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and Experimental Evaluation
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Abstract—This paper develops a disturbance observer-based
repetitive control system using a non-minimal state-space re-
alization where all state variables correspond to the system’s
input and output variables and past values. Tracking a periodic
reference signal or rejection of a periodic disturbance signal is
achieved by including a disturbance observer to estimate an input
disturbance containing the same frequency characteristics. This
new approach differs from previously published designs because
it separates the design procedure into two tasks: first, stabilization
via state feedback control; secondly, independent incorporation of
the periodic modes via estimation of the disturbance. Moreover,
the new design naturally contains an anti-windup mechanism
when the control signal reaches its maximum or minimum value.
Results from the experimental evaluation are given, including
a comparison against a design that constructs a minimal state
controller using an observer. These results demonstrate that the
new method can deliver significant performance improvement,
with excellent disturbance rejection and reference tracking.

Index Terms—repetitive control, non-minimal state-space real-
ization, disturbance observer, disturbance rejection, anti-windup
mechanism, experimental validation.

I. INTRODUCTION

Two types of representations arise in control engineering
applications based on dynamic models. One is the class of
physical models, such as those for electrical machines and
power converters, which result from the application of physical
laws, and the other is by system identification, see, e.g., [1],
[2], [3]. The second type of model is often given in the
transfer-function form and arises in, e.g., electro-mechanical
systems and chemical process control.

Suppose the state variables are not (or cannot be) measured
for state feedback control. In that case, it is a common practice
to use an observer to estimate the state variables (or those
not directly available). In transfer-function models, the state
variables are not known unless they correspond to the sets
of input and output variables. This latter case is the setting
for non-minimal state-space (NMSS) feedback control. See,
e.g., [4], [5]. The non-minimal state-space realization can be
used in the design of model predictive controllers, see, e.g., [6],
[7]. Advantages arising from the use of NMSS state feedback
control include no need for observer-based implementation.
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Hence, faster closed-loop response to disturbance rejection and
better performance for reference following (or tracking).

The main objective of this paper is to show that repetitive
control systems design can be enhanced by using an NMSS
model based on full state feedback control. In particular, it
considers repetitive control systems that can track a multi-
frequency periodic reference signal or reject the same type
of disturbance signal. These objectives, by the internal model
control principle [8] require that the characteristics of the ref-
erence signal or the disturbance, as appropriate, are embedded
in the control structure used.

In contrast to other repetitive predictive designs, the new
design estimates the periodic disturbance signal using a suit-
ably structured observer and subtracts it from an optimized
control signal. This type of approach is known as disturbance
observer-based control in the literature. Disturbance observer-
based linear and nonlinear control systems can be found in,
e.g., [9], [10], [11], [12].

The early work on motion control using disturbance ob-
server includes [13]. A disturbance observer applied to
rigid mechanical systems is described in [14] and a robotic
manipulator in [15]. Controller design for disturbance rejection
using a disturbance observer with frequency estimation is the
subject in [16]. Stability and robust performance of motion
control systems that use a disturbance observer are analyzed
in, e.g., [17].

In [18], similar approaches for engine-induced vibration are
the subject, based on estimating sinusoidal disturbances and
canceling them. An adaptive frequency estimation method,
together with a traditional disturbance observer, is used in [16],
[19] to estimate the disturbance frequency online. A transfer-
function-based approach using a disturbance observer for
controlling magnetic disk drives is reported in [20]. Moreover,
a similar approach, together with the online estimation of
disturbance frequency, is described in [21]. More recent appli-
cations of disturbance observer in the area of power electronics
are described in [23] and [24].

This paper addresses the following interrelated design is-
sues.

1) How to design a disturbance observer to produce a
repetitive control system that will naturally embed the
periodic modes identified from the reference and/or
disturbance signal(s).

2) The development of an NMSS representation of the dy-
namics and reducing the number of estimated variables
leads to simplicity in the design and implementation.



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 2

Equally crucial for applications is that the disturbance
observer naturally provides an anti-windup mechanism if the
control signal reaches its operational limits. Experimental
validation results on one axis of a gantry robot are given,
together with experimental comparison against a design based
on a minimal state-space realization and the use of an observer
for implementation.

II. DISTURBANCE OBSERVER BASED REPETITIVE
CONTROL

A. Mathematical Model

This paper considers single-input single-output discrete lin-
ear systems described by the difference equation:

y(k + 1) = −a1y(k)− a2y(k − 1) . . .− any(k − n)

+ b1u(k) + b2u(k − 1) + . . .+ bnu(k − n)

(1)

where u(k) and y(k) are the input and output variables. The
model coefficients a1, a2, . . ., an and b1, b2, . . ., bn are
obtained either from system identification or mathematical
modeling.

Given a periodic reference signal r(k), the error between
the output and the reference signal is defined as

e(k) = y(k)− r(k)

The disturbance observer approach first designs a suitably
structured observer (that nullifies the effects of the reference
and/or the disturbance) and then combines it with a stabilizing
controller. Denoting the observer output by µ̂(k), the control
input u(k) is given by

u(k) = ũ(k)− µ̂(k) (2)

where ũ(k) is the optimized control signal and (as one option)
taken as state feedback designed using a linear quadratic
regulator setting. Combining these equations with the observer
characteristics gives the following discrete-time model linking
input ũ and the error signal e

e(k + 1) = −a1e(k)− a2e(k − 1) . . .− ane(k − n)

+ b1ũ(k) + b2ũ(k − 1) + . . .+ bnũ(k − n)

(3)

To convert this model to state-space form, the state variables
are selected as the input and the output signals, including their
relevant past values, i.e.,

x(k) =
[
e(k) . . . e(k − n) ũ(k − 1) . . . ũ(k − n)

]T
The non-minimal state-space representation of (3) can now be
written as:

x(k + 1) = Amx(k) +Bmũ(k)

e(k) = Cmx(k) (4)

where the matrices Am and Bm are

Am =



−a1 −a2 . . . b2 . . . bn
1 0 0 0 0 0

0
. . . 0 0 0 0

0 0 1 0 0 0
0 0 0 0 0 0
0 0 . . . 1 . . . 0
...

...
. . . 0

. . . 0
0 0 . . . 0 1 0


, Bm =



b1
0
...
0
1
0
...
0


Cm =

[
1 0 0 . . . 0 0

]
The repetitive control system design consists of a state feed-
back controller, with gain matrix K chosen such that:

x(k + 1) = (Am −BmK)x(k)

is stable, i.e., all eigenvalues of Am − BmK have modulus
strictly less than one. Under the action of this control law, the
intermediate control signal is

ũ(k) = −Kx(k)

Moreover, µ(k) is estimated by an observer structure devel-
oped in the next section and the control signal is

u(k) = ũ(k)− µ̂(k)

Figure 1 gives a block diagram representation of the control
scheme for implementation.
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Fig. 1: The scheme for implementation.

B. Disturbance Observer

To estimate the periodic input disturbance, µ̂(k) assuming
that all entries of the state vector x(k) are measured, the
method followed is from [25]. In particular, it is assumed that
either the reference signal r(k) and/or the input disturbance
signal µ(k) have been analyzed to obtain the dominant fre-
quency components. Then these components can be modeled
by a polynomial D(q−1), where q−1 denotes the backward
shift operator.

The input disturbance signal µ(k) is expressed in the form:

µ(k) =
ε(k − 1)

D(q−1)
(5)



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 3

where ε(k) is a zero-mean white noise sequence. Moreover, all
roots of the polynomial D(q−1) lie on the unit circle, which
follows from frequency analysis of the reference signal and/or
the disturbance signal. For example, if the reference signal is
sinusoidal with N samples, then

D(q−1) = 1− 2 cos
2π

N
q−1 + q−2

In general, it is assumed that the D(q−1) has order nd and is
written as

D(q−1) = 1 + d1q
−1 + d2q

−2 + . . .+ dnd
q−nd (6)

where the coefficients d1, d2, . . ., dnd
are known.

Given the definition of the input disturbance (2) and the
state-space model (4), it follows that the input disturbance
µ(k) satisfies:

Bmµ(k) = x(k + 1)−Amx(k)−Bmu(k) (7)

Multiplying across this last equation from the left by the
measurement matrix Cm gives

CmBmµ(k) = Cmx(k + 1)− CmAmx(k)− CmBmu(k)

= e(k + 1)− CmAmx(k)− CmBmu(k) (8)

One way to reconstruct the input periodic disturbance µ(k)
is to start from (8). However, this would not be sufficiently
accurate to generate the repetitive control signal because of the
uncertainties in the mathematical model and the requirement
for access to the feedback error e(k + 1) at the current time
k. Consequently, an observer to estimate µ(k) based on the
disturbance model (5) is required.

Rewrite (5) in the difference equation form:

µ(k+1) = −d1µ(k)−d2µ(k−1)− . . .−dnd
µ(k−nd)+ε(k)

(9)
and then the state vector p(k) can be formed as

p(k) =
[
µ(k) µ(k − 1) . . . µ(k − nd)

]T
Hence a state-space model describing the dynamics of the
disturbance has the form

p(k + 1) = Adp(k) +Bdε(k)

µ(k) = Cdp(k) (10)

where

Ad =


−d1 −d2 . . . . . . −dnd

1 0 . . . . . . 0
0 1 0 . . . 0
. . . . . . . . . . . .
0 0 . . . 1 0

 Bd =


1
0
...
...
0


Cd =

[
1 0 . . .

]
The measurement of the disturbance is CmBmµ(k), based
on the right-hand side of (8) and with the assumption that
CmBm 6= 0, the pair {Ad, CmBmCd} is observable. This

construction is a disturbance observer for the estimation of
p(k) given by

p̂(k + 1) = Adp̂(k) +Kob(CmBmµ(k)− CmBmCdp̂(k)

= Adp̂(k) +Kob(e(k + 1)− CmAmx(k)

− CmBmu(k)− CmBmCdp̂(k)) (11)

where the observer gain Kob is chosen based on the pair
(Ad, CmBmCd) such that the observer error system is stable.
Also, the observer error system is

p̃(k + 1) = (Ad −KobCmBmCd)p̃(k) +Bdε(k) (12)

where p̃(k) = p(k)− p̂(k).
This error system description is obtained by substituting (8)

into (11) and then subtracting (11) from (10). The disturbance
dynamics are of relatively low order because the use of the
non-minimal state-space model avoids the estimation of the
state variables. This feature is significant when the system
model is of a high order.

In the form (11), the disturbance observer is not imple-
mentable because the right-hand side involves the feedback
error at k + 1. Hence the intermediate variable q̂(k) =
p̂(k) − Kobe(k) is introduced and then, by moving the term
Kobe(k + 1) from the right-hand side to the left-hand side
and re-grouping, the estimated intermediate variable in the
disturbance observer is given by

q̂(k + 1) = (Ad −KobCmBmCd)q̂(k)

+ (Ad −KobCmBmCd)Kobe(k)

− Kob(CmAmx(k) + CmBmu(k)) (13)

Given an initial state vector q̂(0) and the control signal u(k),
output signal y(k) and the reference signal r(k), (13) provides
a real-time estimation of the disturbance signal µ̂(k).

It is routine to show that the transfer-function of the
new controller contains the disturbance model D(z−1) in
its denominator, in accordance with the internal model prin-
ciple, leading to infinite gains at the discrete frequencies
where D(z−1) = 0. In effect, this means that the (mod-
ulus of) the complementary sensitivity function |T (ejω)| =
G(ejω)C(ejω)

1+G(ejω)C(ejω) | equals 1 for the frequencies corresponding to
D(q−1) = 0, where G(ejω) and C(ejω) denote the frequency
responses of the model and the repetitive controller.

Consider also the case when the system uncertainty is quan-
tified with the multiplicative modelling error ∆Gm(ejω) =
Gtrue(ejω)−G(ejω)

G(ejω) . Then by robust control theory, the sufficient
condition to guarantee closed-loop stability in this case is
|T (ejω)||Gm(ejω)| < 1 for all ω. This requirement implies
a repetitive control system demands higher model accuracy
to ensure that |∆Gm(ejω)| < 1 for the frequency band that
contains the frequencies used in the repetitive control system
design.

III. IMPLEMENTATION OF THE REPETITIVE CONTROL
SYSTEM WITH ANTI-WINDUP MECHANISM

Implementation of the control system designed in the previ-
ous section has a naturally occurring anti-windup mechanism
when the control signal reaches its operational limits. This
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property is present because the sinusoidal modes embedded
in the repetitive control system arise through the estimation,
which is a stable realization (see (13)) of the disturbance
model.

For the implementation of the repetitive control system with
its anti-windup mechanism, it is assumed that the control
signal is constrained such that

umin ≤ u(k) ≤ umax

At the initial stage, the current and past control signal and
output signal are known, and therefore the initial state vector
x(0) is given, and the initial state and q̂(0) is to be chosen.
The following steps summarize the resulting computational
algorithm.

1) Compute the estimated input disturbance:

p̂(k) = q̂(k) +Kobe(k); µ̂(k) = Cdp̂(k)

2) Compute the control signal by subtracting the estimated
disturbance from the feedback control law:

u(k) = −Kx(k)− µ̂(k)

3) Implement the saturation limits on the control signal:

u(k)act =


umin, if u(k) < umin

u(k), ifumin ≤ u(k) ≤ umax
umax, ifu(k) > umax

4) Update the disturbance observer with the saturation in-
formation based on (13), with the control signal replaced
by u(k)act.

5) Send the control signal u(k)act to the actuator and return
to Step 1 when the next sampling period begins.

IV. EXPERIMENTAL VALIDATION

This section experimentally applies the design of the pre-
vious section to the gantry robot shown in Figure 2, which
replicates the ‘pick and place’ operation, commonly found in
a variety of industrial applications, where the operations are
in synchronization with a conveyor system. Previous experi-
mental research has modeled the dynamics from experimental
data.

A. Modelling and Control System Design

For modeling and control design purposes, this gantry robot
can be treated as three single-input single-output systems
(one for each axis). A model of the dynamics for controller
design was obtained by independently modeling each robot’s
axis using frequency response tests. In this section, the X-
axis model is used, which is the following 7th-order transfer-
function (with s denoting the Laplace transform variable)

G(s) = G1(s)G2(s)

G1(s) =
(s+ 500.19)(s+ 4.90× 105)

(s(s+ 69.74± j459.75)

G2(s) =
(s+ 10.99± j169.93)(s+ 5.29± j106.86)

(s+ 10.69± j141.62)(s+ 12.00± j79.10)
(14)

Fig. 2: The gantry robot.

Sampling at ∆t = 0.01 secs with a zero-order hold gives
the following z-transfer-function model:

G(z−1) =
B(z−1)

A(z−1)
(15)

where the polynomials A(z−1) and B(z−1) together with their
coefficients are given below:

A(z−1) = 1 + a1z
−1 + a2z

−2 + a3z
−3 + a4z

−4 + a5z
−5

+ a6z
−6 + a7z

−7

B(z−1) = b1z
−1 + b2z

−2 + b3z
−3 + b4z

−4 + b5z
−5

+ b6z
−6 + b7z

−7

b1 = 0.5174, b2 = −0.0108, b3 = 0.2863, b4 = 0.1053,
b5 = −0.0816, b6 = 0.0081, b7 = −0.0006; a1 = −1.5314,
a2 = 0.9717, a3 = −0.3821, a4 = −0.0056, a5 = −0.0557,
a6 = 0.0036, a7 = −0.0005.

The NMSS model is formed by choosing the measured
input and output variables as the state variables (see (3) and
(4)). In this case, although the dimension of the state vector
is quite high at 13, the implementation of the state vector is
performed by simply shifting the data vector in real-time to
reduce the computational load.

1) Controller Design: The state feedback controller is
designed using linear quadratic regulator theory with cost
function:

J =

∞∑
k=0

xT (k)Qx(k) +

∞∑
k=0

ũT (k)Rũ(k) (16)

where Q is the compatibly dimensioned identity matrix and
R = 1. Also, to have a prescribed degree of stability [26],
the closed-loop eigenvalues are required to lie within a circle
of radius 0.97. Following [7], the MATLAB dlqr function was
called in the following form:

K = dlqr(Am/0.97, Bm/0.97, Q,R)

Figure 3 confirms that the resulting closed-loop eigenvalues
are within the circle of radius 0.97.
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Fig. 3: The closed-loop eigenvalues of the state feedback
control of NMSS. Key: (1) the eigenvalues; (2) the circle of
radius 0.97.

2) Disturbance Observer Design: To design the disturbance
observer, the model for D(q−1) in (5) needs to be determined,
which is linked to the actual application of the gantry robot.
Figure 4 shows the desired trajectory of the robot movement
used as an exemplar in this paper. This reference signal is

Time (sec)
0 2 4 6

R
ef

.

0

0.01

0.02

0.03

0.04

Fig. 4: The desired trajectory of the robotic arm.

periodic with the period T = 2 secs. Therefore, the funda-
mental frequency in continuous time is 2π

T , which converts to
the discrete time frequency 2π

N where N = 200 is the number
of samples within one period. Clearly from Fig. 4, the DC
component is seen and following earlier research [25], the
polynomial D(q−1) is chosen as

D(q−1) = (1− q−1)(1− 2 cos
2π

N
q−1 + q−2) (17)

The first term in D(q−1) corresponds to the DC component,
and the second to the dominant frequency in the reference
signal. Given D(q−1), the system matrix Ad in the state-space
model follows from (10) as

Ad =

2.999 −2.999 1
1 0 0
0 1 0


and the output matrix is

CmBmCd =
[
0.5174× 10−3 0 0

]

The MATLAB function dlqr is used again, this time to find the
observer gain Kob, where Q is the identity matrix and R = 1.
Again, the closed-loop eigenvalues are required to be within
the circle of radius 0.97, which results in:

Kob =
[
582.4820 516.4691 453.6249

]T
and the closed-loop eigenvalues are 0.9138±j0.0849, 0.8699.
Since the eigenvalues of the Ad matrix lie on the unit circle
of the complex plane, moving the closed-loop eigenvalues of
the observer error system further towards the origin of the
complex plane will lead to increased observer gains, which
would further amplify the measurement noise in the system.

B. Experimental Evaluation
1) Reference Tracking: In the experiments, x(0) = 0

is assumed, and also that all the past values of the input
and output signals are zero. Fig. 5, top plot, compares the
output response y(k) with the reference signal r(k), where
the reference signal is in blue and the output in red. The error
signal r(k)− y(k) is shown separately in Fig. 5, middle plot;
and the required control signal is in Fig. 5, bottom plot. These
figures confirm that the repetitive control system can deliver
close reference signal tracking, despite the measurement noise.
The mean square error between the reference and the output
is

E =
1

M

M∑
k=1

(r(k)− y(k))2 = 1.5103× 10−6 (18)

where M is the number of data points.
2) Disturbance Rejection with Amplitude Constraints: Pe-

riodic Disturbance: Disturbance rejection is a significant
objective for repetitive control design. In this respect, the
capability of the new design is examined by holding the robot
arm in the initial location, i.e., zero reference signal, and
injecting a periodic disturbance together with a random walk
type of disturbance on the input. In particular, the disturbance
µ(k) used in the experimental study is generated using the
following equation:

µ(k) = 10(sin(
2πk

300
) +

0.01

1− 0.99q−1
ε(k)) (19)

where ε(k) is normally distributed white noise with standard
deviation 0.01. A mismatch between the frequencies in the
designed repetitive controller and the disturbance is included
to demonstrate that the repetitive control system is robust in
this regard.

The first term in (19) represents the low-frequency sinu-
soidal disturbance, and the second a random walk disturbance.
Also, there is measurement noise added to the position sensor
of the robot. To demonstrate the effectiveness of the anti-
windup mechanism in the design, the control signal is limited
to ±10 V.

Fig. 6, top plot, shows that the robot maintains the desired
position despite the significant periodic and random walk
disturbances, with variations within ±0.006. Fig. 6, bottom
plot, gives the repetitive control signal used to reject the distur-
bance, which is limited to within the required amplitude. The
results in these two figures are representatives of numerous
experimental tests.
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Fig. 5: experimental results. Top plot, output and reference
signals, middle plot, the error and bottom plot the control
signal..

V. COMPARATIVE STUDY

This section gives the results of a comparative study, includ-
ing experimental validation, of the new design’s performance
and an alternative based on a minimal state-space realization
of the model of dynamics of the X axis of the gantry robot.
Again, both reference following (or tracking) and disturbance
rejection are considered.

A. Minimal State-space Realization with Disturbance Ob-
server

For a system model given by a transfer-function, an observer
must estimate the state vector entries because they are not
known in the general context of a minimal state-space realiza-
tion. Assuming that µ(k) is present, the state-space model of
the dynamics has the form:

xp(k + 1) = Apxp(k) +Bp(u(k) + µ(k))

y(k) = Cpxp(k) (20)

where Ap, Bp and Cp are obtained by constructing a minimal
realization of the 7th order transfer-function (14), followed by
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Fig. 6: Rejection of periodic and random walk disturbance
with measurement noise with constraints – top plot, output,
bottom plot, control signal.

discretization at ∆t = 0.01 secs using a zero-order hold. The
minimal state-space realization has state dimension 7.

To estimate xp(k) together with µ(k), introduce the state
vector

z(k) =
[
xTp (k) µ(k) . . . µ(k − nd + 1)

]T
and hence the following augmented state-space model for the
observer design

z(k + 1) = Aoz(k) +Bou(k) + B̄oε(k) (21)
y(k) = Coz(k)

where

Ao =

[
Ap B̄p
O Ad

]
,

B̄p =
[
Bp O

]
Bo =

[
Bp
O

]
; B̄o =

 O
I
O


Co =

[
Cp O

]
and O and I , respectively, denote the null and identity matrices
of compatible dimensions. Also the pair of matrices {Ao, Co}
is observable provided the pair {Ap, Cp} from (20) is observ-
able.

The state feedback controller is designed using the pair
{Ap, Bp} and the MATLAB function dlqr produces the con-
troller gain vector Kp, where in (16), applied to this case,
Q = I , R = 1 and the closed-loop eigenvalues are constrained
to lie within a circle of radius 0.97.
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The minimal state feedback control law based on the above
computations is:

u(k) = −Kpx̂p(k)− µ̂(k)

and x̂p(k) and µ̂(k) are estimated using the observer:

x̂o(k+1) = Aox̂o(k)+Bou(k)+Kob(y(k)−r(k)−Cox̂o(k))

where r(k) is the reference signal and the number of states
to be estimated is 10. The observer gain vector for the choice
of Q = I and R = 1, with the eigenvalues of the closed-loop
error system constrained to lie inside the circle of radius 0.97,
is computed using MATLAB function dlqr. This function is
used in the following form:

Kob = dlqr(Ao/0.97, Co/0.97, Q,R)

resulting in the entries: 0.0005, 0.0001,−0.0001, 0.0050,
0.0028, 526, 166, 190, 180, 170.

In this case, poor numerical scaling of the observer gains is
present compared to the NMSS based design. Also, it is quite
difficult to design the higher-order observer, which is why the
prescribed degree of stability approach [26] has been used.

B. Experimental Evaluation
The performance of the design with that of the previous

section is compared under the same experimental conditions
for both, i.e., the reference and disturbance signals, the mea-
surement noise, and the initial conditions of the robotic arm.
The closed-loop error between the reference signal r(k) and
the output of the repetitive control system y(k) designed in
this section is

e(k) = r(k)− y(k)

Figs. 7–9 gives corresponding experimental results, where
for each case, the red line is the minimal realization and the
dashed black line the NMSS. Figure 7 compares the errors
for reference tracking without constraints, and the design
of this section has some difficulties in smoothly tracking
the reference signal. Figure 8 gives the errors for sinusoidal
disturbance rejection. These experimental results show that the
disturbance is not entirely rejected by the minimal realization
design as there is a sinusoidal residual in the error signal.
In contrast, the NMSS design achieves this requirement (with
only small fluctuations around zero). Figure 9 shows the errors
in response to a step disturbance, the variations for the NMSS
design are much smaller in magnitude.

More quantitative measures for the performance improve-
ment delivered by NMSS realization are given by computing
the mean squared error (18). Table I, where MR denotes
minimal realization, summarizes this data for the six cases
considered. All the experimental results conclude that the
NMSS design provides much better closed-loop control perfor-
mance in reference following and disturbance rejection. This
performance improvement is significant as the mean squared
error, denoted by ERper in the last column of the table, is
reduced by at least 80 percent for all the cases. In summary, the
closed-loop performance of the minimal state-space realization
deteriorates because an observer is required to estimate the
state variables and hence introduces additional dynamics into
the repetitive control system.
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Fig. 7 The errors for reference tracking with no constraints.
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Fig. 8 Errors for a sinusoidal disturbance.

VI. CONCLUSIONS AND DISCUSSIONS

This paper has developed a disturbance observer-based
repetitive control system using a non-minimal state-space
realization. Control system design then becomes two simple
yet independent tasks: first, designing a non-minimal state
feedback control; second, designing a disturbance observer
that will embed the characteristics of the disturbance signal
or the reference signal into the control algorithm. The new
design has been extensively evaluated using a gantry robot
facility, including a detailed comparison with a repetitive
control design based on a minimal state-space model de-
sign. These experiments demonstrate that the new design has
significant advantages over alternatives both in design and
implementation simplicity and performance.
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