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Abstract. Let G be a group and let G be a free factor system of G, namely a free
splitting of G as G = G1∗· · ·∗Gk∗Fr. In this paper, we study the set of train track points
for G-irreducible automorphisms φ with exponential growth (relatively to G). Such set
is known to coincide with the minimally displaced set Min(φ) of φ.

Our main result is that Min(φ) is co-compact, under the action of the cyclic subgroup
generated by φ.

Along the way we obtain other results that could be of independent interest. For
instance, we prove that any point of Min(φ) is in uniform distance from Min(φ−1). We
also prove that the action of G on the product of the attracting and the repelling trees
for φ, is discrete. Finally, we get some fine insight about the local topology of relative
outer space.

As an application, we generalise a classical result of Bestvina, Feighn and Handel
for the centralisers of irreducible automorphisms of free groups, in the more general
context of relatively irreducible automorphisms of a free product. We also deduce that
centralisers of elements of Out(F3) are finitely generated, which was previously unknown.
Finally, we mention that an immediate corollary of co-compactness is that Min(φ) is
quasi-isometric to a line.
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1. Introduction

Overview. Automorphisms of free groups play a central role in the Geometric Group
Theory. Culler-Vogtmann Outer space is one of the main methods that are currently
used for the study of automorphisms of free groups. Irreducible automorphisms have
been studied the most, as there are available many different tools for them (for instance,
train tracks representatives [4]).

More recently, Guirardel and Levitt introduced in [21] the notion of a relative outer
space of a group, corresponding to a free factor system. These relative spaces, have
been used for the study of automorphisms of general free products, but also for reducible
automorphisms of free groups, as any automorphism is relatively irreducible with respect
to the appropriate relative outer space. Note that many of the classical tools that are
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available for irreducible automorphisms, are also available in relative outer spaces; for
instance, existence of train track representatives in the general context is proved in [12].

In this paper, together with our companion paper [15], we study relatively irreducible
automorphisms. In particular, we focus on their minimally displaced set (with respect to
the Lipschitz metric) which (by [12]) can be seen as the set of train track points.

Main Results of the Paper. Let G be a group, with a free factor system G. Let
O(G) be the relative outer space corresponding to G and denote by O1(G) its co-volume
one subspace. For any automorphism φ, denote Min(φ) the set of points in O(G) which
are minimally displaced by φ, and set Min1(φ) = Min(φ) ∩O1(G).

By [12], in the case where φ is irreducible, this is exactly the set of points with sup-
port train track maps representing φ (this is explained in more detail in Section 2 and
Theorem 2.11.4).

The main result of this paper is that if φ is a G-irreducible automorphism with exponen-
tial growth, then Min1(φ) is co-compact, under the action of the cyclic group generated
by φ.

We first prove, in Section 7.2, our main result under the extra hypothesis that φ is
primitive (see Theorem 7.2.8), i.e. it has a train track representative with primitive
transition matrix. Then, in Section 7.3 we drop primitivity condition, proving:

Theorem 7.3.8. Let [φ] ∈ Out(G) be G-irreducible and with λ(φ) > 1 (that is, φ is a
relatively irreducible automorphism with exponential growth). Then the action of < φ >
on Min1(φ) = Min(φ) ∩ O1 is co-compact.

The above result generalises the well known result for irreducible automorphisms of a
free group (see [23], for the original proof of Handel and Mosher and [16], for a recent
elementary proof which was given by the authors).

Remark. In our companion paper [15], we prove that the minimally displaced set of an
irreducible automorphism φ of exponential growth is locally finite. It may seem quite
intuitive to the reader that as Min(φ) is locally finite, its co-compactness is equivalent to
the existence of a fundamental domain contained in the union of finitely many simplices.

However, a general relative outer space is usually a locally infinite space, and the
mentioned equivalence is not as easy as it seems. In fact, there are many topologies,
which are in general different, and we should be more specific.

However, it turns out that this intuition is correct, but it is much more complicated than
it initially seems. More specifically, in Section 4, we study some well known topologies
(and some other which could be interesting) for relative outer spaces and we show that
for the Min(φ), co-compactness in any of such topology is equivalent to each other (see
Theorem 4.2.8). Moreover, it is equivalent to the co-boundness (under the symmetric or
the asymmetric Lipschitz metric) or the simplicial co-finiteness. Our proof relies on a
fine peak reduction result, that has been used by the first two named authors for their
proof the connectedness of Min(φ). (see [14]).

In the process of the proof of our main result, we obtain some new results that could
be of independent interest.

Corollary 7.3.9. Let [φ] ∈ Out(G) be G-irreducible and with λ(φ) > 1. Then Min1(φ),
equipped with the symmetric Lipschitz metric, is quasi-isometric to a line.

Remark. Note that this is also true with respect to the path Euclidean metric, since the
Svarc-Milnor Lemma also applies for that metric.

3



We also show that for any G-irreducible φ (not necessarily of exponential growth), any
point of Min(φ) is in uniform distance from Min(φ−1):

Theorem 3.2.2. Let [φ] ∈ Out(G) be G-irreducible, with λ(φ) > 1.
Then there is a D-neighbourhood (with respect to the Lipschitz metric) of Min1(φ)

containing Min1(φ−1).
More precisely, for any L there is a constant D (depending only on [φ] and L) such that

for any volume-1 point, X with λφ(X) ≤ L, there is a volume-1 point, Y ∈ Min(φ−1) such
that Λ(X, Y )Λ(Y,X) < D. In particular, for any X ∈ Min(φ) there is Y ∈ Min(φ−1)
such that Λ(X, Y )Λ(Y,X) < D.

Another interesting result is the following. For a G-irreducible automorphism φ with
exponential growth, we can define the attracting and repelling trees (starting from a train
track point X). We prove a discreteness result for the product of the limit trees.

Theorem 6.1.17. Let [φ] ∈ Out(G) be G-irreducible and with λ(φ) > 1 (that is, φ is a
relatively irreducible automorphism with exponential growth). Let X ∈ Min(φ) and Y ∈
Min(φ−1), and denote by X+∞ and Y−∞ the corresponding attracting tree and repelling
tree for φ, respectively (Definition 2.14.2). Then there exists an ε > 0 such that for all
g ∈ G, either;

• `X+∞(g) = `Y−∞(g) = 0 or,
• max{`X+∞(g), `Y−∞(g)} ≥ ε.

Applications. As an application of Theorem 7.3.8, our Theorem 8.1.1 generalises
a classical result of Bestvina, Feighn and Handel for irreducible automorphisms of free
groups, with exponential growth (see [2]).

Theorem 8.1.1, combined with other well known results, provides a new result for the
centralisers of elements in Out(F3):

Theorem 8.2.1. Centralisers of elements in Out(F3) are finitely generated.

Strategy of the Proof of Theorem 7.3.8. We give below the strategy of our proof
of our main result. Given a G-irreducible automorphism φ with exponential growth rate
λ(φ) > 1, we proceed as follows.

(1) We fix a “basepoint”, X ∈ Min1(φ) and define the attracting tree, X+∞ =
limn

Xφn

λ(φ)n
, which exists due to train track properties, Lemma 2.14.1.

(2) We argue by contradiction, and suppose that Min1(φ)/〈φ〉 is not compact.
(3) We thus produce a sequence - justified in Theorem 4.2.8 - Xn ∈ Min(φ), such

that the distance from X to the φ-orbit of Xn tends to infinity. The distance
we use here is the Lipschitz distance (where we can use either the symmetric or
non-symmetric ones, since they are equivalent on the thick part, and any point of
Min1(φ) must be thick).

(4) By replacing each Xn with a suitable element of its φ-orbit, we can assume that
1 ≤ Λ(Xn, X+∞) ≤ λ(φ) and Λ(X,Xn) is unbounded. (In fact, Theorem 4.2.8
has a long list of equivalent statements of co-compactness that includes this one.)

(5) As PO(G) is compact, we may find constants µn and a subsequence of Xn such
that limn

Xn
µn
→ T (this is convergence as length functions, and occurs in O(G).

In case G is not countable we can use ultralimits instead of classical limits).
(6) Since T is the limit of points displaced by λ(φ), T itself is displaced by at most

λ(φ) under φ, Lemma 7.2.2.
(7) We then argue, in Proposition 7.2.5, that Λ(T,X+∞) = ∞, which in particular

implies that T is not in the same homothety class as X+∞.
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(8) Symmetrically, we argue T is not in the same homothety class as the repelling
tree. However, since many aspects of the theory are not symmetrical, this requires
two important ingredients:

(i) Theorem 3.2.2 shows that there is a uniform distance between Min1(φ) and
Min1(φ−1). That is, one is contained in a Lipschitz neighbourhood of the
other, and so T is also a limit of points which are minimally displaced by
φ−1, even though Min1(φ) and Min1(φ−1) are different. (More precisely, T
is bi-Lipschitz equivalent to a limit of such points.)

(ii) Theorem 6.1.17 shows that if we have a bound on the Lipschitz distance to
the attracting tree, we also get a bound on the Lipschitz distance to the (in
fact, any) repelling tree. Thus T is also a limit (or bi-Lipschitz equivalent
to a limit) of points, minimally displaced by φ−1, whose distance to the
repelling tree is bounded.

(iii) This is enough symmetry to conclude - Corollary 7.2.7 - that T is not in the
same homothety class as the repelling tree.

(9) We then apply North-South dynamics to T (we need to know that T is not in
the same homothety class as the repelling tree for this to work), which combined
with the previous results says that limn

Tφn

λ(φ)n
is both at finite distance from T ,

and in the same homothety class as X+∞, which is a contradiction. Hence this
contradiction implies that Min1(φ)/〈φ〉 is compact.

(10) As North-South dynamics are not available for general irreducible automorphisms,
in Section 7.3 we give an additional argument that is needed in order to deduce the
co-compactness of a general irreducible automorphism, deducing it from the case
of primitive irreducible automorphisms, where North-South dynamics are known
to hold.

However, this simplifies the treatment a little, since some of the results stated here
are dependent on others in unexpected ways. For instance, the equivalent formulations
of co-compactness, Theorem 4.2.8, relies on the fact that Min(φ) is uniformly close to
Min(φ−1), Theorem 3.2.2.

The organisation of the paper is as follows:

• Section 2 sets up terminology and recalls known results. While this is largely
known to experts, we do have some minor proofs which appear to be new (Lem-
mas 2.13.6 and 2.13.7).
• Section 3 is a fairly short section showing that the minimally displaced for φ is

uniformly close to that for φ−1, using results from [13] and [14].
• Section 4 is devoted to proving the equivalent conditions for co-compactness, and

also contains a discussion of the topologies on our deformation spaces.
• Section 5 is a short discussion on the North-South dynamics for primitive ir-

reducible automorphisms. The material here is largely a verification of known
results in this context.
• Section 6 is the most technical section, generalising results from [2] and [9]. The

goal of this section is the final “discreteness” Theorem 6.1.17. The proofs of this
section are not used anywhere else, just the final result.
• Section 7 pulls everything together to prove co-compactness, first for the primitive

irreducible case and then for the general irreducible case.
• Section 8 is devoted to applications, showing in particular that centralisers in

Out(F3) are finitely generated.
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2. Terminology and Preliminaries

2.1. Relative Outer Space O(G). Let G be a group which decomposes as a free product

G = G1 ∗ · · · ∗Gk ∗ Fr
where Fr is the free group on r ≥ 0 generators. We impose no restriction on the Gi’s, in
particular we do not assume that the Gi’s are freely indecomposable nor non-cyclic. Any
such free product decomposition, is commonly referred to as a free factor system of G.
More precisely:

Notation 2.1.1. A free factor system of G is a pair G = ({G1, . . . , Gk}, r) such that G =
G1 ∗ · · · ∗Gk ∗Fr. We define the rank of G as rank(G) = k+ r. With [G] we denote the set
of conjugacy classes of the Gi’s, that is [G] = {[G1], . . . , [Gk]}. If G ′ = ({G′1, . . . , G′s},m)
is another free factor system, we say that G is bigger than G ′ if for any i there is j such
that G′i is a subgroup of some conjugate of Gj.

Definition 2.1.2. Let G be a group.

• A G-tree is a tree T together with an action of G. If the tree is simplicial (resp.
metric), then the action is supposed to be simplicial (resp. isometric).
• A G-tree T is called minimal, if it has no proper G-invariant sub-tree.
• The action of G on a G-tree is called marking (and a marked tree is a tree equipped

with a G-action.)
• If T is a minimal simplicial metric G-tree, we denote by vol(T ) the co-volume of
T , namely the sum of lengths of edges of the quotient graph G\T . (Since there
are finitely many Gi’s and since Fr has finite rank, vol(T ) is a finite number).

In this paper the G-action on a G-tree will always be a left-action.

Definition 2.1.3. Let G = ({G1, . . . , Gk}, r) be a free factor system of a group G. A
simplicial G-tree is called (simplicial) G-tree, if:

• T has trivial edge stabilisers (that is to say, no 1 6= g ∈ G pointwise fixes an edge),
and no inversions (that is to say, no g ∈ G maps an edge to its inverse).
• The non-trivial vertex stabilisers of T are exactly the conjugacy classes that are

contained in [G]. More precisely, for every i, there is a unique vertex vi with sta-
biliser Gi. The vertices with non-trivial stabiliser will be called non-free vertices;
the other vertices will be called free vertices. We use the notation Gvi = StabG(vi),
and we often refer to factor groups Gi’s as vertex groups.

Definition 2.1.4. Let G = ({G1, . . . , Gk}, r) be a free factor system of a group G. The
relative outer space of G, denoted by O(G), is the set of equivalence classes of minimal,
simplicial, metric G-trees, with no redundant vertices (i.e. any free vertex has valence at
least 3), where the equivalent relation is given by G-equivariant isometries. We denote
by O1(G), the co-volume-1 subset of O(G).

There is a natural action of R+ on O(G) given by a : T 7→ aT where aT denotes the
same marked tree as T , but with the metric scaled by a > 0. We denote by PO(G), the
projectivised relative outer space, that is, the quotient of O(G) by the R+-action.

2.2. Simplicial Structure of O(G). Let G = ({G1, . . . , Gk}, r) be a free factor system
of a group G, and consider X ∈ O(G). The (open) simplex ∆(X) is the set of points of
O(G) which are obtained from X by just changing the lengths of (orbits of) edges in such
a way that any edge has positive length. Thus ∆(X) is parameterised by the positive
cone of Rn, where n is the number of orbits of edges in X. Note that the positive cone
of Rn can be naturally identified with an open n-simplex.
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If we work in O1(G), then ∆(X) determines a standard open (n− 1)-simplex ∆(X)1 =
∆(X) ∩ O1(G). We will often omit the subscript “1” and write just ∆ or ∆(X) when it
is clear from the context in which space we are working.

Remark 2.2.1. The R+ action plus the parameterisations of ∆(X) and ∆(X)1 by convex
subsets of Rn, allow us to define Euclidean segments between pair of points X, Y in the
same simplex by the usual formula tX + (1− t)Y .

Remark 2.2.2. So far we have not mentioned topology, but all of the topologies we will
consider induce the standard Euclidean topology on each simplex of O1(G).

Simplicial faces of simplices of O(G), do not always live inside O(G), so the space is not
a simplicial complex. Any face of a simplex ∆ = ∆(X) in O(G), is induced by collapsing
a G-invariant sub-forest of X. In particular, such a collapse gives us a simplicial G-tree
Y with trivial edge stabilisers and there are two cases, depending if Y is a G-tree or not.
In the first case, we say that ∆(Y ) is a finitary face; in the latter case, if Y is not a G-tree
(i.e. vertex stabilisers are not in [G]), then we have a face at infinity. We notice that
faces at infinity correspond to free factor system strictly bigger than G.

Remark 2.2.3. Given T ∈ O(G), the quotient graph G\T comes endowed with a struc-
ture of graph of groups, and the the choice of a marking of T corresponds to the choice
of an isomorphism from G to π1(G\T ) (where fundamental group is taken in the sense
of graph of groups). The equivalence relation given by equivariant isometries of G-trees,
translates to a notion of equivalence of marked graphs, which is the usual one for the
reader used to Teichmuller theory or classical Culler-Vogtmann outer space CVn.

In this paper we will use only the tree-viewpoint, but in some case graphs are easier
to visualise. For instance, one can easily see with graphs that if there is at least one Gi

which is infinite, then the simplicial structure of O(G) is not locally finite.

Example 2.2.4. As an example consider the simple case G = G1 ∗ Z where G1 is an
infinite group. The simplex corresponding to a graph of groups formed by a circle with
a unique non-free vertex is a finitary face of infinitely many simplices corresponding to
a graph formed by a circle with a segment attached, ending with the unique non-free
vertex (See Figure 1). This is because for any g ∈ G1, if Z = 〈a〉, then we can define an

Figure 1. Graphs corresponding to open simplices

isomorphism φg : G → G which is the indentity on G1 and maps a to ga. It is readily
checked that all markings induced by all φg’s on the left-side graph are equivalent, wile
they are not equivalent on right-side graphs.

2.3. Action of the automorphism groups. Let G = ({G1, . . . , Gk}, r) be a free factor
system of a group G.

Definition 2.3.1. The group of automorphisms of G that preserve the set [G] (that
is to say, [f(Gi)] ∈ [G] for all i) is denoted by Aut(G;G), or simply Aut(G). We set
Out(G) = Out(G;G) = Aut(G;G)/ Inn(G).

7



There is a natural right action of Aut(G) on O(G), given by twisting the marking.
More specifically, given T ∈ O(G) and φ ∈ Aut(G), we define the point Tφ as the same
metric tree as T , but the G-action on Tφ is given, by

x 7→ φ(g)·x
where · denotes the G-actions on T . (In terms of marked graphs this corresponds to
precomposing the marking with φ.)

If α ∈ Inn(G) and T ∈ O(G), then it is easy to see that there is a G-equivariant
isometry between Tα and T , i.e. they are equal as objects of O(G). It follows that
Inn(G) acts trivially on O(G), and there is an induced action of Out(G) on O(G).

Moreover, the action preserves the co-volume of trees, so we get induced actions of
both Aut(G) and Out(G) on the co-volume-1 set O1(G).

Remark 2.3.2. Since Fr has finite rank, we have finitely many topological type of graphs
G\T , as T varies in O(G). As a consequence, there are finitely many orbits of simplices
under the action of Out(G).

2.4. Translation lengths, thickness, and boundary points. Let G = ({G1, . . . , Gk}, r)
be a free factor system of a group G.

For any metric G-tree T (not necessarily in O(G)) and for any g ∈ G, we define the
translation length of g in T , which actually depends only on the conjugacy class [g], by

`T (g) = `T ([g]) = inf{dT (x, gx) : x ∈ T}.
It is well known (see [8]), that the infimum is achieved by some x ∈ T . We have

a dichotomy of elements in G. If `T (g) > 0, then g is called hyperbolic (in T ) or T -
hyperbolic. In this case, the set of points achieving the minimum above is a line in T , on
which g acts by translations by `T (g), and it is called the axis of g in T . Otherwise, g is
called elliptic (in T ) or T -elliptic .

If T ∈ O(G), then elliptic elements are exactly those belonging to some vertex group.
In fact, in that case, hyperbolic elements of some tree T ∈ O(G), do depend only on
G. We denote the set of hyperbolic elements of G by Hyp(G), and we refer to them as
G-hyperbolic elements. Other elements are called G-elliptic.

Let C be the set of conjugacy classes of elements in G. We can define a map

L : O(G)→ RC

L(T ) = (`T (c))c∈C.

It is proved by Culler and Morgan in [8], that in our context, that map is injective.
Moreover, it induces an injective map L : PO(G)→ PRC.

Definition 2.4.1. The length function topology on O(G) and O1(G) is that induced
by the immersion L : O(G)→ RC.

Remark 2.4.2. With respect to the length function topology, Tn → T if and only if for
any g ∈ G we have `Tn(g)→ `T (g).

It is easy to check that length function topology is Hausdorff, and agrees on each
simplex with Euclidean one. We alert the reader that the choice of the topology on
PO(G) involves some subtlety, that will be discussed in Section 4.1. So far, the length
function topology is the unique we have defined.

Definition 2.4.3. We will denote by O(G) the closure of O(G) as a sub-space of RC, and

by PO(G) the closure of PO(G) as a sub-space of PRC.
8



In [8], it is proved that PO(G) is a compact space. Moreover, there is a more detailed

description of PO(G) in terms of very small trees as follows.

Definition 2.4.4. Let T be a metric G-tree such that every factor Gi fixes a unique
point of T .

Then T is called small if arc stabilizers in T are either trivial, or cyclic and not contained
in any conjugate of some Gi. T is called very small if it is small, non-trivial arc stabilizers
in T are closed under taking roots, and tripod stabilizers in T are trivial.

Theorem 2.4.5. (Horbez, [25]) Let G be a free factor system of a countable group G, and

let O(G) be the corresponding relative outer space. Then PO(G) is the space of projective
length functions of minimal, very small trees (with repect to the free factor system G).

Remark 2.4.6. In our Arc Stabiliser Lemma 2.13.6, we prove that non-trivial arc sta-
bilisers in O(G) are G-hyperbolic, for completeness, and without assuming the group is
countable.

In analogy with Teichmuller space, we can define thick and thin part of outer spaces.

Definition 2.4.7. For any ε > 0 we define the thick part O(G, ε), as the set of all
T ∈ O(G) such that all elements in Hyp(G) have translation length more than ε vol(T ).
Namely, T ∈ O(G, ε) if for all g ∈ Hyp(G) we have `T (g)/ vol(T ) > ε. We denote also
by O1(G, ε) = O1(G) ∩ O(G, ε), the thick part of O1(G). We say that ε is the level of
thickness (or simply the thickness) of O(G, ε).
Remark 2.4.8. It is immediate to see that for any simplex ∆, the closure of ∆∩O1(G, ε)
is compact. Hence, since we have finitely many Out(G)-orbits of simplices, for any ε > 0,
the quotient space O1(G, ε)/Out(G) is compact.

2.5. Stretching factors and Lipschitz metrics. Let G = ({G1, . . . , Gk}, r) be a free

factor system of a group G. For any T ∈ O, and S ∈ O(G), we define the (right)
stretching factor as:

Λ(T, S) = sup
g∈Hyp(G)

`S(g)

`T (g)
.

It is immediate from the definition that Λ is right-multiplicative and left-anti-multiplicative:

λΛ(T, S) = Λ(T, λS) = Λ(
1

λ
T, S)

The stretching factor is not symmetric, and in general fails to be quasi-symmetric.
However, if it is restricted on any thick part O(G, ε) of O(G), it is quasi-symmetric.

Theorem 2.5.1 ([32]). For any ε > 0, there exists a constant C = C(ε) such that for all
X, Y ∈ O1(G, ε), we have

Λ(X, Y ) ≤ Λ(Y,X)C .

The stretching factor can be viewed as a multiplicative, non-symmetric, pseudo-metric.
It comes with its left avatar and symmetrised version. All of them are generically referred
to as “Lipschitz metrics” on O(G), and have been extensively studied, for instance in
[12, 11, 10]. We list some of its basic properties.

Theorem 2.5.2 ([12]). Let G = ({G1, . . . , Gk}, r) be a free factor system of a group G,
and let O(G) its outer space. Then

(1) Λ is an asymmetric multiplicative pseudo-metric on O(G), which restricts to an
asymmetric multiplicative metric on O1(G):

9



• For all T ∈ O(G), Λ(T, T ) = 1;
• For T, S,Q ∈ O(G), Λ(T, S) ≤ Λ(T,Q)Λ(Q,S);
• For T, S ∈ O1(G), we have Λ(T, S) ≥ 1, and Λ(T, S) = 1 if and only if
T = S.

(2) For every T ∈ O(G) and S ∈ O(G), there is a G-hyperbolic element g0 so that

Λ(T, S) = `S(g0)
`T (g0)

.

(3) Out(G) acts by Λ-isometries on O(G).
(4) The symmetrised stretching factor D(S, T ) = Λ(S, T )Λ(T, S) satisfies the follow-

ing. For all T, S ∈ O(G)
• D(T, S) ≥ 1, and D(T, S) = 1 if and only if there is λ > 0 such that T = λS;
• D(T, S) = D(S, T );
• for any Q ∈ O(G), D(T, S) ≤ D(T,Q)D(Q,S)

In particular the function logD is a pseudo-metric on O(G) that restricts to a
genuine metric on O1(G).

Any of these metrics induces a topology on O(G),O1(G), and on P(O(G)) as a quotient
of O(G), whose relation with length function topology will be discussed in Section 4.1.
It is however readily checked, that all such topologies induces the Euclidean one on each
simplex of O1(G).

2.6. Optimal maps and gate structures. Let G = ({G1, . . . , Gk}, r) be a free factor
system of a group G.

Definition 2.6.1. Let X ∈ O(G), Y ∈ O(G). A Lipschitz continuous and G-equivariant
map f : X → Y , is called an O-map. Lip(f) denotes the best Lipschitz constant for f .

The name “Lipschitz metric” when referring to stretching factor, is motivated by the
fact that Λ(X, Y ) can be viewed as the best Lipschitz constant of equivariant maps from
X to Y .

Theorem 2.6.2 ([12, 13]). For any X, Y ∈ O(G) we have

Λ(X, Y ) = inf
f

Lip(f)

where f runs over the set of O-maps from X to Y . Moreover there is at least an O-map
f : X → Y realising the stretching factor, that is such that Λ(X, Y ) = Lip(f).

Definition 2.6.3. Let X ∈ O(G), Y ∈ O(G). An O-map f : X → Y is called straight, if
it is linear on edges, i.e. for any edge e of X, there is non-negative number λe(f) so that
the edge e is uniformly stretched by λe(f).

Given a straight map, the tension graph of f , is the set of maximally stretched edges:

Xmax(f) = {edges e : λe(f) = Lip(f)}.

Definition 2.6.4. Let X ∈ O(G), and let v be a vertex of X. A turn of X at v, is a the
Gv-orbit of an unoriented pair of edges based at v.

Definition 2.6.5. A gate structure on a metric tree X is an equivalence relation on germs
of edges at vertices of X. If X ∈ O(G), the gate structure is required to be G-invariant.
Equivalence classes are called gates. Given a gate structure ∼, a turn on X is legal, if its
germs are not in the same gate. A path in X is legal, if it crosses only legal turns. (Note
that legality does depend on the chosen grate structure.)

Straight maps naturally induce gate structures:
10



Definition 2.6.6. Given a straight map f : X → Y , the gate structure ∼f is defined by
declaring equivalent two germs of X that have the same non-collapsed image under f .

A turn (or a path) is called f -legal if it is legal with respect ∼f .
In case X = Y there is also a different natural gate structure, that takes in account

iterates, and that will be discussed in Section 2.7.

Definition 2.6.7. Let X ∈ O(G), Y ∈ O(G). A straight map is called optimal, if
Λ(X, Y ) = Lip(f) and the tension graph is at least two-gated at every vertex (with
respect to ∼f ). Moreover, an optimal map is called minimal, if its tension graph consists
of the union of axes of maximally stretched elements it contains.

Remark 2.6.8. For all X ∈ O(G) and Y ∈ O(G), there is always an optimal map
f : X → Y (and it is usually not unique). Moreover, there is always a minimal optimal
map f : X → Y . In [12, 13] these facts are proved for Y ∈ O(G), but the proves clearly

work without any change for trees in O(G), as all technicalities take place on X.

2.7. Train tracks. Let G = ({G1, . . . , Gk}, r) be a free factor system of a group G.
We already seen that straight maps f : X → Y induces a natural gate structure ∼f on

X. In case X = Y , we consider also a second natural gate structure, namely:

• ∼f : two germs of X are ∼f -equivalent, if they have the same non-collapsed image
under f .
• 〈∼f i〉: two germs of X are 〈∼f i〉 if there is some i, so that they have the same

non-collapsed image under f i.

Train tracks maps where introduced in [4]. The terminology we use here may sounds
different, but it is in fact equivalent. (See [12, 13]).

Definition 2.7.1. Given a gate structure ∼ on a metric tree X, a train track map
f : X → X with respect to ∼, is a straight map such that

(1) f sends edges to ∼-legal paths, and
(2) if f(v) is a vertex, then f maps ∼-inequivalent germs at v to ∼-inequivalent germs

at v.

It turns out ([12, Section 8]) that if f is train-track for some gate structure ∼, then in
fact the relation ∼ is stronger than (i.e. it contains) 〈∼f i〉. In particular if f is ∼-train
track, then f is 〈∼f i〉-train track. (Also, since ∼f is always weaker than 〈∼f i〉, if f is
∼f -train track then ∼f= 〈∼f i〉.) In what follows, we generically refer to a train track
map as a map f , which is train track with respect to 〈∼f i〉.
Definition 2.7.2. Let [φ] ∈ Out(G). A topological representative of φ at X is just an
O-map f : X → Xφ. In other words, a map f : X → X such that f(gx) = φ(g)x. A
(simplicial) train track representative of φ is a (simplicial1) map which is train track with
respect to 〈∼f i〉. If X admits a (simplicial) train track representative of φ, will be called
(simplicial) train track point of φ.

Remark 2.7.3. Train track representatives are always optimal maps (see [12, 13]), and
their Lipschitz constant, if bigger than one, is the exponential growth rate of the repre-
sented automorphism.

Remark 2.7.4. It is well known (see for instance [12]), that if f : X → X is a train track
representative of φ, then there is a simplicial train track representative h : Y → Y of φ,
such that either X, Y are in the same open simplex, or at worse, ∆(Y ) is a simplicial face

1i.e. mapping vertices to vertices and edges to edgepaths
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of ∆(X). In particular, given a train track point X of φ, there is a simplicial train track
point Y of φ which is in (uniformly) bounded distance from X.

2.8. Bounded cancellation, critical constant, Nielsen paths. For any tree T and
a, b ∈ T , we will denote by [a, b] the unique directed reduced (i.e. without backtracks)
path in T from a to b. For a path p in T , we denote by [p] the reduced path with same
end-points of p, in other words, [p] is “p pulled tight”. For any reduced path β = [a, b] in
T , we denote by lT (β) its length.

Definition 2.8.1 (Bounded Cancellation Constant). Given two trees T, S, and a con-
tinuous map f : T → S, the bounded cancellation constant of f , denoted by BCC(f),
is defined to be the supremum of all real numbers B with the property that there exist
a, b, c ∈ T with c ∈ [a, b], such that dS(f(c), [f(a), f(b)]) = B.

In other words, BCC(f) is the best number such that for any a, b ∈ T and c ∈ [a, b],
the point f(c) belongs to the BCC(f)-neighbourhood of [f(a), f(b)] = [f([a, b])].

Lemma 2.8.2 (Bounded Cancellation Lemma [24, Proposition 4.12] and[18, Proposition
9.6]). Let G = ({G1, . . . , Gk}, r) be a free factor system of a group G. Let T ∈ O(G), and

S ∈ O(G). Let f : T → S be an O-map. Then BCC(f) ≤ Lip(f) vol(T ). Moreover, if
S ∈ O(G), then we get the sharper inequality, BCC(f) ≤ Lip(f) vol(T )− vol(S).

Corollary 2.8.3. Let G = ({G1, . . . , Gk}, r) be a free factor system of a group G. Let

T ∈ O(G), and S ∈ O(G). Let f : T → S be a straight map, and suppose that there is
µ > 0 such that λe(f) ≥ µ forall edge e. If g ∈ G is such that its axis in T can be written
as a g-periodic product of at most c f -legal pieces (as, for instance, edges), then

`S(g) ≥ µ`T (g)− cB,

where B is the Bounded Cancellation Constant of f . In particular, we can take B =
Λ(T, S) vol(T ).

Proof. This is an immediate application of Bounded Cancellation Lemma 2.8.2. �

Definition 2.8.4 (Critical constant). Given two metric trees T, S and an expanding
Lipschitz map f : T → S (i.e. with Lip(f) > 1), the critical constant fro f is defined as

cc(f) = 2BCC(f)
Lip(f)−1

.

Lemma 2.8.5. For any metric tree T and any expanding train track map f : T → T ,
we have cc(fn) ≤ cc(f).

Proof. It is immediate to check by induction that BCC(fn+1) ≤ BCC(f)(
∑n

i=0 Lip(f)i),

whence BCC(fn+1)
Lip(f)n+1−1

≤ BCC(f)
Lip(f)−1

. The claim follows because, since f is a train track map, we

have Lip(fn+1) = Lip(f)n+1. �

Lemma 2.8.6. Let f : T → T be a train track map defined on a metric tree T , with
Lip(f) = λ > 1. Let γ be a path in T , containing a legal sub-path p, with lT (p) ≥ cc(f).
Then

i) [fn(γ)] contains a legal subpath of length at least lT (p).
ii) [fn(γ)] contains a legal subpath of length at least λn(lT (p)− cc(f)).

In particular if p is longer than cc(f) + 1, then lT (fn(γ)) > λn.

Proof. Since p is legal, the length of the surviving part of f(p) in [f(γ)], after cancellations,
is at least λlT (p)− 2BCC(f) = λlT (p)− cc(f)(λ− 1) > λlT (p)− lT (p)(λ− 1) = lT (p).

12



Thus we can iterate, and we get

lT ([fn(γ)]) > λnlT (p)−
n−1∑
i=0

λi2BCC(f) = λnlT (p)− 2BCC
λn − 1

λ− 1
=

= λnlT (p)− cc(f)λn + cc(f) > λn(lT (p)− cc(f)).

�

Definition 2.8.7. Let G = ({G1, . . . , Gk}, r) be a free factor system of a group G. Let
X ∈ O(G) and f : X → X be a G-equivariant simplicial map. A (non-trivial) simplicial
path p in X is called

(1) Nielsen path (Np) if [f(p)] = gp for some g ∈ G.
(2) periodic Nielsen path (pNp) if [fn(p)] = gp, n > 0.
(3) pre-periodic Nielsen path (ppNp) if [fn+m(p)] = gfm(p) for some g ∈ G and

integers n,m > 0.
(4) trivial if [p] is a point, and pre-trivial if [fn(p)] is trivial for some positive integer

n.

2.9. Candidates. Let G = ({G1, . . . , Gk}, r) be a free factor system of a group G. As
we have seen (Theorem 2.5.2) the stretching factor between two trees is realised by some
hyperbolic group element. In fact, more is true.

Theorem 2.9.1 ([12, Theorem 9.10] and [13, Lemma 7.1]). For every T ∈ O(G), there

is a set of hyperbolic elements Cand(T ), called candidates, such that for every S ∈ O(G)
the stretching factor Λ(T, S) is realised on a candidate, that is

Λ(T, S) = max
g∈Cand(T )

`S(g)

`T (g)
.

Moreover, the possible projections of candidates to the graph Γ = G\T are finitely
many. Specifically, the projection of the translation axis of any candidate, has one of the
following forms (possibly containing both free and non-free vertices):

• A simple loop (an embedded “O”).
• A figure eight, i.e. two simple loops that intersect on a point (an embedded “8”).
• A non-degenerate bar-bell, i.e. a path formed by two separated simple loops, joined

by and embedded arc (an emdedded “O—O”).
• A simply degenerate bar-bell, i.e. a path formed by a simple loop with attached an

embedded arc ending to a non-free vertex (an embedded “O—•”).
• A doubly degenerate bar-bell, i.e. an embedded arc whose endpoints are non-free

vertices (an embedded “•—•”).

We will need also the following lemma.

Lemma 2.9.2 ([24, Theorem 4.7], see also [15, Lemma 2.18]). For every T ∈ O(G), we

can extract a finite set from H ⊆ Cand(T ), so that for every S ∈ O(G),

Λ(T, S) = max
g∈H

`S(g)

`T (g)
.

Moreover H does depend only on the simplex that T belongs to, and not to the particular
metric of T .

Corollary 2.9.3. The stretching factor function Λ : O(G) × O(G) → R+ is continuous
on the second variable and lower semi-continuous on the first one, with respect to length
function topology.
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Proof. We start from lower semi-continuity on the first variable, which does not require
Lemma 2.9.2. Let T ∈ O(G), Xn ∈ O(G), with Xn → X ∈ O(G).

lim inf
n→∞

Λ(Xn, T ) = lim inf
n→∞

max
g∈Hyp(G)

`T (g)

`Xn(g)
≥ max

g∈Hyp(G)
lim inf
n→∞

`T (g)

`Xn(g)
=

= max
g∈Hyp(G)

lim
n→∞

`T (g)

`Xn(g)
= max

g∈Hyp(G)

`T (g)

`X(g)
= Λ(X,T ).

Now we prove the continuity on the second variable. Let T ∈ O(G), Tn ∈ O(G), with

Tn → T∞ ∈ O(G). We will show that Λ(T, Tn) → Λ(T, T∞). Let denote by H the finite
set of Candidates of T that we get from Lemma 2.9.2. Then the following equalities hold
(as H is finite):

lim
n→∞

Λ(T, Tn) = lim
n→∞

max
g∈H

`Tn(g)

`T (g)
= max

g∈H
lim
n→∞

`Tn(g)

`T (g)
=

= max
g∈H

`T∞(g)

`T (g)
= Λ(T, T∞).

�

It is easy to construct examples where continuity on first variable fails.

Example 2.9.4. Consider graphs as in Example 2.2.4 (Figure 1), with edge-lengths as
follows. On the left-side of Figure 1, the unique edge has length 1. On the right-side, all
edges have length 1/3. Then, any infinite sequence Xn of right-side graphs converges to
the left-side graph X, but for every n we have Λ(Xn, X) = 3 6= 1 = Λ(X,X). Also, this
example shows that the volume function in general is not continuous with respect to the
length function topology, as vol(Xn) = 2/3 while vol(limnXn) = vol(X) = 1.

2.10. Displacement function and Min-Set. Let G = ({G1, . . . , Gk}, r) be a free fac-
tor system of a group G. For an automorphism [φ] ∈ Out(G,G), we can define the
displacement function, with respect to O(G). The displacement function is defined as:

λφ : O(G)→ O(G), with λφ(X) = Λ(X,Xφ).

We define also the minimal displacement of φ, for a simplex ∆ of O(G), as:

λφ(∆) = inf{λφ(X) : X ∈ ∆}
and the minimal displacement of φ as:

λ(φ) = inf{λφ(X) : X ∈ O(G)}.
The set of minimally displaced points in O(G) or Min-Set, is defined as:

Min(φ) = {X ∈ O(G) : λφ(X) = λ(φ)}.
Finally, the set of minimally displaced points with co-volume one, is defined as:

Min1(φ) = {X ∈ O1(G) : λφ(X) = λ(φ)}.
We remark that in case φ is reducible (see Section 2.11) the Min-Set has to be defined

in the simplicial bordification of O(G), but we omit this point of view here because in
this paper we are interested in irreducible automorphisms. We just say here that in the
irreducible case, the Min-Set is always connected, and coincides with the set of points
admitting train track representatives. We refer the interested reader to [12, 13, 14] for a
detailed discussion on such properties.
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2.11. Irreducible automorphisms. Let G = ({G1, . . . , Gk}, r) be a free factor system
of a group G.

Definition 2.11.1. An element φ ∈ Aut(G), or its class [φ] ∈ Out(G), is called G-
reducible (or simply reducible), if it admits some topological representative f : T →
Tφ, T ∈ O(G), having a G-invariant, f -invariant sub-forest S which contains the axis of
some G-hyperbolic element. An automorphism is G-irreducible (or simply irreducible) if
it is not reducible.

Remark 2.11.2. We can define irreducibility in terms of free factor systems. An auto-
morphism φ is irreducible with respect to the relative outer space O(G), if G is a maximal
φ-invariant free factor system. (For more details, see [12].)

Remark 2.11.3. Let G be a finitely generated group, and let [φ] ∈ Out(G). Then
[φ] ∈ Out(G) where G is Grushko decomposition of G. Moreover, there exists a free
product decomposition G ′ of G such that [φ] is irreducible as an element of Out(G ′).
Note that in general, G ′ is not unique. In fact, there are examples where there are
infinitely many different spaces for which [φ] is irreducible. An example is the identity
outer automorphism.

We summarise below some well known properties of irreducible automorphisms.

Theorem 2.11.4 ([12]). Let [φ] ∈ Out(G) be irreducible. Then:

(1) It admits a train track representative f : T → Tφ;
(2) the set of train track points of φ coincides with the set Min(φ) of minimally dis-

placed points;
(3) there is an ε > 0 (that depends only rank(G) and on λ(φ)) for which Min1(φ) is

contained in the ε-thick part O1(G, ε).

Third item of Theorem 2.11.4 combined with Theorem 2.5.1, implies that:

Corollary 2.11.5. Let [φ] ∈ Out(G) be irreducible. Then there exists some constant
C = C(φ), for which for all X, Y ∈ Min1(φ), we have

Λ(X, Y ) ≤ Λ(Y,X)C .

The next theorem is key for our present paper:

Theorem 2.11.6 ([15]). Let [φ] ∈ Out(G) be irreducible and with λ(φ) > 1. Then the
simplicial structure of Min(φ) (as a subset of O(G)) is locally finite. In particular, the
set Min1(φ) = O1 ∩Min(φ) is a locally finite simplicial complex.

2.12. Primitive automorphisms. Let G = ({G1, . . . , Gk}, r) be a free factor system of
a group G.

For any T ∈ O(G) and any simplicial O-map f : T → T , we can define the transition
matrix Mf of f as follows. We label orbits of edges e1, . . . , en and define the (i, j)
coefficient of Mf as the number of times that f(ei) crosses the orbit of ej (in either
direction).

A matrix is called non-negative if all its entries are non-negative. A non-negative matrix
is called irreducible if for any (i, j) it has a power for which the (i, j) entry is positive, and
it is called primitive2 if it has a power so that all entries are positive. Clearly primitive
implies irreducible.

It is immediate to check that [φ] ∈ Out(G) is G-irreducible if and only if any simplicial
map representing φ has irreducible transition matrix.

2We notice that in [3] the authors use the terminology aperiodic for primitive.
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Definition 2.12.1 (Primitive Automorphism). An automorphism which can be repre-
sented somewhere in O(G) by a simplicial train track map having primitive transition
matrix, is called G-primitive (or simply primitive).

We recall that a train track representative does not need to be simplicial and in that
case, the transition matrix is not even defined. However, as we have seen before, there
are always simplicial train track representatives for irreducible automorphisms.

Lemma 2.12.2. If [φ] ∈ Out(G) is G-primitive and f : T → T is any simplicial train
track representative of φ, at any T ∈ O(G), then the transition matrix of f is primitive.

Proof. This is well known in the free case and the proof is exactly the same in the general
case (see [3, Lemma 3.1.14] for the proof). �

Remark 2.12.3. Note that a G-primitive automorphism φ has always exponential growth,
i.e. λ(φ) > 1.

2.13. Arc Stabiliser Lemma. Let G = ({G1, . . . , Gk}, r) be a free factor system of a

group G. In this section we first describe points in O(G) in terms of a chosen base point,
and then prove a lemma about fixed points of elliptic elements at boundary points, that
will be used in last step of the proof of Theorem 7.3.8.

The standing assumption in this subsection is that any T ∈ O(G) is the limit point of
a sequence of points in O(G). This is only certain when G is countable. The issue is that

PO(G) is compact but, a priori, may not be sequentially compact and is a subspace of a
Cartesian product, which is exactly the type of topological space which can be compact
without being sequentially compact.

However, the results and proofs in this section remain true for any G, regardless of
countability, by replacing sequences with nets. In order to help the reader, we give the
version of this argument for sequences and explain in Remark 2.13.9 how to extend it to
the general case.

Moreover, we only use Lemmas 2.13.7 and 2.13.6 in the case where the tree T is, in
fact, the limit point of a sequence (Lemma 2.14.1 and Theorem 7.2.8).

Let X ∈ O(G) be a fixed reference point. Let T ∈ O and let Yn ∈ O(G) be a sequence
that converges projectively to T , i.e. there is a sequence of positive numbers µn > 0 so
that:

lim
n→∞

Yn
µn

= T

(with respect to the length function topology). Let fn : X → Yn be optimal maps. We
define

dn : X ×X → R, where

dn(x, y) =
dYn(fn(x), fn(y))

µn
.

As Yn
µn

converges to T , by Corollary 2.9.3, we get that the sequence Λ(X,Yn)
µn

converges to

Λ(X,T ). In particular, this implies that Λ(X,Yn)
µn

is a bounded sequence and hence, since

Lip(fn) = Λ(X, Yn), we have

0 ≤ dn(x, y) ≤ Λ(X, Yn)

µn
dX(x, y) ≤ sup

n
{Λ(X, Yn)

µn
}dX(x, y).

At this point we would like to take a limit of the dn, and the easiest way to do this
is to take an ultralimit (or ω-limit) (see [17], for the definitions and the properties of
ultralimits and ultrafilters).
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We briefly recap here.

Definition 2.13.1. A non-principal ultrafilter on N, is a function from the powerset of
N, ω : P(N)→ {0, 1} such that:

• ω(∅) = 0, ω(N) = 1
• ω(A tB) = ω(A) + ω(B), meaning ω is additive on disjoint subsets,
• ω is zero on any finite subset of N.

Remark 2.13.2. For the reader unfamiliar with this point of view, the second point
above is crucial, and we emphasise that ω can only take values 0 and 1, so the additivity
on disjoint sets is a strong restriction.

Informally, we think of the subsets, A, with ω(A) = 1 as “big” and the others small.
It is then straightforward to see that N does not admit two disjoint big subsets, and that
the intersection of any two big subsets is again big.

Limits are then defined as follows.

Definition 2.13.3. Let ω be a non-principal ultrafilter on N. For any sequence (an)n∈N
of real numbers, we say that l ∈ R is the ω-limit of an, and we write limω an = l if, for
every ε > 0, the set Nε = {n ∈ N : |an − l| < ε} satisfies, ω(Nε) = 1.

We then get the following facts whose proofs are left to the reader:

Proposition 2.13.4. Let ω be a non-principal ultrafilter on N. Let an and bn be sequences
of real numbers.

• If limn an = l then limω an = l;
• If limω an exists, it is unique (it may depend on ω);
• If an is bounded, then limω an exists;
• The usual algebra of limits is valid for ultralimits: limω(an ± bn) = (limω an) ±

(limω bn), limω an · bn = (limω an) · (limω bn);
• If an ≥ bn then limω an ≥ lim bn;
• ultralimits commute with finite max and min: limω(max{an, bn}) = max{limω an, limω bn}.

To proceed, we apply this in our situation. We let ω be a non-principal ultrafilter on
N and define:

d+(x, y) = lim
ω
dn(x, y).

It is clear that this is an equivariant pseudo-metric on X, and we can study the associ-
ated quotient space, X+. Here, elements of X+ are ‘balls of radius 0’. That is, elements
of X+ are equivalence classes, [x] := {y ∈ X : d+(x, y) = 0}. (It may be worth to note
here that X+ is not a priori uniquely determined, as it depends on the chosen ultrafilter).

Lemma 2.13.5. Let ω be a non-principal ultrafiler on N. We define d+ : X ×X → R,

d+(x, y) = lim
ω
dn(x, y), for x, y ∈ X.

We let X+ := ( X
(d+=0)

, d+), be the corresponding quotient space. Then,

(i) The quotient map, X → X+ is Lipschitz continuous and equivariant,
(ii) (X+, d+) is an R-tree with a minimal, isometric G-action, g[x] = [gx]

(iii) (X+, d+) is equivariantly isometric to (T, dT ). In other words, `X+ = `T .

Proof. For any x, y ∈ X, we have

dn(x, y) ≤ Λ(X, Yn)dX(x, y)

µn
.
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It follows that d+([x], [y]) ≤ KdX(x, y), where K = Λ(X,T ) (by Corollary 2.9.3). Thus
the quotient map X → X+ is K-Lipschitz, and equivariance is straightforward.

One can then see that X+ = X
(d+=0)

is a path connected 0-hyperbolic metric space,

hence an R-tree equipped with an isometric G-action. Minimality is immediate as X has
a G-fundamental domain with bounded diameter.

It is enough to show now that `X+ = `T . For any tree Z, it is known that `Z(g) =
max{0, dZ(p, g2p)− dZ(p, gp)} for any p ∈ Z (see [8], for more details).

Let x ∈ X, g ∈ G. Then,

`X+(g) = max{0, d+(x, g2x)− d+(x, gx)}

= max{0, limω(dn(x, g2x)− dn(x, gx))}

= max{0, limω
dYn (fn(x),fn(g2x))−dYn ((fn(x)),fn(gx))

µn
}

= max{0, limω
dYn (fn(x),g2fn(x))−dYn (fn(x),gfn(x))

µn
}

= limω
lYn (g)

µn
= limn

lYn (g)

µn

= `T (g).

�

Lemma 2.13.6 (Arc Stabiliser Lemma). Let T ∈ O(G). If 1 6= g ∈ G is G-elliptic, then
g fixes a unique a point of T . In particular no G-elliptic, non-trivial element, point-wise
fixes a non-trivial arc in T .

Proof. As above, X is our reference point, we let Yn ∈ O(G) and µn > 0 be such that
Yn
µn
→ T , and build X+ = T as a ω-limit of metrics dn on X. Since edge stabilisers are

trivial in O(G), g fixes a unique point p, in X and a unique point pn in each Yn. Thus

∀w ∈ X, dX(w, gw) = 2dX(w, p) ∀w ∈ Yn, dYn(w, gw) = 2dYn(w, pn).(1)

We claim that [p] is the unique point of X+ fixed by g. Let’s suppose that [u] ∈ X+ is
fixed by g. Thus d+(u, gu) = 0.

By equivariance of the maps fn, we get that fn(p) = pn. Then, by (1)

2dn(u, p) = 2dYn(fn(u), pn)/µn = dYn(fn(u), gfn(u))/µn = dn(u, gu)→ω d
+(u, gu) = 0.

As a consequence, d+(u, p) = 0 and so [u] = [p] in X+. �

Lemma 2.13.7. Let T ∈ O(G). Let H ≤ G be T -elliptic. Suppose that H contains a
G-elliptic subgroup A 6= 1. Then FixT (H) = FixT (A) = {v}, where v is a point of T .

Proof. Let 1 6= a ∈ A. The group element a fixes a unique point of T , by Lemma 2.13.6.
Given any h ∈ H, the subgroup < a, h > fixes a point v of T (by a well known result of
Serre, see [31]). Therefore, Fix(< a, h >) = Fix(< a >) = {v}, for all h ∈ H, and hence
Fix(H) = {v}. �

Remark 2.13.8. Note that here we are calling a subgroup elliptic if the restriction of the
length function is zero on the subgroup. This is weaker than the definition - often used -
that the subgroup fixes a point in the tree, although they coincide for finitely generated
subgroups.
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Remark 2.13.9. In order to prove Lemma 2.13.6 when G is not countable, we argue
via nets. The reason this is necessary is that we cannot guarantee that every point in
O(G) is the limit point of a sequence. We only really use it when T is the limit point of
a sequence. However, it is true in general with substantially the same proof via nets.

Concretely, one takes the directed set, FinG, of all finite subsets of G ordered by
inclusion. A net is then a function from FinG to our space and takes the place of sequences.
One striking aspect of working withO(G) is that we can use this set, FinG, as the universal

indexing set. This is due to the fact that O(G) is a subset of a Cartesian product whose
indexing set is G, and so basic open subsets are described by finite subsets of G along
with open subsets of R in the corresponding coordinates.

For this reason, a net for us will always be a function from FinG to our space; either
O(G), or the composition of such a function with one of the projection maps, resulting
in a function from FinG to R.

A tail of FinG, is a subset, TailF = {E ∈ FinG : F ⊆ E} for some F ∈ FinG. A
net to R, x : FinG → R then has limit l if every open set around l contains the image
of a tail. Concretely this means that for every ε > 0, there exists an F ∈ FinG so that
|x(E)− l| < ε for every F ⊆ E ∈ FinG. In this case we write, x(.)→ l. It is important to
note here that the intersection of finitely many tails is again a tail; this is used repeatedly
throughout.

Similarly, a net, Y : FinG → O(G) has a limit, T , if `Y (.)(g) → `T (g) for all g ∈ G.

This is equivalent to saying that every open set in O(G) containing T contains the image
of a tail.

One can now see that every T ∈ O(G) is the limit of a net of points - indexed by FinG

- in O(G). For instance, one can do the following; for every F ∈ FinG, consider the basic
open sets,

BF (T ) = {S ∈ O(G) : |`S(g)− `T (g)| < 1/n},
where n = |F |+1. For each F , choose any YF ∈ BF (T )∩O(G). Notice that if F ⊆ E, then
BE(T ) ⊆ BF (T ). Since any open set containing T contains some BF (T ), we immediately
see that YF → T .

We then introduce a ultrafilter, ω, on FinG which, as above, is a function ω : P(FinG)→
{0, 1}. However, the condition we require this time is that ω is 1 on every tail - being
zero on finite sets is not quite enough. Instead we require that ω(TailF ) = 1 for every
TailF .

Concretely, the tails of FinG are intersection closed and so form a filterbase. The set of
supersets of tails then forms a filter, and we choose any maximal filter ω containing that
filter; this will be an ultrafilter with the properties we require. This can be achieved via
Zorn’s Lemma.

One then defines ω limits as above, putting, limω x(.) = l, if we have for every ε > 0,
ω({F ∈ FinG : |xF − l| < ε}) = 1. As before, x(.) → l implies that limω x(.) = l
and every bounded sequence of reals has a unique ω limit (depending on ω). The rest
proceeds in the same way.

2.14. Limit trees for irreducible automorphisms. Let G = ({G1, . . . , Gk}, r) be a
free factor system of a group G. The theory of attracting and repelling trees of a fully
irreducible automorphism is well studied in the free case. We will see in North-South
dynamics Theorem 5.1.2, that such trees exist and they are the unique fixed points, in
O(G), of a primitive irreducible automorphism.

In this section we recall the construction of the attracting tree for any irreducible auto-
morphism with exponential growth (not necessarily primitive), starting from minimally
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displaced points. In fact, the only property of irreducibility that is used here, is the
existence of train track representatives (Theorem 2.11.4). We prove also some useful
properties which can be proved using just the train track properties. Note that the re-
pelling tree of φ will be just the attracting tree of φ−1, so we will focus here only on the
attracting tree.

Lemma 2.14.1 (Attracting tree). Let [φ] ∈ Out(G) be such that there exists X ∈ Out(G)
supporting a train track map f : X → X representing φ, with Lip(f) = λ > 1 (for example
if φ is G-irreducible with exponential growth, and X ∈ Min(φ)). Then the following limit
exists:

X+∞ = lim
n

Xφn

λn
.

That is to say, for any g ∈ G the following limit exists:

`X+∞(g) = lim
n

`X(φn(g))

λn
.

Proof. As in the construction ofX+ in Section 2.13, we take: d+(x, y) = limn
dX(fn(x),fn(y))

λn
,

and then, X+∞ = X
d+=0

. Train track properties ensure convergence on the nose, without
use of an ultralimit. �

Definition 2.14.2. Let [φ] ∈ Out(G) be G-irreducible with exponential growth, and let
X ∈ Min(φ). We define the attracting tree or stable tree of φ (with respect to X), as:

X+∞ = lim
n→∞

Xφn

λ(φ)n
.

Similarly, we define the repelling tree or unstable tree of φ, with respect to Y ∈ Min(φ−1),
as Y−∞ = limn→+∞ Y φ

−n/λ(φ−1)n.

For any X ∈ Min(φ), the following facts are straightforward:

• ∀Y ∈ O(G), Λ(Y,X+∞) = Λ(Y φ,X+∞φ) (as φ acts by isometries).
• X+∞φ = λ(φ)X+∞ (easy application of train track properties).
• Λ(X,X+∞) = 1 (by continuity of Λ on the second variable, Corollary 2.9.3).

Proposition 2.14.3 (Stable map). Let [φ] ∈ Out(G) be G-irreducible, of exponential
growth rate λ = λ(φ) > 1. Let X, Y ∈ Min(φ) and let X+∞ be the attracting tree with
respect to X. Let ϕ : Y → Y be a train track representative of φ. Then there is a minimal
optimal map fY from Y to X+∞, called the stable map, with the following properties:

• Any fY -legal periodic line γ in the tension graph of fY , is ϕ-legal, and ϕ(γ) is
again fY -legal.
• The tension graph of fY is Y .
• If e is an edge of Y , then for any positive integer, n, any subpath of ϕn(e) is
fY -legal.

Proof. There is a minimal optimal map fY : Y → X+∞ (Remark 2.6.8). In particular,
Lip(fY ) = Λ(Y,X+∞). Moreover, since the tension graph of optimal maps is everywhere
at least two-gated, there is some g ∈ Hyp(G) whose axis is fY -legal and contained in the
tension graph of fY .

Let g ∈ G be one of such G-hyperbolic element. Then `X+∞(g) = Λ(Y,X+∞)`Y (g). On
the other hand, since Y ∈ Min(φ), `Y (φ(g)) ≤ λ`Y (g), with equality precisely when g is
ϕ-legal. Combining these facts, we have:
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`(Y φ)(g) ≤ λ`Y (g)

`(X+∞φ)(g) = λ`X+∞(g)

`X+∞ (g)

`Y (g)
= Λ(Y,X+∞)

`(X+∞φ)(g)

`(Y φ)(g)
≤ Λ(Y φ,X+∞φ)

Hence,

Λ(Y,X+∞) =
`X+∞(g)

`Y (g)
=
λ`X+∞(g)

λ`Y (g)
≤
`(X+∞φ)(g)

`(Y φ)(g)
≤ Λ(Y φ,X+∞φ) = Λ(Y,X+∞),

whence we have equality throughout, and in particular `Y (φ(g)) = λ`Y (g). Hence fY -
legal axes in the tension graph of fY are also ϕ-legal. Now, since the axis γ of g is ϕ-legal,
and ϕ is train track, ϕn(γ) remains ϕ-legal and, we have

Λ(Y,X+∞) =
`X+∞(g)

`Y (g)
=
λn`X+∞(g)

λn`Y (g)
=
`X+∞(φn(g))

`Y (φn(g))
≤ Λ(Y,X+∞),

whence the inequality is an equality and the axis of φn(g) — which is ϕn(γ) because of
ϕ-legality— is fY -legal and in the tension graph of fY .

To prove that the tension graph of fY is the whole of Y , observe that, ∪nϕn(γ) is
clearly φ-invariant, so it must be the whole Y .

The last claim now follows from the previous ones; as every edge can be extended to an
fY -legal periodic line, which is ϕ-legal and all of whose iterates under ϕ are both fY -and
ϕ-legal. �

In the next proposition we prove that the homothety class of the attracting tree doesn’t
depend on the train track point that we chose as base point.

Proposition 2.14.4. Let [φ] ∈ Out(G) be G-irreducible with exponential growth, and let
X, Y ∈ Min(φ). Let X+∞ be the attracting tree for X, and Y+∞ be that for Y . Then

X+∞ = Λ(Y,X+∞)Y+∞.

Proof. Let fY : Y → X+∞ be the stable map given by Proposition 2.14.3 (in particular
fY stretches any edge by Lip(fY ) = Λ(Y,X+∞)). Let g ∈ G, and represent it as a
path in G\Y with ng edges. ng can be zero, for instance if g is elliptic. Then by
Proposition 2.14.3, φn(g) is represented as a concatenation of at most ng fY -legal pieces.
Hence, by Corollary 2.8.3,

Λ(Y,X+∞)`Y (φn(g))− ngB ≤ `X+∞(φn(g)) ≤ Λ(Y,X+∞)`Y (φn(g)),

where B is the bounded cancellation constant of fY , and the second inequality just follows
from the definition of Λ(Y,X+∞). It follows that

lX+∞(g) = lim
n→∞

lX+∞(φn(g))

λn
= Λ(Y,X+∞) lim

n→∞

lY (φn(g))

λn
= Λ(Y,X+∞)lY+∞(g).

�

Note that the uniqueness of limit trees is a direct corollary of Theorem 5.1.2 under the
extra assumption of primitivity of the matrix, but the previous proposition provides us
an exact description of the un-projectivised limits in the general irreducible case.
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2.15. Relative boundaries and laminations. Let G = ({G1, . . . , Gk}, r) be a free
factor system of a group G. For any metric tree T , we agree that:

• a half-line in T , is an isometric embedding [0,∞)→ T ;
• T , is the metric completion of T ;
• ∂∞T , is the Gromov Boundary of T , i.e. the set of half-lines in T up to the

equivalence relation ∼, where two half-lines L ∼ L′ if and only if L,L′ differ only
on a compact set;
• V∞(T ), is the collection of vertices of T with infinite valence (if T ∈ O(G), this

coincides with non-free vertices with infinite stabiliser);
• ∂T = ∂∞T ∪ V∞(T );

• T̂ = T ∪ ∂∞T ;
• ∂2T = ∂T × ∂T \ {(P, P ) : P ∈ ∂T};
• a direction based at a point P of T̂ , is a connected component T̂ \ {P};
• the observer’s topology of T̂ , is the topology generated by the set of directions.

It is easy to see that T̂ is a compact set, equipped with the observer’s topology. More-
over, ∂T is a closed subset of T̂ and therefore compact.

The following lemma shows that the boundary does only depend on G and not on the
chosen tree T ∈ O(G).

Lemma 2.15.1 ([19, Lemma 2.2]). Let T, S ∈ O(G). Then any G-equivariant map

f : T → S has a unique continuous extension f̂ : T̂ → Ŝ. Moreover, the restriction
map h := f̂ |∂T is a natural homeomorphism ∂T → ∂S (it does not depend on f) with
h(∂∞T ) = ∂∞S and h(V∞(T )) = V∞(S).

Therefore, the notions of ∂(G,G), ∂∞(G,G), ∂2(G,G), V∞(G,G) can be naturally de-
fined as ∂T , ∂∞T , ∂2T , V∞(T ) for a T ∈ O(G). Note that ∂∞(G,G) can be identified
with the set of simple infinite words in the free product length given by (G,G).

In particular, for any G-hyperbolic group element g ∈ G, we can define the infinite
word g+∞ = limn→+∞ g

n and g−∞ = limn→+∞ g
−n. In this case, (g−∞, g∞) ∈ ∂2(G,G).

There is a natural Z2-action on ∂2(G,G) given by flipping coordinates (P,Q) 7→ (Q,P ).

Definition 2.15.2. An algebraic lamination is a closed G-invariant, flip-invariant, sub-
set of ∂2(G,G). Elements of ∂2(G,G) are called algebraic leaves. Given T ∈ O(G), a
(bi)(infinite) line L in T represents an algebraic leaf (P,Q) ∈ ∂2(G,G) if its endpoints
correspond to (P,Q) under the natural homeomorphism given by Lemma 2.15.1.

2.16. Attracting and repelling laminations. Let G = ({G1, . . . , Gk}, r) be a free
factor system of a group G. Attracting and repelling laminations for irreducible auto-
morphisms with exponential growth, can be defined as in the classical case (see [2] for
the free case). Classical proofs work also in the present case, as they are based only on
the properties of train-track maps.

More precisely, let [φ] ∈ Out(G) be G-irreducible with λ(φ) > 1. Let f : T → T be a
train track representative of φ, and let e be an edge of T . Consider iterates fn(e) and
group elements gn ∈ G such that gnf

n(e) intersects a fixed fundamental domain for the
G-action on T . Then the limit of gnf

n(e) is a line in T , hence it represents an algebraic
leaf L ∈ ∂2(G,G). The attracting (or stable) lamination Λ+

φ is defined as the closure of

the G-orbit of L. Any line in the G-orbit of L is called a generic line of Λ+
φ .

This construction depends a priori on T, f, e, gn. In fact, when φ is G-primitive, it does
not depend on the choices made (see [2, Section 1] for the proof in the free case). We
define the repelling lamination of φ as the attracting lamination of φ−1, and is denoted
by Λ−φ := Λ+

φ−1 .
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Definition 2.16.1. We say that (the conjugacy class of) a subgroup A < G carries Λ+
φ

if there is T ∈ O(G) containing a minimal A-tree, which contains a line that realises a
leaf of Λ+

φ .

3. The distance of points of Min(φ) from Min(φ−1) is uniform

Let’s fix a free factor system G = ({G1, . . . , Gk}, r) of a group G. In this section, we
prove a result which could be of independent interest. More specifically, we show that if
φ is irreducible, then the distance of a point of Min(φ) from the set Min(φ−1) is uniformly
bounded, by a constant depending only on λ(φ) (and on the dimension of the space).

3.1. Transition vectors and spectrum discreteness. Let ∆ be a simplex of O(G).
Let’s denote by e1, . . . , en the directed (orbits of) edges in ∆, and denote by Ei the inverse
of ei, i = 1, . . . , n.

Let g ∈ Hyp(G). If X ∈ ∆, then (the conjugacy class of) g can be written as a
(cyclically) reduced loop p(g) in the corresponding graph of groups Γ = G\X. Note that
the loop corresponding to g, does depend only on ∆ and not on the metric of X.

To any g ∈ Hyp(G), we can assign a transition vector (a1, a2, . . . , an), where ai is
the number of occurrences of ei’ and Ei’s on the loop p(g).

Definition 3.1.1. Let ∆ be a simplex of O(G) and g ∈ Hyp(G). The shape of g in ∆, is
the transition vector of g with respect to ∆.

Remark 3.1.2.

(1) Different (conjugacy classes) of group elements may have the same shape. In this
case, these group elements have the same length with respect to any X ∈ ∆. So
`X(γ) is defined for any shape γ.

(2) There are finitely many shapes of candidates in ∆. (see Theorem 2.9.1)
(3) Forall ε > 0 and M > 0, the set of shapes of hyperbolic elements whose length is

bounded by M for some X ∈ O1(G, ε)∩∆, is finite. This follows by the fact that
each of the coefficients of the transition vector of such a g, is bounded above by
MΛ(X,X0), where X0 is the centre of ∆ ∩ O1(G) (the point where all the edges
have the same length). As X belongs to the ε-thick part and has co-volume one,
the distance Λ(X,X0) is uniformly bounded above (for instance, from 2

ε
) and the

remark follows.

Lemma 3.1.3. The simplex-displacement spectrum of any G-irreducible [φ] ∈ Out(G), is
discrete. That is to say

spec(φ) = {λφ(∆) : ∆ a simplex of O(G)}
is a closed discrete subset of R.

Proof. Let λ = λ(φ). We will prove the claim by showing that, for any C > λ, spec(φ) ∩
[λ,C] is finite (note that λ = inf(spec(φ)) just by definition).

Let ∆ be a simplex of O(G). For any pair of shapes (γ, η) we consider `X(η)/`X(γ),
which is a function on ∆ not depending on the marking, and for any family of pairs of
shapes B we define

FB(X) = sup
(γ,η)∈B

`X(η)

`X(γ)
.

Again, FB(X) is a function on ∆ that does not depend on marking, just on B.
Since φ is irreducible, for any C > λ there is ε = ε(C) > 0 such that, for any X ∈ O(G),

if λφ(X) ≤ C then X is ε-thick (see for instance [13, Proposition 5.5]).
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Let S2(C) be the set of shapes having length bounded by 2C vol(X) for some X in the
ε(C)-thick part of ∆. The set S2(C) is finite (Remark 3.1.2).

By candidates Theorem 2.9.1, there is a finite set of candidate shapes, S1, so that, for
any X ∈ ∆, λφ(X) = Λ(X,Xφ) is realised by `X(φ(g))/`X(g) for some g having shape
in S1; moreover all such shapes have length at most 2 vol(X). On the other hand, for
any such g, the shape of φ(g) has length bounded by λφ(X)`X(g), which is bounded by
2λφ(X) vol(X). That is to say, if λφ(X) ≤ C, then for any g with shape in S1, the shape
of φ(g) is in S2(C). (We remark that the set S1 and S2(C) do not depend on the marking,
that is to say, two simplices with the same unmarked underlying graph, exhibit the same
sets S1 and S2(C).)

It follows that there exists a family of pairs B ⊆ S1 × S2(C) such that λφ(X) =
FB(X) for any X ∈ ∆. Note that B may depend on the marking of ∆. However, since
S1×S2(C) is finite, there are only finitely many choices for B. It follows that the possible
displacement functions on ∆ run over a finite sets, hence so do their minima.

�

3.2. Distance between Min-sets of an automorphism and its inverse.

Lemma 3.2.1 ([14, Theorem 5.3, and Lemmas 8.4, 8.5, 8.6]). Given [ψ] ∈ Out(G) and
any X, Y ∈ O(G) with λψ(X) ≥ λψ(Y ), there is a simplicial path from X to Y — that
is to say, a sequence of adjacent simplices ∆0,∆1, . . . ,∆m with X ∈ ∆0 and Y ∈ ∆m

— such that there exists i0 such that the sequence λψ(∆i) is strictly monotone decreasing
form 0 to i0, and constant from i0 to m.

Theorem 3.2.2. Let [φ] ∈ Out(G) be G-irreducible, with λ(φ) > 1.
Then there is a D-neighbourhood (with respect to the Lipschitz metric) of Min1(φ)

containing Min1(φ−1).
More precisely, for any L there is a constant D (depending only on [φ] and L) such that

for any volume-1 point, X with λφ(X) ≤ L, there is a volume-1 point, Y ∈ Min(φ−1) such
that Λ(X, Y )Λ(Y,X) < D. In particular, for any X ∈ Min(φ) there is Y ∈ Min(φ−1)
such that Λ(X, Y )Λ(Y,X) < D.

Proof. Let X ∈ O1(G) so that Λ(X,Xφ) ≤ L. By Theorem 2.5.1, the right- and left-
Lipschitz distances are comparable on the thick part. Since φ is irreducible, X is ε-
thick (with ε depending on L but not on X, see for instance [13, Proposition 5.5]), and
hence there is a constant C1, not depending on X, such that Λ(X,Xφ−1) = Λ(Xφ,X) <
C1. Now we apply Lemma 3.2.1 with ψ = φ−1 and any Y ∈ Min(φ−1) (which, in
particular, implies λφ−1(X) ≥ λφ−1(Y )). Let (∆i)i be the sequence of simplices provided
by Lemma 3.2.1. Up to replace Y with an element of Min(φ−1) ∩ ∆i0 , we may assume
that the sequence λφ−1(∆i) is strictly monotone decreasing. By Lemma 3.1.3 there are
only finitely many values in spec(φ−1) ∩ [λ(φ−1), C1], whose cardinality depends only on
φ. This implies that there is a uniform bound on the length of the sequence of ∆i’s
joining X to Y . And this implies that Λ(X, Y ) is uniformly bounded depending only on
φ. Since both X and Y are ε-thick, for some ε depending only on φ and L, then (by
Theorem 2.5.1) also Λ(Y,X) is uniformly bounded. �

4. Equivalent conditions for co-compactness of Min(φ)

As customary, let G = ({G1, . . . , Gk}, r) be a free factor system of a group G. In
this section, we discuss equivalent conditions of co-compactness of the Min-Set of O(G)-
irreducible automorphisms φ with exponential growth.
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There are several topologies for our deformation spaces, but our co-compactness result
is in the strongest sense; we actually prove that any irreducible φ acts on Min1(φ) (whence
on Min(φ)) with finitely many orbits of simplices, and in this sense the topology doesn’t
matter, since we have a fundamental domain which is compact with respect to any of the
topologies.

However, our strategy is to show that the action is co-bounded with respect to the
Lipschitz metric, and deduce co-compactness from there and the fact that Min1(φ) is
locally finite (Theorem 2.11.6). In this section we show how to make that reduction.

We start with some observations about some of the topologies commonly used for our
spaces.

4.1. Topology on deformation spaces. We have (among others) the equivariant Gro-
mov topology (see for instance [30]); the length space topology (defined in Section 2.4);
and the Lipschitz metric defines three topologies (see Theorem 2.5.2), where the basis is
given by either symmetric balls, in-balls or out-balls:

(i) The symmetric or bi-Lipschitz ball of centre T and radius R:

Bsym(T,R) = {S ∈ O(G) : Λ(T, S)Λ(S, T ) ≤ R}.
(ii) The Lipschitz out-ball of centre T and radius R:

Bout(T, S) = {S ∈ O(G) : Λ(T, S) ≤ R}.
(iii) The Lipschitz in-ball of centre T and radius R:

Bin(T,R) = {S ∈ O(G) : Λ(S, T ) ≤ R}.

Remark 4.1.1. By Theorem 2.5.2 all three Lipschitz metrics are actually (multiplicative,
asymmetric) metrics only when restricted to O1(G). However, the three topologies are
well-defined also in O(G).

Remark 4.1.2. Since the Lipschitz metric is multiplicative, one should really say that
the radii of these balls is logR. This doesn’t cause any problems in O1(G), as the
Lipschitz metric is 1 exactly when the points are equal, and is never less than that. It
does cause problems in the non-symmetric case in O(G), since non-symmetric Lipschitz
metrics change with scale, so one can get any positive real number as a value for Λ(T, S).
The symmetric Lipschitz metric is a well defined multiplicative pseudo metric on the
whole O(G).

Let us start by proving that all topologies agree in the co-volume-one slice O1(G).

Lemma 4.1.3. Let T ∈ O1(G). For any δ > 0 there exists an ε > 0 such that for any
S ∈ O1(G), if Λ(T, S) ≤ 1 + ε, then Λ(S, T ) ≤ 1 + δ.

Proof. Consider an optimal map, f : T → S. Then, by Lemma 2.8.2,

BCC(f) ≤ vol(T ) Lip(f)− vol(S) = Lip(f)− 1 ≤ Λ(T, S)− 1 ≤ ε.

Hence the BCC of f is bounded above by ε. Let a be the length of the smallest edge in
T . Now, for any edge of T , if ` is its length in T , and µ is how it is stretched by f , by
looking at volumes, we get

1 = vol(S) ≤ (1 + ε)(1− `) + µ`, giving µ ≥ 1− ε(1− `)
`

≥ 1− ε(1− a)

a
.

Thus, f stretches all edges at least by 1− ε(1− a)/a. By Corollary 2.8.3, for any g,

`S(g) ≥ (1− ε(1− a)

a
)`T (g)− `T (g)

a
ε = `T (g)

(
a− 2ε+ aε

a

)
,
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where `T (g)
a

is an estimate of the number of edges crossed by g in T , and the ε is just the
above bound on BCC(f). Therefore, for any g ∈ Hyp(G),

`T (g)

`S(g)
≤ a

a− 2ε+ aε
.

As the upper bound tends to 1 as ε tends to 0, we have proved the result. �

Remark 4.1.4. Lemma 4.1.3 remains true if we replace T, S ∈ O1(G) with T, S ∈ O(G),
modified as follows: ∀T∀δ∃ε : Λ(T, S) vol(T ) < vol(S) + ε⇒ Λ(S, T ) vol(S) < vol(T ) + δ.
So the Lemma is basically true for trees with almost the same co-volume.

We also have the reverse,

Lemma 4.1.5. Let T ∈ O1(G). For any δ > 0 there exists an ε > 0 such that for any
S ∈ O1(G), if Λ(S, T ) ≤ 1 + ε, then Λ(T, S) ≤ 1 + δ.

Proof. Any given T is tautologically in the thick part for some appropriate level of thick-
ness. Next, for any g,

Λ(S, T ) ≤ K ⇒ `S(g) ≥ `T (g)

K
,

implying that if Λ(S, T ) ≤ K, then S will also be thick (where the thickness is divided by
K). We can then invoke quasi-symmetry Theorem 2.5.1 to immediately get the result. �

Remark 4.1.6. As in Remark 4.1.4, also Lemma 4.1.5 remains true if we replace T, S ∈
O1(G) with T, S ∈ O(G), by suitably modifying constants.

Lemma 4.1.7. The following topologies on O1(G) are the same:

(i) The equivariant Gromov topology,
(ii) The length function topology,

(iii) The symmetric Lipschitz topology,
(iv) The out-ball Lipschitz topology
(v) The in-ball Lipschitz topology.

Proof. By [30], the Equivariant Gromov topology and the length function topology are
the same. (Paulin has a standing assumption that the group is finitely generated, but
this is not used for this result.) Lemmas 4.1.3 and 4.1.5 imply that all three Lipschitz
topologies are the same.

Next, if we take a sub-basic open set in the length function topology, this involves
picking a hyperbolic group element, g, and taking all T ∈ O1(G) such that `T (g) belongs
to some open interval. Since for any g the function `T (g) is continuous with respect to
Lipschitz metrics on O1(G), such a set in open the Lipschitz topology.

Conversely, by Corollary 2.9.3, Lipschitz out-balls are open with respect to the length
function topology, and so Lipschitz-open sets are open in that topology. �

Remark 4.1.8. One can also consider other topologies. One obvious one is the path
metric obtained after giving each (open) simplex in O1(G) the Euclidean metric. This
also turns out to be the same as the previous ones.

One also has the coherent topology, which is the finest topology (on O1(G) and also
O(G)) which makes the inclusion maps of the simplices continuous. Care needs to be
taken here, since our spaces are only a union of open simplices, but we can take any open
simplex and add all the faces that we are allowed, then insist that these inclusions are
all continuous (topologising each simplex in the standard way). This is a very different
topology to the one above, and we mention it only for interest.
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Remark 4.1.9. We will always endow O1(G) with the topology given by Lemma 4.1.7.

Now, we move to O(G) and PO(G).

Lemma 4.1.10 (O1(G) ' PO(G)). Let O(G) be endowed with the bi-Lipschitz topology,
and consider on PO(G) the quotient topology. Then PO(G) is homeomorphic to O1(G).

Proof. Let π : O(G)→ PO(G) be the natural projection, which is continuous by definition
of quotient topology. Since O1(G) is a sub-space of O(G), then restriction π : O1(G) →
PO(G) is continuous. Also, it is clearly bijective. It remains to prove that it is open.
This is equivalent to say that for any open set U ⊆ O1(G), the cone R+U is open in O(G)
for the Lipschitz topology. Clearly if suffices to prove it when U is an open symmetric
ball, say centered at Y and radius ε. But from Λ(Z, Y )Λ(Y, Z) = Λ( Z

vol(Z)
, Y )Λ(Y, Z

vol(Z)
)

we get that the symmetric ball of O(G), centered at Y and of radius ε, is just R+U . �

Remark 4.1.11. The bi-Lipschitz topology on O(G) is not Hausdorff, because the sym-
metric metric is only a pseudo-metric. One can naturally use on O(G) = O1(G)×R+ the
product topology, which is Hausdorff, agree with the Euclidean one on simplices, and for
which PO(G) is tautologically homeomorphic to O1(G). The following lemma shows in
particular that both the bi-Lipschitz and the product one are different from the length
function topology.

Lemma 4.1.12 (O1(G) 6' PO(G)). Let O(G) be endowed with the length function topol-
ogy, and consider on PO(G) the quotient topology. Then PO(G) is not homeomorphic
to O1(G) in general.

In other words, the restriction to O1(G) of the natural projection π : O(G) → PO(G)
is continuous, bijective, but in general is not open (for the projective length function
topology).

Proof. Let X,Xn be as in Example 2.9.4. Points Yn = 3
2
Xn belongs to O1(G) and

projectively converges, with respect to the length function topology, to X. However
Λ(Yn, X) = 2 forall n, in particular it does not converges to 1. In other words, there
are open sets U in O1(G), such that R+U is not open in O(G) for the length function
topology. An example of such set is when U is the in-ball centered at X and of radius
11/10. R+U does not contain any of the Xn, while any open neighborhood of X in the
length function topology, contains infinitely many of them. �

Remark 4.1.13. The words “in general” in Lemma 4.1.12 really means “if at least on
of the free factor groups is infinite”, as the used example is based only on this fact.

Remark 4.1.14. Lemma 4.1.12 can be rephrased by saying that the quotient length
function topology on PO(G) is coarser than the subspace length function topology on
O1(G).

Remark 4.1.15. Example 2.9.4 shows that O1(G) is not closed in O(G) with respect
to the length function topology, as the co-volume of the limit of points in O1(G) can be
different from 1.

Remark 4.1.16. As a consequence of Lemma 4.1.12, we get that in general with respect
to the length function topology, the closure O1(G) of O1(G), is not the same as the closure

PO(G) of PO(G). More explicitly, O1(G) is exactly the simplicial closure of O1(G), which
can be identified with the free splitting simplex (relative to the fixed free factor system)
and it is exactly the space of edge-free actions on simplicial trees with elliptic subgroups,
containing G. On the other hand, in [8] it is proven that PO(G) is a compact space which
contains non-simplicial trees and trees with non-trivial edge stabiliser.

27



Another caveat is about local compactness, as explicited by following facts.

Proposition 4.1.17. In general O1(G) and O(G) are not locally compact.

Proof. We modify slightly Example 2.9.4. Referring to Figure 1, build points Xn by
assigning length 1/2 to the horizontal edge ending at the non-free vertex, and 1/2 to the
other edge. Any neighbourhood of X (either in O1(G) or O(G)) contains infinitely many
Xn. Let V be any neighborhood of X, choose U a closed neighbourhood of X so that it
does not contains 3

2
X (this is tautological if we work in O1(G)) and work in U ∩ V .

Now the key observation is that, in the length function topology, any infinite sequence
of the Xn’s converges to 3

2
X, which is not in U ∩V . Therefore, such a sequence in U ∩V

has no adherence point in U ∩V . On the other hand, since any sequence in any compact
space has at least an adherence point, U ∩ V cannot be compact, and since U is closed,
V cannot be compact. Therefore, in this case, both O1(G) and O(G) are not locally
compact. �

Finally, note that we have no hypothesis on our vertex groups, in particular G may be
not countable. However, when G is countable we get:

Remark 4.1.18. When G is countable, bounded sets in O(G) are sequentially pre-

compact. Namely, if (Xn) ⊂ O(G) is a sequence such that for any g ∈ G there is K(g)
for which `Xn(g) ≤ K(g), then Xn has a converging subsequence. This follows from the
fact that the product of countably many closed, bounded real intervals, is sequentially
compact.

4.2. Equivalent formulations of co-compactness for Min1(φ). Let [φ] ∈ Out(G) be
irreducible and with exponential growth, that is, λ(φ) > 1. We know that in this case
the simplicial structure of Min1(φ) is locally finite (Theorem 2.11.6). Our aim here is to
show that co-compactness of this space is actually equivalent to co-boundedness.

We recall some terminology.

Definition 4.2.1. A simplicial path between T, S ∈ O(G) (or O1(G)), is given by:

(1) A finite sequence of points T = X0, X1, . . . , Xn = S, called vertices, such that for
every i = 1, . . . , n, there is a simplex ∆i such that the simplices ∆Xi−1

and ∆Xi ,
are both faces (not necessarily proper) of ∆i.

(2) Euclidean segments Xi−1Xi ⊂ ∆i, called edges. (The simplicial path is then the
concatenation of these edges.)

(3) The simplicial length of such a path is just the number n.

Remark 4.2.2. In [14] it is introduced the notion of calibrated path (with respect to φ).
In the case of irreducible automorphism, this simply reduces to ask that any non-extremal
vertex Xi realises λφ on its simplex, that is to say, λφ(Xi) = λφ(∆(Xi)). In particular, if
φ is G-irreducible, any simplicial path may be assumed to be calibrated by just replacing
any Xi with a suitable point in the closure of ∆(Xi). (See [14] for more details).

It is proved in [14] that any two points in Min(φ) (or Min1(φ)) can be joined by a
simplicial path lying entirely within Min(φ) (or Min1(φ), respectively). This is done by
a peak-reduction argument, which has a quantitative version, which is what we use.

Proposition 4.2.3 ([14, Remark 8.7]). Any calibrated simplicial path Σ connecting two
points in O(G) can be peak-reduced by removing a local maximum (peak) of the function
λφ, via a peak-reduction surgery that increases the simplicial length of Σ by at most a
uniform amount, K, depending only on rank(G).
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Remark 4.2.4. In [14], the authors are interested in the function λφ, which is scale
invariant, and results are stated and proved for O(G), but it is readily checked that the
whole peak-reduction can be carried on O1(G).

Recall that if φ is G-irreducible, then its simplex-displacement spectrum spec(φ) is
discrete (Theorem 3.1.3). Thus for any x > λ(φ) the set spec(φ) ∩ [λ(φ), x] is finite.

Corollary 4.2.5. Let [φ] ∈ Out(G) be G-irreducible and with λ(φ) > 1. Let X, Y ∈ O(G)
and let X = X0, . . . , XL = Y be a simplicial path. Let D = maxi λφ(∆(Xi)) and D0 =
max(λφ(X), λφ(Y )). Let N be the cardinality of spec(φ) ∩ [λ(φ), D].

Then there exist a simplicial path X = X ′0, . . . , X
′
L′ = Y such that λφ(X ′i) ≤ D0 for

any i, and such that L′ ≤ L(K + 1)N , where K is the constant of Proposition 4.2.3.

Proof. List possible simplex dispacements less than D, λ(φ) = λ1 < λ2 < . . . < λN ≤ D.
To any calibrated simplicial path we assign a triple (λi,m, L), where λi is the maximum

displacement of vertices along the path, m is the number of vertices in the simplicial
path which realise the maximum displacement, and L is the simplicial length. Note that
m ≤ L.

The peak reduction process (Proposition 4.2.3) allows us to reduce the value of m by
1, at a cost of increasing the value of L by K. Hence, after at most L peak reductions, we
have transformed our simplicial path to one where the maximum peak has displacement
at most λi−1. The effect on the triple is to replace it with (λj,m

′, L′), where j < i and
L′ ≤ L + KL = L(K + 1). Inductively, we see that we eventually arrive at a path with
the requested bound on displacement, and of simplicial length at most L(K + 1)N . �

Given X ∈ O(G), let Xc denote the “centre” of the open simplex containing X in
O(G). That is, Xc has the same action as X, but the edges are rescaled to all have length
1. (Hence Xc does not have co-volume 1, but its co-volume is uniformly bounded, since
there is an upper bound on the number of orbits of edges.)

The following proposition shows that symmetric Lipschitz balls can be connected via
simplicial paths of uniform length, if we allow ourselves to enlarge the ball slightly.

Proposition 4.2.6. For all ε > 0 there exist constants M,κ, α such that for any T ∈
O1(G, ε) and all R > 0, any two points S1, S2 ∈ Bsym(T,R) ∩ O1(G) are connected by
a simplicial path entirely contained in Bsym(T, κRα) ∩ O1(G), and crossing at most MR
simplices. Moreover, all point of such path are ε

κRα
-thick.

Proof. It is sufficient to prove the claim when S2 = T and S1 = S is any other co-volume-
one point in Bsym(T,R). Also, we observe that, since T is ε-thick, any point in any
Bsym(T, ρ) is ε/ρ-thick. In particular last claim follows from first one.

By triangular inequality, Λ(S, T c) ≤ Λ(S, T )Λ(T, T c) and since vol(S) = vol(T ) = 1,
we have Λ(S, T ) ≤ Λ(S, T )Λ(T, S) < R. Moreover Λ(T, T c) is uniformly bounded by a
constant depending only on ε (and the maximal number of edge-orbits of trees in O(G)).

So Λ(S, T c) is bounded by a uniform multiple of R. Let f : S → T c be an optimal map.
Subdivide the edges of S by “pulling back” the edge structure on T c; that is, subdivide S
so that every new edge maps to an edge of T c under f . The number of new edges created
by this subdivision is at most Λ(S, T c) times the number of edges in S. More concretely,
for each edge e in S, Λ(S, T c) is an upper bound for the number of edges crossed by f(e),
since each edge in T c has length 1.

Now - as in [12, Definition 7.6] (see also [10, Theorem 5.6]) - construct a folding path
directed by f , from S to T c; it is a simplicial path in O(G). The simplicial length of
this path is bounded above by the number of subdivided edges of S. That is, it will be
bounded above by a uniform multiple of R.
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Moreover such path, say S = X0, X1, . . . , Xn = T c, has the following properties (see [12,
10]3):

Λ(Xi, Xj) = 1, for any 0 < i < j ≤ n, Λ(S,X1) = Λ(S, T c),

vol(Xi) ≤ vol(X1), for any 0 < i ≤ n, vol(X1) ≤ Λ(S, T c).

We now “correct” this path by tracing a simplicial path which goes through the same
simplices, but whose vertices are uniformly thick and with co-volume 1. More precisely
for any i ≥ 1, we replace each Xi with Xc

i / vol(Xc
i ). Now, since T c = Xn, we have:

Λ(Xc
i , T ) ≤ Λ(Xc

i , Xi)Λ(Xi, T
c)Λ(T c, T ) = Λ(Xc

i , Xi)Λ(T c, T );

Λ(Xc
i , Xi) is bounded by vol(Xi) ≤ vol(X1) ≤ Λ(S, T c) ≤ Λ(S, T )Λ(T, T c). It follows

Λ(
Xc
i

vol(Xc
i )
, T ) = vol(Xc

i )Λ(Xc
i , T ) ≤ vol(Xc

i )Λ(S, T )Λ(T, T c)Λ(T c, T )

≤ R vol(Xc
i )Λ(T, T c)Λ(T c, T ).

The factor Λ(T, T c)Λ(T c, T ) is a priori bounded by a constant depending on ε (see for
example [15, Lemma 6.7]), and the claim follows from quasi-symmetry (Theorem 2.5.1)
— because both T and all Xc

i are thick — and from the fact that centres Xc
i have

uniformly bounded co-volume. Note that we can take α = 1 +C where C is the constant
of Theorem 2.5.1. �

We next show that Min1(φ) is not overly distorted, in the following sense.

Theorem 4.2.7. Let [φ] ∈ Out(G) be G-irreducible with λφ > 1. For any T ∈ O(G)
there are constants C,C ′, depending only λφ(T ) (and on [φ] and rank(G)), such that for
all R > 0:

(1) Any two points in Min1(φ)∩Bsym(T,R) are connected by a simplicial path entirely
contained in Min1(φ) (but not necessarily in Bsym(T,R)), and whose simplicial
length is bounded above by CR.

(2) The ball Bsym(T,R) intersects at most C ′R simplices of Min1(φ).

Proof. First claim implies in particular that if ∆0 is a simplex intersecting Min1(φ) ∩
Bsym(T,R), then any other simplex with the same property, stay at bounded simplicial
distance from ∆0. Since the simplicial structure of Min1(φ) is locally finite by Theo-
rem 2.11.6, the second claim follows.

Let us now prove the first claim. Since the symmetric Lipschitz pseudo-metric is scale
invariant, we may assume vol(T ) = 1. Moreover, since φ is irreducible, then T is ε-thick
for some ε > 0 depending on λφ(T ) (but not on T , see for instance [13, Proposition 5.5]).

By Proposition 4.2.6, any two points S1, S2 ∈ Bsym(T,R) ∩ O1(G) can be joined by
a simplicial path of simplicial length at most MR, and lying inside Bsym(T,R′) (with
R′ = κRα, constants M,κ, α as in Proposition 4.2.6).

For any S ∈ Bsym(T,R′), and any hyperbolic group element g, we have,

`S(φ(g))

`T (φ(g))
≤ R′ and

`T (g)

`S(g)
≤ R′,

which implies,
`S(φ(g))

`S(g)
≤ (R′)2 `T (φ(g))

`T (g)
⇒ λφ(S) ≤ (R′)2λφ(T ).

3We remind that the first step of such construction is to build X1 by changing lengths to edges of S
so that Λ(X1, T

c) = 1, and all edges are maximally stretched. Then we proceed, as the name suggests,
by isometrically folding edges identified by f .
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Hence the displacements of points in Bsym(T,R′) are uniformly bounded by (R′)2λφ(T ).
Let N be the cardinality of spec(φ) ∩ [λ(φ), (R′)2λφ(T )].

By Corollary 4.2.5, if S1, S2 ∈ Min(φ), they can therefore be connected by a simplicial
path in Min(φ) whose length is bounded by MR(K + 1)N (where K is the constant of
Corollary 4.2.5), and by scaling volumes, we can get such path in Min1(φ). �

Recall (see Section 2.14) that the stable or attracting tree of an X ∈ Min(φ) exists and
is given by X+∞ = limn

Xφn

λnφ
.

Theorem 4.2.8. Consider O1(G) endowed with one of the equivalent topologies given by
Lemma 4.1.7. Let [φ] ∈ Out(G) be G-irreducible and with λφ > 1, and let X ∈ Min1(φ)
and X+∞ be the stable tree. Then the following are equivalent:

(i) 〈φ〉 acts on Min1(φ) with finitely many orbits of simplices.
(ii) Min1(φ)/〈φ〉 is compact.

(iii) There exists a compact set in O1(G) whose 〈φ〉-orbit covers Min1(φ).
(iv) There exists a closed symmetric Lipschitz ball, B, whose 〈φ〉-orbit covers Min1(φ).
(v) There exists a closed Lipschitz out-ball, B, whose 〈φ〉-orbit covers Min1(φ).

(vi) ∃C such that ∀Y ∈ Min1(φ), 1 ≤ Λ(Y,X+∞) ≤ λφ ⇒ Λ(X, Y ) ≤ C.
(vii) ∀D0 > 1,∃C0 such that ∀Y ∈ Min1(φ), 1

D0
≤ Λ(Y,X+∞) ≤ D0 ⇒ Λ(X, Y ) ≤ C0.

(viii) ∀V1 < V2, ∃C ′ such that ∀Y ∈ Min(φ), if V1 ≤ vol(Y ) ≤ V2 and Λ(Y,X+∞) = 1,
then Λ(X, Y ) ≤ C ′.

Proof. Since λφ is continuous, then for every simplex ∆ of O(G), the set Min1(φ) ∩∆ is
compact. Moreover, as a consequence of Theorem 4.2.7, we see that (even if O1(G) is not
locally compact) Min1(φ) is a locally compact space, whose compact subsets meet finitely
many of its simplices and are contained in a closed symmetric Lipschitz ball. This gives
immediately the equivalence between (i), (iii) and (iv).

Moreover, since φ acts by homeomorphisms on Min1(φ), from local compactness we
get also that (ii) is equivalent to (iii).

Uniform thickness of Min1(φ) (Theorem 2.11.4) and quasi-symmetry (Theorem 2.5.1)
gives the equivalence of (iv) and (v).

It is clear that (vii) and (viii) are equivalent. It is also easy to see that (vii) implies
(vi), by taking D0 = λφ.

We see now that (vi) implies (v). Notice that X+∞φ = λφX+∞. Hence for any integer
n (positive or negative),

Λ(Y φn, X+∞) =
Λ(Y,X+∞)

λnφ
.

In particular, for every Y ∈ Min1(φ), there exists a n such that 1 ≤ Λ(Y φn, X+∞) ≤ λφ,
and (v) follows from (vi).

To summarise, we have that (i), (ii), (iii), (iv) and (v) are equivalent, that (vii) and
(viii) are equivalent, and that (vii) implies (vi) and (vi) implies (iv).

Thus, in order to complete the proof, it suffices to show that (iv) implies (vii). Let B
be a closed symmetric Lipschitz ball of radius R whose translates cover Min1(φ). Without
loss of generality, we can assume that the centre is at the X ∈ Min1(φ) stated in condition
(vii). Since Λ(X,X+∞) = 1, from multiplicative triangle inequality, we get the following
inequalities, for any Y .

1

Λ(X, Y )
≤ Λ(Y,X+∞) ≤ Λ(Y,X).
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If also Y has co-volume 1, then we have both Λ(X, Y ),Λ(Y,X) ≥ 1 (Theorem 2.5.2). So
for any Y ∈ B ∩O1(G) we get 1 ≤ Λ(X, Y ),Λ(Y,X) ≤ R, whence

1

R
≤ Λ(Y,X+∞) ≤ R.

Now suppose that we are given D0 and Y ∈ Min1(φ) such that,

1

D0

≤ Λ(Y,X+∞) ≤ D0.

Since we know that the translates of B cover Min1(φ), we get that Y φn ∈ B for some
integer, n. Hence, for this n,

1

R
≤ Λ(Y φn, X+∞) =

Λ(Y,X+∞)

λnφ
≤ R.

Therefore,
1

RD0

≤ λnφ ≤ RD0,

and we thus get a bound on |n| depending only on D0. But now,

Λ(X, Y ) ≤ Λ(X, Y φn)Λ(Y φn, Y ) ≤ RΛ(Y φn, Y ),

where Λ(X, Y φn) ≤ R follows since Y φn ∈ B.
The following claim will conclude the proof.

Claim. Λ(Y φn, Y ) ≤ max{λ|n|φ , Dλ
|n|
φ−1}, where D is the constant from Theorem 3.2.2.

Proof of the Claim. If n is negative, then

Λ(Y φn, Y ) = Λ(Y, Y φ−n) = λ
|n|
φ ,

since Y ∈ Min1(φ).
Whereas, if n is positive, then Y is uniformly close a point Z ∈ Minφ−1 by Theorem 3.2.2

and hence,
Λ(Y φn, Y ) = Λ(Y, Y φ−n)

≤ Λ(Y, Z)Λ(Z,Zφ−n)Λ(Zφ−n, Y φ−n)
= Λ(Y, Z)Λ(Z,Zφ−n)Λ(Z, Y )
≤ Dλnφ−1 .

�

�

5. North-South dynamics for primitive irreducible automorphisms

Let G = ({G1, . . . , Gk}, r) be a free factor system of a group G, where in addition we
require that rank(G) ≥ 3.

5.1. Statement of North-South Dynamics. The so-called North-South dynamics for
iwip automorphisms in the classical Culler-Vogtmann Outer space CVn is a well know
fact established in [27], and generalised in [22] to a more general case. (In [22] is where
the hypothesis rank(G) ≥ 3 is required). Here we need a North-South dynamics for our
case, which is slightly more general.

The proof of Theorem 5.1.1 below, is essentially exactly the same as the proof of [22,
Theorem C], where the author assumes that G is free and that the automorphism is iwip
(or fully irreducible). However, her proof applies for general groups, where some missing
point can be filled using results of [19]. Finally, we note that the iwip property is not really
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used anywhere in the proof. More specifically, it is needed an irreducible automorphism
which can be represented by some (simplicial) train track representative with primitive
transition matrix (whence every train track representative has this property).

For these reasons, we decided to not include all details of the proof here, but for the
rest of the section, we just mention the main steps of the proof of [22, Theorem C], and
we explain why the proofs of relevant statements still hold on our context, by giving
appropriate references when needed.

Theorem 5.1.1. Any G-primitive [φ] ∈ Out(G), acts on O(G) with projectivised uniform
north-south dynamics: There are two fixed projective classes of trees [T+

φ ] and [T−φ ], such

that for every compact set K of PO(G), that does not contain [T−φ ] (resp. [T+
φ ]) and for

every open neighbourhood U (resp. V ) of [T+
φ ] (resp. [T−φ ]), there exists an N ≥ 1, such

that for all n ≥ N we have (K)φn ⊆ U (resp. (K)φ−n ⊆ V ).

The proof of the following Theorem 5.1.2 is contained in the proof [22, Theorem C], even
if it is not written as a separate statement there. (Compare also with Proposition 2.14.4).

Theorem 5.1.2. Let [φ] ∈ Out(G) be G-primitive. For any X /∈ [T−φ ] (resp. X /∈ [T+
φ ]),

we have that for n→∞:

Xφn

λ(φ)n
→ cT+

φ , for some c > 0 (resp.
Xφ−n

λ(φ−1)n
→ dT−φ , for some d > 0).

Definition 5.1.3. Let [φ] ∈ Out(G) be G-primitive. Let X ∈ O(G), which does not
belong to the projective class [T+

φ ] (resp. [T−φ ]). We define the tree:

X+∞ = lim
n

Xφn

λ(φ)n
(resp. X−∞ = lim

n

Xφ−n

λ(φ−1)n
).

It is very important to note here that these limits do exist and they are R-trees be-
cause of the previous Theorem 5.1.2. Note that this extends (when φ is G-primitive) the
definition given in Section 2.14 for points X ∈ Min(φ).

The assumption that our irreducible automorphism is primitive is crucial in order
to apply Theorem 5.1.2. For a general irreducible automorphism (without the extra
assumption of the primitive property), we cannot ensure that the limits do exist for

general points of O(G), but only for points of Min(φ), and we also may loss uniqueness.

Remark 5.1.4. Given a point X ∈ O(G), which does not belong to [T+
φ ] (resp. to [T−φ ]),

by Theorem 5.1.2, we have X+∞ = cT+
φ (resp. X−∞ = dT−φ ) for some c > 0 (resp.

d > 0). If X ∈ Min(φ) (resp. X ∈ Min(φ−1)), then by continuity of stretching factor
(Corollary 2.9.3) we have

1 = Λ(X,
Xφn

λ(φ)n
)→ Λ(X, cT+

φ ) = cΛ(X,T+
φ ) (resp. 1 = dΛ(X,T−φ )).

(Compare also Proposition 2.14.4, where the existence of T+
φ is not used.)

5.2. The attracting tree does not depend on the chosen train track. A key step
for proving that attracting tree does not depend on the chosen train track is the following
proposition.

Proposition 5.2.1. Let T ∈ O(G). Suppose there exists a tree T0 ∈ O(G), an equivariant
map h : T0 → T , and a bi-infinite geodesic γ0 of T0, representing a generic leaf γ of Λ+

φ ,
such that h(γ0) has diameter greater 2BCC(h). Then:
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(1) h(γ0) has infinite diameter in T .
(2) there exists a neighbourhood V of T such that (V )φp converges to T+

φ , uniformly
as p→∞

Proof. The proof goes as in the classical case ([2, Lemma 3.4] and [27, Proposition 6.1])
and is the same as that of [22, Proposition 3.3]. The iwip property is used there, just in
order to ensure the existence of a train track representative of the automorphism with
primitive transition matrix. The rest of the argument uses this primitive matrix in apply-
ing Perron-Frobenius theory. We conclude that our assumption that the automorphism
is G-primitive is enough. Note that the assumption in [22] that the group G is free is
never used for the proof. �

5.3. Infinite-index subgroups do not carry the attracting lamination. Another
key step in the proof [22, TheoremC], is the following.

Lemma 5.3.1. Let T ∈ O(G) and let f : T → T be a train track representative of a
G-primitive [φ] ∈ Out(G).

Let C be a subgroup of G, such that for every [Gi] ∈ [G], either C∩Gi is trivial or equal
to Gi, up to conjugation. Suppose moreover, that [G] induces on C a free decomposition
of finite rank. If C carries Λ+

φ , then C has finite index in G.

Proof. Again, no particular patch is needed, and the proof is exactly the same as that
of [22, Lemma 3.9, point (c)]. It relies on the fact that there is one (and so every) leaf
of the lamination which crosses (the orbit of) every edge. This can be ensured under our
assumption that the automorphism φ is G-primitive. The fact that the group G is free is
not used for this proof at all. �

5.4. Q-map and dual laminations of trees. In this section, we give the definition and
some results about the statements about dual laminations of trees, which are well known
for free groups and they have been recently generalised for the context of free products
in [19].

Proposition 5.4.1 ([19, Lemma 4.18]). Let T ∈ O(G) be a minimal G-tree with dense
orbits and trivial arc stabilisers. Given ε > 0, there exists a tree T0 ∈ O(G), with co-
volume vol(T0) < ε, and an equivariant map h : T0 → T whose restriction to each edge is
isometric, and with BCC(h) < ε.

The so-called Q-map, which was defined in [27] for free groups, can also be generalised
for general free products. Any X ∈ ∂∞(G,G), it can be represented as the “point at
inifinity” of a half-line in a G-tree T ∈ O(G). Almost the same happens for trees T ∈
O(G), the difference is that in this case, the path representing X in T could have finite
length. If this happens, X is called T -bounded.

Proposition 5.4.2 ([19, Q-map, Proposition 6.2] and [27, Proposition 3.1]). Let T ∈
O(G) be a minimal G-tree with dense orbits and trivial arc stabilisers. Suppose X ∈
∂∞(G,G) is T -bounded. Then there is a unique point QT (X) ∈ T such that for any
T0 ∈ O(G), any half-line ρ representing X in T0, and equivariant map h : T0 → T ,
the point QT (X) belongs to the closure of h(ρ) in T . Also, every h(ρ) is contained in a
2BCC(h)-ball centered at QT (X), except for an initial part.

Definition 5.4.3. Let T ∈ O(G). We define:

(1) The algebraic lamination dual to the tree T , is defined as L(T ) =
⋂
ε>0 Lε(T )

where Lε(T ) is the closure of set of pairs (g−∞, g∞) where `T (g) < ε and g does
not belong to some free factor of [G].
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(2) Let’s further assume that T has dense orbits. We define LQ(T ) = {(X,X ′) :
QT (X) = QT (X ′)} ⊂ ∂2(G,G).

These definition are equivalent, in the case of trees with dense orbits, by [19, Proposi-
tion 6.10]. Moreover, in [22, Remark 3.1] is shown that the leaves of LQ(T−φ ) are either

leaves of Λ+
φ or concatenation of two rays, based at a non-free vertex, obtained as iterated

images of an edge via a train track map. The latter are called diagonal leaves (and do
not arise in the classical case).

Proposition 5.4.4 ([22, Proposition 3.22]). If Y ∈ O(G) is a minimal G-tree with dense
orbits and trivial arc stabilisers, then at least one of the following is true:

(1) There exists a generic leaf (X,X ′) of Λ+
φ or of Λ−φ such that QY (X) 6= QY (X ′).

(2) There exists a diagonal leaf (i.e. the concatenation of two half-lines) (X,X ′) of
LQ(T−φ ) or LQ(T+

φ ) such that QY (X) 6= QY (X ′).

Proof. The proof is again the same as that of [22, Proposition 3.22], using the generalised
version of the Q-map given in [19], (Propositions 5.4.2 and 5.4.1. All the intermediate
steps still hold in our context. �

We also need to ensure that limit trees have dense orbit, but this is already part of
literature.

Lemma 5.4.5 ([22, Lemma 4.5]). Let [φ] ∈ Out(G) be G-primitive. Then the trees T+
φ

and T−φ have dense orbits.

5.5. At least one of the laminations is long in any tree of the boundary. The
key lemma here is the following.

Lemma 5.5.1 ([22, Lemma 3.26]). Let T ∈ O(G). Then there exists a tree T0 ∈ O(G),
an equivariant map h : T0 → T , and a bi-infinite geodesic γ0 representing a generic leaf
of Λ+

φ or of Λ−φ , such that h(γ0) has diameter greater than 2BCC(h).

Proof. As in the proof of [22, Lemma 3.26] (also, see [27]), we distinguish three cases. We
just give a sketch of the proof for each case and we refer to original proof for the details.

• Suppose that T has dense orbits. First, we note that arc stabilisers of T are trivial
(this is true by [25, Proposition 5.17]). In this case, the conclusion is a consequence
of Propositions 5.4.4 and 5.4.1 exactly as in the proof of [22, Lemma 3.26].
• Suppose that T has not dense orbit and that it is not simplicial. This sub-case,

can be reduced to the first case (of a tree with dense orbits), by collapsing the
simplicial part, exactly as in [22].
• Suppose that T is simplicial. In this case, we have to show that a generic leaf of

the attracting lamination cannot be contained in the boundary ∂B of some vertex
stabiliser B in T . In other words, we want to prove that the lamination is not
contained in any vertex stabiliser of a (non-trivial) tree in the boundary of O(G).
By [25, Corollary 5.5], point stabilisers of trees in the boundary have finite rank
and, more specifically, their rank is bounded above by rank(G). It follows that
they have infinite index and so they cannot carry the lamination, by 5.3.1.

�

5.6. Proof of Theorem 5.1.2. Everything flows as in the proof of [22, Theorem C]. The
point-wise convergence of the Theorem 5.1.2, follows directly from Proposition 5.2.1 and
Lemma 5.5.1. The locally uniform convergence then follows, because of the compactness
of PO(G).
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6. Discreteness of the product of limit trees of an irreducible
automorphism

6.1. Dynamics of train track maps. Let G = ({G1, . . . , Gk}, r) be a free factor system
of a group G.

In this section, we prove the discreteness of the G-action on the product of the two
limit trees of irreducible automorphisms with exponential growth. We do not assume
primitivity here, so powers of the automorphism may be reducible. Similar results in the
free case have been proved in [2] and in the free product case in [9].

In particular, both those papers have a precise analogue of Proposition 6.1.4; the
argument in [9], which also deals with free products, relies on a technical hypothesis of
no twinned subgroups. Effectively, this allows that paper to argue that the “angles”
(the vertex group elements one encounters) to remain bounded, and hence one observes
similar behaviour to that seen in [2]. However, we obtain finiteness conditions in a slightly
different way by observing that there are finitely many orbits of paths which occur as the
train track image of an edge. However, while this idea is straightforward, it is somewhat
more difficult to implement.

We also observe that Theorem 6.1.17 is proved in [2], but in a slightly different way.
There, the main argument deals with the case where there is no “closed INP”, whose
analogue is that no G-hyperbolic element becomes elliptic in the limit tree. (This result
is also proved in [9], again with the same technical assumption of no twinned subgroups.)
The other case - where there is a closed INP - is dealt with in [2] via surface theory.
However, we deal with both cases at the same time, necessitating a different argument.

We recall that we are using the square-bracket notation for reduced paths (see the start
of Section 2.8).

Definition 6.1.1. Let f : X → X be a train track map representing some [φ] ∈ Out(G).
Let L be a periodic line in X. The number of turns of L is the number of turns appearing
in a fundamental domain. We say that L splits as a concatenation of paths, if we can
write a fundamental domain of L as ρ1 . . . ρn such tat for any i we have

[f i(ρ1 . . . ρn)] = [f i(ρ1)] . . . [f i(ρn)]

as a cyclically reduced path.

Definition 6.1.2. Let f : X → X be a train track map representing some [φ] ∈ Out(G).
An f -piece, or simply a piece is an edge-path p which appears as sub-path of f(e), with
e edge, or f(e1e2) with ei edges meeting at a legal free turn (i.e. a turn at a free vertex).

Definition 6.1.3. For a not necessarily simplicial path p in a simplicial tree, its simplicial
closure is the smallest simplicial path containing p. In other words, the simplicial closure
of p is obtained by prolonging the extremities of p till the next vertex.

We recall that we defined the critical constant cc(f) of a map f , in Definition 2.8.4.

Proposition 6.1.4. Let f : X → X be a simplicial train track map representing some
[φ] ∈ Out(G), with Lip(f) = λ > 1. Let C = cc(f) + 1. Then there exist explicit positive
constants N,M ∈ N (with M = 5N2 +N), such that for any finite path, or periodic line
L in X, one of the following holds true:

(1) [fM(L)] has less illegal turns than L.
(2) [fM(L)] has a legal sub-path of length more than C.
(3) L splits (not necessarily at vertex-points) as a concatenations of paths ρ1 . . . ρκ so

that each ρi is pre-periodic Nielsen path with at most one illegal turn.
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Moreover, the periodic behaviour of ppNp’s starts before N iterates, and with period
less than N .

The same conclusion holds true for finite paths whose endpoints are not necessarily
vertices, with (3) above replaced by:

(3′) There exists L′, contained in the simplicial closure of L, such that:
(i) L′ splits (not necessarily at vertex-points) as a concatenations of paths ρ1 . . . ρκ

so that each ρi is pre-periodic Nielsen path with at most one illegal turn;
(ii) endpoints of L are at distance less than C/λM to those of L′;

(iii) if an end-point x of L is in L′, then fM(x) is in the same edge of the image
of the corresponding endpoint of L.

Proof. Since powers of train track maps are also train track, we may freely assume that, by
replacing f with some power, that lX(f(e)) > C for any edge. (Note that if f represents
an irreducible automorphism φ, then fn represents φn which might not be irreducible.
However, it will still be the case that fn is a train track map).

We now set constants (whose role will become clear along the proof):

• M0 is the number of orbit of pieces, plus one (which is finite);
• m = (M2

0 +M0)2;
• Qm is the number of orbit of turns at non-free vertices that appears in iterates
fn(p) where p runs over the set of pieces, and n = 1, . . . ,m (Qm is a finite number);
• N0 = m(Qm + 2)2 + 1;
• N = mN0;
• M = 5N2 +N .

We give the proof in case L is a finite path, by analysing what happen to maximal legal
sub-paths of L; the case where L is a periodic line follows by applying our reasoning to
a fundamental domain (and make cyclic reductions). Also, note that the case where L is
legal easily reduces to (3)′ with no ppNp appearing (hence L is just in the neighbourhood
of a point), so we may assume L contains at least one illegal turn.

In case L is not simplicial, we refer to non-simplicial maximal legal sub-paths of L
(that possibly arise only at its extremities), as tails.

First, we observe that if (1) holds for some iterate fn with n ≤M , then by train track
properties, it holds also for fM . The same is true for (2) by Lemma 2.8.6.

Now, we suppose that we have a path L for which (1) fails (in particular it fails for
any n ≤M). Then the number of illegal turns in fn(L) remains constant.

This implies that, in calculating [f(L)], we apply f to each maximal legal sub-path of
L, then cancel, and we are assured that some portion of the image of that path survives,
and that the new turns formed in cancellations are illegal ones.

For any α maximal legal sub-path of L, which is not a tail, we denote by αn the
corresponding maximal sub-path in [fn(L)], i.e. the portion of fn(α) that survives after
cancellations (for 1 ≤ n ≤ M). If α is a tail, then we define αn to be the simplicial
closure of the surviving portion. So αn is a simplicial path in any case. Note that since
f is simplicial and expanding, then

f−1(αn) ⊆ αn−1

also in case of tails.

Now we assume that also (2) fails, and prove that in that case (3) is true. Since f -
images of edges are longer than C, the f -preimages of legal paths we see in [fn(L)] (for
1 ≤ n ≤ M) crosses at most two edges. In particular any maximal legal sub-path of
[fn(L)] consists of at most 2 pieces. Note that a legal path may a priori be divided in
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pieces in different ways. Here we consider the subdivision of αn given by f−1(αn). Note
that from the definition of piece it follows that if αn consists of two pieces, then they
meet at a non-free vertex.

For each 1 ≤ n ≤ M , and any αn maximal legal sub-path of [fn(L)], we define
surv(αn) = f−M+n(αM), the portion of αn that survives all M iterates.

Any such αn therefore splits in three (not-necessarily simplicial) sub-paths

αn = left(αn) surv(αn) right(αn).

Remark 6.1.5. We observe that:

• Since f -images of edges have length more than C, then any surv(αn) contains at
most one vertex.
• If surv(αn) contains a vertex v, then surv(αn+j) = f j(surv(αn)) contains the

vertex f j(v).
• If αβ are consecutive maximal legal sub-paths, hence forming an illegal turn, then

cancellations between f(αn) and f(βn) occur in the sub-path f(right(αn) left(βn)).
• surv(αn) is never involved in cancellations.
• right(αn) and left(αn) are eventually cancelled by fM , unless αn is a tail.
• If α is non-tail extremal maximal legal sub-path of L, say on the left-side (the

start of L), then left(αn) is empty, because no cancellations occur on its left-side
(same for the end of L).
• If α is a tail, say on the left-side, then left(αn) is just the portion of the edge

containing the beginning of [fn(L)], but which is not in [fn(L)].

Next we focus our attention on iterates till N . Pick two consecutive such maximal
legal sub-paths α, β and look at αn, βn (for 1 ≤ n ≤ N).

Claim 6.1.6. There exist 1 ≤ s < t ≤ N and points as ∈ αs, at ∈ αt, bs ∈ βs, bt ∈ βt,
such that

• f t−s(as) = at, f
t−s(bs) = bt (hence [at, bt] = [f t−s([as, bs])]);

• there is h ∈ G so that [at, bt] = h[as, bs]; (so [as, bs] is a pNp of period t− s < N ,
containing a single illegal turn: that formed at the concatenation point of αsβs);
• at is the unique fixed point of the restriction to αt of hf s−t; bt is the the unique

fixed point of the restriction to βt of hf s−t.
• as is not internal to right(αs) and bs is not internal to left(βs).

Proof. The proof is based on pigeon principle. As mentioned, any αn consist of either
one or two pieces. In case αn consists of two pieces, we denote by vn the non-free vertex
separating the pieces of αn, and similarly we define wn as the vertex separating the pieces
of βn, if any.

By definition of constants, we have M0−1 orbit of pieces. So the possible configurations
of orbit of pieces that we read in a maximal legal sub-paths are less than M2

0 + M0.
Consequently, the configuration of orbit pieces that we read in paths σn = αnβn, runs
over a set of cardinality strictly less than m = (M2

0 +M0)2. Let T be the set of orbit of
turns at non-free vertices that appears in iterates of pieces up to power m (the cardinality
of this family is Qm by definition).

Now, we subdivide the family Σ = {σn, 1 ≤ n ≤ N} in N0 subfamilies Σν each made
of m consecutive elements. By pigeon principle any such Σν contains a pair paths σi, σj
(with i < j) with the same configuration of orbit of pieces. To any such pair we associate
a tag (Conf, Turnα, Turnβ) as follow: Conf is just the configuration of orbit of pieces.
We define now Turnα, the other being defined in the same way.

• Turnα = 1 if αi consists of a single piece.
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• Turnα = Per if αi is made of two pieces and f j−i(vi) = vj.
• Finally, if none of the above occur, we set Turnα to be the orbit of τα, the turn

we read in αj at vj. Note that if αi consists of two pieces and vj 6= f j−i(vi), then
τα belongs to T .

In last case, the possibilities for the orbit of τα are at most Qm (same for τβ.) It follows
that the cardinality of the set of possible tags (Conf, Turnα, Turnβ) is m(Qm+2)2. Since
N0 = m(Qm + 2)2 + 1 we must have at least one repetition. That is to say, we find two
pairs (σi0 , σj0), (σi1 , σj1) (with 1 ≤ i0 ≤ j0 < i1 < j1 ≤ N) with same tags. Now we have
three cases:

Case 1: Both Turnα and Turnβ are different from Per. In this case we set s = j0 and
t = j1. Let’s focus on α-paths. If Turnα = 1 then αs and αt both consist of single pieces,
and in the same orbit. If Turnα = τα, then αs and αt both consist of two pieces in the
same respective orbit, and whose middle turns are also in the same orbit. So, also in this
case we have that αs and αt are in the same orbit. The same reasoning shows that βs
and βt are in the same orbit.

Thus, there exist h, h′ ∈ G such that αt = hαs and βt = h′βs. Both turns we read at
(the concatenation points of) αsβs and αtβt are illegal. Since legality of turns is invariant
under the action of G, we have that the turn we read in (hα)(hβ) is illegal. On the other
hand the illegal turn at αtβt is (hαs)(h

′βs). This forces h = h′, and in particular the
whole path αsβs is in the same orbit of αtβt.

Now, we set at to be the unique fixed point of the restriction to αt of the contraction
hf s−t and set as = f s−t(at). Similarly we define bt and bs. Thus at = f t−s(as) = has, and
the same holds for b-points.

Case 2: Turnα = Turnβ = Per. In this case we set s = i0, t = j0 (note that this
choice is different from that of Case 1). The paths [vs, ws] and [vt, wt] both consists
of two pieces in the same respective orbit, meeting at illegal turns. As in Case 1, we
deduce that in fact the whole [vs, ws] is in the same orbit of [vt, wt]. In this case we set
as = vs, at = vt, bs = ws, bt = wt. Note that if [vt, wt] = h[vs, ws] then vt is the unique
fixed point of the restriction to αt of hf t−s (and similarly for wt).

Case 3: One of Turn’s, say Turnα, is Per and the other, Turnβ, is different. In this
case we set s = i0, t = j0 (as in Case 2). As above, we see that there is h ∈ G so that the
concatenation of the right-side piece of αt with the left-side piece of βt is the h-translate
of the concatenation of corresponding pieces in αs, βs. If Turnβ = 1, then as above we
see that βt = hβs, and we define bt as the unique fixed point of hf s−t in βt, bs = f s−t(bt),
as = vs, and at = vt.

So we are left with the case Turnβ = τβ. Let τs = (e, e′) be the turn that we read in βs
at ws, and let τt the turn we read at wt. Since the configurations of pieces are the same
at iterates s, t, we know that there is h′ ∈ G so that τt = (he, h′e′) (note that h−1h′ is in
the stabiliser of ws). Now we define H : βs → βt to be h on the left-side piece, and h′ on
the right-side one; and set bt to be the unique fixed point of contraction Hf s−t : βt → βt,
and bs = f s−t(bt).

In order to have [at, bt] = h[as, bs], we have to prove that if ws is in [as, bs], that is to
say if ws is on the left side of bs, then h = h′. In this case, since f t−s(ws) 6= wt and since
f is expanding, then f t−s(ws) is on the left side of wt, possibly on the cancelled region.
Now we iterate f for (t− s) more times (note that since t = j0 we have enough room to
iterate (t− s) times).

If f t−s(ws) is in βt (that is to say, it is not in a cancelled region), then f t−s(wt) is in
βt+t−s, and from [vt, wt] to [vt+(t−s), wt+(t−s)] we see the same cancellations we had from
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[vs, ws] to [vt, wt]. It follows that f t−s(τt) is in the same orbit of f t−s(τs) and this forces
h = h′.

Similarly, if f t−s(ws) is cancelled, then f t−s(wt) must also be cancelled — overlapping
a turn in the image of αt being in the same orbit as f t−s(τs) — otherwise the turn we
read at concatenation point of αt+(t−s)βt+(t−s) would become legal, contradicting the fact
that the number of illegal turns stay constant (and cancellations on the right-side of β
and on the left-side of α never touch the illegal turn between α and β. Remark 6.1.5
point four). Again, f t−s(τt) and f t−s(τs) are in the same orbit and thus h = h′.

In all three cases, we proved first three properties. We check now last one. We prove
that as is not in the interior of right(αs), the same reasoning proving that bs is not in the
interior of left(βs).

We already proved that [as, bs] is a pNp. A priori as could belong to right(αs). If
bs ∈ left(βs) ∪ surv(βs) then it is clear (Remark 6.1.5 point three) that cancellations we
see in subsequent iterations are the same we see from [as, bs] to [at, bt] and in particular
an is never cancelled, so a posteriori as would belong to surv(αs). But now note that
the very same holds true also if bs ∈ right(βs). Indeed, in this case fn(bs) may, a priori,
eventually disappear from βs+n; but still, cancellations with α-paths arise in a sub-path
which is in the image of f s+n[as, bs] because bs is on the right side of surv(βs) which is
never involved in cancellations.

The claim is proved.
�

If αβ are as in the claim, then by pulling back as, bs to (the simplicial closures of) α, β
we find a ppNp in (the simplicial closure of) L. We set a = f−s(as) and an = fn(as) for
any 1 ≤ n ≤ M . Similary we define b-points. The paths [an, bn] evolves till n = s < N ,
then starts with a (orbit) periodic behaviour with period p = t− s < N . The idea is that
this provide the requested splitting of L.

Let γ be the maximal legal sub-path of L on the left-side of α (if any). Claim 6.1.6
can then be applied to the subpath γα. We wish to show that the point in α obtained
from that process is the same as the one obtained by applying Claim 6.1.6 to αβ.

Let c, a′ in γ, α respectively, be the points provided by Claim 6.1.6, so that [c, a′] is
ppNp. As above we denote cn = fn(c) and a′n = fn(a′).

Claim 6.1.7. a = a′. That is, applying Claim 6.1.6 locally results in well-defined points
globally.

Proof. Let s′ be the iterate where periodicity of [cn, a
′
n] starts, and let p′ be the period.

Without loss of generality we may assume s′ ≤ s. Since [cs′ , a
′
s′ ] is a pNp, then also [cs, a

′
s]

is a pNp with the same period p′. Let P = pp′, note that P ≤ N2. Both [cs, a
′
s] and

[as, bs] are P -periodic. At time s the segment [as, bs] is contained in [f s(L)] but a priori
its extremities may get cancelled from [fn(L)] in subsequent iterations. The same holds
for [cs′ , a

′
s′ ].

Suppose that images of a, a′ are not cancelled till the next three iterations of fP (note
that s+ 3P ≤ N + 3N2 ≤M). Since f -images of edges have length more than C and L
contains no legal sub-path of that length, then for n = s, s+P, s+2P the segment [an, a

′
n]

— which is the pre-image of [as+3P , a
′
s+3P ] — contains at most one vertex. Therefore there

are two iterates in the first three steps so that [an, a
′
n] contains the same number of vertices

which is either zero or one. Now, since f is expanding and an and a′n are orbit-periodic,
this forces an = a′n, so a = a′ (because [a, a′] is a legal path). (To be precise here we
don’t use only the periodicity of a, a′ but the periodicity of the pNp’s [cs, a

′
s] and [as, bs]

because we need the orbit periodicity of the oriented edges containing an and a′n).
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We end the proof by proving that a is not cancelled in iterations till s+3P . (The same
reasoning will work for a′). Suppose the contrary. Let τn be the illegal turn of [cn, a

′
n] (τn

is in the orbit of τ , but τn 6= fn(τ)). Since a is cancelled, then a ∈ left(α) (because we
know it is not in right(α)) and in particular [as+3P , bs+3P ] contains τs+3P on the left-side
of surv(αs+3P ). By periodicity [as+4P , bs+4P ] contains the segment [fP (τs+3P ), τs+4P ], still
in the left-side of surv(αs+4P ). In particular it contains a whole edge, hence [as+5p, bs+5P ]
contains a legal segment of length more than C on the left-side of surv(αs+5P ). By
periodicity, [as, bs] contains a legal sub-path of length more than C which contradicts the
fact that (2) fails (note that s+ 5P ≤ N + 5N2 = M).

�

Now, if L is simplicial, then we have provided a splitting of L in ppNp’s, as required.
In the general case, we have a splitting of the simplicial closure of L so that interior paths
are ppNp’s.

Now let’s focus on tails. Let α be a tail, say the starting one, and let a be the point
in the simplicial closure of α given by Claim 6.1.6. So a is the starting point of our L′.
Let x be the starting point of L (note that x is never cancelled till M iterates because
(1) fails). Point a may lie either on the left or the right side of x.

If a is on the left-side of x, i.e. x ∈ L′, then the image fM(x) and fM(a) are in the
same edge (and edges have length less then C because (2) fails), and in particular at
distance less than C apart.

If x is not in L′, then the segment [fM(x), fM(a)] is shorter than C because [x, a] is
legal and never affected by cancelations, and (2) fails. In both cases dT (x, a) ≤ C/λM .

The proof of Proposition 6.1.4 is now complete.
�

The following is now immediate, since we may iterate Proposition 6.1.4, bearing in
mind Lemma 2.8.6.

Corollary 6.1.8. In the hypothesis of Proposition 6.1.4 For any C1 > 0, there exists an
M1 ∈ N such that: For any finite path or periodic line L in X, one of the following holds
true:

(1) [fM1(L)] has less illegal turns than L.
(2) [fM1(L)] has a legal sub-path of length more than C1.
(3) L splits (not necessarily at vertex-points) as a concatenations of paths ρ1 . . . ρκ so

that each ρi is pre-periodic Nielsen path with at most one illegal turn.

The same conclusion holds true for finite paths whose endpoints are not necessarily
vertices, with (3) above replaced by:

(3′) (i) L splits as a concatenations of paths δ0ρ1 . . . ρκδ1 so that each ρi is pre-periodic
Nielsen path with at most one illegal turn;

(ii) δ0, δ1 each cross at most one illegal turn;
(iii) δ0, δ1 each have length at most 2cc(f).

Definition 6.1.9. Let f : X → X be a train track map. A β is X is called pre-legal if,
for some n ∈ N, [fn(β)] is legal.

Lemma 6.1.10 (The 2/3-lemma). Let f : X → X be a simplicial train track map
representing some [φ] ∈ Out(G), with Lip(f) = λ > 1. Let L be either a finite path or
a periodic line in X. Let M = 5N2 + N be the constants of Proposition 6.1.4. Suppose
that no legal sub-paths of length more than C = cc(f) + 1 appears in iterates [fn(L)] for
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1 ≤ n ≤ M , but that [fn(L)] becomes eventually completely legal for some n > M (that
is, L is pre-legal). Then

#{illegal turns of [fM(L)]} ≤ 2

3
#{illegal turns of L+ 1}.

In particular, if #{illegal turns of L} > 3, then

#{illegal turns of [fM(L)]} < 8

9
#{illegal turns of L}.

Proof. We order L and fM(L) accordingly. Let σ0 . . . σh be the subdivision of [fM(L)]
in maximal legal sub-paths. Let Si be the starting point of σi, which coincides with the
ending point of σi−1. Let V1 = min f−M(S1) and W1 = max f−M(S1). (We may have
V1 = W1 if for example f−M(S1) = V1 and the turn at V1 is illegal, which can happen
because our maps are train track for 〈∼f i〉, not necessarily for ∼f .) Define γ1 = [V1,W1].
The set f−M(S2) ∩ {x > W1} is non empty just because fM(γ1) can be retracted to S1

in [fM(L)]. Let V2,W2 be respectively the min and max of f−M(S2) ∩ {x > W1}, and
define γ2 = [V2,W2]. Recursively define Vi,Wi, γi in the same way, and define sub-paths
ξ0 = {x ≤ V1}, ξi = [Wi, Vi+1] for i < h, and ξh = {x ≥ Wh}. (So ξi is a pre-image of σi
in a broad sense).

Since any γi gets cancelled in [fM(L)], then it contains at least one illegal turn (γi may
be a single point at an illegal turn of L, in this case we abuse notation and still say that
γi is a path containing one illegal turn).

Suppose that γi contains only one illegal turn. For any xi ∈ ξi−1, yi ∈ ξi, Propo-
sition 6.1.4 applies to the path [xi, yi], and taking those points sufficiently close to γi,
we may assure that we are in the situation (iii) of (3)′, for both xi, yi (so the images of
endpoints of the ppNp provided by Proposition 6.1.4, are in σi−1, σi respectively). In par-
ticular, we find zi ∈ ξi−1, ti ∈ ξi so that [zi, ti] ⊆ ξi−1γiξi is ppNp, with periodicity starting
before N iterates, and with period less than N , where N is as in Proposition 6.1.4. (Note
that by periodicity, and since f is expanding, then either ti coincides or it is on the left
of zi+1.)

We say that γi is:

• Periodic, if γi contains only one illegal turn;
• Non-periodic, if γi contains at least two illegal turns.

Since [fn(L)] becomes eventually legal, all illegal turns must disappear, and they can
disappear in two ways: either they became legal after some iteration-cancellation, or
they are cancelled by overlapping the image of some other illegal turn (since f is train-
track, no new illegal turns are created).

Since illegal turns in periodic paths remains illegal forever, then they must cancel
by overlapping or just because they are at extremities of L and the ppNp provided by
Proposition 6.1.4 exceeds L. This last kind of illegal turns are at most two.

Claim 6.1.11. The illegal turns of iterates of two different periodic paths never overlap.

Proof. Suppose the contrary. Let γi and γj be two periodic paths whose illegal turns
eventually overlap. Let τ be the illegal turn of γi and ω that of γj. Let τn = fn(τ) and
ωm = fn(ω). Let s < N be such that both γi and γj become periodic from step s on, and
let pi, pj their periods, whose product p = pipj is less than N2 (by Proposition 6.1.4).
Let n0 be the first iterate when τn0 = ωn0 . Let N ≤ q < N + p such that q ≡ n0 (mod p)
(note that N + p ≤ N + N2 < M). By periodicity τq is in the same orbit of τn0 and ωq
in the same of ωn0 . Thus there is g ∈ G such that ωq = gτq. Note that g 6= id because
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γi and γj remains disjoint till iterate M . But now fn0−q(τq) = τn0 = ωn0 = fn0−q(ωq) =
fn0−q(gτq) = gτn0 forces g = id, a contradiction. �

Therefore, possibly except to the two extremal ones, to any periodic γi we can associate
the illegal turn in which eventually cancel the illegal turn of γi. And since periodic illegal
turns are present at level M , that turn is one of the illegal turns of [fM(L)] that comes
from a non-periodic γi’s. By last claim, different periodic turns have associated different
non-periodic turns.

Let A,B be respectively the number of periodic and non-periodic illegal turn we see in
[fM(L)]. So we have A− 2 ≤ B. It follows that

(A− 2) +B

(A− 2) + 2B
≤ 2

3
hence

A+B ≤ 2

3
(A− 2 + 2B) + 2 =

2

3
(A− 2 + 2B + 3) =

2

3
(A+ 2B + 1).

The number of illegal turns in [fM(L)] is A + B by definition. Any non-periodic illegal
turn in [fM(L)] contributes with at least two illegal turns in L, so the number of illegal
turns of L is at least A+ 2B and the lemma is proved. �

Remark 6.1.12. The statement is sharp, as you can build a path with two illegal turns
that survives till M but then disappears, just by a concatenation of two pNp’s to which
we cut a suitable portion near the ends.

Definition 6.1.13. For a simplicial G-tree X denote by aX the length of the shortest
edge of X.

Lemma 6.1.14. Let [φ] ∈ Out(G). Let Y ∈ O(G) such that there exists a simplicial
train track map fY : Y → Y representing φ−1. (For example if [φ] is G-irreducible and
Y ∈ Min(φ−1) admits a simplicial train track). For any constant C1 > 0, and any
X ∈ O(G), set

D =
C1

aY
+ 1 D′ = DΛ(X, Y )Λ(Y,X).

Then, with these constants, the following holds true for any g ∈ Hyp(G):

If `X(φn(g))
`X(g)

< 1/D′, then the axis of g in Y contains an fY -legal subpath of length at

least C1.

Proof. First, observe that if `X(φn(g))
`X(g)

< 1/D′, then

`Y (φ−nφn(g))
`Y (φn(g))

= `Y (g)
`Y (φn(g))

=
(

`X(g)
`X(φn(g))

)(
`Y (g)
`X(g)

)(
lX(φn(g))
lY (φn(g))

)
≥ lX(g)

lX(φn(g))
1

Λ(Y,X)
1

Λ(X,Y )
> D.

Let L be the axis of φn(g) in Y . Let ng be the number of fY -illegal turns in L. Then
if [f−nY (L)] would not contain any legal subpath of length at least C1, since fY is train
track, we would get

`Y (g) ≤ C1ng.

But also (since fY is simplicial),

`Y (φn(g)) ≥ ngaY .

Hence, `Y (g)
`Y (φn(g))

≤ C1

aY
< D, contradicting the above inequality. �
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Lemma 6.1.15. Let [φ] ∈ Out(G) with λ(φ) = λ > 1. Let X, Y ∈ O(G) such that
there exist simplicial train track maps fX : X → X, fY : Y → Y representing φ, φ−1

respectively. Let h : X → Y be a straight G-equivariant map.
Then, for any C2 > 0, there exist b ∈ N and 0 ≤ L0 ∈ R such that, for any path β in

X, if β is pre-legal (for fX) and lX(β) ≥ L0, then either:

(i) [f bX(β)] contains an fX-legal subpath of length at least C2 or;
(ii) [h(β)] contains an fY -legal subpath of length at least C2.

Proof. We start by setting some constants.
The constant K: There exists a uniform constant K (depending only on X) such

that for any path β = [u, v] in X there exists g ∈ G such that

(i) u is in the axis of g,
(ii) v ∈ [u, gu], and

(iii) the distance from v to gu is bounded above by K.

That is, if we look at the quotient graph of groups, we can complete the image of any
β, to a cyclically reduced loop, by adding a path of length at most K.

The constant C1: Let C = cc(fX) + 1 and

C1 = max{C, 2C2 + 2 Lip(h)K}.

The constant M : Our constant M is the same one that appears in Proposition 6.1.4,
Corollary 6.1.8, and Lemma 6.1.10.

We then set, bearing in mind Lemma 6.1.14,
The constants D,D′, D′′:

D =
C1

aY
+ 1 D′ = DΛ(X, Y )Λ(Y,X) D′′ = 2D′.

The constants b, b1, b2 ∈ N: they are so that(
8

9

)b1
C1 ≤

aX
D′′

λb2 ≥ C2 b = b1M + b2

Finally, The constants L1, L0 > 0 are defined by:

1

D′′
+
λbK

L1

=
1

D′
L0 = max{L1, 4C2D

′′}.

We note that for any L ≥ L1 (in particular if L ≥ L0) we have,

1

D′′
+
λbK

L
≤ 1

D′
.

We now argue as follows. If [f bX(β)] contains a fX-legal subpath of length at least C2,
we are done. Otherwise, consider paths β, [fMX (β)], . . . , [fMb1

X (β)]. If any of these paths
contain an fX-legal subpath of length at least C = cc(fX) + 1, then by Lemma 2.8.6,
[fMb1+b2
X (β)] = [f bX(β)] contains an fX-legal subpath of length at least λb2 ≥ C2 and we

are done.
Hence we may assume that maximal legal subpaths in each of these paths have length

less than C. In particular lX([f bX(β)]) is bounded by the number of its illegal turns times
min{C,C2}. Let ηβ be the number of illegal turns of β.

By Lemma 6.1.10, either the number of illegal turns in [f bX(β)] is at most
(

8
9

)b1 ηβ, or

the number of illegal turns in some [fκb1X (β)], and hence also in [f bX(β)], is at most 3.
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In either cases, our choice of constants guarantees that,

lX([f bX(β)])

lX(β)
≤ 1

D′′
.

(Indeed, in latter case we easily get
lX([fbX(β)])

lX(β)
≤ 4C2/L0 ≤ 1

D′′
. In former case we have

lX(β) ≥ aXηβ, whence
lX([fbX(β)])

lX(β)
≤
(

8
9

)b1 C/aX ≤ C/C1D
′′ ≤ 1/D′′.)

Next we complete β to a path, βγ, as in the definition of our constant K. That is, βγ
is cyclically reduced, is the fundamental domain of a hyperbolic element, g ∈ G, and γ
has length at most K.

Note that,

`X(φb(g)) ≤ lX([f bX(βγ)]) ≤ lX([f bX(β)]) + λbK,

and therefore, (since `X(g) = lX(βγ))

`X(φb(g))

`X(g)
≤ lX([f b(βγ)])

lX(βγ)
≤ 1

D′′
+

λbK

lX(βγ)
≤ 1

D′
.

Hence, by Lemma 6.1.14, the axis of g in Y contains an fY -legal subpath of length at
least C1. This means that [h(βγ)] contains an fY -legal subpath of length at least C1/2
(the number C1/2 arises from the fact that the legal subpath is really a subpath of the
axis, and not necessarily of [h(βγ)].)

We then get that [h(β)] contains an fY -legal subpath of length at least C1/2−Lip(h)K ≥
C2, because the length of [h(γ)] is at most Lip(h)K.

�

Lemma 6.1.16. Let f : X → X be a simplicial train track map representing some
[φ] ∈ Out(G). If p is any periodic line in X, which is a concatenation of pNp’s, then any
group element that represents, is elliptic in X+∞.

Proof. This follows directly from the construction of X+∞. �

Theorem 6.1.17. Let [φ] ∈ Out(G) be G-irreducible and with λ(φ) > 1 (that is, φ is a
relatively irreducible automorphism with exponential growth). Let X ∈ Min(φ) and Y ∈
Min(φ−1), and denote by X+∞ and Y−∞ the corresponding attracting tree and repelling
tree for φ, respectively (Definition 2.14.2). Then there exists an ε > 0 such that for all
g ∈ G, either;

• `X+∞(g) = `Y−∞(g) = 0 or,
• max{`X+∞(g), `Y−∞(g)} ≥ ε.

Proof. Without loss of generality (by Proposition 2.14.4 and Remark 2.7.4), we may as-
sume that each of X, Y supports a simplicial train track map - lets call these fX and fY ,
respectively - representing φ and φ−1 respectively, so that we may apply Corollary 6.1.8.
Let C1 be larger than the critical constants for fX , fY plus one, and then apply Corol-
lary 6.1.8 to get constants MX ,MY of which we take the larger, and call this M1. By
Lemma 2.8.6, for any path ρ in X, containing a legal segment of length C1, [fnX(ρ)]
contains a legal segment of length at least (λ(φ))n. Similarly for Y .

We first show that X+∞ and Y−∞ have the same elliptic (and hence hyperbolic) el-
ements. To this end, suppose that g is X+∞-elliptic. This implies that `X(φn(g)) is
bounded for all n ≥ 1, by some constant A (depending on g). (No legal segment in the
axis for φn(g) can be longer than the critical constant, and the number of illegal turns is
bounded.)
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Hence `Y (φn(g)) ≤ AΛ(Y,X) is also bounded for all n ≥ 1. In particular, if we realise
φn(g) as a periodic line in Y , then the number of illegal turns in its period, is uniformly
bounded for all n ≥ 1 (just because length of paths is bounded below by aY times the
number of turns). Let A1 be greater than this number of illegal turns.

Suppose n is large and apply A1 times fM1
Y to the axis L of φn(g) in Y . By Corol-

lary 6.1.8, we have either reduced the number of illegal turns by A1, which is impossible,
or we have a legal segment of length C1 in [fA1M1

Y (L)], or L is a product of ppNp’s
in Y and hence Y−∞ elliptic (Lemma 6.1.16). We argue that only the last can occur,

since otherwise, the length of [fA1M1j
Y (L)] in Y is at least (λ(φ−1))j. But we know that

`Y (g) ≤ AΛ(Y,X), and we can take n as large as we like, so this is a contradiction. (Note
that if L is the axis for φn(g) in Y , then [fnY (L)] is the axis for g in Y .)

Therefore lX+∞(g) = 0 implies that lY−∞(g) = 0, and vice versa, by symmetry.

Next we set our notation and constants:

(i) h : X → Y is a straight G-equivariant map,
(ii) C2 = max{cc(fX) + 1, cc(fY ) + 1 + 2BCC(h)},

(iii) L0, b are the constants from Lemma 6.1.15 with the previous value of C2,
(iv) J is any integer greater than 7L0/aX ,
(v) M is the constant from Proposition 6.1.4,
(vi) ε = min{1, 1/λ(φ)b, 1/λ(φ)JM}.

We are going to show that for any X+∞-hyperbolic, g,

max{`X+∞(g), `Y−∞(g)} ≥ ε.

Consider an X+∞-hyperbolic, g, which we represent as a periodic line L in X. First
note that the statement here is really one about long group elements. More precisely, if
`X(g) is X bounded above by 7L0, then we may apply Proposition 6.1.4, J times. Since
J is greater than the number of edges — whence that of illegal turns — in a period of
L, we cannot reduce the number of illegal turns J times. We also cannot write L (or
[fJMX (L)]) as a product of ppNp’s, as that would imply that g was X+∞-elliptic. Hence,
[fJMX (L)] must contain an fX-legal segment of length at least cc(fX) + 1. Then, by

Lemma 2.8.6, [fJM+j
X (L)] must contain an fX-legal segment of length at least λ(φ)j, and

so `X+∞(g) ≥ 1/λ(φ)JM ≥ ε.

Next, since g is X+∞-hyperbolic, there exists some n > JM such that [fnX(L)] contains
a legal subpath, longer than the critical constant for fX . Hence, by increasing n, we
can assume that [fnX(L)] contains arbitrarily long legal segments. In particular we shall
assume that [fnX(L)] contains a legal subpath of length at least 2cc(fX) + 1.

Let β be a subpath of L such that [fnX(β)] is a subpath of [fnX(L)]. (Constructively, take
two points, p, q in [fnX(L)] and consider any two pre-images in L. These are the endpoints
of β. Thus, the endpoints of β lie in f−nX ([fnX(L)]).) Suppose further that [fnX(β)] is legal.

If it were the case that lX(β) ≥ L0, we could apply Lemma 6.1.15 to conclude that
either [f bX(β)] contains an fX-legal subpath of length at least C2, or [h(β)] contains an
fY -legal subpath of length at least C2.

In the former case, [f bX(L)] contains [f bX(β)] as a subpath, and hence an fX-legal
subpath of length at least C2 ≥ cc(fX) + 1. Hence, by Lemma 2.8.6 the length of

[f b+jX (L)] is at least λjφ and thus, `X+∞(g) ≥ 1/λ(φ)b ≥ ε.
Similarly, in the latter case, [h(L)] contains an fY -legal subpath of length at least

C2−2BCC(h) (cancellation is possible on applying h). Since C2−2BCC(h) ≥ cc(fY )+1,
we conclude as before that `Y−∞(g) ≥ 1 ≥ ε.
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Hence, we may assume that all such β have length less than L0.

Finally, we conclude as follows. Choose four points, p0, p1, p2, p3 in [fnX(L)], such that
[p0, p3] splits as [p0, p1][p1, p2][p2, p3], where [p1, p2] is a maximal legal subpath of [fnX(L)]
of length at least 2cc(fX)+ 1, and [p0, p1] and [p2, p3] each consists of three maximal legal
subpaths of [fnX(L)]. Then, for any 0 ≤ i < n we backward-recursively choose pre-images
f i−nX (ps) of these points in each [f iX(L)]. Thus, for all i the path [f i−nX (p0), f i−nX (p3)] is a
sub-path [f iX(L)] which splits as

[f i−nX (p0), f i−nX (p1)][f i−nX (p1), f i−nX (p2)][f i−nX (p2), f i−nX (p3)]

Moreover, for all j we have f jX(f−nX (ps)) = f j−nX (ps). Let γ0 = [f−nX (p0), f−nX (p1)],
β = [f−nX (p1), f−nX (p2)], γ1 = [f−nX (p2), f−nX (p3)], and γ = γ0βγ1. Since we are assuming
that pre-images of legal subpath of fnX(L) have length at most L0 (as otherwise we are
done), we have lX(β) < L0, lX(γ0), lX(γ1) < 3L0, and lX(γ) < 7L0.

As before, we apply J times fMX to γ, where J (defined above) is a bound on the number
of illegal turns in γ. We analyse the behaviour of this path using Proposition 6.1.4. We
know that if we get a long legal segment for fX , this would bound the length `X+∞(g)
from below (by 1/λ(φ)JM ≥ ε). Also, we cannot reduce the number of illegal turns J
times. Therefore, we are left with the case where for some j ≤ J we have that [f jM(γ)]
splits as

[f jMγ] = δ0ρ1 . . . ρκδ1,

where each subpath has at most one illegal turn and the ρi are ppNps. Moreover, [f jMX (γ)]

has sub-paths, [f jMX (γ0)], [f jMX (β)] and [f jMX (γ1)]. We also know that the first and last
of these cross at least two illegal turns, because [p0, p1], and [p2, p3] crosses two illegal

turns. In particular, [f jMX (β)] is a sub-path of ρ1 . . . ρκ. However, this is a splitting and

therefore, [fnX(β)] is a sub-path of [fn−jMX (ρ1 . . . ρκ)], which is impossible since [fnX(β)] is
a legal path of length at least 2cc(fX) + 1, and no ppNp can contain a legal subpath of
length greater than cc(fX). �

7. Co-compactness of the Min-Set

We will prove our main theorem, first under the extra hypothesis that our automor-
phism is primitive. More specifically, we will prove that the Min-Set of a primitive
irreducible automorphism is co-bounded under the action of < φ >, which implies that
it is co-compact (see Section 4). The general result is proved in the next section, where
we drop the primitivity hypothesis.

Let us fix a group G and a free factor system G = ({G1, . . . , Gk}, r) of G.
We are going to use North-South dynamic stated in Section 5, where we had the

additional assumption of rank(G) = k + r ≥ 3. We remark that in case of lower rank,
either we are in the classical CV2 case, and the co-compactness result is known (a proof
can be found for example in [16]) or the result is trivial.

7.1. Ultralimits. At this stage, our strategy is as follows: we will argue by contradiction,
so that if Min1(φ) is not co-compact, then Theorem 4.2.8 provides us with a sequence Zi of
minimally displaced points which stay at constant Lipschitz distance from the attracting
tree, X+∞, but which are at unbounded distance from some basepoint. We can find
scaling constants µi so that Zi/µi is bounded, and we would like to take the limit of a
sub-sequence of Zi/µi. The problem with this is that a priori we do not have sequential
compactness unless G is countable, Remark 4.1.18.

This is a minor issue, as what we really use is the existence of some adherence point
of the above sequence. The easiest way to deal with this is to turn to ω-limits (or
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ultralimits). Of course, the main point of interest is exactly when G is countable, and in
this case ω-limits are not needed.

So the reader may wish to simply read all the ω-limits as usual limits, and the arguments
stay essentially the same (up to taking subsequences appropriately, and consider suitable
lim inf or lim sup in some inequalities). We refer to Section 2 to the definitions and some
basic properties for ω-limits, especially Definitions 2.13.1, 2.13.3 and Proposition 2.13.4.

For our situation, we make the following definition of ω-limit of elements in O(G).

Definition 7.1.1. Let ω be a non-principal ultrafilter on N. Let (Yi) ∈ O(G) be a

sequence and let Y ∈ O(G). We say that Y∞ is the ω-limit of Yi, and write Y∞ = limω Yi
if for any g ∈ G we have

`Y∞(g) = lim
ω
`Yi(g).

Remark 7.1.2. Suppose that for any g ∈ G, the ω-limit of `Yi(g) exists. Then the
corresponding ω-limit length function is indeed the length function of an element in
Y∞ ∈ O(G). This is because the conditions defining length functions of trees are closed
under ω-limits (by Proposition 2.13.4 and [29]).

Proposition 7.1.3. Let ω be a non-principal ultrafilter on N. Let Zi ∈ O(G) be a
sequence and let X ∈ O(G). Set µi = Λ(X,Zi). Then limω

Zi
µi

exists, is unique (depends

on ω) and is non-trivial.

Proof. Notice that for any g ∈ G,

`Zi(g) ≤ µi`X(g),

and so each sequence
`Zi (g)

µi
is a bounded sequence and therefore has a unique ω-limit, T .

Furthermore, Lemma 2.9.2, provides a finite set H ⊆ G such that, for any i,

Λ(X,Zi) = max
h∈H

`Zi(h)

`X(h)
.

Hence,

1 = lim
ω

Λ(X,Zi/µi) = lim
ω

max
h∈H

`Zi(h)/µi
`X(h)

= max
h∈H

limω `Zi(h)/µi
`X(h)

= max
h∈H

`T (h)

`X(h)
,

which shows that the limiting tree is non-trivial. Here we have used that the ω-limit
commutes with a finite maximum (Proposition 2.13.4) �

7.2. Co-compactness of the Min-Set of primitive irreducible automorphisms.
For this, and the next section, we fix once and for all a non-principal ultrafilter ω on N.

In the subsequent results we refer to Λ(T,−), where T may be a tree in O(G), rather
than just O(G). We intend the following:

Definition 7.2.1. Let T,W ∈ O(G). We set Λ(T,W ) to be the supremum of the ratios,
`W (g)
`T (g)

, over all elements which are hyperbolic in T . This is possibly infinite.

We also set Λ(T,W ) = +∞ if there is a T -elliptic group element which is hyperbolic
in W .

Lemma 7.2.2. Let [φ] ∈ Out(G) be G-irreducible and with λ(φ) = λ > 1. Let X ∈
Min(φ) and let X+∞ be the corresponding attracting tree.

Let’s suppose we have a sequence (Zi) ⊂ Min1(φ) for which there is µi such that the
ω-limit T = limω

Zi
µi

exists and is non-trivial. Then, for any positive integer n we have

• Λ(T, Tφn) ≤ λn, and
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• if Λ(T,X+∞) is finite, then Λ(T, Tφn) = λn.

Proof. The first claim is straightforward, since for any T -hyperbolic g,

`Tφn(g)

`T (g)
= lim

ω

`Ziφn(g)/µi
`Zi(g)/µi

= lim
ω

`Ziφn(g)

`Zi(g)
≤ λn.

For the second claim note that, for any T -hyperbolic g and any positive integer m,

Λ(T,X+∞) = Λ(Tφmn, X+∞φ
mn) ≥

`X+∞(φmn(g))

`T (φmn(g))
=
`X+∞(g)λmn

`T (φmn(g))

≥
`X+∞(g)λmn

`T (g)(Λ(T, Tφn))m
=
`X+∞(g)

`T (g)

(
λn

Λ(T, Tφn)

)m
.

We note that at no stage are we dividing by zero here since, if g is T -hyperbolic, it is
also G-hyperbolic and:

lT (φ(g))

lT (g)
= lim

ω

lZi(φ(g))

lZi(g)
≥ lim

ω

1

Λ(Ziφ, Zi)
≥ lim

ω

1

Λ(Zi, Ziφ)C
=

1

λCφ
,

where the last inequality follows from quasi-symmetry, Lemma 2.5.1 and the fact that
Min1(φ) is uniformly thick, Theorem 2.11.4.

In particular, this says that if we start with a T -hyperbolic group element, g, then φ(g)
is also T -hyperbolic. �

Lemma 7.2.3. Let [φ] ∈ Out(G) be G-irreducible and with λ(φ) = λ > 1. Let X ∈
Min(φ) and let X+∞ be the corresponding attracting tree. Let Y ∈ Min(φ) such that it
admits a simplicial train track representative for φ, and let fY : Y → X+∞ be an optimal
map. For any g ∈ Hyp(G), and any integer n we have,

`X+∞(φn(g)) ≥ Λ(Y,X+∞)`Y (φn(g))− `Y (g)
B

aY
,

where B = Λ(Y,X+∞) vol(Y ) is the BCC of fY and aY is the length of the shortest edge
in Y .

Proof. For g ∈ Hyp(G), let ηg be the number of edges in a reduced loop in G\Y repre-
senting g. Clearly `Y (g) ≥ ηgaY . By Proposition 2.14.3, the axis of φn(g) in Y can be
written as a concatenation of at most ηg fY -legal paths. By Corollary 2.8.3

`X+∞(φnγ) ≥ Λ(Y,X+∞)`Y (φnγ)− ηgB ≥ Λ(Y,X+∞)`Y (φn(g))− `Y (g)
B

aY
.

�

Lemma 7.2.4. Let [φ] ∈ Out(G) be G-irreducible, with λ(φ) > 1. Then there is a constant
ε > 0 such that for all W ∈ Min1(φ), admitting a simplicial train track representative of
φ, we have

aW > ε

where aW denotes the length of the shortest edge in W .

Proof. Note that uniform thickness of minimally displaced points, is not enough in order
to have a lower bound on the lengths of the edges, but for points supporting simplicial
train track representatives, there is such a bound, as the there are finitely many transition
matrices of simplicial train tracks representing φ, and the lengths for edges are given by
eigenvectors of the Perron-Frobenius eigenvalue of these matrices. �
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Proposition 7.2.5. Let [φ] ∈ Out(G) be G-irreducible and with λ(φ) = λ > 1. Let

X ∈ Min(φ) and let X+∞ be the corresponding attracting tree. Let T ∈ O(G) be a
non-trivial tree which is the ω-limit of a sequence Zi/µi with the following properties:

(1) The Zi are uniformly thick and with co-volume 1; that is, ∃ε0 > 0∀i, Zi ∈ O1(ε0);
(2) µi →∞;
(3) there is δ > 0 such that Λ(Zi, X+∞) ≥ δ, for all i;
(4) there is a sequence Wi ∈ Min1(φ) and K > 0 such that Λ(Zi,Wi) ≤ K, for all i.

(For example if the Zi themselves belong to Min1(φ)).

Then Λ(T,X+∞) =∞.

Proof. Note that, by assumption, T in non-trivial. Without loss, we may assume that
each Wi supports a simplicial train track representing φ (Remark 2.7.4).

Note also that the points Wi are uniformly thick because they are minimally displaced
(Theorem 2.11.4) and the same is true for Zi, by assumption. Therefore, all the points
Wi, Zi belong to some uniform thick part and since the stretching factor Λ is multi-
plicatively quasi-symmetric when restricted on any thick part O1(ε), (Theorem 2.5.1), it
follows that there is some uniform constant C such that

Λ(Zi,Wni)
1/C ≤ Λ(Wi, Zi) ≤ Λ(Zi,Wi)

C .

In particular, it follows that for the constant K1 = KC , we get that for any i:

Λ(Wi, Zi) ≤ Λ(Zi,Wi)
C ≤ KC = K1.

We will prove now that there is a non-trivial tree S ∈ O(G) so that Wi/µi ω-converges
to S. We first observe that for every hyperbolic element g ∈ G and positive integer i, we
have that:

0 ≤ `Wi
µi

(g) =
`Wi

(g)

µi
≤ K

`Zi(g)

µi
.

It follows that the sequence Wi/µi is bounded, so, S = limωWi/µi exists.
Moreover, T, S have finite distances to each other (in particular, S is non-trivial since T

is non-trivial, and they admit the same hyperbolic elements), because of the inequalities:

`S(g)

`T (g)
= lim

ω

`Wi
(g)/µi

`Zi(g)/µn
≤ K

and, similarly,
`T (g)

`S(g)
= lim

ω

`Zi(g)/µi
`Wi

(g)/µn
≤ K1.

Therefore, it is enough to prove that Λ(S,X+∞) is infinite. We argue by contradiction,
assuming that

Λ(S,X+∞) <∞.
Then, by Lemma 7.2.2, Λ(S, Sφm) = λm for any positive integer m. For all positive
integer m, we then choose an element, gm such that `S(φm(gm))/`S(gm) ≥ λm/2, which
is S-hyperbolic.

Now, we want to apply Lemma 7.2.3, to Wi and we will get constants Bi = Λ(Wi, X+∞)
(because vol(Wi) = 1), and εi = aWi

. By Lemma 7.2.4, there is a uniform ε > 0 so that
εi > ε for all i. On the other hand, by the properties of Zi and the triangle inequality, we
get that all the distances Λ(Wi, X+∞) are uniformly bounded from below by δ

K
. Thus

`X+∞(φm(gm)) ≥ Λ(Wi, X+∞)(`Wi
(φm(gm))− `Wi

(gm)
1

ε
) ≥ δ

K
(`Wi

(φm(gm))− `Wi
(gm)

1

ε
).
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Therefore,

`X+∞(φm(gm))

`Wi
(φm(gm))

≥ δ

K
(1− `Wi

(gm)

ε`Wi
(φm(gm))

)

−−→
limω

δ

K
(1− `S(gm)

ε`S(φm(gm))
) ≥ δ

K
(1− 2

ελm
).

For any 0 < δ0 < 1, choose a m such that 1 − 2
ελm
≥ 1 − δ0. For this choice of m, let

ci =
`X+∞ (φm(gm))

`Wi (φ
m(gm))

.

Then the calculation above shows that limω ci ≥ δ
K

(1 − δ0) > 0. On the other hand,
Λ(S,X+∞) ≥ limω ciµi. Hence,

Λ(S,X+∞) ≥ lim
ω

µiδ(1− δ0)

K
=∞.

Contradicting the assumption Λ(S,X+∞) < +∞. �

Remember that if T, S ∈ Min1(φ) we have (Proposition 2.14.4 and basic properties of
stable trees):

T+∞ = Λ(S, T+∞)S+∞ Λ(S+∞, T+∞) = Λ(S, T+∞) T∞φ
±n = λ(φ)±nT∞.

Proposition 7.2.6. Let [φ] ∈ Out(G) be G-irreducible and with λ(φ) = λ > 1. Let
X ∈ Min1(φ), Y ∈ Min1(φ−1), and let X+∞, Y−∞ be the corresponding attracting and
repelling trees.

Then, for every constant ν > 0, there is a constant δ = δ(ν, λ,X, Y ) > 0 so that for
every Z ∈ Min1(φ) we have

Λ(Z,X+∞) ≤ ν =⇒ Λ(Z, Y−∞) ≥ δ.

Proof. Let ε > 0 be the constant given by Theorem 6.1.17. For any positive number ν,
fix a (for instance the smallest) positive integer n0 for which

λ−n0 ≤ ε

4ν
.

Let now Z ∈ Min1(φ) be such that Λ(Z,X+∞) ≤ ν, and let Z+∞ the corresponding
attracting tree. Let g be a candidate that realises Λ(Z,X+∞). In particular g and any
of its power are not X+∞-elliptic. Moreover, the length of g with respect to both Z and
Z∞ is bounded above by 2 (as the volume of Z is 1). If we set now h = φ−n0(g), we get

`X+∞(h) = `Λ(Z∞,X+∞)Z+∞(h) = Λ(Z∞, X+∞)`Z+∞(φ−n0(g))

≤ ν`Z+∞(φ−n0(g)) = ν`(Z+∞φ−n0 )(g) = ν`(λ−n0Z+∞)(g)

= νλ−n0`Z+∞(g) ≤ 2νλ−n0 ≤ ε

2
< ε.

Therefore, by Theorem 6.1.17, it follows that `Y−∞(h) ≥ ε.
By multiplicative quasi-symmetry of Λ restricted on the thick parts of O1(G) (The-

orem 2.5.1), there exists a constant C such that Λ(T, S) ≤ Λ(S, T )C , for any T, S ∈
Min1(φ) ∪Min1(φ−1) (note that C depends only on φ because elements in Min-Sets are
uniformly thick because φ is irreducible). In particular,

Λ(Z,Zφ−n0) = Λ(Zφn0 , Z) ≤ Λ(Z,Zφn0)C = λCn0 .

Therefore, as the length of h with respect to Z is a at most 2, we get that:

`Z(h) = `Z(φ−n0(g)) ≤ `Z(g)Λ(Z,Zφ−n0) ≤ 2λCn0 .
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which implies

Λ(Z, Y−∞) ≥
`Y−∞(h)

`Z(h)
≥ ε

2λCn0
= δ

where the quantity δ does not depend on Z. �

Corollary 7.2.7. Let [φ] ∈ Out(G) be G-irreducible and with λ(φ) = λ > 1. Let X ∈
Min1(φ), Y ∈ Min1(φ−1), and let X+∞, Y−∞ be the corresponding attracting and repelling
trees.

Let T ∈ O(G) which is the ω-limit of a sequence Zn/µn with the following properties:

(1) Zi ∈ Min1(φ);
(2) µi →∞;
(3) there is ν > 1 such that 1 ≤ Λ(Zi, X+∞) ≤ ν.

Then
Λ(T,X+∞) =∞ = Λ(T, Y−∞).

Proof. The equality for X+∞, follows by just applying Proposition 7.2.5 directly on the
sequence Zi = Wi, with δ = 1.

For Y−∞, we first apply Theorem 3.2.2, which provides us a sequence of minimally
displaced points Wi ∈ Min1(φ−1), with the property that for some uniform constant M ,

max{Λ(Zi, Xi),Λ(Zi,Wi)} ≤M.

Next, we want to apply Proposition 7.2.5, for φ−1. Conditions (1) and (2) are satisfied
by our assumptions. By the choice of Wi’s, Condition (4) is satisfied, too.

For property (3), we apply Proposition 7.2.6 for every i, to the point Zi. By hypothesis
Λ(Zi, X+∞) < ν, and Proposition 7.2.6 provides the δ > 0 such that Λ(Zi, Y−∞) > δ, as
required. �

Theorem 7.2.8. Let [φ] ∈ Out(G) be G-primitive (that is, a relatively irreducible au-
tomorphism with primitive transition matrix – and hence exponential growth). Then
Min1(φ) = Min(φ) ∩ O1 is co-compact, under the action of < φ >.

Proof. Let X ∈ Min1(φ), Y ∈ Min1(φ−1), and X+∞, Y−∞ be the corresponding attract-
ing/repelling trees. By Theorem 5.1.2, [X+∞] = [T+

φ ] is the unique attracting class of

trees for φ, and [Y−∞] = [T−φ ] is the unique repelling class.
We now argue by contradiction and suppose that Min1(φ)/ < φ > is not compact. By

Theorem 4.2.8 (point (v)), there is a sequence of points Z1, Z2, . . . , Zi, . . . of Min1(φ) for
which Λ(X,Ziφ

m) ≥ n, for every integer m. We set µi = Λ(X,Zi).
We note that for any integer m, and any W ∈ O(G), it holds:

Λ(Wφm, X+∞) = Λ(W,X+∞φ
−m) = Λ(W,λ(φ)−mX+∞) = λ(φ)−mΛ(W,X+∞).

Therefore, we can replace points Zi with some points of their < φ >-orbits (which we
will still denote by Zi) with the extra property

1 ≤ Λ(Zi, X+∞) ≤ λ(φ).

Now limω Zi/µi = T for some (non-trivial) tree T on the boundary of O(G), by Propo-
sition 7.1.3. From Corollary 7.2.7, we know

Λ(T, Y−∞) =∞ = Λ(T,X+∞).(2)

In particular, T does not belong to [T−φ ]. On the other hand, by Lemma 7.2.2, it follows
that for every positive integer j,

Λ(T, Tφj) ≤ λ(φ)j,
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or equivalently

Λ(T,
Tφj

λ(φ)j
) ≤ 1.

By applying the North-South dynamics Theorem 5.1.2, on T /∈ [T−φ ], we get that Tφj

λ(φ)j

projectively converges to T+
φ , which is in the same projective class as X+∞, so there is

c > 0 such that Tφj

λ(φ)j
converges to cX+∞.

But in that case, Λ(T,X+∞) would be finite, contradicting (2). �

Remark 7.2.9. The primitivity assumption is used only in applying North-South dy-
namics in last theorem, and not in previous results of this section. In Proposition 7.2.6
and Corollary 7.2.7, if one is allowed to use North-South dynamics (for instance for
primitive automorphisms), then one can replace any instance of Y−∞ with X−∞.

7.3. Co-compactness of the Min-Set of general irreducible automorphisms.
In this subsection, we will prove the co-compactness of the Min-Set for an irreducible
automorphism of exponential growth.

For this section we fix: A free factor system G = ({G1, . . . , Gk}, r) a group G; an
element [φ] ∈ Out(G) which is G-irreducible, with λ(φ) = λ > 1; an element X ∈ Min1(φ)
supporting a simplicial train track map f : X → X representing φ.

We denote by Mf , the transition matrix of f (see Section 2.12). If Mf fails to be
primitive, then we can partition the edge orbits into blocks so that, for some positive
integer s, Mfs = M s

f is a block diagonal matrix, which is strictly positive matrix when
restricted to a block.

Correspondingly, we can define sub-forests, X1, . . . , Xl, of X consisting of edges, and
their incident vertices, belonging to a single block. The following two lemmas are straight-
forward:

Lemma 7.3.1. Let f , X and Xi be defined as above. Then

(i) f permutes the Xi’s.
(ii) Each Xi is a G-forest (i.e. a forest which is G-invariant).

(iii) The union of the Xi is X.

We can then define cylinders.

Definition 7.3.2. A cylinder is a connected component of some Xi.

Remark 7.3.3. We note that it is possible for two cylinders to intersect at a vertex, as
long as the cylinders belong to different sub-forests Xi 6= Xj.

Lemma 7.3.4. If C is a cylinder, then f(C) is also a cylinder. Moreover, for any g ∈ G,
also g(C) is a cylinder, belonging to the same Xi as C.

We also have the following:

Lemma 7.3.5. For any cylinder C, and any vertex v ∈ C:

(i) StabG(C) contains a G-hyperbolic element;
(ii) StabG(v) ≤ StabG(C).

Proof. Without loss of generality, the map f s has a block diagonal transition matrix
where the positive entry in every block is at least 3.

Choose an edge, e, in C since f s is train track, f s(e) is a legal path. The condition on
f s means that f s(e) crosses the orbit of e at least 3 times, and contained in the same Xi
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as C. This means that C contains a path crossing e, ge and he for some g, h ∈ G; where
these 3 edges are distinct. Clearly, g, h ∈ StabG(C).

Since the action of G on X is edge-free, this implies that if both g and h are elliptic,
then gh is hyperbolic (as e, ge, he are all in the legal path f s(e)). Hence StabG(C) contains
a hyperbolic element.

Finally, an element of StabG(v) must send C to another cylinder containing v but
belonging to the same subforest as C. This means that it must preserve C. �

We now define a new tree, T from this information, which remembers the construction
of the dual tree of the partition of X in cylinders. We note that this is not a G-tree because
Lemma 7.3.5 tells us that vertex stabilisers are too big and in general edge stabilisers are
not trivial. More precisely:

Definition 7.3.6. We define a G-tree T as follows. This is a bi-partite tree:

• Type I vertices are the cylinders of X.
• Type II vertices are the vertices of X which belong to at least two distinct cylin-

ders.

The edges of T are the pairs (C, v) where C is a Type I vertex, and v is a Type II vertex
contained in C.

It is an easy exercise to see that T is a G-tree.

Proposition 7.3.7. We get the following:

(i) The stabiliser of an edge (C, v) of T is equal to StabG(v),
(ii) f induces a map, F : T → T representing φ (that is F (gx) = φ(g)F (x)), which

sends vertices to vertices – preserving type – and edges to edges,
(iii) The irreducibility of φ implies that all the edge stabilisers of T are non-trivial.

Proof. The first point follows from the second part of Lemma 7.3.5. The second point
follows from Lemma 7.3.4, and the fact that f maps vertices to vertices.

For the final point, note that if T had an edge with trivial stabiliser, we could col-
lapse all the edges with non-trivial stabiliser, and get a new G-tree, T and a new map
F on this tree representing φ. Since the action of this tree is edge-free and non-trivial,
this would correspond to a proper free factor system for G, which would be φ-invariant.
However, Lemma 7.3.5 implies that this free factor system properly contains [G]. There-
fore, we would obtain a φ-invariant proper free factor system properly containing [G], a
contradiction to the irreducibility of φ. �

Theorem 7.3.8. Let [φ] ∈ Out(G) be G-irreducible and with λ(φ) > 1 (that is, φ is a
relatively irreducible automorphism with exponential growth). Then the action of < φ >
on Min1(φ) = Min(φ) ∩ O1 is co-compact.

Proof. We shall deduce this theorem from the primitive case. We have our base-point,
X ∈ Min(φ) which supports our simplicial train track map f , representing φ, but with
(potentially) imprimitive transition matrix.

Let X+∞ be the attracting tree corresponding to X. Note that we use here the notation
X+∞ instead of X+∞, as we did in the rest of the paper, for notational reasons of this
proof.

We argue by contradiction, and suppose that the action is not co-compact. Then, by
Theorem 4.2.8 (point (viii)), we may find a sequence, Yi ∈ Min(φ) such that:

(i) vol(Yi) are uniformly bounded,
(ii) Λ(Yi, X

+∞) = 1,
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(iii) µi := Λ(X, Yi) is unbounded,

We then define T = limω Yi/µi which exists and is non-trivial by Proposition 7.1.3.
Note that by Proposition 2.14.4, the first and second points imply that

Y +∞
i = lim

m→∞

Yiφ
m

λm
= X+∞.

Consider a cylinder C in X, with stabiliser H = StabG(C). We note that H is a free
factor of G and φs induces an irreducible automorphism of H. In fact, there the restriction
of f s induces a train track representative of φs with primitive transition matrix.

Then, for each of the G-trees above, we may form the minimal invariant H subtree.
We denote this invariant subtree with a subscript, H, namely Y +∞

i,H .

The fact that Y +∞
i = X+∞ implies that Y +∞

i,H = X+∞
H and hence Λ(Yi,H , X

+∞
H ) = 1.

We still get that XH , Yi,H are minimally displaced points for φsH = φs|H , whose volumes
are uniformly bounded. Thus, φsH acts co-compactly on its minimally displaced set by
Theorem 7.2.8, and this, by Theorem 4.2.8 point (vii), means that,

Λ(XH , Yi,H) = sup
h∈H,lX(h) 6=0

`Yi(h)

`X(h)
is bounded.

But since,

`T (h) =
limω `Yi(h)

µi
,

and µi is unbounded, we deduce that `T (h) = 0 for all h ∈ H. By Lemma 2.13.7, this
implies that H fixes a unique point of T , and that this is the same point fixed by any of
the subgroups, StabG(v), where this is a non-trivial subgroup and v ∈ C.

In particular, we may define a G-equivariant map from T to T , by mapping each vertex
to the unique point of T which is fixed by the corresponding (and non-trivial) stabiliser.
By Lemma 7.3.7 and Lemma 2.13.7, each edge is actually mapped to a point. This means
that the whole G-tree T is mapped to a point. In this case, as the map from T to T
is G-equivariant, there would be a fixed point for the whole group G. In that case, T
is trivial in the sense of translation length functions, contradicting the non-triviality of
T . �

Corollary 7.3.9. Let [φ] ∈ Out(G) be G-irreducible and with λ(φ) > 1. Then Min1(φ),
equipped with the symmetric Lipschitz metric, is quasi-isometric to a line.

Proof. The idea is to simply apply the Svarc-Milnor Lemma. The action of 〈φ〉 is clearly
properly discontinuous and Theorem 7.3.8 gives us cocompactness.

The only obstacle is that the symmetric Lipschitz metric, dSym, is not geodesic (or,
even, a length metric). We can, as always, define the intrinsic metric, dI , to be the
infimum of lengths of paths between any two points.

Notice that since Min1(φ) is thick, quasi-symmetry implies that the asymmetric Lips-
chitz metric, dout and dSym are bi-Lipschitz equivalent functions. Since dLip is a geodesic
asymmetric metric, we deduce that dI and dSym are also bi-Lipschitz equivalent, and we
are done. �

8. Applications

8.1. Relative Centralisers. In this section, we give an application of our Main Re-
sult, regarding relative centralisers of relatively irreducible automorphisms of exponential
growth.
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Theorem 8.1.1. Let G be a group, G a non-trivial free factor system for G, and O1(G)
be the corresponding co-volume 1 section of relative Outer Space. Let [φ] ∈ Out(G) be
G-irreducible with exponential growth, and let X ∈ Min1(φ). Let C(φ) be the relative
centraliser of [φ] in Out(G,G).

Then there is finite index subgroup C0(φ) of C(φ), for which there is a short exact
sequence:

1→< [φ] >→ C0(φ)→ CX(φ)→ 1

where CX(φ) = {[ψ] ∈ C0(φ) : Xψ = X} = Stab(X) ∩ C0(φ).

Proof. First, note that C(φ) preserves Min(φ). By Theorem 7.3.8, there is a fundamental
domain K for the action of < [φ] > on Min1(φ), which consists of finitely many simplices.

Let C1(φ) = {[ψ] ∈ C(φ) : ∃n ∈ Z : Kψ = Kφn}, and let C0(φ) = {[ψ] ∈ C(φ) : ∃n ∈
Z : ∀Y ∈ K,Y ψ = Y φn}. Since K consists of finitely many simplices and since Min1(φ)
is locally finite (by [15]), then C1(φ) has finite index in C(φ), and C0(φ) has finite index
in C1(φ), hence in C(φ).

By definition, for every [ψ] ∈ C0(φ), there is n ∈ Z and α ∈ Stab(X) ∩ C0(φ) =
CX(φ) so that [ψ] = [αφn]. Since φ has exponential growth, in particular has no fixed
point. It follows that [α] is uniquely determined by [ψ], and [ψ] 7→ [α] is the required
homomorphism with kernel < φ >. �

Note that the previous result generalises a well known result for free groups, that
centralisers of irreducible automorphisms with irreducible powers are virtually cyclic (see
[2]). It also generalises a result of the third author who proved a similar result for relative
Centralisers of relatively irreducible automorphisms, with the extra hypothesis that all
the powers of the automorphism are irreducible ([33]).

8.2. Centralisers in Out(F3). In this section, we study centralisers of automorphisms
in Out(F3). The main result of this section is the following.

Theorem 8.2.1. Centralisers of elements in Out(F3) are finitely generated.

Before going into the proof, we need to quote some preliminary fact. Our proof is
based on Remark 2.11.3: Any automorphism [φ] ∈ Out(F3) is irreducible with respect
to some relative outer space O(G), for some free factor system G of the free group F3.
Equivalently, in the language of free factor systems, G is a maximal φ-invariant free factor
system.

However, a maximal free factor system for φ is not necessarily unique. In fact, there
are automorphisms with infinitely many different maximal invariant free factor systems.

The following theorem shows that under the extra assumption that φ does not act
periodically on any free splitting (i.e. point of some relative outer space), there are
finitely many maximal invariant free factor systems. This is proved by Guirardel and
Horbez in [20].

Proposition 8.2.2 ([20]). Let [φ] ∈ Out(Fn). Suppose that there is no free splitting of Fn
which is preserved by some power of φ. Then there are finitely many maximal φ-invariant
free factor systems G1,G2, . . . ,GK. As a consequence, the relative centraliser CGi(φ) has
finite index in C(φ), for i = 1, . . . , K.

Proof. The first part is a special case of [20, Corollary 1.14]. For the second part, we note
that C(φ) preserves the finite set of maximal φ-invariant free factor systems {G1, . . . ,GK}.
As the relative centraliser with respect to the free factor system Gi, is simply CGi(φ) =
Out(Fn,Gi) ∩ C(φ), the result follows. �
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On the other hand, we need to understand the complementary case of an automorphism
that acts periodically on a free splitting.

This case has also been studied in [20]. If T, S are two Fn-trees with trivial edge
stabilisers (i.e. free splittings), then we say that T dominates S, if point stabilisers in T ,
are elliptic in S. In other words, if T ∈ O(G1), S ∈ O(G2), then T dominates S if and
only if G1 ≤ G2. Alternatively, T dominates S if Λ(T, S) <∞.

From [20] we can also extract the following proposition.

Proposition 8.2.3. Let [φ] ∈ Out(Fn). Let’s assume that there is a power of φ fixing
a free splitting. Then there is a maximal (with respect to domination) < [φ] >-periodic
free splitting T ∈ O(G), for some free factor system G. All such maximal free splittings,
belong to the same relative outer space O(G).

Moreover, if φ has infinite order, then the centraliser C(φ) preserves the free factor
system G.

Proof. The first part is [20, Proposition 6.2] for the cyclic subgroup H =< [φ] >. The
second part follows by [20, Theorem 8.32]. �

Remark 8.2.4. We recall that maximal, invariant, free factor systems are defined to
be maximal with respect to the natural ordering ≤ on free factor systems of Fn. It is
important to mention here a maximal free splitting means that it belongs to the minimal,
in terms of the ordering, relative outer space!

The linear growth case cannot be really studied using the methods that are presented
in this paper, so we need the following result:

Theorem 8.2.5 ([1]). Centralisers of linearly growing automorphisms in Out(Fn) are
finitely generated.

We need also the following well known result for Out(F2).

Theorem 8.2.6. Centralisers of infinite order elements in Out(F2) are virtually cyclic.

Proof. This is clear as Out(F2) is virtually F2 and centralisers of non-trivial elements in
F2, are cyclic. �

Now we are in position to start the proof of the main result of this section.

Proof of Theorem 8.2.1. The possible free factor systems that there are for F3 are one of
the following types (for some free basis {a, b, c}):

(1) G = ∅. Note that in this case O(G) = CV3.
(2) G = {< a >}.
(3) G = {< a >,< b >}.
(4) G = {< a >,< b >,< c >}.
(5) G = {< a, b >}.
(6) G = {< a, b >,< c >}.

Remark 8.2.7. The stabilisers of points of a relative outer space of a free product, are
described in [21], in terms of the elliptic free factors Gi of G and the automorphisms
groups, Aut(Gi). In the cases (1) − (4), the stabilisers of points are virtually Zk, for
some uniformly bounded k. In particular, any subgroup of the stabiliser in these cases,
is finitely presented.

Let [φ] ∈ Out(F3). Let’s first assume that our automorphism and all of its powers do
not fix a point of some relative outer space of F3.
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As noticed (Remark 2.11.3), there is some relative outer space O(G) for which [φ] is
irreducible. Note that under our assumption that no power [φ] fixes a free splitting, we
get that λO(φ) > 1. Therefore, cases (5) and (6) of above list, cannot appear under our
assumptions, as the corresponding relative outer spaces are consisted by a single simplex
and so there are no automorphisms of Out(G) with λG(φ) > 1 (all such automorphisms
fix a point of O(G)).

In any other case, by Theorem 8.1.1, CG(φ) has a finite index subgroup which is a Z-
extension of CX(φ), where CX(φ) is the subgroup of CG(φ), acting trivially on X ∈ O(G).
By Remark 8.2.7, CX(φ) is finitely presented. Therefore, CG(φ) is finitely presented, as
a Z-extension of a finitely presented group. By Proposition 8.2.2, the centraliser C(φ) of
[φ] in Out(F3) has as a finite index subgroup, the finitely presented CG(φ), and therefore
C(φ) is finitely presented itself. In particular, C(φ) is finitely generated.

We now assume that our automorphism has a power that fixes a point of some relative
outer space of F3.

There is a maximal such free splitting with respect to domination, by Proposition 8.2.3,
and we will consider again all cases of above list.

In case (1), [φk] fixes a point of CV3, then [φ] has finite order, and, by [26], C(φ) is
finitely presented.

In cases (2)− (4), [φk] fixes a point T of the corresponding relative outer space. By the
description of stabilisers of points in [21], it is easy to see that [φk] (and so [φ]) has linear
growth as an automorphism of Out(F3) and so the result follows by Theorem 8.2.5.

For case (5), first note that [φ] fixes a point of the corresponding outer space (for exam-
ple, the unique point of minimal dimension). Moreover, C(φ) preserves the (conjugacy
class of the) rank 2 free factor H =< a, b >, by Proposition 8.2.3.

We switch now to elements of Aut(F3). Let Φ ∈ [φ] which actually fixes H (not just
up to conjugacy). In other words, Φ(H) = H.

Consider the restriction ΦH of Φ on H, which induces an element of Out(H). If ΦH

has finite order as an outer automorphism, then it is easy to see that Φ has linear growth
and so, as before, C(φ) is finitely generated, by Theorem 8.2.5.

So, let’s assume now that ΦH has infinite order as an outer automorphism. The sub-
group of Aut(F3) projecting to the centraliser C(φ) in Out(F3), is C = {Θ ∈ Aut(F3) :
[Θ,Φ] ∈ Inn(F3)}. We will show that C is finitely generated, which will implies that C(φ)
is finitely generated.

By Proposition 8.2.3, if Θ ∈ C, then [Θ] ∈ Out(F3) fixes the conjugacy class of H, so
we have a well defined homomorphism π : C → Out(H). It is easy to see that the image
π is in fact contained in the centraliser of [ΦH ] in Out(H), which, by Theorem 8.2.6, is
virtually cyclic. Therefore C0 = π−1 < [ΦH ] > is a finite index subgroup of C. Hence, it
is enough to show that C0 is finitely generated.

Let Θ ∈ C0. We assume, without lost up to composing with an inner automorphism of
F3, that Θ(H) = H. As Θ ∈ C0, the restriction of Θ on H, which we denote by ΘH , is of
the form ΘH = Φk

Had(h), where ad(h) ∈ Inn(H), for some k ∈ Z and h ∈ H. Therefore,
if we denote by C1 the subgroup of C0 of those automorphisms acting as the identity
on H, we get that C0 is generated by the generators of C1, ΦH , and the generators of
Inn(H) (which is clearly finitely generated). In particular, it is enough to show that C1

is finitely generated.
Remind that we are working with a free basis {a, b, c}, with H =< a, b >. Since

Φ(H) = H, we must have Φ(c) = h1c
εh2, where ε ∈ {−1, 1} and h1, h2 ∈ H, and a similar

equation holds for elements of C1. Up to passing to a finite index subgroup C2 of C1, we
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can assume that Θ(c) = xcy, x, y ∈ H. As we pass to finite index subgroup, it is clear
that it is enough to prove that C2 is finitely generated.

Since Θ ∈ C2 > C1, hence ΘH = IdH , we get that ΦΘ(a) = ΘΦ(a) and ΦΘ(b) =
ΘΦ(b). The remaining part of the proof is to write down the equations corresponding
to ΦΘ(c) = ΘΦ(c), which is equivalent to the fact that Φ and Θ commute (under our
assumptions that Θ acts as the identity of H and Φ preserves H, it is clear that Φ and
Θ commute up to inner automorphism if and only if they genuinely commute).

We have:

ΦΘ(c) = Φ(xcy) = Φ(x)h1c
εh2Φ(y) ΘΦ(c) = Θ(h1c

εh2) = h1(xcy)εh2.

Let’s first assume that ε = 1. In this case, the automorphisms Φ,Θ commute if and
only if

Φ(x)h1 = h1x and Φ(y)h2 = h2y ⇐⇒ Φ(x) = h1xh
−1
1 and Φ(y) = h−1

2 yh2.

Note that it is well known that the subgroups SΦ,h = {z : Φ(z) = hzh−1} is finitely
generated for every Φ and every h ∈ H (for example see [4] - since SΦ,h is just the fixed
subgroup of Φ composed with an inner automorphism). In our case, as any Θ with the
requested properties is uniquely determined by x ∈ SΦ,h1 , y ∈ SΦ,h−1

2
, the above equations

identify the subgroup C2 with the product of SΦ,h1 and SΦ,h−1
2

, which means that it is

finitely generated. Therefore, the proof concludes in this case.
In case ε = −1, the automorphisms commute if and only if

Φ(x)h1 = h1y
−1 and h2Φ(y) = x−1h2

which is equivalent to{
Φ2(y) = Φ(h2)h−1

1 yh1(Φ(h2))−1

x = h2Φ(y−1)h−1
2

⇐⇒
{
y ∈ SΦ2,Φ(h2)h−1

1

x = h2Φ(y−1)h−1
2

and the thesis follows as above, since SΦ2,Φ(h2)h−1
1

is finitely generated.

Case (6) is similar, but easier, to case (5) and so we skip the details. �
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