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The simulation of large-scale flood inundation problems requires numerical models that are
both accurate and have high computational performance. Over the past decades giant achievements
have been attained in computational hydraulics and a number of accurate models have emerged.
However, the accurate simulations of these models require high-resolution meshes, resulting in high
computational cost. Thus, the models providing a rational trade-off between accuracy and time
cost are highly demanded. The lack of such tools substantially limits our ability to understand and
predict floods that extend over large areas. In this research a new model is presented, which falls
into this line. The model solves the two dimensional shallow water equations (SWE) by a Godunov
type finite volume (FV) method that makes use of two nested meshes. Runtime computations are
performed at a coarse computational mesh (thus increasing computational performance), while a fine
mesh is used to incorporate finely resolved information into the solution at pre-processing level (thus
substantially reducing the loss of accuracy that would otherwise result). The proposed model presents
new upscaling methods that are separately derived for each of the terms in the SWE based on the
integration of the governing equations over subdomains defined by the coarse resolution grid cells,
such as friction and bed slope source terms. This research also sheds light onto the limitations of
some of the widely used assumptions in nested meshes models, such as constant friction slope for
upscaling the friction effects. The accuracy and performance of the model are tested through six
artificial and a real-world test problems, namely one-dimensional steady flow over a hump, dam-break
problem, dam-break wave propagating over three humps, open channel flow around a bend, 1D flow
over an irregular bed, compound channel, and the River Tiber. These test cases cover a wide range
of hydraulic issues, such as steady and unsteady flows, hydraulic jump, 1D and 2D flood propagation,
(mild, large or no) variation of topography and roughness coefficient across the domain of study,
propagation of waves with continuous (rarefaction) and discontinuous (shock) water surface. It is
shown that that i) in general the proposed model provides more accurate results than traditional



FV models currently available and ii) for the same accuracy and at low resolution, the proposed
methods substantially increase computational performance. These attributions make the proposed
model suitable for large-scale real-life problems and those artificial cases with significant changes in
topography’s features and roughness properties.
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Definitions and Abbreviations

Notation

af frontal width of obstructions projected to flow path (m−1)

A cross-section area (m2)

b(x, y) bed function (m)
B channel width (m)
c Chézy’s coefficient

(

m
1
2 s−1

)

CbD sub-grid scale flow obstacles’ drag coefficient (-)
CfD bed friction coefficient (-)
C0D dimensionless obstruction drag coefficient (-)
CFL Courant–Friedrichs–Lewy condition (-)
ex, ey x and y components of unit vector normal to cell’s boundary (-)
e unit vector normal to cell’s boundary (-,-)
|E| absolute errors (m)
E flux tensor (m2 s−1,m3 s−2,m3 s−2 ; m2 s−1,m3 s−2,m3 s−2)

E∗ flux vector in Eq. 2.5 (m2 s−1,m3 s−2,m3 s−2)

EG mass exchange term between the mobile and stagnant region defined
by Guinot (2012) (m s−1)

Ee estimated fractional error (%)
Ep error percentage (%)
f Darcy–Weisbach friction factor (-)
Fr Froude number (-)
Fs factor of safety (-)
F,G flux vectors in x and y direction (m2 s−1,m3 s−2,m3 s−2)

Fm,Gm mobile zone flux vectors in x and y direction defined by Guinot (2012)
(

m2 s−1,m3 s−2,m3 s−2
)
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g gravity acceleration (m s−2)

g three dimensional vector of gravitational acceleration (m s−2,m s−2,m s−2)

ℎ water depth (m)
ℎm mobile water depth defined by Guinot (2012) (m)
ℎs stagnant water depth defined by Guinot (2012) (m)
H matrix used by Sanders et al. (2008) to transform bed slope source term to

a boundary integral (s−1,m s−2,m s−2 ; s−1,m s−2,m s−2)

ip(x, y) binary density function (-)
I1 hydrostatic pressure term (

m3
)

I2 side reaction term (

m2
)

J ,K number of columns and rows of the small cells in a large cell, respectively (-)
l length (m)
Ld length of the study domain (m)
n time level (-)
nM Manning coefficient

(

s m−
1
3

)

N number of computational cells (-)
Nw number of submerged small cells in a large cell (-)
NΓ number of submerged small cells adjacent to the cell boundary (-)
p power describing the relationship between computational resolution and time cost (-)
P pressure (N m−2)

qx, qy x and y components of unit width discharge (m2 s−1)

qxm , qym x and y components of mobile zone unit width discharge defined by Guinot (2012)
(

m2 s−1
)

q vector of unit width discharge (m2 s−1,m2 s−1)

‖q‖ magnitude of flow (

m s−1
)

Q discharge (m3 s−1)

Q0 inflow/outflow discharge per unit area (m s−1)

Q0m discharge source term of mobile zone defined by Guinot (2012)
(

m s−1,m2 s−2,m2 s−2
)

Q0s discharge source term of stagnant zone defined by Guinot (2012) (m s−1)
R hydraulic radius (m)
s0 bed slope (-)
s0x , s0y x and y components of bed slope (-)
sf magnitude of the friction gradient (-)
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sfx , sfy x and y components of frictional slope (-)
sl friction and eddy loss source term in the model of

Soares-Frazão et al. (2008) (m2 s−2)

sp bed slope and porosity variation source term in the model of
Soares-Frazão et al. (2008) (m2 s−2)

sf friction slope (-)
SL left wave speed in HLLC scheme (m s−1)

SM middle wave speed in HLLC scheme (m s−1)

SR right wave speed in HLLC scheme (m s−1)

S vector of source terms (m s−1,m2 s−2,m2 s−2)

Sb vector of bed slope source term (

m s−1,m2 s−2,m2 s−2
)

Sf vector of friction slope source term (

m s−1,m2 s−2,m2 s−2
)

Sfm ,Sgm source term vectors of bed and friction slope in mobile zone defined by
Guinot (2012) (m s−1,m2 s−2,m2 s−2)

t time (s or hr)
tc runtime and time cost (s or hr)
T free surface width of a channel (m)
Ta the first term of Eq. 3.17

(

m
1
3 s−1

)

Tb the second term of Eq. 3.17
(

m
1
3 s−1

)

Tc the third term of Eq. 3.17
(

m
1
3 s−1

)

Td the first term of Eq. 3.37
(

m
1
3 s−1

)

Te the second term of Eq. 3.37
(

m
1
3 s−1

)

Tf the third term of Eq. 3.37
(

m
1
3 s−1

)

u, v,w x,y and z velocity components (m s−1)

u‖ tangential velocity to cells interface (m s−1)

u⟂ vertical velocity to cells interface (m s−1)

U vector of conservative variables (m,m2 s−1,m2 s−1)

Um vector of conservative variables for mobile zone defined by
Guinot (2012) (m,m2 s−1,m2 s−1)

Us vector of conservative variables for stagnant zone defined by
Guinot (2012) (m,m2 s−1,m2 s−1)

Vs shock’s speed (m s−1)

V velocity vector (m s−1,m s−1)

‖V‖ magnitude of the velocity (m s−1)
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Wd width of the study domain (m)
x,y Cartesian coordinates (m)
z0 channel bed level at x = 0 in 1D flows (m)
z bed level (m)
z′ a binary elevation function giving the minimum of bed and water surface level (m)
ẑ′ a defined variable in Eq. 3.25 to simplify the equation (m)
zc bed level of main channel in a compound channel (m)
zf bed level of floodplain in a compound channel (m)
� BCR (Building coverage ratio) (%)
� CRF (conveyance reduction factors) (%)
Γ boundary length (m)
Γ1 to Γ4 edges number of a large cell (-)
�x, �y dimensions of small cells (m)
Δℎ difference between a small cell water depth and the average of small cells water

depths next to the edge Γ4 (m)
Δt time step (s)
ΔX,ΔY dimensions of large cells (m)
Δz difference between a small cell bed level and the average of small cells bed levels

next to the edge Γ4 (m)
Δz′ a defined variable in Eq. 3.25 to simplify the equation (m)
�x, �y x and y components of the unit vector parallel to flow (-)
� head loss coefficient accounting for the urban in the model of

Soares-Frazão et al. (2008) (-)
� water surface elevation (m)
�0 averaged water surface in a cell defined by Sanders et al. (2008) (m)
� percentage relative error (%)
�max maximum wave speed (m∕s)
� elevation (m)
Π viscous stress tensor

(

N m−2,N m−2,N m−2 ; N m−2,N m−2,N m−2 ; N m−2,N m−2,N m−2
)

� mass density (kg m−3)

� frictional correction coefficient of intermediate state unit width discharge (-)
�2z variance of submerged small cells bed level adjacent to the large cell edge (m2)

� stress (N m−2)
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' coefficient of unit width discharge distribution (-)
� volumetric porosity (-)
�m porosity of mobile zone defined by Guinot (2012) (-)
�s stagnant zone porosity defined by Guinot (2012) (-)
 areal porosity (-)
 a approximated cross-section’s conveyance (m2 s−1)

 b(x, y, z, t) boundary condition function in derivation of SWE, Appendix A (m)
 e exact cross-section’s conveyance (m2 s−1)

Ω cell area (m2)

Ωb a subdomain of Ω containing the solid obstacle (m2)

Ωs Small cells area in nested meshes (m2)

Ωw wet area of a cell (m2)

xxv



Definitions and Abbreviations

Subscripts and superscript

⬚B boundary cell
⬚G ghost cell
⬚L left
⬚R right
⬚ space-averaged over a large cell
⬚∧ wetting-drying conditions applied
⬚̃ space-averaged over small cells, adjacent to an edge of large cell
⬚∗ at intermediate state (fractional time step)
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ADE Alternating Direction Explicit: a finite difference scheme
ADI Alternating Direction Implicit: a finite difference scheme
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ANN Artificial Neural Network
AOI Area of Interest
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C-property Conservation Property
CFD Computational Fluid Dynamics
CPU Central Processing Unit
CRF Conveyance Reduction Factors
CUDA Compute Unified Device Architecture
DCV- FEM Double Control Volume-Finite Element
DDP Depth Dependent Porosity
DEM Digital Elevation Model
DEwI Diffusive Equations with Inertia
DG Discontinuous Galerkin
DIP Dual Integral Porosity
DSM Digital Surface Model
DTM Digital Terrain Model
FD Finite Difference: a numerical method
FE Finite Elements: a numerical method
FV Finite Volume: a numerical method
GCI Grid Convergence Index
GPU Graphics Processing Unit
GWM Gravity Wave Model
HLLC Harten, Lax and van Leer Contact: a Riemann solver
IP Integral Porosity
KWE Kinematic Wave Equation
MP Multi Porosity
MPI Message Passing Interface
NWM National Water Model
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SP Single Porosity
SPH Smoothed Particle Hydrodynamics
SWE Shallow Water Equations
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Chapter 1

Introduction and literature review

1.1 Introduction

Rivers benefit humans in different ways. They provide drinking and irrigation water, generate energy
to sustain a variety of human activities, facilitate traffic of goods and people, enable fishing and
also the controlled disposal of waste. Yet, when the capacity of river channels to convey water
flows is exceeded, the consequences can be devastating. Flooding currently accounts for a third of
the economic loss and 50% or more of fatalities associated with natural disasters globally (Berz,
2000; White, 2000; UNISDR, 2012; Bradford et al., 2012). Examples of devastating flood events
are abundant. For instance, in 1998, the Yangtze River basin, China, was hit by a severe flood event
from June to August. The event caused over 4100 deaths, destroyed 4.3 million buildings, 20 million
homeless people and over 150 billion Yuan economic loss (Wang, 2011). In 2017, certain areas in the
world witnessed devastating flooding events. For example, the US experienced a record of $300 billion
in disaster losses from hurricanes and flooding together (NOAA, 2018). Also, during the same year,
a humanitarian crises emerged in south Asia, where in three countries Nepal, India and Bangladesh,
1000 people lost their lives and the livelihoods of over 41 million were affected by monsoon floods
and landslides (Gettleman, 2017; Sanders and Schubert, 2019).

It is expected that in the future the impacts of flooding on communities will increase due to
climate change, urbanisation, rising sea levels, population growth, deforestation and rural-to-urban
migration, (Kay et al., 2011; McCarthy et al., 2001; Nirupama and Simonovic, 2007; Bradford et al.,
2012; Hallegatte et al., 2013; Jongman et al., 2012). As an example, in the UK, the current annual
damage to property by flooding is estimated at £1.1bn, but one of the worst case scenarios estimates
it could increase up to £27bn by 2080 (Foresight, 2004).
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Over recent decades, a large number of studies have been conducted to develop methods and
procedures to map the risk of floods in both rural and in urbanised areas. This risk mapping is a
central part of decision-making in the field of environmental management (Horritt and Bates, 2001).
Three main methods are used to model flood inundation, namely, empirical methods, hydrodynamic
models, and simplified conceptual models (Teng et al., 2017) and each of which has advantages and
limitations herein discussed in brief.

Empirical methods define relations between two or (most often) many variables, the values of
which are typically obtained through fitting observed data from water gauges, field surveys, remote
sensing, and statistical models. This approach is relatively quick and can be adopted for the monitoring
and assessment of floods. However, this group of methods suffer from serious limitations as follows.
These methods typically provide results at low time and spatial resolution, which may not be useful for
many engineering applications that require detailed information, although progress in remote sensing
has to some extent addressed this issue. In this approach, accurate results rely on acquisition and
complex processing of the data, which might be too expensive. The main shortcoming of the approach
is perhaps the future is predicted using certain snapshots of past events, while the current and past
conditions are not often valid for the coming events.

Hydrodynamic models are capable of capturing the behaviour of flooding in time and space
in detail. These models have gained a great popularity in fields such as flood risk assessment,
water resources planning, floodplain ecology, and sediment transport. Hydrodynamic models are
easily linked to hydrological models through boundary conditions and other source/sink terms
(e.g. precipitations and infiltration). Furthermore, by manipulation and perturbation of input data
(e.g. initial and boundary conditions, and topographic data), alteration in conditions can be easily
transferred to the hydrodynamic models, which pave the way for scenario planning. This approach
has certain weaknesses including intensive computations, the propagation of input errors (may reside
in uncertainty in data) in time, and the high amount of required data (Teng et al., 2017).

Simplified conceptual models, which are newer compared to the two other approaches, are
typically aimed at large scale flood inundation simulations (i.e. flood inundation simulations at scales
that are larger than the typical river reach scale, ranging from several kilometers to regional and even
global simulations). In these models, simulations can be orders of magnitudes less than hydrodynamic
models, which stems from the simplified representation of the physical processes. Studies have shown
that simplified conceptual models perform relatively well to the 2D shallow water equations in certain
cases, but provide only poor results under certain conditions (Teng et al., 2017).
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Because of the clear advantages of hydrodynamic over simplified models, this thesis focuses
exclusively on the former. However, other models that fall into the two other types described above are
also reviewed in the next sections. The vast majority of flood inundation problems fall into the category
of shallowwater flows (Wang, 2011). The key feature of a shallow flow is that horizontal length scale is
much greater than the vertical length scale, which usually means that vertical flow acceleration can be
neglected without substantial loss of accuracy. This assumption results in the so-called hydrostatic
approximation, which along with the principles of mass and momentum conservation is used to
derive the shallow water equations (SWE). To date, the system of SWE (or simplifications of) is
the foundation of the vast majority of commercial and academic codes that are used to model flood
inundation problems.

Despite the ability of existing SWE models (in particular those implemented in two horizontal
dimensions, or simply 2D) to accurately capture the process of flood inundation, their high
computational cost still represents a barrier to a large number of relevant applications. This
computational barrier has restricted the application of SWE models to even relatively small domains
and short duration flood events (Liang and Smith, 2015), but is even more problematic for large-scale
inundation simulations that are needed to inform important decisions. For example, Xia et al. (2019)
conducted an investigation to study an extreme flood event caused by the 2015 Storm Desmond in
the 2500 km2 Eden catchment (UK). The study included flood simulations performed through the
solution of the 2D SWEs using a shock capturing Godunov type finite volume scheme. This included
the validation of themodel results (at 5m resolution, which represents 100million computational cells)
against field data, and the assessment of the sensitivity of the results to mesh resolution and Manning
roughness. The study investigated various scenarios (different mesh resolutions and Manning
roughness distributions), each of which requiring an extremely large computational time. Another
example of computationally demanding flood inundation problems was presented by Echeverribar
et al. (2018), who studied a flood event (which occurred in 2015) in a 125 km reach of the River Ebro
in Zaragoza (Spain), where the basin’s area is 477 km2. The work was aimed at assessing the use
Graphics Processing Units (GPUs, which are discussed in Section 1.2.3 of this thesis) to reduce the
simulation time, and also at comparing of the results of the model against field data. The model was
based on the solution of the 2D shallow water equations using a Godunov type finite volume scheme
over 678,000 cells. These simulations were performed over 21.1 days by an 8-cores Intel® CORE
I7-4770 CPU using shared-memory parallelisation. When the same simulations were performed using
GPUs, the simulation time reduced to 17.2 hr.

A large number of studies have been conducted aimed at developing robust models that also offer
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satisfactory computational performance and accuracy. This research can be classified based on the
strategies adopted to improve the model performance. For instance, “parallel programming” is the
class of studies whereby multiple-core computer architectures are employed to minimise a model’s
run-time. Another example is the use of simplified models that disregard certain terms in the shallow
water equations to reduce the computational costs. Although these types of studies have reported a
substantial decrease in computational effort, other recent research (e.g. Liang and Smith, 2015; Cea
and Bladé, 2015) showed that these simpler formulations have limitations that may not justify the
reported model speedups. To date, none of the approaches (i.e. parallel programming, simplified and
others) available provides a perfect model for all flood inundation problems. Low accuracy, insufficient
performance for large-scale investigations, or even ill-posedness are some disadvantages that these
models suffer from.

In this work, by focusing on the advantages and disadvantages of other approaches, a new model
is proposed that falls into the class of “sub-grid” methods. The model is based on the solution of
the two-dimensional shallow water equations and makes use of two sets of grids, hereafter referred
to as coarse and fine. The equations are solved by a finite volume scheme and the HLLC Riemann
solver. The model was developed with the aim of finding a trade-off between speed and accuracy that
will enable applications to flood risk assessment at scales that are larger than those that are currently
enabled by existing models.

In this chapter, first, the current high-performance models (or the classes of) for flood inundation
simulations are reviewed and their strengths and weaknesses are discussed. Then, the main properties
of the proposed sub-grid model are overviewed and the aim and objectives of this research are
described. A synopsis is also included, giving brief details of the thesis chapters.

1.2 Literature review

Over the last decades a wide range of computational and numerical techniques has emerged that are
aimed at reducing computational cost of the flood inundation simulations. In this part of the thesis,
some of the most promising techniques are introduced and their main characteristics are discussed.
These approaches are namely, simplified models, adaptive grids, parallel computing, porosity models
and nested meshes models. In addition, other methods that have recently been employed for fast
simulation are also reviewed at the end of this section.
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1.2.1 Simplified models

The shallow water equations, which simulate free surface flows, have for a long time been the most
popular mathematical approach to simulate 2D flood inundation problems (Wang et al., 2011b; Liang
et al., 2008;Mignot et al., 2006). The high computational cost inherently associatedwith the numerical
solution of the full two-dimensional system of equations has, over the last decade, prompted research
on the development of potentially more efficient alternatives. One such approach is to use simplified
forms of the underlying equations, which may speed up the simulations while representing the main
physical characteristics of flow at a plausible level (i.e. lower accuracy, but acceptable relative to 2D
SWE). A number of recent research publications falls into this category, such as Bates et al. (2010);
Hunter et al. (2008); Lamb et al. (2009); de Almeida et al. (2012); Wang et al. (2011b).

To explain the different simplified forms of the 2D shallow water equations, it is important to
review the terms in the 2D SWE (the derivation of which is available in Appendix A) in detail as
follows.

)
)t
ℎ + )

)x
(ℎu) + )

)y
(ℎv) = 0, (1.1)

Local acceleration
⏞⏞⏞
)
)t
(ℎu) +
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(
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)

+ )
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⏞⏞⏞⏞⏞⏞⏞⏞⏞
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2
)
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gℎ2
)

−
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⏞⏞⏞
gℎs0x +

Friction
⏞⏞⏞
gℎsfx = 0, (1.2)
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ℎv2
)

+ )
)x
(ℎuv) + 1

2
)
)y

(

gℎ2
)

− gℎs0y + gℎsfy = 0, (1.3)
where, ℎ is water depth, t denotes time, (x, y) indicates Cartesian coordinates, u and v are the x and
y components of velocity, respectively, g is the gravitational acceleration and sfx ,sfy , s0x and s0y are
the x and y components of frictional and bed slopes, respectively. Eq. 1.1 is a statement of mass
conservation while Eq. 1.2 and Eq. 1.3 express the principle of conservation of linear momentum in
the x and y directions, respectively.

In simplified versions of the SWE, the continuity equation (i.e. Eq. 1.1) is maintained unchanged
and the simplifications are only applied to the momentum terms. In the derivation of the 2D shallow
water equations, three external forces contribute to the change in the fluid’s momentum, namely
friction between the fluid and the boundaries of the channel, the pressure force between two adjacent
bodies of fluid and bed reaction (see the corresponding terms in Eq. 1.2 and Eq. 1.3). The term “local
acceleration represents the rate of momentum change at each point of the study domain. This term is
used to model the unsteady nature of a flow. The convective acceleration terms model the acceleration
due to change in the position of the moving body of fluid along a region of the domain with non-zero
velocity gradient.
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Primarily meant to reduce the computational cost of solutions, although often also used to improve
a model’s robustness or to simplify the numerical solution, several models have been developed that
neglect one or more terms within the momentum equations. By neglecting the convective acceleration
terms in Eq. 1.2 and Eq. 1.3, the so-called “local inertial” or “simplified inertial” or “inertial”
formulation is obtained. Ignoring both local and convective acceleration terms simultaneously leads
to the Diffusive-Wave Equations, also referred to as zero-inertia equations. These types of equations
have been adopted and assessed in a number of previous studies (see e.g. Ponce, 1990; Xia, 1994;
Aronica et al., 1998; de Almeida et al., 2012; Martins et al., 2015; Aricò and Nasello, 2018).

The application of a diffusive approach for flood simulations was first proposed by Cunge et al.
(1980) and then used in a number of other subsequent works, such as Estrela and Quintas (1994);
Bechteler et al. (1994); Yu and Lane (2006). Historically, there has been a tendency to use a diffusive
wave model for catchment scale flood inundation simulations, because of the need to reduce the
runtime. However, it has later been found that the diffusive wave equations, which neglect inertial
terms, have a number of shortcomings, (Bates et al., 2010; Costabile et al., 2012; Cea and Bladé,
2015). For example, the accuracy of solutions of diffusive models deteriorates where spatial gradients
of velocity are high or in supercritical flows when Froude number is high and inertial terms become
important (seeHunter et al., 2007; Cea andBladé, 2015). Another issue relates to the time step required
in explicit models to maintain numerical stability. The maximum stable time step in a diffusive model
decreases with the square of the mesh size (Hunter et al., 2006), which imposes a large computational
cost for high resolution meshes compared to the explicit SWE models, in which case the maximum
stable time step decreases linearly with mesh size. These shortcomings are particularly relevant for
urban flood modelling, since supercritical flows are common in flows over streets and other smooth
surfaces and high-resolution simulations are typically required to capture the complexity of the urban
topography (Cea and Bladé, 2015). One more limitation to the diffusive model is that the time step
stability condition depends on the water surface gradient (Hunter et al., 2006). Therefore, when the
solutions tend to horizontal water surface (e.g. solutions near lakes and low land rivers), the CPU time
increases dramatically, (Hunter et al., 2006).

In theory, the local inertial model offers a few advantages over the diffusive formulation to describe
the dynamics of open channel flows. The local acceleration term takes into account the local rate
of momentum change. Then, in terms of the physical representation, the local inertial formulation
lies between the diffusion wave approximation and the SWE, (de Almeida and Bates, 2013). Also,
the maximum stable time step displays a linear dependency on the size of the computational grid
(de Almeida and Bates, 2013). This means that the computational cost of a local inertial model can
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be significantly lower than the cost of a diffusive model at high-resolution (de Almeida and Bates,
2013). However, the simplification introduced by the local inertial system also degrades the accuracy
of simulations. Namely, gradients in the solution are smoothed and the speed of propagation of
information is reduced, both effects being more pronounced at high values of the Froude number
(de Almeida and Bates, 2013).

Comparing model speedup provided by simplified models is a challenging task for different
reasons, such as the variety of numerical schemes, assumptions, accuracy, the diversity of processors
running the computational codes, and the properties of test cases. Despite this, in order to provide
an overview of the performance of the simplified models, the results of some studies are analysed
here. For example, Neal et al. (2012) compared the performance of three models, (1) Bates et al.
(2010) model, which is based on local inertial formulation, (2) a model based on the solution of the
diffusive equation and (3) a finite volume shallow water equation model adopting the Roe approximate
Riemann solver. This study reported that the local inertial approach is up to seven times and 2 orders
of magnitude faster than the SWE and diffusive solution, respectively. On the other hand, Cea and
Bladé (2015) observed only a marginal speedup when the local inertial approximation was adopted,
compared to the full dynamic equations.

The properties of the simplified models can be summarised as,

Positive points:

• The simplified models speed up the simulations in certain flooding problems, such as those
involving only gradual changes in time and space (Neal et al., 2012).

Negative points:

• The main limitation of the simplified formulations is lack of generality. Since they neglect
part of the physics included in the SWE, strictly speaking they should only be used to simulate
problems in which the neglected terms are indeed negligible. This is often difficult to know a

priori, leading to inaccurate results. Even worse, inaccuracies may be hidden by the modeller’s
attempt to calibrate the model by adopting unrealistic parameters.

• The speedup achievements of simplified models are not significant in all cases, (Hunter et al.,
2008; Néelz and Pender, 2010; Wang et al., 2011b; Liang and Smith, 2015; Cea and Bladé,
2015).

• In simplified models, as some terms of the full dynamic equations are ignored, physical
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complexity is reduced. This may result in models that are too sensitive to and dependent on
parametrisation, (Costabile et al., 2009, 2012; Fewtrell et al., 2011; Yeh et al., 2011; Liang and
Smith, 2015).

• It is recommended that simplified models based on the local inertial and diffusive formulations
are only used in subcritical regimes, (de Almeida and Bates, 2013; Cea and Bladé, 2015;
Cozzolino et al., 2019). Wet-dry fronts, which are unavoidable in real world flooding
simulations, may also be a serious challenge for the local inertia model as the flow fronts is
shallow and supercritical. This was addressed and confirmed by Cozzolino et al. (2019).

1.2.2 Adaptive mesh refinement

Local mesh refinement has long been used to provide accurate, high-resolution simulations of flow
variables in particular areas of interest (AOI) within a larger computational domain, which is modelled
at coarser resolution except at the AOI. The technique delivers detailed results where they are needed,
without the additional computational burden that would be required if the whole domain were to be
modelled at the same, high resolution. Often the properties of flows vary steeply only at certain regions
of the computational domain. In many problems, the AOI is the area with large gradients in the flow
properties changing dynamically, as it is often the case during the propagation of floods. This keeps
the numerical accuracy at a satisfactory level without incurring excessive increase in computational
time (Liang et al., 2015). A well-known structured adaptive refinement grid model was developed
initially by Berger and Oliger (1984) and later promoted by others such as Rogers et al. (2001) and
Baeza and Mulet (2006).

Different types of adaptive mesh refinement (AMR) strategies have been developed over the last
decades, including unstructured mesh, distortion, quadtree refinement, and block structured. Fig. 1.1
illustrates how different resolution levels are defined by each of these mesh refinement techniques.
Block-structured and quadtree refinement are two important types of AMR. Details of these methods
are described in the following paragraphs.

Block-structured is an appropriate approach for hydrodynamic problems governed by hyperbolic
conservation laws, (George, 2011; Ziegler, 2012). The block structured AMR is based on patches
(rectangular blocks with multiple levels of refinement, as sketched in Fig. 1.1d) formed around the
dynamic features of the solution. These patches are not static but may move during the solution,
providing an efficient resolution near steep fronts, (George, 2011). Berger and Oliger (1984) and
Berger and Colella (1989) presented two initially successful studies using the block structured
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Figure 1.1: Examples of mesh refinement techniques in use to adapt meshes dynamically, (Almgren,
2011). (a) Unstructured, (b) mesh distortion , (c) quadtree refinement, (d) block-structured.

approach. Solutions of the shallow water equations, in particular involving steep fronts such as the
dam-break problem, have also been successfully performed using this technique (Berger et al., 2011;
George, 2011; Zhang et al., 2015).

Quadtree is a grid adaptation technique in which the unit squares are subdivided into sub-quadrants
when interior spatial information (i.e. significant hydraulic properties gradients) confirms a
subdivision requirement (Borthwick et al., 2001). Quadtree is a flexible and hieratical data structure,
by which a spatial discretisation can be easily refined or coarsened locally withmarginal computational
overhead (Agbaglah et al., 2011). Adaptive quadtree models have been widely adopted to solve the
shallow water equations (see e.g. Rogers et al., 2001; Liang et al., 2004; Liang and Borthwick, 2009;
Popinet, 2011; Zhang et al., 2015). Liang (2012) presented a simplified quadtree adaptive grid system.
This approach, which is generically aimed at solving partial differential equations, was later used in
different numerical schemes to solve the shallow water equations, such as in Wang and Liang (2011),
Kesserwani and Liang (2012a), Zhang et al. (2013) and Zhang et al. (2015).

An important issue associated with the solution of the shallow water equations by AMR methods
is that the solution may not satisfy both mass conservation and the C-property (i.e. conservation
property) concurrently, (Popinet, 2011; Liang and Borthwick, 2009; Liang et al., 2015). Usually,
finite volume numerical schemes focus on the homogenous part of the shallow water equations, while
the discretisation of the source terms, such as friction, bed slope and inflow/outflow discharges, is
performed separately. The agreement between the discretisation of the homogenous part and source
terms is critical and a computational model must be able to simulate a steady horizontal water surface
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(i.e. V = 0, ∇� = 0, and d�
dt

= 0, where V and � are the velocity vector and water surface
level, respectively) without producing unphysical waves. Such a model is called well-balanced and
satisfies the C-property, (Bermudez and Vázquez-Cendón, 1994; Duran andMarche, 2014). When the
C-property is not met, the accuracy and stability of a shallow water model may be affected (Bermudez
and Vázquez-Cendón, 1994). On the other hand, the ability of a model to conserve mass is also of
utmost importance for accuracy and reliability of a numerical solution. Therefore, the violation of
either C-property or mass conservation may result in computational instability or loss of accuracy.

The primary aim of an AMR model is its improved efficiency and accuracy compared with a
simple, coarse-grid model. It is therefore important to understand to what extent the computational
costs are reduced by the adoption of an AMR strategy. The comparison of the models in terms of
efficiency is very difficult, as there is a large range of models available that when applied to different
case studies will result in various levels of accuracy. Herein, three studies and their achievements in
reducing model run-time are discussed.

Zhang et al. (2014) employed an adaptive grid (quadtree refinement) shallow water model, which
utilises an HLLC Riemann solver to estimate the numerical fluxes. The model was designed to
simulate large-scale flood inundation problems over irregular beds. The adaptive criteria was defined
based on the gradient of free surface elevation. The model was applied to a few cases, one of which
(dam break flood wave propagation in Zhanghe River valley, Hubei province, China) is discussed here.
In this test, the computational domain covered an area of about 129 km2. As the domain includes both
a narrow river valley and a relatively wide floodplain, high and low-resolution cells were used to
discretise the river channel and floodplain, respectively. The maximum and minimum width of cells
were 100 m and 25 m, respectively. The research adopted fixed and adaptive meshes, and the AMR
approach showed a 60% reduction of the runtime compared to the fixed mesh, while preserving the
accuracy.

The second example relates to the work by An et al. (2015), in which the two dimensional shallow
water equations are solved by a quadtree AMR. This model, which makes use of a second-order
accurate Godunov type finite volume scheme, was employed to study two real flood events in France
(the well-known Malpasset dam-break problem) and Korea (levee failure in Backsan). The results of
these two simulations proved that the adopted AMR model could save 85%-95% of the computational
costs (i.e. speedups of 6.67-20) as opposed to a classical model with the same accuracy.

More recently, Hu et al. (2019) developed a 2D double control-volume finite element (DCV- FEM)
flood model based on the shallow water equations. The model makes use of an adaptive unstructured
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mesh, which is dynamically optimised. Themodel was adopted to study different scenarios of flooding
in an urban area within Greve, Denmark, which is affected by rainfall and sea level variations. The
scenarios were defined based on the important recorded flooding events. The results analysis showed
that the adaptive model reduced CPU times by 20-88% compared to fixed mesh models.

Herein, the main positive and negative aspects of adaptive mesh models are summarised as

Positive points:

• The high-resolution mesh of AMR in the regions with large gradients of hydraulic properties
(velocity and water depth) alterations improves the accuracy.

• Adopting a refined mesh only in the areas of interest and maintaining a low-resolution mesh
for the rest of the domain reduces the number of computational cells and consequently
computational time, which is desirable in large-scale flood simulations.

Negative points:

• Satisfying mass conservation and C-property concurrently, which is important for both solution
accuracy and stability, is a challenge to shallow water adaptive mesh models (Popinet, 2011;
Liang and Borthwick, 2009; Liang et al., 2015).

• In AMRmodels, the time step may be limited as a high level of refinement is applied to a (small)
fraction of the domain with complex flow dynamics and high velocity or free-surface gradients,
(Liang and Smith, 2015).

• Adaptivemeshmodels typically adopt the following steps at each time step. (1) According to the
prescribed adaptation criteria, a new spatial mesh is generated. (2) The solution from the current
mesh is reconstructed and interpolated onto the newmesh. (3) Time integration of the solution is
implemented (e.g. using Godunov framework) on the new mesh, (Khakimzyanov et al., 2019).
A disadvantage of this methodology is that it makes the solution procedure complex and may
cause loss of accuracy by adding governing open more numerical dissipation and dispersion to
the solution, (Khakimzyanov et al., 2019).

1.2.3 Parallel computing

Parallel computing solves a single problem using multiple computer resources (core, computers)
simultaneously. Large problems are divided into smaller ones, which are then solved concurrently,
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(Almasi and Gottlieb, 1989; Stout, 2015).

NVIDIA’s CUDA, MPI and OpenMP are currently the most widely used parallel programming
models. Parallel computing can be broadly divided into two main frameworks, depending on whether
different computing cores operate on a single (shared) memory or not. Most desktop computers
available today have multiple computer cores and a single memory and therefore can benefit from
a shared-memory implementation. However, the structure of most supercomputers consists of a large
collection of computers (nodes), each of which has its own memory that is not readily accessible by
other machines (distributed memory systems). The Message Passing Interface (MPI) is a standardised
and portable message-passing system designed to function on a wide variety of parallel computers,
(Message Passing Interface, 2015). Although it is portable to shared-memory environments, the
main distinctive feature of MPI is its ability to transfer data across large clusters of computers. For
example, in cluster systems a collection of computers work together through the Ethernet, whilst they
communicate with each other among the processors using simple commands, similar to read and write.
MPI is the most common to have this sort of communication (Stout, 2015). On the other hand, for
parallel computers, which are shared-memory systems, there is a standard known as OpenMP, which
is a collection of language extensions to Fortran and C/C++, (Stout, 2015).

Another framework for parallel computing that has been attracting recent attention relies
on multiple-processor graphics boards capable of performing large volumes of floating number
computations. Such technology enables dramatic increases in computing performance by harnessing
the power of the GPU (graphics processing unit), (NVIDIA, 2015). CUDA (an acronym for Compute
Unified Device Architecture) is the programming language developed by NVIDIA exclusively
for this hardware. The CUDA platform, which works in C, C++, and Fortran, provides easier
conditions for specialists in parallel programming to utilize GPU resources without need for advanced
skills in graphics programming (CUDA, 2015). GPUs with high processing power and massive
parallelism, coming from their specific architecture, were initially developed to support computer
graphics. However, such architectures have shortly paved the way for further applications including
computational tasks. GPUs are now adopted in a variety of fields such as numerical simulation, media
processing, medical imaging, eye-tracking, genomics, fluid dynamics, andmachine learning (Huisman
et al., 2018).

GPU is a type of coprocessor adopted to bear some burden of computationally intensive arithmetic.
Although coprocessors have limited functionality compared to a general purpose CPU, they may
be optimised for specific tasks, such as floating point arithmetic (Neal et al., 2010). In addition to
GPU, there are other examples of coprocessors, such as Clear Speed which is specifically designed for
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computationally intensive science and engineering purposes (Neal et al., 2010).

In recent years, parallel computing has been applied to the numerical solution of the equations
governing open channel flows, especially for large-scale river simulations. For instance, certain
two-dimensional hydraulic models have successfully implemented MPI and domain decomposition,
such as TRENT (Villanueva and Wright, 2006a,b), CalTWiMS (Pau and Sanders, 2006),
TELEMAC-2D (Hervouet, 2000) and RMA (Rao, 2005). In these approaches, the main domain
is divided into sub-domains, each of which is run by a core processor (Neal et al., 2010). Models
developed by Vacondio et al. (2014); Sætra and Brodtkorb (2010); de la Asunción et al. (2013); Sætra
(2014) and Ransom and Younis (2016) provide examples of the application of GPU parallelisation for
the solution of the shallow water equations using the finite volume method.

The performance of a parallelised model depends on a number of factors, such as hardware, the
method of parallelisation, and even the specific case study of interest. Therefore, it is not easy to
compare the models, (Neal et al., 2010). Despite this fact, herein, to provide an overview of the
performance of these models, speedups obtained by a few studies are reported. In the case of the
programming framework of OpenMP, a flood modelling study, which benefits from a parallel version
of the LISFLOOD-FP hydraulic model, was conducted by Neal et al. (2009) achieved a speedup of
5.8 times on 8-core processor relative to a CPU version. Solving a diffusive wave model using 12
cores, Leandro et al. (2014) obtained a speedup of 5.1 times. In the case of GPU, more recently a 2D
diffusive model was developed by Park et al. (2019), which was up to 150 times faster than a CPU
version. The simulations were performed by a PC with an Intel Core i7-8700 K 4.7-GHz CPU, 16 GB
RAM (6 cores) and an NVIDIA GeForce GTX 1060 GPU with 1152 cores.

In the literature, advantages and disadvantages of the parallel programming methods may be
summarised as follows:

Positive points:

• Significant run-time reduction rates may be achieved by parallel computing of many flood
inundation problems (e.g. Leandro et al., 2014; Park et al., 2019).

• In parallel computation, the speedup is achieved using management and boosting of computer
cores. Thus, no further simplifications, assumptions or extra cell coarsening is required for
the governing equations (and the solution of) and mesh layout, which translates into speedup
without sacrificing accuracy.

• The performance of a model in parallel computing fundamentally depends on the properties
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of the hardware utilised. There will definitely be ongoing developments and improvements in
technology, influencing the efficiency of these models. Thus, we can expect an outstanding
perspective for this approach in solving time consuming flood inundation problems.

Negative points:

• Hardware cost and energy consumption of processors can limit practical usage, (Juez et al.,
2016).

• As a model performance depends on parallelisation type, test case, and hardware properties,
there may be difficulties in selecting a specific model suitable for a large range of flood
inundation problems.

• Parallel processing is not always an appropriate approach to solve time consuming problems.
For example,

– The parallelisation may fail to produce desirable speedups due to “parallel slowdown”. A
master core splits up a massive task into cores (workers). The workers accomplish their
tasks and return their outputs to the master. Then, there is information exchange between
the workers and master cores. In certain cases, a large amount of time is required for
communication between the cores degrading the computational model performance. This
phenomenon is called “parallel slowdown”, (Maliar, 2015).

– Scaling is an issue that may arise in some parallel computing simulations, and hardware
properties have significant effects on it. There are two types of scaling, strong and weak
scaling. In strong scaling, the size of problem is kept unchanged while the number of
processors is increased. Weak scaling means that the problem size per processor maintain
fixed while further processors are used (Alsabbagh, 2015). In both types, the model
efficiency reduces.

1.2.4 Porosity models

Porosity models are a subclass of grid coarsening methods. Large-scale flood propagation simulations
with conventional models at fine resolution are too time consuming and this is a serious barrier for
a large number of applications. Grid coarsening is an appropriate treatment to reduce the amount
of calculations. However, research shows that a simple grid coarsening is not sufficient to represent
the effects of the obstacles in the domain of study (e.g. buildings in urban areas) and it accounts for
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Figure 1.2: Conceptual model of volumetric (�) and areal ( ) porosity for an arbitrary triangle cell.
The grey blocks represent the obstacles (e.g. buildings in an urban area). Volumetric and areal porosity
are the ratio of the cell volume, which is represented in white, to the whole cell volume and the black
lines (i.e. not occupied by the obstacles) lengths of the cell edges to the whole edge length, respectively
(Sanders et al., 2008).

increased numerical error in flood modelling, (Defina, 2000; Bates, 2000; Yu and Lane, 2006, 2011;
Brown et al., 2007; Sanders et al., 2008). Part of this loss of accuracy stems from the fact that meshes
can only capture the topographic features greater than grid size. Therefore, the idea of using sub-grid
data was devised to reflect the effects of important small (relative to mesh size) topographic data in the
process of representation (Defina et al., 1994; Bates, 2000; Yu and Lane, 2006, 2011; McMillan and
Brasington, 2007; Sanders et al., 2008). Such an idea (incorporation of sub-grid data in the process
of simulation) may be implemented by the inclusion of porosity parameters (as explained in the next
paragraphs) in the governing equations.

The non-dimensional factor of volumetric porosity is a fraction of a cell area occupied by voids
(Bear, 1988; Sanders et al., 2008; Kim et al., 2015) representing the proportion of a cell able to store
floodwater. Areal porosity accounts for a percentage of a cell border (edge), that contributes to fluxes
and is not blocked by the obstacles (see Fig. 1.2). The areal porosity can be either constant or varies
for all edges.

Modelling the sub-grid scale topography information via additional porosity parameters, such
as volumetric porosity (�) and areal porosity ( ), provides improved descriptions of storage and
conveyance capacities of the computational cells (coarse cells) during the numerical process (Defina,
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2000; Yu and Lane, 2011; McMillan and Brasington, 2007; Sanders et al., 2008; Soares-Frazão et al.,
2008; Cea and Vázquez-Cendón, 2010; Chen et al., 2012; Guinot, 2012; Schubert and Sanders, 2012;
Kim et al., 2015).

Porosity can be treated as either isotropic or anisotropic depending on whether the orientation
of obstacles (and the corresponding effect on the flow) is taken into account. Anisotropy porosity
models the effects of obstacles that are unevenly spaced in the cross-flow and along-flow directions,
(Kim et al., 2015). In practical simulations, anisotropy in parameters is a part of the simulation nature.
However, a numerical model can benefit from isotropy porosity conditions in some cases, such as
certain artificial idealised problems. In urban flood inundation studies, the inclusion of porosity
parameters distribution in the process of solutions may lead to longer simulations under the same
resolution, and so, model simplifications to speed up the simulation are of higher priority. Then, the
anisotropy may be neglected.

There are different versions of the porous approach described in the literature. The diversity of
porous models stems from different factors, such as the governing equations, the schemes adopted
to solve them; and the model’s ability to consider isotropy and anisotropy porosities. Herein, some
important approaches are reviewed.

In recent years, a number of studies have focused on the use of porosity to model shallow water
flows (Sanders et al., 2008; Guinot, 2012; Schubert and Sanders, 2012; Kim et al., 2014, 2015)
which report improved accuracy when tested using field- and experimental scale tests. In Sanders
et al. (2008), Schubert and Sanders (2012) and Kim et al. (2014, 2015), the porous shallow water
formulation is defined as follows,
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where, ∥ V ∥=
√

u2 + v2 is the magnitude of the velocity vector, Ω is an arbitrary domain where
the equations are solved on (computational cell) and Γ is the domain boundary, ex and ey are the x
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and y components of the unit vector normal to Γ, respectively. In reality, the water surface elevation
(�) varies around the obstacles but Sanders et al. (2008) assumes that �0 (the averaged water surface
within a computational cell) is piecewise constant. Then, water depth is ℎ|�0 = �0 − z, where z
represents ground elevation (assumed linearly varying within a cell by Sanders et al. (2008)). The
variable ip(x, y) is a binary density function providing the two values of zero and one in the different
coordinates depending on if there is a solid obstacle at a point (ip = 0) or not (ip = 1):

ip =

⎧

⎪

⎨

⎪

⎩

0 if (x, y) ∈ Ωb
1 if (x, y) ∉ Ωb

(1.7)

where Ωb is a subdomain of Ω containing the solid obstacle. Using the binary function ip(x, y), the
two volumetric and porosity parameters are defined as

�i =
1
Ωi ∫Ωi

ipdΩ,  m =
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ipdΓ, (1.8)

where i and m are cell and edge number, respectively. In Eq. 1.6, CfD and CbD denote bed friction and
sub-grid scale flow obstacles’ drag coefficient, respectively. The former can be estimated by Manning
nM , Chézy c, or Darcy–Weisbach f as follows, (Schubert and Sanders, 2012),
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and CbD is calculated by the following expressions available to model drag (e.g. Nepf, 1999),

CbD =
1
2
C0Dafℎ (1.10)

where,C0D is the dimensionless obstruction drag coefficient (Kim et al., 2014) which is a function of the
shape of the flow obstacle and Reynolds number (Sanders et al., 2008; Kim et al., 2015). Values of C0D
for 2D flows have been tabulated in various studies (e.g. Munson et al., 2006). The term af represents
a frontal width of obstructions projected to flow path in a cell with the area ofΩ, (Sanders et al., 2008;
Kim et al., 2015; Schubert and Sanders, 2012; Nepf, 1999). Further guidance for the estimation of af
and C0D in practical applications is available in Schubert and Sanders (2012). The model of Sanders
et al. (2008) was developed based on an integral form of porous shallow water equations to account
for anisotropy. The parameters Ω and  are not considered fixed across the domain study and depend
on the shape, size and position of an obstacle in the cells.

Guinot (2012) proposed a different approach (differential form) to apply the anisotropy of porosity
parameters in porous shallow water equations. This model is based on multiple porosity parameters to
represent a macroscopic modelling of floods in urban areas through splitting of the domain into zones
with distinct porosities, water depths and velocity fields, such as shown in Fig. 1.3. This research

17



Chapter 1

showed that multi porosity models provide a better representation of flood propagation than the single
porosity model. Guinot (2012) divides the domain into three parts (see Fig. 1.3), (1) buildings are
impermeable to the flow and no water is modelled in this zone, (2) mobile water with the hydraulic
characteristics of ℎm, qxm and qym (water depth and unit width discharges in the x and y directions,
respectively), and (3) stagnant water with still water depth ℎs, and null velocity and discharge. The
governing equations are defined as
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where the subscripts b, s and m correspond to the building, stagnant and mobile zones, respectively,
EG accounts for the mass exchange between the stagnant and the mobile water, and is positive when
mass is transferred from the stagnant to mobile zone. Guinot (2012) has presented several models for
estimation of EG.

Eq. 1.11 and Eq. 1.12 provide a more detailed description of how porosity can influence the
physics of open channel flow in urban flood inundation simulations. For example, Fig. 1.4 shows an
urban area where the flow generally moves in the x direction. Owing to the alignment of the buildings,
water is trapped within the urban blocks. This stagnant water or passive water, which is represented by
the hatched areas, has zero or near-zero velocity, whereas the mobile water flow has non-zero velocity
in the rest of the domain. This is translated into a multi-modal velocity field (i.e. zero and non-zero
velocity fields). The approach by Guinot (2012), which makes use of multi porosity, is able to model
the multi velocity fields that appear in the case of Fig. 1.4. In such cases, the multi porosity approach
has advantages over the single porosity model. Namely, it improves the accuracy of the solution and
also results in more robustness in computing the head losses. Hence, head losses only occur in the
mobile regions of the domain Guinot (2012).
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Figure 1.3: Division of the domain into three distinct parts, buildings, stagnant water and mobile
water, defined by (Guinot, 2012). Variables Ω and Γ denote the area and boundaries of each zone,
respectively. The subscripts b, s and m correspond to the building, stagnant and mobile zones,
respectively. The double subscripts of the borders specify a boundary common between two zones.
For example, Γmb is the boundary common between the building and mobile water areas. Each region
has distinct porosities, water depths, and velocity field (Guinot, 2012). The left figure shows the
mixed zones in a real case and the right figure illustrates how the porosities are estimated for the case
in Guinot (2012).
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Figure 1.4: Treatment of an urban area using the multiple porosity model of Guinot (2012). The top
figure shows the plan view of an urban area. The urban domain is split into three distinct parts: the
building impermeable zone (in grey), the stagnant water zone or passive water trapped between the
high elevation ground features (hatched); and the mobile water zone (in white). The bottom figure
shows a zoomed-in area in the model of Guinot (2012) that uses �m and �s to represent important
details, such as blockage and stagnant water in the computational process. This approach allows the
model to simulate two very different velocity field regions (the velocity of mobile part and null velocity
of immobile parts) leading to higher accuracy. The figure has been adapted from Guinot (2012) for
clarity.
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Other versions of the porous model are also available in the literature that adopt much simpler
governing equations. For example, Soares-Frazão et al. (2008) employed the following 2D porous
shallow water equations to simulate urban floods.
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where, slx and sly are friction and eddy loss source terms in the x and y directions, respectively and
� is head loss coefficient. The above equations are very similar to the other aforementioned porous
models and the major changes correspond to the source term vector S, where spx and spy comprise
the pressure source term stemming from: (1) bed elevation variation expressed by s0x and s0y and (2)
changes in cross-section width associated with )�

)x
and )�

)y
.

In this model, only one porosity parameter � is included, which represents both volumetric and
areal porosity and is both homogeneous (i.e. constant over the whole domain) and isotropic.

Other simplified porosity-based models that are not based on the full version of the SWEs have
also been proposed, such as those of Huang et al. (2014) and Yu and Lane (2006), which utilise the
zero-inertia formulation. In non-inertia models, flow acceleration is assumed negligible compared to
the gravitational and frictional terms. Thus, such models have simpler form regarding the shallow
water equations. The porosity form of these models can be written as
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where, Q is the discharge source term.
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The application of the detailed bathymetric and sub-grid data is not limited to the porosity
parameters, such as volumetric and areal porosity. Various studies, including those of Defina (2000);
Yu and Lane (2011); Casulli (2009); Casulli and Stelling (2011) and Stelling (2012), use detailed
data for friction calculations (typically in a somewhat simplified way). In these studies, sub-grid bed
information inside a large cell is adopted to estimate the “effective depth” of a computational cell that is
then used in Manning’s equation sf = n2M

√

u2+v2

ℎ
4
3

to estimate the friction slope. In large computational
cells, the assumption that the flow variables are constant across the cell may be an extremely inaccurate
representation of what occurs in the real-world. Thus “effective depth” is an example of an attempt
to include such variations of flow properties (in this case, depth) through a relatively simple concept
(e.g. see Eq. 1.18, which is described in the following section).

Sub-grid models may be classified into three categories, namely single porosity (SP), integral
porosity (IP), andmulti porosity (MP). Single porosity approaches include only one value that accounts
for the both effective cell volume and conveyance. The model by Soares-Frazão et al. (2008) is a good
example of this approach. Two limitations are reported for these models. First, SP models are mostly
adopted for the simulation of urban flooding events, where buildings are assumed unsubmerged during
a flood event. As a result, except for the early versions (e.g. Defina, 2000), most of the SPmodels make
use of a depth-independent porous coefficient (Guinot et al., 2018). Second, conventional SP models
do not include anisotropy effects. However, this shortcoming has more recently been addressed, (see
e.g. Viero and Valipour, 2017). The integral porosity approach (e.g. Sanders et al., 2008) utilises
both volume (�) and areal ( ) porosity parameters, and is able to incorporate anisotropy of porous
coefficients into the solution. These models, which were originally designed for urban flooding
simulations, do not typically use dynamic porosity coefficients (i.e. � and  are depth-independent).
Nevertheless, some recent studies have been conducted that include depth-dependent porosity via IP
(see Özgen et al., 2016a,b). The multi porosity approach (Guinot, 2012) was developed to improve the
SP approach by incorporating the anisotropy of porous coefficients into the solutions. Later, Guinot
et al. (2017) presented Dual Integral Porosity (DIP) to improve IP. DIP is not a new version of MP but
has some of its properties. The idea of DIP stems from this point that as we define storage (within the
cell) differently from conveyance (at cell boundaries) porosity, we should use different conservative
variables within the cell from boundaries. In other words, the values of conservative variables within a
cell are modified for the cell boundaries through amethod based on the assumption that obstacles in the
cells affect the flow velocity significantly, whereas their effect on free surface elevation is negligible.
Guinot et al. (2017) showed that the DIP approach leads to more accurate mass and momentum fluxes
compared to IP models. The DIP method was recently upgraded to Depth-Dependent Porosity (DDP),
which dynamically estimates the porosity, (Guinot et al., 2018).
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Overall, the main advantages and disadvantages of porosity-type sub-grid models can be
summarised as follows.

Positive points:

• The porosity coefficients, such as volumetric and areal porosity, in the governing equations
provide accurate descriptions of the pure storage and conveyance of a cell that contributes to
mass and momentum exchanges and results in a more accurate solution compared to non-porous
solutions on low-resolution meshes. Porosity models, which perform simulations at coarse
resolutions, reduce runtime.

Negative points:

• In current sub-grid models, the porosity parameters � and  are typically water
depth-independent, even though obstacles may be submerged during a flood event. Although
this issue has recently been addressed (e.g. Özgen et al., 2016a,b; Guinot et al., 2018), further
studies are still required to test the performance of such models.

• In the multiple porosity model of Guinot (2012), each cell is divided into three parts, mobile
water, stagnant water, and rigid obstacles. The division of the domain into different zones
results in higher accuracy. Nevertheless, in many real-world case studies, it might be difficult
to distinguish these zones and this might impose a new complexity to the model.

• Kim et al. (2015) showed that a porous model may fail to predict wakes and wave reflections
around flow obstructions.

• According to Kim et al. (2015), numerical errors in porous models may be divided into three
groups: structural model errors, scale errors, and porosity model errors. Structural errors are
related to the governing equations and their limitations, such as assumptions and simplifications
to predict the behaviour of flood dynamics. Scale errors correspond to grid size. Porosity model
errors stem from the parametrisation of the sub-grid obstacles. Kim et al. (2015) reported that
porosity model errors might be higher than scale errors, which highlights the importance of
porosity parameter estimations.

1.2.5 Nested meshes, a subclass of sub-grid models

Models within this class typically make use of two meshes. A finely resolved mesh stores detailed data
(e.g. topography and roughness), whilst the governing equations are solved at the coarse resolution
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mesh. Information at fine resolution is incorporated into the numerical solution performed at coarse
grid resolution in different ways. Such an approach may also be referred to as sub-grid (instead of
nested meshes) modelling. In other words, the nested meshes method is a subclass of the sub-grid
approach.

Sub-grid models are aimed at low-resolution computational mesh adaptation to reduce the
computational cost. However, to manage the degradation of the accuracy of a solution (because of
computational grid coarsening) the effects of finely resolved data are included in the solution process.
In the literature, there are a wide range of sub-grid models. The diversity in sub-grid resides in factors
such as governing equations, and schemes are adopted to upscale finely resolved data (e.g. using
porosity parameters to modify the conveyance and storage capacity of cells, or to provide an accurate
estimate of a cell’s meanwater depth where bed is irregular). Nowadays, sub-gridmethods have gained
great popularity in various areas of computational hydrodynamics, such as modelling flow in porous
media (e.g. Hageman and de Borst, 2020; de Borst, 2017; Mohammadnejad and Khoei, 2013), open
channels (e.g. Volp et al., 2013; Sanders and Schubert, 2019), and coastal and ocean environments
(e.g. Sehili et al., 2014; Zhang, 2020).

Sub-gridmodels for the type of flows that concern this thesis –namely free surface flood inundation
flows in rivers and floodplains– typically make use of two sets of resolved data in the solution process,
namely: topography and roughness. Most of the research efforts to date have been devoted to upscaling
sub-grid bathymetric data (the main stream of the sub-grid bathymetry data adaptation, which relates
to the porosity approach discussed previously), whereas minimal attention has given to the upscaling
of the frictional terms in governing equations. Friction has been represented in different ways within
sub-grid models. In many sub-grid models, friction effects are based on the assumption that the
friction slope is constant over a computational cell (e.g. Volp et al., 2013; Platzek et al., 2016). This
assumption is widely used by models that focus solely on sub-grid bathymetric parametrisation, such
as porosity models. Although these models have shown acceptable accuracy in some simulations, the
assumption may be problematic in many other cases such as those dealing with local large variation of
bed topography and spatially varying shear. In these cases, there is a misrepresentation of the linkage
between energy loss, velocity magnitude, and water surface elevation, leading to inaccurate estimation
of friction as a result of velocities and fluxes (e.g. Sehili et al., 2014; Volp et al., 2013; Shin, 2016).

The employment of dynamic (time-varying) rather than constant frictional parameters can be a step
toward friction computations, particularly for partially wet cells. Such approaches that typically rely
on roughness height (vegetation or land cover), mixing layer theory, and the resolved water depth (e.g.
Casas et al., 2010) have been based on either a balance between gravitational force, and drag (surface
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and form) force (e.g. Huthoff et al., 2007), or adaptation of a scaling factor (e.g. Özgen et al., 2015)
for incorporation of local friction (Shin, 2016). It should be noted that these approaches only address
a part of the problem, which is the variation of frictional parameter in time. However, models that
consider both spatial and temporal distribution of frictional parameters, such as the model proposed
in this thesis, may substantially improve the solutions’ accuracy in certain cases.

In this section, three nested meshes models are reviewed. The first corresponds to Casulli (2009),
which has a particular importance within the literature, especially because it is implemented within
the popular computational model HEC-RAS (U.S. Army Corps of Engineers, Hydraulic Engineering
Centre, Davis, CA) Version 5. The two other approaches refer to works recently published by Hénonin
et al. (2015) and Sanders and Schubert (2019), which have close similarities to the model proposed
in this thesis. Because of these important similarities, herein, these models are presented and briefly
discussed.

Casulli (2009) makes use of a semi implicit non-Godunov finite volume scheme. This model
adopts two sets of irregular meshes, fine and coarse. The coarse mesh is the computational mesh on
which the governing equations are solved. The finemesh provides high-resolution topographic data for
the model (i.e. sub-grid bathymetric information).The scheme employed by Casulli (2009) discretises
the solution for the water surface level, which is assumed constant within each computational cell, and
the velocities at themidpoint on cell edges (the edges of considered control volume). In Casulli (2009),
as computational cells are allowed to be partially wet [i.e. boundaries of the control volumes (cells)
are moving] and also to improve the reconstruction of hydraulic variables at cell edges, the sub-grid
topographic data is adopted. Casulli (2009) uses sub-grid information for threemain purposes, namely,
the reconstruction of water depth on the cell edges (ℎ = � − z), estimation of the wet cross-section at
each edge of a cell, and finally the computation of water volume within each cell.

One of the latest versions of the nested meshes approach was presented by Hénonin et al. (2015).
This method benefits from two sets of meshes, coarse and fine. The coarse mesh acts as the
computational mesh and the small mesh provides the fine scale topography data (see Fig. 1.5). In
a coarse cell, the water level (�) is assumed constant at each time level but the water depth (ℎ) varies
as ℎ = � − z, where z is the finely resolved bed elevation. Hénonin et al. (2015) employed this
distribution of water depth inside a coarse cell in two parts. First, the approximation of averaged
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where, Ωs denotes the area of a small cell, and Nw is the number of submerged small cells within a
large cell. This averaged depth ℎ is used to compute mass and momentum flux exchanges. Second, at
post-processing, the unit width discharges may be downscaled from the coarse to fine mesh through
a simple formulation (a combination of linear interpolation of coarse cells fluxes and ℎ 2

3 ), which uses
the water depths of the small cells. Fig. 1.5 presents an example of Hénonin et al. (2015) nested cells.
Fig. 1.5a displays the dual meshes (nested meshes) and bed level distribution of small cells within a
coarse cell. The plan view of Fig. 1.5b shows how the model represents a partially wet cell when the
water elevation � is at a level that cannot submerge some small cells. The governing equations are
solved by the Alternating Direction Implicit (ADI) method, following Abbott (1979).

Figure 1.5: The dual meshes of Hénonin et al. (2015). (a) The arrangement of small cells within a
large cell. (b) The possibility of partially wet cells appearing, where the water surface � in a large cell
cannot submerge the whole coarse cell due to the bed levels of the small cells, (Hénonin et al., 2015).

More recently, Sanders and Schubert (2019) proposed a sub-grid model PRIMo (Parallel Raster
Inundation Model). The model makes use of two sets of meshes, U-grid and z-grid. The latter, which
is nested in the U-grid, incorporates a high-resolution raster digital model into the solution process.
The mesh for the U-grid is far coarser than that of the z-grid, and so the solution is implemented
on the U-grid to achieve speedup. The governing equations are the integral form of 2D shallow
water equations (SWE) that are solved in the framework of Godunov type finite volume method.
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In this model, the aim of fast simulations is achieved as a combined result of parallel computing
and the sub-grid approach used in the solution process. The effective cell volume and boundary are
automatically incorporated into the solution through comparing water surface elevation and z-grid
topography data. Also, to improve accuracy, flux exchanges between the cells are computed at z-grid
and then integrated at U-grid resolution.

Generally, the following conclusions can be drawn about nested meshes methods.

Positive points:

• These methods are based on the idea of coarsening the computational grid, which is efficient at
reducing the number of cells and CPU time.

• Nested-mesh models require (marginally) extra computational effort compared to simple grid
coarsening models for simulations when the same computational resolution is used. However,
since the nested meshes provide improved accuracy at coarse resolution, faster simulations may
be achieved for a given target accuracy.

Negative points:

• Upscaling of terms within the current generation of sub-grid models is still in its infancy and a
rigorous treatment of how to upscale the different terms in the equations is missing.

• Nested meshes models typically make limited use of high-resolution mesh data (mainly the
estimation of the average water depth and velocity in a cell) whereas the information can be
utilised in all parts of the computational process, including calculations of friction and bed
slope effects, and mass and momentum fluxes between the computational cells.

1.2.6 Other approaches

The previous sections have shown the relatively wide range of methods developed over the last
decades to improve the computational performance of flood inundation models. However, given
the incredibly large number of publications in this area, only the methods that are most popular or
those deemed most promising have been described. This section is aimed at providing further, albeit
brief, discussion of other techniques that have been proposed for modelling flood inundation. These
include, for example, the coupling of 1D-2D models, smoothed particle hydrodynamics (SPH), and
machine learning.
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a) 1D-2D coupled models

In recent years, a wide range of computational models has been developed that are based on the
shallow-water equations (SWE), which are mostly used in studies of free-surface flows, such as rivers,
lakes, and estuaries. These models can be written in one-dimensional (1D), two-dimensional (2D), or
three-dimensional (3D) forms. Models in two and three dimensions are capable of providing a more
detailed description of the flow, at the expense of more calculations and longer run time. Indeed, the
selection of the number of dimensions used to model the problem is a trade-off between the level of
detail in the results (and often accuracy) and the computational cost, although the availability of data
sometimes also restricts the options. One dimensional models are commonly used to estimate the
water depth (or alternatively the flow area) and discharge (or velocity) of flow routing along a river,
whereas 2-D and 3-D provide the distribution of the conserved variables in two (usually horizontal)
and three spatial dimensions with vector quantities (e.g. velocity) represented by two and three
cartesian components, respectively. These types ofmodels aremostly applied to compute the hydraulic
properties of flow in local river reaches and floodplains, lakes and reservoirs, and estuaries and coastal
regions (Verwey, 2001; Twigt et al., 2009; Kuiry et al., 2010; Fernández-Pato and García-Navarro,
2018; Morales-Hernández et al., 2018) even though 2D models are being increasingly adopted to
model very large scale problems.

On the one hand, 1Dmodels often provide enough information for a range of practical applications,
especiallywhen themain focus is on flow dischargeswithin the capacity of themain channel. However,
in general the ability of 1Dmodels to predict accurately the propagation of floodwaves over floodplains
or urban areas is limited. On the other hand, 2D (or 3D) models are capable of accurate predictions
of complex and non-canalised flows, although they may impose a heavy computational cost to most
medium- to large-scale real-world flooding studies. The coupling of such models, such as 1D-2D (i.e.
1D for the main channel and 2D for the floodplains) and 1D-3D, has emerged as a natural solution to
these difficulties.

Despite the fact that 1D-3D models have become popular in certain practical applications, such
as the interaction between rivers and oceans (e.g. Chen et al., 2013), 1D-2D are by far the most
popular example of coupled models. For instance, coupled 1D-2Dmodels have been widely employed
by many researchers for practical and academic purposes, such as Bladé et al. (1994), Kuiry et al.
(2010), Villanueva and Wright (2006b), McMillan and Brasington (2007), Castellarin et al. (2011),
Morales-Hernández et al. (2016), Fernández-Pato and García-Navarro (2018), Morales-Hernández
et al. (2018), and also been incorporated in certain well-known commercial packages (e.g. MIKE
FLOOD, SOBEK, Flood Modeller , TUFLOW, HEC-RAS ).
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One of the most important differences between existing 1D-2D models is the way mass and
momentum are exchanged between the two components. In many 1D-2D models, this connection
is formulated simplistically using lateral weir equation (see e.g. Dhondia and Stelling, 2002;
Di Baldassarre et al., 2009; Verwey, 2001) whereby the exchange of mass is modelled through level
differences, (Lin et al., 2006; Morales-Hernández et al., 2016). Miglio et al. (2005) introduced an
iterative method to transform 2D variables into 1D by integration of 2D quantities and applying
continuity at the interfaces. Yu and Lane (2007) employed a loosely coupled approach in which 1D
model represents the boundary conditions for the 2D model at the interfaces of the floodplain and
main channel before the initialization of the 2D model. Finaud-Guyot et al. (2011) presented a 1D-2D
model that in addition to mass exchange, includes momentum transfer between the main channel and
floodplain. In order to achieve a fully conservative 1D-2D model, Morales-Hernández et al. (2013)
conducted a study to incorporate information otherwise omitted from each computational domain
into the boundary conditions of the other model. This study focused on a set of academic test cases
to check the performance of the model under the different flow regimes at the coupling zones. later,
Morales-Hernández et al. (2016) in the light of Morales-Hernández et al. (2013), carried out a research
study to pave the way for the simulation of real-word and practical engineering problems.

The weaknesses and strengths of the coupling of 1D-2D models can be explained as follows.

Positive points:

• As 1D-2D models use less computational cells than fully 2D models, their computational costs
are substantially lower.

Negative points:

• It has been shown that different 1D-2Dmodels present a large range of predictions of the volume
of water exchanged between the main channel and floodplain of rivers in the UK EA benchmark
test (Néelz and Pender, 2010).

b) Smoothed particle hydrodynamics

The methods described in the previous sections are all examples of Eulerian methods, whereby the
computational domain is discretised using meshes (fixed or adaptive) on which the values of partial
derivatives (or integrals) are approximated. Such an approach (Eulerian) has been the basis of the
revolution made in Computational Fluid Dynamics (CFD) from the late 1960s and early 70s. On the
other hand, Lagrangian methods represent a different class of computational methods, whereby the
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governing equations are defined and evaluated in a frame of reference that moves with the fluid. A
common approach in Lagrangian methods is to use discrete particles, which are carried with the flow.
In this case, the values of variables are taken to be either the particle values at the exact particle location
or else a weighted average of all particle values in a prescribed neighbourhood. Methods adopting this
procedure to obtain values of variables and their derivatives based on a weighted averaging of values
obtained frommoving neighbour particles are referred to as Smoothed Particle Hydrodynamics (SPH)
(Cossins, 2010).

Gingold and Monaghan (1977) and Lucy (1977) proposed the SPH idea independently. This
method was first developed in astrophysics, where the fluid density typically varies in time and space
many orders of magnitude within an unbounded environment. Later, the SPH approach was applied
[firstly by Monaghan (1994)] to the solution of equations governing the motion of free surface fluids.

SPHmethods have found applications in different areas such as coastal engineering (Barreiro et al.,
2013; Altomare et al., 2017; Crespo et al., 2017), flooding (Vacondio et al., 2013; Prakash et al., 2014),
turbulent flows (Violeau and Issa, 2007; Ren et al., 2016), and multiphase flows (Mokos et al., 2017;
Gong et al., 2016) [a long list of applications and references is available in Altomare et al. (2018) and
Gomez-Gesteira et al. (2012)]. This wide range of applications stems from the significant capacities
of SPH methods, such as relative ease of programming even for 2D and 3D simulations (at least for
basics); handling of multi-fluid and multi-physics problem; the ability to capture the interaction of
fluid and structure, where structure is rigid or elastic; handling of distorted and rapidly moving free
surfaces without any limitation in topology (Violeau and Rogers, 2016).

The advantages and disadvantages of smoothed particle hydrodynamic methods are summarised
as follows.

Positive points:

• In addition the merits mentioned above for the SPH method, its main advantage may be in
application to certain complicated free surface problems, such as wave breaking, and sloshing,
where modelling through mesh-based algorithms is difficult or even impossible.

Negative points:

• The main disadvantages of SPH methods can be summarised as follows (Violeau and Rogers,
2016)

– high computational cost, particularly for 3D simulations,
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– difficulties in applying boundary conditions at both close (zero- discharge) and open
(inflow/outflow) boundaries,

– Lack of mathematical foundations for defining properties of numerical schemes, such as
convergence and stability.

– difficult handling of variable space resolution for (near) incompressible flows.

c) Machine learning

In the past decades, numerous physics-based hydraulic models have been developed, which represent
the hydraulic characteristics of flooding flows very accurately. However, when it comes to large scale
problems, because of the computational cost, simpler but faster (albeit with much lower accuracy)
models are practically preferred. A good example in this case relates to the National Water Model
(NWM), a hydrologic and hydraulic model that predicts the weather effects on streams and simulates
flood extent and water surface elevations for 2.7 million river reaches in the continental United
States (Cohen et al., 2018; Hosseiny et al., 2020). Due to the extremely large number of tasks and
computations required, this model (NWM) adopts a very simple hydraulic method, which relies on
several simplifying assumptions, including a trapezoidal channel cross-section and quasi-normal flow
regime (Maidment et al., 2016; Hosseiny et al., 2020). Such a model unfortunately cannot accurately
capture the detailed variation of flow depths and velocities that is needed for many applications. In
this type of applications, which a huge amount of tasks are required to accomplish, high-resolution
simulations are only achieved by high-performance algorithms. Machine learning offers a potential
approach to obtain high-performance algorithms, by improving our understanding from the real-world
problems through learning from current data and experiments [e.g. data regression, and classification
are two important tools of the machine learning technique (Hosseiny et al., 2020)]. This approach is
typically used when (i) the current mathematical models are unable to capture physical phenomena,
(ii) computational costs make it infeasible to adopt the accurate physical (herein hydraulic) models,
and finally (iii) there is restricted knowledge about the phenomena (Hosseiny et al., 2020). In flood
inundation studies, long simulations of certain cases (e.g. large-scale inundation problems) are the
main reason motivating researchers to adopt the machine learning technique, as in the literature,
there are numerous computational models capable of the accurate representation of flood propagation
mechanics.

Several machine learning algorithms have been employed in water resources engineering, such as
(see Mosavi et al., 2018) artificial neural networks (ANNs) (Kim et al., 2016), neuro-fuzzy (Mosavi
and Edalatifar, 2018; Dineva et al., 2014), support vector machine (Suykens and Vandewalle, 1999),
and support vector regression (Gizaw and Gan, 2016; Taherei Ghazvinei et al., 2018). Among all
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machine learning algorithms, ANNs that mimic biological neural networks are the most widely used
for flood predictions (Mosavi et al., 2018). This algorithm, which was first used in the 1990s (Wu
and Chau, 2010) provides reliable data-driven tools to construct block-box models for the complex,
non-linear relationship between rainfall and flooding (Sulaiman and Wahab, 2018) and also river flow
and discharge (Kar et al., 2010). Compared to conventional statistical models, the ANN algorithm
delivers more accurate results (Li et al., 2010). Within the literature, there are many successful
examples of ANN applications in different fields related to the flood, such as river flow (Shamseldin,
2010; Badrzadeh et al., 2013), rainfall–runoff (Smith and Eli, 1995), precipitation–runoff modeling
(Taormina et al., 2012), water quality (Fotovatikhah et al., 2018), evaporation (FaizollahzadehArdabili
et al., 2018), river stage prediction (Thirumalaiah andDeo, 1998), and river time series (Tsai andYang,
2012).

Within the literature, the following shortcomings have been reported for the machine learning
approach.

Positive points:

• Advantages of the machine learning approach include (Dataflair Team, 2019)

– trends and patterns are easily identified,
– the process of learning and improvement is automatically performed and no human
intervention is required,

– as further experiences are obtained by the algorithms, further improvement in accuracy
and efficiency is gained,

– its algorithms are capable of dealing with multi-dimensional and multi-variable data even
though in dynamic and uncertain environments,

– it has gained a wide range of applications in different fields because of its extraordinary
performance.

Negative points:

• For the machine learning approach, a number of limitations are mentioned such as
(Dataflair Team, 2019)

– it requires massive sets of high quality and inclusive/unbiased data,
– it may require much time and computer resources to enable the algorithm to become
sufficiently trained that it delivers,
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– particular expertise is required in interpreting the results. Also, an algorithm should be
selected in accordance with the defined purpose,

– it is autonomous but susceptible to errors. When an algorithm is trained by a limited
number of data sets, it may generate biased results.

1.3 Aim and objectives

In this thesis, a newmodel for large-scale flood inundation is developed, which is aimed at overcoming
various weaknesses affecting currently available high performance models.

1.3.1 Research gap

Computational models based on the two-dimensional shallow water equations (SWE) have been
employed for many decades to study a variety of free surface flow problems. Examples of such
applications include flood inundation, river hydraulics, tidal hydrodynamics, and tsunamis. The SWE
is a system of nonlinear hyperbolic equations, the solutions of which may display features such as
shocks, rarefactions and transcritical flows (Toro, 2001) that may pose difficulties to simple numerical
solution methods. Over the last decades, sophisticated numerical methods have been developed that
are capable of capturing these features accurately and robustly. In particular, finite volume methods
have gained significant popularity as a robust numerical approach for the solution of the SWE (e.g.
Bermudez and Vázquez-Cendón, 1994; Toro, 2001; Brufau et al., 2004; Liang and Borthwick, 2009;
Liang andMarche, 2009; Hou et al., 2015; Liang and Smith, 2015; Sanders and Schubert, 2019). Finite
Volumemethods handle discontinuities explicitly and ensure exact mass andmomentum conservation.
However, despite their robustness and accuracy, these models face important barriers when it comes
to simulating large-scale flood inundation. The main challenge relates to the computational time that
is required to solve these problems at grid resolutions that are needed for accurate solutions. This
computational limitation also restricts our ability to perform probabilistic risk assessments, which
requiremany scenarios to bemodelled. In summary, current models do not have the required efficiency
to simulate large-scale floods at levels of detail and accuracy that are relevant to decision makers
(Fleischmann et al., 2019). Therefore, this research focuses on developing a high performance model
for large-scale flood inundation problems. This model is defined on the basis of 2D shallow water
equations solved in the framework of a Godunov type finite volume method. The proposed model is
classified in the category of grid coarsening and sub-grid approach.
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Substantial research efforts have been devoted to reduce the computational limitations of
inundation models through the development of modelling techniques that offer different trade-offs
between computational speed and accuracy. In previous sections, the main approaches have been
reviewed. One such approach is the use of sub-grid parameterisations of the governing equations
to approximate part of the physics operating within a large computational cell, so that the accuracy
of simulations performed at a coarse resolution is improved. Because the computational cost tc of
explicit numerical schemes for the solution of the 2D SWE is very sensitive to the grid size (i.e.,
typically, tc ∼ Δx−3), grid coarsening can deliver outstanding model speedups. For example, an
increase in cell size by a factor of 10 would typically translate into a 1000x model speedup. However,
simple grid coarsening also degrades the accuracy of numerical results, as a result of the growth of
truncation errors. Of particular importance to the accuracy of such models is the misrepresentation
of topographical details that are of primary importance to the propagation of the flood wave (Yu and
Lane, 2006; Begnudelli et al., 2008). In the past, grid-coarsening techniques have been developed that
incorporate important information at sub-grid scale –in particular fine-scale topographical data– into
the model’s solution procedure (e.g. McMillan and Brasington, 2007; Sanders et al., 2008) via the
concept of porosity (Defina et al., 1994; Defina, 2000) . In particular, volumetric and area porosity
parameters have been incorporated into the governing equations to account for the fact that: i) parts
of computational cells may be blocked and not contribute to storage of mass and momentum, and
ii) only a fraction of cell edges may contribute to fluxes (Sanders et al., 2008; Kim et al., 2015).
Since first proposed by Defina et al. (1994), the use of porosity parameters to represent partially wet
cells has received increased attention within the literature (Bates, 2000; Defina, 2000; Yu and Lane,
2011; Guinot and Soares-Frazão, 2006; Soares-Frazão et al., 2008; Sanders et al., 2008; Cea and
Vázquez-Cendón, 2010; Guinot, 2012; Schubert and Sanders, 2012; Huang et al., 2014; Kim et al.,
2015; Özgen et al., 2016a,b; Guinot, 2017; Bruwier et al., 2017; Guinot et al., 2017). Porosity models
have mainly focused on the representation of buildings and other types of flow blockages that are
typically found in urban areas (e.g. Soares-Frazão et al., 2008; Guinot, 2012) . More sophisticated
versions of this concept have also been developed to include anisotropy properties of the porosity
parameters, which stem from the arrangement of obstacles within the computational cells (Sanders
et al., 2008; Guinot, 2012).

Despite their main advantages over simple (i.e. non-porosity) models, modelling sub-grid
topography through porosity has a number of shortcomings (research gap). First, while modelling
obstructed regions such as buildings by constant porosity parameters may realistically capture part
of their effect on flood propagation, extending this idea to more complex topography (non-prismatic
features) requires the definition of depth-dependent porosity parameters, which has been addressed in
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more recent studies (Guinot et al., 2018; Özgen et al., 2016a,b). Second, while porosity may correctly
model part of the physics (in particular, storage capacity), other factors that are influenced by the
irregular topography such as friction are not explicitly represented by porosity. This is because the
conserved variables are averaged over the cell to become the arguments of the nonlinear function used
to compute friction. Coarse computational cells may also display large variations in roughness, which
may not be accurately modelled through simple averaging. A similar issue occurs when fluxes are
estimated at the edges of two neighbouring computational cells. When large variations of topography
occur at these edges, fluxes estimated by Riemann solvers from averaged quantities may be highly
inaccurate. Also, the effects of bed slope computed based on micro-topography and averaged bed
level (or the level of the terrain at the centroid of a cell) may differ substantially.

The research conducted in this PhD thesis aims to address the lack of rigorous approaches to
upscale the shallow water equations. As it has been identified in Section 3.5, current sub-grid models
developed for the solution of the SWE adopt simplifying methods that in general are not strongly
rooted on the physics of the problem. Examples of this lack of physical (and/or mathematical)
foundation are found in recent approaches proposed by Hénonin et al. (2015) (which adopts average
quantities of variables) or the velocity distribution method proposed by Sanders and Schubert
(2019) (the formulation of which leads to unphysical velocities tending to infinity as the depth of
the flow tends to zero). The approach proposed in this PhD thesis addresses this gap through a
formulation that is developed based on the integration of the governing equations over the domain
of a coarse computational cell. As part of this approach, simplifying assumptions and mathematical
approximations, while limited in number, are explicitly identified where they are adopted. This
provides the reference needed for the validity of assumptions for modelling specific conditions to
be judged, and to understand the order of the mathematical approximations used.

The proposed model aims to address the limitations of porosity-based approaches to model
storage and boundary conveyance of a computational cell that includes non-prismatic sub-grid
topographical features. This research also addresses the lack of rigorous methods to upscale friction
and mass/momentum fluxes through the inclusion of topographical information within computational
cells.

1.3.2 Aim and perspective of the study

The aim of this thesis is to develop a new sub-grid model that addresses the main shortcomings of
other existing sub-grid methods (i.e. porous and nested meshes models). The model is based on
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the integral form of 2D shallow water equations and uses two nested meshes, coarse and fine (see
Fig. 1.6). The governing equations are solved on the coarse mesh, leading to significant model
speedup. A high-resolution mesh nested within the coarse grid is used to improve the accuracy of
the coarse resolution model. This is achieved by defining parameters that represent, either exactly or
approximately, the effects of finely resolved sub-grid topography on storage, momentum and friction.

The proposed model represents a significant improvement on current sub-grid models as follows.
First, although porosity parameters are not explicitly defined in the model, the formulation resolves
porosity effects (e.g. the effect of topography on storage) and anisotropy in a more generalised way
that includes the intrinsic dependency on the free surface elevation. That is, the effects of porosity
and anisotropy are not constant in time during the propagation of a flood wave, which is conceptually
similar to dynamic porosity. Second, the proposed model implements a new technique to upscale
the effects of fine-scale distribution of bed elevation and roughness on friction and fluxes across cell
interfaces. Finally, the model improves the solution of the governing equations at partially wet cells
using sub-grid, fine resolution data. Most of the above improvements require additional computational
effort only at pre-processing level.

The model presented herein bears close similarities to other sub-grid models recently proposed
in the literature. For example, Volp et al. (2013); Hénonin et al. (2015) and Sanders and Schubert
(2019) also used a nested computational mesh, although their proposed methods to upscale each of
the terms in the SWE are different to those presented in this research. Examples of upscaling methods
used previously include simple averaging of depths (Hénonin et al., 2015), modelling the distribution
of velocity according to a resistance law under the assumption of constant energy slope for the friction
source term (Sanders and Schubert, 2019), or a combination of both (Volp et al., 2013). In this work,
we define upscaling methods for each of the terms in the SWE based on integration of the governing
equations over a coarse computational cell. The effects of sub-grid modelling choices adopted here
are compared against other methods in the following chapters.

Table 1.1 lists similarities and differences between the proposed model and other approaches
previously introduced. Furthermore, the properties of the proposed model as a version of sub-grid
approach are compared with the main properties of other sub-grid models such as the model proposed
by Sanders and Schubert (2019) in Table 1.2.
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Figure 1.6: The two nested meshes of the proposed model. These meshes are related to a rectangular
domain. The domain is covered by large and small cells. A large cell includes an integer number
of small cells and the coarse and fine meshes share a common boundary. The refined mesh
contains high-resolution topography and roughness data, which are not obtained from any hypothetical
distribution function.
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Table 1.1: A brief comparison between high performance approaches and the the proposed model.

Approaches
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Further description

Simplified models 5 5 5

- Simple formulation.
- Unacceptable accuracy in some flow regimes and cases.

3/5 5 5

- Slow simulation in certain cases
- Complicated programming.

Parallel - A refined mesh conventional model can be solved by
computing parallel programming. In this case, the accuracy of the

model is the highest compared to the other methods
have been listed in this table.

Nested meshes 3/5 3 3/5

- These models exploit multiple meshes with different
resolutions. This provides further (relative to 1 mesh)
detailed topographic data involved in the solution
process. Thus, better description of the flow dynamics
is achievable.

- Nested meshes models use detailed topographic data
for several purposes, such as calculation of net wet area
of a cell blocked by obstacles. In the proposed sub-grid
model, high-resolution data has further uses [e.g. micro
topography is adopted in source terms of the governing
equations (i.e. friction and bed slope) and flux
calculations].
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Approaches
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Further description

3/5 3 3

- These models are aimed at run-time reduction using
grid coarsening. To avoid lack of accuracy, porosity
parameters are incorporated into the governing

Current porosity equations.
models - Static porosity coefficients may not deliver a good

interpretation of flow dynamics. However, recently,
dynamic porosity models have attracted research
interest (e.g. Guinot et al., 2018; Özgen et al., 2016a,b).

Adaptive mesh 3/5 5 5

- The efficiency is obtained using a refined mesh only
at places with large changes in hydraulic properties
and a coarse mesh for the rest of the domain. This leads
to reduction in the number of cells in the domain.

- Small cells, which appear within a small fraction of the
study domain with high changes in hydraulic properties,
may limit the time step (Liang and Smith, 2015).

Proposed model 3 3 3

- Accuracy improvement is achieved by incorporating
detailed topography and roughness data in the process
of solution.

- To avoid additional computational cost related to the
inclusion of details, many computations are performed
at the pre-processing level.

3/5 =Mixed versions.
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Table 1.2: Comparison between the proposed model and current sub-grid (porosity and non-porosity)
models.

Model

Effects of variations of topography within a Storage (S) and conveyance (C)
computational cell on the computations of changes of a computational cell in
Mass & Friction Bed Time Space

momentum slope slope S C S Cfluxes source term source term
Current porosity

5 1 3 2 5 3/5 3/5 3/5 3/5models
Non-porosity

33 33 33 3 3/5 4 3 3/54
models
Proposed

3 3 3 3 3 3 3sub-grid model
1- Guinot et al. (2017) more recently has addressed this.
2- In current porosity models, friction effects are estimated for the submerged area of a cell (in a sense,

the volumetric porosity computed through micro topography shows net wet area of a cell contributing
in friction calculations). In the proposed model, further uses are exploited from the micro-topography,
as follows. According to the Manning equation, friction is a function of water depth

(

sf =
q2n2M
ℎ10∕3

)

.

Current porosity models only use the average of water depth in a cell, but the proposed sub-grid model
incorporates information on the distribution of water depth over all the wet small cells into the
computations, which Herein, nonleads to higher accuracy in friction computations.

3- In the model of Hénonin et al. (2015), micro topography (variations of topography within a computational
cell) is only used for accurate estimation of ℎ in a computational cell. The obtained ℎ contributes to the
computations of the fluxes and friction and bed slope source terms.

4- In the model of Hénonin et al. (2015), the conveyance of a computational cell is not adopted in the process
of solution.

* Herein, non-porosity model means a nested mesh model, such as Sanders and Schubert (2019)
and Hénonin et al. (2015) which does not use any porosity parameter explicitly but make use of
sub-grid data and have some similarities to the proposed model.

3/5 =Mixed versions.
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1.3.3 Objectives

The proposed model exploits low-resolution meshes to speed up flood inundation simulations and
in order to increase the accuracy of the coarse resolution model, high resolution data is included
in the solution. The use of a nested mesh is a key difference with respect to the proposed solver
compared to that of a conventional FV model. Then, a main requirement of this thesis is upscaling
all terms of the governing equations from the high- to low- resolution mesh, on which the solution
is proceed. Also, the proposed model requires methods that allow most of the computational cost
associated with the inclusion of high-resolution information to be invoked solely at the processing
stage. Such computations mostly relate to the estimation of parameters that depend on water surface
level. The thesis objectives are therefore as follows:

• Definition of a mechanism to estimate the mass and momentum fluxes in the framework of a
Godunov FV method;

• Treatment of friction slope source term;

• Treatment of bed slope source term;

• Development of an efficient pre-processing stage;

• Verification and validation of the proposed model against a number of analytical solutions and
field data;

• Assessment of the performance of the proposed model in terms of accuracy and speedup.

1.4 Synopsis

Chapter 1 has reviewed the main approaches used to improve the performance of computational
models applied to large-scale flood simulation, identified the research gap, and listed the aim and
objectives of the thesis. Chapter 2 describes the fundamental concepts and methods behind the
proposed model and/or required for understanding later chapters, including the finite volume method,
the HLLC Riemann solver, wetting-drying conditions, boundary conditions, and the inverse method
used to produce analytical solutions to the governing equations under 1D steady flow. Chapter 3
explains the methodology underpinning the proposed sub-grid model. This chapter presents the
governing shallow water equations and the methods used to upscale different terms (including bed
and friction slope source terms, and mass and momentum fluxes at cells interface). The structure
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of the proposed model is illustrated through a flowchart that displays the hierarchical process used
to accomplish the cycle of the computations at a given time level. Chapter 4 presents and interprets
the results of numerical simulations performed to verify and test the accuracy and computational
performance of the model. Benchmark case studies are presented along with real-world test cases.
Chapter 5 lists the main conclusions of the work and suggests further research directions arising from
the thesis.
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Godunov-type Finite Volume Techniques

for Solving the Shallow Water Equations

This chapter outlines and reviews Godunov type finite volume methods used to solve the 2D shallow
water equations, and provides the context behind the model proposed in the thesis. Central to
the finite volume method is the approximation of mass and momentum fluxes at the interface of
each two neighbouring computational cells, which is performed through the solution of a Riemann
problem (The Riemann problem is an initial value problem whereby the initial condition consists
of a single discontinuity within the domain.) Although the exact solution of the Riemann problem is
mathematically available within the literature, for practical purposes, approximate Riemann solvers are
generally used because of their improved computational performance (see e.g. Toro, 2001; LeVeque,
2002). This chapter compares the most popular Riemann solvers within the literature, and gives
specific details of the HLLC scheme used in the proposed model, along with the different types of
boundary condition

For verification purposes, in Chapter 4 simulations by the proposed model are compared against
analytical solutions for certain benchmark test problems. The second test (in section 4.2) comprises
the propagation of a hydraulic bore from a dam break on a wet or a dry horizontal bed. These cases
examine the ability of the scheme to model a rapidly evolving unsteady transcritical flow. The fifth test
relates to steady state flow in a prismatic rectangular channel, for which inverse analytical solutions
have been derived byMacDonald (1996). This method enables a large range of steady state conditions
to be considered for key parameters including spatially varying cross-sections and bed roughness
coefficients.
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Many real world and even artificial problems deal with wetting-drying (i.e. the moving of a wet
front over a dry bed and vice versa). Under such circumstance, computational models must take a set
of measures into the consideration to prevent negative water depth or unphysically large velocities.
Section 2.6 describes the wetting and drying scheme used in the proposed model.

In numerical modelling, it is required to ensure that governing equations are being solved correctly
and the solution is insensitive to grid resolutions. In computational fluid dynamic grid convergence
index is a popular method to determine discretisation error bands and analysing mesh dependency. In
the current chapter, this method is introduced in brief.

2.1 Numerical methods for solving shallow water equations

In recent decades, the 2D shallowwater equations have, for many problems in engineering and science,
emerged as the best trade-off between acceptable interpretation of the physics of free surface flows and
the complexity of the solver. Unsurprisingly, the SWEs have gained widespread popularity in research
and practical engineering (Alcrudo and García-Navarro, 1993; Zhao et al., 1996; Zoppou and Roberts,
2000; Mignot et al., 2006; Liang et al., 2008; Wang et al., 2011b; Liang, 2012; Sanders and Schubert,
2019). In the present research, theses equations are adopted as the governing equations. In Appendix
A, the derivation of 2D SWE from the Navier-Stokes equations is presented. The integral form of 2D
SWE reads as

)
)t ∫Ω

UdΩ + ∮Γ
[E(U) ⋅ e]dΓ = ∫Ω

S(U)dΩ, (2.1)
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U =

⎛

⎜

⎜

⎜

⎜

⎝

ℎ

qx
qy

⎞

⎟

⎟

⎟

⎟

⎠

, E = [F,G], F(U) =

⎛

⎜

⎜

⎜

⎜

⎝

qx
q2x
ℎ
+ g

2ℎ
2

qxqy
ℎ

⎞

⎟

⎟

⎟

⎟

⎠

, G(U) =

⎛

⎜

⎜

⎜

⎜

⎝

qy
qxqy
ℎ

q2y
ℎ
+ g

2ℎ
2

⎞

⎟

⎟

⎟

⎟

⎠

, (2.2)
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where, qx and qy are the x and y components of unit width discharges, respectively, e =
[

ex, ey
] is the

unit vector normal to boundary Γ. Since the equations are nonlinear, in order to solve the system, a
robust numerical model is required. Over the past decades, different classes of numerical methods have
been used to solve shallow water equations, such as finite volume, finite element and finite difference.
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The main merit of the finite difference (FD) method is its relative simplicity in reaching a high
order of accuracy. However, this may come at the cost of long simulation time, (Hernández, 2014).
On the other hand, research has shown that the method of FD has a number of shortcomings. For
instance, FDmodels result in complicated formulations when the domain involves complex geometries
(Hernández, 2014). However, the main limitation of the finite difference method is its inability to solve
discontinuous problems, or even problems where the solution displays large gradients. This issue
arises from the fact that FD schemes are based on the differential form of shallow water equations and
derivatives are not defined at discontinuities. However, this issue can be relatively addressed by the
inclusion of a Riemann solver in a FD model. It is also worth mentioning that it is not always possible
to obtain a conservative scheme by using FD models.

The Finite Volume (FV) method is straightforward to implement on complicated (i.e.
unstructured) meshes. FV methods are based on closed cells of finite area (in two dimensions) which
function as a control volume that exchanges mass and momentum with its neighbours. The solution
evolves in time by applying principles of mass and momentum conservation to the cell, which is
followed by averaging of the conserved variables. The method deals with discontinuous solutions
explicitly and is able to capture shocks. In fact, it solves discontinuities (Riemann Problem) even when
the solution is continuous. It also guarantees conservation, as fluxes leaving any cell go necessarily to
the neighbouring cells.

The Finite Element (FE) method depends on a variational formulation (Zienkiewicz and Taylor,
2000) of the motion equation. Although the FE method has a rigorous mathematical base, which
restricts error estimation, and is well suited to complex geometries and irregular meshes, its complex
concepts and greater computational burden relative to the finite volume method has led to fewer
researchers selecting the FE method for flooding studies (Alcrudo, 2002). It can also be proved that
some finite element methods are equivalent to the FV (Achdou and Bernardi, 2001; Alcrudo, 2002).

Because of the aforementioned advantages, finite volume schemes of the Godunov type, the
diversity of which occurs through the scheme dimensions (1D, 2D or 3D), order of accuracy of the
scheme, type of Riemann solver (further expanded later), and treatment of source terms, have become
a standard numerical tool in free surface modelling, (see for example Begnudelli and Sanders, 2007;
Bradford and Sanders, 2002; Brufau et al., 2004; Hubbard and Dodd, 2002; Kesserwani and Liang,
2012b) .

For a quadrilateral cell, the integral form of the two-dimensional shallowwater equations (i.e. Eqs.
2.1 to 2.3) can be discretised as below using the first order Euler method, (Soares-Frazão and Zech,
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2002),

Un+1
i = Un

i −
Δt
Ωi

m=4
∑

m=1

[

Em(Un
i ) ⋅ emΓm

]

+ ΔtSb(Un
i ) (2.4)

where subscript i denotes the cell index, n is the time level, Ωi is area of ith cell, Δt is the time step, m
denotes the number of cell edges (or interfaces with other cells), Γm is the length of mth edge of cell.
According to (Godunov, 1959), the conservative variables are approximated constant (in first order
models) and interface fluxes (i.e. Em(Un

i ) ⋅ em are computed by solving the Riemann problem. In the
literature, one of the most popular and versatile Riemann solvers is the HLLC solver, which is detailed
in the following section.

2.2 HLLC scheme

The estimation of numerical fluxes (i.e. Em(Un
i ) ⋅ em in Eq. 2.4) has considerable influence on

simulation accuracy. In Godunov type finite volume schemes, the fluxes are approximated by solving
the Riemann problem at each cell interface, (Godunov, 1959). By means of a simple expression, a
Riemann problem consists of conservation equations with discontinuous initial conditions at a point,
which can be the interface between neighbouring cells as shown in Fig. 2.1, so that before and after this
point, the conservative variables are approximated as constant, (Godunov, 1959). The exact solution to
the Riemann problem may impose heavy time burden on a computational model (Toro, 2001). Thus,
approximate solutions for the Riemann problem have been developed.

In recent decades, significant research has been conducted in the context of approximate Riemann
solvers, with considerable focus on the shallow water equations. Amongst these, Roe, HLL, Osher,
and HLLC schemes have been evaluated largely using idealised benchmark test cases and field-scale
shallow water simulations, (Bermudez and Vázquez-Cendón, 1994; Toro, 2001; Brufau et al., 2004;
Zhou et al., 2004; Loukili and Soulaimani, 2007; Song et al., 2011; Huang et al., 2013). Erduran
et al. (2002) conducted a study to compare these Riemann solvers in terms of accuracy, applicability,
numerical stability, and run-time. They found that HLLC (Harten, Lax and van Leer Contact), which
was developed by Toro et al. (1994) is highly recommended as a solver, especially given that it is
suitable for all kinds of applications. A similar study was conducted by Kong (2011), which compares
four popular Riemann solvers, namely Roe, HLL, HLLC, and Osher-Solomon. The Riemann solvers
were tested against a comprehensive variety of test cases to assess the solvers’ accuracy and robustness.
The study does not start from the premise that any Riemann solver is perfect; however, the HLLC
scheme did show an outstanding performance compared to the other schemes considered. The negative
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Figure 2.1: Riemann problem conditions at the interface between neighbouring cells. Conservative
variables are specified byUL andUR for the left and right cells either side of the interface, respectively.
UL and UR are assumed constant in the vicinity of the interface.

point reported by the study for the HLLC scheme is that in certain test cases, the HLLC results display
more diffusion than those Roe’s scheme. This higher diffusionmay however be neglected in large-scale
flood inundation problems, the subject of this thesis, given that highly accurate prediction of shocks
and surges is not critical in flood simulation. Herein, the HLLC Riemann solver, which is adopted in
this thesis, is detailed.

In the Riemann solver, HLLC with the solver structure shown in Fig. 2.2, term Em(Un
i ) ⋅ em of Eq.

2.4 is estimated by (see Toro et al., 1994; Hou et al., 2013),

Em(Un
i ) ⋅ em =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

EL if 0 ≤ SL

EL
∗ if SL < 0 ≤ SM

ER
∗ if SM < 0 ≤ SR

ER if SR < 0

(2.5)

where, superscripts L and R specify the variables at the left and right sides of the mth interface of cell
i, respectively, EL = F(UL) ⋅ exm +G(UL) ⋅ eym and ER = F(UR) ⋅ exm +G(UR) ⋅ eym are defined based
on Eqs2.1 and 2.2, and EL

∗ and ER
∗ are detailed in the following paragraphs, SL, SM and SR are the
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left, middle (contact) and right wave speed, respectively and calculated by

SL =

⎧

⎪

⎨

⎪

⎩

u⟂R − 2
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gℎL if ℎR = 0

max
(

u⟂R −
√

gℎR, u⟂∗ +
√

gℎ∗
)

if ℎR > 0
(2.7)

SM =
SLℎR

(

u⟂R − SR
)

− SRℎL
(

u⟂L − SL
)

ℎR
(

u⟂R − SR
)

− ℎL
(

u⟂L − SL
) , (2.8)

in which, u⟂ = uexm + veym is the normal velocity to the mth interface and ℎ∗ and u⟂∗ are expressed as

ℎ∗ =
1
g

[1
2

(
√

gℎL +
√

gℎR
)

+ 1
4
(

u⟂L − u⟂R
)

]2
, (2.9)

u⟂∗ =
1
2
(

u⟂L + u⟂R
)

+
√

gℎL −
√

gℎR, (2.10)
EL
∗ and ER

∗ are defined as

EL
∗ =

⎛

⎜

⎜

⎜

⎜

⎝

E∗1
E∗2ex − u

∥LE∗1ey
E∗2ey + u

∥LE∗1ex

⎞

⎟

⎟

⎟

⎟

⎠

, (2.11)

ER
∗ =

⎛

⎜

⎜

⎜

⎜

⎝

E∗1
E∗2ex − u

∥RE∗1ey
E∗2ey + u

∥RE∗1ex

⎞

⎟

⎟

⎟

⎟

⎠

, (2.12)

where, u∥ = −ueym + vexm is the tangential velocity to the mth interface and E∗ =
[

E∗1 ,E∗2
] is

E∗ =
SRE

(

U⟂L) − SLE
(

U⟂R) + SRSL
(

U⟂R − U⟂L)

SR − SL
, (2.13)

in which, U⟂R =
[

ℎ, qxexm + qyeym
]

and

E
(

U⟂) =
⎛

⎜

⎜

⎝

ℎu⟂

u⟂
(

qxexm + qyeym
)

+ 1
2
gℎ2

⎞

⎟

⎟

⎠

, (2.14)

2.3 Boundary conditions

In a finite volume scheme, boundary conditions may be implemented through ghost cells, defined
adjacent to actual boundary cells. In the light of this, reflective (closed) and transmissive (open
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Figure 2.2: The structure of HLLC Riemann solver.erev evr vbb vb ebv b brb bbfgbgb fgb fgbfg b

inflow/outflow) boundary conditions may be expressed as follows. Assume a typical cell of a 2D
Cartesian mesh having four edges labelled Γ1 to Γ4 anticlockwise from the southern edge; for each
of which at the boundary, it is defined what values of conservative variables are assigned to the ghost
cells (i.e. ℎG, qGx and qGy ) based on the known variables ℎB, qBx and qBy , where superscripts G and B
denote the variables values at ghost and inner boundary cells, respectively.

a) Reflective boundary conditions

This boundary condition applies to reflection at a solid barrier (e.g. solid wall, where the boundary
acts as a mirror. This means that the velocity component normal to the boundary is reflected and water
depth and the velocity component tangential to the boundary is maintained unchanged, as indicated
in Table2.1.

Table 2.1: Values of conservative variables in a ghost cell in reflective boundary conditions.
Edge ℎG qGx qGy
Γ1 & Γ3 ℎB qBx −qBy
Γ2 & Γ4 ℎB −qBx qBy

b) Transmissive boundary conditions

Transmissive boundary conditions are implemented through Riemann invariants depending on the
flow direction (i.e. inflow/outflow) and regime (supercritical, critical and subcritical) of flow passing
into the boundary that can be described in three ways, namely: (b1) Subcritical inflow/outflow and
critical outflow, (b2) Supercritical and critical inflow and (b3) Supercritical outflow.
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b1) Subcritical inflow/outflow and critical outflow

Table 2.2 describes the transmissive boundary condition for the case of Subcritical inflow/outflow and
critical outflow in detail.

Table 2.2: Values of conservative variables in a ghost cell under the transmissive boundary conditions:
the case of subcritical inflow/outflow and critical outflow

Edge Theory of characteristics Subcritical inflow Subcritical and critical outflow
qGx qGy ℎG qGx qGy ℎG

Γ1
qGy
ℎG
− 2

√

gℎG =
qBy
ℎB
− 2

√

gℎB qBx
ℎB
ℎG PSCR * qBx

ℎB
ℎG ** PSCR

Γ2
qGx
ℎG
+ 2

√

gℎG = qBx
ℎB
+ 2

√

gℎB PSCR qBy
ℎB
ℎG * ** qBy

ℎB
ℎG PSCR

Γ3
qGy
ℎG
+ 2

√

gℎG =
qBy
ℎB
+ 2

√

gℎB qBx
ℎB
ℎG PSCR * qBx

ℎB
ℎG ** PSCR

Γ4
qGx
ℎG
− 2

√

gℎG = qBx
ℎB
− 2

√

gℎB PSCR qBy
ℎB
ℎG * ** qBy

ℎB
ℎG PSCR

* Obtained by solving the equations written in the table via methods such as Newton-Raphson.
** Obtained by solving the equations written in the table.
PSCR=prescribed.

b2) Supercritical and critical inflow

All conservative variables ℎG, qGx and qGy are prescribed.

b3) Supercritical outflow

Values of the real boundary cells are duplicated for ghost cells (i.e. ℎG = ℎB, qGx = qBx , qGy = qBy ).

Reconstructing conservative variables at ghost cells, the conservative variables are updated using
Eq. 2.4 with the following consideration. At reflective boundaries, the boundary is treated as a normal
edge within the domain (i.e. treated as an edge, which is far from is the boundary) and fluxes (i.e. term
Em

(

Un
i
)

⋅ em of Eq. 2.4) are computed according to Eq. 2.5, so that conservative variable values at
the both sides of the edge (interface) are those assigned to the ghost cell (ℎG, qGx and qGy ) and interior
cell (ℎB, qBx and qBy ). For transmissive boundaries, term Em

(

Un
i
)

⋅ em of Eq. 2.4 instead of Eq. 2.5 is
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computed based only on the ghost cells as follows,

Em
(

Un
i
)

⋅ em = exm

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

qGx

(qGx )
2

ℎG
+ 1

2g
(

ℎG
)2

qGx q
G
y

ℎG

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ eym

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

qGy
qGx q

G
y

ℎG
(

qGy
)2

ℎG
+ 1

2
g
(

ℎG
)2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, m = 1, 2, 3, 4. (2.15)

2.4 Dam-break problem

Dam-break is a well-established benchmark problem in open channel computational hydraulics and is
important for the following reasons. First, shock and rarefaction waves are a part of the solution of the
dam-break problem that can be only captured accurately by robust and sophisticated computational
models. Second, the dam-break problem is an unsteady test case, for which there exists an analytical
solution to the shallow water equations. Consequently, many SWE-based computational models have
been verified against solutions of this benchmark test. The literature reports many dam-break studies
in which different factors are analysed such as the dimension of the problem (1D, 2D and 3D), friction
(flow propagation over the frictionless or frictional bed), bed form (flat, even or discontinuous bed),
and the downstream conditions in terms of being wet or dry (see e.g. Alcrudo and Benkhaldoun,
2001; García-Navarro and Vázquez-Cendón, 2000; Brufau and García-Navarro, 2000; Benkhaldoun
and Seaïd, 2010; Liu et al., 2018; Hu et al., 2018; Khoshkonesh et al., 2019). Herein, the widely used
form of the dam-break problem (i.e. flow propagation over a flat, frictionless bed, where the flow
conditions are initially still) is reviewed for both wet and dry initial downstream bed conditions.

a) Initially wet downstream bed

For the assumed dam-break problem, based on the characteristic curves method, the SWE’s solution
includes a downstream shock wave and upstream rarefaction wave. Fig. 2.3 illustrates the initial
conditions and a schematic solution to the governing equations. According to Fig. 2.3, the domain of
study may be split into four zones ( I to IV ). Zones I and IV are those have not been yet influenced
by the waves for which the initial conditions are valid. Zone II relates to a part of the domain, which
is experiencing the rarefaction wave and in zone III, the waves have passed the zone and steady flow
conditions have been set.

The velocity of the steady state flow at the moving front (i.e. zone III) is a function of its water
depth ℎ, and the downstream initial water depth ℎR and written as (LeVeque, 2002)

u =
√

g
2
(

ℎ − ℎR
)2
(1
ℎ
+ 1
ℎR

)

, (2.16)
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Identically, the flow velocity at each point on the rarefaction wave (i.e. zone II) relies on the two
variables ℎL (upstream initial water depth) and ℎ as (LeVeque, 2002)

u = 2
(
√

gℎL −
√

gℎ
)

. (2.17)

The solution of simultaneous equations 2.16 and 2.18 gives the water depth and velocity in the
zone II. The positions of the waves at any time depends on their wave speeds. The speed of the shock
front is

Vs =
√

g
2
(

ℎ + ℎR
)

( ℎ
ℎR

)

. (2.18)

The speed of the smoothly, curving rarefaction wave is √gℎ. This means that the wave’s speed is
not constant along the rarefaction wave as ℎ varies, so that the highest speed belongs to the farthest
upstream point of the rarefaction wave moving at the speed of√gℎL.

Figure 2.3: The solution mechanism of the dam-break problem for an initially wet downstream
bed.erev evr vbb vb ebv b brb bbfgbgb fgb fgbfg b

b) Initially dry downstream bed

In the case of an initially dry downstream bed, the solution to the dam-break problem contains a
rarefaction wave propagating upstream and downstream as shown in Fig. 2.4. The first analytical
solution to this type dam-break problem (i.e. initially dry downstream bed) was first presented by
Ritter (1892), in which the water depth and flow velocity at each point of the rarefaction wave (i.e.
zone II) are obtained as

ℎ = 1
9g

(

2
√

gℎL − x
t

)2
, (2.19)
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u = 2
3

(
√

gℎL + x
t

)

. (2.20)

Figure 2.4: The solution mechanism of the dam-break problem for an initially dry downstream
bed.erev evr vbb vb ebv b brb bbfgbgb fgb fgbfg b

2.5 Inverse method for a prismatic rectangular channel

In many free surface flow problems involving the shallow water equations, there is no exact solution
and numerical modelling is the only tool to approximate the exact solution for these problems. Thus,
analytical solutions of standard benchmark tests are very useful to evaluate the accuracy of numerical
models.

MacDonald (1996) presented a simple method to design 1D steady free surface flow problems
whereby their analytical solutions are derived from the shallow water equations. The method is called
an inverse method because, compared to typical free surface flow problems, the reverse procedure is
followed to find the solution. In typical hydraulic channel problems, the channel bed characteristics
such as bed slope and cross-section geometry are already known, and the water surface profile is
computed from inflow/outflow discharges. In MacDonald’s inverse method, first the water depth
solution, flow discharge (constant), and channel cross-section geometry (varied or fixed) are assumed
for the channel and then the corresponding longitudinal bed profile is computed. Herein, an inverse
method for prismatic rectangular channels is presented.
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According to the literature (Henderson, 1966), the following expression may be derived for
gradually varied flow in an irregular prismatic channel [the following expression is a special case of
the general expression presented and derived in Appendix B, corresponding to 1D steady free surface
flow channels (non-prismatic channels)],

dℎ
dx

=
s0 − sf
1 − Fr2

, (2.21)

where, Fr =
√

Q2T
gA3

is the Froude number and Q, T and A are respectively, discharge, channel width
and cross-section area.

According to Eq. 2.21, the bed profile is obtained as

s0 =
[

1 − Fr2
] dℎ
dx

+ sf , (2.22)

where, sf (friction slope) can be approximated using the Manning coefficient,

sf =
Q2n2M

A2R
4
3

, (2.23)

in which, R is the hydraulic radius and equals the ratio of cross-section area to cross-section wet
perimeter.

For a wide rectangular channel, whereR ≅ ℎ is assumed, Eq. 2.22 is converted into the following
formulation,

s0(x) =
[

1 − Q2

gℎ(x)3T 2

]

dℎ
dx

+
Q2n2M

ℎ(x)
10
3 T 2

. (2.24)

Since by definition s0(x) = − dz
dx , then the bed profile for the assumed water depth solution and

given discharge is easily obtained as

z = z0 − ∫

x

0
s0(x)dx, (2.25)

where, z0 is the channel bed level at x = 0.

2.6 Wetting and drying

To simulate an actual flood inundation problem, a computational model should deal with wetting
and drying conditions. In practice, an inaccurate representation of the wet-dry problem may lead
to the appearance of a negative water depth and unphysical high velocities around a wet-dry front.
This might smear out the model performance and even result in numerical instability, (Wang, 2011).
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Moreover, mass and momentum conservation is (both locally and globally) central in addressing the
wetting-drying problem.

According to Medeiros and Hagen (2013) [similar discussion is also available in Le et al. (2020)
and Martins et al. (2018)], wetting-drying algorithms can be categorised in four classes, namely
element removal, thin layer, depth extrapolation, and negative depth so-called artificial porosity.

In the element removal method, wet and dry cells are detected. The dry cells are excluded from
the computation process and the solution is only performed for the wet cells. This algorithm may
involve the failure of mass and momentum conservation, and introduce numerical instability (Kärnä
et al., 2011).

The thin layer method comprises a wetting-drying algorithm in which cell water depths are
compared against a pre-defined threshold water depth. Any cell with a water depth less than the
threshold is assumed dry, and its velocity is then set to zero. The main advantage of the algorithm is
that it is easily applied to 2D and 3D problems (Gourgue et al., 2009). Two major shortcomings are
reported for this method within the literature. The threshold depth may manipulate the water volume
in the domain and affect mass conservation. Around the wetting front, the algorithm requires rapid
transfer of cell states from dry to wet, restricting the time step in an explicit scheme and lowering the
accuracy of non-linear systems solved by an implicit scheme (Le et al., 2020).

In depth extrapolation algorithms, a water depth is attributed to a dry cell, the value of which is
obtained from an extrapolation implemented using the water depths of the neighbouring wet cells.
The attributed water depth is then adopted in evaluating the velocity in the cell. The dry cell is now
ready to be integrated into the wet domain. The artificial wetting imposed on dry cells is followed by
artificial leakage between adjacent cells (Bradford and Sanders, 2002) that affects mass conservation,
the control of which requires corrective schemes (Begnudelli and Sanders, 2006).

Negative depth algorithms are allowed to have cells with negative water depth controlled through
porosity terms. In this method, wet and dry cells are not separately treated (Gourgue et al., 2009) and
wet-dry transitions are smooth (Kärnä et al., 2011). However, the method has several disadvantages,
such as the violation of mass conservation stemming from mass transferring from dry to wet areas
(Martins et al., 2018; Heniche et al., 2000), and appearance of unphysical properties in the fictitious
porous layers.

Herein, some important wetting-drying numerical treatments are reviewed. Toro et al. (1994)
introduced the modified wave speed approach, in which the wave speed calculated by the HLL
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approximate Riemann solver, is modified at cell interfaces near the dry front. The method was adopted
by Fraccarollo and Toro (1995) and evaluated against an experimental dam-break case, the results
of which were very promising. Hu et al. (2000) later presented a simpler approach, referred to as
minimum wet depth in the literature, which redefines the dry state when water depth is less than a
tolerance depth (10−6), in which wave speed modification is prevented. This method has been applied
successfully in simulations of wave overtopping of coastal structures (Wang, 2011).

A wetting-drying treatment was presented by Brufau et al. (2002) and Brufau et al. (2004)
for steady and unsteady flows, respectively, based on local bed modification, and the technique
is implemented using the upwind discretisation of bed slope terms with a particular focus on
well-balancing. In the proposed method, negative water depth is unavoidable; however a controlling
approach is adopted to eliminate the mass error. A drawback of the technique may be the violation of
momentum conservation.

Audusse et al. (2004) presented a computational model that successfully handles wetting-drying
problem using a well-balanced hydrostatic reconstruction in which non-negative water depth is
guaranteed without artificially imposing zero velocity and water depth in the model. The method
was later followed by Marche et al. (2007)) and outstanding results were obtained. In the light of
Audusse et al. (2004), and (Marche et al., 2007), Liang and Marche (2009) developed a sophisticated
technique to maintain the numerical stability, while prevents non-negative water depth reconstruction
at wetting-drying interface. The main features of the method are efficiency and robustness in a wide
range of applications. In this PhD research this set of methods, which are widely used (see e.g. Wang
et al., 2011a; Kesserwani and Liang, 2010; Wu et al., 2018) is adopted as follows.

Denoting the hydraulic and geometric variables of two cells at both sides of an interface by
superscripts L and R (see Fig. 2.5), the following procedure comprises the wetting-drying treatment.
In the following steps, the variables, such as �, qx and qy, at the interface are the reconstructed by a
finite volume scheme. The new modified variables arising from the wet-dry procedure are adopted to
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estimate the Riemann state of numerical fluxes.

a) z∧ = max
(

zL, zR
)

,

b)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

uL = qLx
max[10−5,(�L−zL)] , vL =

qLy
max[10−5,(�L−zL)]

uR = qRx
max[10−5,(�R−zR)] , vR =

qRy
max[10−5,(�R−zR)]

,

c)

⎧

⎪

⎨

⎪

⎩

ℎ∧L = max
[

0,
(

�L − z∧LR
)]

ℎ∧R = max
[

0,
(

�R − z∧LR
)]

,

d)

⎧

⎪

⎨

⎪

⎩

�∧L = ℎ∧L + z∧LR

�∧R = ℎ∧R + z∧LR
,

e)

⎧

⎪

⎨

⎪

⎩

q∧Lx = uLℎL q∧Ly = vLℎL

q∧Rx = uRℎR q∧Ry = vRℎR
,

(2.26)

Figure 2.5: Two neighbour cells. This figure defines the variables used in the introduced
wetting-drying algorithm.

59



Chapter 2

2.7 Grid convergence assessment

In computational modelling, the ordered discretisation error may be assessed through the examination
of the spatial convergence. This assessment is preceded from an error analysis, which is based on
the numerical solutions of a model obtained at different (two or more) grid (or mesh) resolutions.
Herein, the grid convergence assessment is established via the GCI (grid convergence index) criterion
proposed by Roache (1994). The GCI criterion relies on the old concept of Richardson extrapolation
(Richardson, 1911).

Using the Richardson extrapolation at a certain point of the domain of study, the discretised
solution f can be written as a series via the exact solution (fe) at that point as:

f = fe + C1(Δx) + C2(Δx)2 + C3(Δx)3 + ..., (2.27)

where the functionsC1,C2, etc. are defined in the continuum and are independent of any discretisation,
Δx denotes the used grid resolution at which the solution f has been performed. By neglecting the
terms of order higher than p, Eq. 2.27 leads to

f = fe + Cp(Δx)p + H.O.T, (2.28)

where, H.O.T. are higher-order terms, and p is the order of accuracy. Order of accuracy is an important
property, which defines the pace at which a numerical solution is converged, as the grid is refined, to
the exact solution.

Assume that at the point we are discussing, there are three solutions f1, f2, and f3 which have
been obtained at the grid size Δx1,Δx2, and Δx3, respectively, so that Δx2Δx1

= Δx3
Δx2

= r and Δx1 is the
highest grid resolution adopted. Then Eq. 2.28 gives

fi ≅ fe + Cp(Δxi)p, i = 1, 2, 3. (2.29)

Using Eq. 2.29 and through certain algebraic operations, the order of accuracy can be
approximated as:

p ≅
ln
(

f3−f2
f2−f1

)

ln (r)
, (2.30)

and fe can be estimated by

⎧

⎪

⎨

⎪

⎩

fe = f1 +
(f1−f2)
rp−1

fe = f2 +
(f2−f3)
rp−1

(2.31)
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Using Eq. 2.31 and based on the solutions f1, f2, and f3, the estimated fractional error (Ee) is
expressed as:

⎧

⎪

⎨

⎪

⎩

Ee1 =
fe−f1
f1

× 100 ≅ �21
rp−1

Ee2 =
fe−f2
f2

× 100 ≅ �32
rp−1

, (2.32)

where, � is the percentage relative error, which defined as:
�21 =

f1 − f2
f1

× 100, �32 =
f2 − f3
f2

× 100. (2.33)

GCI is a criterion, which is conceptually similar to the estimated fractional error, is defined as
follows:

GCI21 = Fs
∣ �21 ∣
rp − 1

, GCI32 = Fs
∣ �32 ∣ rp

rp − 1
, (2.34)

where, Fs is the factor of safety and it is recommended to be set to 3.0, when the solutions f1 and f2
are only available, and Fs = 1.25 when the solution f3 is also incorporated in the process of analysis.
The GCI criterion can ensure us that grids are in the asymptotic range of convergence by checking:

GCI32
rpGCI32

≅ 1. (2.35)

2.8 Summary and conclusions

In this chapter, the integral form of the 2D shallow water equations as the governing equations adopted
in this research was introduced. Numerical methods in the literature widely used to solve the 2D
SWEs were also reviewed, and their advantages and disadvantages discussed. Based on the resulting
findings, the finite volume method with an HLLC approximate Riemann solver was chosen for the
current research

Inaccurate application of the boundary conditions smears the solution. In this chapter, all possible
boundary conditions states (i.e. reflective and transmissive boundary conditions under different flow
regimes) for a Cartesian mesh, which is adopted herein, were explained.

The proposed model in this thesis requires to be verified against a set of analytical test cases.
Herein, the dam-break problem and inverse method were introduced, according to which a large wide
range of artificial tests with exact solutions to the SWE under the steady and unsteady flow regimes are
created. To prevent any unrealistic and unphysical solutions in water depth and velocity, the measures
were recommended by Liang andMarche (2009) were reviewed and implemented in the current study.
In this chapter, the concept of GCI is also reviewed to be utilised in providing a formal grid convergence
analysis of test cases presented in Chapter 4.
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Model development

This chapter presents the development of the two nested mesh computational model, a sub-grid
approach developed based on the integral form of 2D shallow water equations. The governing
equations are solved on the high-resolution mesh and upscaled to the computational (low-resolution)
mesh. The solution is performed in the framework of an HLLC approximate Riemann solver. Herein,
the numerical treatment of all terms in the governing equations, including the homogenous shallow
water equations and friction and bed slope source terms is described in detail. In Chapter 1, different
models based on the 2D shallow water equations and their simplified versions were explained. To
avoid any ambiguity, the governing equations adopted here, which have small differences compared
to the formulation previously displayed (i.e. Eqs. 2.1 to 2.3), are presented in this chapter.

3.1 The nested meshes sub-grid model approach

The governing equations are solved on two nested meshes, coarse and fine, as shown in Fig. 3.1. Cells
defined on the coarse and fine meshes are hereafter referred to as large and small cells, respectively.
Large cells are the computational cells and contain several small cells where information such as
bed elevation and roughness coefficient are defined as constant. Within a large cell, topography and
roughness are piecewise constant. In this work, only grids of rectangular cells are considered, although
the modelling framework presented here may be adapted to other mesh types. This type of nested
computational grid has also been previously used by other sub-grid models (see e.g. Stelling, 2012;
Volp et al., 2013; Platzek et al., 2016; Duan et al., 2017; Sanders and Schubert, 2019)
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Fig. 3.1 illustrates the nested mesh and the main symbols used to describe it. The edges of
the large cell are denoted as Γ1 to Γ4 anticlockwise and Wd and Ld denote the overall dimension
of the rectangular computational domain. ΔX,ΔY , �x and �y are the dimensions of the large
and small cells, respectively and z is the elevation of the bed (hereafter often also referred to as
micro-topography). J and K are the number of columns and rows of the small cells in a large
cell, respectively. Hydraulic and geometric variables defined at large and small cells are labelled
as follows. Large cells are denoted by subscript i, whereas the position of a small cell inside this
large cell is represented by subscripts j and k (column and row, respectively), (see Fig. 3.1). As an
example zi ∣j,k means bed level at jth column and kth row of small cells inside the ith large cell.

3.2 Governing equations and their time integration

The proposed model solves the integral form of the two-dimensional shallow water equations the
derivation of which is available in Appendix A.

)
)t ∫Ω

UdΩ + ∮Γ
[E(U) ⋅ e]dΓ = ∫Ω

S(U)dΩ, (3.1)
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⎜

⎜

⎜
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+ g

2ℎ
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⎟

⎟

⎟
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, (3.2)

S(U) = Sb(U) + Sf (U), Sb(U) =

⎛

⎜

⎜

⎜

⎜

⎝

0

gℎs0x
gℎs0y

⎞

⎟

⎟

⎟

⎟

⎠

, Sf (U) =

⎛

⎜

⎜

⎜

⎜

⎝

0

−gℎsfx
−gℎsfy

⎞

⎟

⎟

⎟

⎟

⎠

, (3.3)

in which Ω is area of the domain over which the equation is solved (i.e. the area of a large cell), Γ
represents the boundary of this domain, ℎ denotes water depth, � is water surface elevation, e =

[

ex, ey
]

is the unit vector normal to Γ, sfx , sfy , s0x , s0y , qx and qy are the x and y components of frictional and
bed slopes, and unit width discharges, respectively. Friction slopes are modelled using Manning’s
expression sfx =

u∥V∥n2M
ℎ4∕3

, sfy =
v∥V∥n2M
ℎ4∕3

, where u and v are x and y velocity components and ∥ V ∥=
√

u2 + v2 is the magnitude of the velocity vector. It should be noted that the conserved variable ℎ in
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Figure 3.1: Nested meshes adopted in the proposed sub-grid. ejggriogjtjr jiior hjiro jh hkr ij hbjti
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the vector U(x, y, t) is replaced with � given that � = ℎ + z and a non-erodible bed is assumed (i.e.
)z
)t
= 0).

Spatial averages over computational cells are hereafter denoted by the overbar, e.g.

U = 1
Ω ∫Ω

UdΩ. (3.4)

The solution at time level n + 1 is obtained from values of the conserved variables at n via an
intermediate state usually referred to as the fractional step (LeVeque, 2002). In the proposed model,
the intermediate state is obtained by solving the equations including all terms except Sf . This time
integration is performed over a large cell by the first order Euler method as follows,

U
∗
i = U

n
i −

Δt
Ωi

{m=4
∑

m=1

[

∮Γm
Em(Un

i ) ⋅ emdΓm
]

+ ∫Ωi
Sb(Un

i )dΩi

}

, (3.5)

where, U
∗
i is the average of the conservative variable vector at the intermediate state. The solution at

time level n + 1 is then obtained by introducing the friction term:

d
dt ∫Ωi

U∗
i dΩ = ∫Ωi

Sf
(

U∗,n+1
i

)

dΩ, (3.6)

which in differential form reads as

d
dt

U∗
i = Sf

(

U∗,n+1
i

)

. (3.7)

Godunov type finite volume techniques for the solution of Eq. 3.5 estimate the first integral using
Riemann solvers with values of U

n
i reconstructed on each side of the edges of the cell, while the second

integral is typically solved as Sb
(

U
n
i

)

dΩi, (e.g. Valiani and Begnudelli, 2006; Liang and Marche,
2009; Liang, 2010). At fine grid resolutions, this approach typically results in good accuracy, but
since the objective of the current work is to solve Eqs. 3.5 and 3.6 at coarse resolution, an improved
method needs to be adopted. The following sections describe the methods proposed in this research
to approximate each of the integrals in Eqs. 3.5 and 3.6.

To prevent numerical instabilities, the time step used in the solution of Eq. 3.5 must be restricted
by the Courant–Friedrichs–Lewy (CFL) condition (see e.g. Toro, 2001; LeVeque, 2002),

Δt = min

⎛

⎜

⎜

⎜

⎜

⎝

ΔX CFL
|

|

|

qnxi
|

|

|

ℎ
n
i
+
√

gℎ
n
i

, ΔY CFL
|

|

|

qnyi
|

|

|

ℎ
n
i
+
√

gℎ
n
i

⎞

⎟

⎟

⎟

⎟

⎠

i=N

i=1

CFL < 1, N = number of large cells. (3.8)
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3.3 Upscaling the shallow water equations

3.3.1 Solving the homogeneous part of the governing equations

The proposed model uses a Godunov-type finite volume method to solve the homogeneous part of
equations. The procedure is similar to other finite volume models, except for one key difference. In
order to improve the accuracy of fluxes computed at each interface of a large cell, the model solves a
Riemann problem at each interface between small cells located at the edges of large cells, whereas in
traditional finite volume models, only one solution is performed at each large edge. This approach is
similar to the recently published method of Sanders and Schubert (2019). Fig. 3.2 shows an example
of two neighbouring large cells. At the common interface, there are four small cells on each side, and
the Riemann problemwould need to be solved four times. Fluxes at each small cell interface are solved
by the Harten, Lax and van Leer Contact (HLLC) Riemann solver (Toro et al., 1994) with values of
depths and velocities reconstructed on both sides of each small cells.

Reconstructed depths vary along a cell interface according to micro topography as ℎ = max (� −
z, 0), while the free surface elevation � is assumed constant across the large cell. It is assumed that this
simple reconstruction of � at the edges of a large cell provides an accurate approximation, given that
in many problems of flood propagation over complex topography (e.g. river and coastal flooding),
changes in the free surface elevation are considerably milder than variations in the bed elevation.
Begnudelli et al. (2008) compared the results of two Godunov type FV models: (i) a second order
accurate scheme for the solution of the homogeneous equations, (ii) a first order accurate scheme
adopting a second order topographic model (linear variation of bed elevation inside each cell). They
concluded that in practical cases, the latter can be more accurate, efficient and robust than the former.
The piecewise constant reconstruction also simplifies the equations representing the effects of micro
topography in the SWE and the corresponding solution. The following section describes a new
methodology to model the distribution of the remaining conserved variables (qx, qy) at the interface
between two large cells, which are also used in the computation of fluxes through a Riemann solver.

3.3.2 Flow reconstruction at the edges of two neighbouring large cells

Eq. 3.5 computes the spatially averaged values of U
∗ from the values of U

n. In order to approximate
the fluxes across large cells accurately, values of U

n need to be downscaled to define the values of �
and q = [qx, qy] at interfaces between the small cells. In this work, we propose an heuristic method to
downscale spatially averaged conserved variables qnx and qny to the fine resolution grid at the interface
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Figure 3.2: Example of the distribution of bed elevation within and along the interface between two
large cells.

between two large cells.

Fig. 3.3 shows an example of a cross-section along the edge Γ4 of ith large cell. The values of
depth and Manning’s roughness coefficient of the small cells vary along the cross-section. The model
distributes the values of qny and qny along the edge Γ4 solely for the wet small cells, the number of which
(

NΓ4

) is a function of �ni . This distribution is performed based on the assumption of a constant friction
slope at the edges (e.g. Chow, 1959; Cunge et al., 1980; Burguete et al., 2008). Using Manning’s
relation for the x component of the unit discharge,

qnxi
|

|

|1,k
=

[

(

1
nM

ℎ
5
3

)

1,k

(

√

sf"x
)

Γ4

]n

i

, 1 ≤ k ≤ Nn
Γ4
, (3.9)

where, "nxi is the x component of the unit vector parallel to q at ith large cell and time level n, and
snfi

|

|

|

Γ4 represents the (constant) magnitude of the friction gradient at all small cells adjacent to the Γ4.
The cross-section average of the x component of unit width discharge at the edge Γ4 (here denoted by
q̃nxi

|

|

|

Γ4 ) is by definition given by

q̃nxi
|

|

|

Γ4 =
⎡

⎢

⎢

⎣

1
NΓ4

NΓ4
∑

k=1

(

qx|1,k
)

⎤

⎥

⎥

⎦

n

i

, (3.10)

or alternatively,

q̃nxi
|

|

|

Γ4 =
[

(

 e
√

sf"x
)

Γ4

]n

i
, (3.11)

where,  e is the cross-section’s conveyance,

 nei
|

|

|Γ4
=
⎡

⎢

⎢

⎣

1
NΓ4

NΓ4
∑

k=1

(

ℎ
5
3

nM

)

1,k

⎤

⎥

⎥

⎦

n

i

. (3.12)
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Figure 3.3: Unit width discharge distribution across the edge Γ4 of ith large cell of the domain.

Downscaling the values of q through Eq. 3.10 requires the computation of  e through Eq. 3.12,
which can be computationally inefficient at fine grid resolution. Much of this cost can be reduced
by computing the values of  e for different values of �i at pre-processing level and recovering them
from tables at run time. Such method requires knowledge of the maximum value of �ni attained during
simulations, which is unknown a priori. Setting a maximum �ni that is too high may lead to increased
computational cost, because of the need to search over a large list during runtime. We here propose
an alternative method, which uses a Taylor series expansion centred about a point ℎ̃ni |Γ4 (the average
of ℎ at the wet small cells adjacent to the edge Γ4) to obtain an approximation of  e, as follows. First,
the term (

ℎni
)

5
3
1,k is written as

(

ℎni
)

5
3
1,k =

[

(

ℎ̃
)

5
3
Γ4
+ 5
3
(

ℎ̃
)

2
3
Γ4
(Δℎ)1,k +

5
9
(

ℎ̃
)

−1
3
Γ4
(Δℎ)21,k +  (Δℎ)31,k

]n

i
, (3.13)

where, (Δℎi
)n
1,k =

(

ℎ|1,k−ℎ̃|Γ4
)n
i and ℎ̃i|Γ4 the depth averaged over the wet cells adjacent to Γ4.

Neglecting the terms of order higher than two,  e can be approximated by  a as

 nai
|

|

|Γ4
=

⎧

⎪

⎨

⎪

⎩

1
NΓ4

NΓ4
∑

k=1

1
nM |1,k

[

(
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5
3
Γ4
+ 5
3
(

ℎ̃
)

2
3
Γ4
(Δℎ)1,k +

5
9
(

ℎ̃
)

−1
3
Γ4
(Δℎ)21,k

]

⎫

⎪

⎬

⎪

⎭

n

i

, (3.14)

given that, �ni = ℎi|nj,k+zi|j,k is assumed constant, then (Δℎi
)n
1,k =

(

ℎ|1,k−ℎ̃|Γ4
)n
i =

(

z̃n|Γ4−z|1,k
)

i =
(

Δzi
)n
1,k where z̃ni |Γ4 is the average of wet small cells bed levels at the cross-section and time level n.
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Then,

 nai
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(3.16)

or
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where, T nai
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Eq. 3.11 and Eq. 3.12, and the assumptions that q̃nxi|Γ4= qnxi and  nai|Γ4≅  nei|Γ4 lead to the
following approximate expression for the friction slope:

[

(

√

sf"x
)

Γ4

]n

i
=

(

qx
 a|Γ4

)n

i

. (3.21)

The downscaled value of the unit discharge is then obtained by

qnxi
|

|

|1,k
=

[

(

1
nM

ℎ
5
3

)

1,k

qx
(

 a
)

Γ4

]n

i

, 1 ⪯ k ⪯ Nn
Γ4
. (3.22)

The same method is used to downscale the y component of the unit discharge.

A few important remarksmust bemade about Eq. 3.22. First, the parameters Ta to Tc are computed
based on the values of bed elevation and roughness of wet small cells only. Therefore, these values
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are not constant in a simulation because the number of wet cells depends on �ni . These parameters
are computed as a function of �i at pre-processing for all elevations of small cells within a large
cell, and stored in a sorted vector for efficient runtime search. This reduces the computational cost
considerably, because the corresponding values are obtained only once per large cell. A comparison
of numerical values of  e and  a was performed for different cross-section shapes, concluding that
these two equations generally yield very close results (i.e. typically, less than 1% error. See Appendix
C).

It should be noted that in the proposed model, to follow the Godunov type finite volume technique,
first the conserved variables are constructed based on the method detailed above. Then, the wetting
and drying algorithm described in Section 2.1 is applied to preserve the positivity of water depth at
small cells next to the large cell interfaces and finally, the Riemann problem is solved in accordance
with the procedure explained in Chapter 2.

3.3.3 Source terms

Bed slope source term

Themodel approximation of the bed slope source term in Eq. 3.5 is described here for the x component
only. Valiani and Begnudelli (2006) showed that for a differential volume of fluid, if the water level is
assumed constant across the cell, the bed slope term can be approximated as (the derivation is available
in Appendix D)

gℎs0x =
)
)x

(1
2
gℎ2

)

. (3.23)

Substituting Eq. 3.23 and the expression ℎ(x, y) = � − z(x, y) into the last term of Eq. 3.5 yields:
−Δt
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(
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∫
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)2
]

dy
}n

i
.

(3.24)

Central to the accuracy of any sub-grid formulation is the ability to capture the condition of
a large computational cell that is only partially submerged (i.e. partially wet cells). Since the
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governing equations are only defined at wet regions of the domain, such a condition can be modelled
by considering only the wet sub-region of the cell. This is achieved in the model by substituting the
variable ź = min(z, �) for z in Eq. 3.24. Fig. 3.4 illustrates how this change of variable translates
into integration over the wet sub-domain of a large cell only. In Fig. 3.4a, the cell is fully wet and
ź = z. On the other hand, the left edge of the cell shown in Fig. 3.4b is unsubmerged, and the change
to ź = � effectively moves the boundary of integration to the wet/dry front.

Using ź in Eq. 3.24, expanding the quadratic terms and substituting K = ΔY
�y

yields:
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(3.25)

where Δźxi|nk=
(

ź|1,k−ź|Nx,k

)n

i
and ̂́zi|nk= 1

2

(

ź|1,k+ź|Nx,k

)n

i
.

Eq. 3.25 shows that the bed slope source term is a function of water surface (�), cell sizes and
topographic data at the edges of a large cell only. The topographic data of other internal small cells
do not contribute to the bed slope computations. This is a convenient property of the equation; as
time-consuming computations at fine resolution can be avoided. An identical procedure is used by the
model to compute the bed slope source term in the y direction.

Friction source term

Eq. 3.7 is discretised using a widely tested semi-implicit scheme (e.g. Liang and Marche, 2009;
Kesserwani and Liang, 2012b; Cea and Bladé, 2015; de Almeida et al., 2018). The scheme is adapted
here to include the upscaling of the non-uniform distribution of variables at sub-grid scale, as follows.
Substituting Manning’s equation into Eq. 3.7, and ignoring the first (zero-valued) component of the
friction source term vector results in:

d
dt

(

q∗j,k
)

i
=

⎧

⎪

⎨

⎪

⎩

−g

[

n2Mqn+1 ∥ q∗ ∥

(ℎ∗)
7
3

]

j,k

⎫

⎪

⎬

⎪

⎭i

, (3.26)

where j, k represent the location of a small cell inside the ith large cell (see Fig. 3.1) and ∥ q∗j,k ∥ is
the magnitude of q∗j,k. It is assumed here that while ∥ q∗j,k ∥ varies over a large cell, the flow direction
is constant. Therefore, qj,k(x, y)|i=

[

'j,k(x, y) q
]

i, where, 'i(x, y) is the coefficient of unit width
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Figure 3.4: Cross section of an arbitrary large cell illustrating the definition of ź used by the model to
compute bed slope source term. (a) In fully wet cells, ź is simply equal to z but (b) in partially wet
cells, ź in unsubmerged small cells is lower than z (i.e. ź = �).

discharge distribution inside the large cell. Substituting this relation into Eq. 3.26 yields:
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Further, the simplifying assumption that ddt
(

'∗|j,k
)

i is negligible is introduced here. This assumes
that rate of change of the temporal distribution of flow is small compared to the other terms in the
equation. Under this assumption,
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Integrating Eq. 3.28 over the wet fraction of the large cell:
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)
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where,Ωw is the wet area of large cell. Since q∗ and qn+1 are by definition constant within a large cell,
d
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Given that qn+1i =
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where
(

ℎ
7
3

n2M

)
∗

i

= 1
Ωwi ∫Ωwi

[

(ℎ∗)
7
3

n2M

]

j,k

dΩw =
⎡

⎢

⎢

⎣

1
Nw

J
∑

j=1

K
∑

k=1

(

ℎ
7
3

n2M

)

j,k

⎤

⎥

⎥

⎦

∗

i

, (3.32)

in which,Nw is the number of submerged small cells in the large cell.

Discretising the derivative in Eq. 3.31 using first-order forward-time finite-differences yields:
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Eq. 3.32 requires expensive fine-resolution scale computations to be performed at each time step.
In order to limit this computational burden, an approximation to Eq. 3.32 is derived here which follows
an approach similar to that described in Section 3.3.2 for the reconstruction of q at the edges of large
cells. First, (ℎ∗i

)
7
3 is approximated using Taylor series centred about ℎ∗i (the mean water depth over

the submerged area of the large cell):
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Neglecting terms of order higher than two and substituting Eq. 3.34 into Eq. 3.32 yields:
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Substituting ℎ∗i |j,k=
(

�∗ − z|j,k
)

i, and ℎ
∗
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i (where z∗i is the mean bed level of wet area
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or alternatively:
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The parameters Td , Te and Tf are computed at pre-processing (for the range of values of z within
the submerged part of the large cell) and stored in sorted tables from which they are obtained during
runtime as a function of �. The final relation for friction updating is obtained by substituting Eq. 3.37
into Eq. 3.35, which yields:
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3.4 Model structure

The upscaling of the equations proposed in the previous sections results in a number of parameters that
need to be assessed at fine resolution. However, since these parameters (namely z, z̃, Ta, Tb, Tc , Td , Te
and Tf ) depend only on the fine resolution topography and roughness, they can be determined at
pre-processing level. This saves substantial runtime computational effort and is central to obtaining
high computational performance. Herein, a more detailed explanation of the pre-processing and the
overall model structure are provided.

Since the proposed sub-grid model allows the large cells to be partially wet, the number of
submerged small cells Nw involved in the estimation of the above parameters changes dynamically
during the simulation (i.e. since Nw depends on � when the large cell is only partially wet). During
pre-processing, the values of the aforementioned parameters are computed for different values of �
based on the elevation and roughness of the corresponding submerged small cells only, and the results
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are stored in tables sorted by �. During runtime, the values of the parameters are simply retrieved
from the table using the value of � at each time step. Since only small changes in � occur from one
time-step to another, a relatively expensive search is avoided by storing the index of the table row found
in the previous time level, which is used as the initial guess in the search. The computational effort
associated with the model’s pre-processing is in general negligible compared with the simulation time,
since it only needs to be performed once. For example, in all simulations presented the next chapter,
pre-processing took no longer than 0.1% of the simulation time. Fig. 3.5 represents the structure of the
model, illustrating how the pre-processing links to other components of the model. The algorithm was
implemented in C++ programming language and the executable used in this research was compiled
with Intel icc compiler version 14.0.2.

3.5 How does the proposed sub-grid model compare with other similar

models recently proposed?

In recent years, over the course of this PhD, a few works have been published that that bear similarity
to the proposed model. A brief description of these models was provided in Chapter 2. Among them,
the methods proposed by Hénonin et al. (2015) and Sanders and Schubert (2019) are the most closely
related to the research presented in this thesis. This section describes how the model proposed in
this PhD differs from these two models, and why the approach adopted here represents an advance
compared to them.

Hénonin et al. (2015) presents a finite difference model for overland flow problems, which, like
the approach taken in this thesis, used a nested computational mesh. In Chapter 1, the model of
Hénonin et al. (2015) was discussed. In the model proposed by Hénonin et al. (2015), the coarse mesh
represents the computational cells, which can be partially wet. Small cells nested in the computational
cells are used to incorporate high resolution topography data within the model solution procedure.
Water surface elevation (�) in the computational cell is assumed constant whereas water depth (ℎ)
varies as ℎ = � − z. While this modelling conceptualisation is similar to the one adopted in the
present thesis, the approach proposed here has a number of characteristics that make it unique and
provide amore accurate representation of sub-grid scale processes. Namely, Hénonin et al. (2015) uses
high-resolution topography data in a rather simplistic way through the averaging of the water depth
in computational cells. The averaging approach lacks a strong theoretical basis and has important
limitations, as will be made explicit in the following section. In the model proposed in this PhD thesis
the inclusion of fine resolution topography and roughness is performed through integration of the
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Figure 3.5: General structure of the proposed model. Mz stores the topographic data of small cells
within each large cell. Mzstored stores the same topographic information sorted by bed elevation. Mz

stores the values of z corresponding to the number of submerged small cells. MnM stores the fine
resolution roughness data within each large cell. MTa to MTf store the values of Ta to Tf for large
cells.
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governing equations, combined with a set of simplifying assumptions that are made explicit during
the derivation. These high-resolution roughness data are used in the computation of bed and friction
slope source terms and reconstruction of conservative variables at the computational edges for solving
the Riemann problem.

Also similar to the work in this thesis, as previously detailed in Chapter 1, Sanders and Schubert
(2019) makes use of two Cartesian nested meshes. The model is based on the integral form of shallow
water equations, which are solved using the finite volume method over the computational cells (large
cells). The small cells provide topography and roughness data. The model also uses high-resolution
data to estimate the source terms and fluxes between neighbouring computational cells. Sanders
and Schubert (2019) modelling strategy, which has been developed independently from the model
proposed in the present thesis, is the same as the one described in the previous section. However,
there are important differences between the two models, which are related to the reconstruction of the
conservative variables for the solution to the Riemann problem and the approach used to include fine
resolution data in the computation of friction within large cells, which are described next.

Reconstruction of the conservative variables at the edges of computational cells

In a Godunov type model, the conservative variables are reconstructed at the cell edges and then used
in the solution of the Riemann problem. Typically, this reconstruction is uniform along an edge (i.e.
variables on both sides of the inter-cell boundary are constant). In the nested mesh models proposed
in this thesis, as well in Sanders and Schubert (2019), a non-uniform reconstruction of conservative
variables is used to account for the variation of variables along the cell edges. The reconstruction of
ℎ is identical in both models (� is assumed constant, thus ℎ = � − z). However, Sanders and Schubert
(2019) reconstruct q = [qx, qy] uniformly on the both sides of edges of the large cell. Given that
V = q∕ℎ, this reconstruction implies an unphysical distribution of flow velocities with values that
are high at shallow parts of the edge (indeed, as � → z,V → ∞) and low at deep areas. This is
contrary to what is commonly observed for shallow water flows (e.g. floodplains or submerged fluvial
islands typically exhibit velocities that are lower than the velocities observed in the main channel). In
the proposed model, velocity is distributed along the edges of adjacent cells based on the simplifying
assumption of a constant energy slope (see Section 3.3.2). The values of q reconstructed in this way
display a distribution that more closely resembles flows in open channels.
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Friction source term

In Sanders and Schubert (2019), the upscaling of the friction source terms derived are based on the
assumption that friction slope (sf ) and water surface level (�) are constant over a computational cell
[it should be noted that the model of Sanders and Schubert (2019) is second order accurate (piecewise
linear reconstruction) for � and first order (reconstructed piecewise constant) for qx and qy, but in the
source term computations (bed and friction slope), � is also reconstructed piecewise constant]. While
the assumption of a constant sf to approximate the distribution of flow at given cross-sections has
been widely used (e.g. Hec-Ras), extending this idea to assume that sf is constant over an area of flow
is questionable and would require further examination. For instance, let us assume a 1D prismatic
rectangular channel over an irregular bed topography and under steady state flow. Let us also assume,
for simplicity, a constant value of Manning’s coefficient (nM ) along the channel. Fig. 3.6 shows a
sketch of the bed and free surface profiles in this hypothetical channel. Since Manning’s equation is
used to estimate the friction slope, (sf

)
1
2 = qnM

ℎ
5
3
, and given that both q and sf are assumed constant

(q =const since the flow is steady) then it follows that ℎ should be constant along the channel, which
contradicts the very assumption of a horizontal water surface over a varied topography. In general, the
assumption of a constant value of sf over a large computational domain/cell is likely to be inaccurate
because the friction slope may change considerably due to the acceleration of the flow induced by the
fine resolution topography. Since the objective of upscaling is to increase the model’s accuracy by
accounting for sub-grid scale variations in the flow, in this research, sf is not assumed uniform within
a computational cell.

Another consideration that highlights an important difference between the model proposed in this
thesis and Sanders and Schubert (2019) relates to how the integral equations are upscaled. To compute
the friction source term, the following integral needs to be approximated

1
Ωi

(

∫Ωi
gℎsfdΩ

)∗,n+1

i
=
(

gℎsf
)∗,n+1

i
, (3.42)

Sanders and Schubert (2019) approximate the term gℎsf as gℎsf = gℎsf , which further reduces the
accuracy of the approximation. In the present work, the term gℎsf is computed instead.

3.6 Summary and conclusions

In this chapter, the proposed sub-grid model was described in detail. The model makes use of two
nested meshes. The coarse mesh is the computational mesh and the fine mesh provides high-resolution
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Figure 3.6: Longitudinal bed and surface profiles for an arbitrary 1D prismatic rectangular channel
with constant roughness and flow rate.

topography and roughness data that are incorporated into the solution procedure. The governing
equations are the 2D shallow water equations. The equations are in integral form and in the vector of
conservative variables, with � used instead of ℎ. The governing equations are solved in the framework
of Godunov type finite volume method, and the HLLC Riemann solver is used to estimate fluxes. The
� reconstruction is piecewise constant at low-resolution mesh, while q is distributed at the edges using
a new method, which is a function of the local (i.e. fine scale) Manning coefficient, water depth, and
edge conveyance.

As it would be expected, upscaling of the bed slope source term depends on water surface and bed
elevation at the large cell edges. Updating the solution from time level n to n + 1 is achieved via an
intermediate time step, where the solution first proceeds for all terms of the governing equations except
friction source term whose effect is then incorporated into the solution. Friction slope computations
are executed by the present model. Other models similar to the proposed sub-grid model typically
assume that friction slope is constant (Sanders and Schubert, 2019; Volp et al., 2013), which can be
acceptable for a cross-section of flow, but it might be invalid for flow in space. Herein, it is only
assumed that streamlines are parallel within a large cell. This relaxes the need for the assumption
of constant friction slope. To avoid numerical instability, the time step must be restricted. In this
research, the time step is determined based on the CFL condition. The formulation is applicable to
both fully and partially wet cells.
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Results and discussion

In this chapter, six artificial and one real-world test cases are used to assess the performance of the
model in terms of accuracy and speedup. The first test corresponds to 1D steady flow over a hump to
assess the performance of the model in transcritical problems. In this test case, the ability of the
proposed sub-grid model is tested for the case of a hydraulic jump occurring on the downstream
face of the hump. In the second test case, the bore wave propagation over dry bed and still water is
studied through the modelling of the well-known 1D dam-break problem. In this case, the numerical
results are evaluated against the analytical solutions introduced in Chapter 2. Test Case 3 is aimed at
analysing how the proposed sub-grid model deals with the wetting and drying conditions. In this test, a
dam-break problem is studied over an initially dry bedwith three humps, one of which has a sufficiently
high peak elevation to be unsubmerged during the simulation. This test represents a 2D unsteady flood
inundation problem. Test Case 4 is an artificial problemwhere the high-resolution topography includes
a rectangular compound channel (i.e. main channel and floodplains) that has a 90◦ bend within a large
cell. The aim of this test is to assess the ability of the sub-grid model to capture changes in the
flow direction correctly. Test Case 5 involves simulation of 1D steady flow over relatively complex
topography. The test evaluates the accuracy of the model predictions for a scenario involving large
variations in bed elevation. The analytical solution for this test is obtained by the inverse method
reviewed in Chapter 2 (MacDonald, 1996). Test Case 6 simulates flow in a compound channel. In this
test, the ability of the method proposed to upscale the source terms is tested for scenarios involving
combined variations in topography and roughness within a computational cell. Test Case 7 assesses
the model’s performance when simulating a real-world flood event. In this test, the numerical results
are assessed against a benchmark solution (obtained from a fine resolution simulation) and field data.
This test aims to investigate both the computational efficiency and accuracy of the proposed sub-grid
model for realistic flood inundation problems.
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4.1 Test cases

In this section, the accuracy and computational performance of the sub-grid model presented in the
previous chapter are tested through a set of stringent idealised and real-world test cases. This is done
by comparing the results of the sub-grid model (herein denoted by SG) against the model hereafter
referred to as traditional (T) model. The T model is simply a particular case of the SG model when the
resolution of large and small cells are the same, in which case the formulation reverts to a first order
Godunov type finite volumemethod. Bothmodels were run at different resolutions so that the influence
of grid size on the improved performance of the SG can be assessed. The results of simulations are
labelled by the type of model followed by the grid resolution used. For example, T (50) refers to a
simulation performed with the Traditional model and a grid resolution of 50 m, and SG (20/5) denotes
the sub-grid model and grid resolutions of 20 m and 5 m for the coarse and fine meshes, respectively.

4.1.1 Test Case 1, One-dimensional steady flow over a hump

This test adopts a 1D steady transcritical channelized flow to examine the performance of the SGmodel
for free surface flow over a bed that is smoothly varying in space. The domain of study contains a 25
m long rectangular channel whose bed elevation is expressed by

z(x) =

⎧

⎪

⎨

⎪

⎩

0.2 − 0.05(x − 10)2 if 8 < x < 12

0 otherwise
(4.1)

where the x direction is defined along the channel. This topography creates a 4 m long and 0.2 m
height hump in the middle of the channel as shown in Figs. 4.1 to 4.5. The channel bed is frictionless.
A constant unit width discharge qx = 0.18m2∕s and a fixed water surface level � = 0.33 m are
imposed to the model as the upstream and downstream boundary conditions, respectively. Initially
the water surface � = 0.33m and the unit width discharge qx = 0.18m2∕s are assumed throughout the
domain of study. Under this circumstance, the analytical solution, which was proposed by Goutal and
Maurel (1997), includes a hydraulic jump (i.e. transcritical flow) and subcritical flow upstream and
downstream of the hump as shown in Figs. 4.1 to 4.5.

Simulations are performed using the SG model at computational mesh resolution 0.0625 m,
0.125 m, 0.25 m, 0.5 m, and 1 m, while in all the fine resolution mesh (small cells) is 0.0625 m.
Fig. 4.1 displays the longitudinal bed surface level together with the predicted and analytical water
surface profile along the centre line of the channel in the x− direction. Overall, the results display
a relatively good agreement with the analytical solution in all computational resolutions, particularly
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in the downstream part of the channel. In the upstream part of the domain a small difference (of the
order of a few milimiters) is observed between the results of the SG model and the analytical solution
as the computational mesh is coarsened. As the test case models a 1D steady flow, then the unit width
discharge (qx) must be constant across the domain. Fig. 4.2 illustrates the predicted qx for different
resolutions against the analytical solution. Around the hump, where there is transcritical flow and
hydraulic jump, oscillations are observed in the numerical results, the amplitude of which is higher
at low-resolution simulations. These oscillations appeared in results of many researchers who studied
this test case, such as Wang (2011), Kalita and Sarma (2018), Delis et al. (2018). For such a problem
involving numerical instability and non-convergence solution of discharge at the presence of complex
geometry and hydraulic jump, Ying and Wang (2008) proposed the analysis of the results obtained
from the flux vector (i.e. obtained at the interface between two computational cells), instead of the
value of the conserved variables within the computational cells. Using the flux vector quantities, no
oscillations in the solution of the SGmodel for qx were observed (see Fig. 4.3). In Fig. 4.4, the velocity
results obtained by the SG model at different resolutions are compared to the analytical solution. The
numerical results are consistent with the analytical solution, except for a small disturbance at the
location of the hydraulic jump. The corresponding predicted profiles are available for Froude number
in Fig. 4.5. These profiles, which closely agree with the analytical solution, vary from about 0.23
(upstream) to about 2.78 over the bump.

This test case was also modelled by the T model. At the same computational resolutions, the
solution of the T and SG models are very close to each other (the differences are at the scale of 1-2
mm). Then for clarity only the SG’s results are presented.

Figure 4.1: Test case 1, steady transcritical flow over a hump: longitudinal bed water surface level
profiles.
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Figure 4.2: Test case 1, steady transcritical flow over a hump: longitudinal unit width discharge
profiles.

Figure 4.3: Test case 1, steady transcritical flow over a hump: longitudinal unit width discharge
profiles, based on the modified solution proposed by Ying and Wang (2008).
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Figure 4.4: Test case 1, steady transcritical flow over a hump: longitudinal velocity profiles.

Figure 4.5: Test case 1, steady transcritical flow over a hump: longitudinal Froude number profiles.
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In Chapter 2, the GCI method was reviewed. In this test case, the GCI method is applied to the
solutions of water surface level. Three points along the channel have been taken, one at the hump
(about the crest) and two others 5.5 m upstream and 5 m downstream, respectively from the crest of
the hump. At the hump, the point is selected with a sufficient distance from the hydraulic jump at
x=9.0 m as the GCI method is only definable for continuous solutions. The adopted computational
grid resolutions in the GCI analysis are 0.25 m, 0.5 m, and 1.0 m, representing grid refinement ratio
r=2. Table 4.1, presents the computed GCIs for both models and at the selected points. The predicted
water surface level in all models/resolutions for the downstream point (p3) is the same � = 0.33 m.
Thus, the GCI is not computed for this point. The analysis shows that the results are converged to the
asymptotic value based on the adopted grids.

Table 4.1: Test Case 1, steady transcritical flow over a hump: GCI analysis based on the predictions
of water surface level.

model sample points Δx1 (m) Δx2 (m) Δx3 (m)
GCI21 GCI32 GCI32

rpGCI21
0.25 0.5 1.0

number x (m) �1 (m) �2 (m) �3 (m)

T
p1 4.5 0.427 0.422 0.408 1.004 2.614 1.013
p2 9.5 0.391 0.381 0.363 4.223 7.703 1.027
p3 15 0.330 0.330 0.330 - - -

SG
p1 4.5 0.414 0.409 0.394 0.755 2.284 1.012
p2 9.5 0.393 0.385 0.360 1.447 4.294 1.023
p3 15 0.330 0.330 0.330 - - -

4.2 Test Case 2, dam-break problem

Chapter 2 reviewed analytical solutions to the dam-break problem based on the 2D shallow water
equations. Here, the problem is adopted to evaluate the performance of the SG model in simulating
the propagation of bores over wet and dry areas. In this test, a 1000 m long 1D frictionless channel
is assumed. The channel is horizontal and the position of the idealised dam, which represents the
location of initial discontinuity in hydraulic properties, is just in the middle of the channel. The initial
condition is given by the still water level across the domain, and a null value of the velocity. The
water depth of the upstream half of the channel is set to 3 m and two scenarios of the water depth is
defined for the downstream half of the channel: i) ℎR= 1 m (i.e. wet downstream) and ii) ℎR= 0 m
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(i.e. dry downstream). Reflective boundary conditions are set at the two extreme ends of the channel.
The simulations are implemented through the computational meshes at resolutions of 1 m, 2 m, 5 m,
and 10 m, while in all cases, the small cell dimension is 1 m.

In Figs. 4.6 to 4.9, solutions of the SG model are compared to the analytical solutions. Figs. 4.6
and 4.7, which relates to the first scenario (i.e. wet downstream), show the longitudinal water depth
and velocity, respectively. The results show that the position of the waves (shocks and rarefactions)
has been captured accurately at all computational mesh resolutions. However, as would be expected,
coarse meshes lead to numerical diffusion, in particular around the shock wave. A similar finding (i.e.
the larger the cell, the higher the diffusion) is observed in the second scenario (dry downstream) as
shown in Figs. 4.8 and 4.9. In Fig. 4.9, the unit width discharge (qx) instead of velocity (u), which
has employed in Fig. 4.7, has been depicted graphically. This is because the SG model provides
solutions for the variables �, qx, and qy. Then the x-component of velocity is approximated as u = qx

ℎ

(in this case as the bed is flat and horizontal � = ℎ) at post-processing. For the second scenario (dry
downstream) as shown in Figs. 4.8 and 4.9, qx and ℎ tend to zero, which would lead to extremely high
values of u by the SG model. Then for the second scenario, u was replaced by qx. In this test case, as
the channel is frictionless and entirely flat, there are no differences between the SG and T model for
the same computational mesh (the results are exactly the same) and only the results of the SG model
are then shown.

This test case involves unsteady flow. Then, the GCI analysis is performed for three time instants
t=15 s, 30 s, and 45 s. As mentioned before, in this test case, the solutions of the SG and T models are
exactly the same when similar grid resolutions are employed. Then the GCI analysis is independent of
the model type. In this section, sample points are only taken from the profile of rarefaction wave
at the mentioned time instants because the discontinuous water surface level at the shock (in the
dam-break over downstream wet bed) invalidates the GCI analysis. In the GCI analysis, it is required
that Δx2Δx1

= Δx3
Δx2

= r and the computational grids that have been introduced in this test cannot satisfy
this expression. Then, along with Δx = 1 m, and Δx = 2 m, the solution at the resolution Δx = 4 m
is included for only GCI analysis. Table 4.2 displays the results of the GCI analysis and confirms the
convergence of the solutions toward an asymptotic value at each sample point for the used grids.

4.3 Test Case 3, dam-break wave propagating over three humps

In this test, a dam-break wave propagation over a complex topography, which contains three conical
humps, is investigated. This test was originally proposed by Kawahara and Umetsu (1986) and later

89



Chapter 4

Figure 4.6: Longitudinal water depth profile in the dam-break problem over the wet downstream bed
as defined in Test case 2 at the computational mesh resolutions, (a) 1 m, (b) 2 m, (c) 5 m, and (d) 10
m.
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Figure 4.7: Longitudinal velocity profile in the dam-break problem over the wet downstream bed as
defined in Test case 2 at the computational mesh resolutions, (a) 1 m, (b) 2 m, (c) 5 m, and (d) 10 m.

91



Chapter 4

Figure 4.8: Longitudinal water depth profile in the dam-break problem over the dry downstream bed
as defined in Test case 2 at the computational mesh resolutions, (a) 1 m, (b) 2 m, (c) 5 m, and (d) 10
m.
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Figure 4.9: Longitudinal unit width discharge profile in the dam-break problem over the dry
downstream bed as defined in Test case 2 at the computational mesh resolutions, (a) 1 m, (b) 2 m,
(c) 5 m, and (d) 10 m.
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Table 4.2: Test case 2, dam-break problem: GCI analysis based on the predictions of water surface
level.

state t (s) sample points Δx1 (m) Δx2 (m) Δx3 (m)
GCI21 GCI32 GCI32

rpGCI21
1 2 4

number x (m) �1 (m) �2 (m) �3 (m)

dry

15 P1 422 2.827 2.812 2.737 0.173 0.852 1.005
15 P2 578 0.368 0.374 0.401 0.511 2.414 0.985
30 P1 422 2.059 2.063 2.096 0.033 0.278 0.998
30 P2 578 0.773 0.774 0.783 0.078 0.361 0.998
45 P1 422 1.811 1.826 1.865 0.627 1.633 0.992
45 P2 578 0.940 0.939 0.936 0.254 0.437 1.001

wet
15 P1 442 2.459 2.448 2.413 0.241 0.788 1.004
30 P1 442 1.907 1.927 1.979 0.777 2.040 0.990
45 P1 442 1.849 1.849 1.857 0.004 0.047 1.000

was adopted by many other researchers such as Liang and Borthwick (2009), Kesserwani and Liang
(2010), and Mahdizadeh et al. (2012).

The domain of study is rectangular with the dimensions 75 m × 30 m, in which the topography is
defined as follows

z(x, y) = max
[

0, 1 − 1
8

√

(x − 30)2 + (y − 6)2, 1 − 1
8

√

(x − 30)2 + (y − 24)2,

3 − 3
10

√

(x − 47.5)2 + (y − 15)2
]

.

(4.2)

The boundaries of the domain are assumed solid walls. The dam is situated between the points
(xd ,0) and (xd ,30), where xd=15 m. In many studies, including the aforementioned studies, xd =16
m is adopted but herein as the test is simulated at different mesh resolutions, xd =15 m is preferable
to xd =16 m (in terms of divisibility). Initially a still water state with the upstream (x<15 m) and
downstream (x>15 m) depths 1.875 m and 0 m, respectively are set to the domain. The bed roughness
is nM= 0.018 s/m 1

3 across the domain.

This test is simulated using the T and SG model over computational meshes at the resolutions 0.5
m, 1 m, 1.5 m, and 3 m, while the small cell resolution is 0.1 m for all simulations performed by the
SG model. Moreover, a simulation is performed through T (0.1), the solution of which is referred to
as a benchmark solution as benefiting from a fine computational mesh.
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Figs.4.10 to 4.14 illustrate a sequential plots of 3D water surface and 2D water depth distribution
at times t = 2 s, t = 6 s, t = 12 s, t = 30 s, and t = 300 s, respectively only for the lowest and
highest resolutions (for clarity). In all solutions, by t=2 s, the wet-dry front approaches the two small
humps and even begins to climb them. At t= 6 s, the two shorter humps are entirely inundated and
the wet-dry front reaches the highest mound. At t= 12 s, the small humps are still submerged and the
highest hill has been submerged by the flood. The waves are approaching the downstream boundary
and bore-like reflection waves, which have been created by the humps, are moving upstream. At t=
30 s, the waves have collided with the boundaries, so that the upstream waves have been damped,
however the downstream waves are still active (a reverse movement of the waves toward the larges
hump). By t= 300 s, the steady state is achieved so that the domain of study is entirely submerged
except the peaks of the three humps.

An important remark must be made with regards to the distribution of depths in Figs.4.10 to 4.14.
Although the SGmodel was not developed with the specific aim of capturing shocks as those appear in
the dam-break problems (as this capturing requires high-resolution meshes and high order schemes),
in this dam-break problem test, the SG model provides a more accurate water depth distribution
compared to the T model at the same resolution because the domain involves a complex topography.
This improved accuracy is clearer at low-resolution meshes [e.g. compare the water depth distribution
in figures “c” with “e” (of Figs.4.10 to 4.14)].

Figs.4.15 to 4.18 show the distribution of the magnitude of unit width discharge (∥ q ∥) across
the domain of study. The distributions are provided for each model/resolution and at all time instants
utilized for the water depth distribution, except for t=300 s, since the flood inundation at t=300 s
reaches nearly a steady state with the zero (or very near to zero) velocity. The T and SG models do not
explicitly provide any value of the cells’ velocity but V = q

�−z is computed at post-processing. As this
test case involves involves dam-break wave propagation over a dry bed, a wet-dry front propagates
over a dry bed during the simulations, in which q → 0 and � → z. Thus, unphysical values may
be assigned to the cells’ velocity. To prevent that, herein the distribution of ∥ q ∥ instead of ∥ V ∥

is considered. According to Figs.4.15 to 4.18, the SG and T models’ solutions are very close to the
benchmark solution but by decreasing the mesh resolution, the accuracy is degraded (for both the SG
and T model). Although in the SG model (similar to the T model), qx and qy are constant across each
computational cell, in partially wet cells, the SG model sets the qx and qy to zero in dry bed (i.e. in
a large cell, q = 0 in unsubmerged small cells and all other submerged small cells have the same q),
which leads to more accurate representation of q. This advantage is better observed by comparing the
figures “c” and “e” of Figs.4.15 to 4.18.
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Figure 4.10: Dam-break wave propagation over three humps: 3D view of water surface level and water
depth distribution at t=2 s for model/resolution, (a) T (0.1), (b) T (0.5), (c) T (3), (d) SG (0.5/0.1), (e)
SG (3/0.1).
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Figure 4.11: Dam-break wave propagation over three humps: 3D view of water surface level and water
depth distribution at t=6 s for model/resolution, (a) T (0.1), (b) T (0.5), (c) T (3), (d) SG (0.5/0.1), (e)
SG (3/0.1).
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Figure 4.12: Dam-break wave propagation over three humps: 3D view of water surface level and water
depth distribution at t=12 s for model/resolution, (a) T (0.1), (b) T (0.5), (c) T (3), (d) SG (0.5/0.1),
(e) SG (3/0.1).
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Figure 4.13: Dam-break wave propagation over three humps: 3D view of water surface level and water
depth distribution at t=30 s for model/resolution, (a) T (0.1), (b) T (0.5), (c) T (3), (d) SG (0.5/0.1),
(e) SG (3/0.1).
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Figure 4.14: Dam-break wave propagation over three humps: 3D view of water surface level and water
depth distribution at t=300 s for model/resolution, (a) T (0.1), (b) T (0.5), (c) T (3), (d) SG (0.5/0.1),
(e) SG (3/0.1).
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Figure 4.15: Dam-break wave propagation over three humps: distribution of the magnitude of unit
width discharge (∥ q ∥) across the domain at t= 2 s for model/resolution, (a) T (0.1), (b) T (0.5), (c) T
(3), (d) SG (0.5/0.1), (e) SG (3/0.1).

Figure 4.16: Dam-break wave propagation over three humps: distribution of the magnitude of unit
width discharge (∥ q ∥) across the domain at t= 6 s for model/resolution, (a) T (0.1), (b) T (0.5), (c) T
(3), (d) SG (0.5/0.1), (e) SG (3/0.1).
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Figure 4.17: Dam-break wave propagation over three humps: distribution of the magnitude of unit
width discharge (∥ q ∥) across the domain at t= 12 s for model/resolution, (a) T (0.1), (b) T (0.5), (c)
T (3), (d) SG (0.5/0.1), (e) SG (3/0.1).

Figure 4.18: Dam-break wave propagation over three humps: distribution of the magnitude of unit
width discharge (∥ q ∥) across the domain at t= 30 s for model/resolution, (a) T (0.1), (b) T (0.5), (c)
T (3), (d) SG (0.5/0.1), (e) SG (3/0.1).
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In Chapter 2, the finite volume method was compared to the certain well-known numerical
methods, such as finite difference and finite element. A main advantage of the finite volume is that it
guarantees the mass and momentum conservation. In this test case, the performance of the T and SG
models in mass conservation is evaluated. Based on the initial conditions, the existing water volume in
the domain of study is 15×30×1.875=843.75 m3. This volume must be constant during the simulation
as the boundaries are confined and there is no inflow and outflow to the domain. Table 4.3 tabulates
the violation of the mass conservation for all simulations. It is clearly found from Table 4.3 that the T
and SG models satisfy the mass conservation law as the maximum violation is less than 0.0045%.

In the first chapter, the C-property was discussed in brief. A model is well-balanced (i.e. satisfies
C-property) if it is able to simulate still water without any oscillation. In this test, at t=300 s, the
dam-break waves reach a still steady state. The simulations were continued by t=3000 s and no
oscillations were observed. This confirms that the T and SG models adopted in this research are
well-balanced.

For analysing the GCI of this test case using the solutions of water surface level, three time instants
t=6 s, 12 s, and 30 s are considered. The solutions at t= 2 s and t=30 s are excluded from the GCI
study. This is because, at t=2 s the extension of dam-break’s wave propagation is limited and at
t=300 s, the solution involves a stationary state with constant water surface and null velocity across
the domain. The GCI analysis requires Δx2

Δx1
= Δx3

Δx2
= r, and this equality does not exist among the

computational grids considered. Thus, the solution of T (0.75) [along T (1.5) and T (3), which are
already available] is added to the process of the GCI analysis. However, because of divisibility (large
cell’s size must be a multiple of small cell’s size), the SG (0.75/0.1) is impossible to run and the GCI
analysis is only performed for the T model. The analysis is provided for three points p1, p2, and p3,
which are located at the upstream part of the domain, the downstream part of the domain, and next
to the largest hump, respectively. Table 4.4 shows the location of these three points. Table 4.4 also
illustrates the information of the GCI analysis. The results verify the convergence of the solutions at
the adopted grids.

4.4 Test Case 4, open channel flow around a bend

The aim of this test case is to test the ability of the sub-grid model to capture a 90◦ change of flow
direction within a large cell. Fig. 4.19 shows the computational domain, which represents a simple
topography that includes a 4 m wide channel that changes direction by 90◦. The grid resolution of the
SG model is 16/2, i.e., coarse cells are eight times coarser than the width of the channel. The results
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Table 4.3: Violation of mass conservation in the SG and T models.djfvif dvudydhv dfuvdf v h

ΔX (m) t(s) T SG
error (%) error (%)

0.1

2 3.6E-07 -
6 7.9E-06 -
12 7.0E-02 -
30 7.0E-02 -
300 7.0E-02 -

0.5

2 2.7E-06 4.7E-07
6 3.3E-06 2.6E-06
12 3.6E-07 2.0E-04
30 1.2E-07 9.1E-04
300 3.6E-07 1.3E-03

1

2 7.1E-06 1.1E-05
6 5.6E-05 9.5E-06
12 5.6E-05 5.4E-04
30 5.5E-05 3.0E-03
300 5.4E-05 3.9E-03

1.5

2 7.9E-06 1.9E-06
6 2.1E-06 1.2E-05
12 3.8E-06 7.3E-04
30 1.1E-06 3.4E-03
300 4.3E-06 4.5E-03

3

2 1.1E-05 5.6E-06
6 4.3E-06 4.9E-06
12 2.1E-06 6.3E-04
30 4.3E-06 9.2E-04
300 1.5E-05 1.6E-03
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Table 4.4: Test Case 3, dam-break wave propagating over three humps: GCI analysis based on the
predictions of water surface level.

t (s) sample points Δx1 (m) Δx2 (m) Δx3 (m)
GCI21 GCI32 GCI32

rpGCI21
0.75 1.5 3

number x (m) y (m) �1 (m) �2 (m) �3 (m)

6
P1 15 15 0.837 0.841 0.860 0.193 0.832 0.995
P2 62 15 0.000 0.000 0.000 - - -
P3 48 25 0.011 0.013 0.042 9.773 46.211 0.841

12
P1 15 15 0.453 0.502 0.613 10.906 22.107 0.902
P2 62 15 0.000 0.000 0.000 - - -
P3 48 25 0.260 0.275 0.389 1.210 8.260 0.943

30
P1 15 15 0.615 0.613 0.610 2.652 3.173 1.004
P2 62 15 0.374 0.373 0.347 0.001 0.080 1.001
P3 48 25 0.314 0.322 0.365 0.853 4.143 0.974

of this simulation are compared against those obtained with the T model runs with resolutions of 2, 4,
8 and 16 m (Fig. 4.20 shows the meshes). The bed elevation of the white small cells (main channel)
is zc=0 m, and two scenarios are simulated in which the elevation of the green cells (floodplains) is
set to zf=1.0 and zf=1.5 m. The value of Manning’s coefficient nM = 0.01 s∕m

1
3 is constant across

the domain. Initially, the domain is entirely dry. A constant discharge Q = 1.6 m3∕s is uniformly
introduced along the edges of white cells on the west side of the domain and a constant water depth
0.5 m is set at the edges of the white cells at the south part of the grid. The model is run until a steady
flow regime is reached. The value of the CFL number used for all simulations described in this section
is set to 0.75.

Fig. 4.21 presents the longitudinal profiles of water surface elevation obtained along the red line
shown in Fig. 4.19. These profiles are presented for the different model types, resolutions, and
two floodplain elevations (i.e. the green area scenarios in Fig. 4.19) of 1 m (Fig. 4.21.a) and 1.5
m (Fig. 4.21.b). The results of the finest resolution simulation T (2), which are herein used as a
benchmark, predict flow only in the low elevation cells (i.e. main channel with zc=0 m) and never in
the higher elevation areas (for both elevations of the floodplain, i.e. zf=1.0 and zf=1.5 m). Therefore,
solutions are expected to be independent of the elevation set to the higher elevation cells (floodplain).
However, the results from the simulations performed by the Traditional model at coarse resolutions
with two floodplain elevations differ substantially. Namely, whereas for zf=1.0 m the elevation of
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Figure 4.19: Test Case 4, open channel flow around a bend: the used computational domain and SG
grid. The results of the model are reported along the red line indicated in the figure.

free surface is less than 1.0 m for all resolutions tested, the increase in floodplain height to zf=1.5
m results in substantially higher values (∼ 50% higher for the coarser resolution). The reason for
these different solutions is related to how the bed elevation was assigned to these cells. The coarse
resolution cell elevation was obtained from averaging of the 2 m resolution bed elevation over the area
of the coarsened cell. Therefore, in the coarsened grid the elevation of the region representing the
channel depends on the values of zf and zc . The results in Fig. 4.21 also illustrate how the accuracy
of solutions is reduced, as the grid is made coarser for simulations performed with a traditional model.
On the other hand, results obtained with the sub-grid model at resolution 16/2 are very close to the
results from the finely resolved traditional model [i.e. Root Mean Square Error (RMSE) =0.05 m for
SG (16/2) against RMSE=0.21 m and RMSE=0.51 m of T (16) at floodplain scenarios of zf=1.0 mm
and zf=1.5 m, respectively]. Since all simulations in this test case involve only a small number of
cells, the run time was extremely short and is not analysed here.

Fig. 4.22 shows the profile of the magnitude of velocity vector along the red line, shown in Figs.
4.19 and 4.20, for each model/resolution. It is simply found that the most similar solution to the
benchmark solution corresponds to SG (16/2), which uses the lowest computational resolution. In the
simulations T (4), T (8), and T (16), the highest discrepancy between the numerical predictions and
benchmark solution occurs in the upstream part of the domain, where the T model at low-resolution
meshes is unable to involve the microtopography in the process of the computations. It is concluded
from Figs. 4.21 and 4.22 that in practice to obtain accurate simulations using the traditional model,
the maximum computational mesh size may is restricted by the size of the main channel, while this
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Figure 4.20: Test Case 4, open channel flow around a bend: computational meshes used for the
simulations performed with T, (a) T (2), (b) T (4), (c) T (8) and (d) T (16).

Figure 4.21: Test Case 4, open channel flow around a bend: longitudinal water surface level profiles
obtained with the two models at various resolutions. (a) zf=1.0 m and (b) zf=1.5 m. Notice that the
results of T (2) and SG (16/2) obtained with zf=1.0 m and zf=1.5 m are unchanged by choice of zf .

107



Chapter 4

restriction is invalid for the SG model.

Figure 4.22: Test Case 4, open channel flow around a bend: longitudinal profile of the magnitude of
velocity vector obtained with the two models at various resolutions. (a) zf=1.0 m and (b) zf=1.5 m.
Notice that the results of T (2) and SG (16/2) obtained with zf=1.0 m and zf=1.5 m are unchanged
by choice of zf .

In this test case, the GCI analysis is only conducted for SG model predictions because the T model
gives inaccurate results in this test (previously discussed). The GCI analysis involves SG (16/2) and
two new solutions, performed on SG (8/2) and SG (4/2), representing a grid refinement ratio r=2.
At the taken computational grid resolutions, the solutions of the SG model are independent of the
scenarios. Then, the GCI analysis, which is only conducted for the SG model is also independent of
the scenarios. The analysis is carried out for three points p1, p2, and p3, which are at the centre of
cells 4, 5, and 2 of SG (16/2), respectively (see Fig. 4.19) representing the cell numbers). These three
points are all submerged cells in the solution of SG (16/2). Table 4.5 summarises the results of the
GCI analysis. This table reveals that at the adopted grids the solutions converge to the asymptotic
values.

4.5 Test Case 5, flow over an irregular bed

The fifth test case aims to assess the performance of the developed sub-grid model for the solution of
problems involving relatively large variation of topography, including areas of adverse (negative) bed
slope. The test case was created using the inverse method described in Chapter 2. The technique uses
an inverse solution for the one-dimensional steady non-uniform flow whereby the bed longitudinal
profile corresponding to the pre-defined depth profile is obtained. A 10 m wide, 3 km long prismatic
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Table 4.5: Test Case 4, open channel flow around a bend: GCI analysis based on the predictions of
water surface level.

sample points Δx1 (m) Δx2 (m) Δx3 (m)
GCI21 GCI32 GCI32

rpGCI21
4 8 16

number l (m) �1 (m) �2 (m) �3 (m)
P1 8 0.609 0.627 0.654 7.226 10.610 0.971
P2 24 0.616 0.613 0.606 0.408 1.022 1.005
P3 40 0.494 0.485 0.469 2.452 4.760 1.018

rectangular channel with constant roughness nM = 0.05 s∕m
1
3 and flow discharge Q = 180 m3∕s is

adopted in this test case. The water depth varies periodically according to the expression ℎ = 8 +

1.5 sin5
(

�x
500

)

, which produces Froude number values of 0.2 and 0.35 along the channel. The solution
to the inverse problem leads to the bed profile shown in Fig. 4.23a. Simulations were performed with
grid resolutions of 20, 50, 100 and 200 m with both traditional and sub-grid (coarse) meshes, while 1
m2 small cells were used for all sub-grid simulations. The value of CFL for all simulations was set to
0.9.

Figs. 4.23(a to c) present the results of selected simulations (for clarity, only solutions on coarse
grids are shown) at the centre of the channel, along with the corresponding analytical solution. Fig.
4.23d illustrates the absolute error (|E|) between analytical and numerical water surface solutions.
Further error analysis is provided by Table 4.6, where the maximum and RMS errors between the two
models and the analytical solution are listed. At fine resolution, the accuracy of both models is within
the order of cm, with the SG model delivering the best accuracy. For example, at the mesh resolution
20 m, the largest value of the maximum absolute error and RMSE for both models is restricted to 0.06
m and 0.05 m, respectively. The improved accuracy of the SG over the T model becomes apparent as
the grid resolution is coarsened. For example, at 100 m resolution, the maximum absolute errors of T
and SG models are 0.26 and 0.06 m, respectively. It is important to observe that at the resolution of
200 m, the results of the proposed sub-grid model are more accurate than the results of the Traditional
model run at 50m resolution. This gets clearer when the results of SG (200/1) and T (50) are compared
against each other in terms of the maximum absolute error (i.e. 0.13 m vs 0.19 m) and RMSE (i.e.
0.08 m vs 0.1 m). The improved accuracy of the SG model is also shown in Fig. 4.23d.

In Fig. 4.24, the longitudinal profile of the velocity (solely the u component as the test is 1D)
of the analytical solution is compared against the numerical solutions, which have been performed on
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Figure 4.23: Test Case 5, flow over an irregular bed: (a) Longitudinal bed and water surface level for
0 ≤ x ≤ 3000; (b) Water surface results at the upstream and (c) downstream halves of the channel;
(d) Absolute error (∣ E ∣) between analytical and numerical solutions along the channel.

Table 4.6: Test Case 5, flow over an irregular bed: Maximum absolute and RMS errors of water level
relative to the analytical solution.

Cell size Max. absolute error (m) RMSE (m)
(m) T SG T SG
20 0.06 0.02 0.05 0.01
50 0.19 0.03 0.10 0.01
100 0.26 0.06 0.15 0.03
200 0.25 0.13 0.14 0.08
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low-resolutionmeshes. In this test case, the velocity changes from 1.89m/s to 2.77m/s. At first glance,
all numerical solutions provide suitable predictions in this test, however at the same computational
resolutions, the solutions of the SG model relative to the T model are more accurate. A good example
in this case is obtained from the comparison between SG (100/1) and T (100) at the location where
the maximum and minimum values of velocity occur (e.g. x=250 m, and x=750 m).

Figure 4.24: Test Case 5, flow over an irregular bed: the longitudinal profile of velocity in the
analytical solution and numerical solutions performed on the coarser meshes.

For this test case, the GCI method is utilised for the SG and T model predictions of water surface
level at five points. The five points are limited to 750 ≤ x ≤ 1750 because outside this range,
the topography (and also the solutions of water surface level) are repeated in a similar pattern (see
Fig. 4.23). In the GCI analysis, the grids considered are at resolutions of 50 m, 100 m, and 200 m,
which provide the grid refinement ratio r=2. Table 4.7 shows the results of the GCI study. This table
illustrates that the solutions are substantially within the asymptotic range of convergence.

4.6 Test Case 6, compound channel

Test Case 6 is aimed at testing the capability of the sub-grid model in simulating the problem of flow
over a bed with variations in both Manning’s coefficient and topography. The domain is a 1200 m
long prismatic, compound channel carrying a steady flow rate of Q = 20 m3∕s. The main channel
and floodplains are rectangular. The base width of the main channel is 4.0 m, and the width of both
floodplains is 8m. The elevation of themain channel is 2m below the elevation of adjacent floodplains.
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Table 4.7: Test Case 5, flow over an irregular bed: GCI analysis based on the predictions of water
surface level.

model sample points Δx1 (m) Δx2 (m) Δx3 (m)
GCI21 GCI32 GCI32

rpGCI21
50 100 200

number x (m) �1 (m) �2 (m) �3 (m)

T

p1 900 10.801 10.793 10.779 0.111 0.203 1.001
p2 1100 10.712 10.737 10.793 0.244 0.537 0.998
p3 1300 10.698 10.686 10.658 0.125 0.272 1.001
p4 1500 10.425 10.480 10.600 0.547 1.195 0.995
p5 1700 10.211 10.217 10.231 0.065 0.143 0.999

SG

p1 900 10.752 10.729 10.654 0.119 0.388 1.002
p2 1100 10.618 10.614 10.596 0.011 0.054 1.000
p3 1300 10.555 10.530 10.459 0.165 0.464 1.002
p4 1500 10.356 10.346 10.293 0.027 0.147 1.001
p5 1700 10.096 10.099 10.105 0.069 0.111 1.000

The constant bed slope is 0.001. Two roughness scenarios are modelled, (1) usingManning coefficient
values of 0.04 s/m 1

3 and 0.08 s/m 1
3 for main channel and floodplains, respectively; and (2) using the

space-averaged value of scenario 1 for the whole domain, i.e. constant nM=0.072 s/m 1
3 for the both

main channel and floodplain. A constant value of �=2.5 m is imposed as downstream boundary
condition at x=1200 m. The model is run from an arbitrary initial condition for a duration sufficiently
long for steady flow to be reached. The small cell size is 2m and the resolutions for the both Traditional
and Sub-grid models (coarse mesh) are 2 m, 4 m, and 20 m. The solution of T (2) is taken as the
benchmark solution, against which all other solutions are compared.

Fig. 4.25 shows the water surface level at the channel centreline obtained with the two models
at different resolutions and both Manning coefficient scenarios. In these figures, no substantial
differences can be observed between the free surface profiles predicted by the SG (4/2) and T (4),
which also coincide (visually) with the benchmark solution T (2). On the other hand, at the coarsest
resolution, T (20) and SG (20/2) results in over- and underestimated solutions, respectively for the
both scenarios. The results of SG (20/2) are much closer to the benchmark solution than those of T
(20).

Fig. 4.25 shows that differences between the coarse and benchmark solutions are higher in scenario
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Figure 4.25: Test Case 6, compound channel: longitudinal profile of water surface solutions at the
centreline of the channel for (a) Scenario 1 and (b) Scenario 2.

1 (varied roughness) than in scenario 2 (constant roughness). This shows that simple averaging of
roughness coefficients across a computational cell may produce results that substantially overestimate
the effect of friction. Table 4.8 compares the maximum absolute (∣ E ∣) and RMS errors (i.e. relative
to T (2) simulation) of the two models run at computational cell resolutions of 4 m and 20 m. At
4 m resolution (in which case both the topographic and roughness data of cells in the main channel
and floodplain are the same as those in of the finest resolution grid), the results of both models are
very close to the benchmark solutions. At the coarsest resolution (i.e. Δx = 20 m), where each
computational cell covers parts of both the floodplain and main channel, (i.e. there are large variations
inManning roughness and bed geometry inside a computational cell), errors obtainedwith the Tmodel
are substantially higher than those provided by the SG model. For example, the RMSE of T (20)
compared to SG (20/2) is 0.44 m vs 0.13 m in the first and 0.16 m vs 0.06 m in the second scenario,
respectively. This shows that SG (20/2) relative to T (20) reduces the RMSE by a factor more than
two.

Fig. 4.26 shows the longitudinal profile of velocity along the centreline of the main channel for all
numerical solutions. Identical to the results provided by Fig. 4.25, in both the scenarios, the solution
on SG (4/2) and T (4) are very close to the benchmark solutions, and by coarsening the computational
meshes, the solutions (for the both models) are differentiated from the benchmark solutions. However,
the solution of SG (20/2) is more accurate than the solution of T (20). This is particularly the case
for the first scenario, which involves the distribution of the roughness coefficient across the domain
of study. According to Fig. 4.26, the range of the values of the velocity is more limited in the second
scenario, compared to Scenario 1 (except from T (20), which represents the same solution in both
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Table 4.8: Test Case 6, compound channel:Maximum absolute and RMS errors of water level relative
to the benchmark solution [T (2)] for Scenarios 1 and 2.

Scenario Cell size ∣ E ∣ (m) RMSE (m)
number Traditional Sub-grid Traditional Sub-grid

1 4 0.08 0.007 0.002 0.003
20 0.51 0.21 0.44 0.13

2 4 0.005 0.005 0.003 0.004
20 0.17 0.07 0.16 0.06

scenarios because the topography and roughness are unchanged during the two types of simulations).
This would be already expected, as Fig. 4.25 presents higher �, which also means higher ℎ, for the
second scenario, whereas the discharge is the same in both scenarios.

Figure 4.26: Test Case 6, compound channel: the longitudinal profile of velocity along the centreline
for (a) Scenario 1 and (b) Scenario 2.

4.7 Test Case 7, the River Tiber

Test Case 7 evaluates the performance of the SG model in simulating a real-world flood inundation
problem, where the flow is unsteady and two-dimensional. This test case simulates a 113 hour-long
flood event that occurred between 27th November and 1st December 2005 in the River Tiber,
Italy, (Morales-Hernández et al., 2016). The River Tiber is the third largest river in Italy flowing
between Apennine Mountains and Tyrrhenian Sea. The catchment area and the length of river are
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approximately 17,000 km2 and 400 km, respectively. The average flow in the river is 267 m3/s, while
the peak flow of the 200-year return period event is approximately 3,200 m3/s (Morales-Hernández
et al., 2016). The computational domain of study is a 6 km × 2 km area near the city of Rome, which
is shown in Fig. 4.27. This simulation adopts the values of Manning’s coefficient previously used by
Morales-Hernández et al. (2016), where the values for the main channel and floodplains were defined
as 0.035 m/s 13 and 0.0446 m/s 13 , respectively.

Figure 4.27: Test Case 7, the River Tiber: Plan view of the computational domain.

The initial condition corresponds to the results of a steady flow simulation with discharge of 374
m3/s. Fig. 4.28 shows the time series of discharge (Q) and water surface (�) used as the upstream and
downstream boundary conditions. Water surface levels have been measured during the flood event at
cross sections S1 and S2 shown in Fig. 4.27. Gridded topographic data are available at resolutions
of 2 m and 5 m. In the proposed sub-grid model, these two resolutions are taken as the small cell
resolution, which are combined with different sizes (10 m, 20 m, 40 m, 50 m, and 100 m) of large
cells. Cell sizes in the T model are the same as large cell sizes in the SG model except that one more
resolution (4 m) is employed. The results of T (4) are adopted here as the benchmark solution.

Fig. 4.29a and 4.29b show time series of free surface elevation at cross sections S1 and S2,
respectively, predicted by the two models at different resolutions, along with the field data available.
It must be noted that the field measurements are included here for illustrative purposes only, as the
aim of the analysis is to compare the results of the SG model against the benchmark (in this case, a
high-resolution T model). The performance of the models relative to the field data available depend
on several factors related to the uncertainty in the measured data, boundary conditions and model
parameters. Such comparison would therefore not serve the purpose of assessing errors introduced by
coarsening the grid, and is therefore out of the scope of this work. It was not possible to perform the
simulation T (100). This is because coarsening of the cells near the downstream boundary produced
cell elevations that were higher than the water surface elevation set at the boundary of the domain.
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Figure 4.28: Test Case 7, the River Tiber: upstream and downstream boundary conditions. (a)
Upstream (western boundary) time series Q(t) and (b) downstream (southern boundary) time series
�(t).

Since the sub-grid model includes the elevation of small cells near the boundaries, even the coarsest
resolution simulation was performed successfully. For clarity, Fig. 4.29 shows results for selected
simulations. The predicted elevations are invariably higher than the benchmark solution at both
cross-sections, and this difference reaches a maximum near the end of the simulation. The improved
accuracy of the sub-grid model becomes clear on the coarse resolution grids, where the maximum
error (relative to the benchmark water surface) is reduced from about 1.3 m and 2 m [T (50)] to 0.55
m and 0.65 [SG (50/2)] at S1 and S2, respectively. No significant differences were observed between
the results of the SG model at small cell resolutions of 2 and 5 m.

Fig. 4.30 shows the velocity magnitude time history at the deepest points of cross-sections S1 and
S2. The numerical models at the adoptedmesh resolutions provide underestimated solutions compared
to the benchmark solution. The results illustrate that the predictions of model/resolutions are relatively
close together. The time series exhibit different patterns at cross-sections S1 and S2. At cross-section
S1, similar to curves provided in Fig. 4.28 and 4.29, there are two peaks by t=30 hr and t=60 hr,
whereas the pattern at cross-section S2 is closer to uniform. This may be because the main channel
cross-section widens between cross-section S1 and S2, as evident in Fig. 4.27 comparing the situation
upstream of S1 to that downstream of S2, thus increasing the local storage capacity regulating the flow
rate passing S2.

Fig. 4.31 compares the performance of the two models in terms of accuracy and runtime (tc). The
accuracy of the simulations is assessed based on the RMSE of water depth of the solutions relative
to the benchmark [T (4)]. Fig. 4.31a represents the solutions at t= 110 hr, whereas Fig. 4.31b
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Figure 4.29: Test Case 7, the River Tiber: measured and predicted water surface elevations at
cross-sections (a) S1 and (b) S2.
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Figure 4.30: Test Case 7, the River Tiber: the predicted velocity magnitude at cross-sections (a) S1
and (b) S2.
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corresponds to errors at the maximum predicted water depth at each of the cells during 113 hours
of flood event. In Fig. 4.31b, the maximum water surface level computed at each computational cell
is first determined for the each model/resolution. The corresponding maximum water depth is then
obtained by subtracting the bed elevation at 2 m resolution from the maximum water surface levels.
In Fig. 4.31a the process is similar but instead of maximum water surface level, water surface levels
at t = 110 hr are adopted. The results in Fig. 4.31a and 4.31b show the improved accuracy provided
by the SG model compared to the single mesh approach (i.e. T model) at different resolutions. At
resolutions of the computational grid smaller than 20 m, the accuracy of the T and SG models is
close and displays a similar trend. However, as the size of the computational cell is coarsened, the
curves diverge substantially, with the SG displaying amuchmilder increase in error than the traditional
approach. The analysis shows that the slope of T (. . . ) curve in log (RMSE) vs log (Δx) is about 1
(exactly 0.95 and 0.9 for the cases Fig. 4.31a and 4.31b respectively), which would be expected for a
first order model. By contrast, the slopes of the curves for SG (. . . /2) and SG (. . . /5) are not constant
and always less than 1 (i.e. errors increase at a much slower pace as the grid is coarsened).

Figure 4.31: Test Case 7, the River Tiber: water depth RMSE of the models/resolutions relative to the
benchmark solution against computational cell size (Δx) where, the water depth is: (a) that at t = 110
hr, and (b) the maximum computed during the flood event.

Fig. 4.32a shows the runtime for different simulations performed with the two models and for
different computational cell sizes. As previously discussed, the computational cost follows a power
law tc ∼ Δx−p, where p=3 for traditional explicit models. Fig. 4.32a confirms this for the T model
(p =3.013) and also shows how p is reduced for the SG model [p=2.216 and 2.294 for SG (. . . /2) and
SG (. . . /5), respectively]. Values of p less than 3 for the SG model occur mainly because because the
fluxes at the cell edges are computed at small cell resolution. To obtain the fluxes in a square cell,
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the traditional model solves the Riemann problem, which is an expensive part of the solution, four
times, whereas for the SG model, it is executed as many times as there are small cells next to the large
cell edges [e.g. 40 times for SG (50/5)]. Thus, the time cost of the SG relative to T model is higher,
resulting in lower p (i.e. p<3).

Fig. 4.32b displays RMSE at t = 110 hr, when the differences of � predicted by the benchmark
solution and other solutions are relatively large (also previously shown in Fig. 4.29), as a function of
model runtime, obtained from the simulations with the two models at different resolutions. The figure
shows that as the simulation time is reduced (i.e. grid coarsening), the accuracy gap between the two
models gradually increases, with the SG model outperforming the single mesh model. For instance,
Fig. 4.32b shows that for runtimes less than tc= 5 hr, the SG model provides the most accurate results.

Figure 4.32: Test Case 7, the River Tiber: (a) runtime (tc) against computational cell size of the
models/resolutions. (b) Water depth RMSE (at t = 110 hr) of the models/resolutions relative to the
benchmark solution as a function of runtime.

Figs. 4.33 to 4.35 show the flooded areas predicted by the two models at t=33, 80 and 113 hr.
For clarity, only the finest (Δx=10 m), one of the lowest (Δx=50 m) and the benchmark (Δx=4 m)
resolution results were depicted. As a general observation, the flooded areas predicted by T (10),
SG (10/2), SG (10/5), SG (50/2), SG (50/5), are close to the benchmark solution and only T (50)
provides results that are clearly (visually) different. This can be analysed through the inspections of
Fig. 4.36, where time series of the flooded area are plotted for the T and SG models at the mentioned
cell resolutions. All themodels/resolutions predicted the flooded area well compared to the benchmark
solution in the time range of t=20 hr to t=80 hr, when the peak flow causes themaximumwater surface
level to occur within the domain (see Figs. 4.28 and 4.30). During the first 20 hours, the results can be
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classified into three categories. The results produced by T (10), SG (10/2) and SG (10/5), which have
the highest resolution, are in good agreement with those by T (4). The results of T (50), SG (50/2),
SG (50/5), SG (100/2) and SG (100/5), overestimate the flooded area, although SG (100/2) and SG
(100/5) are clearly more accurate when compared to T (50). During the last 30 hours of the flood
event, even the results of the SG model at coarse resolution (i.e. 100/5 and 100/2) produce a relatively
good estimate, whereas the twice finer T (50) model gives much poorer results.

Figure 4.33: Test Case 7, the River Tiber: maps of flooded area at t= 33 hr for the different
models/resolutions.

Fig. 4.37 displays the variation in storage as a function of time. On fine resolution meshes, the
numerical solutions (in both models) are very close to the benchmark solution [i.e. T (4)] and by

121



Chapter 4

Figure 4.34: Test Case 7, the River Tiber: maps of flooded area at t= 80 hr for the different
models/resolutions.
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Figure 4.35: Test Case 7, the River Tiber: maps of flooded area at t= 133 hr for the different
models/resolutions.
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Figure 4.36: Test Case 7, the River Tiber: time series of flooded area (A) obtained by the different
models/resolutions.

124



Chapter 4

coarsening the meshes, the difference between the solutions of models and the benchmark solution
increases. However, the SG model presents more accurate results on low-resolution meshes. A good
example in this case can be obtained from comparing the solutions SG (50/2) and SG (50/5) to T (50),
where T (50) gives significant overestimation relative to T (4) (particularly at the beginning and end
of the flood event).

Figure 4.37: Test Case 7, the River Tiber: time series of storage obtained by the different
models/resolutions.

For this test case, the GCI analysis is carried out using the water surface elevation solution at five
points across the domain of study. Fig. 4.38 shows the position of the points on the map of the domain.
The GCI analysis is conducted at three time instants, which relate to before, within and after the peak
of the flood event, respectively (see Fig. 4.28). This analysis is proceeded for both the T and SG
models. Table 4.9 lists the values of GCI obtained from the aforementioned points, models and times.
The results confirm that the calculations converge asymptotically to the correct solutions on the grids
adopted in this study.
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Table 4.9: Test Case 7, the River Tiber: GCI analysis based on the predictions of water surface level.

model t (hr) sample points
Δx1 (m) Δx2 (m) Δx3 (m)

GCI21 GCI32 GCI32
rpGCI21

10 20 40
�1 (m) �2 (m) �3 (m)

T

15

p1 35.915 36.146 36.479 1.819 2.607 0.994
p2 35.417 35.539 35.749 0.587 1.012 0.997
p3 35.002 35.268 35.556 11.272 12.130 0.992
p4 34.173 34.319 35.556 0.071 0.601 0.996
p5 32.910 33.098 34.893 0.083 0.791 0.994

60

p1 37.012 37.106 37.215 2.012 2.323 0.997
p2 36.284 36.353 36.439 1.015 1.251 0.998
p3 36.023 36.106 36.210 1.122 1.406 0.998
p4 35.594 35.603 35.741 0.002 0.035 1.000
p5 34.980 34.990 35.042 0.010 0.049 1.000

90

p1 35.600 35.881 36.242 3.452 4.403 0.992
p2 35.045 35.290 35.605 2.988 3.833 0.993
p3 34.744 35.082 35.431 32.990 33.874 0.990
p4 33.872 34.097 34.747 0.436 1.255 0.993
p5 32.483 32.493 32.624 0.003 0.042 1.000

SG (⋅ ⋅ ⋅/2)

15

p1 36.210 36.391 36.598 4.262 4.862 0.995
p2 35.321 35.482 35.654 8.665 9.193 0.995
p3 35.083 35.225 35.370 28.738 29.126 0.996
p4 34.405 34.500 34.662 0.489 0.832 0.997
p5 32.956 33.074 33.213 2.530 2.967 0.996

60

p1 37.095 37.178 37.283 1.062 1.339 0.998
p2 36.165 36.235 36.320 1.159 1.399 0.998
p3 35.939 35.969 36.020 0.146 0.250 0.999
p4 35.569 35.601 35.637 1.300 1.413 0.999
p5 34.983 34.987 35.010 0.004 0.021 1.000

90

p1 35.839 35.913 36.142 0.125 0.383 0.998
p2 34.956 35.158 35.420 2.483 3.188 0.994
p3 34.765 34.916 35.141 1.092 1.627 0.996
p4 34.031 34.177 34.355 2.448 2.971 0.996
p5 32.406 32.407 32.536 0.000 0.002 1.000
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model t (hr) sample points
Δx1 (m) Δx2 (m) Δx3 (m)

GCI21 GCI32 GCI32
rpGCI21

10 20 40
�1 (m) �2 (m) �3 (m)

SG (⋅ ⋅ ⋅/5)

15

p1 36.046 36.218 36.542 0.668 1.257 0.995
p2 35.265 35.403 35.622 0.833 1.317 0.996
p3 34.996 35.106 35.337 0.356 0.746 0.997
p4 34.227 34.351 34.525 1.138 1.586 0.996
p5 32.957 32.930 32.889 0.196 0.299 1.001

60

p1 37.050 37.128 37.296 0.228 0.490 0.998
p2 36.211 36.263 36.324 1.041 1.218 0.999
p3 35.971 36.003 36.038 0.782 0.889 0.999
p4 35.566 35.597 35.648 0.174 0.282 0.999
p5 34.980 34.987 35.008 0.010 0.033 1.000

90

p1 35.610 35.828 36.051 35.559 36.104 0.994
p2 34.906 35.136 35.371 40.306 40.860 0.993
p3 34.634 34.860 35.103 11.435 12.173 0.993
p4 33.809 33.908 34.176 0.217 0.583 0.997
p5 32.399 32.417 32.485 0.027 0.098 0.999

Figure 4.38: Test Case 7, the River Tiber: plan view of the points adopted for the GCI analysis.
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4.8 Concluding remarks

In this chapter, seven test cases were studied. In the first test case, a 1D steady flow over a smoothed
hump is investigated. The hump provides the transcritical condition and appearance of a hydraulic
jump in the channel, which is frictionless. Through the second test case, the 1D dam-break problem is
studied for two scenarios; when the downstream part of the channel is dry or wet (still water). This test
provides an unsteady flood propagation problem, the analytical solution of which is available. Test
Case 3 involves the 2D dam-break problem over a flat rectangular domain containing three conical
humps. This widely studied test exams the performance of the proposed model in capturing waves
and also wetting and drying conditions. Test Case 4 simulates a steady flow in a sharp 90◦ channel
bend. In this test, the computational cells are much coarser than the width of a rectangular channel
that changes direction by 90◦. The test was run for two scenarios of bed level in floodplains, and based
on the benchmark solution and simple physical considerations (i.e. the flow is fully contained in the
main channel), the numerical results should be independent of the floodplain elevation. In Test Case
5, the accuracy of the model is tested for flow in a 1D steady channel that has relatively large and
complex variations in the bed elevation. Test Case 6 corresponds to a prismatic compound channel
with rectangular floodplain and main channel, where different bed levels and Manning coefficients
of floodplain and main channel were adopted to test the proposed upscaling methods. Two scenarios
were compared where spatially-distributed and the spatially-averaged values of these parameters are
used for each computational cell. The last test case exams the performance of the proposed sub-grid
model for a real-world flood inundation event that occurred in the River Tiber, Italy between 27th
November and 1st December 2005. The flood was simulated by the proposed and a traditional finite
volume model with different mesh resolutions and the results were compared against the benchmark
solution and recorded field data.

The analysis of the results of these comparisons allow us to conclude that:

• A SG model has been developed for large scale simulations using low-resolution computational
meshes. Although it is not the aim of the present model to capture (standing or moving)
discontinuities in the water surface, the SG model is nevertheless able accurately to capture
such phenomena on high resolution meshes. Results from the first three test cases (i.e. 1D
steady flow over a hump, 1D dam-break problem, and dam-break wave propagating over three
humps) indicate that when the topography is complex, the SG model provides more accurate
shock capturing compared to the T model at the same mesh resolution.

• Simple grid coarsening (i.e. traditional model) may lead to inaccurate solutions, as evidenced by
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Test Case 4 (open channel flow around a bend), where the topography of the dry part of the study
domain in a traditional model has an important impact on the numerical solution. In this test,
the results obtained with the SG model were considerably more accurate than those provided by
the T model. This sheds light onto the limitations of some of the recent modelling techniques
previously discussed (e.g. Hénonin et al., 2015), which adopt overly simplified methods to
upscale the fine resolution information.

• Overall, at any given resolution, the SG model provides results that are more accurate than
those obtained from the single mesh approach (i.e. T model) and this improved accuracy is
more obvious on low-resolution meshes.

• Test Case 6 (compound channel) shows that the use of simple averaging of roughness
coefficients and bed level for a computational cell (i.e. a traditional model) may affect
significantly solution accuracy. This again sheds light onto an issue that has not been reported in
previous investigations on the development of sub-grid models that are strongly based on simple
averaging (Sanders et al., 2008; Soares-Frazão et al., 2008; Guinot et al., 2017). The inclusion
of finely resolved, spatially distributed values of parameters in the SG model proved to be a
successful strategy to improve the accuracy of simulations performed at coarse resolution.

• Inclusion of finely resolved data within a coarse resolution grid has enabled the SG to
successfully perform simulations when these cannot be obtained by the T model. An example
is Test Case 7 (the River Tiber), where T (100) is unable to run the simulation, because of the
inaccurate reconstructions of bed level and hydraulic properties, which arise from simple grid
coarsening, near the downstream boundary of the domain. On the other hand, the SG (100/2) and
SG (100/5) simulations were performed without encountering any problems. It is also expected
that the traditional method may be unable to perform certain simulations at coarse resolution
using current-generation porosity-based sub-grid models, where use of high-resolution data is
limited to porosity coefficients.

• The SG performance was assessed for the real-world Test Case 7 (the River Tiber). The results
showed that on high-resolution meshes, it is more efficient to use the traditional model but as
the mesh is coarsened, the SG model outperforms the traditional approach.
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Conclusions and Recommendations

5.1 Conclusions

In this work, a new model has been presented for the solution of the two-dimensional shallow water
equations based on a Godunov-type finite volume method modified to achieve high computational
performance. Central to the model’s improved performance is the dual nested mesh approach. In
this method, a coarse mesh is used as the computational mesh, which contains large cells defining
the sub-domains at which the conservation laws are applied. A fine resolution mesh is used to include
finely resolved information (i.e. terrain elevation and roughness) in the solution and therefore improve
accuracy. Large cells are allowed to be fully or partially wet, with the wet area and other variables
updated dynamically.

New methods are presented to upscale the solution from fine to coarse meshes as follows. To
compute the mass and momentum exchanges between two neighbouring large cells, a new method is
presented to reconstruct the conservative variables at the edges of the high-resolution mesh, where the
Riemann problem is solved. The method was designed so that most of the additional computational
time required to reconstruct variables is performed at pre-processing only. The bed slope term is
upscaled from the fine to coarse mesh according to the fine scale topographic data and the value of the
free surface elevation � along the edges of large cells. The method accounts for both fully and partially
wet cells. A new method is presented for upscaling the friction source terms, which assumes a generic
distribution of momentum within a large cell under the assumption that the flow is approximately
parallel. This assumption leads to a method whereby expensive computations involving fine scale
information are also performed at pre-processing only.

131



Chapter 5

A number of test cases were studied in this research, where the results of the sub-grid (SG)
model were compared against those from a traditional first order finite-volume method (T). The study
showed that at the same grid resolution, the SG model provides improved accuracy over traditional
methods. This enhanced accuracy is most obvious at low resolution. The results also showed that
the model is capable of delivering higher accuracy through the inclusion of sub-grid scale finely
resolved topography and roughness. It has also been shown that, by accounting for sub-grid scale
information, the SG model enables simulations to be performed at resolutions that are too coarse for
traditional methods to even start the computations. Combined analysis of accuracy and computational
time suggests that at coarse resolutions and when similar levels of accuracy are considered, the SG
model can be substantially faster than currently available methods. While a more extensive set of
real-world tests may be needed to fully understand the performance of the model (i.e. as compared
to other existing techniques), these results, show a promising path to developing high-performance
inundation models. Finally, the results of the simulations performed in this thesis have shed light onto
some of the unreported limitations of other sub-grid techniques that have been proposed in the past
years.

5.2 Model limitations

While certain strengths of the SG model were reviewed in the previous sections, some shortcomings
and inherent limitations of such modelling strategy must be discussed. First, the SG model presented
in this research implements a first order accurate scheme for the solution of the homogenous part
of the 2D shallow water equations. This assumes that changes in the values of conserved variables
are small and can be approximated as piecewise constant. Such an assumption will induce loss of
accuracy under certain scenarios (e.g., steep water surface profiles), specially at coarse resolution. A
second order version of the proposed method is therefore likely to further improve the accuracy of
coarse resolution simulations under these conditions. It is also important to notice that in the type of
upscaling techniques proposed in this work (including the potential future extension to second order),
the function describing the water surface profile inside a large computational cell is assumed a priori.
This means that localised changes in the conserved variables (e.g. a hydraulic jump) that may occur
within a large cell cannot be captured by such models.
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5.3 Future Work

During the development of themodel proposed in this thesis, a number of observations have beenmade
that can be valuable to guide further developments in this field. Further work on the topics described
within the next sections have the potential to improvemodel accuracy and performance, paving theway
for many applications that are now hindered by the lack of models of high computational efficiency.

5.3.1 Second order SG model

According to Begnudelli et al. (2008), the combination of a first order accurate scheme for the
solution of homogenous shallow water equations and a second order topography (i.e. piecewise linear
change in bed elevation) model has higher efficiency, accuracy and robustness, compared to a second
order scheme (see Section 3.3.1). In the proposed sub-grid model, topography is presented through
small cells (high-resolution mesh), which provides a step forward towards improving the accuracy
of the representation of topography at coarse resolution grids. However, whereas the observation by
Begnudelli et al. (2008) may correctly represent certain scenarios of high- to medium- resolution,
as computational grids are made substantially coarser, it is reasonable to assume that the first-order
approximation eventually limits the overall accuracy of the model. Additional simulations performed
as part of the present study (but not included in the thesis) indicates that there are cases in which
the second order SG model improves the accuracy of the model substantially. This is because the
conservative variables are reconstructed more accurately at the edges when solving the Riemann
problem. Combining the second order model with the methods proposed in this thesis will therefore
lead to a model that is capable of performing simulations at even coarser resolutions and with limited
loss of accuracy.

5.3.2 Combination of the model with parallel programming approach

In Chapter 1, several approaches that have been typically adopted to speedup large-scale flooding
simulations were reviewed. The structure of the proposed model is such that it can be relatively easily
combined with a number of these techniques, including parallel computing. In the SGmodel, the most
time consuming computation is the solution of the Riemann problem at the edges of computational
cells, because it is performed at small cells resolution. These computations, which provide the mass
and momentum fluxes between the cells, can be performed independently, and therefore parallel
computing can speed up the simulation significantly. While great efforts have been made in this thesis
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to test the model through a sequence of increasingly stringent test cases, this is far from exhaustive.
Therefore, further tests would be useful to gain further insights into the limits of the proposed approach,
which will also guide new developments in this area.
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Appendix A

Shallow water equations

The shallow water equations (SWE) are a hyperbolic system of partial differential equations (PDEs)
that are employed for the simulation of a large range of free surface flows from oceans, coastal areas
and estuaries to rivers. Urban flood inundations by Liang (2010), rainfall-runoff processes by Esteves
et al. (2000) and Simons et al. (2014), tidal hydrodynamics and ocean tsunami hazards by Sugawara
and Goto (2012), Pelling et al. (2013) and Hou et al. (2015) are examples showing the extensive
applicability of shallow water equations in free surface flow studies. Shallow water equations are able
to represent complex hydrodynamics including discontinued water surface. These equations appear in
engineering studies in 1D, 2D and 3D forms and they are applicable to cases when the vertical scale
of flow is much smaller than the horizontal dimension (the reason why they are called ’shallow’ water
equations).

These governing PDEs are derived from continuity and Navier-Stokes momentum equations,
which are based on conservation of mass and momentum. The Navier–Stokes momentum equation
is a particular form of the Cauchy momentum equation, (Wikipedia, 2015). In this section, the
derivation of depth averaged (two-dimensional) shallow water equations is described. This derivation
is completely similar to that mentioned by Toro (2001). To avoid any ambiguity, it should be noted
that the process of the derivation starts from the 3D continuity and Navier-Stokes equations, in which
z is adopted as the vertical axis of the Cartesian system, while in the rest of the thesis z represents bed
level. Therefore, in this appendix, b instead of z is employed for the bed level.
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A.1 Derivation of 2D SWE or mass and momentum conservation laws

The general, differential form of the conservation laws of mass and momentum (Cauchy equations)
for a compressible fluid is defined as (Toro, 2001),
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+ ∇ ⋅ (�V) = 0, (A.1)
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where t is time, x, y and z are distance co-ordinates, � is mass density and V = (u, v,w) is velocity
vector, which has the components of u, v and w that are defined in the directions of x, y and z,
respectively. P denotes the pressure, and g = (g1, g2, g3) is a body force vector and
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(A.3)

The viscous stress tensor∏ is usually modelled using the Newtonian assumption, and here this term
can be neglected to decrease the complexity of the equations as is common practice in floodmodelling.

Neglecting viscous effects and writing the equations based on primary physical variables such as
u, v,w, � and P , convert the equations into

)�
)t
+ u )�

)x
+ v )�

)y
+w )�

)z
+ �

(

)u
)x
+ )v

)y
+ )w

)z

)

= 0,
)u
)t
+ u )u

)x
+ v )u

)y
+w )u

)z
+ 1

�
)P
)x
= g1,

)v
)t
+ u )v

)x
+ v )v

)y
+w )v

)z
+ 1

�
)P
)y
= g2,

)w
)t
+ u )w

)x
+ v )w

)y
+w )w

)z
+ 1

�
)P
)z
= g3.

(A.4)

Written for an incompressible free surface flow as illustrated schematically in Fig. A.1, whereas
x–y is a horizontal plane, and the bed and water surface profiles are defined by the functions b(x, y)
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and ℎ(x, y, t), respectively, the formulas are simplified, so that g = (0, 0,−g = −9.806 m∕s2) and we
have

Figure A.1: Longitudinal profile of bed and water surface of an arbitrary free surface flow, (Toro,
2001).

)u
)x
+ )v

)y
+ )w

)z
= 0,

)u
)t
+ u )u

)x
+ v )u

)y
+w )u

)z
= − 1
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)x
,

)v
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+ u )v

)x
+ v )v
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+w )v

)z
= − 1

�
)P
)y
,

)w
)t
+ u )w

)x
+ v )w

)y
+w )w

)z
= − 1

�
)P
)z
− g.

(A.5)

One basic assumption in derivation of shallow water equations is associated with omitting the
effects of vertical acceleration components, i.e.

dw
dt

= )w
)t
+ u)w

)x
+ v)w

)y
+w)w

)z
= 0, (A.6)

and substituting the above condition
(

i.e. dwdt = 0
)

into Eq. A.5d leads
)P
)z

= −�g. (A.7)

In other words, the pressure distribution in the shallow water equations is assumed hydrostatic.
This implies that the pressure at the free surface is zero relative to atmospheric pressure, and changes
linearly with vertical distance from the free surface. Therefore,

P = �g(� − z), (A.8)
where � = �(x, y, t) = b(x, y) + ℎ(x, y, t) is the water surface elevation. Using Eq. A.8, the partial
derivative of pressure with respect to x and y may be written

)P
)x

= �g
)�
)x
, )P

)y
= �g

)�
)y
. (A.9)
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Hence, )P
)x

and )P
)y

are independent of z. Therefore, the left hand sides of Eq. A.5b and Eq. A.5c,
which are du

dt
= )u

)t
+ u )u

)x
+ v )u

)y
+w )u

)z
and dv

dt
= )v

)t
+ u )v

)x
+ v )v

)y
+w )v

)z
are independent of z. Then,

the parameters u and v, which are the x− and y− direction velocity components, are independent of z,
and it can be concluded that )u

)z
= )v

)z
= 0. Using this last point and substituting Eq. A.9 in Eq. A.5b

and Eq. A.5c gives
)u
)t
+ u )u

)x
+ v)u

)y
= −g

)�
)x
, (A.10)

)v
)t
+ u)v

)x
+ v)v

)y
= −g

)�
)y
. (A.11)

The integral of the continuity Eq. A.5a with respect to z, from z = b(x, y) at the bed bottom to
the free surface at z = �(x, y) must be zero,

∫

z=�

z=b

(

)u
)x

+ )v
)y
+ )w
)z

)

dz = 0, (A.12)

thus,

w ∥z=� −w ∥z=b +∫

�

b

)u
)x
dz + ∫

�

b

)v
)y
dz = 0. (A.13)

Adopting the boundary conditions described below provides the first two expressions in Eq. A.13.

 b =  b(x, y, z, t), (A.14)

which, for the free surface, is

 b (x, y, z, t) = z − �(x, y, t) = 0, (A.15)

and, for the bottom, is

 b (x, y, z, t) = z − b (x, y) = 0. (A.16)

The boundary function is time-dependent at the free surface and time-independent at the bed. The
first derivative of boundary function  with respect to time yields

d
dt
 b (x, y, z, t) =

)
)t
 b + u

)
)x
 b + v

)
)y
 b +w

)
)z
 b = 0, (A.17)

and it is obvious that at the free surface, the pressure relative to atmospheric is zero,

P (x, y, z, t) ∥z=�= 0. (A.18)

Applying the boundary condition of Eq. A.17 at the highest and lowest streamlines (i.e. free
surface and bottom) results in,

(

)�
)t
+ u

)�
)x

+ v
)�
)y
−w

)

‖

‖

‖

‖

‖z=�
= 0, (A.19)
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(
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= 0, (A.20)

Therefore, the parameters of w ∥z=� and w ∥z=b can be defined by the functions of flow surface
and bed and the velocity components of u and v,
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. (A.22)

Substituting both Eq. A.21 and Eq. A.22 into Eq. A.13, leads to the following equation,
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The Leibnitz formula is used to simplify the above equation
d
d� ∫
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thus, the last two integral expressions in Eq. A.23 can be rewritten as
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Integrating Eq. A.25, Eq. A.26, and Eq. A.23 gives
)�
)t
+ )
)x ∫

�

b
udz + )

)y ∫

�

b
vdz = 0. (A.27)

As previously mentioned, u and v are independent of z, � = b + ℎ, and the partial derivative of b
with respect to time is zero

(

i.e. )b
)t
= 0

)

. This yields the form of the mass conservation (continuity)
equation below,

)
)t
ℎ + )

)x
(ℎu) + )

)y
(ℎv) = 0. (A.28)

The momentum equations may also be expressed in differential conservation form. To do this, Eq.
A.28 may be multiplied by u and add to Eq. A.10 that is pre-multiplied by ℎ. The result is as follows,
noting that the relation ℎ)ℎ

)x
= )
)x

(1
2
ℎ2
)

in the algebraic manipulations.
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(ℎuv) = −gℎ)b

)x
. (A.29)
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The above equation is momentum in the x-direction. In the y-direction, an identical procedure is
adopted leading to

)
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(ℎv) + )

)x
(ℎuv) + )
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2
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. (A.30)

The three partial differential equations A.28, A.29, and A.30 may be rewritten as
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, (A.32)

where, U is the vector of conserved variables, F(U) and G(U) are flux vectors in the x− and y−
directions, and S(U) is the source term vector. The source term vector may include different terms
such as Coriolis forces, wind forces, bottom friction. Setting S(U) = 0 gives the homogenous version
of the shallow water equations.
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Gradually varied flows in 1D channels

The 1D-shallow water equations for a non-prismatic, complicated geometry, as shown in Fig. B.1,
can be written as (see MacDonald, 1996)
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⎪

⎨

⎪

⎩

)A
)t
+ )Q

)x
= 0

)Q
)t
+ )F

)x
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, (B.1)

in which,
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+ gI2, I2 = ∫ ℎ
0 (ℎ − �)

)B(x,�)
)x

d�,
, (B.2)

where A (m2) is the local cross-sectional area, Q (m3∕s) represents the flow discharge, I1 (m3) and

Figure B.1: A typical channel cross-section.nv j j j jg jig reetjgoirehru herug ehg g gwef y7f eryr fy

I2 (m2) are hydrostatic pressure and side reaction terms for a non-prismatic channel (the effects of
channel contraction and expansion on the flow), respectively, B (m) is channel width, ℎ (m) represents
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the water depth and � (m) denotes an elevation parameter, changing from zero to water depth level at
each point in agreement with the definitions in Fig. B.1.

Eq. B.1 for steady state flow yields
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(B.3)

The second equation of Eq. B.3 gives
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alternatively,
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In Eq. B.5, tm1 equals
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From the first equation of Eq. B.3, )Q
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= 0 then,
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consequently, tm1 is,
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In Eq. B.5, tm2 is computed as
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then, tm2 is
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Eqs. B.5, B.8 (i.e. tm1) and B.10 (i.e. tm2) yield
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Error analysis of the Taylor series

approximation of conveyance factor in

the proposed q distribution

In Section 3.3.2, a new method was developed to distribute q of a computational cell at its edges to
provide an accurate reconstruction of this conservative variable for the Riemann problem solution. The
proposed method was based on a truncated Taylor series expansion about average values of the flow
depth and Manning’s coefficient at the edges, and under the assumption of a constant friction slope.
In the process of deriving the distribution, two functions  e and  a were introduced as conveyance
factor such that  a is an approximation of  e. Herein, it is assessed how accurately,  a approximates
 e. In this analysis, the effect of water depth is solely considered and Manning roughness is treated
as a constant. Thus  e at time level n and the edge Γ4 (as an example) would appear as
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On the other hand, nei is
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and as nMi
is constant, Ta to Tc are converted into
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The error (Ep
) of  nai

|

|

|Γ4
compared to  nei

|

|

|Γ4
is given by

Ep =

|

|

|

|

|

(

1
nM

)

i

{

[

(� − z̃)
5
3 + 5

9 (� − z̃)
−1
3 �2z

]

Γ4

}n

i
−

[

1
NΓ4

nM

NΓ4
∑

k=1

(

ℎ
5
3

)

1,k

]n

i

|

|

|

|

|

[

1
NΓ4

nM

NΓ4
∑

k=1

(

ℎ
5
3

)

1,k

]n

i

, (C.7)

alternatively,
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Herein, 21 challenging cross-sections of large cells are adopted to assess the range of errors. These
cross-sections are shown in Fig. C.1. Error analysis of each cross-section is performed for three water
levels. The lowest water level (�_low) is defined to have a shallow water depth over the maximum
bed elevation (1 mm above maximum bed level). The two other water levels are employed to evaluate
the approximation for deeper water depths, namely middle (�_mid) and highest water level (�_ℎigℎ),
respectively. Table C.1 illustrates the water levels (�) and their corresponding errors (Ep) whereNΓ4

is assumed 30. According to this table, except cross-sections 10 and 13 (for �_low only), the errors for

150



all cross-sections are negligible. However, for all cross-sections, including cross-sections 10 and 13,
the errors decline sharply as the water level increases. Cross-sections 10 and 13 represent the flood
being on the threshold of overflowing from the main channel to the floodplain, in which case there is
a large area of shallow water depth extending over the floodplain.

Figure C.1: Adopted cross-sections for error analysis when using  a instead of  e (part 1). t hy y6
juyy
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Figure C.1: Adopted cross-sections for error analysis when using  a instead of  e (part 2). t hy y6
juyy
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Figure C.1: Adopted cross-sections for error analysis when using  a instead of  e (part 3). t hy y6
juyy
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Figure C.1: Adopted cross-sections for error analysis when using  a instead of  e (part 4).
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Table C.1: Error analysis when using  a instead of  e for the cross-sections provided in Fig. C.1.

Cross �_low �_mid �_ℎigℎ Ep�_low Ep�_mid Ep�_ℎigℎ
section (m) (m) (m) (%) (%) (%)

1 2.001 3 10 2.45 0.12 0.00
2 6.151 8 11 2.04 0.56 0.11
3 6.201 8 11 2.04 0.56 0.11
4 5.997 7 11 0.82 0.23 0.01
5 1.901 4 11 0.82 0.01 0.00
6 5.251 6.5 11 0.75 0.50 0.09
7 5.501 6 10 0.83 0.45 0.03
8 5.279 6 11 0.83 0.25 0.00
9 8.001 10 15 1.38 0.46 0.06
10 2.001 4 11 16.11 0.84 0.54
11 7.501 9 15 0.45 0.07 0.00
12 2.001 3 10 0.00 0.00 0.00
13 3.001 6 11 11.06 0.08 0.01
14 13.983 16 19 0.56 0.08 0.00
15 6.995 9 14 0.55 0.03 0.00
16 7.001 8 11 1.44 0.64 0.14
17 4.001 5 11 0.52 0.06 0.00
18 7.049 8 11 0.74 0.19 0.01
19 11.162 13 19 0.92 0.26 0.03
20 5.001 6 11 1.00 0.43 0.02
21 5.001 6 11 0.36 0.06 0.00
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Appendix D

Proof of the bed slope relation presented

by Valiani and Begnudelli (2006)

As mentioned in Section 3.3.3 (bed slope source term), Valiani and Begnudelli (2006) showed that
gℎs0x =

)
)x

(

1
2gℎ

2
)

when water level is assumed constant across the element. Herein, the derivation
of this relation is provided.

gℎs0x = gℎ
−)z
)x

= −g (� − z) )z
)x

= −g� )z
)x

+ gz)z
)x
, (D.1)

when � is constant across the element dx then,
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as � is constant, then )
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