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Abstract—Indoor localization is of pivotal significance for
a wide variety of services in the context of the Internet of
Things (IoT). Both ranging-based and fingerprint-based lo-
calization techniques are promising for employment in harsh
indoor environments. Hence, we propose a unified framework
based on factor graphs for ubiquitous high-accuracy indoor
localization. Our unified framework efficiently integrates ranging
and fingerprinting for striking an appealing accuracy versus
deployment cost tradeoff, where the crowdsourcing required for
the construction of fingerprinting databases can also be addressed
with little human intervention. By intrinsically amalgamating the
global grid sampling and the regularized importance-resampling
techniques, a non-parametric belief propagation algorithm is
proposed for achieving accurate position estimation at the cost
of a moderate computational complexity. For improving the
robustness to environmental variations, a likelihood-ratio-based
approach is employed to detect ranging outliers. Moreover, a low-
complexity serial scheduling scheme defined over factor graphs
is designed for real-time localization. We design a hybrid UWB
and Wi-Fi localization system relying on off-the-shelf commercial
devices and evaluate the proposed unified framework in a typical
office building. Our experimental results show that the proposed
algorithm outperforms the existing state-of-the-art methods and
it is capable of achieving sub-meter localization accuracy.

Index Terms—Indoor localization, unified framework, factor
graph, ranging, fingerprinting.

I. INTRODUCTION

OCATION-AWARENESS is essential for both the intelli-
gent Internet of Things (IoT) [1] and future 6G networks
[2]. Given its ever-increasing social and commercial benefits,
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high-accuracy indoor localization is becoming a critical factor
in supporting ubiquitous location-based services (LBSs) both
in the IoT and in 6G [3]-[7]. Characterized by obstacles, signal
fluctuation, noise, and environmental variations, indoor envi-
ronments tend to be more complex than outdoor scenarios. Yet,
sub-meter-level localization accuracy is expected in advanced
LBSs.

As the global navigation satellite systems (GNSSs) cannot
provide reliable coverage in indoor environments [8], various
alternative technologies, such as light detection and ranging
(LiDAR) [9], ultrawide bandwidth (UWB) [10], Bluetooth
[11], ZigBee [12] and Wi-Fi [13] aided solutions, have been
investigated. For multi-antenna systems and cooperative net-
works, the family of angle-based localization [14], [15] and
cooperative localization [16], [17] techniques have also been
extensively studied. Generally, the most promising indoor
localization techniques can be categorized as the ranging-
based [18] and fingerprint-based [6] methods. The ranging-
based schemes exploit the geometric relationships among
the nodes for localization relying on time-of-arrival (TOA)
[19], time-difference-of-arrival (TDOA) [20], received signal
strength (RSS) [21], etc. The TOA/TDOA-based methods sup-
port high-accuracy (sub-meter-level) localization under line-
of-sight (LOS) conditions, but they typically require numerous
base stations (anchors). By contrast, the fingerprint-based
localization (fingerprinting) techniques estimate the positions
based on the similarity of wireless signal signatures, termed
as fingerprints.! The potential fingerprints include RSS [13],
channel state information (CSI) [22], etc. Fingerprinting sup-
ports ubiquitous localization based on the existing infrastruc-
ture without the need for LOS reception, at the cost of time-
consuming and labor-intensive site survey for constructing fin-
gerprinting databases. For achieving satisfactory localization
accuracy at an acceptable cost, substantial research efforts have
been invested [23]-[33].

For the fingerprint-based localization, the Gaussian pro-
cess modeling the relationship between the fingerprints and
positions in a continuous space constitutes a popular semi-
supervised method of reducing the dependency on site survey
[23], [24]. Crowdsourcing is another widely used technique of
replacing the costly site survey by involuntary user participa-
tion [35], [36]. The LiFS technique of [25] and the GraphIPS
method of [26] employ a multi-dimensional scaling algorithm,
which maps distances to positions by relying on a graph-based

IThe methods, in which the fingerprints are only used to calculate distances
based on wireless signal propagation models, are classified as ranging-based
ones.



TABLE I
CONTRASTING OUR UNIFIED FRAMEWORK TO THE EXISTING INDOOR LOCALIZATION SYSTEMS

Technologies Information sources Crowdsourcing 1CBayesian ~ Main disadvantage ‘ Accuracy
Fingerprinting | Ranging | IMU ramework for practical applications (reported)
[9] LiDAR v LOS only 0.1 m (small area)
[10] UWB v Extra anchors requirement 0.6 m
[11] Bluetooth v Extra anchors requirement 0.8 m
[13], [22] Wi-Fi v Costly site survey 2.1m, 1.8 m
[34] Wi-Fi v Costly site survey 0.5 m
[23], [24] Wi-Fi v Costly site survey 39m, 1.7m
[25], [26] Wi-Fi v v — 58m, 1.7m
[27] Wi-Fi v — 27 m
[28] Wi-Fi v v — 3.0m
[12] Wi-H + ZigBee v Costly site survey 86% (room detection)
[29] Wi-Fi + vision v v Visual landmarks requirement 0.4 m
[30] Wi-Fi + vision v v High latency 02 m
[32] Wi-Fi + UWB v LOS only 0.2 m (small area)
[33] Wi-Fi + UWB v v 1-D localization 0.1 m (narrow corridor)
Our work | Wi-Fi + UWB * * v v - 0.9 m

formulation, for estimating the positions of crowdsourcing
data. Within the Bayesian framework, the UCMA [27] and
Zee [28] solutions harness hidden Markov models and particle
filters, respectively, for constructing fingerprinting databases.
Since the problem of crowdsourcing relies on a massive
number of variables associated with mesh connections and
different uncertainties, the above methods fail to explore all
the available information therein and hence tend to suffer from
performance erosion.

By intrinsically fusing multiple technologies having comple-
mentary strengths, the localization performance can be readily
improved [37]. Since inertial measurement units (IMUs) are
capable of providing relatively accurate walking distance esti-
mates [38], many of the aforementioned crowdsourcing meth-
ods [25], [26], [28] harness the distance information gleaned
from IMUs. Some recent contributions focus on the fusion
of localization based on Wi-Fi and vision [29], [30]. Most
of these contributions rely on heuristic algorithms and cannot
be readily extended to different scenarios. Several papers have
discussed sophisticated localization methods integrating Wi-Fi
and UWB [31]-[33]. In [31], [32], Wi-Fi RSS readings are em-
ployed for merely ranging instead of fingerprinting, neglecting
the fingerprint-induced proximity information. Although the
scheme of [33] has integrated fingerprinting and ranging to a
certain extent, it is heuristic and only suitable for narrow corri-
dors (1-D localization). To substantially improve the accuracy
vs. cost trade-off in indoor localization, developing a unified
framework for efficiently fusing multi-source information is
quite challenging.

Motivated by tackling this challenge, we represent the

indoor localization problem by a factor graph [39] and provide
a unified treatment of ranging and fingerprinting. The proposed
method is implemented and evaluated in a hybrid localization
system based on UWB and Wi-Fi for demonstrating their
potentials in practical deployment. For multi-source fusion
localization based on ranging, factor graphs have already
been shown to constitute a powerful framework [40]-[44]. To
incorporate data-driven fingerprinting into this framework, we
employ the so-called log-distance path loss (LDPL) model of
[45], and develop a position proximity model. In this way,
we are able to integrate fingerprinting as well as ranging,
and address diverse scenarios, including crowdsourcing and
real-time localization based on a unified framework. Since
environmental variations may lead to large measurement errors
[46], we develop a likelihood-ratio-based outlier detector. To
reduce the computation time of real-time localization, we also
design a scheduling scheme based on factor graphs. Since
the uncertainties of the various measurements collected are
carefully considered, our method is capable of efficiently
fusing the multi-source position information, hence improving
the localization accuracy attained. The features of the proposed
unified framework are boldly and explicitly contrasted to the
literature in Table I. For the information sources in Table I, v/
indicates that this information is necessary for the system to
work, while % indicates that the scheme is indeed capable of
exploiting this information, but it can also operate without it.

The main contributions of this paper are summarized as
follows:

e We propose a unified framework for indoor localization
constructed over factor graphs, which facilitates the fu-



sion of ranging-based and fingerprint-based localization
relying on crowdsourcing. The data-driven fingerprinting
are integrated into the framework in the form of factor
nodes based on a position proximity model, which is
built by employing the Gaussian kernel and the K -nearest
neighbor (A NN) algorithm.

e In order to achieve high-accuracy localization, we de-
velop a non-parametric belief propagation (BP) algo-
rithm based on factor graphs by intrinsically combining
the grid sampling [47] and the regularized importance-
resampling [48] techniques for tackling the problem of
having local optima and the loss of sufficiently rich
sample diversity, despite reducing the complexity. A
ranging outlier detection method based on the likelihood
ratio is also proposed for improving the robustness to the
environmental variations. Furthermore, we design a low-
complexity scheduling scheme constructed over factor
graphs for meeting the low latency requirement of real-
time localization at a negligible performance erosion.

e We develop a hybrid localization prototype based on
UWB as well as Wi-Fi, and conduct extensive exper-
iments in a typical office building for evaluating the
proposed method. The experimental results show that
our method achieves excellent localization performance
compared to the state-of-the-art methods. The average
error of crowdsourcing is 1.7 m for the Wi-Fi-based
system and 0.9 m for the hybrid system. For real-time
localization scenarios, the average error becomes 1.8 m
and 0.9 m, respectively.

The remainder of this paper is organized as follows. The
system model is introduced in Section II. In Section III,
our unified factor graph framework is established and the
position estimation algorithm is developed for addressing the
challenges of indoor localization. Section IV presents our
experimental setup and discusses our results. Finally, our
conclusions are offered in Section V.

Notations: Italic and lower-case boldface letters represen-
t scalars and vectors, respectively; Upper-case calligraphic
letters (e.g., &) denote sets; In particular, Z denotes the
index set. ||-|| denotes the Euclidean norm; ¢ () denotes the
Dirac delta function; U (a, b) represents a uniform distribution
with lower bound a and upper bound b; The operation |[-]
returns the nearest integer greater than or equal to the element.
Additionally, the acronyms are listed in Table II.

II. SYSTEM MODEL

In indoor localization scenarios, the position-related infor-
mation is contained in the floor plan, user observations, and
landmarks. For the typical UWB and Wi-Fi hybrid localization
system of Fig. 1, the user observations include the UWB
ranging, Wi-Fi RSS, and IMU readings. In order to establish a
unified indoor localization algorithm framework, we construct
probabilistic models for representing the various position-
related information.

A. Floor Plan

The floor plan of a region of interest can be modeled as the a
priori distribution of the ¢-th user’s position x; for localization.

TABLE I

LIST OF ACRONYMS
Acronym Definition
AP Access point
BP Belief propagation
CDF Cumulative distribution function
CSI Channel state information
FN Factor node
GNSS Global navigation satellite system
GT Ground-truth
MU Inertial measurement unit
IoT Internet of Things
KNN K -nearest neighbor
LBS Location-based service
LDPL Log-distance path loss
LiDAR Light detection and ranging
LOS Line-of-sight
MAE Mean absolute error
MAP Maximum a posteriori
MaxE Maximum error
MMSE Minimum mean square error
NLOS Non-line-of-sight
NN Nearest neighbor
OD Outlier detection
PI Proximity information
RMSE Root mean square error
RSS Received signal strength
TDOA Time-difference-of-arrival
TOA Time-of-arrival
TSML Two-stage maximum-likelihood
UWB Ultrawide bandwidth
VN Variable node
WEKNN Weighted K -nearest neighbor
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Fig. 1.

In the absence of any a priori knowledge, such as the user’s
behavior, a natural choice for the probabilistic model of a floor
plan is a uniform distribution formulated as:
1, x;€ A

Pmap (%) O<{ 0, otherwise '’ M

where A denotes the region that the users can reach.

B. UWB Ranging

When the positions of certain UWB access points (APs),
termed as UWB anchors, are known, they can provide valuable



position information in the form of ranging. Let us assume
that there are N, UWB anchors having the positions of X" =
{x},,k € I"}, where Z" denotes the index set of all the UWB
anchors. The UWB ranging measurements of the i-th user are
d; :‘L,alzl k€ IZ“} , where Z}' C 7" refers to the index set of

the UWB anchors within the communication range of x;, and
k= % — x|+ " + W, 2)

where b" is the bias caused by non-line-of-sight (NLOS)
propagation which is generally Rayleigh distributed, and w"
is the Gaussian measurement inaccuracy [19].

If x; and xj, are in LOS condition, " is zero. According to
(2), we have

2
| (e =il — a2,
202

Puwb (dg,k |Xi7 Xi) =

3)

where o2 is the variance of the measurement noise. If x; and
xj are in NLOS condition, " dominates the measurement
error [49]. Accordingly, w" can be ignored and the likelihood
function is rewritten as

(a2, = i — 1)

DPuwb (d;l,k|xiaxll;) = )
&
@t~ = xtl)
i,k 1 k
X exp | — 262 ,
= I = x4l 2 @

where &, is the parameter of the Rayleigh distribution.

C. Wi-Fi RSS

Let us assume that N, Wi-Fi APs can be detected in the
building. Furthermore, r; = [r; 1,72, -+ , 74 N, ] Tepresent the
Wi-Fi RSS vector (Wi-Fi fingerprint) of the i-th user. When
the positions of some Wi-Fi APs are known, which are denoted
by XY = {x}/, k € I"}, they can provide position information
by means of wireless propagation models. According to the
LDPL model,

w
amim o (B
where [ is a constant, v is the path loss exponent, dj is the
reference distance, and w'9%! is a Gaussian random variable.
The values of § and v mainly depend on the propagation
environment, e.g., LOS and NLOS [27]. According to (5), the
likelihood function is given by

Pidpl (T‘i,k|Xz‘, XZ) =

[B—wvgm&—XﬂV&O—nAQ}

1
————exp
V 2T O1gpl { 20 l2dpl

(6)

where alzdpl is the variance of W',

Existing studies have shown that the distributions of the
positions associated to similar Wi-Fi fingerprints have obvi-
ous correlation [34], [50]-[53], while the Gaussian kernels
have been widely used to depict the relationship between
fingerprints and positions [23], [24], [34]. Inspired by this, we
propose a position proximity model based on the similarity of
Wi-Fi fingerprints and the Gaussian functions. The methods of
finding similar fingerprints include threshold-based processing
[25], clustering [54], [55], K NN classifiers [13], etc, where the
KNN algorithm strikes the best performance vs. complexity
trade-off. For the fingerprint r;, we find K nearest neighbors
based on the Euclidean distances. Upon considering similar
fingerprints, the probability that a pair of fingerprints are from
the same position is inversely proportional to their Euclidean
distance [51]-[53]. According to this principle, if the k-th
nearest neighbor of r; is r;, we assume that

1 I — ;||
Pnn (I‘z',rj|Xi,Xj) = mexp <—203Hk , (D

where opn k= Om ||t; — rj|| /|l — 17| increasing with the
increase of ||r; —r;||, r; is the nearest neighbor of r;, and
o 1S a constant corresponding to the root mean square error
(RMSE) of the fingerprinting based on the nearest neighbor
(NN) algorithm.

D. Inertial Measurement Unit

By processing the data gleaned from IMUs, especially
accelerometer sensors, we can obtain the walking distance
measurements of adjacent observations [25]. The walking
distance measurement between x; and x;4; is given by

divir = % — Xipa || + @™, 8)
where the measurement error w'™ is assumed to be Gaussian
distributed [28], [56]. Accordingly, we have

. 1
Pimu (A1 1%, Xiq1) = ———
o vV 2770'imu
: 2
(IIxi = xigal| — di% )
202, ’
9

X exp | —

where o2 is the variance of w'™,

mu

E. Landmarks

The a priori distribution of the position of a landmark can
be expressed as

Pim (X) x 6 (x — X), (10)

where X denotes the ground-truth or estimated value of x.
In addition to the UWB anchors and the Wi-Fi APs that
can be regarded as landmarks, we mainly consider the Wi-Fi
landmarks having the positions of A™™ = {x¥™ j e 7%}
and the Wi-Fi fingerprints of R™™ = {r}™ j e 7%},
which provide certain position information by combining the
position proximity model described in Section II-C. The Wi-
Fi landmarks can be obtained through site survey, or accurate
position estimation from the historical data collected by users.



III. A UNIFIED FRAMEWORK FOR INDOOR LOCALIZATION
BASED ON FACTOR GRAPHS

Given the floor plan, the landmarks and N user obser-
vations O = {01,03,---,0x}, the goal is to estimate
the corresponding positions X = {x1,X2, - ,XxN}, where
x; = [;vi,yi]T and O; £ {d;‘,l‘hd%“,l}- For convenience,
% represents the index set of all the variables in X', R =
{r;;i € Z%}, and X* = XYUX™™MUX"UX™. In the following,
we propose a unified framework for indoor localization based
on factor graphs.

A. Factor Graph Representation

From the perspective of Bayesian inference, we can obtain
the minimum mean square error (MMSE) or maximum a
posteriori (MAP) estimate of x; based on the marginal a
posteriori distribution

p(x:]0) = / p(X40) dx\x;,

where p (X?|O) is the joint a posteriori distribution of all
the positions. Integrating such a large number of variables is
generally intractable. Nonetheless, we succeeded in carrying
out this factorization to construct the factor graph and exploit
the message passing algorithm for efficiently calculating (11).

The specific pattern of factorization directly affects the
efficiency of the algorithm. To establish the sufficient and nec-
essary factors, considering the physical meaning, we factorize
the joint a posteriori distribution according to the position-
related information gleaned from five sources as shown in
Section II. According to Bayes’ theorem, we have

p(X*|0) o p (OX*) p (X) .

where p(X*) denotes the joint a priori distribution, and
p (O] X*?) is the global likelihood function. The floor plan and
the landmarks provide the a priori information for localization.
Therefore, p (X?) can be factorized as

(1)

(12)

N

P (X% o] [piup (i) ][ pm(oct) 1] pn i) 1] i (™)
i=1 keTv keT jezwm

(13)

Since the measurements from the UWB, Wi-Fi and IMU
modules as well as from each observation are independent,
the global likelihood function can be written as

N
p (O]X?) x H Hpuwb (d} i, x},)

i=1 | keZ

X ledpl (rik|xi, x) H Pmn (I'z',r‘flm me‘}/lm)
keZv ]eINl

< T pan (risrjlxis %) [ o (7 150%5) |
jeTN? JET]
(14)
where IZN L C 7™ and IZN > C I denote the index sets of the

neighbors of r; in RY™ and R respectively, while IZ-T cI¥
denotes the index set of the adjacent observations of o;.

-> Step 1

--> Step 2 —> Step 3

Fig. 2. Factor graph of indoor localization in UWB and Wi-Fi hybrid system
and illustration of message passing scheduling.

A factor graph is a bipartite graph representing the depen-
dence between variables and factors. In this paper, we use a
circle to represent a variable node (VN), which corresponds
to the position of a user, and use a rectangle to represent a
factor node (FN), which corresponds to an a priori or likeli-
hood function. According to the aforementioned factorization
pattern, we can obtain a factor graph of indoor localization,
as shown in Fig. 2, where a FN is connected to a VN, if
and only if this factor is a function of this variable. By
passing messages between VNs and FNs, we can obtain the
approximate marginal distribution of the positions. In this
way, we are capable of fusing multi-source heterogeneous
information for localization based on the proposed unified
factor graph framework.

B. Position Estimation Based on Belief Propagation

To solve the position estimation problem represented by
a factor graph, we employ BP for finding the approximate
marginal distributions, a.k.a., beliefs.

Due to the mutual relationships between variables, the factor
graph of indoor localization is a loopy one, on which the BP
performs the following two steps iteratively:

(1) For each FN g, the outgoing message passed to its
connected VNs is calculated by

st o [ (xay) TT sy G0 e 019
JETY\i

where Zf] refers to the index set of the VNs connected to
the FN g, and p (xz) denotes the function of the variables
Xk, k € T.



(i) For each VN i, the outgoing message passed to its
connected FNs is calculated by

H Mh%z Xl ’

heTi\g

:u1,~>g (16)

where 77 refers to the index set of the FNs connected to
the VN 1.
After a few iterations, the belief of the variable x; is computed
as

b(x;) oc [T #hosi (%) (17)

hey
To reduce the computational complexity, we approximate the
messages (1;_,, (X;),g € Z} in (16) by b(x;) as in [40].

Due to the non-Gaussian terms involved in the factorization
in (14), it is intractable to determine closed-form expressions
for the messages. To this end, we propose a non-parametric
sample-based BP for indoor localization, where the beliefs in
(17) are represented by samples.

Assume that at the ¢-th iteration, the belief of x; is depicted
by the samples Xb(t) = {XE?L, n=12--- 7Nb} having equal
weight.? The beliefs are updated in the style of importance-
resampling at each iteration. Additionally, we embed the
global grid sampling into the importance-resampling process
for avoiding local optima. Specifically, Xb(t) are drawn from
not only Xb(tfl) but also from a set of auxiliary grid samples
X, which are drawn from A associated with a fixed grid size
= x"Y U X, and
Ns(t) as the number of elements in Xs(t), where Xs(t_l) are the
samples of the proposal distribution at the ¢-th iteration.’

To update the samples A3, via BP, the importance weights of
samples of the proposal distribution are calculated according
to (15) and (17). Specifically, at the ¢-th iteration, the weight
of the n-th sample is expressed as

(t—1 t—1
z,n )OCH/J’g—n( En ))

g€}

. t—1
l,. For convenience, we define XS( )

19)

There are two types of factors in (19), i.e. the a priori and the
likelihood factors. The message passed from the a priori FN
g to x; is formulated by

i (. (t—1) (t—1)
lu’gp—m (Xi,n ) xXp ( 1, n ) .
where p (x;) is the function ppap (x;) in (1), or piy (x;) in

(10). The message passed from the likelihood FN g to x; is
represented by

i (}07) o [ (37

If x; corresponds to a landmark, according to (10), we have
Mglk—n ( Etn 1)> Ocp( (t 1) XJ)

2The discrete approximate belief of x; is expressed as

b“) Z 1) (xl — x(t)> .

(20)

x;) 00 (x) dx;. (1)

(22)

(18)

SLet £ = X, for initialization.

where p (x;,%;) is the function pywp (d‘;7j|xi,xj) in (3) or
(4), Prdpi (ri,j|xi; Xj) in (6), Or Pnp (I‘i, I'j‘Xi, Xj) in (7) Since
the model of UWB ranging and the parameters of the LDPL
model are different for LOS and NLOS conditions, we have
to partition xgt; Yl into the positions in LOS and NLOS
for each UWB anchor and Wi-Fi AP by referring to the floor
plan. If x; corresponds to an observation, upon substituting

(18) into (21), we obtain

Ny
i (R o 30 p (505 0).

m=1

(23)

where p(x;,x;) is the function py, (r;,rj|x;,%;) in (7)

or pimu (di™'|x;,x;) in (9). Furthermore, we normalize the
weights by
(t-1)
(t 1) Wi n
Wi p N (24)
m=1 i,m

Moreover, based on the normalized weights, we employ the
regularized importance-resampling [48] to draw the samples
Xb(t) from a continuous function rather than a discrete one,
which can avoid the problem of insufficient sample diversity.
For accurately estimating the beliefs of all the variables, we
harness the so-called flooding scheduling [57] on the loopy
factor graph in Fig. 2, which is summarized as follows:

Step 1: Calculate the messages from landmark-related a priori
FNs to likelihood FNs according to (20) and (19) se-
quentially, which are represented by the green dotted
arrows, for initialization.

Calculate the messages from FNs to VNs according
to (20), (22) or (23) in parallel, which are represented
by the blue dashed arrows.

Calculate the messages from VNs to observation-
related likelihood FNs (beliefs) according to (19) in
parallel, which are represented by the red solid arrows.
Repeat step 2 and step 3 until reaching the terminated
conditions.

Step 2:
Step 3:

Step 4:

Based on the resultant beliefs, we estimate the i-th obser-
vation’s position according to the MMSE criterion as

len, icT¥.

Our non-parametric BP algorithm proposed for indoor local-
ization is summarized in Algorithm 1.

(25)

C. Outlier Detection

Due to the environmental variations, ranging outliers may
occur, which have to be detected and eliminated for maintain-
ing high local1zat10n accuracy If d; . is an outlier, we have
d} ;, = w", where w" ~ U (0, d}‘nax) By introducing a binary
variable nz x» (2) can be rewritten as

ik = (1- H?,k) (Ixi = x| + 0" + w") + K} ", (26)

where x!, = 1 indicates that d}, is an outlier and vice
versa. Under the assumption that the occurrence probability



Algorithm 1 Non-Parametric BP for Indoor Localization

Input: floorplan A, landmarks X", XV, {X Wlm,RWIm}, and
user observations O,
Output: postions {X;}

1: Draw the grid samples &, in A with the grid size [,
2 Tnitialize X\ ") = X,,t =0

3: repeat

4 fori=1to N do

forn=1to Ns(t) do

5:

6: Calculate the normalized weight wz(tn_ 2 according
to (24) and (19) based on the scheduling

7: end for

8: Draw the belief samples Xb(t) from Xs(tfl) by using

the regularized importance-resampling
9:  end for
10 t=t+1
11: until reaching the terminated conditions
12: for : =1to N do
13:  Calculate X; according to (25)
14: end for

of outliers is p,, the a priori distribution of xj, is governed
by the Bernoulli distribution [58]:

p (K8 g) =po"" (1—po) "ok 27)

In Algorithm 1, we estimate the state of &} , at the end of
each iteration based on the likelihood ratio of

p (dﬁ,k’xhxi\’flﬁ,k = 1) p (Kli],k = 1)
p (d;l,k’xivxi‘“ik = 0) p (“Lilk = 0)
p (%%, = 1) po
= (28)
p (@i xtrt, = 0) (1= po)
for all observed d;’k According to (26), we know that
= 1/d"... Based on the message

passing rules of BP and the sample representation in (18),
at the t¢-th iteration, we have

A (dlil,lc) =

u u u J—
p (di,kvxiaxk"‘%,k =1

Ny
u ujf, u 1 u . (t u
p (di,k:Xivxk\"%,k = 0) = N Zpuwb (di,k|xz(',r)uxk) .
n=1
(29)

If A (d;‘ k) > 1, d}, is regarded as an outlier, and the
factor containing d; , will be discarded at the next iteration of
message passing.

D. Real-Time Localization

The above flooding scheduling estimates the positions of all
the observations, thus leading to high computational complex-
ity, which is more applicable to crowdsourcing. To meet the
low latency requirement of real-time localization, we propose a
low-complexity serial scheduling scheme dispensing with any
iterative processing. Specifically, in real-time localization, we
only update the messages gleaned from the nodes connected to

_—— -

-
1
|

4

Fingerprinting

Database

(Historical data)
I

-> Step 1

--> Step 2

—> Step 3

Fig. 3. Illustration of low-complexity scheduling for real-time localization.

the current user node on the factor graph, while the historical
data have been exploited for constructing a fingerprinting
database through crowdsourcing and the related messages are
no longer updated.* The low-complexity scheduling shown in
Fig. 3 is summarized as follows:

Step 1: Calculate the messages from landmark-related a priori
FNs to likelihood FNs according to (20) and (19) se-
quentially, which are represented by the green dotted
arrows, for initialization.

Calculate the messages from FNs to VNs according
to (20), (22) or (23) in parallel, which are represented
by the blue dashed arrows.

Calculate the belief of x; according to (19), which are
represented by the red solid arrows.

Step 2:

Step 3:

In this way, we only have to conduct a single iteration
for calculating a few messages during a localization process,
which significantly reduces the computational complexity.
Compared to the flooding scheduling, since only the backward
messages related to the current user are not exploited with the
aid of crowdsourcing, the performance loss is negligible.

IV. EXPERIMENTS

We built the prototype of our UWB and Wi-Fi hybrid
localization system in a typical office building. The prototype
is implemented by employing UWB devices, Bluetooth de-
vices and Samsung Galaxy S7 smartphones, which have both
accelerometer sensors and Wi-Fi modules. The UWB devices
are integrated with the chip DW1000 of Decawave. The
UWRB ranging measurements are transmitted to the smartphone
through the Bluetooth module HC-06. Fig. 4 illustrates the
integrated client and the demo app of our localization system.
The experimental region is one floor of the office building with

4After crowdsourcing, the historical data can be represented by Wi-Fi
landmarks.
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a few pedestrians and obstacles, having the size of 43.9 m x
26.4 m (about 429 m?), as the white part shown in Fig. 5.
More than 100 Wi-Fi APs can be detected, of which 6 have
known positions, while only 4 UWB anchors are deployed.

We collect 1000 groups of test data, comprising 40 prede-
termined trajectories, each of which contains 25 observations,
whose ground-truth positions are acquired by the labels on
the ground. The observations are recorded simultaneously by
the smartphone and the UWB agent every 1~3 m (about 2
s) during walking. Unless otherwise specified, 500 groups
of data are applied for crowdsourcing (crowdsourcing data),
and others for real-time localization (real-time data). All the
data are considered to have no ground-truth position labels
when used in crowdsourcing, that is, no Wi-Fi landmarks are
utilized in crowdsourcing. The comparisons of all the schemes
are carried out by relying on the same data as the proposed
method.

The model parameters employed in the algorithms are set
based on engineering experience, as summarized in Table III.
In particular, the parameters of the LDPL model can be
obtained by training by relying on small amounts of data or
using the methods in UCMA or GraphIPS. For the proximity
model, considering the environmental variations, we set o,
slightly higher than the empirical RMSE of the NN-based
fingerprinting to ensure the robustness of the algorithm. The

TABLE III
MODEL PARAMETERS

Model Parameter Value
Noise variance o2 0.25
Bias parameter 2
UWB ranging P b
Maximum value dy,, 40
Outlier occurrence probability po 0.01
Reference distance dg 1
Constant 3 _44
LDPL model
Path loss exponent v (LOS / NLOS) | 1.85/3
Variance 012dp1 49
Proximity model | Constant oy 3
MU Variance Uﬁnu 0.36
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Fig. 6. Performance comparison of the proposed method and the state-of-
the-art methods for crowdsourcing.

choice of K in the proximity model depends on the data
density p, which equals the total number of Wi-Fi landmarks
plus user observations divided by the area of the accessible
region. We set K = [4p], the number of iterations to Tje, = 5,
the grid size to /[, = 1 and the number of belief samples to
Ny = 30, unless otherwise specified.

A. Localization Performance

We evaluate the proposed algorithm based on our unified
framework in crowdsourcing and real-time localization sce-
narios. Both a pure Wi-Fi-based system dispensing with UWB
ranging and our hybrid system are considered.

The cumulative distribution functions (CDFs) of crowd-
sourcing errors indicating the localization errors of crowd-
sourcing data recorded both for the proposed method and
for the state-of-the-art algorithms are depicted in Fig. 6. Fur-
thermore, their mean absolute errors (MAEs) and maximum
errors (MaxEs) are listed in Table IV. In the LiFS method
of [25], we employ the positions of the Wi-Fi APs as the
key points and set the merging threshold to 100 according to



TABLE IV
CROWDSOURCING ERROR
System Method MAE (m) | MaxE (m)
LiFS 5.32 16.06
. GraphIPS 3.10 10.85
Wi-Fi
UCMA 1.98 16.06
Proposed method 1.73 6.15
Hybrid | Proposed method 0.91 3.77
TABLE V
REAL-TIME LOCALIZATION ERROR
System Method MAE (m) | MaxE (m)
Particle filter 4.02 43.53
GT + WKNN 1.50 7.51
Wi-Fi GT + Horus 1.45 10.99
Proposed method 1.79 6.43
GT + proposed method 1.42 5.22
TSML > 521 /
. Particle filter 0.97 5.01
Hybrid
Proposed method 0.93 4.29
GT + proposed method 0.84 3.77

our experimental environments. It can be observed that, due
to the naive merging of Wi-Fi fingerprints and the cumula-
tive errors of pairwise distances encountered by the Floyd-
Warshall algorithm, LiFS suffers from severe performance
loss. Since the GraphlIPS solution of [26] cannot accurately
exploit the LDPL model without LOS information and neglects
the uncertainties of different measurements, its performance
also degrades significantly. For the UCMA scheme of [27],
since the position proximity information provided by Wi-Fi
fingerprints is not taken into consideration, the performance is
adversely affected. Since the proposed method fuses heteroge-
neous multi-source information and exploits the uncertainties
of various measurements, it outperforms the aforementioned
methods in the Wi-Fi-based system and achieves sub-meter
accuracy in our hybrid system.

The CDFs and the real-time localization error values are
portrayed both for the proposed method and for the existing
benchmark algorithms in Fig. 7 and Table V, respectively.
Since our method outperforms LiFS, GraphIPS and UCMA
in crowdsourcing, the real-time localization performance of
these benchmark schemes is not evaluated. For the particle-
filter-based solution of [31], the number of samples is set to
200 in both systems for obtaining a performance approaching
the infinite-sample limit (as indicated by the curve representing
the regularized importance-resampling in Fig. 12). As for Wi-
Fi-based localization, since the particle filter cannot exploit
the fingerprinting information, it has a poor performance.
When employing the ground-truth (GT) position labels for
crowdsourcing data to construct a fingerprinting database, we
find that the proposed method based on serial scheduling
outperforms both the weighted KNN (WAKNN) algorithm
and the Horus method of [34]. Indeed, our proposed method
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Fig. 7. Performance comparison of the proposed method and the existing
benchmark methods for real-time localization.

without the GT labels also achieves a comparable performance
to the GT-label-aided fingerprinting. For the hybrid system,
due to the scarcity of APs and the presence of obstacles,
the two-stage maximum-likelihood (TSML) algorithm of [32]
fails, when the number of LOS measurements is less than 3.
Since the lack of fingerprinting information can be partially
compensated by redundant UWB ranging, the performance of
the particle filter is comparable to that of the proposed method.
In fact, in our unified framework, the particle filter can be
considered as a specific message passing algorithm constructed
on factor graphs without loops. Furthermore, the MAE of the
proposed method is less than 0.9 m with the aid of the GT
labels.

B. Proximity Model

The CDFs of localization errors both with and without the
proximity information (PI) provided by the proposed proximi-
ty model are shown in Fig. 8. For the Wi-Fi-based system, the
proximity model is quite efficient in terms of improving the
localization performance under our unified framework. For the
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Fig. 9. MAE of localization versus the value of K.

hybrid system, the proximity model is still efficient at least in
terms of reducing the maximum error.

In Fig. 9, the impact of the K NN algorithm’s K factor on
the performance of Wi-Fi-based localization is evaluated. We
utilize 100~500 groups of data to evaluate the MAE, and the
corresponding data density p is 0.23~1.17 m~2. It is observed
that the optimal value of K approximately equals to [4p],
which is also applicable to the hybrid system.

C. Efficiency Evaluation

The MAE of localization versus the number of iterations
Titer 1s plotted in Fig. 10. We can see that the proposed method
converges within 5 iterations in both systems.

Since the sample-based scheme may lead to high compu-
tational complexity, we investigate the effects of the grid size
l; and the number of belief samples IV, on the localization
performance attained by the hybrid system. In Fig. 11, it is
observed that increasing [, and NN, improves the localiza-
tion performance. However, the performance gain becomes
marginal beyond a certain value. Accordingly, we are able to
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Fig. 10. MAE of localization versus the number of iterations.
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Fig. 11. MAE of localization versus the grid size lg and the number of belief
samples Ny,.

strike an attractive performance vs. complexity compromise
by choosing the appropriate values of [, and IV, e.g., [, = 1
and Ny, = 30, resulting in N, = 429 number of grid samples.

Furthermore, in Fig. 12, we evaluate the localization per-
formance versus the computational complexity for the grid
sampling method of [47], for the regularized importance-
resampling [48] and for the proposed sampling method.
The complexity of the proposed method is on the order of
O [(Ny + N,) Ny|, while that of the other two schemes is on
the order of O (NZ2), where Ny is the number of samples.
Since the grid size [, significantly affects the performance as
shown in Fig. 11, we also evaluate the proposed scheme using
different [, values in Fig. 12. It is observed that the proposed
method outperforms both the grid sampling and the regularized
importance-resampling schemes at a lower complexity, when
l, < 1. Additionally, for [, = 1, we can achieve a comparable
performance to [, = 0.5 at a lower complexity, which is much
preferred in the scenario considered.



\
14+ +. . .
S
1.3+ S. i
Dl SR
12t = = Grid sampling ]
et - ¥ - Regularized importance-resampling
g Proposed sampling scheme (lg = 1.5)
s L1% —O—Proposed sampl%ng scheme (lg =1) |
X —— Proposed sampling scheme (g = 0.5)
1 25 X = X 2 e =K oam e o W = s e = (3]
0.9+ =

O(led) O(2ed) O(3ed) O(ded) O (5ed)
Computational complexity

Fig. 12. MAE of localization versus the computational complexity.

TABLE VI
LOCALIZATION ERRORS OF VARIOUS MEASUREMENT COMBINATIONS
MAE (m) | MaxE (m)

UWB only 4.53 34.06

UWB + IMU 1.24 11.49

Wi-Fi only 2.39 9.07

Wi-Fi + IMU 1.73 6.15

UWB + Wi-Fi 1.00 5.50

All 091 3.71

D. Information Fusion

Based on our hybrid system, we now investigate the lo-
calization performance of the proposed method for various
combinations of measurements via heatmaps, as shown in
Fig. 13. Their MAEs and maximum errors are listed in
Table VI. Due to the scarcity of UWB anchors, there are
many localization blind spots when only UWB ranging mea-
surements are exploited. By contrast, Wi-Fi fingerprints can
provide ubiquitous localization, but at a relatively low accu-
racy. By integrating the IMU measurements, the accuracy of
both UWB-based and Wi-Fi-based localization is significantly
improved. Moreover, the fusion of UWB ranging and Wi-Fi
fingerprinting can effectively eliminate the localization blind
spots, thus further improving the overall performance. Fusing
all the measurements based on the proposed algorithm is able
to provide the best performance. The result indicates that
the proposed framework succeeds in efficiently fusing the
multi-source information in various types of measurements to
achieve ubiquitous high-accuracy indoor localization.

E. Outlier Detection

Let us now evaluate the proposed outlier detection (OD)
approach in our hybrid system. Table VII shows the local-
ization performance both with and without outlier detection.
It is observed that the proposed outlier detector significantly
reduces the maximum localization error, which will create an
improved user experience.

(a) UWB only

(b) UWB + IMU
4 o
L NS

(c) Wi-Fi only

(d) Wi-Fi + IMU

(e) UWB + Wi-Fi

o 1 2 3 4 5

() All

Error (m)
6 7

Fig. 13. Heatmap of localization error for various combinations of measure-
ments.

TABLE VII
LOCALIZATION PERFORMANCE WITH/WITHOUT OUTLIER DETECTION

MAE (m) | MaxE (m)
Without OD 1.05 22.09
With OD 0.91 3.77

F. Serial Scheduling

We investigate the performance loss of serial scheduling re-
lying on the crowdsourcing database compared to the flooding-
based scheduling, as shown in Fig. 14. Observe that the per-
formance loss of the serial scheduling scheme is negligible in
both systems, which also demonstrates that the crowdsourcing
succeeds in sufficiently squeezing the information contained
in the historical data and facilitates real-time localization by
relying on the database constructed. The only reason for
the performance loss of the serial scheduling is the lack of
backward tracing and cooperation.

G. Long-Term Evaluation

To evaluate the user experience of the proposed localization
method, we characterize its long-term operation by exploiting
all the test data. Assume that an observation is obtained every
2 s, and the Wi-Fi fingerprinting database is updated every 50 s
based on the existing observations. The real-time localization
errors of the proposed method are shown in Fig. 15. The
solid curves depict the MAEs during the past 50 s and the
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vertical intervals represent the maximum and minimum values
determined by the error bars. It is seen that upon increasing the
service time, both accuracy and robustness of both localization
systems can be improved. After 800 s, the MAE for the Wi-
Fi-based and for our hybrid system remains around 2 m and
1 m, respectively, while the maximum error is less than 6 m
and 4 m. This long-term evaluation confirms that the proposed
unified framework efficiently exploits the incremental data to
facilitate real-time localization, and hence improves the user
experience in practical applications.

V. CONCLUSIONS

Integrating ranging and fingerprinting with crowdsourcing
constitutes a promising techniques of achieving accurate ubig-

Time (s)

uitous indoor localization. In this contribution, we proposed
a unified framework for ranging-based and fingerprint-aided
localization relying on factor graphs and developed a non-
parametric BP algorithm for estimating the positions. Further-
more, we proposed an outlier detection technique based on
the likelihood ratio. For designing real-time localization, we
conceived serial message scheduling for reducing the compu-
tational complexity imposed. The experiments conducted by
harnessing our hybrid UWB and Wi-Fi localization system
show that the proposed method outperforms the existing state-
of-the-art methods and achieves sub-meter-level localization
accuracy without excessive infrastructure investment and cost-
ly site surveys. This work provides a spring-board for diverse
indoor localization applications.
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