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As data becomes more readily available, individuals and organisations are
increasingly relying on automated systems to make decisions on their behalf. Both
machine learning and mechanism design play key roles in the design of such systems.
Machine learning is often deployed to learn complex decision rules that mimic or
improve upon those adopted by humans. Meanwhile, mechanism design is often
deployed to ensure that decision rules satisfy certain axiomatic properties of interest
to the designer, such as fairness and incentive compatibility. Unfortunately, many real
world settings fall outside the scope of traditional machine learning and mechanism
design frameworks. This thesis investigates how approaches from mechanism design
and machine learning can be rigorously extended and adapted for such settings to
yield meaningful theoretical guarantees.

In particular, we investigate three problem domains; 1) linear regression in the
presence of strategic agents, 2) sequential resource deployment with reusable
resources and 3) repeated matching with reusable resources. For the first problem
domain, we provide a theoretical framework based on Stackelberg predictions games.
When the incentives of agents can be captured by a square loss function, we provide a
polynomial time algorithm minimising Stackelberg risk, a natural analog to risk in
classical supervised learning. For the second problem domain, we introduce a new
multi-armed bandit model, called the adversarial blocking bandit problem, which
incorporates nonstationary reward sequences and resource unavailability. In
particular, we provide finite-time regret guarantees for this setting, by benchmarking
against an oracle algorithm which approximates the optimal arm pulling policy.
Lastly, for the third problem domain, we introduce a new sequential matching setting,
in which a central planner is tasked with constructing matchings repeatedly through
time under the assumption that some goods or services may become temporarily
unavailable once assigned. Motivated by the random serial dictatorship algorithm, we
construct an algorithm for the setting which is approximately truthful and
approximately maximises social welfare.
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Chapter 1

Introduction

As institutions and companies begin to operate at larger scales, relying on human
decision makers becomes increasingly inefficient, and in some cases infeasible. For
example, consider the problem of email spam classification, in which an email service
provider must identify whether an email is spam or not (Dalvi et al., 2004). Of course,
given the frequency and volume of emails sent and received, service providers cannot
rely on human processing. Instead, they must rely on automated decision processes
that scale effectively. This issue of scalability is not unique to the problem of spam
classification, and arises in many problem domains including online advertising,
kidney exchange programs and insurance quotation. Even in cases where employing
human decision makers is possible, the increasing availability of data has made
automated decision making processes a more cost-effective and perhaps more efficient
alternative. As a result, organisations have increasingly turned to approaches
grounded in machine learning and mechanism design to meet their needs.

Briefly put, machine learning concerns the study of algorithms that learn and improve
by leveraging data to learn correct behaviour. Hence, machine learning methods are
natural replacements for humans when making decisions at scale. In contrast,
mechanism design, also known as inverse game theory, concerns the design of
decision policies, or mechanisms, in order to achieve desired outcomes under the
assumption that all participating parties act rationally. In many real world problems,
data is supplied directly by agents, individuals or organisations that are invested in
the outcomes chosen by a decision maker. Therefore, decision makers should expect
data providers to act rationally, and change the data they submit in order to obtain a
better outcome. In this sense, mechanism design is highly relevant to the design of
platforms that facilitate data acquisition and information exchange. That is, whilst
machine learning can be leveraged by decision makers to learn complex decision rules
similar to those a human would propose, mechanism design is necessary to ensure
that any decision is implemented correctly, taking into account the incentives of the
individuals and organisations affected.
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As one would expect, generic frameworks for machine learning and mechanism
design make broad assumptions, which capture a wide range of practical problems,
whilst still allowing for strong theoretical guarantees with respect to worst case
performance. Such approaches include the celebrated Probably
Approximately-Correct (PAC) learning framework (Valiant, 1984), as well as the
seminal Vickrey-Clarke-Groves family of mechanisms (Vickrey, 1961; Clarke, 1971;
Groves, 1973). However, many real world problem domains do not coalesce with
standard assumptions in machine learning and mechanism design. The goal of this
thesis is to devise nontrivial extensions of standard algorithms and approaches from
machine learning and mechanism design to address such settings. In particular, we
will examine three problem domains that lie at the intersection of machine learning
and mechanism design:

1. Linear Regression with Strategic Agents

2. Sequential Deployment of Reusable Resources

3. Repeated Matching of Reusable Services

To motivate these problem domains, and to see how they are connected, consider the
standard supervised machine learning setting often adopted by theorists, illustrated in
Figure 1.1. Within this setting, the world is modeled as a data distribution from which
a learner can sample independently and identically. Using the samples they observe,
the learner may train some complex model, such as a neural network. Eventually the
learner will deploy their model to make decisions. For example, perhaps the learner
will use a model that they have trained on labeled to data to classify new and
unlabeled data points. Whilst enabling for a systematic theoretical analysis, this
framework fails to capture the dynamics of learning in many real world scenarios. In
many cases, it is not the learner who retrieves data, but instead an intermediary agent,
who may have their own goals or interests. Moreover, the decisions a learner makes
often have a significant impact on the state of the world and therefore the
intermediary agents that inhabit it. These concerns are illustrated in Figure 1.2. As a
result, a learner must carefully consider how the decisions they make may impact the
intermediary agents they interact with. Problem domain 1 captures this phenomena in
the context of linear regression, and is detailed in Section 1.1. Moreover, practical
settings often place behavioural constraints decision makers. For example, taking an
action may rely on a resource which is scarce or expensive. In this case, the decision
maker cannot take this action too frequently. Moreover, the constraints placed on a
decision maker may vary through time based on how their previous decisions have
impacted the real world. Figure 1.3 illustrates how this concern may be incorporated
into the standard machine learning framework. Problem domain 2 considers this
problem in the context of sequential resource allocation. For more details, we refer the
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FIGURE 1.1: A depiction of the classical machine learning setting, in which the learner
first models the environment (depicted above the the earth) using a data distribution,
before gathering a sample which they use to train a model (such as a neural network),

that is in turn used to make decisions (depicted by the gavel) in the real world.

reader to Section 1.2. Note that the concerns addressed in problem domains 1 and 2
are not mutually exclusive. That is, a learner may need to account for the behaviour of
strategic agents whilst simultaneously obeying constraints imposed on their decision
making policy by the real world. Such settings are illustrated by Figure 1.4 which can
be viewed as an amalgamation of Figures 1.2 and 1.3. In this sense, problem domain 3
suffers from both the phenomena present in problem domains 1 and 2. More precisely,
the learner is tasked with matching scarce resources to a group of agents who may
behave strategically in how they choose their preferences to the decision maker. At the
same, the learner may be constrained in how they can allocate resources through time.
In the sections that follow, we treat each of the problem domains above in turn,
describing their relevance to real world applications as well as discussing why
standard approaches associated with each domain are insufficient. After this, we
outline concrete research requirements for each problem domain, stating the
properties any methodology or algorithm needs to satisfy to adequately address each
problem domain. Finally, we discuss our own research contributions to each problem
domain in detail, before presenting them in later chapters.
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FIGURE 1.2: The role of data providers in the real world. In real world settings, unlike
the classical supervised machine learning framework described in the previous figure,
learners must often rely on independent agents to provide data samples. In such cases,
it is important for the decision maker to account for the goals and incentives of each

agent when training and deploying their model.

1.1 Linear Regression with Strategic Agents

As a starting point, consider the classical supervised machine learning setting. A
learner is tasked with selecting a decision rule from a set, called a hypothesis class, to
correctly label (or classify) input examples as positive or negative. To select a classifier,
the learner is given access to a training dataset, composed of correctly labelled input
examples. In the case of email spam classification, such a dataset may be composed of
emails manually marked as spam (or not spam) by users. The learned classifier is then
deployed to classify any future unlabelled data. Within standard learning
frameworks, such as the PAC framework (Valiant, 1984), it is typically assumed that
all data is drawn independently and identically from the same, but unknown,
probability distribution. This motivates the approach of empirical risk minimisation
(Mohri et al., 2018; Shalev-Shwartz and Ben-David, 2014), in which a classifier that
correctly labels the most training data is selected from the hypothesis class. Since new
data is sampled from the same distribution as the training data, one would hope that
this classifier will perform well in the future. This intuition can be formalised by a
uniform convergence argument which leads to probabilistic guarantees on the
expected performance of the learned classifier on future data points. In what follows,
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FIGURE 1.3: In real world settings, decision makers must account for the practical
constraints imposed by the environment (as depicted by the rule book) . For example,
taking a given action may correspond to consuming a resource with limited supply. As
a result, decision makers must ensure that the outputs of their trained models adhere

to, and perform well under, practical real world constraints.

we refer to the assumption described as a stationarity assumption, as it implies that
the data distribution of interest to the learner remains fixed throughout time and does
not change after the learner has deployed their chosen hypothesis.

Observe that, in many real world scenarios, assuming stationarity is unrealistic. Once
again, consider the problem of spam classification (Dalvi et al., 2004). In this context,
the classifier plays the role of a spam filter. Once deployed, users, including malicious
email spammers, interact with the spam filter through sending emails. Over time,
users will slowly learn what kind of emails are identified as spam by the filter and
which are not. As a result, the email service provider should expect spammers to
adjust the emails they send in the future in an attempt to bypass the spam filter. As
recognised by Hardt et al. (2016), this phenomenon can be viewed as an instance of
Goodhardt’s law:

When a measure becomes a target, it ceases to be a good measure.

That is, the learned spam filter implicitly relies on key email features to identify
whether an email is spam. As spammers become aware of the filter that is employed,
the spammers can game the system by manipulating these features and avoid
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FIGURE 1.4: In many cases, the learner must account for both practical constraints
imposed by the environment (depicted by the rule book) and the strategic behaviour
of data providing agents. Put differently, many real world settings may be viewed as

an amalgamation of the settings described by Figure 1.2 and 1.3.

detection. In other words, the data distribution is not stationary, and changes as a
result of the classifier chosen by the learner after training. Therefore, it is difficult to
make any theoretical guarantees regarding the performance of naive approaches, such
as empirical risk minimisation, which do not account for how spammer behaviour
may change once a spam filter is deployed.

Note that, in spam classification, each data point corresponds to an email, and
therefore a user who is impacted by the filter’s decision. When the user is honest, and
not a spammer, the incentives of both the user and the filter are aligned; both the user
and the filter want the email to be classified negatively. However, when the user is a
spammer, the incentives of the user and the filter are misaligned; the user wants the
email to be classified negatively, whilst the filter wants to classify the email positively.
It is this misalignment of incentives which causes issue.

Observe that many other real world problems suffer from a similar misalignment of
incentives. For example, consider the insurance quotation problem, in which an
insurance broker must offer insurance quotes to customers depending on their
individual characteristics, such as smoker status and age. In this setting, each data
point is representative of an individual customer, who is clearly invested in the
insurance quotation they are offered. As a result, the insurance broker should expect
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customers to lie in attempt to receive a better insurance quotation. In addition, note
that large scale insurance brokers cannot expect to investigate each individual
customer for fraud, and therefore, building models resilient to strategic manipulation
is of key importance.

Initial attempts at modelling settings such as spam classification more effectively were
adversarial in nature. Unlike the classical supervised machine learning setting,
adversarial machine learning settings (Vorobeychik and Kantarcioglu, 2018; Huang
et al., 2011) assume that data is provided by an adversary, who attempts to maximise
the error of the learner. In this sense, learning takes the form of a zero-sum game
between the learner and the adversary. As a result, many algorithms for adversarial
learning settings rely on techniques from minimax optimisation. Adversarial machine
learning settings can vary significantly depending on the capabilities of the adversary
(Biggio and Roli, 2018). For example, one may assume that all data is sampled from
some fixed distribution, and that the adversary is permitted to perturb each sample by
a fixed amount. In contrast, the adversary may be able to directly perturb the
sampling distribution. Alternatively, the adversary may only be able to access data
after training is completed. This last assumption is especially reasonable when the
learner has access to some verification procedure. For example, an insurance broker
could employ a fraud detection team to validate a small subset of customers so that
training can be performed on a clean dataset.

Note that adversarial machine learning settings are intrinsically pessimistic1. In many
problem scenarios, including those outlined above, data providers are not purely
adversarial, and have their own goals and incentives which do not directly contradict
the goals of the learner. In other words, adversarial settings are often too strict, and do
not correctly capture the strategic interaction between data providers and the learner
in many real world contexts. In some settings, strategic manipulation may benefit the
learner. For example, if an honest user’s email is incorrectly tagged as spam, they may
perform edits so that the email passes through the spam the filter upon redelivery.

Such concerns have motivated the development of strategic classification (Hardt et al.,
2016). In strategic classification, it is assumed that there is a classification which is
particularly desirable, and that any data providing agent will manipulate their data in
order to receive this classification. Note that strategic classification captures the setting
of spam classification perfectly. In this case, each user wants their email to be classified
negatively by the spam filter, and will make small formatting changes to their emails if
they believe they would be classified as spam. If their email is already going to bypass
the spam filter, there is no reason to make any changes.

1Note that our use of the term pessimistic is informal, and refers to the fact that agents are assumed
to be adversarial in nature. Our use the term is not related its formal use within the context of bilevel
optimisation.
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Note that strategic classification makes the implicit assumption that one classification
outcome is most desirable. However, many real world prediction settings are far more
nuanced, and there is no single outcome preferred by all agents. For instance, consider
the aforementioned insurance quotation problem. It is unclear what quotation a
customer should be happy with. For example, a customer could have any of the
following goals:

• To receive a better quotation than they have been offered in the past.

• To improve on the cost of their current insurance by a fixed amount.

• To reduce their quotation as much as possible.

• To receive a quotation that they believe is reasonable or fair.

Additionally, observe that insurance quotation is a regression problem, where data
points are labelled with elements from the real line. As a result, it is unclear how
strategic classification could be directly applied to this problem. In other words, the
insurance quotation problem reflects demand for a more general framework for
learning with strategic agents, in which a range of agent goals can be flexibly defined
and dealt with. Such a framework needs to be able to capture a wide range of agent
incentives, but also have meaningful guarantees with respect to computational
tractability and sample efficiency.

To address this demand, we produce such a framework for linear regression, a
foundational problem in theoretical machine learning. In particular, we consider a
linear regression problem in which each data point is associated with a data providing
agent. Furthermore, we assume that each data point comes with two labels. The first
label represents the ground truth labelling of the input data point that the learner is
interested in predicting. Meanwhile the second label reflects the labelling most
preferred by the data providing agent. Under square loss, we show that the optimal
linear model can be found in polynomial time. In addition, we show that a version of
empirical risk minimisation, based on Stackelberg prediction games (Brückner and
Scheffer, 2011), enjoys sample complexity guarantees similar to those of empirical risk
minimisation in classical supervised machine learning settings. These results are
described in detail in Chapter 3.

1.2 Sequential Deployment of Reusable Resources

In real world scenarios, decisions often correspond to the deployment of important
reusable resources. For example, consider a disaster response scenario in which
emergency resources must deployed in real time. Any decision corresponds to the
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active deployment of a scarce resource, such as emergency service vehicles or expert
personnel, who will be unavailable in the meantime. After a certain amount of time
depending on the task given, such resources may become available for redeployment.
That is, the future availability of resources, and therefore actions, depends on the past
actions of the decision maker. Such problems are typically referred to as blocking
problems (Basu et al., 2021a, 2019; Atsidakou et al., 2021; Papadigenopoulos and
Caramanis, 2021). In blocking problems, a decision maker must interact with an
environment by repeatedly taking actions over a fixed number of time steps.
Whenever an action is taken, the decision maker receives a reward, depending on the
state of the environment, and the action is blocked (or unavailable) for a fixed number
of time steps. The goal of the decision maker is to maximise their cumulative reward
over the time horizon.

Unfortunately, trivial methods of integrating blocking into traditional models for
sequential decision making typically lead to intractability. For example, consider
Markov decision processes, the environmental model adopted by most reinforcement
learning frameworks (Sutton and Barto, 2018; Szepesvári, 2010). At each time step in a
Markov decision process, the environment enters a new state, depending on the
previous state of the environment and the previous action taken by the decision maker.
One way to extend Markov decision processes to blocking problems is to consider the
current subset of blocked actions as part of the environmental state. However, the
number of action sets that can be blocked is exponential in the total number of actions
available to the decision maker. Thus, extending Markov decision processes to
incorporate blocking in this manner can lead to an exponential increase in the size of
the state space. As sample complexity bounds for reinforcement learning typically
rely on the cardinality of the action space and the state space, this is undesirable.

An even simpler model for sequential decision making is the multi-armed bandit
(MAB) problem (Bubeck and Cesa-Bianchi, 2012; Lattimore and Szepesvári, 2020). The
term bandit refers to slot machines which have a single arm that can be pulled. In the
MAB problem, the decision maker has access to K arms (or actions), and can pull one
arm on each time step. After pulling an arm, the decision maker receives a reward. In
the standard, stochastic MAB problem it is assumed that the reward for pulling an
arm is sampled identically and independently from an associated distribution which
remains fixed throughout time.

A strategy for pulling arms through time is called a policy. Ideally, the decision maker
would like to adopt a policy which maximises their expected cumulative reward over
the course of the time horizon. However, this is impossible, as the decision maker has
no initial knowledge about the rewards associated with each arm. Instead, the
decision maker can benchmark its own policy against a number of baseline policies. In
the stochastic setting, the set of policies which pull the same arm on every time step
are often used as a baseline. This is motivated by the fact that it is optimal for the
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decision maker to pull the arm with highest expected reward on every time step, and
as such this class of policies always contains the optimal policy. We refer to the regret
of the decision maker as the difference between the cumulative reward received by the
decision maker’s policy and the cumulative reward received by the best baseline
policy in hindsight. The goal of the decision maker is then to adopt a policy which
incurs small regret in expectation.

Several well known algorithms for the stochastic bandit setting provide finite time
regret guarantees, ensuring the expected regret experienced by the decision maker is
bounded by a term sublinear in the length of the time horizon. One example is the
upper confidence bound (UCB) algorithm originally proposed by Auer et al. (2002).
Adapting such algorithms for settings with blocking presents several challenges.
Firstly, it is unclear which baseline policies to compare against. It may be infeasible for
the decision maker to pull the arm with the highest expected reward on every time
step, and as a result, comparing against policies which pull the same arm repeatedly is
unrealistic. Instead, one can compare to an offline oracle, which has full information
regarding the reward distributions of the arms and returns an approximately optimal
policy. Note that constructing such an oracle is nontrivial and involves designing an
approximation algorithm for a combinatorial problem with a close relationship to
many (hard) scheduling problems. Secondly, relating the performance of a bandit
algorithm to the performance of the offline oracle is nontrivial, and typically requires
some similar arm selection criteria to be used by both algorithms.

For example, Basu et al. (2019) extends the UCB algorithm to the blocking setting by
benchmarking against an offline greedy algorithm which simply pulls the arm with
the highest expected reward amongst those available. The extension of UCB proposed
by the authors is essentially greedy, optimistically pulling the arm with the highest
upper confidence bound amongst those available. This allows the authors to relate the
cumulative reward of UCB to the greedy oracle, as eventually, the UCB algorithm will
approximate the mean reward associated with each arm to a high degree of accuracy
and select the same arms as the greedy oracle. Similar approaches have been
formulated for a wide variety of bandit settings by numerous authors (Basu et al.,
2021a; Atsidakou et al., 2021; Papadigenopoulos and Caramanis, 2021).

Aside from the blocking of resources, observe that the relative effectiveness of a given
resource is likely to vary and change throughout time. Once again, consider a disaster
response setting. Resources may correspond to emergency vehicles and specialised
personnel whose relevance and use varies over time as the disaster progresses. In
some cases, the disaster may have even been caused by a malicious group who
respond dynamically to the decision maker in order to limit the effectiveness of
deployed resources. Therefore, stochastic MABs, which assume the reward
distribution associated with each resource is fixed throughout time, fail to reflect the
evolving nature of many real world settings. Considering this, many MAB models
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have been proposed in the literature seeking to relax the stationarity assumption
implcit in stochastic MABs. These include nonstationary stochastic bandit settings
(Besbes et al., 2014; Wei et al., 2016; Auer et al., 2019), which allow the reward
distribution associated with each arm to change on each time step in accordance with
a budget constraint, and adversarial bandits (Auer et al., 2002), which assume the
reward associated with each arm is chosen by a malicious adversary on each time
step. We refer to such MAB models collectively as nonstationary bandit models.

Summarising, stochastic MABs suffer from two deficiencies that make them
inappropriate for modelling sequential resource deployment in many real contexts.
The first, failure to model resource inavaibility, has been addressed by blocking bandit
models. Whilst the second, failure to capture the varying effectiveness of resources
through time, is addressed by nonstationary bandit models. Of course, any realistic
model for sequential resource deployment should address both these of deficiencies
simultaneously. Motivated by this, we propose the adversarial blocking bandits setting,
which features both blocking and nonstationary rewards. Following the approach of
blocking bandits, we first develop an efficient offline approximation algorithm for this
setting to serve as a regret benchmark. Using ideas from nonstationary stochastic
bandits, we then develop a new bandit algorithm with good finite time regret
guarantees. The adversarial blocking bandits setting, and our proposed algorithms,
are the subject of Chapter 4.

1.3 Sequential Matching of Reusable Services

In many real world settings, a decision maker is tasked with assigning a variety of
resources amongst a number of individuals, or agents. For example, a cloud
computing company is faced with task of assigning their hardware resources (e.g.
GPUs) to jobs submitted by clients. Similarly, consider the problem faced by a
recruiter who serves as intermediary between companies and freelance contractors. In
this setting, the recruiter is tasked with assigning contractors to open positions at each
company. Note that in both cases, the agents hold preferences over the resources being
assigned. In cloud computing, customers want to be assigned hardware that
completes their submitted task in a fast and cost-efficient manner. Meanwhile, in the
recruitment setting, companies may prefer certain contractors over others, based on
their suitability for the position advertised.

Such settings are examples of one-sided matching problems. In a one-sided matching
problems, a central planner is tasked with assigning a set of resources, or services, to a
set of agents. Each agent can only be assigned one service and each service can be
assigned to at most one agent. In other words, agents and services are matched
together. Additionally, we assume that agents hold private preferences over the set of
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services. Preferences can be represented ordinally or cardinally. An agent with ordinal
preferences holds a linear preference ordering defined over services. Naturally, each
agent prefers being matched to services higher in their preference ordering compared
to those lower in their preference ordering. In contrast, an agent with cardinal
preferences holds positive real values, called utilities, describing how happy they are
to be matched to each service. The higher an agent’s utility for a given service, the
happier the agent is with being assigned said service.

To aid the central planner, each agent reports their preferences over services. If the
underlying preferences of the agents are ordinal, then the preferences reported by the
agent are also ordinal. If the underlying preferences of each agent are cardinal, then
the preferences of reported by each agent may either be ordinal or cardinal, depending
on problem context. Note that an agent’s report may not reflect their underlying
preferences. That is, an agent may lie if they believe it is in their best interest.

The goal of the central planner depends significantly on problem context. However,
generally speaking, the central planner aims to identify matchings which are both fair
and efficient. Many different measures of fairness and efficiency have been proposed
within the matching literature. The suitability of a given fairness or efficiency measure
depends heavily on the underlying structure of agent preferences and reports. For
example, when the underlying preferences of each agent are ordinal, it is natural to
formulate notions of fairness and efficiency via first-order stochastic dominance
(Bogomolnaia and Moulin, 2001; Hosseini et al., 2015, 2018). In the case of cardinal
preferences, the central planner typically adopts fairness and efficiency measures
explicitly defined in terms of the utility profiles of each agent, such as social welfare
(Filos-Ratsikas et al., 2014), and Nash social welfare (Caragiannis et al., 2019; Abebe
et al., 2020).

For large scale platforms that involve human decision makers, one-sided matching
settings with cardinal preferences and ordinal reporting are of particular interest. In
many cases, it is difficult for a human to ascribe an exact number to a service which
describes its value. However, humans often find it easy to select the service they
prefer most from a list of options. For instance, consider again the recruitment
example introduced above. It may be difficult for a hiring manager to characterise the
exact financial value a specific contractor would generate for their organisation. On
other hand, the hiring manager may know they prefer one contractor over another
based on the previous experience or expertise of both candidates. Put differently,
cardinal preference structures with ordinal reporting allow for detailed modelling of
an agent’s preferences, whilst also capturing the potential difficulty an agent may
have in communicating or expressing their own preferences to the central planner.

Unfortunately, under ordinal reporting, it is impossible for a central planner to
optimise cardinal performance measures such as a social welfare and Nash social
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welfare. This is because a single ordinal preference profile can correspond to many
different cardinal utility profiles. Hence, the central planner must consider alternative
performance measures, such as distortion (Procaccia and Rosenschein, 2006;
Filos-Ratsikas et al., 2014), which account for the unavoidable loss in performance
associated with ordinal reporting.

In addition to efficiency and fairness, it is important that any matching policy adopted
by the central planner is truthful, or equivalently strategyproof. We say that an
algorithm is truthful if it is always optimal for an agent make a report that reflects its
true underlying preferences. From an ethical standpoint, truthfulness ensures that
agents who are honest are rewarded. It is also unclear how to even design a practically
useful algorithm which is not truthful, as such an algorithm would need to find
optimal matchings with potentially false information. Once again, how truthfulness is
formulated typically depends on the underlying preference structure assumed.
Unfortunately, in cardinal settings with ordinal reporting, fairness, efficiency and
startegyproofness may be impossible to simultaneously guarantee (Zhou, 1990). As a
result, the central planner must be pragmatic and carefully trade-off desirable
properties depending on problem context.

Several effective matching algorithms have been developed by the mechanism design
community. In particular, the random serial dictatorship (RSD) algorithm
(Abdulkadiroglu and Sonmez, 1998) is truthful and optimal in terms of distortion for
agents with cardinal preferences in settings with ordinal reporting (Filos-Ratsikas
et al., 2014). RSD is a simple algorithm, letting agents choose their most preferred
agent from those that are unmatched in a randomly sampled order.

Note that one sided-matching is a single shot problem. That is, all agents are matched
to services simultaneously and are never unmatched. In many practical settings,
services are reusable, and agents are matched to services repeatedly over many time
steps. Consider again the problem faced by cloud computing companies. Once a client
is finished with a computational task, the hardware they are using is free to be
reassigned. Moreover, clients are likely to return with new and similar jobs in the near
future. Likewise, consider the problem faced by recruiters. Once a freelancer has
finished their contracted period of employment, they become available for hire again.
In addition, companies are likely to have similar openings in the future and thus may
return to the recruiter repeatedly. Note how repeated one-sided matching problems
are often blocking problems. The availability of a contractor, for example, depends on
the company they were previously employed with and the duration of the associated
contract.

Moreover, it is unrealistic to expect agents to be initially aware of their underlying
preferences in such settings. For instance, a company will only know if they like a
freelancer after they have worked with them several times. Similarly, a cloud
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computing client may only have a good estimate of how long their jobs take to
complete on a given machine after several trials. In other words, real world one-sided
matching problems often have learning components. Matching markets with learning
have been studied a number of times in the literature (Liu et al., 2020; Cen and Shah,
2022; Basu et al., 2021b), but avoid issues of reusability and service unavailability.

To address this gap in the literature, we propose a new model for repeated one-sided
matching, called sequential blocked matching (SBM). In the SBM model, a central
planner must produce a one-sided matching between agents and services on each time
step. Once a service is matched, it becomes blocked and unavailable for a duration
depending on the agent matched to. For this setting, we propose an extension of RSD
which is both optimal in terms of distortion and satisfies a relaxed notion of
truthfulness, called incentive ratio (Chen et al., 2012; Wang et al., 2020). Moreover, we
propose a bandit version of our algorithm for settings in which agents are initially
unaware of their own preferences. The SBM model is described in detail in Chapter 5.

1.4 Research Requirements

As previously mentioned, the aim of this thesis is to extend generic techniques and
algorithms at the intersection of machine learning and mechanism design to address
the problem domains outlined above. In what follows, we outline the research
requirements for each problem domain in turn.

1. Linear Regression with Strategic Agents

(a) Flexible Incentive Modelling (Requirement 1a) - As discussed in Section
1.1, existing machine learning frameworks either pay no attention to the
incentives of data providing agents, or target agents with specific aims and
goals. Any general framework for learning with strategic data providers
must be able to represent a wide range of agent incentives. Similarly, such a
framework should offer flexibility when it comes to the capabilities of data
providing agents. Depending on problem context, agents may experience
different costs for manipulating their data. For instance, insurance
customers may face a far higher potential cost for data manipulation than
email spammers, as data manipulation may correspond to the physical
manipulation of evidential documents, such as income statements.

(b) Computational Tractability (Requirement 1b) - With the increasing
availability of data, it is important that learning algorithms scale effectively
in terms computational complexity. Learning algorithms which scale
poorly with either dataset size or data dimension, are typically impractical
in large scale settings.
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(c) Polynomial Sample Complexity (Requirement 1c) - Similarly, any
proposed algorithm should be sample efficient, only requiring a small
number of training examples to learn effective decision rules. This is
particularly important when the verification of data is difficult. For
example, insurance companies may need to employ fraud detection teams
or expensive auditing procedures to verify customer data. Hence, an
insurance broker must trade-off the size of any training dataset with the
cost of obtaining it.

2. Sequential Deployment of Reusable Resources

(a) Accounting For Nonstationary Reward Sequences (Requirement 2a) - In
many resource deployment scenarios, the environment changes rapidly,
and in some cases, adversarially in response to the previous actions of the
decision maker. Hence, any model for sequential resource deployment
should allow for the rewards that are nonstationary. Moreover, note that
policies which repeatedly take the same action may be suboptimal in
nonstationary environments. As a result, the decision maker must adopt
new baseline policies which explicitly account for the evolving nature of
rewards through time.

(b) Accounting For Resource Blocking (Requirement 2b) - In real world
settings, resources often become unavailable for a duration once deployed.
Thus, any realistic model for sequential resource deployment must account
for the blocking of resources. In settings where resources can become
blocked for a duration, classic benchmark policies, such as repeatedly
taking the best fixed action in hindsight, may be infeasible, and thus,
unrealistic performance measures. Hence, algorithms for blocking settings
must be compared against new baseline policies which are feasible, and
have strong guarantees with respect to optimality. As computing an
optimal policy in blocking settings often involves solving an intractable
combinatorial optimisation problem, constructing such benchmark policies
is nontrivial and presents a significant technical challenge.

(c) Finite-time Regret Guarantees (Requirement 2c) - Of course, any
algorithm proposed should have strong guarantees with respect to a
benchmark policy which satisfies Requirements 2a and 2b. More
specifically, any proposed algorithm should satisfy a finite-time regret
bound with respect to a suitable baseline policy that is sublinear in the
length of the time horizon. This ensures that the performance of the
algorithm proposed approaches that of the offline benchmark policy as the
time horizon lengthens. Note that the design of such algorithms is
nontrivial, and suffers from the issues encountered in both blocking and
nonstationary settings simultaneously.
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3. Repeated Matching of Reusable Services

(a) Performance Guarantees With Blocking (Requirement 3a) - As in the
single shot case, any proposed algorithm for repeated one-sided matching
should satisfy a suitable performance benchmark. For example, when
agents hold cardinal preferences but report ordinally, any proposed
algorithm should have good guarantees with respect to distortion.
Unfortunately, the properties of traditional single shot matching algorithms,
such as RSD, do not carry over to repeated matching settings in which
resources can be blocked. As a result, existing matching algorithms must be
modified in order to account for service blocking in repeated settings.

(b) Truthfulness Under Blocking (Requirement 3b) - As discussed in Section
1.3, truthfulness is a desirable property for any algorithm, as it is ensures
that agents are rewarded for being honest. As opposed to the single shot
setting, truthfulness is harder to guarantee in repeated matching settings
with blocking. This is because actions that look best in the short term, may
not be best in the long-term. Thus, when making assignments, a central
planner must look far into the future to ensure that the long-term utility of
an agent is maximised when they report truthfully. Thus, single shot
matching algorithms, which are greedy and do not look forward in time,
must be modified to ensure truthfulness in repeated settings.

(c) Accounting For Agents That Learn (Requirement 3c) - In many real world
settings, agents are initially unaware of their preferences. Such settings
demand algorithmic frameworks that allow agents to learn their most
preferred services over the time horizon. In other words, the central planner
faces an exploration-exploitation trade-off between assigning less familiar
services to agents, so that they may learn more about their preferences, and
assigning services preferred by agents given their current knowledge.

1.5 Research Contributions

With the requirements of the previous section in mind, we present three theoretical
frameworks, each aimed at addressing a specific problem domain. In what follows,
we describe the salient properties of each framework, and their relationship to the
research requirements described in the previous section.

1. Stackelberg Prediction Games for Linear Regression (Chapter 3) - Firstly, to
address Problem Domain 1, we present a strategic learning framework for linear
regression based on Stackelberg prediction games. Within this model, we
assume that input examples are supplied by an agent, who samples from a
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stationary distribution of interest to the learner. Each data point sampled from
this distribution comes with two labels. Like classical supervised settings, the
first label represents the prediction target for the learner. Meanwhile, the second
label represents the outcome preferred by the agent. We refer to the first label as
the learner’s label, and the second as the agent’s label. Note that by varying the
agent’s labels, a wide range of agent incentives can be modeled. As a result, the
framework proposed partially addresses research Requirement 1a.

Aside from data provided by the agent, we assume that the learner has access to
training samples taken directly from the distribution of interest to use for
training. In practice, such a dataset may be procured through a costly
verification process available to the learner. After training, we assume that the
agent has full knowledge of the linear model chosen by the learner and
manipulates the input examples they provide in order to minimise loss with
respect to their own labels.

We then define an analog of empirical risk minimisation for this setting, which
takes the form of a bilevel optimisation problem. In the case of square losses, we
derive a polynomial time algorithm, based on semidefinite programming and
bisection search, which minimises empirical risk. In other words, we address
Requirement 1b for the square loss function. Lastly, we show that the sample
complexity of empirical risk minimisation in the proposed framework inherits
the sample complexity guarantees of empirical risk minimisation in the classical
supervised setting, under minor assumptions. In doing so, we address
Requirement 1c. This line of research led to the following published work:

Nicholas Bishop, Long Tran-Thanh, and Enrico Gerding. Optimal
learning from verified training data. In Advances in Neural Information
Processing Systems, volume 33, pages 9520–9529. Curran Associates,
Inc., 2020b

2. Adversarial Blocking Bandits (Chapter 4) - In order to address Problem
Domain 2, we introduce the adversarial blocking bandits setting. Our model
extends directly from the stochastic blocking bandits model proposed by Basu
et al. (2019). That is, when an arm is pulled, it is blocked and cannot be pulled
again for a short duration. Unlike Basu et al. (2019), we assume that the period
of unavailability (or blocking duration) associated with each arm when it is
pulled can change arbitrarily from time step to time step. In this sense,
adversarial blocking bandits constitute a more general model of resource
unavailability compared to other MAB settings that exist in the literature.

Moreover, we assume that the reward associated with each arm is chosen by an
adversary, who must obey a budget constraint. Motivated by the nonstationary
bandit literature, we consider reward sequences constrained via a path variation
budget (Besbes et al., 2014). As a result, adversarial blocking bandits consider

https://proceedings.neurips.cc/paper/2020/file/6c1e55ec7c43dc51a37472ddcbd756fb-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6c1e55ec7c43dc51a37472ddcbd756fb-Paper.pdf
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both blocking and nonstationarity simultaneously, addressing Requirements 2a
and 2b.

To define a meaningful policy benchmark, we first study an offline version of the
adversarial blocking bandits setting, in which the decision maker is fully aware
of the rewards associated with each arm on every time step. We first prove that
finding the optimal policy in this setting is NP-hard. Considering this, we study
a greedy algorithm, called Greedy-BAA, which pulls the arm with the highest
reward out of those available. We show that Greedy-BAA provides a good
approximation guarantee against the optimal policy in hindsight, and adopt it as
a policy benchmark for the bandit setting.

Using Greedy-BAA as a basis, we develop a number of algorithms for the bandit
setting which aim to address Requirement 2c. First, we introduce the repeating
greedy algorithm (RGA). When the path variation budget constraint imposed on
rewards is known, we show that RGA achieves sublinear regret, where the regret
is computed against the performance of Greedy-BAA. For cases in which the path
variation budget is unknown, we devise META-RGA, a meta-bandit algorithm
which achieves sublinear regret with respect to Greedy-BAA. This line of work
resulted in the following publication:

Nicholas Bishop, Hau Chan, Debmalya Mandal, and Long
Tran-Thanh. Adversarial blocking bandits. In Advances in Neural
Information Processing Systems, volume 33, pages 8139–8149. Curran
Associates, Inc., 2020a

3. Sequential Blocked Matching (Chapter 5) - Lastly, to address Problem Domain
3, we propose a new repeated matching setting, which we refer to as the
sequential blocked matching (SBM) setting. In an SBM model, a central planner
is tasked with repeatedly selecting a matching between a set of agents and a set
of services. Every time an agent is matched to a service, the service is
unavailable (or blocked) for a fixed number of time steps. The duration for
which a service is blocked may depend on the agent the service was matched to.
We assume that agents have cardinal preferences, but report ordinally. First, we
study an online version of this setting, in which each agent is fully aware of their
own preferences in advance, and assume that agents report their preferences
once at the beginning of the time horizon.

To tackle this setting, we propose a repeated version of RSD, called repeated
RSD (RRSD), which is optimal in terms of distortion (Procaccia and Rosenschein,
2006) when all agents report truthfully, addressing research Requirement 3a.
Moreover, we show that RRSD satisfies an approximate notion of truthfulness,
known as incentive ratio (Wang et al., 2020), that ensures can agents only gain a
fixed amount by misreporting. In this sense, we make a significant contribution
to research Requirement 3b.

https://proceedings.neurips.cc/paper/2020/file/5cc3749a6e56ef6d656735dff9176074-Paper.pdf
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Lastly, we consider a bandit version of the SBM setting, in which agents are
initially unaware of their own preferences, with the goal of addressing research
Requirement 3c. When an agent is matched, we assume the agent receives a
noisy reward corresponding to its utility value for the service it was matched to.
To aid the central planner, we assume that agents can report their preferences at
every time step. We say that an agent is truthful if it reports preferences which
are induced by the empirical means of the rewards observed so far. We then
develop an bandit version of RRSD (BRRSD), based on the explore-then-commit
paradigm (Lattimore and Szepesvári, 2020), which allows agents to learn their
preferences during the matching process. Under the assumption that agents are
truthful, we derive finite-time regret guarantee for BRRSD, using RRSD as a
performance baseline. Moreover, we evaluate this bandit setting from the
perspective of each agent, and show that under BRRSD, it is approximately
optimal for agents to report truthfully. That is, truthful reporting provides
finite-time regret guarantees against the best sequence of misreports in
hindsight. This line of work has led to the following publication:

Nicholas Bishop, Hau Chan, Debmalya Mandal, and Long
Tran-Thanh. Sequential blocked matching. Proceedings of the AAAI
Conference on Artificial Intelligence, 36(5):4834–4842, 2022

1.6 Thesis Outline

The remainder of this thesis is structured as follows:

• In Chapter 2, we review the literature relevant to each problem domain in turn.
For Problem Domain 1, we begin by studying the classical supervised machine
learning setting, and discuss its failings with respect to modelling strategic
behaviour. Then, we review a number of strategic learning settings which
attempt to address these shortcomings. In particular, we briefly review the vast
literature on adversarial machine learning, strategic classification, performative
prediction and Stackelberg prediction games. Next, we discuss literature
relevant to Problem Domain 2. To start, we introduce the classical stochastic
MAB setting, before discussing nonstationary MABs and MABs which impose
constraints on the actions available to the learner. Lastly, we discuss literature
relevant to Problem Domain 3, first reviewing the traditional single shot
one-sided matching problem before discussing the pros and cons of existing
models for repeated matching.

• In Chapter 3, we introduce a new framework for linear regression in the
presence of strategic agents. In particular, we present an analog of empirical risk

https://ojs.aaai.org/index.php/AAAI/article/view/20411
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minimisation for this setting, and derive statistical guarantees analogous to
those for empirical risk minimisation in the classical supervised machine
learning setting. Additionally, we present an algorithm for empirical risk
minimisation in our setting based on semidefinite programming and bisection
search, which provably converges to global optima.

• In Chapter 4, we introduce a multi-armed bandit setting designed to model the
deployment of reusable resources, which directly extends the blocking bandit
setting of Basu et al. (2019) to adversaries with bounded path variation budget.
Following this, we investigate a full information version of this setting, and
introduce a greedy algorithm, called greedy best available arm (Greedy-BAA),
with strong approximation guarantees with respect to the best arm pulling
policy. We then introduce a new bandit algorithm based on Greedy-BAA, called
the repeating greedy algorithm (RGA), which achieves sublinear finite-time regret
guarantees when the path variation budget is known. We then provide an
extension of RGA, called META-RGA, which achieves sublinear finite-time regret
guarantees even when the path variation budget is unknown to the decision
maker.

• In Chapter 5, we introduce a new repeated one-sided matching setting that
incorporates the blocking of reusable resources, called sequential blocked
matching (SBM). To begin, we analyse a full information version of this setting
in which agents are initially aware of their underlying preferences. We then
propose an extension of random serial dictatorship, called repeated random
serial dictatorship (RRSD), that achieves optimal distortion guarantees under the
assumption that agents report truthfully. We then show that RRSD has bounded
incentive ratio, which can be interpreted as a relaxed notion of truthfulness.
After this, we present a bandit version of RRSD (BRRSD).

• Lastly, in Chapter 6, we conclude and expand upon directions for future work
which would broaden the applicability of the research presented in previous
chapters.



21

Chapter 2

Literature Review

In this chapter, we step through each problem domain in turn, and provide an
overview of relevant research. Readers interested in a specific domain need only read
the relevant sections of this review. In Section 2.1 we review literature relevant to
Problem Domain 1, starting with a review of the classical supervised machine learning
setting, before discussing relevant extensions such as the adversarial machine learning
framework, strategic classification, performative prediction and Stackelberg
prediction games. Then, in Section 2.2, we discuss Problem Domain 2, describing the
classical MAB setting, and afterwards discussing various extensions designed to
tackle resource unavailability and variation in rewards over time. Lastly, in Section
2.3, we investigate Problem Domain 3, discussing relevant algorithms for one-sided
matching, before analysing existing frameworks for one-sided repeated matching.

2.1 Linear Regression with Strategic Agents

In this section, we examine research of relevance to Problem Domain 1. To begin, we
introduce the classical supervised machine learning setting in Section 2.1.1. In
particular, we review the method of empirical risk minimisation (ERM) and its
associated guarantees regarding sample complexity. Unfortunately, as discussed in the
previous chapter, conventional supervised settings fail to model the incentives and
goals of data providing agents effectively. With this concern in mind, we survey
literature from the adversarial machine learning framework in Section 2.1.2, where it
is assumed that data is provided by a malicious adversary. Unfortunately, adversarial
models are often overly pessimistic1, not reflecting the underlying goals of data
providers in the real world. Hence, in Section 2.1.3 we turn our focus to strategic

1As in the previous chapter, our use of the term pessimistic is informal, and refers to the fact that agents
are assumed to be adversarial in nature. Our use the term is not related its formal use within the context
of bilevel optimisation.
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machine learning frameworks, which explicitly model the goals and incentives of data
providers. In particular, we we examine strategic classification (Hardt et al., 2016).
Unfortunately, we will find that most strategic classification models target agents with
very specific goals or incentives. As a result, we pursue more general frameworks for
learning with strategic agents in Section 2.1.4. More specifically, we review
Stackelberg prediction games (Brückner and Scheffer, 2011), which serve as a basis for
our work in Chapter 3, and performative prediction (Perdomo et al., 2020).

2.1.1 Classical Supervised Learning and Empirical Risk Minimisation

In this section, we review the classical supervised machine learning setting, with a
specific focus on linear predictors. In the classical supervised machine learning setting,
a learner is tasked with selecting a prediction rule, or hypothesis, h : X → Y , from a
set, or hypothesis class,H, which maps elements of an input space, X , to a label set,
Y . For the remainder of this section, we will assume that X ⊆ Rn and Y ⊆ R.

The learner is granted access to a training set, S = {(x1, y1), . . . , (xm, ym)}, containing
a finite number of training examples, each consisting of an element of the input space
paired with a corresponding target label. We assume that each example
(xi, yi) ∈ X ×Y is drawn independently and identically from some underlying
probability distribution D. We refer to h(x) as the prediction made by hypothesis h
given input x.

The quality of a prediction is evaluated via a loss function, ℓ : Y × Y → R+. More
specifically, the loss incurred by a hypothesis h given an example (x, y) is equal to
ℓ(h(x), y). Common choices of loss function include the zero-one loss, 1[h(x) ̸= y],
and the squared loss, (h(x)− y)2. The risk, L(h), associated with a hypothesis h, is the
expected loss with respect to the distribution D. That is,

L(h) = ED [ℓ(h(x), y)].

The goal of the learner is to select a hypothesis with minimal risk:

h⋆ ∈ arg min
h∈H
L(h).

However, this goal is unrealistic, as the learner does not have direct access to the
distribution D, and thus cannot evaluate the risk of any hypothesis. Instead, the
learner only has access to the sample S taken from the distribution D. As a result, the
learner must aim for a relaxed goal, which is practically achievable. This motivates the
definition of probably-approximately-correct (PAC) learnability (Valiant, 1984).

Definition 2.1 (Agnostic PAC Learnability). A hypothesis classH is agnostic PAC
learnable with respect to a set X ×Y and a loss function ℓ if there exists a polynomial
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function mH : (0, 1)2 → N and a learning algorithm A such that for every ϵ, δ ∈ (0, 1)
and for every distribution D over X ×Y , running A on mH(ϵ, δ) i.i.d. examples
generated by D returns a hypothesis ĥ such that, with probability of least 1− δ,

R(ĥ) ≤ min
h∈H

R(h) + ϵ.

If A runs in poly(1/ϵ, 1/δ)-time, thenH is said to be efficiently PAC-learnable. When
such an algorithm A exists, it is called a PAC-learning algorithm forH.

Note that PAC learnability relaxes the original goal of the learner in several ways.
First of all, the learner is only expected to find a good hypothesis with high
probability. Secondly, the learner is only expected to find an approximation of the best
hypothesis inH. However, note that the number of training samples required to get
an ϵ-approximation with 1− δ probability must be polynomial in 1/ϵ and 1/δ. The
function mH is typically referred to as the sample complexity of algorithm A for
hypothesis classH, and characterises the number of training examples required to get
a meaningful approximation with high probability. In summary, the learner is in
pursuit of a polynomial time algorithm A with polynomial sample complexity.

A natural approach is to select the hypothesis which performs best on the training
dataset. This is known as empirical risk minimisation (ERM). More formally, given a
training set S, we define the empirical risk L̂(h) of a hypothesis as follows:

L̂(h) = 1
m

m

∑
i=1

ℓ(h(xi), yi).

Performing ERM corresponds to choosing a hypothesis, hERM, which minimises the
empirical risk:

hERM ∈ arg min
h∈H
L̂(h).

For many popular hypothesis classes and losses, approximate solutions for ERM can
be found in polynomial time. For example, whenH is a compact, convex set, and ℓ is a
convex function, ERM corresponds to a convex optimisation problem which can often
be solved via standard optimisation methods such as projected gradient descent and
the interior point method (Dikin, 1967; Karmarkar, 1984; Boyd and Vandenberghe,
2004).

Sample complexity guarantees for ERM-based algorithms typically depend on a
uniform convergence argument. That is, showing that L̂(h) is a good approximation
of L(h) for all h ∈ H simultaneously. For example, assume that the following bound
holds for all h ∈ H: ⃓⃓

L(h)− L̂(h)
⃓⃓
≤ ϵGEN (2.1)



24 Chapter 2. Literature Review

and assume that the learner uses an algorithm A which given a sample S, returns an
approximate empirical risk minimiser, ĥ satisfying:

L̂(ĥ) ≤ L̂(h) + ϵOPT ∀h ∈ H. (2.2)

Combining both bounds we find that for all h ∈ H we have:

L(ĥ)−L(h) =
[︂
L(ĥ− L̂(ĥ)

]︂
+
[︂
L̂(ĥ)− L̂(h)

]︂
+
[︂
L(h)− L̂(h)

]︂
≤ 2ϵGEN + ϵOPT.

As already mentioned, many empirical risk minimisation problems take the form of
convex minimisation problems, and as such bounds in the form of (2.2) can often be
derived directly from convex optimisation methods. Bounds of the form (2.1) are
known as generalisation bounds, and typically rely on some measure of the statistical
complexity of the hypothesis classH and the smoothness of the loss function ℓ. One
popular measure of statistical complexity is the Rademacher complexity,Rm(H)

(Koltchinskii, 2001; Bartlett and Mendelson, 2002):

Rm(H) = E

[︄
sup
h∈H

1
m

m

∑
i=1

h(xi)σi

]︄

where σi are independent random random variables taking values in {−1,+1} with
equal probability, and (x1, . . . , xm) are sampled independently and identically from
the distribution D. Intuitively, the Rademacher complexity captures how well a
hypothesis class can correlate with a random noise sequence, and thus serves as a
measure of the expressiveness ofH. The following theorem provides an example of a
generalisation bound which depends on the Rademacher complexity of the
underlying hypothesis classH.

Theorem 2.2 (Bartlett and Mendelson (2002)). Assume the loss ℓ is Lipschitz with respect
to its first argument with Lipschitz constant Lℓ and that ℓ is bounded by c. For any δ > 0 and
with probability at least 1− δ simultaneously for all h ∈ H, we have that

L(h) ≤ L̂(h) + 2LℓRm(H) + c

√︃
log(1/δ)

2m

Other measures of statistical complexity include the Gaussian complexity, the VC
dimension (Vapnik and Chervonenkis, 2015), and the maximum discrepancy (Bartlett
et al., 2002). Given Theorem 2.2, if one can bound the Rademacher complexity of a
chosen hypothesis classH, then sample complexity guarantees will follow
immediately for ERM-based algorithms. One popular class is the set of bounded
linear predictors:

Hlin = {ω : F(w) ≤ c}
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where the prediction of w given x is simply the inner product ⟨ω, x⟩ and F(w) is a
strongly convex complexity function designed to limit the expressiveness of the linear
predictors considered. For example, a common choice for F is the squared L2-norm,
F(w) = ∥ω∥2. The following theorem provides an upper bound on the Rademacher
complexity of such classes of linear predictors:

Theorem 2.3 (Kakade et al. (2008)). Let C be a closed convex set and X = {x : ∥x∥ ≤ X}.
Further, let F : C → R be a σ-strongly convex function with respect to the dual norm ∥ · ∥∗
such that infw∈C F(w) = 0. DefineW = {w ∈ C : F(w) ≤W2

⋆}. Then we have

Rm(W) ≤ XW⋆

√︃
2

σm

In combination with Theorem 2.2, Theorem 2.3 tells us that ERM-based algorithms are
efficient PAC learning algorithms for linear prediction problems with bounded
Lipschitz loss functions. Note that this bound of the Rademacher complexity is tight
in the case of the 2-norm (Awasthi et al., 2020b).

2.1.2 Adversarial Learning

Recall the email spam classification setting discussed throughout Chapter 1. In this
setting, email spammers can slowly learn the spam filter adopted by the learner, and
then design future emails with the intention of bypassing the filter. As a result, the
examples the learner observes after the training phase may differ significantly from
those in the training dataset. In other words, the spam classification problem is
nonstationary, and the distribution D, from which examples are sampled, changes as a
result of the learner’s choice of filter. Therefore, the PAC framework outlined in the
previous section is no longer suitable. This is because the PAC framework assumes
that all examples are sampled from a fixed distribution D which does not change.

Adversarial learning settings seek to relax this stationarity assumption, and assume
that an adversary may manipulate individual data points, or the underlying sample
distribution, with the goal of maximising the learner’s loss. Adversarial frameworks
for machine learning vary wildly depending on the capabilities of the adversary. We
refer to adversarial models in which the adversary can manipulate data sampled
during the training phase as data poisoning settings (Biggio and Roli, 2018). In
contrast, we refer to models in which the adversary may alter data sampled after the
training phase as evasion models (Biggio and Roli, 2018). In this thesis, we will focus
on evasion problems. Note that email spam classification can be naturally cast as an
evasion problem.

Early evasion models for spam classification were proposed by Dalvi et al. (2004), who
studied an adversarial setting in which the adversary only has control over positively
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labelled examples and seeks to have them classified negatively. Within this setting, a
learner must choose a naive Bayes classifier to filter spam emails. The adversary
receives utility for modifying individual spam emails so that they bypass the naive
Bayes classifier chosen by the learner. When modifying a data point from, x to x′, the
adversary pays a penalty c(x, x′), defined by a semi-metric c : X ×X → R. If the cost
of modifying a positively classified spam email outweighs the utility gained, then it is
assumed the adversary makes no modification. Given a classifier, the authors show
that computing an optimal modification is equivalent to solving a linear program
(LP). Moreover, the authors provide an efficient algorithm for computing the optimal
Bayes classifier, given that the adversary will alter future data points optimally after
the training phase.

Similar settings were considered by Lowd and Meek (2005) from the perspective of the
adversary. In their model, the adversary is initially unaware of the classifier chosen by
the learner, but may repeatedly query the classifier by submitting input examples to
learn how they are classified. When submitting an input example, x ∈ X , the
adversary pays a cost c(x) according to a cost function c : X → R. The goal of the
adversary is to find a minimum cost input example which is classified negatively
within a polynomial number of queries to the classifier. For linear classifiers, Lowd
and Meek (2005) show that an adversary can learn an approximately optimal input
sample in a polynomial number of queries. Nelson et al. (2012) extended this result to
the family of convex inducing binary classifiers, which partition the space into two
sets, one of which being convex.

Note that the aforementioned settings share many similarities that are typical of most
evasion problems. After the training phase, data points are sampled from the same
distribution as the training dataset, but are first given to an adversary who can modify
the sampled input at a cost. We refer to such adversaries as cost sensitive. On the
other hand, both settings differ in terms of the knowledge the adversary possesses
regarding the learner’s employed classifier. In the case of Dalvi et al. (2004), the
adversary has full knowledge of the classifier adopted by the learner. Meanwhile, in
the case of Lowd and Meek (2005) and Nelson et al. (2012), the adversary has no initial
knowledge of the classifier and must learn it over time. In the terminology adopted by
Biggio and Roli (2018) the latter settings are gray-box, or limited knowledge, whilst
the setting proposed by Dalvi et al. (2004) is white-box, or perfect-knowledge.

Instead of limiting the capability of adversaries via a cost function, one can also
consider adversaries restricting to a specific set of perturbations. That is, given a
hypothesis h ∈ H, chosen by the learner, and an input example x ∈ X sampled from
D, the goal of the adversary is to find a perturbation of x from a neighborhood N (x),
which maximises the learner’s loss:

x⋆ ∈ arg max
x̃∈N (x)

ℓ(h(x̃), y).
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As a result, learning takes a minimax form in which the learner is trying to find a
hypothesis h⋆ which minimises its loss in expectation, under the assumption that the
adversary will choose a loss maximising perturbation:

h⋆ ∈ arg min
h∈H

E

[︃
max

x̃∈N (x)
ℓ(h(x̃), y)

]︃
.

Note that the optimisation objective above is a natural generalisation of risk, typically
referred to as the adversarial risk. As in the classical supervised machine learning
setting, the learner does not have access to the distribution D. A natural approach is to
minimise an empirical version of the adversarial risk, as we did for the risk in the
classical supervised setting:

min
h∈H

1
m

m

∑
i=1

max
x̃i∈N (xi)

ℓ(h(x̃i), yi).

This approach is known as adversarial empirical risk minimisation. Problems of this
type have been studied by the optimisation community under the topic of robust
optimisation. In this context, N (x) is referred to as the uncertainty set associated with
the point x. In many cases, different uncertainty sets correspond to different
regularisation approaches. For example, in the case of linear prediction with the
square loss function, adopting the L2-ball of fixed radius around x as an uncertainty
set corresponds to performing ridge regression on the original data (El Ghaoui and
Lebret, 1997). Meanwhile, Globerson and Roweis (2006) study a robust optimisation
problem in which up to K features may be deleted by the adversary, and show that the
resulting minimax problem has a natural convex and quadratic formulation.

Note that while robust optimisation approaches mitigate concerns regarding the
computational tractability of adversarial risk minimisation, issues of sample
complexity remain. Within the statistical learning community, significant effort has
been made to generalise traditional measures of statistical complexity, such as the
Rademacher complexity, to adversarial contexts. In particular, Yin et al. (2019) studied
an adversarial version of Rademacher complexity for adversaries bounded in
L∞-norm. In particular, the authors show that the adversarial Rademacher complexity
of binary linear classifiers in this setting is always larger than the Rademacher
complexity in the classical supervised setting. Awasthi et al. (2020a) provide a
generalised version of this result which holds for adversaries bounded in any
Lp-norm. Similarly, Cullina et al. (2018) develop an adversarial counterpart to VC
dimension, and show that the adversarial VC dimension is equal to the VC dimension
for halfspace classifiers for a wide range of adversaries.

A parallel line of work has sought to establish the relationship between adversarial
robustness and generalisation. In the linear regression setting, Javanmard et al. (2020)
characterize the precise trade-offs between standard and adversarial risk. Meanwhile,
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Montasser et al. (2019) provide examples of hypothesis sets of finite VC dimension
that can only be learner improperly in the adversarial setting. Similarly, Schmidt et al.
(2018) design a simple learning model which suffers from significantly higher sample
complexity in the adversarial setting.

As discussed in Chapter 1, adversarial learning models are often overly pessimistic.
Whilst the standard PAC learning framework assumes that data providing agents
have no incentives, adversarial learning models assume that the incentives of each
data provider are completely misaligned with the learner. Reality typically lies
somewhere between these two extremes. This motivates our investigation of strategic
machine learning settings in the following sections.

2.1.3 Strategic Classification

Closely related to adversarial learning is the strategic classification framework.
Introduced by Hardt et al. (2016), the learner plays a role of a jury, and the adversary
plays the role of a contestant. The jury is tasked with selecting a binary classifier
h ∈ H using a training set sampled from a distribution D. After the training phase, the
contestant can manipulate each newly sampled data point at a cost, with the goal of
obtaining a positive classification. In other words, given a sampled input x, the
contestant aims to produce a cost-effective manipulation x⋆:

x⋆ ∈ arg min
x̃∈X

1[h(x̃) ̸= 1] + c(x, x̃).

The goal of the jury is then to minimise their expected loss under the assumption that
the contestant will best respond. That is to find h⋆ ∈ H such that:

h⋆ ∈ arg min
h∈H

1[h(x⋆) ̸= y].

In what follows, we refer to the objective above as the strategic risk, as it is an analog
for risk in the strategic classification setting. In their seminal work, Hardt et al. (2016)
provide a polynomial time algorithm with sample complexity guarantees for strategic
risk based on Rademacher complexity, under the assumption that the cost function c
satisfies a separability condition.

Note that the strategic classification setting has subtle differences from the previously
described adversarial settings. For instance, consider an example of the form (x, 1). In
this case, the contestant and the jury have aligned incentives. In other words, both the
jury and the contestant want the example x to be classified positively. This is never the
case in the adversarial settings considered above. In other words, the strategic
classification setting allows data providing agents to possess incentives and goals that
do not directly oppose those of the learner.
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Since the initial work of Hardt et al. (2016), strategic classification has received
significant attention from both the machine learning and mechanism design
communities. Chen et al. (2020) consider an online version of strategic classification in
which the contestant may report any point within a ball of fixed radius surrounding a
sample data point. Within, this setting the authors provide an algorithm with
finite-time regret guarantees, however this algorithm requires access to a special
in-oracle which determines whether a polytope lies within one of several halfspaces.
Similarly, Dong et al. (2018) studies an online strategic classification setting in which
negatively classified data points are strategic, and derive conditions on the cost
function which guarantee the strategic loss incurred on each time step is a convex
function. This allows standard online convex optimisation algorithms to be applied in
order to achieve finite-time regret guarantees.

Meanwhile, a strategic analog of ERM for strategic classification has been investigated
by Sundaram et al. (2021), who define a strategic version of VC dimension, called the
strategic VC (SVC) dimension. In essence, the strategic VC dimension of a hypothesis
classH can be viewed as the VC dimension of the classHstrat = {h(r(h, ·)) : h ∈ H}
where r : H×X → X is the contestant’s best-response function to the hypothesis
h ∈ H given a sampled input x ∈ X :

r(h, x) = arg min
x̃∈X

1 [h(x̃ ̸= 1] + c(x̃, x).

Put differently,Hstrat is the set of classifiers which the learner can practically
implement through their choice of hypothesis. Thus, ifHstrat has bounded statistical
complexity, one would expect a strategic version ERM to be an efficient PAC learning
algorithm. In particular, Sundaram et al. (2021) show that the SVC dimension of a
hypothesis class can be arbitrarily larger than its VC dimension even in the case of
linear classifiers. This implies that learning optimal classifiers in the presence of
strategic agents is potentially intractable unless reasonable assumptions are enforced
on the cost function of the contestant. However, Sundaram et al. (2021) provide simple
bounds on the SVC dimension under several reasonable assumptions. For example,
the authors show that the SVC dimension is at most two under the separability
assumption introduced by Hardt et al. (2016).

In contrast, Zhang and Conitzer (2021) study a strategic classification setting in which
an uncertainty set for each data point is defined via a manipulation graph G = (X , E).
An agent is only allowed to modify a sampled point from x to x̃ if there is an edge
connecting x to x̃ in G. Within this setting, the Zhang and Conitzer (2021) consider a
version of ERM that only optimises over hypotheses which are incentive compatible.
A hypothesis is incentive compatible if and only if it is always optimal for the
contestant to report the originally sampled point x over any neighboring manipulation
x̃. In particular, it is shown that the VC dimension of incentive compatible hypotheses
is bounded by the cardinality of the maximal independent set in the manipulation
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graph. Moreover, if the manipulation graph satisfies a certain transitivity property,
then restricting to incentive-compatible hypotheses is without loss of generality. Thus,
under reasonable assumptions on the manipulation graph, one can recover the sample
complexity guarantees of linear classification in the standard PAC setting.

A similar setting is studied by Lechner and Urner (2022), who investigate a strategic
version of the 0-1 loss, which models the loss experienced by a classifier in a strategic
environment. More specifically, the strategic loss associated with a hypothesis class h
is defined as follows:

ℓ→(h, x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if h(x) ̸= y

1 if h(x) = 0 and ∃x̃ with x → x̃ and h(x̃) = 1

0 otherwise

It follows trivially that ℓ→ ≤ ℓ0-1 + ℓ⊥, where ℓ0-1 is the standard 0-1 loss and ℓ⊥

denotes the strategic component loss:

ℓ⊥ = 1 [h(x) = 0∧ ∃x̃ : x → x̃, h(x̃) = 1] .

In particular, Lechner and Urner (2022) show that the VC dimension of the loss class
induced by the strategic loss on a hypothesis classH is upper bounded by the VC
dimension ofH plus the VC dimension of the loss class induced onH by the strategic
component loss. As a result, the possibility of learnability depends intrinsically on the
VC dimension of the loss class induced by the strategic component loss, and thus the
underlying manipulation graph.

From the optimisation perspective, a natural approach to minimising strategic risk is
to adopt a ERM-based approach, called strategic ERM (SERM), which accounts for the
actions of the contestant. For example, for a cost sensitive adversary, who may report
any x̃ ∈ X , SERM takes the following form:

min
h∈H

1
m

m

∑
i=1

ℓ(h(x⋆i , yi))

s.t. x⋆i = arg min
x̃∈X

1 [h(x̃i) ̸= 1] + c(x̃i, xi).

Observe that SERM corresponds to ERM onHstrat. Note that SERM is a bilevel
optimisation problem, which are in general NP-hard. Moreover, the minimax
structure present in adversarial ERM is not present in SERM. As a result, SERM-based
algorithms typically require special approaches which exploit assumptions regarding
the capability of the contestant and its cost function. In deriving their algorithm for
separable cost functions, Hardt et al. (2016) show that SERM reduces to a
one-parameter optimisation problem. Similarly, Sundaram et al. (2021) show that
SERM for linear classification with a semi-norm induced cost function can be



2.1. Linear Regression with Strategic Agents 31

reformulated as a convex optimisation problem under the assumption that the
contestant is essentially adversarial. For the manipulation graph setting, Zhang and
Conitzer (2021) reduce incentive compatible ERM to solving a min-cut problem which
can be solved polynomial time.

Whilst effectively capturing the incentives of data providers in many settings,
strategic classification is limited in terms of its flexibility. More specifically, it is
assumed that there is one classification simultaneous desirable to all agents. Thus,
strategic classification fails to meet Requirement 1a. In addition, strategic classification
is intrinsically limited to classification problems. In the next section, we will discuss
Stackelberg prediction games and performative prediction, which generalise strategic
classification.

2.1.4 Stackelberg Prediction Games

Observe that most of the problems settings considered so far are examples of
Stackelberg competition. First defined in the context of economic markets
(Von Stackelberg, 2010), Stackelberg competition refers to any game theoretic setting
in which one player, known as the leader, must first choose a strategy, before a second
a player, known as the follower, responds with a strategy of their own. Note that the
follower has an intrinsic advantage, typically having full knowledge of the strategy
employed by the leader before making their decision. In the learning settings
considered above, the learner plays the role of the leader, and must commit to a
strategy, that is a hypothesis, first. Meanwhile, a data providing agent, that may be
adversarial or strategic, plays the role of the follower, and modifies the inputs they
sample, with full knowledge of the hypothesis chosen by the learner. The best the
learner can guarantee is a Stackelberg equilibrium, that is, the hypothesis, or strategy,
with the lowest risk given that the data providing agent will best respond.

In what follows, we will investigate the Stackelberg prediction game (SPG) model
(Brückner and Scheffer, 2011), which makes this connection between Stackelberg
competition and learning explicit. SPGs are particularly attractive due to their
flexibility, allowing a wide range of agent goals and incentives to be modeled. In the
SPG setting, learning is once again modeled as a Stackelberg game between the
learner and a data providing agent. As before, the learner is tasked with selecting a
hypothesis h from a hypothesis classH. The learner evaluates the performance of each
hypothesis on each sampled input example via their loss function ℓ−1 : Y × Y → R+.
After the learner selects a hypothesis, a data provider may change the underlying
sampling distribution D to a new distribution D̃, paying a cost, C(D, D̃), to do so. The
data provider evaluates the performance of the distribution they have chosen via their
own loss function ℓ+1 : Y × Y → R+. The goal of the data provider is to select a
distribution D⋆ which provides the optimal trade-off between the expected risk with
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respect to ℓ+1 and the cost of modification C(D,D⋆):

D⋆ ∈ arg min
D̃

ED̃ [ℓ+1(h(x), y)] + γC(D, D̃).

Note the presence of the hyperparameter γ > 0, which captures the trade-off between
the performance of a given distribution D̃ and its cost. The goal of the learner is to
select a hypothesis h⋆ which minimises the expected loss with respect to ℓ−1 under the
assumption that the data provider will best respond:

h⋆ ∈ arg min
h∈H

ED⋆ [ℓ−1(h(x), y)]

s.t. D⋆ ∈ arg min
D̃

ED̃ [ℓ+1(h(x), y)] + γC(D, D̃).
(2.3)

In other words, the learner aims to find a Stackelberg equilibrium. Of course, the
learner does not have access to the distribution D, so cannot solve Problem (2.3)
directly. However, it is assumed that the learner does have access to a training dataset
of input examples sampled from D. In the real world, such a dataset may be obtained
through an expensive verification procedure. Using their training dataset, the learner
can compute a hypothesis ĥ that approximately minimises an empirical version of
Problem (2.3):

min
h∈H

1
m

m

∑
i=1

ℓ+1(h(x⋆i ), yi)

s.t. x⋆i = arg min
x̃∈X

ℓ−1(h(x̃i, yi) + γc(xi x̃i) [i] ∈ m
(2.4)

Note that, when moving from Problem (2.3) to Problem (2.4) an implicit assumption
has been made regarding the cost function C. In particular, it is assumed that the data
provider manipulates the data distribution D on an instant-wise basis, and that the
cost of manipulating an input example from x to x̃ is given by c(x, x̃), where c : X ×X
is a cost function. Practically speaking, this assumption is not too severe, and is a
realistic model of how data distributions are manipulated in real world settings. In
addition, note that if we take both ℓ−1 and ℓ+1 to be the 0-1 loss, we recover the SERM
problem for strategic classification. As a result, Problem (2.4) can be viewed as a
generalised version of SERM.

As with SERM in the strategic classification setting, Problem (2.4) is a bilevel
optimisation problem, and thus NP-hard for general loss functions ℓ−1 and ℓ+1.
However, under the assumption that both loss functions are convex, and that ℓ−1 is
twice continuously differentiable, Brückner and Scheffer (2011) show that a stationary
point of Problem (2.4) can be found via sequential quadratic programming. In Chapter
3, we will consider a special case of Problem (2.4), in which the incentives of the data
provider are captured by an additional set of labels. For this setting, we will present a
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polynomial time procedure which converges to global optima, improving upon the
generic procedure of Brückner and Scheffer (2011) in this special case.

Closely related to Stackelberg prediction games is performative prediction (Perdomo
et al., 2020). In performative prediction, each hypothesis, h ∈ H, is associated with a
distribution D(h) which describes the data the learner is likely to encounter if h is
selected. As a result, the risk associated with any hypothesis h is the expected loss
under the corresponding distribution D(h):

L(h) = ED(h) [ℓ(h(x), y)]

In other words, the learner wants to identify a hypothesis which performs well under
the distribution it induces. The quantity above is known as the performative risk.
Unlike strategic classification and SPGs, no structural assumptions are made with
respect to the function D(h). As a result, performative prediction generalises both
strategic classification and SPGs. Perdomo et al. (2020) outline two reasonable solution
concepts for performative prediction. The first, known as performative optima,
involves returning a hypothesis which minimises performative risk:

h⋆ ∈ arg min
h∈H

ED(h) [ℓ(h(x), y)] .

Note that this corresponds to identifying a Stackelberg equilbrium within the context
of SPGs. An easier goal is to aim for performative stability, that is, to find a hypothesis
which is a best response to the distribution it induces:

h⋆ ∈ arg min
h∈H

ED(h⋆) [ℓ(h(x), y)] .

Perdomo et al. (2020) presents a number of approaches for finding performatively
stables hypotheses. The first is repeated empirical risk minimisation (RERM) in which
the learner selects an initial hypothesis, h1, and receives a training sample, S1, from
D(h1). After this, the learner selects a new hypothesis, h2, which minimises the
empirical risk on S1. Once again the learner receives a sample S2, sampled from
D(h2), and finds a new hypothesis, h3, which minimises the empirical risk on S2. This
process repeats predictably ad infimum. Under mild assumptions, Perdomo et al.
(2020) show that RERM converges to a performatively stable hypothesis at a linear
rate with high probability. Additionally, Perdomo et al. (2020) illustrate linear
convergence for a similar method, where each step of empirical risk minimisation is
replaced with a projected gradient step. Perdomo et al. (2020) also show that
performatively stable hypotheses are good approximations of performative optima
when the loss function is strongly convex and Lipschitz.

Investigating further, Drusvyatskiy and Xiao (2020) provide convergence guarantees
under similar assumptions for a large range of descent methods. Similarly,
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Mendler-Dünner et al. (2020) give linear convergence guarantees for stochastic
gradient descent. Both methods improve upon RERM in the sense that only a single
data sample is needed at each iteration. More recently, Miller et al. (2021) show that,
under mild assumptions, finding performative optima corresponds to solving a
convex optimisation problem when D(h) is mixture dominant. Note that many
common strategic classification problems can be cast as performative prediction
problems where mixture dominance holds. Thus, the result of Miller et al. (2021)
implies that a wide variety of strategic classification problems can be solved using
well established convex optimisation strategies.

Both performative prediction and Stackelberg prediction games offer sufficient
generalisations of strategic classification to meet Requirement 1a. In Chapter 3, we
choose to focus on SPGs, and linear regression, due to their lack of study within the
strategic learning community.

2.2 Sequential Deployment of Reusable Resources

Next, we shift focus, and investigate work relevant to Problem Domain 2. First in
Section 2.2.1, we review classical variations of the MAB problem, which has been used
extensively to model resource allocation problems. As we will see, conventional
methods for bandit learning typically aim to do well compared to policies which
repeatedly deploy the same resource. In real world settings, the usefulness of a given
resource may vary wildly over time depending on the underlying environment.
Therefore, policies which rely on a single resource are unlikely to be effective, and
thus do not serve as meaningful performance benchmarks (violating Requirement 2a).
Hence, in practical settings, decision makers must be adaptive and deploy the right
resources at the right time. This motivates our review of nonstochastic MAB settings
in Section 2.2.2 wherein the decision maker is tasked with adaptively tracking the best
resource through time.

Additionally, conventional MAB problems do not model resource availability
explicitly (Requirement 2b). As we saw in Chapter 1, resources often become
unavailable for short periods of time in real world scenarios. Therefore, in Section
2.2.3, we review constrained bandit models, that limit when and how often a given
action can be taken. In particular, we pay special attention to the stochastic blocking
bandit model (Basu et al., 2019), in which resources become unavailable, or blocked, for
a period of time immediately after use. In Chapter 4, we present a new MAB problem
designed to model sequential resource allocation problems, called the adversarial
blocking bandits setting, which can be viewed as an amalgamation of the blocking
and nonstochastic bandit settings investigated in this chapter.
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2.2.1 The Stochastic Multi-Armed Bandit Problem

To begin, we first describe the classical the multi-armed bandit (MAB) problem. A
decision maker is given access to a set of K actions. The decision maker is tasked with
producing a sequence of actions over T discrete time steps. More specifically, at a
given time step t ∈ [T], a decision maker must take one action, i ∈ [K]. Upon taking an
action i on time step t, the learner receives a reward, Xi

t ∈ R. In what follows, we use
it to denote the action chosen by the decision maker at time step t. The goal of the
decision maker is to maximise their cumulative reward over the time horizon:

max
T

∑
t=1

Xit
t .

From one perspective, each action can be viewed as a slot machine, or a one-armed
bandit. The decision maker can be viewed as a gambler, who at each time step, must
choose a slot machine, or arm to pull. The goal of the gambler is to pull the slot
machine on each time step that has the best pay-out. Given this point of view, we will
use the terms arm and action interchangeably. Note that resource deployment
problems often map directly to MAB problems. Each action available to the decision
maker may represent a resource available for deployment. The reward, Xit

t , for an
action i may reflect the utility of redeploying the corresponding resource given the
current state of the environment at time step t.

Note that, so far, we have placed no assumptions on how the rewards, Xit
t , are

generated. The first MAB problems investigated were stochastic (Lai and Robbins,
1985). In a stochastic MAB problem, it is assumed that the reward, Xit

t , associated with
arm i at time step t, is sampled from an unknown distribution associated with arm i.
We use µi ∈ R to denote the mean reward associated with each action i. Clearly,
within the stochastic context, it is optimal in expectation for the decision maker to
repeatedly pull the arm with highest mean reward. In what follows, we will use to µ⋆

to denote the highest mean reward:

µ⋆ = max
i∈[K]

µi

Observe that stochastic MAB problems exhibit the exploration-exploitation trade-off
common to many machine learning problems (Sutton and Barto, 2018; Bubeck and
Cesa-Bianchi, 2012). In particular, the decision maker must explore, by trying each
arm enough times so that they may correctly identify the arm with highest mean
reward. However, if the decision maker spends too long exploring, they will not have
enough time to exploit their knowledge and pull the arm which they believe to be
optimal. On the other hand, if the decision maker spends too long pulling the arm
they believe to be best, they risk not testing each arm sufficiently, and misidentifying
the arm with optimal mean reward.
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In short, the decision maker is in pursuit of a policy which optimally trades off
exploration with exploitation. An intuitive way to evaluate a policy is to benchmark
against the best policy in expectation. This leads us directly to the definition of regret.

Definition 2.4. The regret RT of a decision maker is given by:

RT = Tµ⋆ −
T

∑
t=1

Xit
t .

where µ⋆ denotes the maximum mean reward: µ⋆ = maxi∈[K] µi.

Ideally, the decision maker would like to adopt a policy which achieves zero regret.
However, this goal is unrealistic, as the decision maker has no initial knowledge
regarding the mean rewards of each arm, and thus must risk incurring positive regret
by exploring. Instead, the decision maker may hope to find a policy whose regret
incurred per time step vanishes as the time horizon lengthens. More formally, the
decision maker may hope to find a policy whose average regret grows sublinearly in
in the time horizon T:

lim
T→∞

E [RT]

T
= 0. (2.5)

In particular, the decision maker can hope for an even stronger property known as
consistency (Lattimore and Szepesvári, 2020).

Definition 2.5. A policy is consistent over a set of MAB problem instances if for all
instances and all p > 0 it holds that

E [RT]

Tp = 0 as T → ∞.

In other words, a policy is consistent if the regret grows subpolynomially with the time
horizon T. More generally, the decision maker is interested in finding a policy whose
regret grows at the optimal rate on each problem instance. Note that the consistency
and efficiency of a given policy depends on the class of MAB problem instances
considered. Following the notation of Lattimore and Szepesvári (2020), we use
ν = (Pi : ı ∈ [K]) to denote a stochastic MAB instance in which action i is associated
with a reward distribution Pi. Two commonly studied classes of MAB instances, are
those with rewards from [0, 1], E[0,1], and those that are 1-subgaussian, ESG:

E[0,1] = {ν = (Pi)i : supp(Pi) ⊆ [0, 1]}

ESG = {ν = (Pi)i : Pi is 1-subgaussian for all i}.

In addition, we write RT(ν) to describe the regret accumulated over a time horizon of
length T on a bandit instance ν. Asymptotic consistency was first studied in the
seminal paper of Lai and Robbins (1985), who establish asymptotic lower bounds on
regret for single parameter MAB classes of order Ω(log(T)). This work was extended
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to nonparametric MAB problem classes by Burnetas and Katehakis (1996). Note that
these asymptotic bounds are instance dependent. That is, they take the form:

lim inf
T→∞

E [RT(ν)]

log(T)
≥ c⋆(ν, E)

in which c⋆(ν, E) is a constant with respect to T that depends on the problem instance
ν and the problem class E . In contrast, general minimax bounds, which are instance
independent, have also been established. In particular, (Auer et al., 2002) show that
any policy must incur regret of order Ω(

√
KT) on some worst-case instance in E[0,1].

Furthermore, finite-time instance-dependent bounds have been established by
Garivier et al. (2019) and Lattimore (2018) of similar, or identical order to the
asymptotic instance-dependent bounds already mentioned.

In what follows, we will outline two approaches for designing policies which aim to
provide finite-time regret guarantees that match the aforementioned lower bounds
described above. First, we will consider the explore-then-commit (ETC) framework,
before describing the family of upper confidence bound (UCB) algorithms, which rely
upon the principle of optimism in the face of uncertainty. ETC and UCB differ in that
the former splits the time horizon into explicit exploration and exploitation phases,
whilst the latter makes no such clear separation.

In the ETC framework, the decision maker spends the first mK rounds pulling each
arm m times. This is known as the exploration phase, in which the decision maker
computes an empirical estimate µ̂i of the mean reward associated with each arm.
After the exploration phase, the decision maker pulls the arm with highest empirical
mean reward on every round. Let ∆i = µ⋆ − µi denote the expected performance gap
between arm i and the best arm. It is clear in the first mK rounds that any ETC
algorithm will incur a regret of m ∑K

i=1 ∆i. Similarly, it is easy to see that the expected
number of pulls of arm i in the remaining T −mK rounds is given by
(T −mk)P(µ̂i ≥ maxj ̸=i µ̂j). Thus the average regret of any ETC algorithm is given by:

m
K

∑
i=1

∆i + (T −mK)
K

∑
i=1

P(µ̂i ≥ max
j ̸=i

µ̂j)∆i

Note that both terms depend directly on m and as such the choice of m is extremely
important when it comes to achieving good regret bounds. In addition, both terms
depend on the performance gaps ∆i. As a result, ETC algorithms which use additional
knowledge regarding the performance gaps ∆i when setting m typically perform
better than those that do not. When the decision maker has no knowledge of the
performance gaps ∆i, m must be set dynamically based on the rewards observed to
obtain meaningful guarantees. Unfortunately, even in the case of K = 2 Garivier et al.
(2016) shows that ETC algorithms are asymptotically suboptimal under Gaussian
reward distributions both, whether performance gaps are known or not.
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In contrast to ETC algorithms, UCB algorithms do not partition the time horizon.
Instead, UCB algorithms maintain an index for each arm. Each index used by a UCB
algorithm corresponds to an upper confidence bound on the mean reward of each
arm, based on the empirical means of rewards sampled so far. At each time step, a
UCB algorithm simply selects the arm with the largest index. That is, UCB is
optimistic in the face of uncertainty. By this, we mean that out of the mean rewards
which are likely for a given arm, UCB algorithms assume that the arm has the best
mean reward possible. For example, in the case of 1-subgaussian rewards the
empirical mean reward of any arm satisfies the following confidence bound:

UCBi(t) =

⎧⎨⎩∞ if Ni(t) = 0

µ̂i +
√︂

2 log(1/δ)
Ni(t)

where Ni(t) corresponds to the number of times the decision maker has taken action i
so far. The corresponding UCB policy simply takes the action with maximum
confidence bound:

it = max
i∈[K]

UCBi(t).

Note that the confidence bound above does not depend on the performance gaps ∆i,
and as such this version of UCB can be run without knowledge of the performance
gaps ∆i. In fact, the class of UCB algorithms is minimax optimal regardless of whether
the performance gaps are known or not (Bubeck and Cesa-Bianchi, 2012; Garivier and
Cappé, 2011).

Within the context of sequential resource deployment, stochastic MAB problems often
do not reflect reality. For example, in stochastic MAB problems the reward
distribution associated with each action is fixed and does not change with time. In real
world settings, the efficacy of a deployed resource varies through time depending on
the underlying state of the environment. Additionally, resources are often unavailable
for a period once deployed. In other words, the availability of resources may vary
throughout time, depending on the past actions of the decision maker. Several
extensions to the stochastic MAB problem has been curated which seek to mitigate
these issues. In the section that follows, we will review both nonstochastic and
nonstationary MAB problems which aim to adaptively track the best action through
time. After this, we investigate constrained bandit models, which restrict the set of
actions available to the decision maker on each time step.

2.2.2 Nonstationary Bandit Models

Nonstationary stochastic MAB problems relax the stationarity assumption implicit in
the classical stochastic setting. That is, in nonstationary MAB problems, the reward
distribution associated with each arm may change over time. In what follows, we will
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use µi
t to denote the mean reward of arm i at time t. Of course, the definition for regret

given in the previous section is no longer a meaningful measure of the decision
maker’s performance. In other words, the decision maker cannot expect a fixed policy,
which pulls the same arm repeatedly, to be optimal in a nonstationary setting. Instead,
an optimal policy must pull an arm with the highest mean reward, µ⋆

t = maxi∈[K] µi
t,

on each time step. More formally, the regret of a decision maker in nonstationary
bandit problems is defined as follows:

RT =
T

∑
t=1

µ⋆
t −

T

∑
t=1

Xit
t . (2.6)

If there is no relationship between the reward distributions for a given arm between
time steps, then the decision maker cannot reliably predict the future rewards of each
arm based on the feedback they have already received. As a result, additional
structural assumptions on how the reward distributions evolve over time are required
in order to achieve reasonable regret bounds. In fact, if no further structural
assumptions are made on the reward distributions, then the nonstationary stochastic
bandit problem is equivalent to the adversarial bandit problem. In the adversarial
bandit problem, we assume that rewards are specified by a potentially malicious
adversary on each time step, rather than being drawn from a distribution. For the
adversarial bandit setting, Auer et al. (2002) introduce the Exp3 algorithm, which
achieves O(

√︁
TK log(T)) expected weak regret under the assumption that rewards

must lie in [0, 1]. In short, weak regret is the expected difference between the
cumulative reward of the decision maker and the cumulative reward from the best
policy among those that repeatedly play the same action:

max
i∈[K]

T

∑
t=1

Xk(t)−E
[︂

Xit
t

]︂
.

Moreover, Auer et al. (2002) show that Exp3 is optimal up to logarithmic factors when
it comes to weak regret. Of course, we would like to identify policies which perform
well with respect to the regret as defined in (2.6), rather than the weak regret.

A natural way to measure the complexity of a nonstationary MAB problem is to
measure the number of time steps on which the reward distributions change. More
formally, let L denote the number of time steps on which the reward distributions are
updated:

L = #{1 ≤ t ≤ T | ∃i : µi
t−1 ̸= µi

t}.

Note that if L = T, then we recover the entire class of nonstationary stochastic MAB
problems. However, if L is small relative to T, one may hope to achieve vanishing
regret. This motivates the development of sublinear regret bounds that depend on
both L and T. The first bounds of this type were provided in the context of
nonstochastic bandits by Auer et al. (2002), who introduce a variant of the Exp3
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algorithm which obtains Õ(
√

KLT) regret when the number of changes L is known.
Meanwhile, variants of UCB have also been proposed that possess regret guarantees
in terms of L and T. Kocsis and Szepesvári (2006) introduce Discounted-UCB, in
which the empirical mean associated with each arm is replaced by a discounted
average. Similarly, Garivier and Moulines (2011) introduce SW-UCB, which only
computes the empirical mean reward associated with each arm in a sliding window
that moves across the time horizon. More recently, Auer et al. (2019) proposed the
ADSWITCH algorithm, which achieves Õ(

√
KLT) regret without needing to know the

number of changes L in advance.

Instead of considering the total number of changes, one can also consider the total
variation of mean rewards over the entire time horizon. More formally, given a MAB
problem instance, the total path variation of expected rewards (Besbes et al., 2014), is
given by

T−1

∑
t=1

max
i∈[K]
|µi

t − µi
t+1|.

With this quantity in mind, Besbes et al. (2014) introduce a variant of Exp3, known as
RExp3, which achieves Õ((KVT)

1
3 T

2
3 ) regret on problem instances where the total

path variation of expected rewards is bounded by VT. Briefly, put RExp3 consists of
splitting the time horizon into epochs of carefully chosen length, and running Exp3
within each epoch. Additionally, Besbes et al. (2014) provide a lower bound of order
Ω((KVT)

1
3 T

2
3 ) on the regret incurred by any algorithm on such a family of problem

instances. As a result, RExp3 is essentially minimax optimal up to logarithmic factors.
Karnin and Anava (2016) design an algorithm of similar structure, in which an
ETC-style algorithm is run within epochs of adaptive length. Meanwhile, Wei et al.
(2016) have developed a UCB-type algorithm with regret bounds which depend on
the variation budget VT and the statistical variance of each reward distribution.

Closely related to nonstationary stochastic MAB problems are restless bandits
(Whittle, 1988). In a restless bandit problem, each action is associated with a Markov
chain. Each time an action is taken by the decision maker, the Markov chain associated
with each action makes a state transition. The decision maker only observes the
current state of its chosen action. The reward, Xi

t, received by the decision maker for
pulling arm i at time step t is a random variable which depends on the current state of
the arm. We refer the interested reader to Ortner et al. (2012) for more details.

Observe that nonstationary stochastic MAB problems are natural models for
sequential resource deployment settings where the utility of each resource may vary
over time. In Chapter 4 we will leverage the concepts discussed in this section to
develop our own model for sequential resource deployment. However, note that
nonstationary bandit problems do not model resource unavailability. In the next
section, we will discuss relevant constrained bandit models, which restrict when and
how frequently a given action can be taken.
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2.2.3 Constrained Bandit Problems

In many sequential decision problems, actions often become unavailable, depending
on the state of the environment. This phenomena is modeled explicitly by sleeping
bandits (Kleinberg et al., 2010), in which arms may ‘’fall asleep” and become
periodically unavailable. Formally, the decision maker must choose their action at
time step t from a set, At ⊆ [K], of available actions. Observe that the original
definition for regret, given in Section 2.2.1, is not suitable in the sleeping bandits
setting, as the arm with highest mean reward may not always be available. As a result,
many different notions of regret have been proposed in the literature as alternative
performance measures for sleeping bandits.

For example, policy regret measures the difference in cumulative reward accrued by
the decision maker and the best policy which deterministically maps a set of available
actions to an available action. In contrast, the ranking regret measures the difference
in cumulative reward by comparing against the best ranking of actions, which equates
to a policy where the highest arm available in the ranking is pulled. Lastly, the
per-action regret is the difference between the cumulative reward of a fixed action and
the decision maker, only including rounds where the action was available. Note that
policy regret upper bounds the ranking regret in all problem instances. For a thorough
comparison of each regret notion, we refer the reader to Kale et al. (2016).

As with rewards, the set of available actions at each time step may be chosen by an
adversary, or sampled stochastically from a stationary distribution. Kanade et al.
(2009) develops an algorithm, based on follow-the-perturbed-leader, for sleeping
bandits with stochastic action sets and adversarial rewards, which achieves Õ(K 4

5 T
4
5 )

ranking and policy regret. For both the case of adversarial action sets with stochastic
rewards, and stochastic actions sets with stochastic rewards, Kleinberg et al. (2010)
develop a UCB algorithm, called AUER, which incurs Õ(

√
KT) ranking regret, and

show that AUER is minimax optimal up to logarithmic factors.

For policy regret, Neu and Valko (2014) propose SLEEPINGCATBANDIT, a
combinatorial semi-bandit algorithm, which incurs Õ(K 2

3 T
2
3 ) regret with stochastic

action sets and adversarial rewards. Meanwhile, Saha et al. (2020) describe an
extension of Exp3, which attains Õ(K2

√
T) policy regret under stochastic action sets

and adversarial rewards when the probabilities of availability for each arm are
independent. Saha et al. (2020) also provide a variant of their algorithm for the general
case, where the probabilities of arm availability can be correlated, that incurs
Õ(2K

√
T) policy regret but suffers from O(tK) time complexity on each round.

In the case, where both actions sets and rewards are adversarial, a variant of Exp4, and
extension of the previously mentioned Exp3 algorithm for adversarial bandits, offers
sublinear ranking regret, but is computationally inefficient. In fact, even in the online
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learning setting, where the decision maker observes the rewards of all actions after
each time step, achieving sublinear per-action regret is computationally intractable for
all three notions of regret outlined (Kale et al., 2016; Kanade and Steinke, 2014).

In real world settings, deploying resources often comes with costs. For example, in an
emergency response setting, deploying a search party may incur financial costs and
may require the use of emergency vehicles, of which there are a limited number. As a
result, decision makers often face budget requirements when making decisions.
Knapsack bandits are designed to address these concerns. In a knapsack bandit each
arm i has an associated cost, ci(t) ∈ Rd at each time step. The decision maker is given
a budget B = (B1, . . . , Bd) which they must not exceed over the time horizon. That is,
the decision maker must ensure:

T

∑
t=1

cit(t) ≤ B.

Knapsack bandits were first investigated under the name of budgeted bandits
(Tran-Thanh et al., 2012; Ding et al., 2013). Tran-Thanh et al. (2012) study a
one-dimensional budgeted setting in which the costs associated with each action are
deterministic and fixed through time. In particular, Tran-Thanh et al. (2012) proposes
the KUBE algorithm, which combines the density-ordered greedy algorithm for
knapsack problems with a UCB algorithm to achieve asymptotically optimal regret of
order O(log(B)) with respect to to the best policy in hindsight. Similarly, Ding et al.
(2013) consider a one-dimensional setting, in which costs are drawn from a stationary
distribution associated with each arm, and propose a UCB algorithm that achieves
O(log(B)) regret compared to the policy which computes the optimal knapsack
packing given the mean cost of each arm.

More recently, algorithms have been designed for the multidimensional setting. For a
setting where costs are sampled from stationary distributions associated with each
arm, Badanidiyuru et al. (2018) designs a primal-dual algorithm, based on upper
confidence bounds, that achieves Õ(

√
KOPT + OPT

√
K/Bmin)2 regret with respect to

the optimal policy that knows both the cost and reward distributions. Contextual
knapsack bandits are also well explored within the literature (Agrawal et al., 2016;
Badanidiyuru et al., 2014). For example, Agrawal et al. (2016) consider a general
contextual bandit setting in which rewards are passed to a concave function and costs
are passed to a convex function, and develop a UCB algorithm which attains sublinear
regret guarantees with respect to both cumulative reward and budget violation.

Moreover, adversarial knapsack bandits have also been investigated. For example,
Rangi et al. (2019), consider a one-dimensional adversarial setting, designing a variant
of Exp3 which achieves O(K2 log(K)/c3

min) regret, where cmin is the minimum cost of

2OPT denotes the cumulative reward of the optimal policy, and Bmin denote the minimum budget
across all dimensions
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pulling an arm. Meanwhile, Immorlica et al. (2019), consider the multidimensional
adversarial setting, and show that any policy must incur Ω(log(T)) regret with
respect to the best distribution of actions.

Note that in many real world settings resources are reusable. For example, in the
previously mentioned disaster response scenario, emergency vehicles can be reused
after their first period of deployment is completed. In particular, the availability of a
given resource typically depends on when it was last used or deployed. Neither
sleeping or knapsack bandits explicitly model this phenomena (violating Requirement
2b). Next, we will introduce the stochastic blocking bandits setting (Basu et al., 2019),
which explicitly models both the unavailability and reusability of resources.

The stochastic blocking bandit problem extends from the stationary stochastic MAB
setting problem. However, unlike the classical stationary MAB problem, after an arm
is pulled it is deterministically blocked, and cannot be pulled for the next Di − 1 ≥ 0
time steps. We refer to Di as the blocking delay associated with arm i, and assume that
blocking delays are known to the decision maker. Following our sleeping bandits
notation, we let At denote the set of available arms at time step t. Note that the set of
stochastic blocking bandit problems can be viewed as a subset of sleeping bandit
problems, where actions sets are adversarial and rewards are stochastic. In other
words, each stochastic blocking bandit problem is a sleeping bandit problem, where
rewards are stochastic and action sets are chosen by an adaptive adversary who
enforces blocking delays.

We say that a sequence of actions is admissible if an action is never taken when it is
blocked. The goal of the decision maker is to select an admissible sequence of actions
which maximises their cumulative reward. Just as in the classical stochastic MAB, to
analyse the performance of the decision maker, we may compare against a meaningful
benchmark policy. Clearly, in the stochastic blocking bandit setting, the policy which
repeatedly pulls the arm with highest mean reward may not be admissible. As a
result, the standard definition of regret, as given in Section 2.2.1, is not suitable.
Instead, we may compare against the admissible sequence, (i1, . . . iT), with highest
expected reward:

OPT = max
(i1,...,it)∈[K]T

T

∑
t=1

µit . (2.7)

Note that this benchmark differs from those used in the sleeping bandits setting. In
particular, this policy benchmark accounts for the fact that the availability of a given
arm at a given time step depends on the previous actions of the decision maker.
Meanwhile, the regret notions considered in the sleeping bandits literature do not
account for how the subset of available actions at each time step might change if a
different policy is adopted. Hence, standard algorithms for the sleeping bandits
setting cannot be readily applied to blocking bandit problems.
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Unfortunately, achieving good performance with respect to the benchmark described
in Equation (2.7) is unrealistic. As proven by Basu et al. (2019), even with full
information regarding the mean rewards of each arm, computing such an action
sequence is NP-Hard if the random exponential time hypothesis is true. As a result,
the decision maker cannot hope to have performance comparable to such a
benchmark when the mean rewards of each arm are unknown. Instead, we should
compare against a sequence which the decision maker could realistically produce with
full information. This line of thought motivates the definition of α-regret.

Definition 2.6. For α ∈ (0, 1], the α-regret, Rα
T, of the decision maker is given by:

Rα
T = αOPT−

T

∑
t=1

Xit
t

In other words, the α-regret compares the performance of the decision maker to an
α-approximation of the best performing admissible action sequence in expectation.
One way to construct algorithms with good α-regret is to first develop an
α-approximation for the full information setting, then convert such an algorithm to the
bandit setting. Greedy algorithms lend themselves particularly well to this approach
for two reasons. First of all, greedy algorithms have been employed for many problem
settings with similar combinatorial structure to blocking problems. Secondly, greedy
algorithms combine naturally with both the ETC and UCB approaches outlined in
Section 2.2.1.

In fact, Basu et al. (2019) apply this approach, first providing a greedy algorithm for
the full information setting which simply pulls the arm with highest mean reward
among those available at the current time step, and prove that such an algorithm is a
(1− 1/e)-approximation of the optimal admissible policy. Basu et al. (2019) then
combine this algorithm with UCB. The resulting algorithm greedily pulls the arm with
the highest confidence index among those available, providing an instance-dependent
regret bound of O(log(T)).

Several extensions to the stochastic blocking bandits setting have been considered in
the literature. Basu et al. (2021a) investigate a contextual bandit setting with fixed and
known delays associated with each arm, providing an instance dependent α-regret
guarantee of order O(log(T)), combining an online randomised rounding algorithm
with UCB. Atsidakou et al. (2021) study a combinatorial bandit setting in which
blocking delays are stochastic. More specifically, the authors consider a setting in
which multiple arms can be pulled in each round, subject to feasibility constraints.
Within this setting, the authors develop a UCB bandit algorithm based on a greedy
heuristic for the full information setting with an instance-dependent approximate
regret guarantee of order O(log(T)). Similarly, Papadigenopoulos and Caramanis
(2021) studies a setting in which multiple arms can be pulled in one round subject to
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matroid constraints, combining an offline greedy algorithm with UCB to obtain a
worst-case regret bound of order O(

√
T).

In Chapter 4, we will introduce an adversarial blocking bandit problem, designed to
model the deployment of reusable resources, whose utility may vary over time. More
specifically, we will combine concepts from both stochastic blocking bandits and
nonstationary bandits. Following the approach of Basu et al. (2021a), we first develop
an approximation algorithm for the full information setting, before applying the
techniques of Besbes et al. (2014) to convert this approximation algorithm to our
bandit setting.

Aside from those already mentioned, many other constrained bandit problems have
been studied in the literature. For example, Chakrabarti et al. (2008) introduce the
mortal bandits setting, in which arms have a limited lifetime and may become
permanently unavailable either when pulled, or as a result of time passing. In
particular, Chakrabarti et al. (2008) characterize the maximum reward achievable by
any policy in expectation and present several heuristic algorithms which are optimal
when the rewards associated with each arm are deterministic. Meanwhile,
combinatorial bandits (Kveton et al., 2015; Combes et al., 2015; Chen et al., 2013), in
which a subset of arms can be pulled on every round subject to feasibility constraints,
have been studied extensively. As mentioned by Basu et al. (2019) stochastic blocking
bandit problems can be formulated as combinatorial bandit problems, by grouping
time steps into blocks which scale exponentially with the least common multiple of
blocking delays. Of course, this means that combinatorial bandit algorithms are often
not practical in the blocking bandit settings, as the number of action sets that need to
be considered within each block may be exponential in the least common multiple of
blocking delays, which could be very large.

2.3 Repeated Matching with Reusable Resources

Finally, we review research literature relevant to Problem Domain 3. We first
introduce and survey the traditional one-sided matching problem, which serves as a
basis for the setting we introduce in Chapter 5. Whilst doing so, we compare two
popular and natural algorithms, the probabilistic serial (PS) mechanism, and random
serial dictatorship (RSD). As discussed in the introduction, matching typically takes
place repeatedly over many time steps in practical settings. Therefore, in Section 2.3.2,
we shift our focus to repeated matching settings. In particular, we focus on repeated
matching settings where agents are initially unaware of their preferences and must
learn them over time, seeking a resolution to Requirement 3c. Whilst many such
settings have been proposed in the literature, none model resource availability and
reuse (violating Requirements 3a and 3b). This observation motivates our
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development of the sequential blocked matching setting, which we introduce in
Chapter 5.

2.3.1 One-Sided Matching

To start, we first review the traditional one-sided matching problem and its variations.
One-sided matching models a wide range of real world problems, including the
matching of college courses to students and organs to medical patients. For example,
one-sided matching is also referred to as the capacitated house allocation problem, due
to its early use in modelling the allocation of social housing (Hylland and Zeckhauser,
1979). More generally, one-sided matching problems model any scenario in which a
set of indivisible goods or services must be assigned amongst a set of agents or
individuals, who may prefer to be assigned some goods/services over others.

In a one-sided matching problem, a central planner is tasked with producing a
(potentially randomised) matching, m, between a set of n agents and a set of s
indivisible units. From now on, we will use the terms unit and service
interchangeably. In any given matching, each agent can be assigned at most one
service, and each service can be assigned to at most one agent. In other words, each
agent is unit-demand. Additionally, it is assumed that agents hold private preferences
over services, and thus, may prefer to be assigned one service over another. Note that
the preferences of each agent are private, and initially unbeknownst to the central
planner.

We say that an agent i holds ordinal preferences if their preferences can be fully
described by a linear ordering, ≻i, over services. The higher a service is in the linear
ordering, the more it is preferred by the agent. Meanwhile we say that an agent i holds
cardinal preferences if their preference for a given service j is described by a positive
real number, µij, known as a utility value. Under cardinal preferences, agent i prefers
one service over another if and only if it has higher utility value. Note that any set of
cardinal preferences induces a set of corresponding ordinal preferences.

To aid in the selection of an appropriate matching, each agent submits a report of their
own preferences to the central planner. Agents may report cardinal or ordinal
information, depending on context. We say that an agent is truthful if they submit a
report that is consistent with their underlying preferences. Otherwise, we say that the
agent has misreported. It is assumed that agents are rational, and will misreport their
preferences if it improves the service they are assigned.

Typically, the goal of the central planner is to adopt a matching policy which is both
fair and efficient. For example, consider the problem faced by a server administrator
for a cloud computing company. The server administrator is tasked with assigning
computing hardware to clients, who each have a job they need to complete. The
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administrator wants to ensure that their assignment of hardware is efficient and
minimises the cumulative run time of all jobs, whilst also ensuring that no customers
are treated unfairly, and given subpar hardware compared to clients with similar job
specifications.

Many different notions of fairness and efficiency have been proposed in the literature.
When agents have ordinal preferences, it is natural to formulate efficiency via
first-order stochastic dominance (Bogomolnaia and Moulin, 2001). More formally, let
mi denote the randomised assignment of units to agent i by a randomised matching m.
Furthermore, let mij denote the probability agent i is matched to service j. Similarly,
given a preference ordering ≻i, let

ω(≻i, j, mi) = ∑
k:k≻i j

mi,k

denote the probability that the randomised matching policy employed by the central
planner assigns service j, or better, to agent i. We say that a randomised matching m
stochastically dominates a randomised matching m′ for agent i if:

ω(≻i, j, mi) ≥ ω(≻i, j, m′i).

We say that the randomised matching m is stochastic dominance efficient (or
sd-efficient for short) if m is not stochastically dominated by any randomised matching
for all agents. Instead of aiming for sd-efficiency, a central planner may aim for the
weaker requirement of ex post efficiency. A matching is ex post efficient if it is Pareto
optimal, meaning that there exists no matching in which all agents are better off.

A standard way of modelling fairness is via envy-free conditions, which stipulate that
no agent should prefer the assignment given to another agent over their own. Like
efficiency, envy-freeness has a natural formulation via first-order stochastic
dominance. More specifically, we say that a matching is sd-envy-free if, no agent’s is
assignment is stochastically dominated (according to their own preferences) by
another agent’s assignment.

Aside from fairness and efficiency, a central planner may also hope to adopt a
matching policy which is truthful, or strategyproof. Truthfulness ensures that honest
agents are rewarded, which is desirable from an ethical standpoint. Moreover, the
efficiency and fairness of a given matching policy is typically examined under the
theoretical assumption that agents are truthful. As a result, truthfulness is an
important property from a performance standpoint, which ensures theoretical results
regarding efficiency and fairness reflect reality. Once again, truthfulness can be
formulated via first-order stochastic dominance. Briefly put, a matching policy is
sd-strategyproof if the assignment each agent receives when they report truthfully
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stochastically dominates any assignment they could receive by misreporting, with
respect to their own preferences.

With fairness, efficiency and truthfulness in mind, Bogomolnaia and Moulin (2001)
propose the probabilistic serial (PS) mechanism. The PS mechanism is always
sd-efficient, sd-envy-free, and (weakly) sd-strategyproof. The PS mechanism first
computes a fractional allocation of services over multiple phases, which is then
converted into a distribution over integral matchings that the central planner samples
from. In short, the PS mechanism constructs a fractional allocation by allowing each
agent to “eat” their most preferred service at a constant rate until the service has been
entirely consumed. Once a service has been completely consumed, the first phase
ends. After this, the agents continue eating, selecting their most preferred service out
of those still available.

Aside from the PS mechanism, the random serial dictatorship (RSD) algorithm
(Abdulkadiroglu and Sonmez, 1998) is a popular one-sided matching algorithm due
to its simplicity. In short, RSD proceeds by first uniformly sampling a permutation, σ,
over agents. Following the order of the sampled permutation, each agent is assigned
their most preferred service out of those that remain. Unfortunately, RSD is not
sd-efficient and only satisfies a weakened version of sd-envy-freeness. However, RSD
is both ex post efficient and sd-strategyproof. In general, RSD and the PS mechanism
are not directly comparable, in that neither policy stochastically dominates the other
in general. However RSD and the PS mechanism converge to the same limit as the
supply (i.e. number of copies) of each service goes to infinity (Che and Kojima, 2010).
We refer the interested reader to Hosseini et al. (2018), who evaluate and compare the
empirical performance of both policies via several experiments.

So far, we have only performance measures and benchmarks that consider ordinal
information. When preferences are cardinal, it is sensible to dispense with properties
defined in terms of stochastic dominance and study properties or benchmarks that
explicitly depend on the utility values each agent assigns to each service. For example,
a central planner may want to select a matching m which maximises social welfare:

SW(m) =
n

∑
i=1

µi,m(i)

where m(i) denotes the service assigned to agent i in the matching m. However, when
cardinal preferences are reported ordinally, the central mechanism cannot hope to
select a matching (randomised or not) that maximises social welfare. This is because
there may be many utility profiles which correspond to a single preference profile.
Instead, the central planner can only hope to minimise distortion, which corresponds
to the worst-case social welfare of a matching given the preference profiles submitted.
Distortion was first studied by Procaccia and Rosenschein (2006) in the context of
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computational social choice, and characterizes the unavoidable penalty that comes
with ordinal reporting of cardinal preferences.

When cardinal preferences are unit-sum or unit-range, Filos-Ratsikas et al. (2014) show
that RSD achieves O(

√
n) distortion, and that no matching policy is asymptotically

better. Similarly, Adamczyk et al. (2014) show that RSD is a 3-approximation for
dichotomous preferences, and that RSD is asymptotically optimal in settings where
preferences are normalized to lie in the interval [0, 1]. Likewise, Christodoulou et al.
(2016) show that both RSD and PS exhibit O(

√
n) price of anarchy, and show that any

deterministic matching policy achieves price of anarchy of order Ω(n2).

In contrast to RSD, the PS mechanism is not truthful when agents have cardinal
preferences. That is, an agent may be able to improve their expected utility under the
PS mechanism by misreporting thier preferences. Whilst, not completely truthful, the
PS mechanism does satisfy a relaxed version of strategyproofness know as incentive
ratio. More specifically, the PS mechanism has a 3/2 incentive ratio (Wang et al., 2020),
which means that no agent can improve their own utility by a multiplicative factor
greater than 3/2 by misreporting. In addition, Kojima and Manea (2010) show that the
PS mechanism is (weakly) truthful when the supply of each service is sufficiently
large.

Note that social welfare is not a fair benchmark. This is because policies which assign
low utilities to one agent and large utilities to another agent can attain the same social
welfare as a policy which assigns roughly the same utility to everyone. As a result,
much of the matching literature has focused on alternate benchmarks that better
trade-off fairness with efficiency, especially for matching settings in which preferences
are reported cardinally. For instance, instead of maximising social welfare, a central
planner may instead estimate the Nash bargaining solution (Nash Jr, 1950), which
corresponds to the product of each agents’ gain in expected utility relative to a
baseline matching. Note that, after subtracting the utility of the baseline matching
from each agent’s utilities, finding the Nash bargaining solution is equivalent to
maximising the Nash social welfare (Caragiannis et al., 2019). Any randomised
matching which maximises the NSW is proportionally fair. That is, no alternative
matching can improve the welfare of one agent by a multiplicative factor, without
reducing the utility of another agent by a greater factor.

Moreover, in general assignment problems without unit-demand constraints,
assignments that maximise Nash social welfare are envy-free up to one service and
serve as good approximations of other fairness properties, such as the maximin share
guarantee (Caragiannis et al., 2019). In the general assignment setting with divisible
services, Cole et al. (2013) devise the partial allocation (PA) algorithm which is truthful
and ensures each agent receives a 1/e-approximation of its welfare under the
NSW-maximising allocation. Unfortunately, to guarantee truthfulness, the PA
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mechanism may leave some services unassigned. In the case of one-sided matching,
Abebe et al. (2020) address this issue by proposing the randomised partial
improvement (RPI) mechanism, which returns a O(22

√
log(n)) per-agent

approximation of the Nash bargaining solution and ensures that all services are
allocated.

Competitive equilibrium from equal incomes (CEEI) (Hylland and Zeckhauser, 1979)
is an alternative solution concept which also aims to trade-off fairness with efficiency.
CEEI models the allocation of services via the following the hypothetical process.
First, each agent receives a single unit of fiat currency. Then, each agent is permitted to
buy fractions of each service using their fiat currency. A CEEI is simply the allocation
of services at a competitive equilibrium in the resulting market. Any allocation which
is a CEEI is envy-free in the sense that no agent prefers the allocation prescribed to
another agent over its own. Unfortunately, CEEI is not a strategyproof solution
concept. That is, agents may be incentivised to misreport their preferences in order to
alter the competitive equilibrium of the induced market and achieve a better payoff.
However, CEEI is strategyproof in the large. In other words, given enough agents
with the same preferences, computing a CEEI constitutes a truthful algorithm. Note
that with no capacity constraints on agents, computing CEEI corresponds to finding a
randomised assignment which maximises NSW. However, under matching
constraints, CEEI and NSW are different solution concepts. Unfortunately, the
problem of computing an exact CEEI is not in PPAD, and the problem of
approximating a CEEI is PPAD-hard (Chen et al., 2022). In order to circumvent this
issue, Alaei et al. (2017) study a more tractable setting, and provide a polynomial time
algorithm for computing CEEI in matching settings when the number of unique
preference orderings is constant.

Generally speaking, the choice of underlying preference structure and reporting
scheme for a one-sided matching setting depends on the real world problem being
modeled. Note that many large-scale decision-making problems involve humans in
the loop. For example, in the case of freelance employment, the suitability of a given
contractor is typically determined by an employee of the contracting company. In
many practical contexts, humans can find it hard to ascribe an exact numerical value
which expresses how much they value a given service. In contrast, humans often find
it easy to select the service they prefer from a selection. Such an observation motivates
a focus on one-sided matching settings in which preferences are reported ordinally. In
addition, ordinal reporting is more efficient than cardinal reporting in the sense of
communication bandwidth. Moreover, matching policies which rely on ordinal
preference reports can be trivially extended to settings with cardinal reporting. With
these concerns in mind, the repeated matching setting we curate in Chapter 5 assumes
that agents have cardinal preferences but report ordinally.
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Note that the motivating examples considered in Section 1.3 take place repeatedly
over many time steps. For example, consider the problem of assigning freelance
contractors to employers. Companies may will eventually have new contracts that
need to be fulfilled and as a result must be reassigned freelance contractors in the
future. Similarly, consider the cloud computing problem discussed in Chapter 1. After
a certain amount of time, clients are likely to return with similar tasks that need to be
completed in the future. As a result, a server administrator will be required to produce
multiple matchings through time as new jobs are submitted. In addition, agents are
often initially unaware of their preferences, and must learn them over time through
repeatedly matching with services. For instance, a company may need to hire with a
freelance contractor multiple times before they decide if they are a good fit for a
company. Similarly, a client may need to run multiple jobs on a single piece of server
hardware before they have a good understanding of its performance and cost
effectiveness. Therefore, the matching setting we propose in Chapter 5 is repeated, in
order to capture the phenomena described above.

2.3.2 Repeated Matching Problems

A natural way to design algorithms for repeated matching settings is to directly apply
algorithms for one-sided matching on each time step. However, if the preferences of
individual agents change over time many desirable properties of established matching
algorithms do not carry over to the sequential setting. For example, Hosseini et al.
(2015) investigate the performance of RSD in a repeated ordinal matching setting,
where the preferences of each agent evolve stochastically depending on the matchings
selected by the central planner, and introduce a sequential version of
sd-strategyproofness, known as global sd-strategyproofness, or gsd-strategyproofness
for short. In particular, the authors show that RSD is not gsd-strategyproof and
propose a modified version of RSD, which is sd-efficient and gsd-strategyproof. A
similar model is studied in a social choice context by (Parkes and Procaccia, 2013),
who model a sequential social choice problem via a Markov decision process and
show that optimal policies, satisfying a range of axiomatic properties, can be
computed in polynomial time when the number of agent types is constant.

Note that in both the settings discussed above, each agent is fully aware of their own
preferences at the start of each time step. Therefore, these settings are insufficient
when it comes to modelling agents that must learn their preferences over time
(Requirement 2c). In contrast, within the multi-agent multi-armed bandit community,
many repeated matching settings in which agents are initially unaware of their
preferences have been proposed since the initial work of Das and Kamenica (2005).
For example, Liu et al. (2020) consider a two-sided sequential matching setting in
which each agent must learn about their preferences via bandit feedback. The authors
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first propose an ETC algorithm which achieves sublinear regret with respect to the
optimistic Gale-Shapley matching (Gale and Shapley, 1962). More specifically, the ETC
algorithm proposed consists of assigning services in a round robin fashion for a fixed
number of rounds, so that each agent may learn their preferences. After this initial
exploration phase, the central planner simply computes the optimistic Gale-Shapley
matching on each time step assuming that each agent will submit the preference
ordering induced by their empirical mean rewards. In addition, Liu et al. (2020)
propose a UCB algorithm which achieves sublinear regret with respect to the
pessimistic Gale-Shapley matching.

As the proposed ETC algorithm gives agents no say over their allocated service in the
exploration phase, and performs Gale-Shapley matching repeatedly in the
exploitation phase, it inherits all the truthfulness properties of the Gale-Shapley
algorithm. The situation is slightly more unclear in the case of the UCB algorithm.
However, the authors show that no agent can improve their regret with respect to the
optimistic Gale-Shapley matching by deviating from the preference ordering induced
by their upper confidence indexes for each service. Cen and Shah (2022) investigate a
similar setting to that of Liu et al. (2020), but introduce monetary costs and transfers.
More specifically, it is shown that there exist transfer and cost rules which ensure
repeated application of the Gale-Shapley algorithm results in O(log(T)) regret for
each agent with respect to the optimistic Gale-Shapley matching.

Closely related are decentralised multi-agent bandit settings. In decentralised settings,
agents are ranked, with the first agent in the ranking having priority over others. If an
agent chooses an arm selected by a higher ranked agent, then it is blocked and
receives zero reward. As a result, each agent must be pragmatic, and only pulls arm
which are not desired by higher ranking agents and must communicate effectively
through their actions to prevent avoidable collisions. Sankararaman et al. (2021)
develop a variant of UCB for this setting, referred to as UCB-D3. In particular, it is
shown that each agent may only benefit by a small additive factor if they deviate from
UCB-D3. Chawla et al. (2020) investigate a more general version of the setting
introduced by Sankararaman et al. (2021), in which agents are able to pass messages to
each other between pulls, whilst obeying a communication budget, and develop a
UCB style algorithm with sublinear regret guarantees. Meanwhile, Liu et al. (2021)
consider a two-sided matching setting where the ranking of agents is unique to each
arm, and develop a decentralised variant of UCB which achieves sublinear regret with
respect to the pessimistic Gale-Shapley matching and requires no explicit
communication between agents. Basu et al. (2021b) propose an improved algorithm
for this setting, extending from UCB-D3, and achieve logarithmic regret with respect
to the optimistic Gale-Shapley matching.

Note that all the motivating examples discussed with respect to Problem Domain 3 in
Chapter 1 involve a central planner, who has access to the reports of each agent. For
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example, the allocation of computer hardware to clients in a cloud computing setting
may be performed by a server administrator who knows the needs of all clients. In the
case of contract work, matching is often performed by an intermediary who plays the
role of a recruiter. As a result, the sequential matching setting we propose in Chapter 5
is centralised, and does not suffer from issues of collision and communication present
in decentralised models.

Lastly, there has been a long line of work studying online versions of weighted
bipartite matching and stable matching where matching entities (i.e. agents and
services) arrive dynamically over time (Karp et al., 1990; Kalyanasundaram and
Pruhs, 1993; Karande et al., 2011; Khuller et al., 1994). Within these settings, agents
and services often need to be matched quickly upon arrival, and are no longer
relevant once matched. As a result, such settings often do not capture the learning
experience of individuals and organizations when interacting with matching
platforms, and hence are generally unsuitable for addressing Requirement 3c.

In reality, agents and services often persist through time and need to be matched
repeatedly. For example, a freelancer may maintain a relationship with a specific
recruiter over the course of many contracts. Likewise, a company may return to a
recruiter as new openings need to filled. With this concern in mind, the matching
setting we develop Chapter 5 is similar in vein to the bandit models discussed above,
wherein a central planner is tasked with selecting a matching between persistent
agents and services on each time step, instead of matching agents and services on the
fly as they arrive, in order to construct a single matching over the entire time horizon.

Note that none of the settings discussed in this section model resource availability.
Similar to Problem Domain 2, services often become unavailable for a period when
matched. Moreover, the length of time a service is unavailable often depends on the
agent it was assigned to. For example, once a piece of cloud computing hardware is
assigned to a particular client, it is unavailable to others until the client’s job is
complete. Such use cases motivate the development of repeated matching settings
where services can be blocked when assigned (Requirements 3a and 3b).

With this concern in mind, the sequential matching setting we propose in Chapter 5
explicitly models the blocking of matched services. As in repeated matching settings
with dynamically evolving preferences, we will see that trivial applications of
standard matching algorithms, such as RSD, do not suffice. Moreover, we will see that
standard performance benchmarks, such as policies which repeatedly select the same
matching on each time step cease to be reasonable measures of performance. As
services may become blocked when assigned, the central planner may not be able to
construct the same matching on every time step. In other words, the central planner
must instead adopt a performance benchmark which accounts for the blocking of
services. Hence, attaining performance guaranatees in terms of efficiency
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(Requirement 3a) and truthfulness (Requirement 3b) presents a significant technical
challenge in the presence of blocking.
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Chapter 3

Stackelberg Prediction Games for
Linear Regression

In this chapter, we present a learning framework to address Problem Domain 1. More
specifically, we consider a Stackelberg prediction game (SPG) setting for linear
regression. We formally introduce our framework in Section 3.1. Whilst doing so, we
illustrate our framework’s ability to model a wide range of agent preferences, with the
goal of addressing Requirement 1a. Then, we investigate a natural approach to
learning called Stackelberg empirical risk minimisation, which, as the name suggests,
serves as an analog to empirical risk minimisation in the classical supervised machine
learning setting. We first analyse Stackelberg empirical risk minimisation from an
optimisation perspective, with a particular focus on the subclass of SPGs where both
agents and the learner adopt a square loss function. Under this assumption, we
develop a polynomial time algorithm for Stackelberg empirical risk minimisation,
called SDP-BISECT, partly addressing Requirement 1b. Sections 3.3 through 3.6 are
dedicated to its analysis. After briefly discussing extensions of SDP-BISECT based on
kernel methods (Section 3.7), we showcase the empirical performance of SDP-BISECT
on several benchmark datasets (Section 3.8). Following this, we consider Stackelberg
empirical risk minimisation from a statistical perspective, identifying when it is
possible to obtain meaningful generalisation guarantees (addressing Requirement 1c).
Following this, we summarise the semidefinite programming reformulation of
STERM, which is both heavily inspired by and improves upon SDP-BISECT (Section
3.10). Then, in Section 3.11, we discuss how γ, a hyperparameter in our model that
characterises the manipulation power of each agent, may be selected in practice.
Before concluding, we discuss some related open problems in Section 3.12.
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3.1 Model

To begin, we formally describe the problem setting which will form the basis of this
chapter. We consider a Stackelberg prediction game (Brückner and Scheffer, 2011), in
which a learner must select a linear hypothesis w ∈ Rn for the purpose of regression.
It is assumed that data of interest is sampled from a fixed data distribution D, which
the learner does not have access to. Note that so far, the assumptions introduced are
standard and align with the classical PAC learning setting discussed in Section 2.1.1. It
is from this point onwards that we diverge from the classical PAC learning setting.

We assume that data points are sampled from D by data providing agents, who may
have their own incentives and goals. More formally, we assume that each data point
sampled from D is of the form (x, y, z), where x ∈ Rn is an input example, y ∈ R is the
corresponding label of interest to the learner, and z ∈ R is a label indicating the
preferences of the agent who produced the sample. For example, consider the
insurance quotation problem discussed at numerous points throughout this thesis. A
single data point may correspond to a customer (the agent). In this case, x may
correspond to personal statistics describing the customer, y may correspond to an
insurance quote which is financially optimal from the point of view of the insurer (the
learner), whilst z may describe the insurance quote desired by the customer.

Additionally, we assume that the learner has access to a training dataset,
S = {(xi, yi, zi)}m

i=1, consisting of input examples, and their corresponding labels,
sampled directly from D. In practice, such a dataset may be obtained through a costly
verification process. For example, an insurance company may audit a small portion of
its customer base in order to validate the personal information they have submitted.
Moreover, the insurance company may survey customers to identify their preferred
labellings. Whilst such verification processes may be too expensive to apply to every
single data point, the learner may be able to construct a small, verified dataset for the
purpose of training.

After the learner has selected a hypothesis, agents continue to produce input
examples from the distribution D. With full knowledge of the linear predictor chosen
by the learner, each agent is allowed to modify the features of each input example.
However, each agent pays a cost, c(x, x̃), for modifying an input example x into x̃. The
cost function, c : Rn ×Rn → R+, reflects the effort invested by the agent to perform
such a modification. For example, in the insurance setting, such a cost function may
correspond to the cost of producing falsified documentation or the legal risk
associated with lying. The goal of each agent is to manipulate the learner into
predicting as close to the agent’s preferred labelling as possible, whilst also ensuring
the cost of manipulation is low.
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More formally, given the sample (x, y, z) the goal of an agent is to solve the following
optimisation problem:

x⋆ ∈ arg min
x̃

ℓ+1(w⊤x̃, z) + γc (x, x̃)

where w is the linear predictor chosen by the learner, ℓ+1 : R×R → R+ is a loss
function measuring the accuracy of the labelling output by the learner compared to
the target label z, and γ > 0 is scalar characterising the trade-off each agent makes
between producing low cost modifications, and bringing the learner’s prediction as
close to z as possible.

In contrast, the goal of the learner is to select a risk minimising predictor under the
assumption that agents will submit optimal modifications:

w⋆ ∈ arg min
w

E
[︂
ℓ−1(w⊤x⋆, y)

]︂
(3.1)

where ℓ−1 is the loss function of the learner and expectation is taken with respect to
the distribution D. In other words, the learner is interested in reliably predicting the
target label y, under the assumption that agents will try to manipulate them into
predicting z. From now on, we refer to the optimisation objective in Problem (3.1) as
the Stackelberg risk, due to its correspondence to the standard risk examined in
classical supervised learning settings.

Observe that Problem (3.1) is not well-defined, as a given agent may have multiple
best-response modifications to a learner’s chosen predictor. Hence, from now on, we
assume for any given sample (x, y, z) and any linear predictor w, that x⋆ is unique.
This avoids the need to distinguish between optimistic and pessimistic versions of
Problem (3.1) from the bilevel optimisation perspective. All the special cases of
Problem (3.1) we examine in this chapter satisfy this assumption. More generally,
whenever both the loss and cost functions of the data providers are convex, strict
convexity of either function is sufficient to guarantee that each data provider has a
unique best-response.

Note that, by changing the label z associated with a given data point, a wide variety of
agent preferences can be expressed. For example, perhaps every agent is interested in
attaining a specific score s ∈ R, in the same way that all agents are interested in
attaining a specific classification in strategic classification. This can be easily modeled
by setting z = s across the entire distribution D. Similarly, by varying γ, the learner
can account for agents of different capability. In other words, by decreasing γ, the
learner assumes that agents are more powerful and can produce a given modification
at lower cost. On the other hand, by increasing γ, the learner assumes that agents are
less powerful, and pay a higher cost for producing a given modification. As a result,
the model proposed is highly flexible, and addresses Requirement 1a.
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Of course, the learner cannot hope to solve Problem (3.1) directly. However, the
learner can use the training dataset to minimise an empirical version of their risk:

arg min
w∈Rn

1
m

m

∑
i=1

ℓ−1(w⊤x⋆i , yi)

s.t. x⋆i ∈ arg min
x̃i

ℓ+1(w⊤x̃i, zi) + γc (xi, x̃i) ∀i ∈ [m].
(3.2)

We refer to Problem (3.2) as Stackelberg empirical risk minimisation (STERM), due to
its clear connections with ERM in the classical supervised learning setting. The
remainder of this chapter is dedicated to investigating STERM from both an
optimisation and statistical perspective. From the optimisation standpoint, it is
important that STERM can be solved, or approximated, efficiently (Requirement 1b).
From the statistical standpoint, it is important that the empirical performance of a
linear predictor reflects its Stackelberg risk as the size of the training dataset increases
(Requirement 1c).

3.2 Square Losses

We now consider a special case of model above in which both agents and the learner
adopt a square loss function. Additionally, we assume that the cost function associated
with each agent is the squared Euclidean distance. More formally, it is assumed that:

ℓ−1(ỹ, y) = (ỹ− y)2

ℓ+1(z̃, z) = (z̃− z)2

c(x, x̃) = ∥x− x̃∥2.

Note that this special case is of interest for several reasons. First of all, the square loss
is perhaps the most popular loss function for regression problems, with its use
motivated by classical results such as the Gauss-Markov Theorem. Secondly, square
loss functions typically have special properties from an optimisation perspective,
often yielding closed form solutions. As a result, one may expect to develop
specialised algorithms for SPGs involving square losses. Moreover, the cost function
adopted can be interpreted as a form of Tikhonov regularisation, limiting the
complexity of the modification submitted by each agent. By decreasing γ, the learner
assumes that each agent i may submit more complex modifications that may stray
further from the originally sampled input example in terms of Euclidean distance.
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Substituting the aforementioned functions into Problem (3.2) yields the following
bilevel optimisation problem:

arg min
w∈Rn

1
m

m

∑
i=1

(w⊤x⋆i − yi)
2

s.t. x⋆i ∈ arg min
x̃i

(w⊤x̃i − zi)
2 + γ∥xi − x̃i∥2 ∀i ∈ [m].

(3.3)

As is standard, we may construct a matrix, X ∈ Rm×n, whose ith row corresponds to
input example xi in the sample S. Likewise, we may construct the vectors y and z,
whose ith elements correspond to output labels yi and zi respectively. This allows us
to reformulate Problem (3.3) as follows:

arg min
w∈Rn

∥X⋆w− y∥2

s.t. X⋆ = arg min
X̃∈Rm×n

⃦⃦
X̃w− z

⃦⃦2
+ γ

⃦⃦
X̃− X

⃦⃦2
F

(3.4)

where ∥ · ∥F denotes the Frobenius norm. In the sections that follow, we will study
Problem (3.4) in detail and present a polynomial time algorithm that converges to
global optima. Note that this is a marked improvement upon the generic algorithm for
SPGs proposed by Brückner and Scheffer (2011), which only guarantees convergence
to stationary points. In other words, Problem (3.4) represents a tractable special case,
in which it is possible to identify globally optimal hypotheses, rather than hypotheses
which are only locally optimal.

Before introducing our algorithm formally, we first give a brief overview of how our
algorithm is derived and the theoretical tools employed. To begin, using standard
results in linear algebra, we first reformulate Problem (3.4) into a fractional
programming problem (Lemma 3.1). After this, we show that such fractional
programming problems can be solved via bisection search (Section 3.4), by leveraging
the classical results of Dinkelbach (1967). Unfortunately, each step of this bisection
search involves solving a nonlinear optimisation problem. We show that this
subproblem can be reformulated as a semidefinite program (SDP) via a special
application of the S-lemma, an equivalence theorem which states when one quadratic
inequality is the consequence of another set of quadratic inequalities. Summarising,
the algorithm we propose solves a fractional program equivalent to Problem (3.4) via
bisection search, wherein each step consists of solving an SDP.

3.3 Problem Reformulation

To begin our analysis, we first reformulate Problem (3.4) as a fractional programming
problem. In doing so, we obtain the following intermediate form of Problem (3.4).
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Lemma 3.1. Problem (3.4) is equivalent to the following nonlinear optimisation problem:

arg min
w∈Rn

⃦⃦⃦⃦
⃦

1
γ z∥w∥2 + Xw

1 + 1
γ∥w∥2

− y

⃦⃦⃦⃦
⃦

2

(3.5)

Proof. Observe that the lower-level minimisation problem is unconstrained and
strictly convex. As a result, by Fermat’s Theorem, the lower-level minimisation
problem can be solved by finding a point at which the gradient with respect to X̃ is
zero. This yields a closed form solution for X⋆ which can be used to rewrite the
constraint in Problem (3.4) as follows:

arg min
w∈Rn

∥X⋆w− y∥2

s.t. X⋆ = (zwT + γX)(wwT + γI)−1

Substituting the right-hand side of the constraint directly into the objective and
applying the Sherman-Morrison formula (Boyd and Vandenberghe, 2004) to the
matrix wwT + γI achieves the desired form.

Note that Problem (3.5) clearly illustrates the effect of each agent’s actions on the
predictions of the learner. In particular, it is clear that the prediction made by the
learner on a given data point is a convex combination of the agent’s preferred
labelling, z ∈ R, and the prediction the learner would have made if given the true
input example without modification from the agent. Moreover, the weighting of this
convex combination is controlled by the Euclidean norm of the predictor chosen and
γ. As the learner chooses a predictor larger in Euclidean norm, its predictions will
slowly be pushed towards the labels desired by each agent. Similarly, as γ grows, the
closer the prediction of the learner gets to their prediction on the unmodified input.

By moving y into the fraction, we can express Problem (3.5) as the following fractional
program:

arg min
w∈Rn

⃦⃦⃦
1
γ z∥w∥2 + Xw− y− 1

γ∥w∥2y
⃦⃦⃦2

(1 + 1
γ∥w∥2)2

To get rid of higher degree terms, we can introduce a new variable α ∈ R and set it
equal to ∥w∥2:

arg min
w,α

⃦⃦⃦
α
γ z + Xw− y− α

γ z
⃦⃦⃦2

(1 + α
γ )

2 s.t. α = ∥w∥2 (3.6)

Recall that we started with a quadratic bilevel optimisation problem. We obtained a
single-level reformulation through replacing the internal optimisation problem faced
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by each data provider with its Karush-Kuhn-Tucker (KKT) conditions. This is a
standard approach within the bilevel optimisation literature (Dempe, 2002;
Strekalovsky and Orlov, 2020). Additionally, observe that the lower-level optimisation
problem faced by each data provider is unconstrained. Hence, the single-level
reformulation we obtain contains no bilinear constraints corresponding to
complementarity constraints within a KKT system. Such constraints are the primary
source of nonconvexity in single-level reformulations of quadratic bilevel optimisation
problems (Strekalovsky and Orlov, 2020).

As a result, one may hope to find an algorithm for global optimisation that is more
efficient than standard algorithms for bilevel optimisation, which typically rely on
methods such as branch-and-bound that scale poorly as the number of variables
increases (Strekalovsky and Orlov, 2020; Muu and Quy, 2003; Audet et al., 2007). This
is especially important in big data contexts, where learners may be regressing on more
than a thousand features at a time. Unfortunately, established algorithms for bilevel
optimisation typically only scale to the order of 50-500 variables (Audet et al., 2007;
Gruzdeva and Petrova, 2010; de Sabóia et al., 2004).

Returning to our own analysis, observe that Problem (3.6) takes the form of a
quadratic fractional program with a quadratic equality constraint. In what follows, we
will further reformulate Problem (3.6) using classical techniques from the fractional
programming literature.

3.4 Dinkelbach’s Lemmas for Fractional Programming

Before proceeding, we first review several results from the fractional programming
literature which our analysis will leverage. Consider a fractional program of the
following form:

min
w∈W

N(w)

D(w)
(3.7)

where both N : Rn → R and D : Rn → R are continuous functions andW is a
compact subset of Rn. With Problem (3.7) in mind, we may consider the following
parameterised optimisation problem:

min
w∈W

N(w)− qD(w) (3.8)

where q ∈ R is a parameter. In what follows, we will refer to Problem (3.8) as the
Dinkelbach program associated with Problem (3.7). Moreover, we may define a
function F : R → R mapping any q to the optimal value of the corresponding
Dinkelbach program. That is,

F(q) = min
w∈W

N(w)− qD(w).



62 Chapter 3. Stackelberg Prediction Games for Linear Regression

We refer to F as the Dinkelbach function associated with Problem (3.7). Dinkelbach
(1967) uncovered several relationships between F and Problem (3.7), which we use in
our own analysis. More specifically, the following two results are of interest.

Lemma 3.2 (Dinkelbach (1967)). The function F(q) is continuous in q and is strictly
monotonically decreasing. Moreover if w ∈ W and

q =
N(w)

D(w)

then F(q) ≤ 0.

Theorem 3.3 (Dinkelbach (1967)). F(q⋆) = 0 has a unique solution. Furthermore q⋆ is the
optimal value for the fractional program (3.7) if and only if F(q⋆) = 0.

Observe that Theorem 3.3 implies that solving Problem (3.7) reduces to finding a
q⋆ ∈ R such that F(q⋆) = 0. Moreover, Lemma 3.2 shows that the function F is
monotone, and thus, its roots can be found via bisection search. Hence, instead of
solving Problem (3.6) directly, we may instead consider the Dinkelbach function
associated with Problem (3.6):

F(q) = arg min
w,α

⃦⃦⃦⃦
α

γ
z + Xw− y− α

γ
y
⃦⃦⃦⃦2

− q
(︃

1 +
α

γ

)︃2

s.t. α = ∥w∥2 (3.9)

and apply bisection search to find its root. However, evaluating F(q) involves solving
a quadratically constrained quadratic program with a single constraint (QC1QP).
Thankfully, QC1QPs exhibit hidden convexity properties which can be exploited via
the application of an S-lemma, a theorem of the alternative for quadratic polynomials
analogous to Farkas Lemma in conic optimisation. In the following section, we detail
how the S-lemma can be used to reformulate the problem of evaluating F(q) as an
SDP, before putting everything together to design a practical algorithm.

3.5 Applying the S-Lemma

To start this section, we first review and introduce the S-procedure, a common
technique for reformulating quadratically constrained quadratic programs into a more
amenable form. In particular, we review the S-Lemma with equality, recently
proposed by Xia et al. (2016). After this, we show that the S-lemma can be applied to
reformulate F(q), described in Equation (3.9), as an SDP.

Consider a system of two quadratic conditions:

f (w) = w⊤Aw + 2a⊤w + c ≥ 0

h(w) = w⊤Bw + 2b⊤w + d = 0
(3.10)
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where A, B ∈ Rn×n are symmetric matrices, a, b ∈ Rn and c, d ∈ R. Additionally,
assume that for h, the dual Slater condition holds:

Assumption 1 (Dual Slater Condition). There exists w1 ∈ Rn and w2 ∈ Rn such that
h(w1) < 0 and h(w2) > 0.

The S-Lemma with equality characterises when such a system of quadratic
inequalities is feasible.

Theorem 3.4 (Xia et al. (2016)). Consider a system of quadratic inequalities in the form of
(3.10). In addition, assume that the dual Slater condition holds, and that B ̸= 0. Then the
following statements are equivalent:

(i) h(w) = 0⇒ f (w) ≥ 0 ∀w ∈ Rn.

(ii) There exists a number λ ∈ R such that f (w) + λh(w) ≥ 0 for all w ∈ Rn.

Note that the S-lemma described above is just one of many, each tailored for pairs of
quadratic inequalities satisfying certain properties. S-lemmas find applications in
many branches of mathematics, including control theory and optimisation. In
particular, the main use of S-lemmas is the reformulation of quadratically constrained
quadratic programs into SDPs. In particular, the following lemma shows how the
QC1QP defined by F(q) can be reformulated into an SDP by leveraging the S-Lemma
with equality.

Lemma 3.5. For any q ∈ R, evaluating F(q), as defined in (3.9), is equivalent to solving the
following semidefinite program:

max
τ∈R,λ∈R

τ s.t.

[︄
A + λB a + λb

a⊤ + λb⊤ c− τ

]︄
⪰ 0 (3.11)

where:

b =

[︄
0
1

]︄
, a =

[︄
−X⊤y

− 1
γ (z− y)⊤y− q

γ

]︄
, B =

[︄
−I 0
0 0

]︄
, c = ∥y∥2 − q

and

A =

[︄
X⊤X 1

γ X⊤(z− y)
1
γ X⊤(z− y) 1

γ2 ∥z− y∥2 − q
γ2

]︄
.

Proof. Firstly, note that F(q) may be rewritten as follows:

min
u∈Rn+1

f (u) = u⊤Au + 2a⊤u + c

s.t. h(u) = u⊤Bŵ + 2b⊤u = 0.
(3.12)
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In the next steps of the proof, we perform the S-procedure, using the S-lemma with
equality. To begin, note that Problem (3.12) may be reformulated further:

max
τ∈R

τ s.t. h(u) = 0⇒ f (u)− τ ≥ 0 ∀u ∈ Rn+1.

Then, since B ̸= 0, we can apply the S-lemma with equality (Theorem 3.4) to rewrite
the above optimisation problem:

max
τ∈R,λ∈R

τ s.t. f (u)− τ + λh(u) ≥ 0 ∀u ∈ Rn+1. (3.13)

Furthermore, note that the constraint in Problem (3.13) can be expressed like so:

[︄
u
1

]︄⊤ [︄
A + λB a + λb

a⊤ + λb⊤ c− τ

]︄ [︄
u
1

]︄
≥ 0 ∀u ∈ Rn+1 (3.14)

In what follows, we will refer to the matrix in the above constraint by M. It is easy to
see that the constraint above is equivalent to a positive semidefinite constraint on M.
For the sake of contradiction, suppose that ∃v ∈ Rn+2 such that v⊤Mv < 0 and (3.14)
holds. If the final coordinate of v is nonzero, we can simply rescale v by this
coordinate to achieve a contradiction. If the final coordinate of v is nonzero, then we
can use the continuity of quadratic forms to argue that there must exist a ṽ whose final
coordinate is not equal to zero such that ṽ⊤Mṽ < 0, bringing us back to the nonzero
case. Thus, we can replace the constraint (3.14) as follows:

max
τ∈R,λ∈R

τ s.t.

[︄
A + λB a + λb

a⊤ + λb⊤ c− τ

]︄
⪰ 0

and the proof is complete.

Lemma 3.5 shows that evaluating F(q) corresponds to solving an SDP. Fortunately,
SDPs can be solved in polynomial time via interior point methods (Boyd and
Vandenberghe, 2004). Assuming that strong conic duality holds, a vector w which
attains F(q) on Problem (3.6) can be found by taking a rank-1 decomposition of dual
variables. A description of the dual program may be found in Appendix A. Moreover,
as each SDP has a rank-1 solution, standard low-rank approximation schemes for
SDPs can be applied in order to cope with data of high dimension (Burer and
Monteiro, 2003, 2005). In addition, a variety of first-order methods tailored to SDPs
can be applied in scenarios where evaluating the Hessian is prohibitively expensive
(Sra et al., 2011).
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3.6 A Polynomial Time Algorithm For Square Losses

Finally, we introduce our proposed algorithm, SDP-BISECT, for solving Problem (3.4).
The pseudocode for SDP-BISECT is detailed in Algorithm 1. As previously mentioned
SDP-BISECT aims to solve fractional program (3.6), which is equivalent to Problem
(3.4). More specifically we consider the Dinkelbach function F associated with
Problem (3.6). By Theorem 3.3, F(q⋆) = 0 implies that the linear predictor w⋆

corresponding to F(q⋆) is a global solution to Problem (3.6) and thus Problem (3.4).
Additionally, we know from Lemma 3.2 that F is a concave monotonically decreasing
continuous function. As a result, given q1, q2 ∈ R, for which F(q1) ≤ 0 and F(q2) ≥ 0,
we can employ bisection search to find q⋆ and hence w⋆. The following theorem
characterises the convergence rate of SDP-BISECT.

Algorithm 1: The SDP-BISECT algorithm
Input : data matrix X, learner’s labels y, data provider’s labels z, tolerance ϵ

1 Initialize q1 = 0
2 Initialize q2 = y⊤y
3 Initialize w = 0
4 while q2 − q1 > ϵ do
5 q = (q1 + q2)/2
6 Evaluate F(q) by solving the SDP detailed in Lemma 3.5
7 Set v equal to the rank-1 decomposition of dual variables associated with F(q)
8 if F(q) ≥ 0 then
9 q1 = q

10 else
11 q2 = q
12 w = v[1 : n]
13 end
14 return w, q2

Theorem 3.6. Algorithm 1 takes at most log2(2∥y∥2/ϵ) iterations to return a q ∈ R such
that q− q∗ ≤ ϵ

Proof. For bisection search to converge to a q⋆ such that F(q⋆) = 0 we require two
points. One point, q1 ∈ R, for which F(q1) ≥ 0, and another point, q2 ∈ R, for which
F(q2) ≤ 0. We begin by claiming that setting q1 = 0 and q2 = ∥y∥2 satisfies these
conditions.

Finding a q2 such that F(q2) ≤ 0 is simple. Lemma 3.2 tells us that we can choose any
feasible point for Problem (3.6) and simply set q2 to the value of the objective at the
chosen point. Thus, we choose the zero vector which leads to an objective value of
∥y∥2.

To find a q2 such that F(q) ≥ 0, we employ both Lemma 3.2 and Theorem 3.3. Since
F(q⋆) = 0 and F is strictly monotonically decreasing, any value which lower bounds
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q⋆ will map to a nonnegative value when passed to F. Since the objective of Problem
(3.6) is always nonnegative, we can select q2 = 0 as a lower bound.

Since F(q1) is nonnegative, F(q2) is nonpositive and F is continuous, q⋆ must lie in the
interval [q1, q2] by the intermediate value theorem. Thus q = (q1 + q2)/2, the
mid-point of [q1, q2], is at most |q1 − q2|/2 in distance from q⋆. Note that, in Algorithm
1, q1 is initialised at 0 and q2 is initialised at ∥y∥2. Thus, initially |q1 − q2| = ∥y∥2.

At each iteration, the interval [q1, q2] is updated and halved in length. Therefore, after
log2(2∥y∥2/ϵ) iterations, |q− q⋆| ≤ ϵ/2. After the same number of iterations
q2 − q = ϵ/2. Therefore, q2 − q⋆ ≤ ϵ. As q2 is returned by Algorithm 1, we have
proved the result.

Theorem 3.6 essentially states that the SDP-BISECT algorithm converges linearly to a
global solution of Problem (3.4). In contrast, existing methods can only guarantee
convergence to stationary points which satisfy the Karush-Kuhn-Tucker (KKT)
conditions. Additionally, Theorem 3.6 indicates that the subclass of SPGs described by
Problem (3.3) are easy relative to the general case.

3.7 Extensions to Kernel Methods

In this section we briefly describe a version of Algorithm 1 based on kernel methods.
In some instances, we may wish to apply a high dimensional feature mapping, ϕ, to
data points before making a prediction. Typically, it is assumed that the feature
mapping ϕ maps each element of the input space, X , to an element of a reproducing
Hilbert kernel space (RKHS), F , with corresponding kernel function k : X ×X → R.
In the standard least squares linear regression setting, where data is sampled cleanly
without manipulation, this leaves us with the following optimisation problem:

arg min
w∈Rn

m

∑
i=1

(wTϕ(xi)− yi)
2

By leveraging the representer theorem (Schölkopf et al., 2001), it can be shown that
there exists an optimal solution w⋆ ∈ F with the following form:

w⋆ =
m

∑
i=1

βiϕ(xi) (3.15)

where βi ∈ R for all i ∈ [m]. Moreover, the coefficients βi can be characterised by the
Gram matrix K ∈ Rm×m, where Kij = k(xi, xj). In contrast, for SPGs under square
losses, assuming that the feature map ϕ is surjective, we are left with the following
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optimisation problem:

arg min
w∈Rn

m

∑
i=1

(︄ 1
γ zi∥w∥2 + ω⊤ϕ(xi)

1 + 1
γ∥w∥2

− yi

)︄2

.

In this case, the representer theorem cannot be applied, as the prediction made by a
given predictor w depends on its inner product with each mapped data point and its
own norm, rather than just the former. However, if we optimise over predictors of the
form described in equation (3.15), then we can obtain a new version of Algorithm 1
which returns the optimal vector of coefficients, β = (β1, . . . βm)⊤, wherein the
following terms are redefined:

b =

[︄
0
1

]︄
, a =

[︄
−KTy

− 1
γ (z− y)⊤y− q

γ

]︄
, A =

[︄
KTK 1

γ K(z− y)
1
γ KT(z− y) 1

γ2 ∥z− y∥2 − q
γ2

]︄

Whilst it cannot be guaranteed that the predictor output by this algorithm will be
optimal, we can guarantee that the predictor is better than any other predictor in the
span of mapped training data points, which by the representer theorem, contains the
optimal predictor for the classical clean data setting.

3.8 Empirical Evaluation

Given the theoretical performance analysis of our proposed algorithm, we now
demonstrate that it is significantly more accurate in practice compared to state of the
art approaches. More specifically, we evaluate Algorithm 1 on two real world datasets
and compare it against both ridge regression, which is the optimal approach under the
assumption that data providers are completely adversarial, and to the single level
nonconvex reformulation of the SPG originally proposed by Brückner and Scheffer
(2011). The first of these datasets is the medical personal costs dataset (Choi, 2018),
which we use to model the problem faced by an insurer when providing quotes to
customers. Additionally, we also consider the red wine dataset Cortez et al. (2009),
where we assume that agents take the role of wine producers aiming for a specific
quality rating. In what follows, we describe our findings with respect to the medical
personal costs dataset in detail. Our experimental results regarding the red wine
dataset, as well as our results analysing the runtime of SDP-BISECT are deferred to the
appendices.

The medical personal costs dataset consists of 1338 instances each with 7 features
(Choi, 2018). Each feature details information regarding an individual. Some are
continuous, such as the individual’s age and body mass index, while others are
categorical, such as region and smoking status. So that we can perform linear
regression on all features, categorical features are transformed into one-hot vectors,
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increasing the total number of features from 7 to 13. The response variable is the
individual’s medical costs billed by their health insurance.

We consider a scenario in which insurers would like to predict the medical costs of a
new customer in order to provide a reasonable insurance quote. We assume that
individuals may provide fake data in the hope of receiving a lower quote. Similar to
the experimental design of Tong et al. (2018), we define each data provider’s desired
outcome as zi = yi + δi, where δi denotes the change in medical billing that each
individual is striving for. In particular, we consider two types of provider, Amodest,
who wishes to reduce their predicted medical billing by $100 (δmodest = −100.0), and
Asevere, who wishes to reduce their predicted medical billing by $300
(δsevere = −300.0). Since medical charges range from $1000 to $63,000, we numerically
scale the data labels by dividing them by 100 before passing them to each algorithm.

In order to evaluate Algorithm 1, we perform 10-fold cross validation and compare its
performance to ridge regression for γ ∈ [1× 10−5, 1]. For each value of γ, we compute
the regularisation parameter for ridge regression via grid search on 8 logarithmically
spaced points in the interval [1× 10−5, 1000] during cross validation. For ridge
regression, and the SDPs in Algorithm 1, we use the SDPT3 solver (Toh et al., 1999) to
find global solutions. We also compare Algorithm 1 to the nonconvex single level
reformulation of the SPG originally proposed by Brückner and Scheffer (2011). We
employ the interior point method from the MATLAB optimisation toolbox to find a
stationary point for this problem reformulation. The same error tolerances are used
for both Algorithm 1 and the interior point method we use to solve nonconvex
problem reformulation proposed by Brückner and Scheffer (2011). Figure 3.1 shows
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FIGURE 3.1: A performance comparison between different algorithms ran on the med-
ical personal costs dataset. The left plot compares the average MSE of each algorithm
during 10-fold cross validation where data was generated by Amodest, whilst the right

plot shows the average MSE where data is generated by Asevere

the average mean squared error (MSE) achieved by each algorithm on the medical
personal costs dataset. Firstly, observe that Algorithm 1 outperforms both ridge
regression and the nonconvex problem reformulation for every value of γ. Also note
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that the MSE of Algorithm 1 is very stable, whilst the interior point solution seems to
behave erratically for higher values of γ.

For values of γ > 0.4, we observe that, for modest data providers, our algorithm is at
least $45 more accurate than ridge regression on average. For severe data providers,
we observe an even greater difference. For example, when γ > 0.5, the predictions
made by our algorithm are at least $120 more accurate than ridge regression on
average. As one would expect, the benefits of explicitly modelling the goals of data
providers becomes more beneficial as γ increases, as the data provider’s capability for
manipulation becomes more limited.

3.9 Bounding Rademacher for Square Losses

We now shift our focus from optimisation and consider the statistical properties of
STERM. From Lemma 3.1, it is obvious that given a sample (x, y, z) the prediction
computed by a predictor w, after the agent has modified the input, is given by

hw(x, z) =
w⊤x + 1

γ∥w∥2z

1 + 1
γ∥w∥2

. (3.16)

Hence, the problem of minimising Stackelberg risk for square losses may be
reformulated as a standard risk minimisation problem:

min
h∈H

E[(h(x, z)− y)2]

whereH = {hw : w ∈ Rn}. In particular, note that for any w ∈ Rn, hw is linear in
both x and z. Thus,H is a subset of the linear predictors of dimension n + 1.
Additionally, the following lemma shows thatH is bounded in terms of L2-norm.

Lemma 3.7. For all w ∈ Rn, the following inequality holds:

∥hw∥2 ≤

⎧⎨⎩1 if γ ≤ 2
γ

2
√

γ−1 if γ > 2
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Proof. Note that

∥hw∥2
2 =

1
(1 + 1

γ∥w∥2)2

[︄
w

1
γ∥w∥2

]︄⊤ [︄
w

1
γ∥w∥2

]︄

=
∥w∥2 + 1

γ2 ∥w∥4

(1 + 1
γ∥w∥2)2

=
γ2∥w∥2 + ∥w∥4

(γ + ∥w∥2)2

Peforming the substituion a = ∥w∥2, we have:

sup
w
∥hw∥2

2 = sup
a∈R+

γ2a + a2

(γ + a)2 = sup
a∈R+

g(a) (3.17)

where g(a) = γ2a+a2

(γ+a)2 . Note that:

g′(a) =
(2γ− γ2)a2 + 2γ2 + γ4

(γ + a)4

As a result, if γ ≤ 2, then g(a) is monotonically increasing on R+, and hence:

sup
a∈R+

g(a) = lim
a→∞

g(a) = 1

proving the first case. When γ > 2, through standard calculus, we observe that f (a)
attains a maximum at γ2

4(γ−1) . Taking square roots proves the second case.

An immediate corollary of Lemma 3.7 is thatH has bounded Rademacher complexity.

Corollary 3.8. LetH = {hw : w ∈ Rn}, where hw is defined as in Equation (3.16).
Moreover, assume that ∥x∥2 ≤ C for all x in the support of D and that z ∈ [−r, r] for all z
that lie in the support of D. Then,

Rm(H) ≤

⎧⎨⎩
√︂

C2+r2

m if γ < 2
γ

2
√

γ−1

√︂
C2+r2

m if γ ≥ 2

Proof. Observe that ⃦⃦⃦⃦
⃦
[︄

xi

zi

]︄⃦⃦⃦⃦
⃦

2

2

≤ C2 + r2. (3.18)
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Assume that γ < 2. Then,

Rm(H) = E

[︄
sup

w∈Rn

1
m

m

∑
i=1

hw(xi, zi)σi

]︄

≤ E

[︄
sup

v:∥v∥2≤1

1
m

m

∑
i=1

v⊤
[︄

xi

zi

]︄
σi

]︄

≤
√︃

C2 + r2

m

where the first inequality follows from Lemma 3.7, and the second inequality follows
from Theorem 2.3 and inequality (3.18). Now, assume that γ ≥ 2. The same reasoning
applies in this case, except that γ

2
√

γ−1 is used in place of 1.

Corollary 3.8 implies that data providing agents limit the expressibility of the
hypothesis class available to the learner. In particular, the smaller γ, the less
expressibility the learner has. This is what one would intuitively expect. When γ is
small, each agent can make large modifications to their input data at small cost. Thus,
no matter the predictor chosen by the learner, all predictions will be driven towards
the labels desired by each agent. In contrast, when γ is large, each agent can only
make large modfications to the input data when the weight vector chosen by the
learner is also large. Therefore, weight vectors of small norm are relatively unaffected
by the actions of each agent. As a result, the learner can still produce a wide variety of
labellings by choosing from weight vectors which are small in norm.

3.10 An Improved Scheme

Note that our proposed algorithm, SDP-BISECT, consists of bisection search wherein
each step consists of solving a semidefinite program. One may ask, given the
similarities between the SDPs solved at each iteration, if bisection search is necessary,
or whether one may find an optimal predictor by solving a single SDP. This question
was first answered in the affirmative by Wang et al. (2021) who showed that Problem
(3.4) may be reformulated directly as a single SDP, largely inspired by the analysis of
Algorithm 1. In what follows, we present our own proof of this result. In contrast to
the proof of Wang et al. (2021), our proof relies directly on the lemmas of Dinkelbach.

Theorem 3.9. Let (q⋆, λ⋆) form an optimal solution to the following semidefinite program:

max
q∈R,λ∈R

q s.t.

[︄
A + λB− qC a + λb− qc

a⊤ + λb⊤ − qc⊤ c− q

]︄
⪰ 0 (3.19)
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where,

b =

[︄
0
1

]︄
, a =

[︄
−X⊤y

− 1
γ (z− y)⊤y− q

γ

]︄
, c =

[︄
0
1
γ

]︄
, c = ∥y∥2

and

A =

[︄
X⊤X 1

γ X⊤(z− y)
1
γ X⊤(z− y) 1

γ2 ∥z− y∥2 − q
γ2

]︄
, B =

[︄
−I 0
0 0

]︄
, C =

[︄
0 0
0 1

γ2

]︄

then q⋆ is the optimal value for Problem (3.4).

Proof. Recall that q⋆ is an optimal solution to Problem (3.4) if and only if F(q⋆) = 0,
where F is the Dinkelbach program associated with Problem (3.4). From Lemma 3.5 it
follows that if F(q) = τ ≥ 0 then[︄

A + λB− qC a + λb− qc
a⊤ + λb⊤ − qc⊤ c− q− τ

]︄
⪰ 0.

As a result, it follows that[︄
A + λB− qC a + λb− qc

a⊤ + λb⊤ − qc⊤ c− q

]︄
⪰ 0

for all q such that F(q) ≥ 0. According to Lemma 3.2, F is monotonically decreasing.
Thus, it follows immediately that q⋆ is the solution to the following the optimisation
problem

max
q∈R,λ∈R

q s.t.

[︄
A + λB− qC a + λb− qc

a⊤ + λb⊤ − qc⊤ c− q

]︄
⪰ 0

as claimed by the theorem.

3.11 Setting γ

So far, we have assumed that γ is given. In practice, the learner must select an
appropriate value for γ which characterises the cost of manipulation for data
providers. In cases where the training dataset is obtained through auditing of past
interactions, the learner may have access to an augmented dataset in which each
sample is a tuple of the form (w, x, x̂, y, z), where w denotes the linear predictor in use
when the data provider reported their information and x̂ denotes their misreport.

Observe that, in this case, the learner may reverse engineer a γ parameter for each
individual agent. More specifically, the corresponding parameter γi for agent i’s
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misreport can be described as follows:

γi =
(zi −w⊤x̂i)∥w∥2

w⊤(x̂i − xi)

Note that γi may differ across data points. In this case, we may specify a generalisation
of Problem 3.4 in which γ is tailored to each individual agent. Following a similar
analysis to Lemma 3.1, we end at the following optimisation problem:

arg min
w∈Rn

m

∑
i=1

(︄ 1
γi

zi∥w∥2 + w⊤xi

1 + 1
γi
∥w∥2

− yi

)︄2

. (3.20)

Note that Problem (3.20) is a sum-of-ratios problem. In general, sum-of-ratios
problems are significantly more challenging than conventional fractional programs
(Schaible and Shi, 2003). Though solving Problem 3.20 is outside the scope of this
chapter, we proceed to highlight several promising approaches that may yield efficient
algorithms.

For example, Gruzdeva and Strekalovsky (2018) provide a generalisation of
Dinkelbach’s results to sum-of-ratios problems, identifying sufficient conditions for
optimality in terms of the Dinkelbach functions for each fractional term of the
objective. Motivated by this result, the authors propose an algorithm for global
optimisation consisting of a modified bisection search algorithm wherein a nonlinear
optimisation problem is solved at each iteration. Unfortunately, the algorithm
proposed has poor empirical performance in practice, taking many iterations of
bisection search to converge. However, special structural properties of Problem (3.20)
may allow a specialised version of this algorithm to be designed that converges
rapidly.

Aside from approaches inspired by the insights of Dinkelbach, branch-and-bound
methods are a popular family of techniques for solving nonlinear sum-of-ratios
problems. For instance, Jiao et al. (2013) proposes a branch-and-bound algorithm for
global optimisation which relies on a parametric linear programming relaxation of
Problem (3.20) to produce lower bounds on the objective function. Similar approaches,
based on linear-fractional and linear programming relaxations, have been adopted by
several authorsn (Qu et al., 2007; Ji et al., 2012). Unfortunately, branch-and-bound
algorithms are typically impractical for large scale machine learning problems, where
the dimension of input data is high. As a result, we conjecture that such algorithms
may not be readily applicable to our setting.

Lastly, we highlight an approach taken by Wang et al. (2022) to solve Problem (3.4).
More specifically, Wang et al. (2022) propose a spherically constrained least squares
reformulation of Problem (3.4) where each feasible vector of parameters is mapped to
the unit sphere. The reformulation proposed takes the form of a generalised
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trust-region subproblem which can be readily solved. Once a solution is computed
one may simply take the inverse map of solution parameters to find a solution to the
original problem. The mapping proposed by Wang et al. (2022) is given below:

w̃ =
2γ

(α + 1)
w and α̃ =

α− 1
α + 1

.

Note that α̃ is specifically tuned to eliminate the denominator in Problem (3.4), so that
the transformed objective is no longer fractional. Additionally, note that the
reparameterisation implicitly depends on γ. When γ is free to vary across data
providers, the mapping proposed by Wang et al. (2022) is no longer valid. However,
we conjecture that a generalised reformulation may be possible.

3.12 Open Problems

We now take a moment to describe several related problems of both theoretical and
practical interest. So far, we have assumed that the cost function associated with each
agent is fixed. In practice, alternative cost functions may be better modelling choice
for many real world scenarios. For example, one can consider the subclass of SPGs in
which square Euclidean distance replaced by the L1, or taxicab, distance:

ℓ−1(ỹ, y) = (ỹ− y)2

ℓ+1(z̃, z) = (z̃− z)2

c(x, x̃) = ∥x− x̃∥1.

This results in the following STERM problem:

arg min
w∈Rn

1
m

m

∑
i=1

(w⊤x⋆i − yi)
2

s.t. x⋆i ∈ arg min
x̃i

(w⊤x̃i − zi)
2 + γ∥xi − x̃i∥1 ∀i ∈ [m].

(3.21)

Note that such a problem setting has a natural interpretation. Under the L1-distance,
agents are forced to pick sparse modifications. This mirrors many real world
situations in which agents only have the time or resources to modify certain elements
of the data they submit, rather than all of them simultaneously. As in the case of the
squared Euclidean distance, the lower-level optimisation problem faced by each agent
can be solved directly, using standard techniques from calculus, leading to the
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following closed-form solution for x⋆i :

x⋆i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xi if xi = 0 or ∥w∥∞|zi −w⊤xi| ≤ γ/2

xi + ∥w∥∞(zi −w⊤xi)− γ
2∥w∥∞

if ∥w∥∞(zi −w⊤xi) > γ/2

xi + ∥w∥∞(zi −w⊤xi) +
γ

2∥w∥∞
if ∥w∥∞(zi −w⊤xi) < −γ/2.

Thus, given a sample (x, y, z), the prediction made by the learner, after an agent has
modified their input example, is given by:

hw(x, z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w⊤x if w = 0 or ∥w∥∞|z−w⊤x| ≤ γ/2

z− γ
2∥w∥∞

if ∥w∥∞(zi −w⊤xi) > γ/2

z + γ
2∥w∥∞

if ∥w∥∞(zi −w⊤xi) < γ/2.

In other words, the learner is implicitly tasked with performing empirical risk
minimisation over a set of piecewise linear functions. Obtaining both optimisation
and generalisation guarantees for STERM in this setting forms an interesting open
problem. Moreover, Problem (3.21) is interesting from the perspective of
incentive-compatibility. In the case of the squared Euclidean distance, the only
incentive-compatible predictor is the zero vector (this follows trivially from Lemma
3.1). However, when the L1-distance is employed, a linear predictor is
incentive-compatible if and only if:

∥w∥∞|z−w⊤x| ≤ γ/2 ∀(x, y, z) ∈ supp(D) (3.22)

where supp(D) denotes the support of D. As a result, a nontrivial set of linear
predictors may be incentive-compatible under the L1-distance, depending on
additional structural assumptions placed on the labels of data providing agents. Thus,
the development of learning algorithms for Problem (3.21), which only select from
incentive-compatible hypotheses, presents a candidate direction for future work.

3.13 Conclusion

Summarising, we have outlined a new subclass of SPGs, in which each data point
comes with two labels; one corresponding to the prediction preferred by the learner,
and one corresponding to the prediction preferred by the data providing agent. In
particular, we investigate a version of this SPG in which both agents and the learner
adopt a square loss function. Under this assumption, we show that the Stackelberg
empirical risk can be minimised via a combination of bisection search and
semidefinite programming, culminating in the SDP-BISECT algorithm, whose
performance we illustrate on a number of benchmark datasets. After this, we
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investigated the statistical properties of Stackelberg risk minimisation and, in the case
of square losses, show that minimising the Stackelberg risk is equivalent to
minimising the standard risk with respect to the learner’s labels on a subset of
bounded linear predictors. This enabled us to leverage standard results in statistical
learning theory to provide a generalisation guarantee for Stackelberg empirical risk
minimisation in terms of Rademacher complexity.

Since our initial work, there has been a flurry of research regarding SPGs with square
losses and square costs. As covered in Section 3.10, Wang et al. (2021) illustrated that
STERM can be directly formulated as an SDP, avoiding the need to employ bisection
search. Moreover, Wang et al. (2021) provide a second-order cone reformulation of
STERM under square losses and square costs. This is significant, as interior point
methods for second order cone programming are far more efficient than interior point
methods for semidefinite programming.

Recently, Wang et al. (2022) have proposed a spherically constrained least squares
reformulation for SPGs with square losses and square costs. This enables efficient
algorithms proposed for the generalised trust region subproblem to be applied.
However, such algorithms typically involve a minimum eigenvalue computation that
dominates runtime. Instead, Wang et al. (2022) propose two algorithms, based on
Krylov subspace and Riemannian trust region methods repectively, which improve
efficiency by avoiding the explicit approximation of any eigenvalues. Whilst
improving significantly upon SDP-BISECT since its original publication, these methods
are still computationally inefficient compared to optimisation methods for ERM in the
classical supervised learning setting. In other words, our results, alongside those of
other authors, highlight an unavoidable computational penalty that comes with
considering the actions of data providing agents.

More generally, one may hope that similar theoretical guarantees exist for related
SPGs that impose a different cost function on the agents. For example, one can
consider the subclass of SPGs in which the squared Euclidean distance is replaced by
the L1-distance, as discussed in Section 3.12. Recall that this leads to a completely
different optimisation problem. Hence, it seems unlikely that any of our analysis
throughout this chapter, which heavily exploits the hidden convexity of Problem (3.4),
would be directly applicable. Put differently, the tractability of SPGs under different
costs functions is a significant open question that has yet to be investigated.

Aside, from changing the cost function, one may also consider SPGs with different
loss functions. For example, in many real world settings, agents are satisfied with a
sufficient approximation of their preferred labelling. In this case, the preferences of
each agent are better modeled by the ϵ-insensitive loss, rather than the square loss.
Thus, the development of algorithms for SPGs with different loss functions is
well-motivated and presents a significant technical challenge.
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Chapter 4

Adversarial Blocking Bandits

In this chapter, we aim to address Problem Domain 2. More specifically, we introduce
a new sequential decision making problem, called MAXREWARD, which incorporates
both nonstationary rewards and blocking (as per Requirements 2a and 2b). In the
MAXREWARD problem, a decision maker is tasked with sequentially pulling arms
across a time horizon with the goal of maximising their cumulative reward. We
assume that the rewards associated with each arm may vary throughout time, but are
forced to obey a path variation budget constraint (Besbes et al., 2014). Additionally,
when an arm is pulled, we assume it may be blocked for some duration. Unlike the
setting of Basu et al. (2019), we assume that the blocking duration associated with each
arm may change arbitrarily across the time horizon. In other words, the
MAXREWARD problem accounts for the nonstationary nature of rewards observed in
real world problems, whilst also modelling resource unavailability via blocking. The
MAXREWARD problem is described fully in Section 4.1.

We consider three feedback models for the MAXREWARD problem. First, we consider
the offline MAXREWARD problem, in which the decision maker has full knowledge
regarding the rewards and blocking duration of each arm on every time step before
the start of the time horizon. In particular, we show that computing an optimal
solution to the offline MAXREWARD problem is strongly NP-hard (Section 4.2). Then,
we investigate the online MAXREWARD problem (Section 4.3), wherein the decision
maker is only aware of the current reward and blocking duration of each arm. Note
that the aforementioned hardness result for the offline MAXREWARD setting implies
that we cannot design an algorithm which is both optimal and computationally
efficient for online MAXREWARD. Instead, we must design a computationally
efficient algorithm with good approximation guarantees. With this goal in mind, we
propose the best greedy available arm (Greedy-BAA) algorithm, which greedily pulls
the arm with the highest current reward out of those available. In particular, we show
that Greedy-BAA has bounded approximation ratio with respect to the optimal arm
pulling policy.
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Observe that both the offline and online MAXREWARD problems assume the decision
maker has knowledge regarding the future rewards and blocking durations of each
arm. This is typically unrealistic, and decision makers must often learn the value of
each arm (and its corresponding real world resource or action) through trial and error.
With this in mind, we investigate a bandit version of the MAXREWARD problem in
which the decision maker is only made aware of the current reward and blocking
duration of an arm if they pull it. We refer to this setting as the adversarial blocking
bandit problem (see Section 4.4 for details). Within this feedback model, we first assume
that the decision maker is aware of the path variation budget. Under this assumption,
we propose the repeating greedy algorithm (RGA), motivated by the repeated Exp3
algorithm proposed by Besbes et al. (2014) for nonstationary bandits. Inspired by the
approach of Basu et al. (2019), we adopt Greedy-BAA as a benchmark policy for the
purpose of establishing finite-time regret guarantees. In particular, we establish a

O(
√︂

T(2D̃ + K)BT) finite-time regret guarantee for RGA, where BT is the path variation
budget and D̃ is the maximum blocking delay.

After this, we relax our assumption regarding the decision maker’s knowledge of the
path variation budget. We propose RGA-META, which uses Exp3 as a meta-bandit
algorithm to learn an appropriate path variation budget and runs RGA as a subroutine.
More specifically, RGA-META splits the time horizon into batches, and runs a new
version of RGA within each batch. Before each batch, the Exp3 algorithm is used to
select a path variation budget, which is given to RGA as input. We prove that RGA-META
achieves a O((K + D̃)1/4B̃1/2T3/4) regret bound, where B̃ is the maximal path
variance within a single batch of the algorithm. In Section 4.5, we discuss lower regret
bounds for the adversarial blocking bandit problem. In particular, we show that if the
maximal blocking duration D̃ is constant with respect to the length of the time
horizon, then there is a matching lower bound for the regret of RGA. Finally, in Section
4.6 we illustrate that both RGA and RGA-META can adapt to a wide variety of variation
budgets popular in the literature.

4.1 Model

To begin, we introduce the MAXREWARD problem. In the MAXREWARD problem, a
decision maker is tasked with selecting a sequence of actions over a time horizon of
length T. At each time step t ∈ [T], the decision maker must pull one (or none) of a set
of K arms. Upon pulling arm k ∈ [K] on time step t the decision maker receives a
reward Xk

t . We denote by Xk the sequence of rewards over the time horizon T
associated with arm k:

Xk = {Xk
t }T

t=1.
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In addition, we use X to denote the vector sequence describing the reward associated
with each arm on every time step:

X = {Xk}K
k=1.

If arm k is pulled on time step t, it becomes blocked, or unavailable, for the next
Dk

t − 1 time steps. Like reward sequences, we use Dk to denote the sequence of
blocking durations associated with arm k over the course of the time horizon.

Dk = {Dk
t }T

t=1.

Similarly, we use D to denote the vector sequence describing the blocking duration
associated with each arm on every time step:

D = {Dk}K
k=1.

In our model, the rewards and blocking durations of each arm can change arbitrarily.
This is in contrast to the setting of Basu et al. (2019), wherein the blocking duration
associated with each arm is fixed. We let D̃ (

˜
D) denote the maximum (minimal)

possible blocking duration, which is an upper (lower) bound on the largest (smallest)
possible blocking duration. Unless explicitly stated otherwise, we will assume that

˜
D = 1. We denote by D the set of all possible vector sequences of blocking durations:

D = {
˜
D, . . . , D̃}K×T.

Motivated by the nonstationary bandit literature discussed in Section 2.2.2, we
assume that there is a path variation budget constraint placed on the reward sequence
X. More formally, the path variation associated with a reward sequence X is given by:

T−1

∑
t=1

K

∑
k=1

⃓⃓⃓
Xk

t+1 − Xk
t

⃓⃓⃓
.

We say that a reward sequence X is admissible if it obeys the following path variation
budget constraint:

T−1

∑
t=1

K

∑
k=1

⃓⃓⃓
Xk

t+1 − Xk
t

⃓⃓⃓
≤ BT

where BT is the path variation budget over the time horizon T. We define the
temporal uncertainty set B as the set of admissible reward sequences:

B =

{︄
X ∈ [0, 1]K×T :

T−1

∑
t=1

K

∑
k=1

⃓⃓⃓
Xk

t − Xk
t+1

⃓⃓⃓
≤ BT

}︄

By setting BT = KT, one can recover the setting in which reward sequences are free to
vary arbitrarily. Enforcing a path variation budget constraint ensures that the rewards
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associated with each arm vary in a “smooth” manner rather than rapidly or erratically.
This is often the case in real world applications. For example, consider the problem of
expert crowsourcing (e.g. Upwork, Outsourcely etc.). In this setting, a job requester
can sequentially choose from a pool of workers and allocate short-term projects. The
job requester plays the role of a decision maker, and workers correspond to arms. The
performance (and thus associated reward) of a worker is typically consistent for long
periods, and does not vary erratically from day to day.

However, in some real world settings, the reward associated with a given action may
change radically from time step to time step. For example, consider the disaster
response scenario discussed throughout this thesis. An emergency vehicle may only
be required under a very specific set of circumstances. Although, when required they
may be of vital importance. Such a setting is better captured by reward sequences that
obey a number of changes budget (Auer et al., 2019), as discussed in Section 2.2.2.
Though our current focus is on reward sequences which satisfy a path variation
budget constraint, we show in Section 4.6 that our algorithms also work under
different budget constraints, such as the number of changes budget (Auer et al., 2019)
and maximum variation budget (Besbes et al., 2014).

As one would expect, the goal of the decision maker is to adopt a policy which
maximises their cumulative reward over the time horizon. Before proceeding, we first
define policies formally. Let U be a random variable defined over a probability space
(U,U , Pu). A policy, π = ( f1, . . . , fT), is defined by a set of measurable functions of
the following form:

f1 : U → K

ft : [0, 1]t−1 × {1, . . . , D̃}t−1 ×U → K for t = 2, 3, . . .

We let πt denote the arm chosen by policy π at time t, which is given by:

πt =

⎧⎨⎩ f1(U) t = 1

ft(Xπ
t−1, . . . , Xπ

1 , Dπ
t−1, . . . , Dπ

1 , U) t = 2, 3, . . .

where Xπ
t (Dπ

t ) denotes the reward (blocking duration) incurred by the policy π at
time t. We say that a policy is admissible if it never selects an arm that is blocked.
Formally, a policy π is admissible if:

πt /∈ {πj : j + D
πj
j − 1 ≥ t, ∀j ≤ t− 1} ∀t ∈ [T], X ∈ B, D ∈ D.

We use P to denote the set of all admissible policies. Additionally, we let At(π)

denote the set of available of arms at time step t under policy π. When it is clear from
context, we will use At in place of At(π) for the sake of brevity. The cumulative
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reward, r(π), of a policy π is given by:

r(π) =
T

∑
t=1

Xπ
t .

Formally, our objective is to find a policy π⋆ ∈ P such that:

π∗ ∈ arg max
π∈P

E[r(π)]

where the expectation is over all possible randomisation coming from the policy π.
We refer to this as the MAXREWARD problem. Note that the decision maker always
receives bandit feedback. That is, once an arm is pulled, the blocking duration and
reward associated with the chosen arm is revealed to the decision maker. In what
follows, we will consider three versions of the MAXREWARD problem, in which the
decision maker has access to varying levels of side information.

• The offline MAXREWARD problem - In the offline MAXREWARD problem, it is
assumed that the decision maker knows the rewards and blocking durations
associated with each arm in advance. In other words, the decision maker knows
X and D before the start of the time horizon.

• The online MAXREWARD problem - In the online MAXREWARD problem, the
decision maker does not know X and D in advance. However, at the start of
time step t, both Xk

t and Dk
t are revealed to the decision maker for all values of k

before an arm is pulled.

• The MAXREWARD problem - In the MAXREWARD problem, the decision
maker only receives bandit feedback. From now on, we refer to this as the
adversarial blocking bandit problem.

Before moving on, we highlight that the MAXREWARD problem is nonstochastic.
That is, rewards and blocking delays are selected by an adversary who, in all cases,
must adhere to a variation budget on the realized rewards at each time step. As a
result, the MAXREWARD problem is not a stochastic optimisation problem.
Moreover, we briefly remark on why three different versions of the MAXREWARD
problem are considered. Firstly, a decision maker may have different levels of prior
knowledge in different settings. The offline MAXREWARD problem corresponds to
scenarios where the decision maker has full knowledge regarding the changing
availability and efficacy of actions through time. Meanwhile, the adversarial blocking
bandit problem corresponds to scenarios where the decision maker has no prior
knowledge. Hence, by considering different versions of the MAXREWARD problem,
we may design algorithms tailored to different levels of prior knowledge. Secondly, in
cases where a decision maker has limited prior knowledge, it is natural to compare
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their chosen policy to the policy they would have adopted with full information.
Thus, to understand the efficiency of a policy selected under limited prior knowledge,
one must first understand what constitutes an efficient policy in the full information
setting. As we will see, computing an optimal solution to the offline MAXREWARD
problem is computationally intractable. This motivates us to devise an efficient
approximation algorithm for the online MAXREWARD problem which may serve as a
meaningful performance benchmark for the MAXREWARD problem.

4.2 Computational Complexity of the Offline MAXREWARD
Problem

First, we investigate the offline MAXREWARD problem. In particular, we show that
the offline MAXREWARD problem is strongly NP-hard, even with bounded path
variation budget. Of course, such a result eliminates the probability of a fully
polynomial-time approximation scheme (FPTAS) for all versions of the
MAXREWARD problem unless P = NP. To show that the MAXREWARD problem is
strongly NP-hard, we reduce from the Boolean satisfiability problem with three
literals per clause, better known as 3-SAT. It is well known that 3-SAT is strongly
NP-complete (Garey and Johnson, 1979). In a 3-SAT instance, we are given a formula
in conjunctive normal form consisting of n clauses built from m variables. Each clause
contains at most three literals. A literal is either a variable or its negation. The goal is
to determine whether there exists a truth assignment such that the formula is true.
That is, to determine whether there exists a truth assignment such that each clause in
the formula contains a true literal. For example, consider the following 3-SAT
instance, with four variables and three clauses:

(v1 ∨ ¬v2 ∨ v3) ∧ (¬v1 ∨ v2 ∨ v3) ∧ (¬v1 ∨ ¬v2 ∨ ¬v3).

This is a YES instance of the 3-SAT problem, as the assignment

(v1, v2, v3) = (True, True, False)

satisfies the formula.

Theorem 4.1. Computing an optimal solution for the MAXREWARD problem is strongly
NP-hard.

Proof. Given a 3-SAT instance consisting of m variables, v1, . . . , vm, and n clauses,
C1, . . . Cn, we first show how to construct a corresponding instance of the
MAXREWARD problem. More specifically, we consider a decision version of the
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MAXREWARD problem, in which the goal is find a policy π⋆ ∈ P such that
r(π⋆) ≥ V. Our construction is as follows:

• For each variable, vj, we create two arms, k j and k¬j.

• For each variable, vj, we set X
k j
j = X

k¬j
j = 1 and D

k j
j = D

k¬j
j = T0 for some T0 that

will be defined later.

• For each clause, Ci, and each literal l in Ci, we set Xkl
m+i = 1.

• All remaining rewards and blocking durations are set to zero and one
respectively.

• We set T0 = m + n, V = m + n, and enforce a path variation budget
BT0 = O(T0m).

Next, we show that there is a solution to a 3-SAT instance if and only if there is a
solution to the correspondig MAXREWARD problem. Our proceed proceeds in two
parts. In the first part, we will show that if we have a solution to the 3-SAT problem,
then there is a solution to the corresponding MAXREWARD problem
(3-SAT⇒ MAXREWARD). Then, we will show that if we have a solution to the
MAXREWARD problem, then there exists a solution to the corresponding 3-SAT
problem (MAXREWARD⇒ 3-SAT).

First, suppose we have a solution to the 3-SAT problem. It follows that there is an
assignment to each variable vj such that each is clause is true. To construct a solution
to the MAXREWARD problem, we design policy in two parts. First, we design a
partial policy πm+1:T0 for time steps m + 1 onward. For each variable vj that is set to
true (false) and for each clause Ci containing vj (¬vj), we play arm k j (k¬j) at time
m + i. That is, we set πm+i = k j (or πm+i = k¬j). If two arms are scheduled to be pulled
on the same time step, we can employ an arbitrary tie-breaking rule to decide which
arm to pull. From this partial policy, we observe that we obtain a cumulative reward
of n, since all of the n clauses are satisfied by at least one literal.

Next, we construct a partial policy π1:m for time steps 1 to m which can be combined
with the partial policy πm+1:T to create an admissible policy. If vj is true (false), we
play arm k¬j (k j) on time step j to obtain a reward of 1. That is we set πj = k¬j (or
πj = k j). This partial policy obtains a reward of m as there are m variables. It is easy to
see that both partial policies do not conflict with each other and can be readily
combined. This is because the subset of arms pulled by both policies are disjoint.
Policy π1:m only pulls arm j (¬j) if vj is false (true) and policy πm+1:T0 only pulls arm k j

(k¬j) if vj is true. Clearly the combined policy obtains a cumulative reward of
n + m = V and is a valid solution to the MAXREWARD problem. Thus we have
proved 3-SAT⇒ MAXREWARD.
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Now, suppose we have a solution to the MAXREWARD problem. It follows, that there
is a deterministic policy, π⋆, such that r(π⋆) ≥ V = n + m. Note that for any
admissible policy π, r(π) ≤ m + n, as from time periods 1 to m we can obtain a
cumulative reward of at most m, and from time steps m + 1 to n we can obtain a
cumulative reward of at most n. To obtain a reward of m from time steps 1 to m we
must play either arm k j or k¬j on time step j. To obtain a reward of n from time steps
i = m + 1, . . . , m + n, we must play an arm kl corresponding to one of the literals l in
the clause Ci−m on each time step i. Thus, if we can construct a truth assignment in
which all the literals corresponding to arms pulled in time steps m + 1 to m + n are
true, then we have found a solution to the 3-SAT problem. Note any literal l whose
corresponding arm is pulled in time steps m + 1 to m + n cannot equal vj (¬vj) if arm
k j (k¬j) was pulled on time step j, as otherwise kl would be blocked for all time steps
m + 1 to m + n. In other words, we have the following subset relation:

{l : ∃t ≥ m + 1, π⋆
t = kl} ⊆ {vj : πj ̸= k j} ∪ {¬vj : πj ̸= k¬j}

Thus, to construct an assignment for the 3-SAT instance, we let vj be false (true) if arm
j (¬j) is played at time j. This ensures that all the literals corresponding to arms pulled
from time steps m + 1 to m + n are true and thus one of the literals in each clause must
be satisfied. This proves MAXREWARD⇒ 3-SAT and completes the theorem.

Note that, in proof the of Theorem 4.1, a very specific subset of MAXREWARD
problem instances are used to derive the hardness result. More specifically, we only
consider problem instances in which both T0 and BT0 are in the range of the maximum
blocking duration D̃ = n + m. When the time horizon and path variation budget are
much larger than the maximum blocking duration, one may hope that the
MAXREWARD problem becomes more tractable. However, a simple argument shows
that this is not the case. Let q1 and q2 be arbitrary integers, and consider a time
horizon of length T = k1k2T0. We proceed by splitting the time horizon into blocks of
length q1T0. We construct the first T0 time steps in each block as in the proof of
Theorem 4.1. For the remaining (q1 − 1)T0 time steps, we set the rewards and blocking
durations of each arm to 0 and 1 respectively. It is easy to see that the proof of
Theorem 4.1 is still valid, but now the time horizon is of length T = q1q2T0 = q1q2D̃
and the total path variation budget is given by BT = q2D̃. By varying q1 and q2 we can
set up an arbitrary relationship between T, B and D̃. As a result, issues of
computational complexity persist, even when both the time horizon and path
variation budget is significantly larger than the maximal blocking duration.
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Algorithm 2: Greedy best available arm (Greedy-BAA)
Input : T, K, X, D - An instance of MAXREWARD
Output: π+ = (π+

1 , π+
2 , ..., π+

T ) ∈ P - A greedy solution to MAXREWARD
1 π+ = (∅, ..., ∅);
2 for t← 1 to T do
3 Select π+

t ∈ arg maxk∈At∪∅ Xk
t # See the preliminary section for definitions

4 end
5 return π+

4.3 A Greedy Algorithm for the Online MAXREWARD
Problem

In this section, we consider the online version of MAXREWARD. We devise an online
greedy algorithm, called Greedy Best Available Arm (Greedy-BAA). Greedy-BAA
simply pulls the arm with highest reward out of those are available. Algorithm 2
provides a detailed description of Greedy-BAA. Below, we show that Greedy-BAA
provides an approximation guarantee with respect to the optimal policy for offline
MAXREWARD that depends on the blocking durations and the variation budget. In
what follows, we let Dk

max (Dk
min) denote the maximum (minimum) blocking duration

associated with arm k for a given instance of the online MAXREWARD problem.

Theorem 4.2. Let k⋆ = arg maxk
Dk

max
Dk

min
denote the arm with the highest max-min blocking

duration ratio. Additionally, let π+ denote the solution returned by Greedy-BAA, and π⋆

denote an optimal solution of the offline MAXREWARD problem. Then,(︄
1 +

Dk⋆
max

Dk⋆
min

)︄
r(π+) +

Dk⋆
max

Dk⋆
min

BT ≥ r(π⋆).

That is, Greedy-BAA has an approximation ratio of
(︂

1 + Dk⋆
max

Dk∗
min

)︂−1 (︂
1− Dk⋆

maxBT

Dk⋆
minr(π⋆)

)︂
.

Proof. Let π⋆ = (π⋆
1 , ..., π⋆

T) ∈ arg maxπ∈P r(π) be an optimal solution for the offline
MAXREWARD problem. Let π+ = (π+

1 , ..., π+
T ) ∈ P be the policy returned by

Greedy-BAA.

Consider a time period t where π⋆
t ̸= π+

t . There are two cases in which π⋆
t is not

selected by Greedy-BAA. The first case is when Xπ⋆
t

t ≤ Xπ+
t

t . The second case occurs
when Greedy-BAA has played π⋆

t on a recent time step, say t′ < t, which causes π⋆
t to

be blocked on time step t. In this case, note that π+
t′ = π⋆

t . Moreover, observe that the
difference between the rewards X j

t′ and X j
t for any arm j can be bounded in the
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following manner:

|X j
t′ − X j

t| = |X
j
t′ − X j

t′+1 + X j
t′+1 − X j

t|

≤ |X j
t′ − X j

t′+1|+ |X
j
t′+1 − X j

t|

≤
t−1

∑
t̄=t′
|X j

t̄ − X j
t̄+1|

where the inequalities follow from applying the triangle inequality repeatedly. Thus,

X j
t′ +

t−1

∑
t̄=t′
|X j

t̄ − X j
t̄+1| ≥ X j

t.

Let Blk(t′, j) denote the set of time periods on which j is both optimal (π⋆
t = j) and

blocked under the Greedy-BAA algorithm, as a result of pulling arm j on time step t′

(π+
t′ = j). Note that ⃓⃓

Blk(t′, j)
⃓⃓
≤ Dj

max

Dj
min

where Dj
max and Dj

min are the maximum and minimum blocking duration of arm j
across all the time periods, respectively. This is because, in the time steps from t′ + 1 to

t′ + Dj
max, arm j can be played at most Dj

max

Dj
min

times by any algorithm. Hence, we can

derive the following bound on the cumulative reward achieved by arm j over
Blk(t′, j):

∑
t∈Blk(t′,j)

X j
t ≤ ∑

t∈Blk(t′,j)

(︄
X j

t′ +
t−1

∑
t̄=t′
|X j

t̄ − X j
t̄+1|

)︄

≤ Dj
max

Dj
min

(︄
X j

t′ +
max(Blk(t′,j))−1

∑
t̄=t′

|X j
t̄ − X j

t̄+1|
)︄

.

Note that, for any t̄ ̸= t′ such that π+
t̄ = π+

t′ = j, Blk(t′, j) ∩ Blk(t̄, j) = ∅. As a result,
each arm π+

t can be used to cover some part of the optimal solution under case 1
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and/or case 2 for each time period t. It follows that

r(π⋆) =
T

∑
t=1

Xπ⋆
t

t ≤
T

∑
t=1

Xπ+
t

t +
T

∑
t=1

Dπ+
t

max

Dπ+
t

min

⎛⎝Xπ+
t

t +
max(Blk(t,π+

t ))−1

∑̄
t=t

|Xπ+
t

t̄ − Xπ+
t

t̄+1|

⎞⎠
≤

T

∑
t=1

Xπ+
t

t +
Dj⋆

max

Dj⋆
min

T

∑
t=1

⎛⎝Xπ+
t

t +
max(Blk(t,π+

t ))−1

∑̄
t=t

|Xπ+
t

t̄ − Xπ+
t

t̄+1|

⎞⎠
=

T

∑
t=1

Xπ+
t

t +
Dj⋆

max

Dj⋆
min

⎛⎝ T

∑
t=1

Xπ+
t

t +
T

∑
t=1

max(Blk(t,π+
t ))−1

∑̄
t=t

|Xπ+
t

t̄ − Xπ+
t

t̄+1|

⎞⎠
≤

T

∑
t=1

Xπ+
t

t +
Dj⋆

max

Dj⋆
min

(︄
T

∑
t=1

Xπ+
t

t + ∑
i∈[K]

T−1

∑
t=1
|Xi

t − Xi
t+1|

)︄

≤
T

∑
t=1

Xπ+
t

t +
Dj⋆

max

Dj⋆
min

(︄
T

∑
t=1

Xπ+
t

t + BT

)︄
≤
(︄

1 +
Dj⋆

max

Dj⋆
min

)︄
r(π+) +

Dj⋆
max

Dj⋆
min

BT,

where the first inequality follows from applying case 1 and case 2 and the second

inequality follows from replacing each blocking duration ratio with Dj⋆
max

Dj⋆
min

, where j⋆ is

the arm with highest max-min blocking duration ratio. The third equality follows by
distributing the summations, whilst the fourth inequality follows by first grouping the
time periods that each arm i is played in and then applying the sum (which ranges
from 1 to T − 1 in the worst-case). Lastly, the fifth inequality follows by definition of
the total path variation budget. Rearranging the terms, we obtain our claimed
result.

Note that as Dk⋆
min ≥ ˜

D and Dk⋆
max ≤ D̃, the approximation ratio above can be further

bounded above by (︃
1 +

D̃

˜
D

)︃−1 (︃
1− D̃BT

˜
Dr(π⋆)

)︃
.

When the path variation budget is zero (i.e. reward values are fixed over time) and the
blocking durations per arm are homogeneous (i.e. blocking durations per arm are
fixed over time), the offline MAXREWARD problem is equivalent to the offline version
of the stochastic blocking bandit problem investigated by Basu et al. (2019). In this
case, our proof provides an approximation ratio of 1/2 whereas Basu et al. (2019)
provides the approximation ratio O(1− 1/e−O(1/T)). Their technique uses a much
more complicated LP-bounding technique/proof that does not directly generalize to
the case of BT > 0 with varying blocking durations. On the other hand, our
approximation ratio result holds for the general case. For example, if BT grows slower
than r(π+) with T, our algorithm guarantees an approximation ratio of (1 + 2 D̃

˜
D )−1.
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4.4 The Adversarial Blocking Bandit Problem

Given the investigation of the (offline and online) MAXREWARD problems in the
previous section, we now turn to the main focus of this chapter, the online
MAXREWARD problem with bandit feedback, a.k.a the adversarial blocking bandit
problem. As discussed, in Chapter 2, regret analyses for the classical stochastic MAB
setting typically benchmark against policies which repeatedly pull the same arm. Of
course, in blocking settings, such policies may be inadmissible. Instead, any policy
benchmark should explicitly account for the effects of blocking on arm availability.
Motivated by the analysis of Basu et al. (2019) for the stochastic blocking bandit
setting, we evaluate the performance of a policy against a dynamic oracle algorithm
that returns an approximate solution to the offline MAXREWARD problem. In other
words, we aim to minimise α-regret, where α corresponds to the approximation ratio
of the dynamic oracle. More precisely, let π⋆ denote an optimal deterministic policy
for the offline MAXREWARD problem. For a given, instance of the MAXREWARD
problem, the α-regret of a policy π ∈ P against π⋆ is defined as follows:

Rα
π = αr(π⋆)−Eπ[r(π)]

where the expectation is over all possible randomisation coming from the policy π. In
what follows, we will propose two algorithms for the adversarial blocking bandit
setting with finite-time regret guarantees with respect to α-regret, addressing
Requirement 2c. First, we assume that the decision maker is aware of the path
variation budget BT prior to pulling any arms, and develop the repeating greedy
algorithm (RGA), which partitions the time horizon into blocks and runs Greedy-BAA as
a subroutine. As a result, RGA inherits the approximation properties of Greedy-BAA.
After this, we relax the assumption that the decision maker is aware of the path
variation budget. We develop the META-RGA algorithm for this setting. META-RGA is a
meta-bandit algorithm, which uses the Exp3 algorithm (Auer et al., 2002) to learn an
appropriate path variation budget so that an appropriately initialised version of RGA
can be used to achieve sublinear regret.

4.4.1 Known Path Variation Budget

Next, we describe our bandit algorithm for the adversarial blocking bandit problem,
when the total path variation budget is known, called the repeated greedy algorithm
(RGA). This algorithm can be described as follows:

1. We split the time horizon T into batches T1, . . . , Tm each of size ∆T (except possibly
the last batch):

Tj = {t : (j− 1)∆T ≤ t ≤ min{j∆T, T}} for all j = 1, . . . , m
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Algorithm 3: Repeating Greedy Algorithm (RGA)
Input: ∆T.

1 while 1 ≤ j ≤
⌈︂

T
∆T

⌉︂
do

2 Set τ = 1
3 while τ ≤ ∆T do
4 if (1 ≤ τ ≤ K) then
5 Pull arm k = τ mod K + 1
6 Receive reward and blocking duration (Xk

τ, Dk
τ)

7 Set X̂k
t = Xk

τ for all t ∈ [1, ∆T].

8 if (K + 1 ≤ τ ≤ D̃ + K) then
9 Pull no arms

10 if (D̃ + K + 1 ≤ τ ≤ ∆T − D̃) then
11 Pick arms according to

GREEDY-BAA(∆T − 2D̃− K, K, X̂1, . . . , X̂K, D1, . . . , DK)

12 if (∆T − D̃ + 1 ≤ τ ≤ ∆T) then
13 Pull no arms

14 τ ← τ + 1

15 j← j + 1

where m =
⌈︂

T
∆T

⌉︂
is the number of batches.

2. Within each batch we spend the first K rounds pulling each arm. Without loss of
generality, we shall assume that arm k is pulled on round k. After this we spend the
next D̃ rounds pulling no arms. This ensures that all arms will be available when we
next pull an arm.

3. Then, up until the final D̃ rounds we play Greedy-BAA using the rewards observed
in the first K rounds as the fixed rewards for each arm.

4. In the final D̃ rounds of each batch, we again pull no arms. This ensures that all of
the arms are available at the beginning of the next batch.

The following theorem characterises the performance of RGA. In particular, our
analysis is inspired by that of Besbes et al. (2014) for nonstationary stochastic bandits,
and relies upon the approximation guarantees of Greedy-BAA.

Theorem 4.3. Suppose that the variation budget BT and maximal blocking duration D̃ ≥ 1
are such that D̃BT ∈ o(T). The α-regret of RGA, where α = ˜

D
D̃+

˜
D , is at most

O
(︃√︂

T(2D̃ + K)BT

)︃
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when the parameter when ∆T is set as follows:

∆T =

⎡⎢⎢⎢
√︄

(T + 1)(2D̃ + K)
2BT

⎤⎥⎥⎥ .

Proof. Let π denote the policy generated by RGA, and let π⋆ denote an optimal
deterministic policy for the offline MAXREWARD problem. For ease of presentation,
we will use X⋆

t (Xπ
t ) to denote the reward received by π⋆ (π) on time step t. To begin

our analysis, we first investigate the regret incurred by RGA, with respect to π⋆, within
each batch.

Since rewards are bounded between zero and one, RGA can accumulate at most K
regret in the first K time steps of each batch. Similarly, for the next D̃ time steps, RGA
can accumulate at most D̃ regret. The same can be said for the last D̃ time steps within
any batch. As a result, we can upper bound the α-regret incurred by RGA within a
batch Tj as follows:

∑
t∈Tj

(αX⋆
t − Xπ

t ) ≤ (2D̃ + K) + ∑
t∈T ′j

(αX⋆
t − Xπ

t ) (4.1)

where T ′j is simply Tj with the first K + D̃ and last D̃ time steps removed. We let X̂k

denote the reward received from arm k when pulled on the kth time step of batch Tj.
Likewise, we use X̂⋆

t ( X̂π
t ) to denote the reward received when the arm π⋆

t (πt) pulled
by π⋆ (π) on time step t is pulled on the π⋆

t -th (πt-th) time step of batch Tj.
Additionally, let Bj denote the path variance within batch Tj:

Bj = ∑
t∈Tj

∑
k∈[K]

⃓⃓⃓
Xk

t+1 − Xk
t

⃓⃓⃓
Then we have,

∑
t∈T ′j

(αX⋆
t − Xπ

t ) = ∑
t∈T ′j

(αX̂⋆
t − X̂π

t ) + ∑
t∈T ′j

(αX⋆
t − αX̂⋆

t ) + ∑
t∈T ′j

(X̂π
t − Xπ

t )

≤ ∑
t∈T ′j

(αX̂⋆
t − X̂π

t ) + ∑
t∈T ′j

|αX⋆
t − αX̂⋆

t |+ ∑
t∈T ′j

|X̂π
t − Xπ

t |

≤ ∑
t∈T ′j

(αX̂⋆
t − X̂π

t ) + ∑
t∈T ′j

|X⋆
t − X̂⋆

t |+ ∑
t∈T ′j

|X̂π
t − Xπ

t |

≤ ∑
t∈T ′j

|X⋆
t − X̂⋆

t |+ ∑
t∈T ′j

|Xπ
t − X̂π

t |

≤ ∑
t∈T ′j

2Bj

≤ 2∆TBj.

(4.2)
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The first inequality follows from taking absolute values. The second inequality
follows from the fact that α ≤ 1. The third inequality follows from the fact that RGA
simply runs Greedy-BAA within batch T ′j . Therefore, by applying Theorem 4.2 with
variation budget 0, we see that the first summation on the righthand side of the
second inequality must be negative. Meanwhile, the third inequality is a consequence
of the following observation:

|Xk
t − X̂k| ≤ ∑

t,t+1∈Tj

|Xk
t+1 − Xk

t | ≤ Bj for all t ∈ Tj and k ∈ [K]. (4.3)

To see why this holds, recall that X̂k is the reward received from the first pull of arm k
in batch Tj. Therefore, the difference between X̂k and Xk

t is bounded by the sum of
reward changes associated with arm k over the batch Tj, which is in turn bounded by
Bj. Finally, the last inequality follows from that fact that the length of a single batch is
at most ∆T.

Substituting (4.2) into (4.1) yields the following inequality:

T

∑
t∈Tj

(X⋆
t − Xπ

t ) ≤ 2∆TBj + (2D̃ + K).

Summing over all batches we have the following bound on the α-regret:

Rα
π(BT, D̃, T) ≤

m

∑
j=1

2∆TBj +

⌈︃
T

∆T

⌉︃
(2D̃ + K)

≤ 2BT∆T +

⌈︃
T

∆T

⌉︃
(2D̃ + K)

≤ 2BT∆T +
T + 1

∆T
(2D̃ + K).

Since BT ≤ TK by definition and both D̃, K ≥ 1, we have√︄
(T + 1)(2D̃ + K)

2BT
≥ 1,

and thus,⎡⎢⎢⎢
√︄

(T + 1)(2D̃ + K)
2BT

⎤⎥⎥⎥ ≤
√︄

(T + 1)(2D̃ + K)
2BT

+ 1 ≤ 2

√︄
(T + 1)(2D̃ + K)

2BT
.

By setting

∆T =

⎡⎢⎢⎢
√︄

(T + 1)(2D̃ + K)
2BT

⎤⎥⎥⎥ ≤ 2

√︄
(T + 1)(2D̃ + K)

2BT
,

we obtain the desired result.
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Note that this bound is sublinear in T if D̃BT = o(T). This occurs, for example, when
D̃ is bounded above by a constant and BT ∈ o(T). When

˜
D = 1, note that α = 1

1+D̃ . As
a result, one may be tempted to believe that the worst-case performance of RGA is
better than that of the Greedy-BAA algorithm. However, this is not the case.

From Theorem 4.2 we have that:

r(π⋆) ≤
(︄

1 +
Dk⋆

max

Dk⋆
min

)︄
r(π+) +

Dk⋆
max

Dk⋆
min

BT ≤
(︃

1 +
D̃

˜
D

)︃
r(π+) +

D̃

˜
D

BT

where π⋆ is an optimal deterministic policy for the offline MAXREWARD problem,
and π+ is the Greedy-BAA algorithm. This can be rewritten as:

˜
D

˜
D + D̃

r(π⋆)− D̃

˜
D + D̃

BT ≤ r(π+). (4.4)

For RGA, we know from Theorem 4.3 that

˜
D

˜
D + D̃

r(π∗)−O
(︃√︂

T(2D̃ + K)BT

)︃
≤ r(RGA). (4.5)

If BT = o(T), we have √︂
T(2D̃ + K)BT > BT.

Thus, the lefthand side of Inequality (4.4) is larger than the lefthand side of Inequality
(4.5), which implies that the approximation ratio of Greedy-BAA is still a better
performance guarantee than the α-regret bound for RGA. Of course, this is what one
would intuitively expect.

We now verify the theoretical performance guarantees of RGA empirically via the
following simple experiment. In what follows, we construct a sequence of adversarial
blocking bandit problems for time horizons of different length. In particular, we
consider problem instances with K = 10 arms and a max delay of D̃ = 5, where one
arm has a positive reward of 1, and all remaining arms have a reward of zero. The arm
with positive reward is dictated by an adversary, who periodically switches the best
arm uniformly at random. We assume that the adversary will swap rewards as
frequently as possible according to their variation budget. In our experiments, we set
the variation budget to T

1
3 . The delay associated with each arm on a given time step is

sampled uniformly at random. For 20 logarithmically spaced values of T from 103 to
107 we compute the average reward of both Greedy-BAA and RGA on five such problem
instances. The results of our experiments are shown in Figure 4.1.

Note that RGA rapidly approximates the performance of Greedy-BAA, which remains
relatively constant as the time horizon lengthens. This is what one would intuitively
expect, as the variation budget of the adversary is sublinear in T. Additionally,
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observe that the performance of RGA is worse than Greedy-BAA for any fixed time
horizon since RGA must perform uniform exploration at the start of each internal block.

FIGURE 4.1: A performance evaluation of the RGA algorithm. We consider 20 loga-
rithmically spaced time horizons from 103 to 107. For each horizon, we average the
performance of both RGA and Greedy-BAA on five problem instances wherein the ad-
versary periodically changes the index of the only arm with positive reward according

to a variation budget of T
1
3 .

4.4.2 Unknown Path Variation Budget

Note that RGA requires knowledge of BT in order to properly set ∆T. To resolve this
issue, we propose META-RGA, a meta-bandit algorithm, where each arm corresponds to
an instance of the RGA algorithm whose ∆T parameter is tuned for a different total path
variation budget. In META-RGA, the time horizon is broken into meta-blocks of length
H. At the start of each meta-block an arm, that is an instance of RGA with its parameter
tuned to a corresponding total path variation budget, is selected according to the
well-known Exp3 algorithm (Auer et al., 2002). The chosen RGA algorithm is then
played for the next H time steps. At the end of a meta-block, the Exp3 algorithm
observes a reward corresponding to the total reward accumulated by the chosen RGA

algorithm. The intuitive idea behind this approach is that, eventually, the Exp3
algorithm will learn the optimal path variation budget to use in each block.
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Algorithm 4: Meta Repeating Greedy Algorithm (META-RGA)
Input: T, K, γ ∈ (0, 1], batch length H.

1 Initialize: |J | = ⌈log2(KT)⌉+ 1, JB = {20, 21, . . . , 2⌈log2(KT)⌉}, wi(1) = 1 for
i = 1, . . . , |J |.

2 for τ = 1, . . . ,
⌈︁ T

H

⌉︁
do

3 Set

pi(τ) = (1− γ)
wi(τ)

∑|J |j=1 wj(τ)
+

γ

|J | i = 1, . . . , |J |

4 Draw iτ randomly according to the probabilities p1(τ), . . . , p|J |(τ)
5 Run RGA in batch τ with budget JB[iτ] = 2iτ−1 and optimally tuned restarts
6 Receive reward xit(τ) ∈ [0, H] at the end of the batch
7 for j = 1, . . . , |J | do
8

x̂j(τ) =

⎧⎨⎩
xj(τ)

pj(τ)
if j = iτ

0 otherwise

wj(τ + 1) = wj(τ)exp(γx̂j(τ)/(H|J |))

In what follows, we shall denote the set of arms available to the Exp3 algorithm by J ,
and denote the corresponding set of variation budgets by JB. The META-RGA algorithm
uses ⌈log2(KT)⌉+ 1 meta-arms with budgets JC = {20, 21, . . . , 2⌈log2(KT)⌉}. That is, the
budget values considered by the Exp3 algorithm are powers of 2 up to the smallest
power which is larger than KT. In addition, let Bi denote the total path variance
within batch i, and set B̃ = maxi Bi. The following theorem characterises the
performance of META-RGA.

Theorem 4.4. Suppose that the variation budget BT and maximal blocking duration D̃ ≥ 1
are such that D̃BT ∈ o(T). The α-regret of RGA-META, where α = 1

1+D̃ , is at most

O
(︂

B̃1/2T3/4(2D̃ + K)1/4 ln(KT)1/4 ln(ln(KT))1/4
)︂

when the parameters of RGA-META are set as follows:

H =

√︄
T(2D̃ + K)

ln(KT) ln(ln(KT))
, γ = min

{︄
1,

√︄
ln(KT) ln(ln(KT))

(e− 1)T

}︄
.

Proof. Let π denote META-RGA. The α-regret of META-RGA can be expressed as follows:

⌈ T
H ⌉
∑
i=1

max(T,iH)

∑
t=(i−1)H+1

(αX⋆
t − Xπ

t )
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Let Bi denote the total path variance within batch i. Of all the RGA instances (i.e.,
meta-arms) available, there must be an instance who is a associated with a candidate
budget B̃ such that:

max
i

Bi ≤ B̃ ≤ 2 max
i

Bi (4.6)

Le π̃ denote the policy of this RGA instance.

Using π̃ we can decompose the regret of META-RGA as follows:⎡⎣⌈ T
H ⌉
∑
i=1

max(T,iH)

∑
t=(i−1)H+1

(αX⋆
t − Xπ̃)

⎤⎦
+

⎡⎣⌈ T
H ⌉
∑
i=1

(︄
max(T,iH)

∑
t=(i−1)H+1

Xπ̃
t

)︄
−
(︄

max(T,iH)

∑
t=(i−1)H+1

Xπ

)︄⎤⎦ (4.7)

Note that the RGA instance with policy π̃ might not be the best fixed meta-arm in
hindsight, whose policy is denoted by π+. Thus, we have:⎡⎣⌈ T

H ⌉
∑
i=1

(︄
max(T,iH)

∑
t=(i−1)H+1

Xπ̃
t

)︄
−
(︄

max(T,iH)

∑
t=(i−1)H+1

Xπ

)︄⎤⎦ ≤
⎡⎣⌈ T

H ⌉
∑
i=1

(︄
max(T,iH)

∑
t=(i−1)H+1

Xπ+

t

)︄
−
(︄

max(T,iH)

∑
t=(i−1)H+1

Xπ

)︄⎤⎦
The righthand side of this inequality is simply the difference between the rewards
observed and accumulated by the Exp3 meta-algorithm and the best available RGA

meta-arm in hindsight. Thus we can bound the second term with standard Exp3
regret bounds (Auer et al., 2002). Note that there are log2(KT) arms available to the
Exp3 algorithm, T/H is number of batches, and the maximum reward a meta-arm can
receive within a batch is H (i.e., the length of each batch). Thus the second term can be
bounded above by O

(︂
H
√︁

T/H ln(KT) ln(ln(KT))
)︂
= O

(︂√︁
HT ln(KT) ln(ln(KT))

)︂
.

Now we turn to bound the first term of (4.7). Each inner sum of the first term
corresponds to the α-regret of policy π̃ over a block of length H. Our idea is to use
Theorem 4.3 to bound the regret of π̃ in each batch i. In order to do so, we must check
whether running RGA with budget B̃ in a batch (with time horizon H) will result in a
valid value for ∆H. That is, we must check ∆H ≥ 1. From Equation (4.6) we know that
B̃ ≤ 2 maxi Bi ≤ 2HK (the second inequality comes from the definition of the total
path variance budget, which is at most HK for time horizon H). Therefore, from

Theorem 4.3 we know that ∆H ≥
√︂

(H+1)(2D̃+K)
2B̃ >

√︂
H(2D̃+K)

4HK ≥ 1 if D̃ ≥ 3K
2 . Now,

since D̃ is an upper bound of the maximal blocking duration, we can set it to be at
least 3K

2 to make ∆H ≥ 1. Therefore, we can apply Theorem 4.3 to each of the batches.
In particular, the α-regret of π̃ over a batch i of length H using optimally tuned restarts
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can be bounded as follows:

max(T,iH)

∑
t=(i−1)H+1

(αX⋆
t − Xπ̃) ≤

√︂
2B̃(H + 1)(2D̃ + K)

≤ 2
√︂

B̃H(2D̃ + K).

Summing over all blocks we have:

⌈ T
H ⌉
∑
i=1

max(T,iH)

∑
t=(i−1)H+1

(αX⋆
t − Xπ̃) ≤

(︃
T
H

+ 1
)︃

2
√︂

B̃H(2D̃ + K)

≤ 4
T√
H

√︂
B̃(2D̃ + K).

(4.8)

Combining (4.8) with the regret bound of the Exp3 meta-bandit algorithm, we get that
the α-regret of META-RGA is at most

O
(︃

T√
H

√︂
B̃(2D̃ + K)

)︃
+O

(︃√︂
HT ln(KT) ln(ln(KT))

)︃
. (4.9)

By setting

H =

√︄
T(2D̃ + K)

ln(KT) ln(ln(KT))

we get the desired regret bound.

Note that B̃ ≤ HK, since the maximum total path variance within a batch is at most
HK. Thus, by setting as in the statement of Theorem 4.4, META-RGA can always achieve
sublinear regret in T when D̃ ∈ O(1). If this is not the case, then META-RGA requires
B̃2D̃ ∈ o(T) in order to achieve sublinear regret. Furthermore, when B̃ is small, our
regret bound tends to O(T3/4). Whether a tighter upper bound (e.g., O(

√
T)) is

possible when the variation budget is unknown is an open question.

As we did for RGA, we validate our theoretical results for META-RGA with
accompanying empirical experiments. Like our previous experiments, we construct
adversarial blocking bandit instances wherein there is a single arm amongst ten with
positive reward, that is swapped periodically by an adversary. We set the variation
budget of the adversary to both 1000 and 100 log T. Figure 4.2 showcases our findings.
Note that convergence rate of META-RGA is far slower than what we observed RGA, even
with a smaller variation budget. We attribute this to the internal Exp3 algorithm
employed by META-RGA. As highlighted by Auer et al. (2019), the employment of
meta-bandit algorithms for hyperparameter selection can lead to significant decreases
in performance. We conjecture that an algorithm in the style proposed by Auer et al.
(2019) may lead to both better practical and theoretical performance, but leave this as
an open direction for future work.
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FIGURE 4.2: A performance evaluation of META-RGA on adversarial blocking bandit
problem instances, where an adversary periodically changes the only arm with pos-
itive reward. We test on 20 time horizons logarithmically spaced between 103 and
107, taking the average of five different problem instances for each horizon. The se-
ries META-RGA 0 corresponds to an adversary with a constant variation budget equal
to 1000. Meanwhile, META-RGA 1 corresponds to a time-varying variation budget of

100 log T.

4.5 Lower Bounds on Regret

In this section we provide justification as to why we require both BT and D̃ to satisfy
D̃BT ∈ o(T) in Theorems 4.3 and 4.4. In particular, we show that if either the variation
budget or the maximum blocking duration is large, then the lower bound of the
α-regret is Θ(T). We also discuss a potential lower bound for the α-regret of the
adversarial blocking bandit problem in the case of BT ∈ o(KT) and D̃ ∈ O(1).

Consider the case when BT ∈ Θ(T). Theorem 4.3 provides a Θ(T) upper bound on
α-regret when α = 1

1+D̃ . Indeed, we show that no algorithm can do better.

Theorem 4.5. For any T > 0 and BT ∈ Θ(KT), there exists a sequence of rewards and
blocking durations X and D such that Rα

π = Θ(T).
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Proof. Consider the case of BT = KT. This implies that the rewards can change in an
arbitrary manner. Now consider the case where Dk

t = 1 for all k ∈ [K] and t ∈ T . Put
differently, assume there is no blocking at all. In this case, we have α = 1/2. The main
idea of the proof is to randomly generate the sequences Xk and prove that, in
expectation, the α-regret is large. In particular, for any arm pulling policy π we have:

E
[︂
α ∑

t
X⋆

t −∑
t

Xπ
t

]︂
= E

[︂
α ∑

t
max

k
Xk

t −∑
t

Xπ
t

]︂
≥ E

[︂
α ∑

t
max

k
Xk

t

]︂
−max

k∈K
E
[︂
∑

t
Xk

t

]︂
+ max

k
E
[︂
∑

t
Xk

t

]︂
−E

[︂
∑

t
Xπ

t

]︂
≥ α ∑

t
E
[︂

max
k

Xk
t

]︂
−max

k
E
[︂
∑

t
Xk

t

]︂
+ R̃π

T

(4.10)

where R̃π
T is the pseudo-regret of π against the best fixed policy in hindsight. Now we

use the standard stochastic setup to prove a lower bound of the pseudo-regret (see
Bubeck and Cesa-Bianchi (2012) for technical details). That is, we draw the rewards
for each arm from Bernoulli distributions with one arm set to have mean reward
ε +

√︂
K
T , and the other arm set to have mean reward ε. By doing so, we can prove that

R̃π
T ≥ 1

8

√
KT. In addition, we have that:

α ∑
t

E
[︂

max
k∈K

Xk
t

]︂
−max

k∈K
E
[︂
∑

t
Xk

t

]︂
= αT

(︂
1− (1− ε)K(1−

√
K/T − ε)

)︂
− T(

√
K/T + ε)

= T
(︂

α
(︂

1− (1− ε)K(1−
√

K/T − ε)
)︂
−
(︂√

K/T + ε
)︂)︂

.

(4.11)

Substituting α = 1/2 and β = (1− ε)K we further have:

T
(︂

α
(︂

1− (1− ε)K(1−
√

K/T − ε)
)︂
−
(︂√

K/T + ε
)︂)︂

= T
(︂
(1− β)/2− (

√
K/T + ε)(1− β/2)

)︂
≥ T

(︂
(1− β)/2− ε

)︂
−
√

KT.

(4.12)

Putting everything together, we get:

E
[︂
α ∑

t
X∗t −∑

t
Xπ

t

]︂
≥ T

(︂
(1− β)/2− ε

)︂
− 7

8

√
KT (4.13)

It is easy to show that for any K ≥ 2, with a sufficiently small ε, there exists a constant
c > 0 such that (1− β)/2− ε) > c. This implies that E

[︂
α ∑t X∗t −∑t Xπ

t

]︂
∈ Θ(T),

which concludes the proof.

Next, we consider settings in which the maximal blocking duration is of order Θ(T).
In this case, 1

1+D̃ ∈ Θ(1/T). Thus, to achieve sublinear α-regret when α = 1
1+D̃ , a

policy needs only to achieve Θ(1) cumulative reward, since the cumulative reward of
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any policy is bounded above by T. As a result, problem instances in which D̃ ∈ Θ(T)
are trivial and uninteresting when α = 1

1+D̃ . Instead we may ask what happens when
α matches the approximation ratio guaranteed by Greedy-BAA. In this case, any policy
incurs Θ(T) α-regret in the worst case.

Theorem 4.6. For any T > 0 and D̃ ∈ Θ(T), there exists a sequence of rewards and blocking
durations X and D such that Rα

π = Θ(T) for

α =

(︄
1 +

Dk⋆
max

Dk⋆
min

)︄−1(︄
1− Dk⋆

maxBT

Dk⋆
minr(π⋆)

)︄

Proof. Consider the following two problem instances, in which there are two arms. In
problem instance 1, the rewards and blocking durations associated with each arm are
defined as follows:

X1
1 = 1, X2

1 = 0, D1
1 = 1, D2

1 = T t = 1

X1
t = 0, X2

t = 1, D1
t = 1, D2

t = 1 for all t ≥ 2.

In problem instance 2, the rewards and blocking durations associated with each arm
are swapped. That is, the rewards and blocking durations associated with each arm
are defined as follows:

X1
1 = 0, X2

1 = 1, D1
1 = T, D2

1 = 1 t = 1

X1
t = 1, X2

t = 0, D1
t = 1, D2

t = 1 for all t ≥ 2.

In the case of problem instance 1, it is clear that Greedy-BAA is an optimal policy,
pulling arm one on the first time step, and arm two thereafter. The total reward
accumulated by this policy is T. In contrast, any policy which pulls arm two on the
first time step accumulates no reward. Note that the reverse is true for problem
instance 2. Any policy which pulls arm one on the first time step will achieve no
reward, whilst any arm that pulls arm two on the first time step will achieve a
cumulative reward of T. Additionally, note that the path variation budget for both
problem instances can be as low as two. Now, consider an arbitrary policy π which
pulls arm one on the first time step with probability p ∈ [0, 1]. For now, assume that
p ≤ 1/2. In this case, when π is applied to problem instance 1, its total expected
reward will be pT + (1− p)0 ≤ T/2, implying that the difference between the
performance of π and that of Greedy-BAA is at least T/2. If p > 1/2 we may employ
an analogous argument, replacing problem instance 2 with problem instance 1.

Note that both the regret bounds we provide in Theorems 4.3 and 4.4 only hold when
D̃BT ∈ o(T). Whilst, this assumption is well justified by Theorems 4.5 and 4.6, it is still
an open question as to whether it is possible to achieve sublinear α-regret bounds in T
when both BT and D̃ are of order o(T), but D̃BT ∈ Ω(T).



100 Chapter 4. Adversarial Blocking Bandits

Before moving on, we provide some brief discussion regarding when the α-regret
bound provided by RGA is tight. Assume that D̃ = O(1). In this case, the α-regret
bound of RGA is reduces to O(

√
KTBT). In other words, the α-regret bound of RGA

matches known lower bounds for the 1-regret for problem instances with no blocking
(Auer et al., 2019). In particular, when D̃ = 1 the Greedy-BAA algorithm becomes
optimal, as observed by Basu et al. (2019), and α-regret becomes 1-regret. Therefore,
any algorithm which achieves α-regret better than O(

√
KTBT) when the maximal

blocking duration is constant with respect to time also achieves O(
√

KTBT) 1-regret in
the standard adversarial bandit setting, without blocking. To the best of our
knowledge, there are no exisitng theoretical results describing regret lower bounds for
settings where the maximal blocking duration is not bounded above by a constant.
Likewise, we are not aware of any lower bound results for settings where the total
path variation budget is not known in advance.

4.6 Regret Analysis with Other Variation Budgets

So far, we have considered instances of the MAXREWARD problem in which reward
sequences obeyed a total path variation budget constraint. This constraint on reward
sequences makes sense in real world settings when the value of a given resource or
action varies smoothly through time. However, in many situations, this is not the case.
For example, in an emergency response scenario, the value of resources, such as
emergency personnel, may vary erratically depending on whether their skills are
needed at a given moment in time or not. With this in mind, we extend our regret
analysis to other budgets which constrain how reward sequences may evolve through
time. In particular, we show how our analysis can be adapted to the maximum
variation budget, Bmax

T , and the number of changes budget, LT, whose definitions are
given below.

Bmax
T = ∑

t,t+1∈T
max

k
|Xk

t+1 − Xk
t |

LT = #{t : 1 ≤ t ≤ T − 1, ∃k : Xk
t ̸= Xk

t+1}.

Before analysing the regret of RGA, we first establish approximation guarantees for
Greedy-BAA under each budget. Recall that, in Theorem 4.2, the approximation ratio
for Greedy-BAA was calculated via the following inequality:

r(π⋆) =
T

∑
t=1

Xπ⋆
t

t

≤
T

∑
t=1

Xπ+
t

t +
Dj⋆

max

Dj⋆
min

(︄
T

∑
t=1

Xπ+
t

t + ∑
i∈[K]

T−1

∑
t=1
|Xi

t − Xi
t+1|

)︄
.

(4.14)
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First, consider the maximum variation budget. Note that the term

∑
i∈[K]

T−1

∑
t=1
|Xi

t − Xi
t+1| (4.15)

may be bounded above by KBmax
T . In combination with Inequality (4.14), this

immediately implies that

r(π⋆) =
T

∑
t=1

Xπ⋆
t

t

≤
(︄

1 +
Dj⋆

max

Dj⋆
min

)︄
r(π+) +

Dj⋆
max

Dj⋆
min

KBmax
T .

As a result, we obtain the following performance guarantee for Greedy-BAA under the
maximum variation budget.

Corollary 4.7. Let k⋆ = arg maxk
Dk

max
Dk

min
denote the arm with the highest max-min blocking

duration ratio. Additionally, let π+ denote the solution returned by Greedy-BAA, and π⋆

denote an optimal solution to the offline MAXREWARD problem. Then,(︄
1 +

Dk⋆
max

Dk⋆
min

)︄
r(π+) +

Dk⋆
max

Dk⋆
min

KBmax
T ≥ r(π⋆).

That is, Greedy-BAA has an approximation ratio of
(︂

1 + Dk⋆
max

Dk⋆
min

)︂−1
(︃

1− Dk⋆
maxKBmax

T
Dk⋆

minr(π⋆)

)︃
.

Now, consider the number of changes budget. Note that (4.15) is bounded above by
KLT. Thus, we have

r(π⋆) =
T

∑
t=1

Xπ⋆
t

t ≤
(︄

1 +
Dj⋆

max

Dj⋆
min

)︄
r(π+) +

Dj⋆
max

Dj⋆
min

KLT.

As a result, we obtain the following performance guarantee for Greedy-BAA under the
number of changes budget.

Corollary 4.8. Let k⋆ = arg maxk
Dk

max
Dk

min
denote the arm with the highest max-min blocking

duration ratio. Additionally, let π+ denote the solution returned by Greedy-BAA, and π⋆

denote an optimal solution for the offline MAXREWARD problem. Then,(︄
1 +

Dk⋆
max

Dk⋆
min

)︄
r(π+) +

Dk⋆
max

Dk⋆
min

KLT ≥ r(π⋆).

That is, Greedy-BAA has an approximation ratio of
(︂

1 + Dk⋆
max

Dk⋆
min

)︂−1 (︂
1− Dk⋆

maxKBLT

Dk⋆
minr(π⋆)

)︂
.

Note that the corollaries above show that the approximation guarantees of
Greedy-BAA are preserved under both the maximum variation and number of changes
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budgets. Next, we show that the performance guarantees of RGA generalise in a similar
manner. It is easy to show that BT ≤ KBmax

T ≤ KLT. Thus, just by replacing BT with
KBmax

T and KLT we can obtain crude regret bounds for both the maximum variation
and number of changes budgets. However, we can improve upon these bounds by a√

K factor via a more intricate approach. Our analysis for both the maximum variation
and number of changes budgets are largely the same as our analysis for the total path
variation budget. We need only modify the way we estimate the regret in Inequality
(4.3), within the proof of Theorem 4.3.

First, we will consider the maximum variation budget. Note that for all arms k and all
time steps t ∈ T ′j we have

|Xk
t − X̂k

t | ≤
T

∑
t,t+1∈Tj

|Xk
t+1 − X̂k

t |

≤
T

∑
t,t+1∈Tj

max
l
|Xl

t+1 − X̂l
t|

≤ Bmax
j .

(4.16)

where Bmax
j is the maximum variation budget of batch Tj. Substituting this back into

Inequality (4.2) we get:

∑
t∈T ′j

(αX⋆
t − Xπ

t ) = ∑
t∈T ′j

(αX̂⋆
t − X̂π

t ) + ∑
t∈T ′j

(αX⋆
t − αX̂⋆

t ) + ∑
t∈T ′j

(X̂π
t − Xπ

t )

≤ ∑
t∈T ′j

|X⋆
t − X̂⋆

t |+ ∑
t∈T ′j

|Xπ
t − X̂π

t |

≤ ∑
t∈T ′j

2Bmax
j

≤ 2∆TBmax
j

(4.17)

By imitating the proof of Theorem 4.3, we arrive at the following corollary.

Corollary 4.9. Suppose that the maximum variation budget Bmax
T and maximal blocking

duration D̃ ≥ 1 are such that D̃Bmax
T ∈ o(T). The α-regret of RGA, where α = ˜

D
D̃+

˜
D , is at most

O
(︃√︂

(2D̃ + K)TBmax
T

)︃
when the parameter ∆T is tuned as follows

∆T =

⌈︄√︄
(T + 1)(2D̃ + K)

2Bmax
T

⌉︄
.
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Next, we consider the number of changes budget, LT. Note that for all arms k and all
time steps t ∈ Tj we have

|Xk
t − X̂k

t | ≤
T

∑
t,t+1∈Tj

|Xk
t+1 − X̂k

t | ≤
T

∑
t,t+1∈Tj

I(Xk
t+1 ̸= X̂k

t )

≤
T

∑
t,t+1∈Tj

I(∃l ∈ K : Xl
t+1 ̸= X̂l

t)

≤ Lj

(4.18)

where I(·) is the indicator function and Lj is the total number of changes in batch j.
Once again, imitating the proof of Theorem 4.3, we obtain the following corollary.

Corollary 4.10. Suppose that the number of changes budget LT and maximal blocking
duration D̃ ≥ 1 are such that D̃LT ∈ o(T). The α-regret of RGA, where α = ˜

D
D̃+

˜
D , is at most

O
(︃√︂

(2D̃ + K)TLT

)︃
when the parameter ∆T is tuned as follows

∆T =

⎡⎢⎢⎢
√︄

(T + 1)(2D̃ + K)
2LT

⎤⎥⎥⎥ .

4.7 Conclusion and Future Work

Summarising, we first introduced the MAXREWARD problem. The MAXREWARD
problem features both nonstationary rewards and blocking, and as such can model
realistic reward sequences (Requirement 2a) and resource unavailability (Requirement
2b). In particular, we considered three versions of the MAXREWARD problem. We
first showed that the offline MAXREWARD problem is strongly NP-Hard, eliminating
the possibility of an algorithm which is both tractable and optimal. After this, we
examined the online MAXREWARD setting, and developed the Greedy-BAA

algorithm. In particular, we showed that Greedy-BAA has provable performance
guarantees with respect to the optimal policy. Lastly, we examined the adversarial
blocking bandits problem. We first developed the RGA algorithm, which assumes the
decision maker is initially aware of the total path variation budget. Additionally, we
proved a finite-time α-regret guarantee for RGA (addressing Requirement 2c). We then
relaxed our assumption that the decision maker knows the total path variation budget
in advance and proposed META-RGA, providing α-regret guarantees in the process.
Then, we discussed several lower regret bounds for the adversarial blocking bandits
setting. Lastly, we showed that our algorithms generalise to several different variation
budgets that are popular within the literature.
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To the best of our knowledge, the adversarial blocking bandit model is the first
problem setting that considers nonstationary rewards and blocking simultaneously.
One can think of many other ways to simultaneously integrate blocking and
nonstationary rewards into the same bandit model. For example, in the adversarial
blocking bandits setting, rewards are not stochastic. In many real world settings,
decision makers only receive noisy feedback. As a result, stochastic bandit models
which simultaneously integrate nonstationary rewards and blocking are of significant
interest. In the case where blocking durations are fixed and deterministic and rewards
are nonstationary and stochastic, we conjecture that a combination of the UCB
algorithm for stochastic blocking bandits proposed by Basu et al. (2019) and sliding
window UCB (Garivier and Moulines, 2011) may provide finite-time α-regret
guarantees, but leave this as a direction for future work.

Adversarial blocking bandits also assume that the blocking durations associated with
each arm can be arbitrary. Whilst incredibly general, this assumption may be too
strong for a number of real world settings. For example, consider a setting in which
taking an action corresponds to committing to a manufacturing cycle. The underlying
manufacturing process may rely on scarce resources, such as gold, whose supply
varies smoothly over time. It is reasonable to expect the amount of time it takes gather
enough resources for new manufacturing cycle to evolve over time based on the
supply of the underlying scarce resource. In such scenarios, it makes sense to
constrain the blocking durations associated with each arm so that they obey a
variation budget. For example, one may constrain blocking duration sequences
according to a number of changes budget, just as Auer et al. (2019) does for reward
sequences. Such models present avenues for future research.
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Chapter 5

Sequential Blocked Matching

Next, we shift focus to Problem Domain 3. More specifically, we introduce the
sequential blocked matching (SBM) problem, in which a central planner must
repeatedly construct matchings between agents and services over a number of time
steps. In contrast to existing models for repeated matching, the sequential blocked
matching problem models resource unavailability directly through blocking. Once a
service is assigned to an agent within a matching, the service is blocked for a fixed
duration, depending on which agent it what assigned to. The sequential blocked
matching problem is described formally in Section 5.1.

As a starting point for theoretical analysis, we first investigate an offline version of
sequential blocked matching, in which each agent is fully aware of their own
preferences (Section 5.2). Working under the assumption that agents hold cardinal
preferences, but report information ordinally, we evaluate the performance of the
decision maker via distortion (Procaccia and Rosenschein, 2006), a natural metric
which accounts for the unavoidable loss in utility due to ordinal reporting. In
particular, we provide lower bounds on the distortion of both deterministic and
randomised matching policies. After this, we illustrate that trivial approaches, which
repeatedly apply a truthful single shot one-sided matching algorithm on each time
step, are not truthful in the sequential blocked matching setting. Therefore, we design
an extension of RSD, called repeated RSD (RRSD). We show that RRSD has bounded
incentive ratio, and therefore satisfies a relaxed notion of truthfulness (addressing
Requirement 3b). Immediately after this, we show that RRSD is asymptotically optimal
in terms of distortion (addressing Requirement 3a). Then, we show that RRSD can be
derandomised to obtain a deterministic algorithm with good distortion guarantees.

In Section 5.3, we investigate a bandit version of the sequential blocked matching
problem in which agents are initially unaware of their preferences over services, and
must learn them over time. We assume that each agent receives stochastic feedback
about a service only when matched to it. Within this setting, we develop a bandit
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version of RRSD, called bandit RRSD (BRRSD), based on the ETC paradigm. To analyse
BRRSD, we use two regret notions. We evaluate the efficiency of BRRSD via the
α-dynamic regret, which benchmarks the decision maker against an α-approximation
of the optimal matching sequence. To evaluate the truthfulness of BRRSD, we formalise
the possible behaviours of each agent via misreporting policies. We then introduce the
α-incentive compatible regret, which benchmarks the misreporting policy of each
agent against an α-approximation of the best misreporting policy in hindsight. In
Section 5.4, we show that BRRSD achieves sublinear dynamic α-regret, whilst also
ensuring that each the α-incentive compatible regret of each agent is sublinear when
they report truthfully (addressing Requirement 3c).

5.1 Preliminaries

In this section, we introduce the sequential blocked matching problem in detail. We
start by describing how the preferences of each agent are modeled and how agents are
matched to services in a single time step. After this, we introduce the first version of
SBM that we study in this chapter, which features the blocking of services when they
are assigned to agents.

In our model, we have a set of agents, N = {1, . . . , n}, who hold cardinal preferences
over a set of services, S = {1, . . . , s}, where s≫ n 1. We use µi,j ∈ R+ to describe the
cardinal reward agent i receives for being assigned service j. Similarly, we denote by
µi = (µ)s

j=1 the vector of rewards associated with agent i. In what follows, we will also
refer to µi as the utilities associated with agent i. Moreover, we restrict ourselves to
utilities which lie in the probability simplex. That is, we assume µi ∈ ∆s−1 for all
i ∈ N. In other words, we make a unit-sum assumption about the utilities of each
agent. Bounding constraints on utilities are common in the ordinal one-sided
matching literature (Filos-Ratsikas et al., 2014), and are typically required in order to
prove lower bounds for truthful algorithms such as RSD. Moreover, the unit-sum
assumption is prevalent in social choice theory (Boutilier et al., 2015). Lastly, we
denote by µ the n by s matrix of rewards, which we refer to as the reward profile of the
agents.

We say that agent i (weakly) prefers service a to service b if agent i receives greater
reward by being assigned service a over service b. That is, agent i prefers service a
over service b if and only if µi,a ≥ µi,b. We use the standard notation a ≻i b to say that
agent i prefers service a to service b. That is, we write ≻i to denote the linear
preference ordering induced by agent i’s reward profile 2. Additionally, we use the

1Note that this is without loss of generality, as we may always add dummy services corresponding to
a null assignment.

2One reward profile may induce many linear orderings. However, the linear preference profile induced
by a reward profile can be made unique via tie-breaking rules.
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notation ≻i(j) to indicate the service in the jth position of the preference ordering ≻i.
More generally, we use the notation µind ▷≻ind to denote that ≻ind is a preference
ordering induced by the reward profile µind. We let P(S), or P for short, denote the
set of all linear preference orderings over S. Furthermore, we let ≻ = (≻)n

i=1 ∈ Pn

denote the preference profile of the agents. As is standard, we write ≻−i to denote
(≻1, . . . ,≻i−1,≻i+1, . . . ,≻n). Likewise, we may write ≻ as (≻i,≻−i) at times for ease
of presentation.

A matching m : N → S ∪ {0} is a mapping from agents to services. We let m(i) denote
the service allocated to agent i by the matching m. We use 0 to denote the null
assignment. That is, agent i is assigned no service in a matching if m(i) = 0. We let ∅
denote the null matching, in which no agent is assigned a service. We say matching is
feasible if no two agents are mapped to the same service. We letM denote the set of
all feasible matchings.

In what follows, we consider discrete-time sequential decision problems, wherein a
planner must select a sequence of (feasible) matchings over T time steps. We let mt

denote the matching chosen by the planner at time step t, and denote by M = (mt)T
t=1

a sequence of T matchings. We denote by M(t, i) = mt(i) the service matched to agent
i at time t.

Furthermore, we assume that, when a service is assigned, it may be blocked for a time
period depending on the agent it was assigned to. More specifically, when agent i is
matched with service j, we assume that service j cannot be matched to any agent for
the next Di,j − 1 time steps. We refer to Di,j as the blocking duration associated with
the agent-service pair i and j. Additionally, we let D̃ denote the maximal blocking
duration possible, and let D denote the n by s matrix of blocking durations. From now
on, we assume that all blocking durations are known a priori by both the planner and
all agents.

We say that a matching sequence M is feasible with respect to the blocking duration
matrix D if no service is matched to an agent on a time step where it has been blocked
by a previous matching.

Definition 5.1. For a given blocking duration matrix D, the set of feasible matching
sequences of length T,MD

T ⊆MT, is the set of all matching sequences M ∈ MT such
that for all t ∈ {1, . . . , T}, i ∈ N, and j ∈ S, if M(t, i) = j then M(t′, i′) ̸= j for all i′ ∈ N
and for all t′ such that t < t′ ≤ t + Di,j − 1.

In other words, we say that a matching sequence is feasible if there is no matching in
the sequence which assigns an agent a service which has been blocked by a previous
matching. Note that blocking of services is a common phenomenon in real-world
scenarios. For example, consider a setting in which each service corresponds to a
freelance contractor, and each agent corresponds to an employer. The matching of
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services and agents then corresponds to employers contracting freelancers. For the
duration of the contract, which may differ from employer to employer, the matched
freelancer is unavailable before returning to the pool of available services once their
contract ends.

We define the welfare, Wi(M, µi), agent i receives from a matching sequence M as the
sum of rewards it receives from each matching in the sequence. That is,

Wi(M, µi) =
T

∑
t=1

µi,M(t,i).

Similarly, we define the social welfare, SW(M, µ), of a matching sequence M as the
summation of agent welfare. More specifically,

SW(M, µ) =
n

∑
i=1

Wi(M, µi).

Next, we describe the first sequential matching setting we consider in this chapter,
which we call the offline SBM setting. In this setting, the planner must produce a
feasible matching sequence of length T. Prior to the selection of a matching sequence,
each agent submits a linear preference ordering to the planner. We denote by ≻̃i the
preference ordering, or report, submitted by agent i. Analogously, we denote by ≻̃ the
preference profile submitted cumulatively by the agents, and call it the report profile.
A matching policy π(M | ≻̃, D) assigns a probability of returning a matching sequence
M given a submitted report profile ≻̃ and blocking duration matrix D. When it is clear
from context, we will abuse notation and use π(≻̃, D) to refer to the (random)
matching sequence prescribed by a policy π given a report profile ≻̃ and blocking
duration matrix D.

We say that a matching policy is admissible if, for all possible report profiles and
blocking duration matrices, the matching sequence returned by the policy is always
feasible. The goal of the planner is to adopt an admissible matching policy which
achieves high social welfare in expectation relative to the best feasible matching
sequence in hindsight, M⋆(µ, D),

M⋆(µ, D) = arg max
M∈MD

T

SW(M, µ).

We assume that each agent, with full knowledge of the matching policy employed the
planner, submits a linear preference ordering with the intention of maximising their
own welfare, and therefore may try to manipulate the planner by submitting a
preference ordering which is not induced by their underlying cardinal preferences. We
say that an agent is truthful if they submit a preference ordering induced by their
underlying cardinal preferences. That is, an agent is truthful if µi ▷ ≻̃i. We denote by
≻⋆

i the report which maximises agent i’s welfare in expectation under the assumption
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that all other agents are truthful. We say that a policy is truthful if, for all possible µ

and D, it is optimal for each agent to be truthful if all other agents are truthful. In
other words, a policy is truthful if, for all µ and D, we have that µi ▷≻⋆

i for all i ∈ N.

To evaluate the efficiency of a given policy we use distortion, a standard notion of
approximation for settings with ordinal preferences.

Definition 5.2. The distortion of a matching policy π is the worst-case ratio between
the expected social welfare of the matching sequence π(≻, D), returned by the policy
π when all agents report truthfully, and the social welfare of the optimal matching
sequence, M⋆(µ, D):

sup
µ,D

SW(M⋆(µ, D), µ)

E [SW(π(≻, D), µ)]
.

In other words, the distortion of a policy π is simply the approximation ratio of the
policy π with respect to the policy that always returns the optimal matching sequence.
In addition, note that the distortion is only a useful measure of a matching policy’s
efficiency if said policy encourages truthful reporting. For truthful policies, distortion
is completely characterising of a policy’s expected performance. As a result, we not
only seek policies which have low distortion, but also policies which incentivise
agents to submit truthful reports. To this end, we introduce the notion of incentive
ratio, which measures the relative improvement in welfare an agent can achieve by
lying about their preferences.

Definition 5.3. The incentive ratio ζ(π) ∈ R+ of a matching policy π is given by:

ζ(π) = max
D,≻−i , µi▷≻i

E[Wi(π((≻i,≻−i), D), µi)]

E[Wi(π((≻∗i ,≻−i), D), µi)]
.

If a policy has an incentive ratio of 1, then it is truthful. There are many reasons that
we may expect a policy with bounded incentive ratio to do well. A bounded incentive
ratio implies truth telling is a good approximation to each agent’s optimal report. If
computing the optimal report is computationally intractable for the agent, being
truthful is therefore an attractive alternative, especially if the approximation ratio
implied by the incentive ratio is tight. In summary, we seek matching policies with
good guarantees when it comes to both incentive ratio and distortion. This topic is
treated in detail in the forthcoming sections.

5.2 The Offline SBM Setting

In this section, we present our analysis of the offline SBM setting. We first provide a
lower bound on the distortion achievable by both randomised and deterministic
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policies. Then, we discuss why trivial extensions of truthful single-shot matching
algorithms do not result in truthful policies. Instead, we focus on designing policies
which use truthful single-shot matching mechanisms as a basis, and have bounded
incentive ratio. More precisely, we present the RRSD algorithm. We show that the
incentive ratio of RRSD is bounded below by 1− 1/e, and provide upper bounds on the
distortion achieved by RRSD, which match our previously established lower bounds on
the best distortion achievable by any randomised algorithm.

5.2.1 Lower Bounds on the Distortion of Matching Policies

First, we prove that the distortion of any deterministic policy is Ω(s). That is, the
distortion of any deterministic policy scales linearly with the number of services in the
best case. In the proof, we first carefully construct a set of ordinal preferences. Then,
given any matching sequence M, we show that there exists a reward profile which
induces the aforementioned ordinal preferences and on which M incurs distortion of
order Ω(s).

Theorem 5.4. The distortion of any deterministic policy is Ω(s).

Proof. We now consider an instance of SBM with n agents and n services, where each
agent has the same preferences. That is, ≻a = ≻b for all (a, b) ∈ N. Furthermore,
assume that, without loss of generality, service j is in the jth position of this preference
ordering. That is, assume that ≻a(j) = j for all j ∈ S. Lastly, assume that the blocking
duration on each of the n services is D̃ for all agents. In other words, put more
formally, assume that Dij = D̃ for all i ∈ N and all j ∈ S.

We proceed with the proof in the following manner. Given the matching sequence M
returned by a deterministic policy using the above preference profile and blocking
duration matrix, we will show that there exists a set of reward profiles which induce
the preference profile, and on which the matching sequence M suffers a distortion of
Ω(n) = Ω(s). We construct this reward profile via an inductive argument.

Firstly, observe that there must exist some agent, i1 ∈ N, who is assigned service 1 at
most T/D̃n times in the matching sequence M by the pigeonhole principle. We set the
reward profile of agent i1 to (1, 0, . . . , 0). Disregarding agent i1, observe that there
must exist a different agent, i2 ∈ N, who is assigned service 1 or 2 at most T/D̃(n− 1)
times, once again by the pigeonhole principle. We set the utilities of agent i2 to
(1/2, 1/2, 0, . . . , 0). Disregarding both agents i1 i2, we can find a new agent, i3 ∈ N,
who has been assigned services 1, 2 or 3 at most T/D̃(n− 2) times. We set the utilities
of agent i3 to (1/3, 1/3, 1/3, 0 . . . , 0). We proceed in this pattern for a total of n steps,
until all agents are assigned utilities. Note that the resulting reward profile
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constructed induces the desired preference profile (assuming that a numeric
tie-breaking rule is used).

Given the assigned utilities, it is obvious that an optimal matching sequence assigns
service j to agent ij whenever the service is available. The social welfare of this
optimal matching sequence is therefore of order Θ(log (n)T/D̃). In contrast, the
matching sequence M has social welfare of order Θ(log (n)T/D̃n). As we can always
construct such a reward profile, no matter the matching sequence M returned by a
policy, this implies that the distortion of any policy is of order Ω(n) = Ω(s).

Next, we prove that the distortion incurred by any randomised policy is Ω(
√

s). To
prove this, we first show that it is sufficient to consider only anonymous policies,
which ensure that an agent is treated the same if its relative position, or indexing,
amongst other agents changes. Then, we construct a reward profile which yields the
desired distortion for all anonymous policies.

Theorem 5.5. The distortion of the best randomised policy is Ω(
√

s).

Proof. Similarly to Theorem 5.4, we consider an instance of SBM with n agents and n
services. Additionally, assume that the blocking durations for all services is the same
for all agents. That is, Dij = d for some d ≤ D̃.

Before moving to the content of the proof, we first show that it is sufficient to consider
only anonymous policies. Given a preference profile ≻, we let Aij(≻) ∈ {0, 1, . . . , T}
denote the random variable that indicates the number of times agent i was allocated
service j. We call a randomised matching algorithm anonymous if
E[Aij(≻1, . . . ,≻n)] = E[Aσ(i)j(≻σ(1), . . . ,≻σ(n))] for all permutations σ. In other
words, a policy is anonymous if an agent’s relative position with regards to other
agents does not affect its assignment of services in expectation.

Now, suppose we are given a matching policy which has distortion at most ρ i.e.

∑ij µijE[Aij(≻)] ≥ ρOPT(µ). We can consider a new matching policy that selects a
permutation σ uniformly at random and then applies the same policy on the input
≻σ = (≻σ(1), . . . ,≻σ(n)). Then, the expected social welfare of the new policy is

Eσ

[︄
∑
ij

µσ(i)j Aσ(i)j(≻σ)

]︄
≥ Eσ [ρOPT(µσ)] = ρOPT(µ)

The first inequality follows because the original policy gives ρ distortion even when
applied to the profile µσ, and the second equality follows because the optimal welfare
(OPT(µ) = ∑ij µij A⋆

ij) is invariant to permutation. Therefore, the new anonymous
policy has distortion at most ρ. This implies that, for any matching policy, there is an
anonymous matching policy with identical performance with respect to distortion. As
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a result, from now on, we restrict our consideration to anonymous matching policies
without loss of generality.

Next we will show that any anonymous matching policy incurs distortion of order
Ω(
√

s) via construction of a special set of reward profiles. The reward profile we
construct is very similar to the one constructed in the proof of Lemma 8 of
Filos-Ratsikas et al. (2014). In what follows we will assume that n is a square number,
for ease of presentation. For each i ∈ [

√
n], define

µi,j =

{︄
1−∑j ̸=i µi,j if j = i

n−j
10n3d o.w.

And for each ℓ ∈ [
√

n− 1], define

µi+ℓ
√

n,j =

⎧⎪⎪⎨⎪⎪⎩
1−∑j ̸=i µi,j if j = i

1√
n −

j
10n2 if j ̸= i & j ≤

√
n

n−j
10n3d o.w.

In other words, we partition the n agents into
√

n groups, where all agents in group i
have the same preference order. Let Gi = {i} ∪

{︁
i + ℓ
√

n : ℓ = 1, . . . ,
√

n− 1
}︁

denote
such a group. Observe that all the agents in group Gi have preference order
i ≻ 1 ≻ . . . ≻ i− 1 ≻ i + 1 ≻ . . . ≻ n. Therefore, for any service j, all the agents in
group Gi have the same expected number of assignments, due to anonymity of the
matching policy. Let us call this number of assignments Tij. Since any service j can be
allocated at most T/d times we have

√
n

∑
i=1

∑
p∈Gi

Tij ≤
T
d
⇒
√

n

∑
i=1

Tij ≤
T

d
√

n
. (5.1)

For any agent i ∈ [
√

n], the maximum expected welfare over T rounds is bounded
above as follows:

Tii + ∑
j ̸=i

Tij
n− j
10n3d

≤ Tii +O
(︃

T
nd

)︃
.

Now consider an agent i + ℓ
√

n for ℓ ∈ [
√

n− 1]. Such an agent’s welfare over the T
rounds is at most

TiiO
(︃

1√
n

)︃
+ ∑

j ̸=i,j≤
√

n

Tij
1√
n
+ ∑

j>
√

n

Tij
n− j
10n3d

≤ O
(︃

1√
n

)︃ √n

∑
j=1

Tij +O
(︃

T
nd

)︃
.
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Therefore, the social welfare is bounded by

√
n

∑
i=1

Tii +O
(︃

1√
n

)︃ √n

∑
i=1

√
n−1

∑
ℓ=1

√
n

∑
j=1

Tij +O
(︃

T
d

)︃

≤
√

n

∑
i=1

Tii +

√
n

∑
i=1

√
n

∑
j=1

Tij +O
(︃

T
d

)︃

≤ 2

√
n

∑
j=1

√
n

∑
i=1

Tij +O
(︃

T
d

)︃

≤ 2

√
n

∑
j=1

T
d
√

n
+O

(︃
T
d

)︃
= O

(︃
T
d

)︃

where the last line follows from (5.1). On the other hand, any deterministic and
non-anonymous allocation rule that always assigns service i to agent i every d rounds
achieves a social welfare of at least

√
n T

d (1−
1

10nd ). This establishes a bound of
Ω(
√

n) = Ω(
√

s) on distortion.

5.2.2 Constructing Truthful Algorithms for the Offline SBM Setting

As previously mentioned, we assume that agents submit reports with the intention of
maximising their own welfare. As a result, the distortion incurred by a policy may not
reflect its performance in practice, as agents may be incentivised to misreport their
preferences to increase their welfare. In standard single-shot one-sided matching
problems, this issue is sidestepped via the employment of truthful policies, like RSD.
In a similar way, we would like to develop truthful algorithms for the offline SBM
setting.

One may be tempted to apply such truthful single-shot policies to our setting directly.
That is, to apply an algorithm such as RSD repeatedly on every time step to devise a
matching sequence. This intuition is correct when there is no blocking, as the
matching problems for each time step are then independent of each other. However,
with blocking, the matchings from previous time steps will have a substantial effect on
the set of matchings which preserve the feasibility of the matching sequence in future
rounds. As a result, immediately obvious approaches, such as matching according to
RSD repeatedly, do not result in truthful policies.

For example, consider a problem instance involving three agents, {1, 2, 3} and three
services, {a, b, c}, in which the ordinal preferences of each agent are defined as follows

1 : a ≻ b ≻ c

2 : b ≻ c ≻ a

3 : b ≻ c ≻ a
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and the blocking duration matrix is given by

D =

⎛⎜⎝2 1 1
2 2 2
1 1 1

⎞⎟⎠ .

Now, consider an algorithm in which a permutation, σ, of the agents is sampled
uniformly at random, and RSD is run repeatedly on each time step in accordance with
σ. In particular, consider the case where σ = (1, 2, 3). Table 5.1 shows the assignment
of services when each agent reports their true preferences to the algorithm. Note that
agent 1 receives service a, followed by service c, repeatedly for the entire time horizon.
Meanwhile, Table 5.2 shows the assignment of services when agent 1 lies and reports
the preference ordering b ≻ a ≻ c. Note that in this case, agent 1 receives service b
followed by service a, repeatedly for the entire time horizon. Since agent 1 prefers
service b over service c, agent 1 prefers the assignment of services it receives from
misreporting when σ = (1, 2, 3). Moreover, it is easy to verify that misreporting
b ≻ a ≻ c, does not worsen agent 1’s welfare when any other permutation is sampled.
Therefore, we conclude that agent 1 can benefit by misreporting the preference
ordering b ≻ a ≻ c. Hence, we conclude that the algorithm proposed is not truthful.

1 2 3 4
1 : a ≻ b ≻ c a c a c
2 : b ≻ c ≻ a b b
3 : b ≻ c ≻ a c c

1 2 3 4
a 1 ✗ 1 ✗

b 2 ✗ 2 ✗

c 3 1 3 1

TABLE 5.1: The assignment of services under permutation σ for the first four time
steps when each agent reports their true preferences. The left table describes the se-
quence of services assigned to each agent, whilst the right table describes the sequence
of agents assigned to each service. We use ✗ to denote that a given service is blocked

on the corresponding time step.

1 2 3 4
1 : a ≻ b ≻ c b a b a
2 : b ≻ c ≻ a c c c c
3 : b ≻ c ≻ a a

1 2 3 4
a 3 1 ✗ 1
b 1 ✗ 1 ✗

c 2 2 2 2

TABLE 5.2: The assignment of services under permutation σ for the first four time
steps when agents 2 and 3 report their preferences truthfully, and agent 1 misreports
b ≻ a ≻ c. The left table describes the sequence of services assigned to each agent,
whilst the right table describes the sequence of agents assigned to each service. We

use ✗ to denote that a given service is blocked on the corresponding time step.

Observe that this example illustrates SBM’s close connection to scheduling problems.
If agent 1 takes service a on the first round, then service b will be blocked and
unavailable in the next. As a result, it is better for agent 1 to secure service b as quickly
as possible before it becomes blocked by other agents, and pursue service a later.
Intuitively, assuming that all other agents are truthful, one can view an agent’s report
as selecting a certain (potentially randomised) schedule of service assignments. For an
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algorithm to be truthful, truthful reporting must return the best (expected) schedule of
assignments for the agent out of those offered by the algorithm, given the preferences
of other agents. For an algorithm to be optimal in terms of distortion, the agent needs
a wide range of schedules to choose from. However, as the number of offered
schedules increases, the more difficult it becomes to identify the optimal schedule, and
thus ensure truthfulness, as the problem begins to represent a full-blown scheduling
problem. Hence, there is an implicit trade-off between the distortion of any algorithm
and its guarantees with respect to truthfulness.

One simple way of generating truthful policies is to run a truthful single-shot
one-sided matching policy once every D̃ time steps and simply return the empty
matching in the remaining time steps. Such an approach decouples each time step
from the next, resulting in truthfulness, but comes at the cost of only matching in at
most ⌈T/D̃⌉ rounds. Instead, we construct an algorithm for the offline SBM setting
from truthful single-shot matching algorithms in a different manner. More specifically,
we propose the repeated random serial dictatorship (RRSD) algorithm, which uses RSD
as a basis. Whilst RRSD is not truthful, it does have bounded incentive ratio.

5.2.3 A Greedy Algorithm for the Offline SBM Setting

The RRSD algorithm slowly builds up a matching sequence M over time by iterating
through agents and services. In other words, RRSD begins with the empty matching
sequence, where M(t, i) = 0 for all t and i ∈ N. To begin, RRSD samples a permutation
of agents, σ, uniformly at random. Next, RRSD iterates through the agents in the order
given by the permutation sampled. For each agent i, RRSD iterates through services in
the order specified by the preference ordering ≻̃i reported by agent i. For a given
service j, RRSD repeatedly assigns service j to agent i at the earliest time step which
does not cause the matching sequence to become infeasible. When no such time step
exists, RRSD moves onto the next service in agent i’s preference ordering. Once RRSD

has iterated through the entire preference ordering of agent i, RRSD moves onto the
next agent in the permutation σ and repeats this process until the end of the
permutation is reached. The pseudocode for RRSD is given in Algorithm 5.

We now briefly describe the intuition behind RRSD. In essence, RRSD attempts to mimic
the RSD algorithm for single-shot matching problems by allowing each agent to
sequentially choose a feasible assignment of services over the entire time horizon
(whilst respecting the assignments chosen by previous agents) via its reported
ordering. In the case of RSD, given an agent’s preference ordering, the same
assignment is always optimal no matter the underlying utilities of the agent. That is, it
is optimal for the agent to be assigned its most preferred available service, no matter
its cardinal preferences. As a result, RSD is trivially truthful in the single-shot
matching setting. In contrast, in the offline SBM setting, the optimal assignment of
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Algorithm 5: RRSD
Input : T, N, S, D, ≻̃
Output: M

1 M = (∅)T
t=1

2 Sample σ uniformly at random
3 for i = 1, . . . , n do
4 agent = σ(i)
5 for j = 1, . . . , s do
6 service = ≻̃agent(j)
7 while available(M, agent, service) do
8 t = earliest(M, agent, service)
9 M(t, agent) = service

10 end
11 end
12 end
13 return M

services can be different for two different sets of utilities which induce the same
preference ordering. Hence, there is no trivial assignment, based on the preference
ordering submitted by the agent, which guarantees that agents are truthful.

Instead, given an agent’s preference ordering, we attempt to find an assignment which
performs reasonably well, regardless of the agent’s underlying utilities. RRSD uses a
greedy algorithm to compute the assignment given to an agent. As long as this greedy
algorithm is a good approximation of the optimal assignment, no matter the agent’s
underlying utilities, then RRSD will have a bounded incentive ratio. The next theorem
formalises this argument.

Theorem 5.6. The incentive ratio of RRSD is asymptotically bounded below by 1− 1/e.

It is an open question as to whether the provided bound for the incentive ratio of RRSD
is tight. More generally, it is unknown whether there exists any algorithm with a
better incentive ratio than 1− 1/e. One can show that many scheduling problems,
such as generic job interval scheduling and (dense) pinwheel scheduling, can be
reduced to the optimal manipulation problem each agent faces in RRSD. Whilst it is
known that generic job interval scheduling problems are MAXSNP-hard (Chuzhoy
et al., 2006), it is still not known whether there exists a scheduling algorithm with
approximation ratio better than 1− 1/e.

Proof. Without loss of generality, assume that agent k is selected at random in the kth
position of the permutation σ sampled by RRSD. Assume, for the moment, that agents
1 to k− 1 are not allocated any services. Additionally, suppose that agent k is free to
choose its own allocation of services independent of the RRSD algorithm. Under these
assumptions, agent k is posed with an offline blocking bandits problem as described in
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Basu et al. (2019). The solution proposed by RRSD corresponds to a greedy approach in
which the best service available is allocated at each time step. Thus, proving that such
a greedy algorithm has an approximation ratio of 1− 1

e implies the result in this
restricted case. This fact was proven in Basu et al. (2019). We will show that this result
holds more generally, regardless of the allocations chosen by RRSD in previous time
steps.

Again, assume agent k is free to choose its own allocation, independent of RRSD. That
is, agent k is tasked with solving the following integer linear programming problem
(ILP):

max
xt,j

T

∑
t=1

s

∑
j=1

µk,jxt,j

s.t. xt,j ∈ {0, 1} ∀j ∈ S

yt,j + xt,j ≤ 1 ∀t ∈ [T], ∀j ∈ S
s

∑
j=1

xt,j = 1 ∀t ∈ [T]

∑
t∈[Dk,s]

xt+t0,j ≤ 1 ∀t0 ∈ T, ∀j ∈ S

The variables xt,j indicate whether agent k is assigned service j at time step t.
Meanwhile, the constants yt,j indicate whether agent k cannot be assigned service j on
time step t due to blocking duration constraints imposed by allocations of service j to
agents 1 through k− 1. The second set of constraints ensure that the assignments
chosen by agent k do not breach the blocking duration constraints imposed by
pre-existing assignments of services to agents 1 to k− 1. The third set of constraints
ensure that agent k may only be matched to one service at each time step. Lastly, the
fourth set of constraints ensure that agent k chooses a sequence of assignments which
obeys its own blocking duration constraints.

We will proceed to develop an upper bound on this ILP through a series of relaxations.
We will then compare this upper bound to an assignment which is outperformed by
RRSD to prove an asymptotic bound on the incentive ratio, as desired.

We derive an upper bound for this ILP through a series of relaxations. First of all, we
relax the integer constraints, so that at each time step agent k can assign itself a
fractional mixture of services. Additionally, we replace the constants yt,j with
variables zt,j constrained to lie in [0, 1]. The idea in introducing these variables is to
remove the blocking constraints imposed by the previous agents and replace them
with a constraint that stipulates that the total reduction in the time horizon available
for agent k to assign itself each service j must remain the same. That is, agent k is free
to fractionally redistribute the blocked parts of the time horizon imposed by the
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previous k− 1 agents. This results in the following linear program (LP):

max
xt,j, zt,j

T

∑
t=1

s

∑
j=1

µk,jxt,j

s.t. xt,j ∈ [0, 1] ∀j ∈ S

zt,j + xt,j ≤ 1 ∀t ∈ [T], ∀j ∈ S
s

∑
j=1

xt,j = 1 ∀t ∈ [T]

T

∑
t=1

zt,j =
T

∑
t=1

yt,j ∀j ∈ [k− 1]

∑
t∈[Dk,s]

xt+t0,j ≤ 1 ∀t0 ∈ T, ∀j ∈ S

It should be immediately obvious that this problem can be reformulated further, and,
in fact, the individual fractional assignments per time step can be replaced with
fractional assignments of agents to services for the entire time horizon. Similarly, the
newly introduced auxiliary variables zt,j can be removed completely. In other words,
it is clearly optimal for agent k to spread the blocked parts of the time horizon evenly
across all time slots, and then greedily match services to itself in each time step whilst
obeying its own blocking duration constraints. Therefore, it only matters how often
each service is matched to agent k, as the fractional amount matched for every time
step will be the same. This leads us to the following, equivalent, LP reformulation:

max
aj

s

∑
j=1

ajµk,j ∀j ∈ S

s.t. aj ∈ [0, T/Dk,j] ∀j ∈ S

aj +
T

∑
t=1

yt,j ≤ T ∀j ∈ S

s

∑
j=1

aj = T

Additionally, we let Cj = {t ∈ [T] : yt,j = 1} be the set of time steps in which agent k
cannot (in practice) be matched with service j because of blocking duration constraints
imposed by previous agents. Next, we show that this LP can be further formulated as
a fractional bounded knapsack problem.

Consider each service j as an item with weight Dk,j and value µk,j. From this
perspective, aj is the (fractional) number of times we pack item j into a knapsack
(whose capacity is T). Note that the maximum value aj can take in the previous LP is
determined by the pattern of Cj, and is also capped by T/Dk,j. Therefore, in our
bounded knapsack formulation, we can replace the constraints of aj to be
aj ≤ T/Dk,j − bj where bj is the number of blocks caused by Cj. Note that in general
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bj ̸= |Cj|, as it heavily depends on the pattern of the blocks. Since aj ≥ 0, we have that
T

Dk,j
≥ bj. It is well known that this fractional bounded knapsack admits the optimal

solution ∀j ∈ S, a⋆j = min{T/Dk,j − bj, (T − bj −∑
j−1
l=1 a⋆l )

+}. Note that the solution a⋆j
implicitly specifies an upper bound for the original ILP.

Now consider the greedy sequence of matches for agent k generated by the RRSD

algorithm. Let ag
j denote the number of times service j is matched to agent k by RRSD.

Similarly let Aj denote the set of time slots in which agent k is allocated services 1 to
j− 1. The time slot where the periodic matching of service j to agent k collides with
previous matches is denoted by colj = {t ∈ Aj ∪ Cj : Dk,j | t}. The number of times
service j is assigned to agent k is at least ⌈(T − |colj|)/Dk,j⌉. This holds because for
service j we can remove the time slots with collisions and perform periodic placement
perfectly with the remaining. T − |colj| time slots. Note that
|colj| ≤ ∑

j−1
l=1 ag

l + ∑T
t=1 yt,j − |Aj ∩ Cj|.

We now define for each j ∈ S, a′j = Tj/Dk,j − bj, and Tj =
(︂

T −∑
j−1
l=1 a′l + |Aj ∩ Cj|

)︂+
.

We claim that ∑
j
l=1 ag

l ≥ ∑
j
l=1 a′l . In turn, this immediately implies that

∑s
j=1 ag

j µk,j ≥ ∑s
j=1 a′jµk,j. In other words, we will attempt to prove that the solution a′j

specifies a lower bound on the performance of RRSD.

We prove the claim using induction on j. We know that ag
1 ≥ ⌈(T − b1)D1,k⌉, so the

base case is satisfied. By the inductive hypothesis, assume that ∑
j
l=1 ag

l ≥ ∑
j
l=1 a′l for all

j < j′. We have:

ag
j′ ≥ ⌈(T − |colj′ |)/Dk,j′⌉

≥ 1
Dk,j′

(︄
T −

j′−1

∑
l=1

ag
l − bj′ + |Aj′ ∩ Cj′ |

)︄

=
1

Dk,j′

(︄
T −

j′−1

∑
l=1

a′l −
j′−1

∑
l=1

(︁
ag

l − a′l
)︁
− bj′ + |Aj′ ∩ Cj′ |

)︄

= a′j′ −
1

Dk,j′

j′−1

∑
l=1

(︁
ag

l − a′l
)︁

Thus we have that
j′

∑
l=1

(ag
l − a′l) ≥ (1− 1/Dk,j′)

j′

∑
l=1

(ag
l − a′l)

which means ∑
j′

l=1 ag
l ≥ ∑

j′

l=1 a′l , and the inductive hypothesis holds. In what follows,
we will refer to a′ as the lower bound solution. Similarly, we will refer to a⋆ as the
upper bound solution.

Note that for any j, if T
Dk,j

= bj then both the upper bound and lower bound solutions
will not contain service j (as a′j ≤ a⋆j = 0). Therefore, without loss of generality, we

assume that T
Dk,j

> bj. We set D′k,j such that 1
D′k,j

= 1
Dk,j
− bj

T . With induction in j we can
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show that a′j =
T

D′k,j
∏

j−1
l=1(1−

1
D′k,l

). In addition, we can also show that a⋆j ≤ T
D′k,j

+ 1. The

remainder of the proof consists of showing that the allocation a′j performs
asymptotically well compared to the optimal allocation a∗ via the closed forms above,
which in turn implies the desired asymptotic bound on the incentive ratio of RRSD. The
proof of this fact is contained in the proof for the blocking bandits setting provided by
Basu et al. (2019), and as a result is omitted. We point the enthusiastic reader to the
’Greedy Lower Bound vs LP Upper Bound’ subsection of the proof of Theorem 3.3 in
Basu et al. (2019).

We now provide an upper bound on the distortion achieved by RRSD, which matches
our previously established lower bound for randomised policies described in
Theorem 5.5.

Theorem 5.7. The distortion of RRSD is at most O(
√

s).

Proof. Our proof proceeds by upper bounding the distortion of RRSD by the distortion
of RSD on a new reward profile. The distortion of RRSD is given as

ρ = sup
µ,D

SW(M∗(µ, D), µ)

E[SW(RRSD(≻, D), µ)]
.

We first upper bound SW(M⋆(µ, D), µ) by the expected social welfare on a new
instance with no blocking. For this new instance, there are D̃n total agents and s
services. The D̃n agents are partitioned into n groups, one for each agent in the
original profile. We denote the group of agents corresponding to agent i in the original
profile by Gi and the ℓ-th agent in group Gi by iℓ. The new reward profile µ̃ ∈ RD̃n×s is
defined as follows

µ̃iℓ,j =
µi,j

Dij
∀j ∀iℓ ∈ Gi

In the new instance, there is no blocking i.e. all the blocking lengths are one.

Now let π⋆ = M⋆(µ, D) be the optimal policy for the original instance µ with blocking.
We now construct a new policy for the non-blocking setting with reward matrix µ̃. The
new policy π̃ works as follows. At time t, if π⋆ allocated service j to agent i, then we
select one available agent from the group Gi (say iℓ) and repeatedly allocate service j
to agent iℓ for the next Di,j rounds i.e. we set π̃t′(iℓ) = j for t′ = t, t + 1, . . . , t + Di,j − 1.
Notice that, since there are D̃ agents in group Gi, it is always possible to find such an
available service iℓ whose allocation hasn’t been determined at round t. This is
because under the original policy π⋆, at any time at most D̃ services can be
simultaneously blocked as result of being assigned to agent i. Algorithm 6 formally
describes how to construct the new policy π̃ from the old policy π⋆.

Let us now compare the social welfare of policy π⋆ with reward profile µ, and social
welfare of policy π̃ with reward profile µ̃. Notice that whenever π⋆ allocates service j
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Algorithm 6: Policy Conversion (π⋆ → π̃).
Input: T, N, S, D, Policy π⋆

Output: π̃
/* Matrix F keeps track of the available agents within each group Gi.

*/

1 F(i, iℓ) = 0 ∀iℓ ∈ Gi ∀i ∈ N
2 for t ∈ {1, . . . , T} do
3 for i ∈ N do
4 if π⋆

t (i) = j then
/* Find an available agent within group Gi */

5 Choose iℓ s.t. F(i, iℓ) = 0
6 π̃t′(iℓ) = j ∀t′ ∈ [t, . . . , t + Dij − 1]
7 F(i, iℓ) = 1
8 end

/* If any arm becomes available under π⋆, then we make

corresponding agents available */

9 for j ∈ S do
10 if π⋆

t−Di,j+1(i) = j then
/* ij ∈ Gi is the corresponding agent with repeated

allocations from
{︁

t− Di,j + 1, . . . , t
}︁

under π̃ */

11 F(i, ij) = 0
12 end
13 end
14 end
15 end
16 return π̃

to agent i, a corresponding agent (say iℓ) is assigned service j exactly Di,j times under
the new policy π̃. As the new rewards are normalized by the blocking lengths, this
implies that the total reward gathered by i under π⋆ is the same as the total reward
gathered by all the agents in Gi under the new policy π̃. Thus, summing over all the
agents, we have SW(π⋆, µ) = SW(π̃, µ̃).

Now observe that, under the new instance µ̃, there is no blocking, so the optimal
allocation rule is obtained by applying a fixed matching (say ν⋆)3 repeatedly over T
rounds. Let SW0(ν⋆, µ̃) be the one-round social welfare of the matching ν⋆. Then,
under the non-blocking reward instance µ̃, the best possible social welfare is
T · SW0(ν⋆, µ̃). This gives us the following bound on the welfare of the original policy
π⋆ for the blocking instance.

SW(π⋆, µ) ≤ SW(π̃, µ̃) ≤ T · SW0(ν
⋆, µ̃) (5.2)

3Ideally ν⋆ is an assignment from D̃n agents to s services based on the optimal achievable social welfare
and not a one-to-one matching. But we will use the term matching instead of assignment to be consistent
with the rest of the paper.
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We now prove a lower bound on the expected social welfare of RRSD under the original
reward instance µ. RRSD is a randomized policy, but for a given order of agents, the
sequence of assignments generated by RRSD becomes a deterministic policy. Any such
deterministic policy π can be converted to an equivalent policy (say g(π)) through
Algorithm 6. Moreover, the new policy g(π) preserves the social welfare under the
new reward instance µ̃. The expected social welfare of RRSD is given as

E[SW(RRSD, µ)] = Eπ∼RRSD[SW(π, µ)]

= Eπ∼RRSD[SW(g(π), µ̃)]

The last line follows from the welfare preservation property of Algorithm 6. Moreover,
given a policy π, the new policy g(π) actually assigns the same service repeatedly to
the same agent. This is because whenever the original RRSD assigns a new service to
agent i, Algorithm 6 selects a new agent in Gi, and assigns the new service to the new
agent. Now given g(π) consider a simpler policy g′(π) which only makes the first
repeated assignments to any member from Gi for all i. Since this new policy makes
fewer assignments than g(π) we have the following inequality.

Eπ∼RRSD[SW(g(π), µ̃)] ≥ Eπ∼RRSD[SW(g′(π), µ̃)]

Since the sequence π was generated under RRSD for the original instance µ, an
alternative way to generate the sequence g′(π) is the following: first randomly choose
an order of the set N, and then replace each agent i in this sequence with a randomly
chosen agent from Gi. Let us call this new randomised policy GRSD (short for grouped
RSD). Then we have,

Eπ∼RRSD[SW(g′(π), µ̃)] = T ·E[SW0(GRSD, µ̃)]

= T ·E[SW0(RSD, µ̃)]

The last equality follows from the following two observations. Under GRSD, the
probability that an agent from group i shows up at position j equals 1/n. On the other
hand, under RSD, the probability that an agent from group i shows up at position j
equals D̃× (1/D̃n) = 1/n. Second, conditioned on the event an agent from group i
shows up at position j, the expected utility of the agent is the same, as all the agents in
group Gi are duplicates of the original agent i and have the same reward profile.
Therefore, we have established the following lower bound on the expected welfare of
RRSD under the original instance µ.

E[SW(RRSD, µ)] ≥ T ·E[SW0(RSD, µ̃)] (5.3)
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We can now bound the distortion of RRSD as follows.

ρ = sup
µ

SW(π⋆, µ)

Eπ∼RRSD[SW(π, µ)]

≤ sup
µ̃

T · SW0(ν⋆, µ̃)

T ·Eν∼RSD[SW0(ν, µ̃)]

= sup
µ̃

SW0(ν⋆, µ̃)

Eν∼RSD[SW0(ν, µ̃)]

Where the inequality is due to the lower bound from (5.3) and the upper bound from
(5.2). Since the last quantity is just the distortion of RSD in the single shot matching
setting, we can apply Lemma 4 from Filos-Ratsikas et al. (2014) and get a bound of
O(
√

s) on the distortion.4

5.2.4 Derandomised RRSD

In this section, we present a deterministic matching policy for the offline SBM setting.
More precisely, we present derandomised RRSD (DRRSD), which, as the name suggests,
is a derandomised version of RRSD. Instead of sampling a single permutation, like
RRSD, DRRSD uses a set of 4n2 log(n) permutations. In addition, this set is constrained
to ensure that the fraction of permutations in which an agent i appears in the jth
position is at least 1

2n . The following lemma stipulates that such a set of permutations
always exists.

Lemma 5.8. There exists a set of 4n2 log(n) permutations over n agents such that the fraction
of times agent i appears at the jth position is at least 1

2n .

Proof. The proof is by the probabilistic method. Let us draw P permutations over the n
agents uniformly at random. Let Xij be the fraction of times agent i appears at jth
position over the P permutations. Then E[Xij] = 1/n. Moreover, from the
Chernoff-Hoeffding inequality,

P
(︃

Xij ≤
1

2n

)︃
≤ 2e−2P 1

4n2 = 2e−
P

2n2 .

Moreover, by a union bound over the n agents and n positions we get that

P
(︃
∃i, j Xij ≤

1
2n

)︃
≤ 2e−

P
2n2 .

Therefore, if P ≥ 4n2 log(n), the probability of observing a set of permutations such
that each Xij ≥ 1/2n is positive. This implies that if P = 4n2 log(n), we can find a
required set of permutations.

4Filos-Ratsikas et al. (2014) actually considered a setting where n = s, but their proof naturally gener-
alizes for the setting with n > s
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DRRSD splits the time horizon into evenly sized blocks. In each block, a different
permutation is used. Within each block, agents are assigned to services by the same
greedy method used by RRSD, with one caveat. If the blocking duration caused by the
assignment of an agent-service pair would overrun into the next block, then this
assignment is skipped. This to ensure that all services will be available at the
beginning of each block. The pseudocode for DRRSD is presented in Algorithm 7.

Next, we prove that DRRSD incurs a distortion of order O(s), which matches the lower
bound we established for the distortion of deterministic policies in Theorem 5.4.

Theorem 5.9. There is an admissible deterministic policy with distortion at most O(s) for
any T ≥ O(n2 log(n))

Proof. We will write ij to denote agent i’s jth favourite service. That is, ij = ≻i(j). By
Lemma 5.8, agent i gets her jth favourite service (or better) in at least P

2n groups.
Within any such group, there are T/P time slots, and agent i is assigned her jth
favourite service at least

⌊︂
T/(PDi,ij)

⌋︂
times. Therefore, the total welfare guaranteed

by DRRSD is at least

n

∑
i=1

S

∑
j=1

µi,ij

P
2n

⌊︄
T

PDi,ij

⌋︄

≥
n

∑
i=1

s

∑
j=1

µi,ij

P
4n

T
PDi,ij

=
T
4n

n

∑
i=1

s

∑
j=1

µi,ij

Di,ij

On the other hand, consider a matching algorithm that assigns service ij to agent i
exactly Ai,j times. Whenever item j is matched to agent i, it is blocked for Di,ij rounds.
This implies that Ai,j ≤ T/Di,ij . Therefore, the maximum welfare achievable by such a
matching algorithm is at most

n

∑
i=1

s

∑
j=1

µi,j Ai,j ≤
n

∑
i=1

s

∑
j=1

µi,j
T

Di,ij

This establishes that the distortion of DRRSD is at most 4n = O(s).

5.3 SBM with Bandit Feedback

Note that, in order for the guarantees above to hold in practice, we must assume that
agents are fully aware of their ordinal preferences before matching begins. However,
in many real-world scenarios, agents may be initially unaware of their preferences and
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Algorithm 7: DRRSD (Derandomized RRSD)

Input: T, N, D, S, ≻, and a set of P = 4n2 log(n) permutations {σ1, . . . , σP}
1 M = (mt)T

t=1 = (∅)T
t=1

2 for p = 1, . . . , P do
3 σ = σp
4 for i = 1, . . . , n do

// Select agent

5 ag = σ(i)
6 start = (p− 1)T/P
7 end = pT/P
8 for j = 1, . . . , s do

// Select service

9 ser = ≻̃ag(j)
10 while available(M, ag, ser, start, end) do
11 t = earliest(M, ag, ser, start, end)
12 if overrun(ag, ser, t, end) then
13 break
14 end
15 M(t, ag) = ser
16 end
17 end
18 end
19 end
20 return M

learn them over time by matching with services. In addition, the reward an agent
receives for being matched with a service may be inherently stochastic, depending on
unobservable aspects of the underlying environment. With these concerns in mind,
we present a new sequential blocked matching setting, which we call the online SBM
setting with bandit feedback, or online SBM for short. Note that our use of the term
“bandit” refers to the feedback received by agents, rather than the feedback received
by the central planner.

In the online SBM setting, matching occurs time step by time step. At the beginning of
each time step, every agent must submit a report, ≻̃t

i , to the planner. The planner is
then tasked with returning a matching of agents to services which obeys the blocking
constraints imposed by the matchings from previous time steps. At the end of each
time step, agent i receives a reward, ri,t ∈ [0, 1], sampled from a distribution with
mean µi,j, where j is the service agent i was assigned in the matching returned by the
planner. In other words, each agent receives bandit feedback according to the service
they were assigned. In contrast, the preference reports of each agent are fully revealed
to the central planner at the start of each time step. Additionally, we assume that each
agent maintains an internal estimation, ≻t

i , of its own preference ordering at every
time step, based on the rewards received thus far.
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We use H≻t = (≻̃1, . . . , ≻̃t) to denote the report history up to time step t. Furthermore,
we use Hm

t = (m1, . . . , mt) to describe the matching history at the end of time step t.
We say that a matching history is feasible if its matchings form a feasible matching
sequence. Similarly, we use Hr

t = (r1, . . . , rt) to denote the reward history. That, is the
tuple of reward vectors observed by the agents at every time step. An (online)
matching policy π = (π1, . . . , πT) is a tuple of functions πt(m|H̃≻t , Hm

t , D) which
assigns a probability of returning the matching m given a report history H≻t , a feasible
matching history Hm

t and a blocking duration matrix D. Similar to the offline setting,
we say that a matching policy is admissible if it always returns a feasible matching
sequence.

Likewise, an (online) report policy for agent i, ψ̃i = (ψ̃1, . . . ψ̃t), is a tuple of functions
ψ̃t(≻̃t

i |Hr
t , Hm

t , D) which assign a probability to agent i reporting ≻̃t
i at time step t

given a reward history Hr
t , a matching history Hm

t , and blocking duration matrix D.
We denote by ψ̃ = (ψ̃1, . . . , . . . ψ̃n) the tuple of report policies used by the agents. As
before we use the notation ψ̃−i to denote the report policies of all agents bar agent i
and use ψ to denote the tuple of report policies where each agent reports its internal
estimation ≻t

i at every time step. We say that an agent is truthful if it employs the
report policy ψi.

The goal of each agent is to employ a report policy that maximises the sum of their
own rewards across the time horizon. In contrast, goal of the planner is to employ a
matching policy which maximises the sum of rewards across all agents and across all
time steps. Note that these goals are simply the stochastic analogs of maximising
welfare and social welfare respectively.

As we saw in Chapter 2, classical bandits problems typically adopt policy benchmarks
which correspond to repeatedly taking the same action in hindsight. In the case of
SBM, such policies correspond to repeatedly selecting the same matching in as many
time steps as possible. Such a benchmark policy may have very poor performance
relative to the optimal matching sequence in expectation, and as such, classical
notions of regret are unsuitable performance measures in the online SBM setting. To
resolve this issue, we propose the following regret definition:

Definition 5.10. The dynamic α-regret of a policy π is:

Rα
π(D, µ, T) = αSW(M∗, µ)−Eψ,π

[︄
n

∑
i=1

T

∑
t=1

ri,t

]︄

In other words, we compare the expected performance of a matching policy against a
dynamic oracle which returns an 1/α-optimal solution to the corresponding offline
SBM problem, under the assumption that agents truthfully report their internal
estimation of their preferences at each time step. Recall that, in the offline SBM setting,
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the distortion incurred by any policy is at least Ω(s). As a result, we cannot expect to
construct algorithms with vanishing 1/α-regret for α <

√
s. In addition, one would

not expect any matching policy to have low dynamic regret if the internal estimations
computed by each agent are inaccurate. For example, if any agent’s internal estimator
consists of returning a random preference ordering, then we cannot hope to learn
about said agent’s preferences. As a result, we need to make reasonable assumptions
regarding the internal estimator of each agent.

Similar to distortion for the offline SBM setting, dynamic α-regret is only a meaningful
performance measure for policies which motivate agents to adopt truthful reporting
policies. Inspired by the concept of incentive ratio for the offline SBM setting, we
define a new notion of regret which, given a matching policy π captures the expected
gain in cumulative reward an agent can achieve by misreporting.

Definition 5.11. For a given matching policy π, we define agent i’s α–IC regret (or
α-incentive compatible regret) as follows:

Iα
π(D, µ, T) =

α max
ψ̃

E(ψ−i ,ψ̃i),π

[︄
T

∑
t=1

ri,t

]︄
−Eψ,π

[︄
T

∑
t=1

ri,t

]︄

Note that for some matching policies, computing the optimal reporting policy may be
computational intractable. If agents have vanishing α-IC regret for a such a matching
policy, then truthtelling forms a good approximation of each agent’s optimal reporting
policy. If this approximation is better than what can be computed by the agent, then
we can expect each agent to adopt their truthful reporting policy. Thus, we seek
matching policies with good guarantees with respect to both dynamic α-regret and
α-IC regret.

5.4 Algorithms for Online SBM

Next, we present a matching policy which achieves meaningful guarantees with
respect to both dynamic α-regret and α-IC regret. More precisely, we present the
bandit repeated random serial dictatorship (BRRSD) algorithm. Before we describe
BRRSD formally, we first state our assumptions regarding the internal estimator used
by each agent.

Let µ̂i,j denote the empirical mean of the reward samples agent i receives from being
assigned service j. We say that an agent i is mean-based if service a is preferred to
service b in ≻t

i if and only if µ̂i,a ≥ µ̂i,b. That is, a mean-based agent prefers services
with higher empirical mean reward. From here on, we assume that all agents are
mean-based.
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Additionally, we use ∆min to denote the smallest gap in mean rewards between two
services for the same agent. That is, ∆min = mini,a ̸=b |µi,a − µi,b|. Note that ∆min is
analogous to common complexity measures used in bandit exploration problems.
Intuitively, if the mean rewards received from being assigned two services are similar,
it will take more samples for a mean-based agent to decide which service they prefer.

We are now ready to describe BRRSD. BRRSD is split into two phases. In the first phase,
BRRSD assigns each agent each service exactly

⌈︁
2 log(2Tsn)/∆2

min
⌉︁

times. BRRSD
performs these assignments in a greedy manner. At each time step, BRRSD iterates
through the agent-service pairs that still need to be assigned in an arbitrary order. If
an agent-service pair does not violate blocking constraints, then it is added to the
current matching. Once this iteration is completed, or all agents have been assigned
services, the matching is returned and BRRSD moves onto the next time step. Once all
required assignments have been completed, BRRSD waits until all services are
available, matching no agents to services in the meantime. Note that this takes a
maximum of D̃ rounds. Then, BRRSD begins its second phase. At the beginning of the
next time step, BRRSD observes the report profile ≻̃t

i and selects matchings according to
RRSD using this report profile for the remainder of the time horizon. BRRSD is described
formally in Algorithm 8.

BRRSD falls in the class of explore-then-commit (ETC) algorithms common in the
bandit literature (Lattimore and Szepesvári, 2020). The first phase of BRRSD serves as
an exploration phase in which agents learn their preference ordering. Meanwhile, the
second phase of BRRSD serves as an exploitation phase in which agents have the
opportunity to disclose their accumulated knowledge to the planner in the form of
ordinal preferences. Observe that this decoupling of exploration and exploitation
avoids complicated incentive issues that may arise for sequential algorithms, which
make no such clear separation.

The exploration phase of BRRSD is simple relative to typical approaches in the bandit
exploration literature. One may hope to apply a more complicated scheme for
exploration, however, approaches with better performance guarantees typically
depend directly on the reward samples observed, which the planner does not have
access to. The next theorem describes the guarantees of BRRSD in terms of α-dynamic
regret and α-IC regret.

Theorem 5.12. Under the assumption that agents are mean-based, the following is true for all
µ and D:
(i) The dynamic (1/

√
s)-regret of BRRSD is O

(︁
D̃
√

s log (Tsn) /∆2
min
)︁
.

(ii) The (1− 1/e)-IC regret for all agents under BRRSD is O
(︁

D̃s log (Tsn) /∆2
min
)︁
.

(iii) The greedy algorithm used by BRRSD in the exploration phase uses at most twice as many
time steps as the shortest feasible matching sequence which completes the required assignments.
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Proof. Claim (i) can be proved as follows. By the end of the exploration phase, we
know that each agent has received a reward from being assigned each service at least⌈︁
2 log(2Tsn)/∆2

min
⌉︁

times. In addition, note that this exploration phase takes at most
D̃s
⌈︁
2 log(2Tsn)/∆2

min
⌉︁
+ D̃ rounds. By the Chernoff-Hoeffding inequality, we have

that for all agents i and services j:

P
(︃⃓⃓

µi,j − µ̂i,j
⃓⃓
≥ ∆min

2

)︃
≤ 1

Tsn
.

Thus, by the union bound and the assumption that all agents are mean-based, with
probability 1− 1/T, the internal estimation of every agent will be correct. From now,
unless explicitly stated, we will assume that all agents have learned the correct
preference ordering by the end of the exploration phase.

For the sake of simplicity, let T1 denote the number of rounds for which the
exploration phase runs, and let T2 denote the number of rounds for which the
exploitation phase runs. Similarly let OPT1 denote the social welfare of the optimal
matching sequence of length T1, and OPT2 denote the social welfare of the optimal
matching sequence of length T2. Furthermore, let SW1(BRRSD) denote the social
welfare generated by BRRSD in the exploration phase, and SW2(BRRSD) denote the
social welfare generated by BRSSD in the exploitation phase.

As each reward is bounded between [0, 1], and the exploration phase proceeds for at
most D̃s

⌈︁
2 log(2Tsn)/∆2

min
⌉︁
+ D̃ time steps, it is easy to show that

1√
s

E [OPT1]−E [SW1(BRRSD)] ≤

1√
s
(︁

D̃s
⌈︁
2 log(2Tsn)/∆2

min
⌉︁
+ D̃

)︁
.

In addition, by Theorem 5.7, and the assumption that agents are mean-based, we have
the following lower bound:

1√
s

E [OPT2] ≤ E [SW2(BRRSD)] .

Let OPT denote the social welfare of the optimal matching sequence of length T.
Combining the bounds above and noting that OPT ≤ E[OPT1] + E[OPT2] we have:

1√
s

E[OPT]−E[SW(BRRSD)] ≤

1√
s
(︁

D̃s
⌈︁
2 log(2Tsn)/∆2

min
⌉︁
+ D̃

)︁
For the case when at least one agent does not learn the correct preference ordering by
the end of the exploration phase, the ( 1√

s )-dynamic regret of BRRSD is bounded above
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by 1√
s nT. Combining both cases together, we see that the dynamic ( 1√

s )-regret of
BRRSD is bounded above by 1√

s

(︁
D̃s
⌈︁
2 log(2Tsn)/∆2

min
⌉︁
+ D̃

)︁
+ 1√

s n, implying the
desired regret bound.

To prove claim (ii), note that the an agent can only affect its assignment of services in
the exploitation phase, in which BRRSD deploys the RRSD algorithm. Thus, following a
similar argument as above, replacing the use of Theorem 5.7 with Theorem 5.6, we
find that the (1− 1/e)-IC regret of BRRSD is bounded above by
(1− 1/e)

(︁
D̃s
⌈︁
2 log(2Tsn)/∆2

min
⌉︁
+ D̃

)︁
+ (1− 1/e)n.

Finally, to prove claim (iii), we consider the open shop scheduling problem. An
instance of the open shop problem consists of a set of N machines and S jobs.
Associated with each job j is a set of n independent tasks j1, . . . , jn. The task j for job i
must be processed on machine i for an uninterrupted Di,j time units. A schedule
assigns every task ji to a time interval Di,j so that no job is simultaneously processed
on two different machines, and so that no machine simultaneously processes two
different jobs. The makespan Cmax of a schedule is the longest job completion time.
The optimal makespan is denoted by C⋆

max.

It is easy to show that the exploration phase of BRRSD reduces to an open shop
scheduling problem in which there is a job for each agent i, and a task for each
assignment of service j to agent i. Similarly, observe that the assignment procedure
used by BRRSD is simply an implementation of the greedy algorithm for open shop
scheduling as described by Woeginger (2018). The claim follows from that fact that
the greedy algorithm is a 2-approximation for open shop scheduling (see Woeginger
(2018)).

5.5 Conclusion

In this chapter, we introduced the sequential blocked matching problem. We first
considered an offline version of SBM, in which agents are fully aware of their
preferences in advance. We saw, via a simple example, that trivial algorithms, such as
repeatedly applying RSD on every time step, are not truthful in the SBM setting. As a
result, we proposed RRSD, an extension of the RSD, which is asymptotically optimal in
terms of distortion. In addition, we showed that RRSD has bounded incentive ratio,
and thus encourages agents to report truthfully. Moreover, we showed that RRSD could
be derandomised to devise an algorithm that matches the distortion lower bound for
deterministic policies. Then, we considered a bandit version of SBM, in which agents
must learn their preferences over time by being assigned services. We developed
BRRSD for this setting, and showed that BRRSD has sublinear dynamic α-regret for
α =
√

s, and ensures that each agent has sublinear α-IC regret for α = 1− 1/e.
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Note that RRSD relied conceptually upon RSD. More specifically, RRSD is a serial
dictatorship algorithm in which each agent chooses their entire assignment of services
over the entire time horizon all at once. It is natural to ask whether other popular
algorithms, such as the probabilistic serial mechanism can be generalised to the SBM
setting in a similar manner. Extending single shot matching algorithms, such as the PS
mechanism, to the SBM setting therefore presents an interesting direction for future
work. We also only considered agents with cardinal preferences that report ordinally.
Recall that, in the online SBM setting, agents receive cardinal feedback upon being
assigned a service. However, as agents report ordinally, the central planner cannot
access this information, precluding the use of UCB-style algorithms. Put differently, if
agents could report cardinally, then a wider range of bandit algorithms would be
available to the decision maker. In terms of performance metrics, only social welfare
was considered in this chapter. In real world settings, the central planner may want to
ensure that each agent is treated fairly. In this case, alternate solution concepts such as
Nash social welfare and CEEI are more suitable, as discussed in Chapter 2. Designing
algorithms for SBM with such fairness criteria in mind presents a significant technical
challenge.
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Algorithm 8: BRRSD (Bandit RRSD)
Input: T, N, D, S, ∆min

1 M = (mt)T
t=1 = (∅)T

t=1
2 repeats =

⌈︁
2 log(2Tsn)/∆2

min
⌉︁

// Build a list of exploration assignments

3 jobList = buildJobList(n, s, repeats)
4 explore = true
5 waiting = false
6 count = 0
7 for t = 1, . . . T do

// Exploration phase

8 if explore then
// Greedily add remaining agent-service pairs to current

matching

9 for (i, j) in jobList do
10 if available(M, i, j, t) then
11 M(t, i) = j
12 jobList.remove(i, j)
13 end
14 end

// Start waiting phase

15 if jobList.isEmpty then
16 explore = false
17 waiting = true
18 end
19 end

// Wait for all services to become available

20 if waiting then
21 if count < D̃ then
22 count++
23 end

// Start exploitation phase

24 else
25 ≻̃ = ≻̃t

26 Sample σ
27 waiting = false
28 end
29 end

// Exploitation phase

30 else
31 for i = 1, . . . n do
32 ag = σ(i)
33 for j = 1, . . . , s do
34 ser = ≻̃ag(j)
35 if available(M, ag, ser, t) then
36 M(t, ag) = ser
37 end
38 end
39 end
40 end
41 end
42 return M
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Chapter 6

Conclusions

In real world settings, actions typically have a wide range of consequences that must
be carefully considered by the decision maker. For example, once again consider the
insurance problem that we have revisited many times throughout this thesis. The
decisions made by the insurer effect not only their own financial stability, but the
financial stability of their customers. If the insurer chooses to provide expensive
insurance quotes in a bid to increase their own profits, customers may become
dissatisfied and encouraged to take mitigating actions. For example, a larger
proportion of the customer base may turn to fraud with the intention of lowering their
insurance premiums. Put differently, narrow-minded decision makers, who focus
solely on their own goals and incentives, may fall prey to the second-hand
consequences of their actions.

In the case of the insurance problem, both the insurer and their customer base are
engaged in a strategic interaction. More specifically, the incentives of the insurer and
the customer base are misaligned. As a result, the insurer must carefully consider the
strategic recourse available to their customers before committing before to a decision.
The framework we propose in Chapter 3 models this phenomena explicitly, by adding
a new set of labels which characterise a data provider’s preferences, building upon
Stackelberg prediction game framework (Brückner and Scheffer, 2011). Our analysis
was focused on linear regression contexts in which all involved parties adopt a square
loss function. Within this setting, we saw that Stackelberg empirical risk minimisation
(STERM), a natural analog of empirical risk minimisation, satisfied a number of
desirable properties. In particular, we devised a polynomial time algorithm
(SDP-BISECT) for STERM. Additionally, we saw that hypothesis class induced by the
strategic behaviour of agents had bounded Rademacher complexity, implying that
STERM generalises well.

Second hand consequences need not only occur due to a misalignment of incentives.
For example, consider sequential resource deployment problems. In many cases, the
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value and availability of a given resource may vary through time. For example, a
resource may correspond to some commodity, such as gold, whose supply fluctuates.
Moreover, the availability or value of a given resource may be a consequence of when
it was last deployed. For instance, consider the disaster response problem in which a
decision maker is tasked with assigning emergency vehicles and personnel over time.
Once deployed, an emergency vehicle becomes unavailable for redeployment in the
near future. In other words, the availability and value of a given resource can
explicitly depend on the actions of the decision maker.

The adversarial blocking bandits model, which we introduce in Chapter 4, aims to
address such settings. In particular, the adversarial blocking bandits model
incorporates both blocking and nonstationary reward sequences. We devised two
algorithms, RGA and META-RGA, which achieve finite-time regret guarantees with
respect to a greedy oracle that provably approximates the best the policy in hindsight.

Note that, in Problem Domain 1, the decision maker must account for the strategic
behaviour of data providing agents. On the other hand, in Problem Domain 2 the
decision maker must account for the blocking of resources. In Problem Domain 3, the
decision maker (or central planner) must handle both issues simultaneously. In
particular, we saw that the introduction of blocking causes standard truthful
algorithms for one-sided matching, such as RSD, to fail in the repeated setting. To
rectify this issue, we proposed the RRSD algorithm, which is optimal in terms of
distortion and has bounded incentive ratio. In addition, we showed how RRSD can be
naturally extended to a bandit setting in which agents must learn their preferences
over time.

To conclude this thesis, we return to the original research requirements outlined in
Chapter 1. We treat each problem domain in turn, discussing how each research
requirement has been addressed, whilst also taking time to discuss potential
directions for future work.

6.1 Linear Regression with Strategic Agents

Recall the framework proposed in Chapter 3 for addressing Problem Domain 1. Each
input example is accompanied by two labels. The first label, y ∈ R, denotes the
labelling preferred by the learner, whilst the second label, z, denotes the labelling
preferred by the corresponding agent. By varying z, the learner can consider a wide
range of agents with varying incentives. Secondly, by varying the cost parameter γ,
the learner can consider agents with varying capacities for manipulation. In other
words, the framework we investigate is flexible with respect to agent incentives, and
addresses Requirement 1a.
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In the context of square losses and square costs functions, we proposed the
SDP-BISECT algorithm, which finds global solutions to the corresponding STERM
problem in polynomial time (see Theorem 3.6), significantly improving upon the
nonconvex problem reformulation proposed by Brückner and Scheffer (2011) for
generic SPGs. That is, we provide a relatively complete answer to Requirement 1b in
the case of square losses. One downside of SDP-BISECT is that it involves a sequence
of SDPs. Although, our empirical runtime experiments shows that the number of
SDPs solved by SDP-BISECT remains essentially constant as the size of the training
dataset grows. Extending directly from our analysis, Wang et al. (2021) improve upon
SDP-BISECT, and show that only a single second-order cone program needs to be
solved in the case of square losses and square costs. From the statistical perspective,
Corollary 3.8 illustrates that the Rademacher complexity of the hypothesis class
induced by the strategic actions of each agent is bounded in terms of γ. The lower γ,
the lower the Rademacher complexity of the induced hypothesis class. As a result, the
generalisation error of STERM is lower when agents have a greater capacity for
manipulation. In this sense, Corollary 3.8 provides an answer to Requirement 1c in the
case of square losses and square costs.

Unfortunately, our analysis focuses on agents that employ a square loss and a square
cost function. One can easily think of problem settings in which alternate cost
functions may be more suitable. For example, when agents are only permitted to
make sparse modifications, a cost function based on the L1-norm may be more
suitable than a square one. As we saw at the end of Chapter 3, solving the
corresponding SPG for this problem is equivalent to optimising over a hypothesis
class of nonconvex piecewise linear functions. Therefore, we conjecture that finding
global solutions to this version of STERM may be an intractable problem. There are
also many real world settings where other loss functions are better models of agent
behaviour than the square loss. For example, consider any setting in which output
labels correspond to a test grading. Of course, each agent would like to achieve a
perfect score, but often will be satisfied with a passing grade. In this case, the
ϵ-insensitive loss is a far more reasonable model of each agent’s incentives than the
square loss. Summarising, we conclude that Requirements 1a through 1c have been
fully addressed in the context of square losses and square costs, but open questions
remain regarding other losses and cost functions.

Additionally, observe that Stackelberg prediction games have a sole focus on
minimising prediction error, and pay no mind to other properties that are typically of
interest in multiagent systems. For example, the learner may wish to select a
hypothesis which is incentive compatible, and encourages agents to submit data
without modification. Alternatively, the learner may wish to ensure that the selected
hypothesis satisfies some notion of fairness, such as statistical parity or bounded
group loss (Agarwal et al., 2019). One advantage of the Stackelberg prediction game
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framework is that these properties can be easily integrated into STERM via the
introduction of additional constraints. Solving constrained STERM problems, where
constraints map to certain desirable properties, such as fairness and incentive
compatibility, presents a natural direction for future work.

6.2 Sequential Deployment of Reusable Resources

To address Problem Domain 2, we proposed the adversarial blocking bandits setting.
Unlike previous bandit settings, adversarial blocking bandits model nonstationary
rewards and the blocking of resources simultaneously. In particular, we propose the
RGA algorithm for his setting, which achieves sublinear regret (see Theorem 4.3) with
respect to Greedy-BAA, a greedy oracle algorithm which provably approximates the
optimal arm pulling policy (see Theorem 4.2). In addition, we provide a number of
lower bounds on the α-regret of any policy, covering a wide variety of assumptions on
the path variation of rewards and maximal blocking duration (see Theorems 4.5 and
4.6). In particular, when the maximal blocking duration is constant, we found that a
matching lower bound for RGA exists. As a result, we provide a relatively complete
characterisation of finite-time regret guarantees in the adversarial blocking bandits
setting, addressing Requirement 2c.

In addition, we showed that RGA achieves sublinear α-regret under a wide range of
variation budget constraints which are popular in the literature, including the path
variation budget (Besbes et al., 2014), maximum variation budget, and number of
changes budget (Auer et al., 2019) (see Corollaries 4.9 and 4.10). Hence, RGA can
accommodate a wide range of realistic reward sequences, addressing Requirement 2a.
For example, consider a disaster response setting, where the relevance of emergency
personnel may change rapidly depending on the situation at hand. In this case, one
could employ RGA with a number of changes budget constraint on reward sequences.
Unfortunately, RGA, assumes that the decision maker is fully aware of the total
variation budget of reward sequences in advance. To rectify this issue, we proposed
META-RGA, a meta-bandit algorithm which requires no advance information regarding
the total variation of rewards.

Recall that the adversarial blocking bandits setting allows the blocking duration
associated with each arm to change arbitrarily. As a result, adversarial blocking
bandits provide a more general model for resource unavailability compared to other
blocking bandit models, such as stochastic blocking bandits (Basu et al., 2019), which
typically assume the blocking duration associated with each arm is fixed. In this
sense, the adversarial blocking bandit setting addresses Requirement 2a. However,
one may argue that the adversarial blocking bandits setting is too pessimistic in this
regard. In many settings, the blocking duration associated with each arm varies in a
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nice manner, rather than changing erratically every time step. For example, consider
an expert crowdsourcing problem where a job requester is tasked with assigning
projects to workers. Most projects will take each worker roughly the same amount of
time to complete, with there being there being the occasional project which requires a
long-term commitment. In this example, the variation of blocking durations is
bounded. Just as we do for rewards, we could restrict ourselves to problem instances
where blocking durations obey a path variation budget constraint, in the hope of
achieving better performance guarantees. In other words, the investigation and
development of blocking bandit settings, in which both rewards and blocking
durations must obey a variation budget, emerges as a potential direction for future
work.

Moreover, note that the reward sequences considered in the adversarial blocking
bandits problem are nonstochastic in nature. In many real world settings, decision
makers receive noisy feedback regarding the efficacy of a given action. As a result, it is
natural to consider blocking bandit problems in which rewards are both nonstationary
and stochastic. As discussed at the end of Chapter 4, we believe that a combination of
existing approaches (Basu et al., 2019; Garivier and Moulines, 2011) may be sufficient
to address settings in which the blocking durations associated with each arm are fixed,
and the rewards are nonstationary and stochastic, though we leave this as a direction
for future work.

6.3 Repeated Matching of Reusable Resources

In Chapter 5, we proposed the sequential blocked matching problem, in which a
central planner is tasked with constructing matchings repeatedly whilst adhering to
blocking constraints. We saw that traditional one-sided matching algorithms, such as
RSD, are no longer truthful in this setting, as agents may exploit the blocking of
services to obtain a better allocation in the long-term. In other words, agents can
benefit from being non-myopic, and sacrifice utility in the short term to arrange a
pattern of blocking which is beneficial. To rectify this problem, we proposed repeated
RSD (RRSD), a natural extension of RSD, which makes each agent to choose a greedy
allocation of services over the entire time horizon in a random order. Whilst not
truthful, RRSD does have bounded incentive ratio (see Theorem 5.6). That is, an agent
can only improve their allocation through misreporting by a fixed multiplicative
factor, no matter their preferences. In this sense, RRSD is approximately truthful,
providing a partial resolution to Requirement 3b.

Additionally, we investigated the distortion incurred by any randomised or
deterministic policy in the sequential blocked matching setting. In particular, we
showed that any randomised (deterministic) policy must incur Ω(

√
s) (Ω(s))
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distortion (see Theorems 5.4 and 5.5). Following this we showed that RRSD matches
the established lower bound on distortion for randomised policies (see Theorem 5.7),
and that RRSD can be derandomised to produce an algorithm which is optimal
amongst deterministic policies (see Theorem 5.9). In this sense, we completely address
Requirement 3a in the case of cardinal preferences and ordinal reporting.

Lastly, we investigated a bandit version of the sequential blocked matching setting,
where agents must learn their preferences over time. For this setting, we proposed a
bandit version of RRSD (BRRSD) based on the ETC paradigm for multi-armed bandits.
To evaluate the efficiency and truthfulness properties of BRRSD, we introduced two
notions of regret. In particular, we showed that BRRSD incurs sublinear dynamic
α-regret, implying that the reward accumulated by BRRSD approaches that
accumulated by RRSD as the time horizon lengthens. Additionally, we showed that
each agent achieves sublinear (1− 1/e)-IC regret under BRRSD when they report
truthfully (see Theorem 5.12). This implies that truthful reporting is a
(1− 1/e)-approximation of the best misreporting policy in the asymptotic sense. In
other words, BRRSD allows each agent to learn their preferences, whilst also being
approximately optimal and truthful, satisfying Requirement 3c.

It is an open question as to whether there exists a tractable matching policy which is
optimal in terms of distortion and has better incentive ratio than RRSD . Establishing
tight upper bounds on the best achievable incentive ratio presents a significant
challenge, and would imply the existence of similar upper bounds for the generic job
scheduling problem, as discussed in Chapter 5. Likewise, it is unclear whether there
exist algorithms for the online sequential blocked matching setting which achieve
better regret guarantees than BRRSD. Both of these open questions present immediate
directions for future work.

Observe that our analysis is limited to settings in which agents have cardinal
preferences and report information ordinally. Investigating agents with different
preference and reporting structures is an obvious avenue for future work. When
agents report cardinally, we conjecture that better algorithms, with stronger regret
guarantees than BRRSD, exist. For instance, with access to cardinal information, the
central planner can construct confidence bounds on the behalf of each agent and
employ UCB-style algorithms. Moreover, our work only considers social welfare, and
neglects other meaningful performance benchmarks that better trade-off fairness and
efficiency, such as Nash social welfare and CEEI.

Whether investigating new performance metrics, or different reporting and preference
structures, a natural approach to designing algorithms for repeated matching is to
adapt existing algorithms from the corresponding single shot setting. The RSD
algorithm had a fairly natural translation to the repeated setting. Put simply, instead
of applying a serial dictatorship over a single time step, one applies a serial
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dictatorship over the entire time horizon. Other algorithms for one-sided matching,
such as the PS mechanism, may not have such intuitive extensions. As a result,
developing repeated matching algorithms for different versions of the sequential
blocked matching problem presents a significant technical challenge.
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Appendix A

Additional Results (Chapter 3)

This appendix describes additional material related to Chapter 3. In particular, we
describe the dual of the semidefinite program that is solved in each iteration of the
SDP-BISECT algorithm. After this, in Section A.2, we provide an empirical evaluation
of SDP-BISECT on the red wine dataset. Finally we compare the runtime of
SDP-BISECT against an interior point method, which solves the nonconvex problem
relaxation for Stackelberg prediction games proposed by Brückner and Scheffer (2011).

A.1 The Dual Problem

In this section, we describe the dual of the SDP that we solve at each iteration of
SDP-BISECT. This dual can be used to obtain a linear predictor at every iteration. First,
recall the SDP which is solved at each time step of SDP-BISECT:

max
τ,λ

τ s.t.

[︄
A + λB a + λb

aT + λbT c− τ

]︄
⪰ 0 (A.1)

We can rewrite this SDP as follows:

max
τ,λ

[︄
1
0

]︄T [︄
τ

λ

]︄
s.t. λ

[︄
−B −b
−bT 0

]︄
+ τ

[︄
0 0
0 1

]︄
⪯
[︄

A a
aT c

]︄

Taking the dual yields the following SDP:

min
W∈ Sn+2

[︄
A a
aT c

]︄
·W s.t.

[︄
B b

bT 0

]︄
·W = 0,

[︄
0 0
0 1

]︄
·W = 1, W ⪰ 0 (A.2)
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Taking an appropriate rank-1 decomposition of the optimal solution to Problem (A.2)
yields a vector containing a linear predictor and its squared Euclidean norm. As a
direct consequence of the results in Section 3.5, this linear predictor is optimal for the
Dinkelbach program associated with the primal SDP (A.1).

A.2 Red Wine Dataset

In this section, we compare Algorithm 1 to ridge regression and the nonconvex
relaxation of Brückner and Scheffer (2011) using the red wine dataset (Cortez et al.,
2009). The red wine dataset contains 1599 instances each with 11 features. Each feature
is a sensory or physiochemical measurement for wine. The response variable is a wine
rating out of 10 points, where 10 is the best rating possible.

We place ourselves in the position of wine producers, who may wish to increase the
rating of their wine by submitting fake input data. We assume that a wine producer is
happy with the rating for their wine if it is greater than or equal to a threshold,
t ∈ [0, 10]. Thus, if the true output label associated with a wine is greater than or equal
to the threshold, then the target label of the agent is identical to the true output label.
Otherwise, the target output label of the agent is set to t. Formally:

zi = max{yi, t} (A.3)

Similar to experiments conducted on the medical personals costs dataset, we perform
10-fold cross validation on the dataset and average the MSE of each approach over
each fold for γ ∈ [1× 10−5, 0.2]. As before, a ridge regression hyperparameter is
selected for each γ by grid search on 8 logarithmically spaced points in the interval
[1× 10−5, 1000]. We define two different data providers, each with a different
threshold: a modest data provider with tmodest = 6, and a severe data provider with
tsevere = 8. The results of the experiments are shown in Figure A.1. As in the case of
the medical personal costs dataset, Algorithm 1 outperforms other approaches for all
values of γ. For values of γ > 0.1, we observe that, for modest data providers, our
algorithm is at least 0.1 points more accurate than ridge regression on average. For
severe data providers, we observe an even greater difference. Meanwhile, for severe
data providers, Algorithm 1 is more than an entire point more accurate than ridge
regression on average.

A.3 Run Time Comparison

Lastly, we compare the run time of SDP-BISECT to that of the interior point method for
finding local solutions to the nonconvex relaxation of Brückner and Scheffer (2011).
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FIGURE A.1: A performance comparison between different algorithms run on the red
wine dataset in which the target labels of each data provider are given by equation
(A.3). The left plot corresponds to experiments run with tmodest, whilst the right plot

corresponds experiments run with tsevere.

For these experiments, we fix γ = 0.5. Using the medical personal costs dataset, we
run SDP-BISECT and the interior point method on training sets of varying sizes. For
each training set size, we create 10 training sets by sampling uniformly from the entire
dataset. This experiment was on run on an AMD Ryzen 1600 3.20GHz six-core
processor on a single thread of execution. The error tolerances of the interior point
method and SDP-BISECT are set to 1× 10−2.

Figure A.2 shows the mean run time of each algorithm for different problems sizes,
with each error bar representing a 95% confidence interval according to the student
t-distribution. Note that, in all cases, the interior point method quickly grows in run
time as the scale of the problem increases, whilst SDP-BISECT has a similar running
time for all problem scales tested. Whilst the interior point approach is faster on
smaller problem instances, it quickly becomes apparent that SDP-BISECT is faster on
larger instances. Also note that the run time of Algorithm SDP-BISECT is far more
consistent, and has far less variance, especially as the problem scale grows.

It is worth noting that, for every problem scale, we use the same initial upper bound
for q in our bisection search. More specifically, we take the entire medical personal
costs dataset and upper bound q using the inner product of the training labels. As a
result, the number of SDPs that need to be solved to achieve the same error tolerance
for different problem scales is roughly equivalent. This partly explains why the
performance of the bisection method stays relatively constant across different problem
scales in our experiments.



144 Chapter A. Additional Results (Chapter 3)

0 200 400 600 800 1000 1200

m

0

5

10

15

20

25

30

35

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

Brückner and Scheffer (2011)

Bisection SDP

0 200 400 600 800 1000 1200

m

0

5

10

15

20

25

30

35

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

FIGURE A.2: A run time comparison between the interior point method approach and
Algorithm 1 using the medical personal costs dataset. The plot on the left corresponds
experiments run with Amodest, whilst the right plot corresponds to experiments run

with Asevere.
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Appendix B

Additional Pseudocode (Chapter 5)

In this appendix, we provide additional pseudocode regarding the subroutines used
by RRSD, DRRSD, and BRRSD. The pseudocode for earliest(), which checks the earliest
time step in which an agent can be assigned a service, is given in Algorithm 9. The
pseudocode for available(), which checks whether a service can be assigned to an
agent, is given in Algorithm 10. The pseudocode for overrun(), which checks whether
an assignment of a service in one block of DRRSD will cause a blocking delay in the next
block, is given in Algorithm 11. Lastly, the pseudocode for buildJobList(), which
specifies the agent-service assignments for BRRSD to complete during the exploration
phase, is given in Algorithm 12.

Algorithm 9: Different versions of the auxiliary process earliest

1 Function earliest(M, i, j, start, end):
2 for t = start, . . . , end do
3 if available(M, i, j, t) then
4 return t
5 end
6 end

// Failure state

7 return 0
8 End Function
9 Function earliest(M, i, j):

10 start = 1
11 end = T
12 return earliest(M, i, j, start, end)
13 End Function
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Algorithm 10: Different versions of the auxiliary process available

1 Function available(M, i1, j, t0):
2 if M(t0, i1) ̸= 0 then
3 return false
4 end
5 for i = 1, . . . , n do
6 for t = t0 − Di,j + 1, . . . , t0 + Di,j − 1 do
7 if M(t, i) = j then
8 return false
9 end

10 end
11 end
12 return true
13 End Function
14 Function available(M, i, j, start, end):
15 for t = start, . . . , end do
16 if available(M, i, j, t) then
17 return true
18 end
19 end
20 return false
21 End Function
22 Function available(M, i, j):
23 start = 1
24 end = T
25 return available(M, i, j, start, end)
26 End Function

Algorithm 11: The auxiliary process overrun

1 Function overrun(M, i, j, t, end):
2 if t + Di,j − 1 ≥ end then
3 return false
4 end
5 return true
6 End Function

Algorithm 12: The auxiliary process buildJobList

1 Function buildJobList(n, s, repeat):
2 list = []
3 for i = 1, . . . , n do
4 for j = 1, . . . , s do
5 for k = 1, . . . , repeat do
6 list.append((i, j))
7 end
8 end
9 end

10 End Function
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Anna Bogomolnaia and Hervé Moulin. A new solution to the random assignment
problem. Journal of Economic Theory, 100(2):295–328, 2001. ISSN 0022-0531.

Craig Boutilier, Ioannis Caragiannis, Simi Haber, Tyler Lu, Ariel D Procaccia, and
Or Sheffet. Optimal social choice functions: A utilitarian view. Artificial Intelligence,
227:190–213, 2015.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

Michael Brückner and Tobias Scheffer. Stackelberg games for adversarial prediction
problems. In Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’11, page 547–555, 2011. Association for
Computing Machinery. ISBN 9781450308137.
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Levente Kocsis and Csaba Szepesvári. Discounted ucb. In 2nd PASCAL Challenges
Workshop, volume 2, pages 51–134, 2006.

Fuhito Kojima and Mihai Manea. Incentives in the probabilistic serial mechanism.
Journal of Economic Theory, 145(1):106–123, 2010. ISSN 0022-0531.

V. Koltchinskii. Rademacher penalties and structural risk minimization. IEEE
Transactions on Information Theory, 47(5):1902–1914, 2001.

Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. Tight Regret
Bounds for Stochastic Combinatorial Semi-Bandits. In Proceedings of the Eighteenth
International Conference on Artificial Intelligence and Statistics, volume 38 of Proceedings
of Machine Learning Research, pages 535–543, 2015. PMLR.

https://proceedings.mlr.press/v5/kanade09a.html
https://proceedings.mlr.press/v5/kanade09a.html
https://doi.org/10.1145/2505983
https://doi.org/10.1145/1993636.1993715
https://doi.org/10.1145/1993636.1993715
https://proceedings.neurips.cc/paper/2016/file/47d1e990583c9c67424d369f3414728e-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/47d1e990583c9c67424d369f3414728e-Paper.pdf
https://www.sciencedirect.com/science/article/pii/0304397594900426
https://www.sciencedirect.com/science/article/pii/0304397594900426
https://doi.org/10.1007/s10994-010-5178-7
https://doi.org/10.1007/s10994-010-5178-7
https://www.sciencedirect.com/science/article/pii/S0022053109001136
https://proceedings.mlr.press/v38/kveton15.html
https://proceedings.mlr.press/v38/kveton15.html


REFERENCES 155

T.L Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules.
Advances in Applied Mathematics, 6(1):4–22, 1985. ISSN 0196-8858.

Tor Lattimore. Refining the confidence level for optimistic bandit strategies. Journal of
Machine Learning Research, 19(20):1–32, 2018.
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