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Abstract: We have developed a method to combine morphological and chemical information for23

the accurate identification of different particle types using optical measurement techniques that24

require no sample preparation. A combined holographic imaging and Raman spectroscopy setup25

is used to gather data from six different types of marine particles suspended in a large volume26

of seawater. Unsupervised feature learning is performed on the images and the spectral data27

using convolutional and single layer autoencoders. The learned features are combined, where28

we demonstrate that non-linear dimensional reduction of the combined multimodal features can29

achieve a high clustering macro F1 score of 0.88, compared to a maximum of 0.61 when only30

image or spectral features are used. The method can be applied to long-term monitoring of31

particles in the ocean without the need for sample collection. In addition, it can be applied to32

data from different types of sensor measurements without significant modifications.33

© 2022 Optica Publishing Group under the terms of the Optica Publishing Group Publishing Agreement34

1. Introduction35

In situ analysis of liquid-suspended particles has applications in environmental monitoring,36

healthcare and water quality control [1–3]. Particularly, monitoring of suspended particulate37

matters in the ocean requires the relative abundance of different particle types to be understood38

[4, 5]. Often these particles have sparse distributions (10 to several hundred particles/L) [6].39

Non-destructive methods such as digital holography can image suspended particles in large40

volumes (∼12 mL/s) of water with a high spatial resolution (∼20 𝜇m) without the need for any41

sample preparation [7–10]. Digital holographic cameras have been extensively used in marine42

monitoring to obtain information about particle size and shape [11–13], using machine learning43

techniques [14–16] to automatically identify different particle types. However, for particles44

like microplastics, morphological information alone is not sufficient to distinguish the different45
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materials [17]. Knowledge of their chemical composition is important to understand the origin,46

route and consequences of environmental pollution [18]. Recently, the authors demonstrated47

holographic imaging and Raman spectroscopy for non-destructive analysis of water-suspended48

microplastic particle composition [19]. While the Raman spectroscopic analyzers previously49

used for in situ surveys observed back scattered lights from a target [20, 21], our setup observes50

forward scattered light and shows that both holographic imaging and Raman spectroscopic signals51

can be obtained from water-suspended particles using a single, compact optical setup. While the52

optical setup to perform combined imaging and spectroscopic measurements of particles has53

been demonstrated, it is also necessary to develop analytical methods that can efficiently process54

multimodal data in order to take full advantage of such a setup. For multimodal data fusion55

analysis, the audio-visual emotion challenge to develop machine learning methods for automatic56

audio, visual and audiovisual emotion analysis is a well-known topic [22]. Similar to how human57

beings naturally process multimodal information [23], a number of publications have reported58

improvement of the recognition accuracy of emotions by multimodal fusion analysis of speech59

data (e.g. vocal effect) and visual data (e.g. face expression) from unimodal analysis [24–26].60

In addition, novel multimodal deep-learning based methods have been demonstrated to further61

increase the accuracy [27, 28]. Data fusion applications have been expanded to a wide range62

of multi-sensory data analysis [29], such as biomedical diagnostics [30, 31], pharmacy [32, 33],63

automatic robot navigation [34], and remote sensing [35]. However, the previous methods have64

not been applied for the identification of marine particle types/materials due to the limitation of65

multiple sensory applications to analyze particles.66

In this paper, we demonstrate the automatic clustering and classification of different types of67

marine particles by applying a simple data fusion technique to morphological (i.e. holographic68

images) and chemical (i.e. Raman spectra) data. We propose a multimodal learning method using69

autoencoders and further t-SNE dimensionality reduction, and compare the classification accuracy70

between uni and multimodal data with and without t-SNE. We investigate how unsupervised71

feature learning methods can be used to automatically extract and further combine multimodal72

features from different types of sensor measurements, and use these to efficiently identify different73

particle types.74

2. Experiments75

2.1. Samples76

Experiments were performed on plankton, foraminifera, minerals and microplastic particles, where77

these were chosen based on their relevance to climate change and pollution monitoring [1, 36].78

These were measured in artificial seawater, which is often used for method validation for marine79

sensing applications [37–39], to minimize the effect of water quality fluctuation on images and80

spectra. Plankton absorbs around 50 billion tons of carbon each year, accounting for 40 % of81

atmospheric CO2 removal [40, 41]. Removed carbon is either stored as organic carbon as in the82

case of the copepods used in our experiments, which are one of the most abundant zooplankton83

species in the ocean, or as inorganic carbon as in the case of foraminifera, a single-cell organism84

with an external shell made of calcium carbonate. Our experiments also study sphalerite rock85

fragments, which are a common sulfide mineral in ores. The ability to monitor sulfide particle86

distributions is important for studying the potential impacts of sub-sea mining [42]. Finally, we87

investigate polypropylene (PP) and polyethylene (PE) microplastic pre-production plastic pellets88

(nurdles). PP and PE are selected since these are the most common types of microplastics found89

in aquatic environments [43]. We also investigate PE fragments that were collected from the90

ocean. The particle types and sample numbers for each type are summarized in Table 1.91

Copepods were collected from the surface seawater during the KM20-11 cruise of the research92

vessel (R/V) Kaimei in December 2020 and kept in a freezer to preserve their morphological93

characteristics. The samples were defrosted using lukewarm water before the measurement.94



Table 1. Samples used in experiments

Particle Type Description Number of samples

Organic carbon Copepod 3

Inorganic carbon Foraminifera 3

Mineral Sphalerite 3

Microplastics PP (nurdle) 3

Microplastics PE (nurdle) 3

Microplastics PE (marine) 3

Dried foraminifera samples (Calcarina gaudichaudii) were collected from Okinawa, Japan. The95

sphalerite rock fragments were collected from Daikoku Ore in Saitama, Japan. PP and PE nurdles96

were provided by Daikei Chemical, Inc. PE fragments were recovered from the surface seawater97

in Osaka Bay, Japan in September, 2018. These samples were separated from other particles by98

first dissolving biotic organic matter and performing Fourier transform infrared spectroscopy99

on the dried residue to identify the PE fragments. All particles used in our experiments had a100

dimension between 1 and 5 mm, and 3 different samples of each particle type were measured to101

assess the performance of our method.102

2.2. Setup103

The integrated in-line holographic imaging and Raman spectroscopy setup used in our experiments104

is shown in Fig. 1 and has previously been described in Ref. [19]. A quartz glass cell of length 20 cm105

and diameter 20 mm (Sterna cell, 34-Q-200) was filled with artificial seawater and illuminated106

by a collimated laser of 10 mm beam diameter. A single longitudinal mode continuous wave107

(CW) laser (Oxxius, LCX-532S-300) beam with a wavelength of 532 nm was delivered via a108

single-mode fiber. The exiting beam from the fiber was collimated and passed through a bandpass109

filter (Semrock, LL01-532-25) before entering the measurement cell. The laser power was set at110

160 mW at the output of the bandpass filter. After passing through the measurement cell, the111

beam was split using a 532 nm dichroic beam splitter (Semrock, Di03-R532-t1-25x36). The112

reflected beam was used for holographic imaging. It passed through an attenuation filter (Sigma113

Koki, MFND-25-0.1) before a hologram was recorded by a two-dimensional complementary114

metal-oxide semiconductor (CMOS) 2464 × 2056 pixel array (JAI, GO-5100-USB). Images115

were taken continuously with a 50 𝜇s exposure time. The lights with wavelengths longer than116

532 nm were transmitted through the beam splitter and collected for Raman spectroscopy via117

a set of lenses (Thorlabs, F810SMA-543) that was mounted to a multi-mode fiber (Thorlabs,118

M29L01). A 532 nm longpass filter (Semrock, BLP01-532R-25) was placed before the fiber to119

ensure blocking of the 532 nm beam. A spectrometer with a wavenumber range from 200 to120

3100 cm−1 and a resolution of 10 cm−1 (Wasatch Photonics, WP-532-A-S-ER-10) was used. The121

acquisition period was set at 5 s to maximize signal to noise ratio while avoiding saturation.122

2.3. Data acquisition123

The holographic imaging detector records the interference patterns generated from the interaction124

between the unscattered laser beam (reference beam) and the scattered light by the particles125

(object beam). To recover information on particle morphology, the interference patterns are126

reconstructed as described previously by the authors [10, 44, 45], using the angular spectrum127

method [46,47]. Copepods, foraminifera, and mineral particles immediately sank to the bottom128
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Fig. 1. Experimental setup. A 532 nm single longitudinal mode laser is used to
illuminate samples suspended in bulk artificial seawater. A beam splitter is used to take
holographic images and Raman spectra using the same setup with different exposure
times.

of the measurement cell while the plastics floated due to their buoyancy. Therefore, the relative129

distances between the samples, laser and detector were consistent for each particle type. Fig.130

2 (a) shows examples of bright field microscopic images of the samples. Fig. 2 (b) shows the131

corresponding reconstructed holographic images of the seawater-immersed particles that were132

measured using the experiment setup. Morphological characteristics unique to copepods (i.e.133

antennae and legs) and foraminiferas (i.e. spines) are clearly seen in the holographic images,134

whereas other particles are not obviously distinguished. 100 holographic images of each sample135

were taken, where the measurement cell was shaken and rotated between images so that the136

samples were imaged from different angles and directions. The width of the images was trimmed137

to 2056 pixels so as to cut off the unilluminated region, and it was manually confirmed that138

the whole sample was visible in all images. The images were normalized so that each image’s139

maximum and minimum pixel intensities were 1 and 0, respectively.140

120 Raman spectra were taken for each sample. To reduce noise, 50 spectra were randomly141

selected and averaged, where this process was repeated using the boot-strapping method [48]142

to produce 100 unique spectra [37]. The background spectrum was taken using the same setup143

without any target particles and the signal was averaged in the same way. Each averaged spectrum144

was normalized by setting the S-O stretching peak at 981 cm−1 to have unitary intensity. This145

peak was chosen as it is always present in seawater due to dissolved SO4
2− [49]. The background146

spectrum was subtracted from the averaged spectrum for each particle sample to remove the147

contributions of the optical setup and seawater. The spectral range from 300 to 1711 cm−1
148

(309 pixels) was used for analysis since the wavenumbers out of this range do not have many149

Raman peaks. Fluorescence signals were modeled in the range and subtracted using an eighth150

or ninth-order polynomial asymmetric truncated quadratic function depending on the samples.151

The most suitable order was experimentally determined, using the MATLAB𝑇𝑀 "backcor"152

function [50], which estimates background signals by minimizing a non-quadratic cost function.153

Fig. 2 (c) shows examples of processed Raman spectra for each sample type. Strong Raman154

peaks of PP and PE (PP: 809, 841, 1152, 1167, 1330, and 1458 cm−1, PE: 1062, 1130, 1170,155

1295, 1418, 1440, 1461 cm−1 [51]) are observed in the spectra of nurdles as these samples are156

semi-transparent, enabling high efficiency collection of forward Raman scattering, while for157



other particles the Raman peaks are generally less distinct, due to high opacity of the targets.158

Peaks at 1062, 1295, and 1440 cm−1 are observed in the spectra of PE fragments, although159

peaks are not as strong as the ones seen in PE nurdle spectra due to the interference from green160

pigments. An intense band from carotenoid is seen at 1521 cm−1 [52] in copepod spectra. A161

peak assigned to the symmetric stretching vibration of the CO2−
3 ion is seen at 1090 cm−1 [53] in162

the foraminifera spectra, while other unidentified peaks are also observed. The overall intensities163

of mineral spectra are weaker than other spectra with no strong peaks observed.164

PP (nurdle) PE (marine)

(a) 

(b) 

ForaminiferaCopepod

1mm

Sphalerite PE (nurdle)

(c) 

Fig. 2. Examples of (a) bright field microscopic images, (b) reconstructed holographic
images and (c) processed Raman spectra for each particle type.

2.4. Unsupervised feature learning165

We investigated autoencoder-based unsupervised feature learning approaches to group the different166

particle types. The advantage of unsupervised methods is that they do not rely on human-labeled167

data for training, which do not always exist and are often time consuming to generate [54].168

Autoencoders are a generic type of unsupervised feature learner that has been well established for169

the analysis of imagery, including holographic images [55]. They consist of an encoder network,170

which reduces the input data down to smaller latent representations, and a decoder network that171

attempts to reconstruct the original data from the compressed latent representation. The latent172

representations through optimization of both networks to minimize the difference between the173

original inputs and their reconstructions can be used as features for clustering and classification174

tasks [56]. Classification based on features extracted using autoencoders can outperform the use175

of features that have traceable physical meaning such as principal component analysis [57, 58].176

A key advantage is that they are unsupervised, and can flexibly manage different sizes and177

dimensionality of data inputs as well as the size of the latent feature space representations they178

output, without significant modification of their underlying form, which is suitable for multimodal179

data [29]. Fig. 3 illustrates the proposed multimodal holographic image and Raman spectrum180

feature learning. A convolutional autoencoder is used to extract features from the holographic181

image reconstructions. Deep-learning convolutional autoencoders based on Alexnet have been182

successfully developed for sub-sea image classification [59,60]. When applied to holographic183

images, improvement of clustering performance was found when a modified AlexNet where the184

fully-connected layers were replaced by two convolution layers was used [45]. Here we use the185

same modified AlexNet-based deep learning autoencoder described in Ref. [45], which was well186

tuned for in-line holographic images. The entire dataset (1800 images) was used to train the187



network after reducing each image to 227 × 227 pixels to fit the input layer. When only images188

were used in the subsequent analysis, 16 latent features were extracted based on recommendations189

of prior work [59]. This was reduced to 8 when features were combined with those extracted190

from spectra so that the total number of extracted features was maintained. Information about the191

particle type was only used for performance validation, and was not used in training. The Raman192

spectra obtained with our setup are one-dimensional (309 × 1) and have a significantly smaller193

data size than the holographic images. A single-layer autoencoder was used to learn features194

where the latent representation size was set to 16 when only spectral information was used, and195

to 8 when features were combined with those extracted from holographic images.196

Once features are extracted from the encoders, 𝑘-means clustering is used to group particles.197

This method was chosen as it is unsupervised and so does not require any human-labeled training198

data. We note that while different unsupervised clustering approaches such as random forest and199

self-organized maps, or supervised methods such as support vector machines, neural network200

classifiers or Gaussian processes may improve overall scores, the focus of this paper is on201

improving the quality of the features used for subsequent analysis, and such optimization of202

clustering or classification methods is beyond our scope.203

The number of clusters was set to 6, which equals the number of particle types used in this204

study. We investigated two grouping methods. The first method is feature-level fusion, and205

directly uses the latent representations. The second method is model-level fusion and uses206

non-linear dimensional reduction to further compress the latent representations prior to clustering.207

For the direct approach, 𝑘-means clustering is carried out directly on the features extracted from208

holographic images (condition D1), Raman spectral data (condition D2), and on the combined209

features (condition D3), respectively. The latent space was set so that the final number of features210

used for clustering was the same, at 16 features, across all experimental conditions to allow211

for a fair comparison. For the reduced approach, a further reduction from 16 to 2 dimensions212

is achieved using the non-linear t-distributed stochastic neighbor embedding (t-SNE) [57,61].213

Clustering is performed on the reduced two-dimensional features extracted from holographic214

images (condition R1), Raman spectral data (condition R2), and on the combined features215

(condition R3), respectively. Clustering performance is assessed using confusion matrices and216

F1-average score (i.e. macro F1 score [62]), where cluster to particle type correspondence is217

achieved by determining the largest number of particles of a given type falling within each cluster.218

The different experimental conditions investigated in this work are summarized in Table 2.219

Table 2. Experimental conditions analyzed in this work.

D1 D2 D3 R1 R2 R3

Images features 16 0 8 16 0 8

Spectral features 0 16 8 0 16 8

Dimension reduction ✓ ✓ ✓

Total features 16 16 16 2 2 2

Clusters 𝑘 6 6 6 6 6 6

3. Results and discussion220

Fig. 4 shows the t-SNE plots of the latent representations extracted from (a) holographic images,221

(b) Raman spectroscopy, and (c) their combination. The color of data points indicates particle222

type (black: copepod, red: foraminifera, blue: mineral, pink: PP nurdle, purple: PE nurdle,223
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Fig. 3. Diagram of processes for combining features extracted from holographic image
and Raman spectra, which are used for clustering either directly or after applying t-SNE
dimensional reduction.
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Fig. 4. t-SNE visualization of latent representations extracted from (a) holographic
images, (b) Raman spectra, and (c) combined. The shape in the legend indicates three
different samples among the same type of particles (circle, cross, bar).

green: PE fragment). Table 3 shows the confusion matrix result of 𝑘-means clustering applied224

directly to the extracted features, and Table 4 shows the result of clustering applied to the225

extracted features that have been further reduced using t-SNE. The clustering groups A-F were226

automatically allocated to six clusters with the combination which gives the best F1-average227

score. Table 5 shows the F1-scores for each particle type and processing condition.228

Using features extracted from holographic images alone (D1, R1), it can be seen that copepods229

and foraminiferas form one mixed cluster. The remaining four particle types form the second230

cluster. This can be understood by looking at the examples in Fig. 2, where copepods and231

foraminifera have complex shapes, while the remaining particle types have a simpler form. PE232

fragments have an angular shape that distinguishes them from the round shape of the mineral and233

PE, PP nurdles, where this pattern can be seen by the increased separation between it and the234



other particle types. Clustering with 𝑘 = 6 results in groupings with mixed particle types, where235

an overall trend that two clusters dominate is reflected in the confusion matrices for D1 (Table 3236

(a)) and R1 (Table 4 (a)). The F1-score averages are higher for clustering after using t-SNE for237

dimensional reduction rather than direct use of the latent representations.238

For Raman spectral data (D2, R2), 13 distinct groupings can be seen, where for most particle239

types the individual samples are separated. While copepods and minerals form their own groups240

for all samples, other particle types form two or three separate clusters for each type, which are241

not necessarily close together in the latent representation space. This reflects the sensitivity242

of Raman spectroscopy-based features to differences in the individual samples regardless of243

particle type. The over discrimination is seen in the confusion matrices for D2 and R2 in Tables 3244

(b) and 4 (b), respectively. The individual samples fall in or out of the six clusters in a binary245

manner, where the precision and recall rates for direct use of extracted features vary from 0 to246

100 %. Although this trend is improved after t-SNE, the overall accuracy according to F1 scores247

is reduced, where dimensional reduction results in poorer accuracy for the plastic particles in248

particular. The results show that it is not possible to reliably cluster features from Raman spectra249

to map onto the 6 particle types. The average F1 scores for holographic images (D1) and Raman250

spectra (D2) have similar values of around 0.5 and 0.6, respectively, where further dimensional251

reduction improves the score for holographic images (R1), but not for Raman spectra (R2).252

Combining the features from holographic images and Raman spectra improves the F1 scores253

for both the direct (D3) and the reduced t-SNE based (R3) clustering. In particular, dimensional254

reduction results in significant performance gains where both data types are combined. This is255

seen with foraminifera, where direct use of the latent representations has poor precision and256

recall, but dimensional reduction improves these from 3 % to 97 % and 2 % to 66 %, respectively.257

D3 and R3 confusion matrices are shown in Table 3 (c) and Table 4 (c), respectively.258

Table 5 shows that combining features gives the highest F1 score for all particle types259

investigated in this work. The highest average F1 score of 0.88, is obtained for condition R3,260

where combined features after non-linear dimensional reduction using t-SNE are used. This261

score is 0.25 higher than for the directly combined case, and ≥0.27 higher than when holographic262

images or Raman spectra based features are used in isolation. Condition D3 gives the second263

best results. For condition R3, all particle types have F1 values over 0.79, demonstrating reliable264

mapping of the clusters onto the particle types of interest. The large performance gain when265

non-linear dimensional reduction is applied to the combined features can make effective use of266

the favorable characteristics of each measurement type. The t-SNE plot in Fig. 4 (c) shows that267

copepods, minerals, and PP nurdles form groups with well separated boundaries. One sample of268

PE nurdles forms a group that is independent of others and one sample of foraminifera merges269

with a cluster of PE fragments. In both cases, it could be assumed to be mainly due to the features270

of Raman spectra as these trends are also seen in the t-SNE visualization of Raman spectral271

latent representations (Fig. 4 (b)). This could be mitigated by using fewer features of Raman272

spectra. In future works aiming at real-sea applications, fine tuning of models including selecting273

the best combination of the number of features among different data types will be performed to274

improve clustering and classification performances.275

The results show that features extracted using an appropriately designed autoencoder and276

further use of t-SNE for non-linear dimensional reduction significantly improves the quality277

of the features available to describe different particle types, and this improvement enhances278

classification accuracy. For application to in situ monitoring of marine particles, the method279

needs to be verified on larger numbers and types of particles to be more representative of the280

variety of morphological and compositional combinations that exist in nature. However, the281

study has demonstrated a novel approach to combine features learned from multiple different282

sensing modes, which improves clustering performance for a diverse range of marine particle283

types. Since the proposed method of combining and blending features can be applied to any284



Table 3. Confusion matrix between particle type and the clustering result created
using 𝑘-means for (a) holographic images D1, (b) Raman spectra D2, and (c)
combined D3 latent representations. A-F indicate clustering groups.

(a) D1

A B C D E F Recall

Copepod 225 75 0 0 0 0 75 %

Foram 133 163 0 0 0 4 54 %

Sphalerite 53 25 126 30 17 49 42 %

PP (nurdle) 1 4 108 93 39 55 31 %

PE (nurdle) 0 1 84 25 140 50 47 %

PE (marine) 8 63 17 71 59 82 27 %

Precision 54 % 49 % 38 % 42 % 55 % 34 %

(b) D2

A B C D E F Recall

Copepod 300 0 0 0 0 0 100 %

Foram 0 100 0 100 0 100 33 %

Sphalerite 300 0 0 0 0 0 0 %

PP (nurdle) 0 0 0 300 0 0 100 %

PE (nurdle) 0 0 100 0 200 0 67 %

PE (marine) 0 0 0 0 0 300 100 %

Precision 50 % 100 % 0 % 75 % 100 % 75 %

(c) D3

A B C D E F Recall

Copepod 296 1 0 0 0 3 99 %

Foram 176 7 0 1 0 116 2 %

Sphalerite 4 76 192 6 21 1 64 %

PP (nurdle) 0 54 40 199 4 3 66 %

PE (nurdle) 0 49 18 4 229 0 76 %

PE (marine) 2 16 3 32 0 247 82 %

Precision 62 % 3 % 76 % 82 % 90 % 67 %

input data type using encoded latent representation spaces, the method forms a versatile approach285

to combine measurements taken from multiple sensors with different data types and sizes, and286

makes efficient use of the favorable characteristics of each measurement type.287

4. Conclusion288

We have proposed a novel method to combine features extracted from images and spectra of289

seawater-suspended particles. Features were first extracted from data taken of the same target290



Table 4. Confusion matrix between particle type and the clustering result created
using 𝑘-means after t-SNE dimensional reduction for (a) holographic images R1,
(b) Raman spectra R2, and (c) combined R3 latent representations. A-F indicate
clustering groups.

(a) R1

A B C D E F Recall

Copepod 220 80 0 0 0 0 73 %

Foram 146 147 6 0 0 1 49 %

Sphalerite 1 0 184 26 22 67 61 %

PP (nurdle) 0 0 121 120 58 1 40 %

PE (nurdle) 0 0 38 102 158 2 53 %

PE (marine) 0 29 27 50 35 159 53 %

Precision 60 % 57 % 49 % 40 % 58 % 69 %

(b) R2

A B C D E F Recall

Copepod 300 0 0 0 0 0 100 %

Foram 0 200 100 0 0 0 67 %

Sphalerite 0 0 142 158 0 0 47 %

PP (nurdle) 0 0 0 100 200 0 33 %

PE (nurdle) 100 0 0 0 100 100 33 %

PE (marine) 0 42 0 0 61 197 66 %

Precision 75 % 83 % 59 % 39 % 28 % 66 %

(c) R3

A B C D E F Recall

Copepod 300 0 0 0 0 0 100 %

Foram 0 199 0 1 0 100 66 %

Sphalerite 0 0 300 0 0 0 100 %

PP (nurdle) 0 7 0 293 0 0 98 %

PE (nurdle) 100 0 0 0 200 0 67 %

PE (marine) 0 0 0 0 0 300 100 %

Precision 75 % 97 % 100 % 100 % 100 % 75 %

using an integrated setup for holographic imaging and Raman spectroscopy. Convolutional and291

single-layer autoencoders were used for holographic images and Raman spectra, respectively.292

While combining latent representations (feature-level fusion) slightly enhanced the macro F1293

average score, the performance is further significantly improved by performing non-linear294

dimensional reduction (model-level fusion) using t-SNE on the combined latent representations.295

This increases the calculated accuracy from 0.63 to 0.88 using t-SNE, and the use of combined296



Table 5. Comparison of F1 scores, where the highest scores for each particle type
are in bold.

D1 D2 D3 R1 R2 R3

w/o t-SNE w/ t-SNE

Holo Raman Fusion Holo Raman Fusion

Copepod 0.63 0.67 0.76 0.66 0.86 0.86

Foram 0.52 0.5 0.03 0.53 0.74 0.79

Sphalerite 0.40 0 0.69 0.54 0.52 1

PP (nurdle) 0.36 0.86 0.73 0.40 0.36 0.99

PE (nurdle) 0.51 0.8 0.83 0.55 0.30 0.8

PE (marine) 0.30 0.85 0.74 0.6 0.66 0.86

Average 0.45 0.61 0.63 0.55 0.57 0.88

features outperformed a single information source for all particle types studied in this work.297

Although our experiments used holographic images and Raman spectroscopy, the proposed298

method can be adapted to other types of sensor measurements. The use of convolutional and299

conventional autoencoders can learn and extract features from any two- or one- dimensional data300

type (e.g. images, spectra) without the need for labeled training datasets, respectively. Since301

dimensional reduction is performed on the feature space, it can efficiently combine features302

derived from other sensing methods and be applied to other measurement targets with minimal303

modification.304
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