0.62-0.86) 

0.65 
(0.43-0.83) 

0.83 
(0.76-0.89) 

0.39 
(0.29-0.52) 

0.93 
(0.90-0.97) 

3.77 
(2.31-6.20) 

0.42 
(0.21-0.67) 

0.49 
(0.35-0.62) 

CAPE+ 
PRS+ nMRS 

Training 140 (70) 1.00 1.00 1.00 1.00 1.00 1.00 - 0.00 1.00 

 Testing  120 (18) 0.64 
(0.53-0.74) 

0.66 
(0.54-0.78) 

0.78 
(0.61-0.94) 

0.50 
(0.40-0.60) 

0.22 
(0.16-0.27) 

0.93 
(0.87-0.98) 

1.56 
(1.11-2.13) 

0.44 
(0.10-0.86) 

0.34 
(0.26-0.42) 

CAPE+ 
PRS+ cMRS 

Training 140 (70) 1.00 1.00 1.00 1.00 1.00 1.00 - 0.00 1.00 

 Testing  120 (18) 0.63 
(0.52-0.72) 

0.63 
(0.49-0.76) 

0.83 
(0.67-1.00) 

0.42 
(0.32-0.52) 

0.20 
(0.16-0.25) 

0.93 
(0.86-1.00) 

1.44 
(1.07-1.85) 

0.40 
(0.00-0.89) 

0.33 
(0.26-0.39) 

Performance of each model was evaluated at the classification thresholds that maximised the Youden’s Index (CAPE+PRS=0.476, CAPE+nMRS=0.52, CAPE+cMRS=0.53, 

CAPE+PRS+nMRS=0.16, CAPE+PRS+cMRS=0.19). 

- Unable to be calculated
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Table 6.5 Performance of all integrated CAPP models in the IOWBC and MAAS 

 Dataset Sample size 
(# asthmatic) 

Balanced 
Accuracy 

AUC Sensitivity Specificity PPV NPV LR+ LR- F1 Score 

CAPP Training‡ 408 (204) 0.78 0.85 0.80 0.77 0.78 0.79 3.47 0.26 0.79 

 Testing  183 (25) 0.80 
(0.70-0.89) 

0.82 
(0.71-0.91) 

0.72 
(0.52-0.88) 

0.88 
(0.83-0.92) 

0.47 
(0.38-0.62) 

0.95 
(0.92-0.98) 

5.99 
(3.79-10.11) 

0.32 
(0.13-0.54) 

0.56 
(0.45-0.70) 

 MAAS 
8YR 

282 (33) 0.73 
(0.64-0.81) 

0.83 
(0.75-0.90) 

0.55 
(0.36-0.70) 

0.91 
(0.88-0.95) 

0.45 
(0.33-0.59) 

0.94 
(0.92-0.96) 

6.17 
(3.64-10.69) 

0.50 
(0.33-0.69) 

0.49 
(0.36-0.62) 

 MAAS 
11YR 

267 (29) 0.73 
(0.63-0.82) 

0.79 
(0.68-0.88) 

0.55 
(0.38-0.72) 

0.90 
(0.87-0.94) 

0.41 
(0.29-0.55) 

0.94 
(0.92-0.96) 

5.71 
(3.44-9.85) 

0.50 
(0.30-0.71) 

0.47 
(0.33-0.62) 

CAPP+PRS Training‡ 304 (152) 0.81 0.90 0.82 0.80 0.81 0.82 4.17 0.22 0.81 

 Testing  134 (19) 0.78 
(0.68-0.87) 

0.79 
(0.63-0.91) 

0.79 
(0.58-0.95) 

0.77 
(0.70-0.85) 

0.37 
(0.28-0.47) 

0.96 
(0.92-0.99) 

3.49 
(2.34-5.45) 

0.27 
(0.07-0.53) 

0.50 
(0.39-0.62) 

 MAAS 
8YR 

239 (29) 0.77 
(0.74-0.83) 

0.85 
(0.77-0.92) 

0.97 
(0.90-1.00) 

0.61 
(0.55-0.68) 

0.25 
(0.22-0.29) 

0.99 
(0.98-1.00) 

2.47 
(2.09-3.00) 

0.06 
(0.00-0.18) 

0.40 
(0.36-0.45) 

 MAAS 
11YR 

238 (27) 0.70 
(0.62-0.78) 

0.81 
(0.72-0.89) 

0.81 
(0.67-0.96) 

0.59 
(0.53-0.66) 

0.20 
(0.17-0.25) 

0.96 
(0.93-0.99) 

2.00 
(1.54-2.57) 

0.31 
(0.06-0.59) 

0.33 
(0.26-0.39) 

CAPP+ 
nMRS 

Training‡ 280 (140) 0.85 0.92 0.82 0.88 0.87 0.83 6.76 0.20 0.85 

 Testing  119 (18) 0.78 
(0.67-0.87) 

0.79 
(0.65-0.91) 

0.83 
(0.67-1.00) 

0.72 
(0.64-0.81) 

0.35 
(0.27-0.44) 

0.96 
(0.92-1.00) 

3.01 
(2.08-4.49) 

0.23 
(0.00-0.50) 

0.49 
(0.39-0.60) 



Chapter 6 

176 

 

 Dataset Sample size 
(# asthmatic) 

Balanced 
Accuracy 

AUC Sensitivity Specificity PPV NPV LR+ LR- F1 Score 

CAPP+ 
cMRS 

Training‡ 280 (140) 0.78 0.87 0.66 0.89 0.86 0.73 6.20 0.38 0.75 

 Testing  119 (18) 0.81 
(0.71-0.90) 

0.82 
(0.69-0.93) 

0.83 
(0.67-1.00) 

0.79 
(0.71-0.87) 

0.42 
(0.33-0.54) 

0.96 
(0.93-1.00) 

4.01 
(2.70-6.47) 

0.21 
(0.00-0.46) 

0.56 
(0.44-0.67) 

CAPP+ 
PRS+ nMRS 

Training‡ 216 (108) 0.81 0.89 0.86 0.76 0.78 0.85 3.58 0.18 0.82 

 Testing  94 (14) 0.83 
(0.71-0.93) 

0.82 
(0.66-0.95) 

0.79 
(0.57-1.00) 

0.88 
(0.80-0.94) 

0.52 
(0.38-0.71) 

0.96 
(0.92-1.00) 

6.29 
(3.52-13.71) 

0.24 
(0.00-0.50) 

0.63 
(0.47-0.79) 

CAPP+ 
PRS+ cMRS 

Training‡ 216 (108) 0.81 0.89 0.77 0.85 0.84 0.79 5.19 0.27 0.80 

 Testing  94 (14) 0.83 
(0.71-0.93) 

0.84 
(0.70-0.95) 

0.79 
(0.57-1.00) 

0.88 
(0.80-0.94) 

0.52 
(0.38-0.70) 

0.96 
(0.92-1.00) 

6.29 
(3.52-13.33) 

0.24 
(0.00-0.50) 

0.63 
(0.47-0.79) 

Performance of each model was evaluated at the classification thresholds that maximised the Youden’s Index (CAPE+PRS=0.38, CAPE+nMRS=0.31, CAPE+cMRS=0.34, 

CAPE+PRS+nMRS=0.59, CAPE+PRS+cMRS=0.60).
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6.4 Discussion 

6.4.1 Summary of findings 

To account for potential genetic and epigenetic contributors that may improve the prediction of 

childhood asthma, a polygenic risk score and two variations of methylation risk scores for 

childhood asthma were developed. Univariable prediction models developed using machine 

learning classification algorithms for each genomic biomarker offered limited predictive ability. 

Furthermore, the integration of genetic and epigenetic risk scores with the CAPE and CAPP 

models did not offer any substantial improvement in predictive power. 

6.4.2 Comparison with existing studies 

A number of studies have used genomic risk scores for the prediction of health outcomes282-284, 

including asthma and other allergic diseases285-288. Specifically for childhood asthma, Spycher et al. 

used SNPs found to be associated with childhood asthma (before 16 years of age) from one of the 

largest childhood asthma GWASs to date (from the GABRIEL consortium) to predict a number of 

asthma and non-asthma related phenotypes289. Whilst the PRS developed for childhood asthma 

unsurprisingly demonstrated poor power to predict non-asthma related phenotypes (high systolic 

blood pressure, high IQ and high body height), the PRS also only demonstrated modest 

performance to predict various asthma and wheeze phenotypes (AUC<0.60). Similarly, Belsky et 

al. also used the GABRIEL Consortium childhood asthma GWAS to construct a 15-SNP PRS among 

individuals enrolled in the Dunedin Multidisciplinary Health and Development Study53. Individuals 

at high genetic risk based on this PRS (above the median PRS value) were more likely to develop 

early onset childhood asthma (before 13 years of age, hazard ratio=1.12 [1.01-1.26]) and be at 

greater risk of developing life-course persistent asthma (onset before age 13 with recurrence up 

to 38 years, risk ratio=1.36 [1.14-163]). Further biological profiling of these asthmatics revealed 

that those at high genetic risk were also more likely to be atopic, have airway hyper 

responsiveness and incomplete reversible airflow, miss school or work due to asthma, and be 

hospitalised due to breathing problems. Despite these trends, this PRS was only able to offer 

moderate discriminative ability to predict future asthma (AUC=0.61). These findings correspond 

with the moderate predictive performance of the childhood asthma PRS constructed in this thesis, 

and may be a result of similar SNPs being included in the PRSs - all three PRSs included SNPs 
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which were annotated to known asthma genes, specifically, the 17q12-21 loci, IL33 and IL1RL1 

genes.  

The construction of epigenetic (specifically methylation) risk scores are a relatively novel area of 

research, with one of the most prominent examples of MRSs being epigenetic clocks, shown to 

outperform other biological predictors of age290,291. MRS have also been used to provide insight 

into environmental factors, such as predicting an individual’s smoking status283,292,293. MRSs have 

further been applied to predict a number of disease outcomes and have demonstrated good 

predictive ability. For example, a 16-CpG MRS offered very good performance to predict 

colorectal cancer (AUC=0.82)294. Similarly, a MRS of 75,000 CpGs demonstrated good 

discriminative ability to predict the development of major depressive disorder six years later, and 

was further shown to outperform a 27-variable clinical, demographic and lifestyle model, a 500–

SNP PRS and a 5-feature biomarker risk score295. In contrast to the good predictive power 

reported by these MRSs, the performance of the nMRS and cMRS developed in this thesis was 

poor. Whilst much of the limited performance of the MRSs likely stems from study limitations 

(discussed in Chapter 6.4.3.2), it is also possible that DNA methylation alone cannot capture the 

heterogeneity of asthma compared to other disease outcomes. As the MRSs described in this 

thesis are the first known MRSs to be developed for asthma, further evaluation of the latter 

explanation was not possible.  

A few studies have explored the integration of different data types in an attempt to improve the 

prediction of disease outcomes280,283,296. For example, Hamilton et al. demonstrated that the 

combination of phenotypic BMI and a MRS for BMI could explain a greater proportion of variation 

across a number of disease biomarkers (e.g. HbA1c, triglyceride levels, high density lipoprotein 

(HDL) cholesterol and HDL ratio) compared to phenotypic BMI data alone296. Similarly, for the 

prediction of lung cancer, the predictive performance based on the number of packs smoked per 

year was significantly improved upon with the addition of either a PRS or MRS, with further 

improvements with the integration of both genomic biomarkers (improvement in AUC from 0.78 

to 0.81, and net reclassification improvement of 14%)280. Interestingly, the incremental 

integration of these different predictors revealed that the addition of the MRS contributed to a 

greater improvement in performance compared to the PRS. This supports the idea that whilst an 

individual’s genetic profile can be predictive of disease, gene-environment interactions (captured 

through changes in DNA methylation levels) can offer significant contributions towards an 

individual’s disease outcome63. However, studies exploring similar joint predictive modelling for 

childhood asthma are limited. Only one known study has explored the joint contribution of a 

genomic risk score with a personal and environmental risk score for childhood asthma61. This 
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study used data from the PIAMA cohort to construct a personal and environmental risk score and 

two PRSs. Whilst one PRS used data for 22 SNPs significantly associated with asthma from a multi-

ancestry GWAS meta-analysis conducted by the Trans-National Asthma Genetic Consortium 

(TAGC); the other PRS used 133 SNPs associated with allergic disease (asthma, eczema or hay 

fever) from a GWAS meta-analysis conducted within the SHARE consortium. Similar to findings 

reported in Chapter 6.3.3.3, the addition of neither PRS was able to significantly improve upon the 

personal and environmental score alone (AUC: personal and environmental score=0.65; addition 

of TAGC PRS=0.66; addition of SHARE PRS=0.65). This lack of predictive improvement was also 

replicated upon validation in the BAMSE cohort. One explanation for the lack of predictive 

improvement offered by the PRS may be due to the genetic contribution to asthma already being 

accounted for by predictors included in the clinical models. Whilst this may be plausible for the 

risk score conducted in the PIAMA cohort which incorporated a predictor of family history, such a 

predictor was not included in the CAPE or CAPP models. Hence, further exploration into this is 

needed. However, it is possible that the lack of predictive improvement may stem from 

limitations of the PRS itself. 

6.4.3 Selection of genomic markers 

6.4.3.1 Genetic variants included in the PRS 

Previously developed asthma PRSs were developed using single large-scale GWAS studies53,61,289. A 

gold standard approach for constructing a PRS with good predictive potential would be to use a 

list of SNPs associated with childhood asthma that has been replicated across a number of GWAS 

studies. However, this is not always feasible due to differences in GWAS studies with respect to 

sample size, study power, asthma definition and population characteristics. Even GWAS studies 

conducted in similar datasets can often be highly affected by small variations in asthma 

definitions or methodology. For example, in 2019 Ferreira et al.272 and Pividori et al.52 

independently conducted similar large-scale GWASs using data from UK biobank to identify 

distinctions between early and adult onset asthma. Ferreira et al. identified 123 SNPs associated 

with childhood onset asthma, defined as a doctor diagnosis of asthma ever before age 19 (98 

SNPs were replicated in a 23andme dataset). In contrast, Pividori et al. identified 61 SNPs 

associated with asthma, of which 23 were specific to childhood onset asthma (defined as a self-

reported doctor diagnosis of asthma before age 12) and 37 were shared between childhood and 

adult onset asthma. Comparing the SNPs identified from these two studies, only 21 of the 98 
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replicated Ferreira et al. SNPs (or 24 of all 123 Ferreira et al. SNPs) were identified in the GWAS 

performed by Pividori et al. Selecting a single large-scale study from existing asthma GWASs to 

construct the PRS in the IOWBC was difficult due to inconsistencies in study characteristics such 

as: asthma definition, the age used to define childhood onset asthma and ethnicity – factors that 

would have undoubtedly affected the GWAS results. Therefore, in order to account for as many 

known genetic variants for asthma as possible, and not limiting findings to a single study, a 

curated list of independent SNPs (specific to European populations) summarised from the 

majority of asthma GWASs reported in the literature270, with effect sizes extracted from a GWAS 

specifically for childhood onset asthma, was deemed most appropriate to use for the construction 

of the PRS in this thesis. This list of independent asthma SNPs has subsequently been annotated 

to 161 asthma target genes and 47 gene enriched pathways. The identified pathways include 

immune pathways well-established in the pathogenesis of asthma, driven by MHC-II, IL22, IL2, IL-

4, IL-33 and IL-1RL1 signalling (a comprehensive evaluation has been reported by El-Husseini et 

al.270). 

Nevertheless, it is important to acknowledge that the limited performance of the PRS may stem 

from weaknesses in SNP selection. Indeed, only 8 of the 116 SNPs considered for the 

development of the PRS were individually significantly associated with childhood asthma in the 

IOWBC; hence, it is probable that the large proportion of non-significant SNPs diluted the 

predictive potential of the significant SNPs. As the list of independent SNPs used to construct the 

PRS was established by summarising findings from GWASs that considered a variety of asthma 

phenotypes (e.g. asthma, childhood onset, adult onset, asthma and other allergic diseases), it is 

possible that SNPs less related to the development of asthma in childhood specifically were 

included in the PRS. Furthermore, given the strong genetic heritability for asthma uncovered from 

twin studies265,266, it is possible that existing asthma GWASs do not fully account for the 

heritability of asthma. Indeed, many of the SNPs identified by existing GWASs are common 

variants, often present in both asthmatic and non-asthmatic individuals. The identification and 

inclusion of rare variants may capture more of the known heritability of asthma and improve the 

discriminative ability of future risk scores64. Additionally, further exploration into methods which 

may account for some of the missing heritability of asthma, such as the exploration into gene-

gene interactions and accounting for the effects of shared environments through familial studies, 

is warranted63,64.  
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6.4.3.2 CpGs included in the MRS 

In contrast to the large number of GWASs conducted for asthma, a recent systematic review 

identified only 16 EWAS studies that have been performed for asthma268. Of the 12 studies 

specific to childhood asthma, only two were performed on sample sizes >150 individuals, 

suggesting that study power is a key limitation of many existing asthma EWASs. Furthermore, 

most studies evaluate DNA methylation levels using cord blood or childhood peripheral or whole 

blood samples, with a few small studies using tissue specifically relevant to the disease such as 

nasal or airway epithelial cells. Unlike genotype data which is largely unchanged throughout an 

individual’s life, methylation levels are changeable, variable across different tissue types and can 

potentially be reversible in response to different environmental exposures297. As a result, the 

source of DNA methylation and the time point at which data was collected is extremely 

important. For example, none of the 9 differentially methylated CpGs identified from Reese et 

al.’s newborn EWAS meta-analysis (prospective EWAS using cord blood samples) were found to 

be significant among the 179 CpGs identified from the childhood EWAS (cross-sectional EWAS 

using peripheral blood samples at 7-17 years)267.  

In the IOWBC, DNA methylation data suitable for school-age asthma prediction purposes was only 

available from Guthrie cards (7 days after birth). However, none of the existing asthma EWASs 

were performed using Guthrie blood samples268. It was also not feasible to conduct a sufficiently 

powered EWAS within the IOWBC due to the low sample size of individuals with DNA methylation 

data in the IOWBC being inappropriate to establish a separate EWAS discovery dataset of 

sufficient size and power. Favouring EWASs using cord blood samples due to Guthrie blood 

samples being collected at a closer time point compared to childhood blood samples was deemed 

inappropriate; correlation analyses indicate that Guthrie blood samples are actually more similar 

to childhood/adult samples than cord blood samples297. Therefore, as the largest asthma EWAS to 

date, with the additional benefit of being a meta-analysis of 9 cohorts part of the PACE 

consortium, the Reese et al. study was used to construct the MRSs in this thesis. In an attempt to 

account for DNA methylation sample inconsistencies, rather than combining significantly 

associated CpGs between the two EWASs, two separate MRS using Guthrie blood samples were 

constructed based on findings from the newborn and childhood EWAS meta-analyses. Significant 

CpGs identified by Reese et al. have been annotated to asthma-related genes such as ACOT7 and 

IL5RA, with genes enriching a number of immune pathways (a comprehensive analysis has been 

reported by Reese et al.267). 
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Unlike with the PRS, where a list of independent SNPs was already available, all significant CpGs 

identified from the EWASs were first evaluated for collinearity before undergoing feature 

selection to identify the optimal subset of CpGs for inclusion in the MRS (in line with a previous 

study by Deng et al.298). Based on Reese et al.’s functional analysis, all 6 CpGs considered for the 

newborn MRS were near a transcription factor binding site267. Of the 179 CpGs identified from the 

childhood EWAS, 113 CpGs were found in DNAse hypersensitivity sites, but only 17 and 34 CpGs 

were localised to CpG islands and promoters, respectively. Whilst the consideration of functional 

CpGs alone, annotated to regulatory regions or transcription sites, was not performed in this 

thesis, it is possible that this could have improved the discriminative performance of the MRSs.  

6.4.4 Construction of the genomic risk scores 

The PRS was developed using the clumping-and-thresholding method, a robust method for 

constructing polygenic risk scores299. As described in Chapter 6.2.1, this method allows for a 

number of scores to be calculated using SNPs associated with the phenotype across a range of 

significance levels before selecting the score at the best p-value threshold (i.e. the score that best 

explains the phenotype of interest). Whilst some studies have advocated that a greater number of 

significant SNPs, if not all genotyped SNPs, should be included into PRSs, it has been suggested 

that the further addition of SNPs (which also confer modest effects individually) does not improve 

the discriminative performance of a PRS289,300,301. Rather than selecting SNPs identified from 

individual SNP tests, the robust selection of associated SNPs derived and replicated in large 

GWASs and/or meta-analyses are most likely to improve the performance of PRSs. It is also 

important to note that other methods for constructing PRSs, such as LDpred and LASSO, have 

been proposed299. Some studies have also suggested that effect size should be leveraged over p-

value when selecting SNPs for inclusion in a PRS302.  

As previously mentioned, the construction of MRSs is a relatively novel field, with no gold-

standard method yet established277. Therefore, a number of methods reported in the literature 

were applied in this study (see Equation 6.2-6.6). Calculating the sum of significant CpGs, 

weighted by their methylation level (beta value) is a method similar to that used to construct the 

PRS. Indeed, this calculation gave rise to the best performing newborn MRS. Interestingly, a 

simpler scoring method that merely weights CpGs based on whether they are 

hyper/hypomethylation gave rise to the childhood MRS with the best discriminative performance. 

Whilst different calculations gave rise to the best newborn and childhood MRSs, it is important to 

acknowledge that all MRS calculations offered very similar performance. The application of other 



Chapter 6 

 

183 

 

methods, such as LASSO, which have already been suggested for PRSs, may hold promise for 

future asthma MRSs277.  

6.4.5 Integration of genomic biomarkers 

To integrate the genomic risk scores with the CAPE and CAPP models, the risk scores were added 

as additional predictors to the models and redeveloped using the same training characteristics as 

the original CAPE and CAPP models. Comparing the performance of the original CAPE and CAPP 

models and the models integrated with the PRS and/or MRSs, the genomic biomarkers did not 

appear to offer any predictive benefit. Whilst this is similar to previous reports that adding genetic 

information does not improve the prediction of childhood asthma61 (previous studies have not 

integrated methylation data to asthma prediction models), it is important to acknowledge 

potential methodological decisions that may have limited model performance. First, the reuse of 

the same training dataset characteristics and classification algorithm that offered the best 

performance for the clinical models may not offer the optimal performance for the newly 

integrated models. Second, the genomic risk scores were integrated with the clinical models by 

simply adding the genomic risk score as an additional predictor in the feature set. A new feature 

selection including the original candidate predictors and the genomic biomarkers may have 

resulted in a different optimal feature subset being selected for the CAPE and CAPP models. 

Furthermore, the simple addition of the genomic predictors to the clinical models was initially 

pursued due to its simplicity and similarity to methods utilised in previous studies61,280. However, 

using a more complex method to combine the clinical and genomic models may have improved 

the performance of the integrated models. For example, a stacked generalisation method, 

combining the CAPE or CAPP machine learning models and the individual genomic biomarker 

machine learning models, could have been adopted to construct a meta-model. Using this 

method, it is suggested that the combined model should perform with equal, if not superior, 

predictive power compared to the best performing single model303,304. In theory, such a method 

would have prevented reductions in model performance that were observed upon the integration 

of the genomic risk scores with the clinical models. Finally, it is possible that the integration of 

both MRSs within the same model could have improved performance. However, in a real-world 

setting, this would require blood samples to be collected at two different time-points. With the 

methodological limitations already discussed and the limited performance of each MRS 

individually, integrating both MRSs with the CAPE and CAPP models (with/without the PRS) was 
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deemed unnecessary and would have been unlikely to have substantially improved model 

performance. 

6.4.6 Strengths and limitations 

Whilst the construction and integration of the genomic risk scores for asthma did not lead to 

significant improvements in the predictive performance of the CAPE and CAPP models developed 

in Chapter 5, the study did have a number of strengths. First, a PRS to predict childhood asthma 

was constructed using a comprehensive list of SNPs summarised across most asthma GWASs to 

date, with performance being replicated in an independent population. Second, this is the first 

known study to construct and evaluate the predictive potential of methylation risk scores for 

childhood asthma using data from a large EWAS meta-analysis. Third, this is also the first known 

study that directly compared different calculations for constructing MRSs and identified that all 

evaluated calculations offered equivalent performance to predict childhood asthma. Fourth, the 

incremental integration of genomic markers with the existing childhood asthma prediction 

models enabled a thorough evaluation of each genomic model’s predictive capability individually 

as well as across all different combinations of data aggregation. The generalisability of these 

integrated models (clinical and genetic data only) was also confirmed in the independent MAAS 

cohort, with models demonstrating similar performance to that displayed in the developmental 

cohort (IOWBC).  

However, this study did have a number of limitations. As previously discussed, the EWAS used to 

select CpGs for inclusion in the MRS was inappropriate due to differences in DNA methylation 

sample collection. Furthermore, DNA methylation data available in MAAS was inappropriate for 

comparison with the methylation data used in the IOWBC; in MAAS, available DNA methylation 

profiles were deduced from cord blood samples using the Illumina 27K microarray (lower 

coverage than the EPIC array). Consequently, none of the MRSs or integrated models using the 

MRSs were able to be replicated. In addition, whilst the PRS was constructed using SNPs 

associated with asthma in European populations, the Reese et al. EWAS used to construct the 

MRSs was performed among individuals of mixed ancestry – it is possible that a EWAS focused on 

European ancestry may have offered better predictions of childhood asthma in the predominantly 

Caucasian IOWBC. Finally, the development of the integrated machine learning models, 

particularly the models that integrated all data types, were limited by sample size. It is possible 

that improvements in asthma prediction with the integration of genetic and methylation risk 

scores may have been observed using larger datasets for model training and validation. 
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6.4.7 Conclusion  

Using data integration approaches, novel genomic risk scores (PRS and two MRSs) for childhood 

asthma were combined with the previously developed CAPE and CAPP models. Whilst machine 

learning models developed for each genomic risk score offered moderate predictive performance 

individually, the integration of genetic and epigenetic data in the form of these genomic risk 

scores were unable to significantly improve upon the performance of the CAPE and CAPP models 

(which were developed using clinical and environmental data alone). Based on these results, the 

clinical application of the genomic biomarkers for asthma prediction appears limited. Future 

research into developing PRSs and MRSs for childhood asthma using datasets of larger sample 

sizes, novel methodologies and more appropriate data sources for CpG selection are warranted. 

Consideration of other omic data, such as transcriptomics and metabolomics, may also improve 

the predictability of childhood asthma282. Furthermore, despite their current limited predictive 

capabilities, genomic biomarkers for predicting childhood asthma may be used to gain further 

research insights. For example, extending research beyond gene-environment interactions, and 

further exploring PRS-environment interactions, may uncover non-linear effects of environmental 

risk factors and subsequently identify patient subgroups that may benefit from precision 

medicine63,305. Consideration of such interaction effects as predictors in future models could 

potentially improve childhood asthma predictions. 
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Chapter 7 Discussion and Future Work 

7.1 Summary of thesis findings 

As discussed throughout this thesis, the ability to predict which children will develop asthma at 

school-age is difficult due to the highly heterogeneous pathophysiology, presentation and risk 

factors of childhood asthma, combined with the use of non-specific definitions of the disease, 

particularly in early life. In line with the aims of this thesis, a number of insights into childhood 

asthma prediction have been identified, with in-depth discussions on the strengths and limitations 

of each analysis detailed within the relevant chapters. 

First, from the systematic review conducted in Chapter 3, an evaluation of existing prediction 

models for childhood asthma was performed. Key challenges that can hinder the development, 

validation and ultimate clinical utility of the childhood asthma prediction models were uncovered, 

leading to a detailed discussion on recommendations for future studies. One recommendation for 

future research was the exploration of novel methods, such as machine learning approaches. 

Although childhood asthma prediction models developed using more complex machine learning 

approaches have recently emerged, the CAPE and CAPP models developed in Chapter 5 are the 

first models developed using machine learning methods to assess model generalisability through 

an external validation in an independent population. These models were able to outperform their 

existing benchmark regression-based models, demonstrate good generalisability to identify true 

future asthmatics and offer excellent sensitivity to predict a subgroup of individuals presenting 

with a persistent wheeze phenotype. This supports future exploration of machine learning 

approaches to improve model performance. However, despite their potential to improve 

predictive performance, complex machine learning algorithms have infrequently been applied in 

medical research due to their reputation as uninterpretable “black-box” models167,168,206. The 

application of SHAP illustrated one potential way to address the issue of model interpretability 

among such “black-box” models, obtaining both global (overall prediction model) and local 

(individual predictions) explanations. 

With the opportunity to further improve the performance of these prediction models through the 

incorporation of asthma biomarkers, genomic risk scores using genotype and methylation data 

were developed in Chapter 6. These genomic risk scores only indicated limited capability to 

predict childhood asthma, with the PRS only able to offer moderate discriminative performance 
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and the first known methylation risk scores for childhood asthma offering modest predictive 

performance (although this was likely due to significant methodological limitations as discussed in 

Chapter 6.4.3.2). The incremental integration of these genomic biomarkers with the CAPE and 

CAPP models further highlighted the limited predictive capability of the genomic risk scores. 

However, whilst these genomic biomarkers were not fruitful in improving asthma predictions 

within this thesis, it is possible that these scores may possess widespread research application, 

with the potential to encourage future personalised asthma research. 

7.2 Implications of thesis findings 

The findings of this thesis could have a number of potential implications for different 

stakeholders.  

7.2.1 For patients and parents 

Whilst it is important to acknowledge that the CAPE and CAPP models developed in this thesis do 

not offer perfect predictive performance, they were able to offer superior performance and 

generalisability compared to existing prediction models for childhood asthma. Therefore, similar 

to the encouraged use of the PARS model234, there is potential for the widespread use of the CAPE 

and CAPP models by parents/carers in the future. The application of these models could provide 

parents insight into their child’s risk of developing childhood asthma and provide explanations of 

what features contributed to each individual’s predicted probability of developing asthma at 

school-age. Although interpretation of these models by parents/carers alone may not result in 

clinical intervention, it is possible that parents, who identify their child to be at high risk of 

developing asthma at school-age, may be more cautious of potential risk factors, or even be 

motivated to alter their lifestyles in an attempt to mitigate their child’s potential risk e.g. by 

reducing their child’s exposure to tobacco smoke and other avoidable sources of environmental 

pollutants.  

However, future use of these models would first require the development of a user-friendly 

online tool. 

7.2.2 For physicians 

Similar to the potential use of the current CAPE and CAPP models by parents, there is potential for 

their use by physicians to identify high-risk individuals for further clinical monitoring, or to target 

asthma management or preventative strategies. However, the limited clinical utility of similar 
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existing prediction models for childhood asthma thus far cannot be ignored. A key reason for this 

is the limited assessment of generalisability among existing models, thus limiting them as 

exploratory studies. In those that have undergone validation, many models show modest 

generalisability with a decline in the ability to identify true future asthmatics. Hence, these 

models are often unable to improve upon predictions made based on a physician’s clinical 

judgement. The CAPE and CAPP models developed using machine learning methods address this 

issue by their ability to offer improved performance over existing models (including the ability for 

the CAPP model to identify true future asthmatics), with these findings being replicated in 

another UK birth cohort. Yet, it is important to acknowledge that these models do not claim to be 

superior to a physician’s clinical judgement. Rather, the clinical use of these models could act as 

unbiased tools which have the potential to support a physician’s decision-making. Similar to 

previous applications of the API224, there is also potential for the CAPE and CAPP models, as well 

as the childhood asthma PRS, to be used to support the identification of high-risk individuals for 

inclusion in clinical trials for therapeutics or prevention studies. 

Furthermore, the ability to trust and understand how predictions were made by a model has been 

a significant hurdle that has specifically hindered the application of “black-box” machine learning 

algorithms in healthcare167,168,206. Through the application of SHAP, a potential method to 

overcome these concerns is presented, hopefully encouraging future exploration of machine 

learning to solve healthcare problems and reinforcing the supportive potential of these models 

for physicians.  

7.2.3 For researchers 

The CAPE and CAPP models developed using machine learning methods demonstrated improved 

performance and generalisability over their regression-based benchmark models. This promotes 

the need for researchers to continue to explore the potential application of machine learning 

approaches for predicting childhood asthma. Limitations of the models developed within this 

thesis also highlight potential areas for improvement.  

Furthermore, the limited performance of the genomic risk scores to predict childhood asthma, 

both alone as well as upon integration with the CAPE and CAPP models, could suggest that 

genotype and methylation data are poor genomic biomarker for childhood asthma. Indeed, with 

existing PRSs for childhood asthma reported to offer similar limited predictive performance53,61,289, 

researchers are guided towards one of three conclusions: i) exploration into different 
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methodologies and the identification of more predictive SNPs (e.g. identifying rare variants, 

performing burden tests or conducting pathway analyses rather than single SNP tests) are needed 

to develop more predictive genetic risk scores; ii) the genetic risk of asthma has already been 

accounted for by predictors in the CAPE and CAPP models; or iii) further research is needed to 

uncover and predict the ‘missing heritability’ of childhood asthma62-64 306. Moreover, despite 

substantial study limitations which may have limited their predictive capability, the development 

of the first MRSs for childhood asthma in this thesis encourages further exploration into novel risk 

scores of different omic datatypes for childhood asthma prediction. The comparison of different 

formula for calculating MRSs also provides researchers with important insight into current 

methodologies for constructing MRSs, specifically due to the novelty of MRSs in medical 

research277. 

7.3 Future work 

The need for further research into machine learning, genomic risk scores and methods of data 

integration for the prediction of childhood asthma is evident and has been previously discussed. 

Alongside previously discussed insights and an acknowledgement of limitations (including time 

restrictions) which may have impacted the work conducted within this thesis, a number of areas 

for future work have been suggested:  

1. Further evaluation of model generalisability 

Particularly if the CAPE and CAPP models are to be considered for widespread use by parents 

and/or physicians in the UK, the assessment of model generalisability within other UK birth 

cohorts would be beneficial. Specifically, the CAPE and CAPP models developed in this thesis were 

derived and validated within cohorts which predominantly consisted of individuals of Caucasian 

ancestry. For a robust assessment of model generalisability, replication of the CAPE and CAPP 

models in populations of different ethnic, environmental (rural/urban living or different countries 

or continents) or genetic backgrounds, is warranted. 

2. Consideration of different machine learning and data integration approaches  

Although a comprehensive list of supervised machine learning algorithms and methods to 

optimise model training were considered during the development of the CAPE and CAPP models, 

it is possible that other machine learning algorithms, such as gradient boosting algorithms, could 

generate more accurate prediction models118,161. Similarly, the exploration of different methods to 

integrate predictors of multiple datatypes may have improved the predictive performance of the 
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models developed in Chapter 6. Such data integration methods could include: model-based 

approaches (e.g. constructing different models for each datatype and developing a final meta-

model using stacked generalisation); concatenation-based approaches (e.g. performing a feature 

selection on a single matrix of all candidate predictors (of all datatypes); or a deep-learning 

approach (e.g. using each hidden layer in a neural network for predictors of a different 

datatype)161,303,307,308.  

3. Exploration and use of better quality datasets 

Whilst the IOWBC used to develop models in this thesis is a good quality dataset of moderate size 

and rich information related to the development of asthma170, limitations in sample size, class 

imbalance and missing data led to compromises in study design which may have resulted in bias 

during feature selection, data leakage between model training and validation, as well as 

suboptimal model training and performance. For future studies to avoid such limitations, datasets 

of larger sample sizes should be used. Furthermore, notable improvements in model performance 

following the application of oversampling and undersampling techniques reinforces the need for 

future studies to actively address the issue of class imbalance, a common problem in healthcare 

datasets. The application of class imbalance techniques in studies developing regression-based 

models is a particularly important area of future research. Without such studies, it will be difficult 

to determine whether the improved performance and generalisability of the CAPE and CAPP 

models developed in this thesis was in fact due to the use of complex machine learning algorithms 

as initially hypothesised, or an artefact of the dataset upon being treated for class imbalance. 

Furthermore, as outlined in Chapter 3, future studies which aim to develop and validate childhood 

asthma prediction models should focus on the use of good quality datasets – datasets of large 

sample sizes, offering rich information in terms of data diversity and completeness, and which use 

standardised definitions for predictors and outcomes of interest would be ideal to support the 

robust development and independent validation of future models. An example of such a dataset 

is the STELAR consortium, a harmonisation of data from five UK birth cohorts (including the 

IOWBC and MAAS)187. The initial plan for this thesis was to undergo model development using 

data from the largest STELAR cohort, the Avon Longitudinal Study of Parents and Children 

(ALSPAC), followed by independent validation to assess model generalisability across the 

remaining four independent STELAR cohort populations.  However, due to challenges with data 

access and time constraints for the completion of this thesis, it was not possible to fulfil this plan. 

Yet, based on the methodology described and optimised within this thesis, there is the potential 
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to exploit the rich dataset of the STELAR consortium to develop new prediction models for 

childhood asthma as well as other allergic diseases.  

4. Further exploration of genomic biomarkers predictive of childhood asthma  

The exploration of genomic risk scores for childhood asthma is in its infancy and warrants further 

research. As previously mentioned, the consideration of novel methods and/or the identification 

of more predictive SNPs will be needed to improve the predictive performance of future PRSs for 

childhood asthma. In addition, due to sampling limitations faced in this thesis, it is likely that 

redevelopment of the MRSs using samples collected at more appropriate time points would 

improve upon the performance of the current childhood asthma MRSs. However, as methylation 

risk scores are relatively novel, with few applications reported in the literature, further 

exploration into methodologies for constructing MRSs is also warranted.  

Future research to improve the predictability of childhood asthma may also include the 

development of risk scores using other omic datatypes which may be capable of discriminating 

between asthmatic and non-asthmatic individuals (e.g. transcriptomics, proteomics and 

metabolomics)264. In addition, future identification and integration of significant genetic-

environment interactions or transgenerational epigenetic signals which may account for some of 

the missing heritability of asthma may be of benefit.  

5. Exploration of a more appropriate prediction outcome – asthma definition, prediction 

metrics, asthma phenotypes 

For any prediction model to be of clinical value, it is important that the purpose and clinical 

relevance of the model is determined, and that appropriate performance metrics and 

classification thresholds are subsequently used to evaluate the ability to predict the outcome of 

interest. For example, the ability for a model to rule in asthma may be preferred if the intended 

goal of a prediction model is to identify all potential future asthmatics (with little risk towards 

those offered false positive predictions). However, if a prediction model is used as part of the 

inclusion criteria for a clinical trial of a preventative intervention with a high risk of adverse 

effects, the ability to rule out non-asthmatics may be preferred in order to minimise unnecessary 

risks towards individuals who may not be asthmatic at school-age. Currently, the performance of 

existing childhood asthma prediction models is often reported at a cut-off based on the Youden’s 

index, however the optimal threshold can vary between models, impairing the direct comparison 

between models. In line with this, clinical and research experts need to provide insight into the 
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appropriate performance metrics to consider in order to facilitate meaningful evaluations of 

individual models and aid comparisons between models. 

In addition, whilst the CAPE and CAPP models were developed to predict childhood asthma, the 

outcome of childhood asthma is difficult to define and identifies a highly heterogeneous group of 

individuals249. Whilst this highlights the need for researchers to collaborate with physicians in 

order to deduce a consensus definition of childhood asthma, there is a strong argument to 

consider asthma, not as a single disease, but as an umbrella term for a number of respiratory 

conditions1. Furthermore, it is possible that well-established risk factors of childhood asthma may 

only be associated with specific subtypes of asthma and/or among individuals with certain profiles 

of genetic risk. These possibilities encourage further exploration into the effect of such 

interactions and for future prediction models to be developed for specific patient subgroups305. 

Therefore, rather than developing an all-encompassing asthma prediction tool, research into 

predicting specific ‘asthmas’ among distinct patient subgroups using machine learning approaches 

may offer greater predictive insight and clinical utility of future childhood asthma prediction 

models. 
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Appendix A Supporting Material 

Table A1 Definitions of the 54 candidate predictors used to develop the asthma prediction 

models  

Candidate predictor Definition 

Family History  

Maternal smoking at birth Maternal smoking status during pregnancy 

Paternal smoking at birth Paternal smoking status during pregnancy 

Maternal asthma Maternal asthma ever  

Maternal eczema Maternal eczema ever  

Maternal hay fever Maternal hay fever status  

Paternal asthma Paternal asthma status  

Paternal eczema Paternal eczema status  

Paternal hay fever Paternal hay fever status  

Parity Position of child in the family 

Maternal socioeconomic status Maternal socioeconomic status  

Prenatal and postnatal  

Maternal age Maternal age at pregnancy 

Prematurity Gestation age 

Delivery Mode of delivery  

Total breastfeeding  Total breastfeeding duration 

Exclusive breastfeeding  Exclusive breastfeeding duration 

Solid food introduction Age, in months, at which solid foods were 
introduced to the child's diet  

Birthweight Birth weight (kg) 

Sex Child's gender 

Season of birth Season at the time of the child’s birth: autumn 
(September-November), winter (December-
February), spring (March-May), summer(June-
August) 

Dog  Household pet dog during pregnancy 

Cat  Household pet cat during pregnancy 

Furry pet  Household furry pet during pregnancy - dog, cat or 
other animal 

Early life (combination of 1-year and 
2-year follow-ups) 

 

SDS BMI  Child's BMI at age 1, standardised against the 
British 1990 growth reference. 
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Wheeze Occurrence of wheezing before age 2 

Wheeze without cold  Likely occurrence of wheezing in the absence of a 
cold before age 2 

Cough Occurrence of cough before age 2 

Nasal symptoms  Occurrence of nasal symptoms before age 2 

Chest infection Occurrence of chest infections before age 2 

Nocturnal symptoms Occurrence of nocturnal asthma symptoms before 
age 2 

Eczema Eczema status by age 2 

Hay fever Hay fever status by age 2 

Atopy Atopy status (sensitisation to one or more 
allergens) by age 2 

Monosensitisation Sensitisation to one allergen by age 2 

Polysensitisation Sensitisation to two or more allergens by age 2 

Parental smoking Household parental smoking status by age 2 

Dog Household pet dog by age 2 

Cat Household pet cat by age 2 

Furry pet Household furry pet (dog, cat or other animal) by 
age 2 

Early life residence on a farm Main residence on a farm in the first year of life 

Preschool age (4-year follow-up)  

SDS BMI  Child's BMI at age 4 (standardised against the 
British Growth Reference) 

Wheeze Occurrence of wheezing at age 4 

Wheeze without cold  Likely occurrence of wheezing in the absence of a 
cold at age 4 

Cough Occurrence of cough at age 4 

Nasal symptoms  Occurrence of nasal symptoms at age 4 

Nocturnal symptoms Occurrence of nocturnal asthma symptoms at age 
4 

Eczema Eczema status at age 4 

Hay fever Hay fever status at age 4 

Atopy Atopy status (sensitisation to one or more 
allergens) at age 4 

Monosensitisation Sensitisation to one allergen at age 4 

Polysensitisation Sensitisation to two or more allergens at age 4 

Parental smoking Household parental smoking status at age 4 

Dog Household pet dog at age 4 

Cat Household pet cat at age 4 

Furry pet Household furry pet (dog, cat or other animal) at 
age 4  



Chapter 7 

 

197 

 

 

Figure A1 Visualisation of the first two principal components to identify the ancestry of 

individuals in the IOWBC 

Population structure was assessed by principal component analysis (PCA), comparing 

the IOWBC (grey) with the European descent (pink), Yoruba (blue), Hans Chinese 

(dark green) and Japanese (light green) HapMap3 reference populations. Non-

European individuals in the IOWBC were excluded before analysis (blue dashed line 

indicates the exclusion threshold considered). 
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Table A2 Hyperparameters tuned during the development of each machine learning algorithm 

Algorithm  Hyperparameters Description Search range 

Support Vector 
Machine  

Cost Regularisation term  100 values between 10-3 
and 102 a 

 Gamma Scalar term for the RBF and 
polynomial kernels 

100 values between 10-2 
and 102 a 

 Degree Degree term for the 
polynomial kernel 

1,2,3,…,10 

Decision Tree Max tree depth The maximum depth each 
tree should be constructed 
to 

1,2,3,…,32 or None 

 Min samples split The minimum number of 
samples needed to split a 
node 

2,3,4,…,11 

 Max features The maximum number of 
features to consider to find 
the best split 

'log2', 'sqrt', None 

 Splitter Criteria used to choose the 
split at a node 

'best', 'random' 

 Criterion Criteria used to determine 
the quality of a node split 

Gini, entropy 

Random forest N estimators 
(trees) 

The number of trees used 
to construct the forest 

1,2,4,8,16,32,64,100,200 

 Max tree depth The maximum depth each 
tree should be constructed 
to 

1,2,3,…,32 

 Min samples split The minimum number of 
samples needed to split a 
node 

2,3,4,…,11 

 Max features The maximum number of 
features to consider to find 
the best split 

'log2', 'sqrt', None 

 Criterion Criteria used to determine 
the quality of a node split 

Gini, entropy 

 Bootstrap Determines whether 
bootstrapping with 
replacement should be used 
to build the trees 

True, False 
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Multilayer 
Perceptron 

Hidden layers The number of neurons in 
each hidden layer 

(1,),(2,),…(11,) 
(1,1),(2,2),…(11,11)b 

 Activation The activation function for 
the hidden layers 

'relu', 'identity', 'tanh', 
'logistic’ 

 Solver Criteria used to optimise 
the weights of the 
connections 

'lbfgs', 'sgd', 'adam' 

 Alpha Regularisation term 10-1 ,10-2, 10-6 

 Learning rate The rate at which to update 
the weights 

'constant', 'invscaling', 
'adaptive' 

 Initial learning rate The initial learning rate 0.1,0.2,...,0.9 

KNN Number of 
neighbours (k) 

The number of neighbours  1,2,3,…,100 

 Weight  Determines whether each 
neighbour should be 
weighted equally or based 
on their distance 

Uniform, distance  

 Power Specifies the distance 
measure to use 

Manhattan, Euclidean  

Naïve Bayes Distribution Determines which 
distribution each feature is 
assumed to follow 

Continuous features = 
Gaussian distribution.  
Categorical features= 
multinomial distribution 

a Specifies the parameter space for the random search strategy. Based on the results of the 

random search, a refined grid search across 500 steps was specified.  

b Number of neurons in each hidden layer, where (1,) represents 1 neuron in the first hidden layer, 

with no further hidden layers; and (1,1) represents 1 neuron in the first hidden layer and 1 in the 

second hidden layer.  

c The naïve Bayes algorithm did not undergo any hyperparameter search. Rather than being a 

hyperparameter to tune, the distributions were specified for each variable type at the time of 

model development.
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Figure A2 Data distribution of the continuous candidate features considered during the development of the early life and preschool models 
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Table A3 Comparability between predictor and outcome definitions in the IOWBC and MAAS 

Variable IOWBC definition MAAS definition a 

Maternal age Maternal age at booking Maternal age at birth of child 

Birthweight Birth weight (kg) Birth weight (kg) 

Total breastfeeding  Total breastfeeding duration Breast feeding duration 

Age of solid food introduction Age of introduction of cereals/solids (weeks) At what age did your baby begin solid foods? (weeks)  

Early life BMI BMI at age 1, standardised against the British 1990 growth 
reference 

BMI at age 1, standardised against the British 1990 growth 
reference 

Early life wheeze  Frequency of asthma wheezing episodes at either 1 or 2 years  

Categorised as no wheeze, occasional (1-3 times per year), 
frequent (12+ times per year) 

Has or does your child’s chest ever wheeze or whistle? If 
answer was yes, what best describes your child’s wheezing (at 
either 1 or 3 years)? 

Categorised as no wheeze, 1-2 times or from time to time 
(occasional), every day (frequent) 

Early life cough  Asthmatic cough at either 1 or 2 years Does your child usually have a cough apart from with colds at 
1 or 3 years 

Preschool BMI SDS BMI at age 4 SDS BMI at age 5 

Preschool wheeze  Frequency of wheezing at 4YR Current wheeze age 5 years 

Preschool cough  Any asthmatic cough at 4 YR Does your child usually have a cough during the day apart 
from with colds? 
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Preschool nocturnal symptoms  Any nocturnal symptoms at 4YR Does your child usually have a cough at night apart from with 
colds? Or, in the last 12 months how often - on average - has 
your child's sleep been disturbed by wheezing 

Preschool atopy  Sensitisation to one or more allergens at age 4 

Tested allergens included HDM, milk, egg, cat, dog, grass, 
wheat, soya, peanut, cod, Cladosporium, Alternaria 

Sensitisation to one or more allergens at age 5 

Tested allergens included HDM, cat, dog, pollen, mould, milk, 
egg 

Preschool polysensitisation  Sensitisation to two or more allergens by age 4 

Tested allergens: HDM, milk, egg, cat, dog, grass, wheat, soya, 
peanut, cod, Cladosporium, Alternaria 

Sensitisation to two or more allergens by age 5 

Tested allergens included HDM, cat, dog, pollen, mould, milk, 
egg 

Maternal socioeconomic status Maternal socioeconomic status based on household income, 
number of rooms in the house and maternal education level 
Categorised into 5 groups: very low, low, low-middle, middle 
and high. 

Maternal socioeconomic status based on professional 
occupation 
Categorised into 4 groups: routine (low), intermediate (low-
middle), managerial (middle) and professional (high). 

School-age asthma  Doctor diagnose asthma plus wheeze in the last 12 month 
and/or asthma treatment, evaluated at age 10 

Doctor diagnose asthma plus wheeze in the last 12 month 
and/or asthma treatment, evaluated at ages 8 and 11 

a MAAS variable categorisations are given as: categorisation of the MAAS variables (IOWBC equivalent categorisation). 

Sensitisation to allergens identified by positive skin prick tests to allergens  

HDM=house dust mite; SDS BMI= body mass index standardised against the British Growth Reference.
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Table A4 Descriptive statistics for all candidate features considered for the development of the early life and preschool prediction models 

 Total IOWBC (n=1368) Early life complete dataset (n=490) Preschool complete dataset (n=373) 

 Asthma (n=201) No asthma (n=1167) Asthma (n=70) No asthma (n=420) Asthma (n=55) No asthma (n=318) 
Family history/ parent demographic predictors 

Maternal smoking at 
birth 

47 (23.38) 276 (23.65) 15 (21.43) 75 (17.86) 12 (21.82) 61 (19.18) 

Paternal smoking at 
birth 

79 (39.30) 440 (37.70) 24 (34.29) 137 (32.62) 21 (38.18) 112 (35.22) 

Maternal asthma 29 (14.43) 113 (9.68) 5 (7.14) 39 (9.29) 3 (5.45) 25 (7.86) 
Maternal eczema 28 (13.93) 133 (11.40) 11 (15.71) 49 (11.67) 10 (18.18) 34 (10.69) 
Maternal hay fever 50 (24.88) 219 (18.77) 13 (18.57) 85 (20.24) 12 (21.82) 62 (19.50) 
Paternal asthma 27 (13.43) 104 (8.91) 10 (14.29) 33 (7.86) 8 (14.55) 27 (8.49) 
Paternal eczema 19 (9.45) 70 (6.00) 10 (14.29)* 25 (5.95)* 7 (12.73) 20 (6.29) 
Paternal hay fever 35 (17.41) 166 (14.22) 14 (20.00) 54 (12.86) 13 (23.64) 40 (12.58) 
Parity 95 (47.26) 573 (49.10) 42 (60.00) 240 (57.14) 36 (65.45) 180 (56.60) 
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 Total IOWBC (n=1368) Early life complete dataset (n=490) Preschool complete dataset (n=373) 

 Asthma (n=201) No asthma (n=1167) Asthma (n=70) No asthma (n=420) Asthma (n=55) No asthma (n=318) 
SES       

Very low  25 (12.44) 163 (13.97) - - 10 (18.18) 30 (9.43) 
Low 35 (17.41) 199 (17.05) - - 8 (14.55) 63 (19.81) 
Low-middle 62 (30.85) 334 (28.62) - - 14 (25.45) 103 (32.39) 
Middle 52 (26.37) 320 (27.42) - - 16 (29.09) 99 (31.13) 
High 13 (6.47) 96 (8.23) - - 7 (12.73) 23 (7.23) 

Perinatal/ at birth predictors  

Maternal age 201 (26.61, 5.44) 1167 (27.04, 5.26) 70 (27.44, 5.32) 420 (27.60, 4.91) 55 (27.98, 5.37) 318 (27.69, 4.95) 
Prematurity       

Pre-term 9 (4.48) 32 (2.74) 1 (1.43) 7 (1.67) 1 (1.82) 4 (1.26) 
Term 184 (91.54) 1103 (94.52) 67 (95.71) 411 (97.86) 53 (96.36) 312 (98.11) 
Post-term 3 (1.49) 12 (1.03) 2 (2.86) 2 (0.48) 1 (1.82) 2 (0.63) 

Caesarean delivery 18 (8.96) 86 (7.37) 8 (11.43) 39 (9.29) 7 (12.73) 31 (9.75) 
Total breastfeeding        

Never 46 (22.89) 267 (22.88) 18 (25.71) 95 (22.62) 15 (27.27) 73 (22.96) 
<3months 66 (32.84) 352 (30.16) 29 (41.43) 137 (32.62) 22 (40.00) 105 (33.02) 
3-6 months 22 (10.95) 164 (14.05) 4 (5.71) 69 (16.43) 3 (5.45) 56 (17.61) 
>6 months 37 (18.41) 264 (22.62) 19 (27.14) 119 (28.33) 15 (27.27) 84 (26.42) 
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 Total IOWBC (n=1368) Early life complete dataset (n=490) Preschool complete dataset (n=373) 

 Asthma (n=201) No asthma (n=1167) Asthma (n=70) No asthma (n=420) Asthma (n=55) No asthma (n=318) 
Exclusive breastfeeding        

Never 55 (27.36) 334 (28.62) 25 (35.71) 125 (29.76) 21 (38.18) 91 (28.62) 
<3 months 85 (42.29) 489 (41.90) 35 (50.00) 191 (45.48) 27 (49.09) 146 (45.91) 
>3 months 31 (15.42) 224 (19.19) 10 (14.29) 104 (24.76) 7 (12.72) 81 (25.47) 

Age of solid food 
introduction 

168 (14.36, 4.51) 1026 (14.34, 4.12) 70 (13.96, 4.08) 420 (14.45, 4.08) 55 (13.96, 4.24) 318 (14.59, 4.07) 

Birthweight 199 (3.34, 0.52)* 1142 (3.44, 0.50)* 70 (3.45, 0.51) 420 (3.47, 0.52) 55 (3.48, 0.56) 318 (3.45, 0.49) 
Sex *      
Male 118 (58.71) 578 (49.53) 40 (57.14) 191 (45.48) 31 (56.36) 143 (44.97) 
Female 83 (41.29) 589 (50.47) 30 (42.86) 229 (54.52) 24 (43.64) 175 (55.03) 
Season of birth       

Autumn 38 (18.91) 243 (20.82) 13 (18.57) 101 (24.05) 12 (21.82) 86 (27.04) 
Winter 64 (31.84) 382 (32.73) 19 (27.14) 117 (27.86) 14 (25.45) 77 (24.21) 
Spring 51 (25.37) 274 (23.48) 19 (27.14) 100 (23.81) 15 (27.27) 80 (25.16) 
Summer 48 (23.88) 268 (22.96) 19 (27.14) 102 (24.29) 14 (25.45) 75 (23.58) 

Dog 51 (25.37) 346 (29.65) 15 (21.43) 119 (28.33) 14 (25.45) 92 (28.93) 
Cat 57 (28.36) 397 (34.02) 24 (34.29) 146 (34.76) 20 (36.36) 113 (35.53) 
Furry pet 95 (47.26) 636 (54.50) 31 (44.29) 226 (53.81) 26 (47.27) 175 (55.03) 
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 Total IOWBC (n=1368) Early life complete dataset (n=490) Preschool complete dataset (n=373) 

 Asthma (n=201) No asthma (n=1167) Asthma (n=70) No asthma (n=420) Asthma (n=55) No asthma (n=318) 
Early life Predictors 

BMI at 1YR 135 (-0.15, 1.15) 851 (-0.16, 1.22) 70 (-0.13, 1.12) 420 (-0.17, 1.19) 55 (-0.20, 1.13) 318 (-0.18, 1.19) 
Wheeze  * * * * * * 

Never 78 (38.81) 739 (63.32) 39 (55.71) 341 (81.19) 30 (54.55) 259 (81.45) 
Occasional 14 (6.97) 63 (5.40) 6 (8.57) 28 (6.67) 5 (9.09) 20 (6.29) 
Frequent 56 (27.86) 124 (10.63) 25 (35.71) 51 (12.14) 20 (36.36) 39 (12.26) 

Wheeze without cold  56 (27.86)* 124 (10.63)* 25 (35.71)* 51 (12.14)* 20 (36.36)* 39 (12.26)* 
Cough 70 (34.83)* 174 (14.91)* 31 (44.29)* 74 (17.62)* 25 (45.45)* 55 (17.30)* 
Nasal symptoms  60 (29.85)* 239 (20.48)* 25 (35.71)* 89 (21.19)* 19 (34.55)* 66 (20.75)* 
Chest infection 54 (26.87)* 139 (11.91)* 19 (27.14)* 45 (10.71)* 15 (27.27)* 34 (10.69)* 
Nocturnal symptoms 68 (33.83)* 161 (13.80)* 29 (41.43)* 73 (17.28)* 23 (41.82)* 54 (16.98)* 
Eczema 66 (32.84)* 247 (21.17)* 24 (34.29)* 100 (23.81)* 20 (36.36) 72 (22.64) 
Hay fever 36 (17.91) 165 (14.14) 17 (24.29) 67 (15.95) 13 (23.64) 50 (15.72) 
Atopy 44 (21.89)* 58 (4.97)* 17 (24.29)* 28 (6.67)* 12 (21.82)* 14 (4.40)* 
Monosensitisation 37 (18.41)* 51 (4.37)* 15 (21.43)* 26 (6.19)* 11 (20.00)* 13 (4.09)* 
Polysensitisation 10 (4.98) 9 (0.77) 3 (4.29) 3 (0.71) 2 (3.64) 1 (0.31) 
Parental smoking       

Never 69 (34.33) 470 (40.27) 33 (47.14) 231 (55.00) 24 (43.64) 168 (52.83) 
Ex-smoker 5 (2.49) 54 (4.63) 2 (2.86) 29 (6.90) 2 (3.64) 23 (7.23) 
Current  93 (46.27) 488 (41.82) 35 (50.00) 160 (38.10) 29 (52.73) 127 (39.94) 

Dog 41 (20.40) 327 (28.02) 15 (21.43) 126 (30.00) 14 (25.45) 99 (31.13) 



Definitions and Abbreviations 

207 

 

 Total IOWBC (n=1368) Early life complete dataset (n=490) Preschool complete dataset (n=373) 

 Asthma (n=201) No asthma (n=1167) Asthma (n=70) No asthma (n=420) Asthma (n=55) No asthma (n=318) 
Cat 131 (65.17) 821 (70.35) 59 (84.29) 349 (83.10) 46 (83.64) 264 (83.02) 
Furry pet 155 (77.11) 1001 (85.78) 66 (94.29) 412 (98.10) 52 (94.55) 311 (97.80) 
Residence on a farm 6 (2.99) 43 (3.68) 4 (5.71) 22 (5.24) 3 (5.45) 13 (4.09) 

Preschool predictors 

SDS BMI  146 (0.21, 1.03) 855 (0.23, 1.04)   55 (0.28, 0.88) 318 (0.28, 0.95) 

Wheeze * *   * * 

Never 85 (42.29) 879 (75.32)   28 (50.91) 281 (88.36) 

Occasional 18 (8.96) 34 (2.91)   7 (12.73) 10 (3.14) 

Frequent 70 (34.83) 75 (6.43)   20 (36.36) 27 (8.49) 

Wheeze without cold  70 (34.83)* 75 (6.43)*   20 (36.36)* 27 (8.49)* 

Cough 99 (49.25)* 128 (10.97)*   32 (58.18)* 39 (12.26)* 

Nasal symptoms  61 (30.35)* 136 (11.65)*   21 (38.18)* 43 (13.52)* 

Nocturnal symptoms 94 (46.77)* 128 (10.97)* - - 30 (54.55)* 41 (12.89)* 
Eczema 47 (23.38)* 87 (7.46)* - - 10 (18.18) 28 (8.81) 
Hay fever 29 (14.43)* 35 (3.00)* - - 10 (18.18)* 15 (4.72)* 
Atopy 72 (35.82)* 94 (8.05)* - - 26 (47.27)* 43 (13.52)* 
Monosensitisation 22 (10.95)* 53 (4.54)* - - 9 (16.36) 26 (8.18) 
Polysensitisation 48 (23.88)* 38 (3.26)* - - 17 (30.91)* 17 (5.35)* 
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 Total IOWBC (n=1368) Early life complete dataset (n=490) Preschool complete dataset (n=373) 

 Asthma (n=201) No asthma (n=1167) Asthma (n=70) No asthma (n=420) Asthma (n=55) No asthma (n=318) 
Parental smoking       

Never 62 (30.85) 424 (36.33) - - 22 (40.00) 157 (49.37) 
Ex-smoker 19 (9.45) 122 (10.45) - - 6 (10.91) 47 (14.78) 
Current  78 (38.81) 357 (30.59) - - 27 (49.09) 114 (35.85) 

Dog 50 (24.88) 280 (23.99) - - 15 (27.27) 91 (28.62) 
Cat 60 (29.85) 370 (31.71) - - 15 (47.27) 120 (37.74) 
Furry pet 96 (47.76) 586 (50.21) - - 37 (67.27) 195 (61.32) 

Summary data is reported as the number of individuals, with the mean and standard deviation (x,̅ s) for the continuous features of: maternal age, birthweight, age of 

solid food introduction, early life SDS BMI and preschool SDS BMI; or proportions for the remaining categorical features (%). 

SDS BMI= body mass index standardised against the British Growth Reference. 

*Statistically significant differences between asthmatic and non-asthmatic children at age 10 (p<0.05), assessed using an independent two sample t-test or Pearson’s Chi-

square test for independence are identified for continuous and categorical features, respectively. 
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Figure A3 Correlation Matrix of the 54 candidate predictors considered for model development 

Pearson’s correlation coefficient was used to assess the collinearity between all pairs 

of candidate predictors. Correlation between predictors are visualised using the 

colour scale, with perfect positive correlations in red and perfect negative 

correlations in blue. 

SDS BMI= body mass index standardised against the British Growth Reference. 
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Table A5 Top 20 candidate features for the early life model based on feature importance 

Early life features: 
Top 20 

Feature importance a Feature importance 
(RFECV)b 

SDS BMI 1YR 0.11 0.21 

Birthweight 0.09 0.19 

Maternal age 0.09 0.17 

Age of solid food introduction 0.07 0.12 

Total breastfeeding duration 0.04 0.08 

Early life wheeze 0.04 0.08 

Maternal socioeconomic status 0.04 0.08 

Early life cough 0.03 0.07 

Exclusive breastfeeding duration 0.03 - 

Early life monosensitisation 0.02 - 

Early life atopy 0.02 - 

Sex 0.02 - 

Pet cat at birth 0.02 - 

Early life chest infection 0.02 - 

Early life parental smoking 0.02 - 

Early life nocturnal symptoms 0.02 - 

Furry pet at birth 0.02 - 

Early life wheeze without cold 0.02 - 

Early life eczema 0.02 - 

Parity 0.02 - 

a Feature importance calculated, based on the Gini impurity, using all 39 candidate features 

considered. 
b Feature importance calculated, based on the Gini impurity, using only the subset of features 

identified through the RFECV feature selection process. 

SDS BMI= body mass index standardised against the British Growth Reference. 
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Table A6 Top 20 candidate features for the preschool model based on feature importance 

Preschool features: 
Top 20 

Feature importance a Feature importance 
(RFECV)b 

Preschool atopy 0.06 0.09 

SDS BMI 1YR 0.06 0.12 

Preschool cough 0.06 0.12 

SDS BMI 4YR 0.05 0.10 

Maternal age 0.05 0.12 

Preschool nocturnal symptoms 0.05 0.07 

Birthweight 0.05 0.09 

Preschool wheeze 0.04 0.06 

Age of solid food introduction 0.03 0.07 

Preschool wheeze without cold 0.03 - 

Preschool polysensitisation 0.03 0.06 

Preschool nasal symptoms 0.03 - 

Exclusive breastfeeding duration 0.03 - 

Maternal socioeconomic status 0.03 0.06 

Early life cough 0.02 - 

Preschool parental smoking 0.02 - 

Total breastfeeding duration 0.02 0.05 

Paternal hay fever 0.02 - 

Early life wheeze 0.02 - 

Early life parental smoking 0.01 - 

a Feature importance calculated, based on the Gini impurity, using all 54 candidate features 

considered. 
b Feature importance calculated, based on the Gini impurity, using only the subset of features 

identified through the RFECV feature selection process. 

SDS BMI= body mass index standardised against the British Growth Reference. 
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Table A7 Description of the preschool datasets following oversampling 

 Sample size Number of cases Number of controls 

Preschool dataset  548 76  472 

Preschool training set 365 51  314 

Oversampled by 25% 378 64 314 

Oversampled by 50% 391 77 314 

Oversampled by 100% 416 102 314 

Oversampled by 150% 442 128 314 

Oversampled by 200% 467 153 314 

Oversampled by 250% 493 179 314 

Oversampled by 300% 518 204 314 

Preschool validation set 183 25 158 
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Table A8 Performance of the preschool naïve Bayes model following oversampling 

 Accuracy BA AUC  Sensitivity Specificity  PPV NPV LR+ LR- F1 Score TN, FP, FN, TP a 

Initial Model 0.860 0.780 0.833 0.667 0.892 0.5 0943 6.157 0.374 0.572 280, 34, 17, 34 

 0.825 0.764 0.679 0.680 0.848 0.415 0.944 4.48 0.377 0.515 134, 24, 8, 17 

Oversampled 
cases 25% 0.833 0.763 0.803 0.656 0.869 0.506 0.925 5.026 0.395 0.571 273,41, 22,42 

 0.809 0.772 0.657 0.720 0.823 0.391 0.949 4.063 0.340 0.507 130, 28, 7,18 

Oversampled 
cases 50% 0.821 0.756 0.803 0.649 0.863 0.538 0.909 4.742 0.406 0.588 271, 43, 27, 50 

 0.803 0.768 0.647 0.720 0.816 0.383 0.949 3.923 0.343 0.500 129, 29, 7, 18 

Oversampled 
cases 100% 0.800 0.752 0.796 0.657 0.847 0.583 0.884 4.297 0.406 0.618 266, 48, 35, 67 

 0.792 0.762 0.637 0.720 0.804 0.367 0.948 3.670 0.348 0.486 127, 31, 7, 18 

Oversampled 
cases 150% 0.801 0.763 0.818 0.672 0.854 0.652 0.865 4.586 0.384 0.662 268, 46, 42, 86 

 0.792 0.762 0.641 0.720 0.804 0.367 0.948 3.670 0.348 0.486 127, 31, 7, 18 
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 Accuracy BA AUC  Sensitivity Specificity  PPV NPV LR+ LR- F1 Score TN, FP, FN, TP a 

Oversampled 
cases 200% 0.799 0.772 0.809 0.693 0.850 0.693 0.850 4.629 0.361 0.693 267, 47, 47, 

106 

 0.792 0.762 0.635 0.720 0.804 0.367 0.948 3.670 0.348 0.486 127, 31, 7, 18 

Oversampled 
cases 250% 0.793 0.773 0.814 0.698 0.847 0.723 0.831 4.568 0.356 0.710 266, 48, 54, 

125 

 0.792 0.762 0.606 0.720 0.804 0.367 0.948 3.670 0.348 0.486 127, 31, 7, 18 

Oversampled 
cases 300% 0.792 0.777 0.829 0.706 0.847 0.750 0.816 4.618 0.347 0.727 266, 48, 60, 

144 

 0.792 0.762 0.636 0.720 0.804 0.367 0.948 3.670 0.348 0.486 127, 31, 7, 18 

Shaded rows report performance on the training set, unshaded rows report performance on the holdout validation set. 
a The final row presents the confusion matrix for the model classifications, where TN=true negatives, FP=false positives, FN=false negatives, TP=true positives.  
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Figure A4 Effect of oversampling on the performance of the preschool naive Bayes model 
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Table A9 Distribution of CAPE and CAPP model predictors for individuals in the IOWBC and MAAS at each asthma prediction time-point 

 Total IOWBC (n=1368) MAAS 8YR (n=1018) MAAS 11YR(n=898) 

 Asthma (n=201) No asthma (n=1167) Asthma (n=144) No asthma (n=874) Asthma (n=116) No asthma (n=782) 

Maternal age 201 (26.61, 5.44) 1167 (27.04, 5.26) 116 (30.53, 5.09) 842 (20.66, 4.67) 94 (29.59, 4.94))* 762 (30.88, 4.61)* 
Birthweight 199 (3.34, 0.52)* 1142 (3.44, 0.50)* 132 (3.44, 0.50) 845 (3.49, 0.49) 107 (3.41, 0.51) 757 (3.49, 0.49) 
Age of solid food 
introduction 

168 (14.36, 4.51) 1026 (14.34, 4.12) 51 (14.88, 3.83) 392 (14.67, 3.52) 44 (14.93, 5.03) 351 (14.69, 3.34) 

Breastfeeding duration       
Never 46 (22.89) 267 (22.88) 47 (23.64) 281 (32.15) 32 (27.59) 236 (30.18) 
<3months 66 (32.84) 352 (30.16) 33 (22.92) 214 (24.49) 30 (25.86) 190 (24.30) 
3-6 months 22 (10.95) 164 (14.05) 24 (16.67) 162 (18.54) 16 (12.79) 157 (20.08) 

>6 months 37 (18.41) 264 (22.62) 22 (15.28) 194 (22.20) 23 (19.83) 181 (23.15) 

Early life SDS BMI  135 (-0.15, 1.15) 851 (-0.16, 1.22) 49 (-0.18, 1.00) 387 (-0.25, 1.11) 43 (-0.04, 1.09) 347 (-0.32, 1.12) 

Preschool SDS BMI  146 (0.21, 1.03) 855 (0.23, 1.04) 134 (0.57, 0.95) 804 (0.46, 0.94) 113 (0.65, 0.90)* 731 (0.42, 0.94)* 

Early life wheeze * * * * * * 

Never 78 (38.81) 739 (63.32) 8 (5.56) 212 (24.26) 9 (7.76) 189 (24.17) 

Occasional 14 (6.97) 63 (5.40) 93 (64.58) 339 (38.79) 67 (57.76) 299 (38.24) 

Frequent 56 (27.86) 124 (10.63) 4 (2.78) 6 (0.69) 4 (3.45) 5 (0.64) 

Early life cough * * * * * * 

No 78 (38.81) 749 (64.18) 31 (21.53) 318 (36.38) 28 (24.14) 281 (35.93) 

Yes 70 (34.83) 174 (14.91) 34 (23.61) 135 (15.45) 32 (27.59) * 117 (14.96) * 
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 Total IOWBC (n=1368) MAAS 8YR (n=1018) MAAS 11YR(n=898) 

 Asthma (n=201) No asthma (n=1167) Asthma (n=144) No asthma (n=874) Asthma (n=116) No asthma (n=782) 
Preschool wheeze * * * * * * 

Never 85 (42.29) 879 (75.32) 44 (30.56) 721 (82.49) 40 (34.48) 655 (83.76) 

Occasional 18 (8.96) 34 (2.91) 89 (61.81) 116 (13.27) 66 (56.90) 105 (13.43) 

Frequent 70 (34.83) 75 (6.43) 5 (3.47) 6 (0.69) 6 (5.17) 3 (0.38) 

Preschool cough * * * * * * 

No 74 (36.82) 860 (73.69) 70 (48.61) 711 (81.35) 62 (53.45) 642 (82.10) 

Yes 99 (49.25) 128 (10.97) 68 (47.22) 132 (15.10) 50 (43.10) 121 (15.47) 

Preschool nocturnal 
symptoms 

* * * * * * 

No 79 (39.30) 860 (73.69) 49 (34.03) 700 (80.09) 47 (40.52) 629 (80.43) 

Yes 94 (46.77) 128 (10.97) 89 (61.81) 143 (16.36) 65 (56.03) 134 (17.14) 

Preschool atopy status * * * * * * 

No 67 (33.33) 670 (57.41) 52 (36.11) 573 (65.56) 38 (32.76) 530 (67.77) 

Yes 72 (35.82) 94 (8.05) 76 (52.78) 197 (22.54) 69 (59.48) 169 (21.61) 

Preschool 
polysensitisation 
status 

* * * * * * 

No 93 (46.27) 874 (74.89) 77 (53.47) 675 (77.23) 62 (53.45) 612 (78.26) 

Yes 48 (23.88) 38 (3.26) 47 (32.64) 77 (8.81) 41 (35.34) 73 (9.34) 
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 Total IOWBC (n=1368) MAAS 8YR (n=1018) MAAS 11YR(n=898) 

 Asthma (n=201) No asthma (n=1167) Asthma (n=144) No asthma (n=874) Asthma (n=116) No asthma (n=782) 
Maternal 
socioeconomic status 

      

Very low  25 (12.44) 163 (13.97) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

Low 35 (17.41) 199 (17.05) 11 (7.64) 66 (7.55) 9 (7.76) 54 (6.91) 

Low-Mid 62 (30.85) 334 (28.62) 15 (10.42) 137 (15.68) 10 (8.62) 129 (16.50) 

Mid 52 (26.37) 320 (27.42) 41 (28.47) 388 (44.39) 30 (25.86) 375 (47.95) 

High 13 (6.47) 96 (8.23) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

The distribution of predictors is reported as the number of individuals, with mean and standard deviation (x,̅ s) for the continuous features of: maternal age, birthweight, 

age of solid food introduction, early life BMI and preschool BMI; or as proportions for the remaining categorical features (%). Where the number of individuals with data 

for a variable does not equal the total number of individuals detailed in the column, the difference indicates the number of individuals with missing data. 

SDS BMI= body mass index standardised against the British Growth Reference. 

* Statistically significant difference between asthmatic and non-asthmatic children (p<0.05), assessed using an independent two sample t-test or Pearson’s Chi-square 

test for independence for continuous and categorical features, respectively. 
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Table A10 Performance of the CAPE model using the original and SHAP restricted features 

Model Dataset 
(sample size) 

Balanced 
accuracy 

AUC Sensitivity Specificity  PPV NPV LR+ LR- F1 score 

CAPE – 8 
features 

IOWBC test 
(n=255) 

0.71 
(0.62-0.78) 

0.71 
(0.61-0.80) 

0.74 
(0.56-0.88) 

0.68 
(0.62-0.74) 

0.26 
(0.21-0.32) 

0.94 
(0.91-0.97) 

2.29 
(1.69-3.01) 

0.39 
(0.18-0.63) 

0.38 
(0.31-0.46) 

 MAAS 8YR 
(n=322) 

0.67 
(0.60-0.74) 

0.71 
(0.63-0.79) 

0.84 
(0.71-0.95) 

0.51 
(0.45-0.56) 

0.19 
(0.16-0.21) 

0.96 
(0.93-0.99) 

1.71 
(1.40-2.03) 

0.31 
(0.10-0.57) 

0.30 
(0.26-0.35) 

 MAAS 11YR 
(n=299) 

0.68 
(0.60-0.74) 

0.71 
(0.62-0.79) 

0.84 
(0.72-0.97) 

0.51 
(0.45-0.57) 

0.17 
(0.14-0.20) 

0.96 
(0.94-0.99) 

1.72 
(1.39-2.05) 

0.31 
(0.07-0.58) 

0.28 
(0.24-0.33) 

CAPE – 2 
features 

IOWBC test 
(n=255) 

0.63 
(0.54-0.71) 

0.61 
(0.51-0.71) 

0.38 
(0.21-0.56) 

0.87 
(0.82-0.91) 

0.31 
(0.19-0.44) 

0.90 
(0.88-0.93) 

2.91 
(1.54-5.09) 

0.71 
(0.52-0.90) 

0.34 
(0.21-0.47) 

 MAAS 8YR 
(n=502) 

0.51 
(0.49-0.54) 

0.58 
(0.49-0.67) 

0.03 
(0.00-0.08) 

0.99 
(0.98-1.00) 

0.29 
(0.00-1.00) 

0.87 
(0.87-0.88) 

2.68 
(0.00-10.00) 

0.98 
(0.93-1.02) 

0.06 
(0.00-0.14) 

 MAAS 11YR 
(n=444) 

0.52 
(0.49-0.55) 

0.58 
(0.49-0.67) 

0.05 
(0.00-0.12) 

0.99 
(0.98-1.00) 

0.43 
(0.00-1.00) 

0.87 
(0.87-0.88) 

4.99 
(0.00-10.00) 

0.96 
(0.89-1.01) 

0.09 
(0.00-0.20) 

Performance measures for each CAPE model were reported based on the threshold cut-off that maximised the Youden’s Index (CAPE 8 features model threshold=0.42; 

CAPE 2 feature model threshold=0.68). Performance in MAAS was evaluated in all individuals with complete data for the predictors included in each model. 
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Table A 11 Performance of the CAPP model using the original and SHAP restricted features 

Model Dataset 
(sample size) 

Balanced 
accuracy 

AUC Sensitivity Specificity  PPV NPV LR+ LR- F1 score 

CAPP – 12 
features 

IOWBC test 
(n=183) 

0.80 
(0.70-0.89) 

0.82 
(0.71-0.91) 

0.72 
(0.52-0.88) 

0.88 
(0.83-0.92) 

0.47 
(0.38-0.62) 

0.95 
(0.92-0.98) 

5.99 
(3.79-10.11) 

0.32 
(0.13-0.54) 

0.56 
(0.45-0.70) 

 MAAS 8YR 
(n=282) 

0.73 
(0.64-0.81) 

0.83 
(0.75-0.90) 

0.55 
(0.36-0.70) 

0.91 
(0.88-0.95) 

0.45 
(0.33-0.59) 

0.94 
(0.92-0.96) 

6.17 
(3.64-10.69) 

0.50 
(0.33-0.69) 

0.49 
(0.36-0.62) 

 MAAS 11YR 
(n=267) 

0.70 
(0.60-0.80) 

0.80 
(0.70-0.88) 

0.50 
(0.31-0.69) 

0.90 
(0.85-0.95) 

0.46 
(0.32-0.63) 

0.91 
(0.89-0.94) 

5.07 
(2.77-9.95) 

0.55 
(0.34-0.77) 

0.48 
(0.32-0.63) 

CAPP – 3 
features 

IOWBC test 
(n=183) 

0.78 
(0.69-0.87) 

0.80 
(0.70-0.89) 

0.76 
(0.60-0.92) 

0.80 
(0.74-0.86) 

0.38 
(0.30-0.48) 

0.85 
(0.92-0.98) 

3.87 
(2.65-5.77) 

0.30 
(0.10-0.52) 

0.51 
(0.40-0.61) 

 MAAS 8YR 
(n=872) 

0.73 
(0.68-0.77) 

0.77 
(0.73-0.81) 

0.70 
(0.62-0.78) 

0.75 
(0.72-0.78) 

0.32 
(0.28-0.35) 

0.94 
(0.92-0.95) 

2.82 
(2.40-3.30) 

0.40 
(0.29-0.51) 

0.44 
(0.39-0.48) 

 MAAS 11YR 
(n=784) 

0.72 
(0.68-0.77) 

0.78 
(0.74-0.83) 

0.70 
(0.61-0.78) 

0.75 
(0.72-0.78) 

0.30 
(0.26-0.33) 

0.94 
(0.93-0.96) 

2.81 
(2.36-3.37) 

0.40 
(0.29-0.52) 

0.42 
(0.37-0.47) 

Performance measures for each CAPP model were reported based on the threshold cut-off that maximised the Youden’s Index (CAPP 12 features model threshold=0.73; 

CAPP 3 feature model threshold=0.74). Performance in MAAS was evaluated in all individuals with complete data for the predictors included in each model.
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Table A12 Performance of the CAPP model with and without the predictors of sensitisation 

 Dataset Balanced 
Accuracy  

AUC Sensitivity Specificity PPV NPV LR+ LR- F1 score 

CAPP  IOWBC 0.80 
(0.70-0.89) 

0.82 
(0.71-0.91) 

0.72 
(0.52-0.88) 

0.88 
(0.83-0.92) 

0.47 
(0.38-0.62) 

0.95 
(0.92-0.98) 

5.99 
(3.79-10.11) 

0.32 
(0.13-0.54) 

0.56 
(0.45-0.70) 

 MAAS 8YR 0.73 
(0.64-0.81) 

0.83 
(0.75-0.90) 

0.55 
(0.36-0.70) 

0.91 
(0.88-0.95) 

0.45 
(0.33-0.59) 

0.94 
(0.92-0.96) 

6.17 
(3.64-10.69) 

0.50 
(0.33-0.69) 

0.49 
(0.36-0.62) 

 MAAS 11YR 0.73 
(0.63-0.82) 

0.79 
(0.68-0.88) 

0.55 
(0.38-0.72) 

0.90 
(0.87-0.94) 

0.41 
(0.29-0.55) 

0.94 
(0.92-0.96) 

5.71 
(3.44-9.85) 

0.50 
(0.30-0.71) 

0.47 
(0.33-0.62) 

CAPP - without 
sensitisation 

IOWBC 0.75 
(0.64-0.84) 

0.72 
(0.58-0.85) 

0.64 
(0.44-0.80) 

0.85 
(0.80-0.91) 

0.41 
(0.30-0.53) 

0.94 
(0.91-0.97) 

4.40 
(2.71-7.22) 

0.42 
(0.22-0.66) 

0.50 
(0.36-0.63) 

 MAAS 8YR 0.67 
(0.59-0.76) 

0.79 
(0.70-0.87) 

0.47 
(0.31-0.64) 

0.87 
(0.83-0.91) 

0.33 
(0.23-0.44) 

0.92 
(0.90-0.95) 

3.69 
(2.23-5.91) 

0.61 
(0.41-0.80) 

0.39 
(0.27-0.51) 

 MAAS 11YR 0.65 
(0.56-0.74) 

0.70 
(0.57-0.81) 

0.42 
(0.26-0.58) 

0.87 
(0.83-0.91) 

0.29 
(0.19-0.40) 

0.92 
(0.90-0.95) 

3.32 
(1.87-5.55) 

0.66 
(0.46-0.87) 

0.34 
(0.21-0.47) 

Performance measures for each CAPP model were reported based on the threshold cut-off that maximised the Youden’s Index (CAPP model threshold=0.73; CAPP 

without predictors of sensitisation threshold=0.45).
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Table A13 Performance of all polygenic risk scores constructed using PRSice 

P-value Threshold Goodness of fit (R2) AUC (95% CI) No. SNPs in PRS 

5.00E-08 0.019201 0.5985 (0.5452-0.6518) 80 

5.01E-05 0.023019 0.6044 (0.5515-0.6573) 93 

0.0007 0.022516 0.6040 (0.5509-0.6571) 94 

0.0011 0.023651 0.6059 (0.5529-0.6590) 95 

0.0015 0.024237 0.6077 (0.5547-0.6606) 96 

0.00205 0.025743 0.6105 (0.5578-0.6632) 97 

0.0044 0.025789 0.6111 (0.5585-0.6637) 98 

0.0061 0.025394 0.6108 (0.5583-0.6634) 99 

0.0062 0.025838 0.6110 (0.5583-0.6636) 100 

0.0066 0.025364 0.6098 (0.5571-0.6624) 101 

0.0325 0.025747 0.6103 (0.5576-0.6630) 102 

0.035 0.026158 0.6108 (0.5580-0.6635) 103 

0.04515 0.026432 0.6113 (0.5585-0.6640) 104 

0.04665 0.026678 0.6119 (0.5591-0.6647) 105 

0.2248 0.026484 0.6117 (0.5589-0.6644) 106 

0.2618 0.026558 0.6115 (0.5588-0.6643) 107 

0.2656 0.026389 0.6112 (0.5584-0.6640) 108 

0.3233 0.026179 0.6110 (0.5583-0.6638) 109 

0.4214 0.026207 0. 6111 (0.5582-0.6639) 110 

0.6275 0.026280 0.6112 (0.5584-0.6640) 111 

0.6543 0.026316 0.6111 (0.5584-0.6639) 112 

0.7647 0.026371 0.6112 (0.5584-0.6640) 113 

0.8332 0.026316 0.6112 (0.5584-0.6640) 114 

0.852 0.026360 0.6112 (0.5584-0.6640) 115 

0.9698 0.026354 0.6112 (0.5584-0.664) 116 

The best PRS based on R2 and AUC which was selected as the final childhood asthma PRS is 

highlighted in bold. 
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Figure A5 Correlation matrix of candidate CpGs considered for the newborn MRS 
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Figure A6 Correlation matrix of candidate CpGs considered for the childhood MRS



Definitions and Abbreviations 

225 

 

 

Figure A7 Correlation matrix of the 22 nearby CpGs considered for the childhood MRS 
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Figure A8 ROC curves comparing the performance of the CAPE model integrated with the PRS in the IOWBC and MAAS 
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Figure A9 ROC curves comparing the performance of the CAPP model integrated with the PRS in the IOWBC and MAAS
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Appendix B Systematic Review Database Searches 

Table B1 Search strategy used for the Embase database search 

Embase (1947 to 25th July 2019) 

1. exp asthma/  

2. asthma*.mp. [mp=title, abstract, heading word, drug trade name, original title, device 
manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, 
candidate term word]  

3. wheezing/  

4. wheez*.mp. [mp=title, abstract, heading word, drug trade name, original title, device 
manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, 
candidate term word]  

5. 1 or 2 or 3 or 4  

6. exp child/  

7. (child or children or childhood or paediatric* or pediatric* or infant* or school-age or 
preschool or pre-school or early life or toddler*).mp. [mp=title, abstract, heading word, drug 
trade name, original title, device manufacturer, drug manufacturer, device trade name, 
keyword, floating subheading word, candidate term word]  

8. 6 or 7  

9. "prediction and forecasting"/ or prediction/ or computer prediction/  

10. scoring system/  

11. ((forecast* or predict* or risk*) adj3 (score* or model* or system* or formula* or value* or 
index* or tool*)).mp. [mp=title, abstract, heading word, drug trade name, original title, device 
manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, 
candidate term word]  

12. exp machine learning/  

13. exp artificial intelligence/  

14. intelligent system*.mp. [mp=title, abstract, heading word, drug trade name, original title, 
device manufacturer, drug manufacturer, device trade name, keyword, floating subheading 
word, candidate term word]  

15. 9 or 10 or 11 or 12 or 13 or 14  

16. onset age/  

17. (develop* or onset or outcome).mp. [mp=title, abstract, heading word, drug trade name, 
original title, device manufacturer, drug manufacturer, device trade name, keyword, floating 
subheading word, candidate term word]  

18. 16 or 17  

19. 5 and 18  

20. 8 and 19  

21. 15 and 20 
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Table B2 Search strategy used for the Medline database search 

Medline Search Strategy (1946 to 25th July 2019) 

1. exp Asthma/  

2. asthma*.mp. [mp=title, abstract, original title, name of substance word, subject heading 
word, floating sub-heading word, keyword heading word, organism supplementary concept 
word, protocol supplementary concept word, rare disease supplementary concept word, 
unique identifier, synonyms]  

3. wheez*.mp. [mp=title, abstract, original title, name of substance word, subject heading 
word, floating sub-heading word, keyword heading word, organism supplementary concept 
word, protocol supplementary concept word, rare disease supplementary concept word, 
unique identifier, synonyms]  

4. 1 or 2 or 3  

5. exp Child/  

6. (child or children or childhood or paediatric* or pediatric* or infant* or school-age or 
preschool or pre-school or early life or toddler*).mp. [mp=title, abstract, original title, name of 
substance word, subject heading word, floating sub-heading word, keyword heading word, 
organism supplementary concept word, protocol supplementary concept word, rare disease 
supplementary concept word, unique identifier, synonyms]  

7. exp Infant/  

8. 5 or 6 or 7  

9. ((forecast* or predict* or risk*) adj3 (score* or model* or system* or formula* or algorithm* 
or value* or index* or tool*)).mp. [mp=title, abstract, original title, name of substance word, 
subject heading word, floating sub-heading word, keyword heading word, organism 
supplementary concept word, protocol supplementary concept word, rare disease 
supplementary concept word, unique identifier, synonyms]  

10. exp Artificial Intelligence/  

11. exp Machine Learning/  

12. exp algorithms/  

13. intelligent system*.mp. [mp=title, abstract, original title, name of substance word, subject 
heading word, floating sub-heading word, keyword heading word, organism supplementary 
concept word, protocol supplementary concept word, rare disease supplementary concept 
word, unique identifier, synonyms]  

14. 9 or 10 or 11 or 12 or 13  

15. "age of onset"/  

16. (develop* or onset or outcome).mp. [mp=title, abstract, original title, name of substance 
word, subject heading word, floating sub-heading word, keyword heading word, organism 
supplementary concept word, protocol supplementary concept word, rare disease 
supplementary concept word, unique identifier, synonyms]  

17. 15 or 16  

18. 4 and 17  

19. 8 and 18  

20. 14 and 19 
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Table B3 Search strategy used for the Web of Science database search 

Web of Science Search Strategy 

#1 TOPIC: (asthma*) OR TOPIC: (wheez*)  
DocType=All document types; Language=All languages; 

#2 TOPIC: ((child OR children OR childhood OR paediatric* OR pediatric* OR infant* OR 
school-age OR preschool OR pre-school OR "early life" OR toddler*))  
DocType=All document types; Language=All languages; 

#3 TOPIC: (((forecast* OR predict* OR risk*) NEAR/3 (score* OR model* OR system* OR 
formula* OR algorithm OR value* OR index* or tool*)))  
DocType=All document types; Language=All languages; 

#4 TOPIC: ("machine learning" OR "artificial intelligence" OR algorithm* OR "intelligent 
system*")  
DocType=All document types; Language=All languages; 

#5 TOPIC: (develop* OR onset OR outcome*)  
DocType=All document types; Language=All languages; 

#6 #4 OR #3  
DocType=All document types; Language=All languages; 

#7 #6 AND #2 AND #1  
DocType=All document types; Language=All languages; 

#8 #5 AND #1  
DocType=All document types; Language=All languages; 

#9 #8 AND #6 AND #2  
DocType=All document types; Language=All languages; 
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Appendix C Code and Pseudocode 

All scripts for data cleaning and reproducing analyses conducted in this thesis can be found at: 

doi.org/10.5258/SOTON/D1943. Permission to access data can be granted from David Hide 

Asthma & Allergy Research Centre (www.allergyresearch.org.uk/) 

Pseudocode 1 Feature selection using Recursive Feature Elimination 

Recursive Feature Elimination (RFE) with k-fold cross-validation 

Input: training dataset containing p features and the outcome variable 

Define k in k-fold cross-validation  

 

Split the complete data into k partitions for cross-validation. Here k-1 of the k partitions will be 

used to train the model, and the final for validation 

For each of the k cross-validation sets do 

For features p  1 do 

For each training set do 

Train a balanced random forest classifier 

Assign weights of importance for each feature 

Rank the features by weighted importance 

End for 

Measure the performance on the validation set  

Remove the minimum ranking feature from the training dataset 

End for 

Average the performance across the validation sets 

Plot the number of features against the cross-validation prediction accuracy  

End for 

Identify the optimal number of features for the model 
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Pseudocode 2 Feature selection using Boruta 

Boruta 

Input: training dataset containing p features and the outcome variable 

 

For n iterations of the random forest classifier do 

For feature space {1,2,…, p} do 

Replicate original feature 

Randomly shuffle each replicated feature across examples (generating a set of 

shadow features) 

Combine original and shadow features into an extended feature space 

End for 

Report the feature importance of all features 

Assign each original feature as a hit if the feature importance is higher than the maximal 

importance of the shadow features 

End for 

Count the number of iterations for which each feature was deemed important (hits) 

Perform a two sided test of equality with the maximal importance amongst shadow variables 

where the expected number of hits for n iterations is E(n)=0.5n with standard deviation 

s=sqrt(0.25n)  

Deem each feature important if the actual number of hits is significantly higher than expected, 

otherwise deem feature unimportant. 

Identify the optimal subset of features for the model 
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