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Abstract— A decentralized method for estimating the interior 

states of a synchronous machine using analogue measurements 

from instrument transformers (that is, current transformer and 

potential transformer) has been proposed in this paper. The 

method is robust to instrumentation chain anomalies, which 

have not been considered in the existing dynamic state 

estimation literature. The method works in a two-step manner, 

wherein a robust adaptive detection scheme removes instrument 

transformer anomalies, harmonics, noise, and DC components, 

and estimates the phasors of the analogue measurements, and 

subsequently uses these estimated phasors in the decentralized 

dynamic state estimation algorithm. Robust and adaptive 

version of square-root-cubature-Kalman-filter has been 

employed to enhance estimation accuracy irrespective of the 

type of noise distribution. The superiority of the algorithm over 

existing methods has been established in terms of numerical 

accuracy, computational efficacy, and robustness. IEEE 68 bus 

power system has been used to test the effectiveness of the 

developed strategy. Opal-RT based setup has also been used to 

implement the case studies in real-time. 

Index Terms— Automatic voltage regulator (AVR), Control, 

Dynamics, Estimation, Instrument Transformer, Lyapunov, 

Power System Stabilizer (PSS), Phasors, Synchronous machine. 

NOMENCLATURE 

𝑘 = 𝑘𝑡ℎ instant of time, 𝑝 = 𝑝𝑡ℎ machine.

𝜔𝐵, 𝜔 Base elec. speed (rad/s), machine speed in p.u. 

𝑓V, 𝑓1 Stator voltage (V) freq. in p.u, fundamental freq. 

Pe, Ie Electrical power and stator current resp. 

𝛿, 휃 Rotor angle and stator voltage phase angle in rad. 

𝑉𝑎, E𝑓𝑑 AVR regulator voltage, field excitation voltage 

V𝑟, V𝑠 AVR filter voltage and PSS output resp. 

𝑒𝑑
′ , 𝑒𝑞

′ Transient d and q axis emfs in p.u.  

𝜓𝑑, 𝜓𝑞 Subtransient damper coil d and q axis emfs in p.u. 

𝑝𝑖=1…3 PSS states, 𝑓I =frequency of the stator current.

𝑣𝑞 , 𝑣𝑑 q and d axis stator voltages (V𝑡 = 𝑣𝑑 + 𝑗𝑣𝑞) in p.u.

𝑖𝑞 , 𝑖𝑑 q and d axis stator currents (I𝑒 = 𝑖𝑑 + 𝑗𝑖𝑞) in p.u.

𝒙, 𝒖 State and pseudo-input vectors respectively  

𝒚, 𝑛𝑥 Measurement vector, State vector dimension.   

𝑠(𝑡) Instantaneous CT/PT measurement 

𝓼, 𝓺 Process and pseudo-input noise vectors resp. 

𝓻 Column vector of noise in measurement vector 

𝒫𝑥, 𝒫𝑦 State and measurement covariance matrices resp. 

𝒫𝑥𝑦 Cross-correlation covariance matrix 

𝒫𝑥𝓆 Cross-covariance matrix of 𝒙 and 𝓺 

𝒫𝜉 = [𝒫𝑥 𝒫𝑥𝓆
T  ; 𝒫𝑥𝓆  𝒫𝓆], 𝑛𝑚 = no. of syn. machines.

Q𝜉 Constant additive process noise covariance matrix 

R𝑦 Constant measurement noise covariance matrix 
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Ts, 𝑛𝑦 Sampling time (s), Number of measurements 

𝐓𝐫𝐢𝐚 (. ) General triangularization algorithm 

I. INTRODUCTION 

UE to the variability in stochastic generation, random

disturbances and fewer enhancements in the network at 

the bulk transmission level, synchronous generators of the 

interconnected power systems are under continuous stress. 

Stressed power systems are prone to outages and a 

disturbance can initiate undesirable oscillations [1]. Control 

and monitoring of instabilities and related dynamics require 

real-time estimation of the synchronous machine operating 

state. In this context, dynamic state estimation (DSE) is an 

effective tool in assessing dynamic security, monitoring 

oscillations and in enhancing system control [2]-[3]. 

The reliability of DSE based on synchrophasors data relies 

heavily on the accuracy of the phasors computed by 

PMUs [3]-[8]. Time synchronization in PMUs (which is used 

to generate a rotational reference frame for power systems) 

introduces time synchronization-errors, which not only 

increases the total vector error (TVE) of PMU measurements, 

but also introduces gross bad-data [6]-[8]. Due to the non-

Gaussian nature of the PMU measurement noise [9] dynamic 

estimates via Bayesian filters [10]-[11] may not be accurate 

as they fundamentally assume Gaussian noise statistics. 

Additionally, PMUs are vulnerable to cybersecurity threats, 

like time synchronizing spoofing, packet sniffing, and 

malicious code data injection attacks [7]. These errors can 

propagate through the estimation process and may lead to 

erroneous estimates, thereby compromising the accuracy of 

DSE. DSE’s dependence on time synchronization can be 

removed by replacing the synchronous machine rotor angle 

in the dynamic model by a relative angle [5], [12]. Using this 

paradigm, all the states of the synchronous machine can be 

estimated without any need of time synchronization of 

measurements. Apart from aforementioned errors, problems 

in DSE emanate due to inaccuracy in PMU phasor 

measurements, which in turn is linked to accuracy of 

measurement instrumentation system (a prime source of 

gross errors) [13]-[14]. Therefore, robust and accurate phasor 

parameter estimation using local measurements from 

instrument transformers is required by addressing signal 

modelling inaccuracies. These phasor parameter estimates 

can then be utilized in a second stage to find the machine 

states using decentralized dynamic state estimation (DDSE).  

Interpolated discrete Fourier transform (IDFT) based DSE 

has been proposed for estimation of states using such a two-

step procedure [5]. But, like PMU based DSEs [4], [15]-[16], 
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IDFT based DSE [5] may not produce accurate estimates as 

actual field measurements are contaminated with non-

Gaussian noise, structural/non-structural outliers, distortions 

and decaying DC-anomalies (DDA) which are not addressed 

explicitly in IDFT design. Therefore, robustness to 

structural/non-structural outliers, non-Gaussianity and DDAs 

needs to be addressed both in the phasor estimation stage as 

well as in the DDSE stage for accurate estimation of machine 

states. 

For the phasor estimation stage, many DFT based options 

are available in the literature besides [5], such as windowed 

interpolation DFT [17]. Their performance worsens due to 

measurement fluctuations and the problems like picket fence 

effects and spectral leakage may impair their 

accuracy [14]-[16]. Other state-of-the-art methods like notch 

filters, and observer methods do not perform well for the 

duration of transient conditions, and it could hamper its real-

time applicability [17]-[19]. Likewise, Taylor-Kalman 

methods and associated algorithms [20] suffer from signal 

modelling inaccuracies and are not robust to amplitude/phase 

jumps, which are a consequence of tap change, 

generation/load/line switching, and stepped variations in 

power through reactive components (overhead line and 

transformers). New enhancements [21]-[22] have been 

reported to be effective wherein harmonics and DDA effects 

have partially been explored/addressed. However, in these 

methodologies the model time constant selection for DDA is 

arbitrary and measurement chain transfer function inverse 

(MCTFI) [13] is required to alleviate the effect of 

unaccounted anomalies and measurement distortions. 

Numerous techniques [23]-[25] have been reported in the 

literature to mitigate and filter out the instrumentation chain 

errors in the measured signal.  In [23], wavelet transform has 

been employed to compensate the effect of saturation. A 

method based on least square filter has been applied to 

mitigate transient errors [24]. The performance of these 

techniques relies heavily on the prior information of the 

instrumentation chain model and filter characteristics. 

Artificial neural network (ANN) based error correction 

method has been proposed in [25]. However, using ANN 

based correction method may not be feasible for real-time 

applications. To address these issues, adaptive detection 

scheme (ADS) has been proposed in this paper as a precursor 

for DSE, which efficiently mitigates the impact of the 

distortions like DDAs, harmonics and noise. 

Fig. 1: Schematic of the methodology. 

For the DSE stage, generic Bayesian filters like UKF suffer 

from curse-of-dimensionality and divergence [11]. Also, the 

computational cost, truncation error and numerical stability 

of the UKF family depend upon the number/weight of sigma 

points in the sigma set [11]. Square-root CKF 

(SRCKF) [10], [26] and its variants [10], [26]-[27] address 

these issues mentioned in [11]. However, these methods also 

fail to deal with observation, innovation, and structural 

outliers, and assume Gaussian statistics of noise and bad data 

in the measurement vector.  Other non-Gaussian filters are 

computationally expensive and suffer from particle 

degeneracy and impoverishment problems [28]. Particle 

filters are sensitive to parametric variations and initial 

conditions, and are also susceptible to divergence [15], [16]. 

These discrepancies were partially addressed in algorithms 

like GMUKF [15], GMIEKF [16] wherein Huber projection 

statistics have been used [27]. Similar enhancements have 

been suggested in [27], [30]. However, performance indices 

of these filters may deteriorate if measurement noise 

characteristic changes from non-Gaussian to Gaussian.  

The performance of DDSE can be effectively enhanced by 

reformulating the measurement information via its regression 

model and using Gaussian kernel with adaptive width. The 

notion behind using this formulation (unlike [27]-[31]) is to 

enhance the stabilization/accuracy of the trajectory of the 

estimates irrespective of the noise statistics. Accordingly, and 

also to address other aforementioned issues in measurement 

chain, a two-step procedure has been proposed in this paper 

(Fig. 1): (a) Precursor: robust adaptive detection scheme 

(ADS) for estimation of amplitude, frequency, and phase of 

currents/voltages for use in the measurement model of DDSE 

and (b) Successor: an enhanced adaptive robust square-root 

CKF (RSCKF), for the estimation of the states of the 

synchronous machine. The robust nonlinear observer-based 

ADS proposed in this paper ensures extenuation of tailed 

impulsive noise, DDAs and measurement outliers, and 

effective harmonic neutralization. It also removes the 

requirement of prior knowledge of MCTFI [13].  

The proposed methodology has been evaluated on the 16 

machine 68 bus power system [4]. The key advantages/ 

contributions of this paper are enumerated below. 

 A Lyapunov criterion based robust ADS has been derived

and used to estimate the generator bus current/voltage

phasor parameters. ADS, unlike currently available

methods ([5] and [17]-[22]), by design is robust to

measurement distortions like amplitude/phase jumps,

harmonics, DDA and non-Gaussian noise. Additionally, it

eliminates the requirement of MCTFI [13] (otherwise

required) to tackle unaccounted anomalies.

 The convergence of ADS method is assured under

disturbances, unlike presently available state-of-the-art

methods [5], [17]-[22]. The convergence of the phasor

parameters is corroborated by the standard persistence-of-

excitation condition [19].

 Subsequent DDSE stage uses a modified version of

SRCKF [26], robustness of which was enhanced by

making the measurement covariance matrix a numerically

stable and adaptive exponential function of innovation

square. Compared to enhancements in the

literature [26]-[30], the adaptively enhanced RSCKF is

numerically stable and demonstrably better, particularly
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when the measurement noise is impulsive and/or 

measurement error is too high or too low. It uses a 

regression model and an adaptive Gaussian kernel for 

measurement covariance matrix modulation to enhance 

accuracy regardless of the nature of noise statistics.  

 The proposed method, being decentralized, is not affected

by system size and its stability is proven without any

assumption about the linearity of the measurement model,

as in [32]. The relationship between the state vector

dimension and observability [33] is also explored.

 The bias and standard errors of the proposed DDSE are

consistently and significantly lower than presently

available methods in the literature [5], [17]-[22].

 Proposed ADS-DDSE uses generator bus measurements

and is therefore particularly effective for realization of

decentralized control methodologies as it doesn’t require

any synchrophasor measurement device (that is, PMUs) for

its implementation [12], [30], [34]-[35].

 Practical applicability has been demonstrated using a

scaled lab setup using Opal-RT multiprocessors.

The rest of the paper is organized as follows: after

discussing the problem formulation in Section II and 

measurement signal model in Section III, the ADS 

methodology and DDSE algorithm are discussed in Section 

III and Section IV respectively. Filter stability, and the case 

studies are presented in Section V, and Section VI 

respectively whereas the conclusions are presented in Section 

VII. 

II. PROBLEM DESCRIPTION AND FORMULATION

DDSE is implemented at each machine of the connected 

power system and it uses analogue measurements from the 

terminal bus measurement transformers. In this paper, a 

detailed sub-transient model of 16 machine 68 bus system 

(Fig. A1 in the Appendix, [4]) has been considered. The first 

eight machines of the test system have IEEE-DC1A type of 

automatic voltage regulator (AVR). The 9th machine has 

IEEE-ST1A AVR and a power system stabilizer (PSS) 

whereas rest of the machines have manual exciters. The 

model decoupling approach for DDSE has been adapted 

from [12]. For the 𝑝𝑡ℎ machine (1 ≤ 𝑝 ≤ 𝑛𝑚) the decoupled

process and measurement equations for use in the DDSE 

assume the composite state-space form as follows. 

�̇� = 𝒇(𝒙, 𝒖) + 𝓼,   𝒚 = 𝒈(𝒙, 𝒖) + 𝓻 (1)  

where, 𝒇 and 𝒈 are the process and measurement functions 

respectively. In decentralized augmented form, the process 

and the measurement equations (not detailed here due to 

space constraints) of the 𝑝𝑡ℎ machine are written in discrete

form as follows [4], [5]. 

𝝃𝑘 = 𝒇𝑝(𝝃𝑘−1, 𝒖𝑘−1) + 𝓼𝑘−1

𝒚𝑘 = 𝒉𝑝(𝝃𝑘, 𝒖𝑘) + 𝓻𝑘 ; 𝝃𝑘 = [𝒙𝑘 𝓺𝑘]T
(2) 

𝒙𝑘 = [𝛼𝑘 𝜔𝑘 𝑒𝑑𝑘
′  𝑒𝑞𝑘

′  𝜓𝑑𝑘  𝜓𝑞𝑘  V𝑟𝑘  V𝑎𝑘  E𝑓𝑑𝑘]
T
; 𝑝 = 1,…, 8

𝒙𝑘 = [𝛼𝑘 𝜔𝑘 𝑒𝑑𝑘
′  𝑒𝑞𝑘

′  𝜓𝑑𝑘  𝜓𝑞𝑘  E𝑓𝑑𝑘  𝑝𝑠1𝑘  𝑝𝑠2𝑘  𝑝𝑠3𝑘]
T
; 𝑝 = 9

𝒙𝑘 = [𝛼𝑘 𝜔𝑘 𝑒𝑑𝑘
′  𝑒𝑞𝑘

′  𝜓𝑑𝑘  𝜓𝑞𝑘  ]
T

; 𝑝 = 10,…, 16

where, 𝛼𝑘 = 𝛿𝑘 − 휃𝑘, 𝒚𝑘 = [P𝑒,𝑘  I𝑒𝑘]
T
, P𝑒,𝑘 = V𝑑,𝑘I𝑑,𝑘 +

V𝑞,𝑘I𝑞,𝑘, I𝑒𝑘 = (I𝑑,𝑘
2 + I𝑞,𝑘

2 )1/2, column vector of noise in 𝑦𝑘

is  𝓻𝑘 = [P̃𝑒,𝑘 Ĩe,𝑘]
T
,  pseudo input 𝒖𝑘 = [V𝑘  𝑓V,𝑘]

T
, column

vector of noise in 𝒖𝑘 is  𝓺𝑘 = [Ṽ𝑘 𝑓V,𝑘]
𝑇
 and 𝓼𝑘−1 is the

process noise vector. The measurements 𝒚𝑘 and the pseudo-

inputs 𝒖𝑘 are derived from ADS based parameter estimator.

A.  Instrument Transformer Models for Analogue 

Measurement Generation:  

The IEEE Power System Relaying Committee (PSRC) 

recommendations and relevant task force guidelines [36] 

were followed to simulate the effect of instrumentation chain 

on the transmitted measurements. The IEEE PSRC 

committee has proposed instrumentation transformer models 

based on the assumption of the single-valued saturation 

curve. Details of the PT/CT models are given in [36], [37]. 

Nonlinear characteristics of the magnetic core in the CT 

model is based on the Jiles-Atherton principle [37] of 

ferromagnetic hysteresis. IEEE PSRC CT model is briefly 

discussed in Appendix-A.   

Signal parameters (amplitude, frequency and phase of the 

current transformer (CT) currents and potential transformer 

(PT) voltages) estimated from analogue measurements using 

ADS algorithm (Section-III) are used to derive the necessary 

inputs 𝒖𝑘 = [V𝑘 𝑓V,𝑘] and measurements 𝒚𝑘 = [P𝑒,𝑘 I𝑒𝑘] for

use in the subsequent DDSE algorithm (Section-IV). It should 

be noted here that the ADS algorithm for signal parameter 

estimation is model agnostic and therefore does not require 

modelling details of the instrumentation chain.  

III. INSTRUMENTATION CHAIN AND SIGNAL MODEL

Errors in the measurements stem from the measurement 

chain (which includes instrumentation/control cables, 

instrument transformers (ITs), and associated burdens; Fig. 1. 

In some cases, IT saturates due to the characteristics of its 

core, and it generates harmonics on its own. IT core 

saturation, length of instrumentation/control cables and 

possibly high burden contribute to the errors [13]-[14]. 

Inaccurate phasor measurements stem due to the application 

of poorly fit model of the signal, as they do not consider the 

aforementioned distortions.  

The signal model should be general to account for the 

aforementioned distortions, and appropriately capture the IT 

core nonlinearities. Alternating current saturation can be 

captured by choosing sufficiently large harmonic order, n, 

whereas direct current saturation effect can be represented by 

a decaying DC component in the signal model. Common 

causes of the DC saturation are faults, IT remnant flux or 

unipolar half-wave current. Thus, a measurement from an IT 

at a terminal bus of a generator can be adequately represented 

mathematically using (3). 

𝑠(𝑡) = ∑ 𝑠𝑖sin(𝜔𝑖𝑡 + 𝜙𝑖) + 𝑠DC𝑒−𝑡/𝜏DC + 휂𝑒
𝑛
𝑖=1 (3) 

where, 𝑠𝑖, 𝜔𝑖 and 𝜙𝑖 are the amplitude, frequency and phase

of the 𝑖𝑡ℎ harmonic component in the signal 𝑠(𝑡). 𝑠DC and 𝜏DC

are the DC term parameters in the signal 𝑠(𝑡) whereas 휂𝑒

represents the noise and associated distortions in the signal 

𝑠(𝑡). 

IV. ROBUST ADAPTIVE DETECTION SCHEME (ADS)

The schematic of the proposed ADS is shown in Fig. 1. The 

analogue voltage and current measurements obtained from 

the ITs serve as inputs for the ADS (detailed below) to output 

the signal parameter (amplitude, frequency and phase) 
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estimates. The signal parameter estimation laws are derived 

by expanding equation (3) as follows to (4). 

𝑠(𝑡) = ∑ 𝑠𝑐𝑖sin(𝜔𝑖𝑡) + 𝑠𝑠𝑖cos(𝜔𝑖𝑡) + 𝑠DC𝑒−𝜏DC
−1 𝑡 + 휂𝑒

𝑛
𝑖=1

𝑠(𝑡) = ΘT𝕊 + 휂𝑒 (4)

𝕊 = [sin(𝜔1𝑡), cos(𝜔1𝑡) … sin(𝜔𝑛𝑡), cos(𝜔𝑛𝑡), 1, (−𝑡)]T,

and Θ = [𝑠𝑐1 𝑠𝑠1 𝑠𝑐2 𝑠𝑠2 … 𝑠𝑐𝑛  𝑠𝑠𝑛 𝑠DC 𝑠DC1]T, 𝑠𝑐𝑖 = 𝑠𝑖cos𝜙𝑖,

𝑠𝑠𝑖 = 𝑠𝑖sin𝜙𝑖, 𝑠DC1 = 𝑠DC𝜏DC
−1, 𝑖 = 1, … , 𝑛, 𝜔𝑖 = 𝑖𝜔1. Θ is a

vector of unknown parameters, which needs to be estimated 

online, with its estimate is denoted as follows. 

�̂� = Θ̂T𝕊; Θ̂T = [�̂�𝑐1 �̂�𝑠1 �̂�𝑐2 �̂�𝑠2 … �̂�𝑐𝑛 �̂�𝑠𝑛 �̂�𝐷𝐶  �̂�𝐷𝐶1].     (5)

The CT/PT measurement signal 𝑠(𝑡) is observed through 

an unknown transfer function G(𝑠), which represents the 

linear dynamics of the instrumentation chain. ADS observer 

removes the requirement of MCTFI [13] in the update laws. 

Therefore, 

𝑧 − �̂� = G(𝑠) ∙ Ã (6)  

Z̃ = G(𝑠) ∙ Ã = −G(𝑠) ∙ Θ̃T�̃� − G(𝑠) ∙ 휂̃𝑒 (7) 

where, Z̃ = ℒ(z̃), z̃ = z − ẑ, Ã = ℒ(�̃�), �̃� = 𝑠(𝑡) − �̂� , Θ̃ =

Θ̂ − Θ, �̃� = ℒ(𝕊) and 휂̃𝑒 = ℒ(휂𝑒). ℒ denotes the Laplace

transform. The unknown transfer function G(𝑠) is a ‘proper 

transfer function’ (PTF) [19]. State space representation of 

the proper transfer function (G(𝑠) = C(𝑠I − A)−1B) is given

below by (8):  

�̇� = A𝛾 + B𝛽,    z̃ = C𝛾 (8)  

where, 𝛽 = −𝕊TΘ̃ + 휂𝑒, 𝛾 is an intermediate variable vector.

A Lyapunov function candidate 𝒯(Θ̃, 𝛾) considered to derive 

the parameter estimation law is given by (9). 

𝒯(Θ̃, 𝛾) = 0.5(𝛾𝑇ℳ𝛾) + 0.5(Θ̃TΛ−1Θ̃) (9)

where, ℳ is real and strictly positive matrix (RSP) and 

accounts for the positive definiteness of the function 𝒯(Θ̃, 𝛾) 

and Λ is an adaptive-gain matrix. 

Lemma 1 [19]: If the sensor transfer function G(𝑠) is RSP, 

then there exists a positive scalar 𝜌, a matrix ℳ𝑇 = ℳ > 0
and a vector 𝒒 which satisfies the following equations. 

ATℳ + ℳA = −𝒒𝐓𝒒 − 𝜌𝒩  ;  ℳB − CT=0 (10)

where, matrix 𝒩 = 𝒩T > 0.

Using Lemma 1, the dependence of update laws for 

estimation of parameters upon intermediate vector 𝛾 can be 

disregarded/waived off. As z̃휂𝑒 is very small, therefore,

�̇�(Θ̃, 𝛾) = −0.5𝛾T𝒒𝐓𝒒𝛾 − 0.5𝜌𝛾T𝒩𝛾 − z̃Θ̃T𝕊 + Θ̃TΛ−1Θ̇̃ 

(11)  

Parameter estimation law (12) ensures the negative semi-

definiteness (NSD) of the �̇�(Θ̃, 𝛾) (13).

Θ̇̃ = Λz̃𝕊  ⇒ Θ̇̂ = Λz̃𝕊   (12) 

�̇�(Θ̃, 𝛾) = −0.5(𝛾T𝒒𝐓𝒒𝛾) − 0.5𝜌(𝛾T𝒩𝛾) (13) 

where, Λ = diag(𝜆𝑐1 𝜆𝑠1 𝜆𝑐2 𝜆𝑠2 … 𝜆𝑐𝑛 𝜆𝑠𝑛 𝜆DC) and Λ > 0.

It is deduced from (9)-(13) that z̃, 𝛾, Θ̃, Θ̂,  𝒯 ∈ 𝐋∞ [19].

∴ lim
𝑡→∞

𝒯(Θ̃ (𝑡), 𝛾(𝑡)) = 𝐋∞ < ∞ (14)

Therefore, the individual update laws for estimation of signal 

parameters as deduced from (12) are given by (15). 

�̇̂�𝑐1 = 𝜆𝑐1z̃ sin (𝜔1𝑡), �̇̂�𝑠1 = 𝜆𝑠1z̃ cos (𝜔1𝑡),  ⋯

�̇̂�𝑐𝑛 = 𝜆𝑐𝑛z̃ sin (𝜔𝑛𝑡), �̇̂�𝑠𝑛 = 𝜆𝑠𝑛z̃ cos (𝜔𝑛𝑡),  ⋯

�̇̂�DC = 𝜆DCz̃  , �̇̂�DC1 = −𝜆DC1z̃𝑡  (15)

The vector “𝕊” should also satisfy the condition for excitation 

persistence to ensure rapid convergence of signal parameter 

estimates [19]. A function 𝕊: ℜ+ → ℜ𝑛 is excited persistently

in ℜ𝑛 if there exist constants “휁0”, “휁1”, and “τ0” such that

휁0𝐼 ≤ IPE = τ0
−1 ∫ 𝕊(τ)𝕊T(τ)

𝑡+τ0

𝑡

dτ ≤ 휁1𝐼
(16) 

Ignoring the presence of permanent DC component in the 

CT/PT measurements, the PE condition (16)-(17) can be 

proven. For signals acquired from CTs/PTs, it is a realistic 

assumption as the DC component (𝑠DC(𝑡) = 𝑠DC𝑒−𝑡/𝜏DC  ∀ 𝑡)

is a decaying exponential function. In this context, the matrix 

“𝕊𝕊T” is a square matrix whose elements are combination of

following sinusoidal functions:  

cos(𝜔𝑖𝑡), sin(𝜔𝑖𝑡), sin2(𝜔𝑖𝑡), cos2(𝜔𝑖𝑡), ⋯

cos(𝜔𝑖𝑡)sin(𝜔𝑖𝑡), cos(𝜔𝑖𝑡)sin(𝜔𝑗𝑡), sin(𝜔𝑖𝑡)sin(𝜔𝑗𝑡) ⋯

cos(𝜔𝑖𝑡)cos(𝜔𝑗𝑡), 𝑖, 𝑗 ∈ [1 𝑛] and 𝑖 ≠ 𝑗

with τ0 = 2𝜋/𝜔1, On solving (16) we get,

IPE = [

𝜋/𝜔1

0
⋮
0

0
𝜋/𝜔1

⋮
0

⋯
⋯
⋱
⋯

0
0
⋮

𝜋/𝜔1

] 

(17) 

Therefore, the proposed design scheme satisfies the PE 

property (16) with 휁1 ≥ 𝜋/𝜔1 and 0 < 휁0 ≤ 𝜋/𝜔1.

Moreover, the “𝕊” and its derivative are bounded vectors with 

sinusoidal elements i.e., �̇�, 𝕊, ∈ 𝐋∞. Satisfying these

conditions (PE property and �̇�, 𝕊, ∈ 𝐋∞), the convergence of

the parameter estimates is guaranteed at an exponential speed. 

Therefore,   

�̂�𝑐1 = 𝜆𝑐1S∫ = 𝜆𝑐1 ∫ {z̃ sin (𝜔1𝑡)}𝑑𝑡
𝑡

(18) 

�̂�𝑠1 = 𝜆𝑠1C∫ = 𝜆𝑠1 ∫ {z̃ cos (𝜔1𝑡)}𝑑𝑡
𝑡

(19) 

�̂�1
2 = {𝜆𝑐1S∫ }

2
+  {𝜆𝑠1C∫ }

2 (20) 

�̂�1 = 𝑠𝑖𝑛−1(�̂�𝑠1/𝑠1) (21) 

Phasor frequency (𝑓 = 𝜔1/2𝜋) estimation law (24) is

derived by minimizing the quadratic cost function (22). 

𝒥 = 0.5ℰ2 = 0.5(�̂� − 𝑠)2  where, ℰ = (�̂� − 𝑠) (22) 

∴ ω̇̂1 = −휂𝜔𝜕𝒥/𝜕𝜔1 (23) 

⇒ ω̇̂1 = −휂𝜔
′ ℰ ∑ {�̂�𝑐𝑘𝑘𝑡cos(𝑘𝜔1𝑡) − �̂�𝑠𝑘𝑘𝑡sin(𝑘𝜔1𝑡)}𝑛

𝑘=1

≈ −휂𝜔
∗ z̃ ∑ {�̂�𝑐𝑘𝑘𝑡cos(𝑘𝜔1𝑡) −𝑛

𝑘=1

�̂�𝑠𝑘𝑘𝑡sin(𝑘𝜔1𝑡)}

(24) 

where, 휂𝜔
∗  is obtained from the stability/convergence analysis 

theorem (Theorem 1). The negative semi-definiteness (NSD) 

of the Lyapunov function (9)-(13)and PE condition (16) for 

parameter convergence have been proven theoretically 

using (17), as explained above. Therefore, the estimated 

signal parameters would ultimately converge to their real 

values for any value of estimator gain Λ and it is tuned to 

ensure fast dynamic response of the parameter estimator. The 

estimated amplitude and phase are given by (20) and (21). 

Likewise, the value of 휂𝜔 has to be appropriate. A smaller

value of 휂𝜔 can guarantee convergence but at a very sluggish

speed and dynamic estimate of the state vector may not be 

acceptable [35]. Excessively high 휂𝜔 can lead to possible

algorithm divergence. Particle swarm optimization was used 

to obtain the optimal gain value “Λ” with integral-time-

square-error as cost function to ensure fast parameter 

convergence [38].   
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Fig. 2. (a) Weight distribution (b) Normalized MSE v/s Kernel width. 

TABLE I : RSCKF ALGORITHM 

Initialization: 𝒫𝜉
𝑘−1 = 𝒫𝜉

0, �̂�𝑘−1 = �̂�0

Time Update (Prediction Step) 

𝒫𝜉
𝑘−1 = (𝒮𝜉

𝑘−1)(𝒮𝜉
𝑘−1)T

𝒳𝑐
𝑘−1 = �̂�𝑘−1  + 𝒮𝜉

𝑘−1 𝜆𝜉; 𝑐 = 1,  ⋯, 𝑚; 𝑚 = 2𝑛𝑥

𝒳𝑐
𝑘− = 𝒇𝑝(𝒳𝑖

𝑘−1, 𝒖𝑘−1)

𝜆𝜉 = {
√𝑛𝑥  ;  𝑐 = 1, ⋯ , 𝑛𝑥

−√𝑛𝑥 ;  𝑐 = 𝑛𝑥 , ⋯ , 𝑚

�̂�𝑘
− = 𝑚−1 ∑ 𝒳𝑐

𝑘−𝑚
𝑙=1

𝒮𝜉
𝑘− = 𝑻𝒓𝒊𝒂([𝒳𝑐

𝑘+ 𝒮𝑄
𝑘−1])

𝒫𝜉
𝑘− = (𝒮𝜉

𝑘−)(𝒮𝜉
𝑘−)T,Q𝜉 

𝑘−1 = (𝒮Q
𝑘−1)(𝒮Q

𝑘−1)T

𝒳𝑐
𝑘+ = 𝑚−0.5 × [𝒳1

𝑘− − �̂�𝑘
−, 𝒳2

𝑘− − �̂�𝑘
− , … , 𝒳𝑚

𝑘− − �̂�𝑘
−] 

Measurement Update (Correction Step) 

𝒳𝑐
𝑘 = �̂�𝑘

− + 𝒮𝜉
𝑘− 𝜆𝜉

𝒴𝑐
𝑘 = 𝒉𝑝(𝒳𝑐

𝑘, 𝒖𝑘)

�̂�𝑘 = 𝑚−1 ∑ 𝒴𝑐
𝑘𝑚

𝑙=1

𝒮𝒚
𝑘 = 𝐓𝐫𝐢𝐚([𝒴𝑐

𝑘+ �̂�R
𝑘]), 𝒫𝒚

𝑘 = (𝒮𝒚
𝑘)(𝒮𝒚

𝑘)T

R̂𝑢
𝑘 = (�̂�R

𝑘)(�̂�R
𝑘)

T
= [𝒮𝑅

𝑘]ℳ𝑘
−1[𝒮𝑅

𝑘]T, ℳ𝑘 =

𝑑𝑖𝑎𝑔(𝐶б1,𝑘 , 𝐶б2,𝑘) 

where, Cб1,𝑘 = 𝑒−(𝒮R11
𝑘 �̃�𝑒,𝑘

2 )/(2б𝐏𝐞𝑘
2 ), Cб2,𝑘 = 𝑒−(𝒮R22

𝑘 �̃�𝑒,𝑘
2 )/(2б𝐈𝒆𝑘

2 ),

R𝑢
𝑘 = (𝒮R

𝑘)(𝒮R
𝑘)T, 𝒮R11

𝑘 , 𝒮R22
𝑘  are diagonal elements in 𝒮R

𝑘.

бPe𝑘 = {
 бPe0   𝑖𝑓 б̃Pe𝑘 ≥ бPe0/𝓀б

𝓀бб̃Pe𝑘     𝑖𝑓 б̃Pe𝑘 < бPe0/𝓀б

 where, б̃Pe𝑘 = ϱ𝑒б̃P𝑒 𝑘−1 + (1 − ϱ𝑒)|P̃𝑒 𝑘|

and      бIe𝑘 = {
 бIe0        𝑖𝑓 б̃Ie𝑘 ≥ бIe0/𝓀б

  𝓀бб̃Ie𝑘     𝑖𝑓 б̃Ie𝑘 < бIe0/𝓀б

 where, б̃Ie𝑘 = ϱ𝑒б̃I𝑒 𝑘−1 + (1 − ϱ𝑒)|Ĩ𝑒 𝑘|

𝒴𝑐
𝑘+ = 𝑚−0.5 × [𝒴1

𝑘 − �̂�𝑘 , 𝒴2
𝑘 − �̂�𝑘  , … , 𝒴𝑚

𝑘 − �̂�𝑘]

𝒳𝑐,𝑘
++ = 𝑚−0.5 × [𝒳1

𝑘 − �̂�𝑘
−, 𝒳2

𝑘 − �̂�𝑘
− , … , 𝒳𝑚

𝑘 − �̂�𝑘
−] 

𝒫𝜉𝑦
𝑘 = (𝒳𝑐,𝑘

++)(𝒴𝑐
𝑘+)T,  𝒵𝑘 = 𝒫𝜉𝑦

𝑘 (𝒫𝒚
𝑘)−1

𝒮𝜉
𝑘 = 𝐓𝐫𝐢𝐚([𝒳𝑐,𝑘

++ − 𝒵𝑘𝒴𝑐
𝑘+   𝒵𝑘𝒮R

𝑘]), �̂�𝑘 = �̂�𝑘
− + 𝒵𝑘(𝒚𝑘 −

�̂�𝑘)

A. Discrete Time Realization/Implementation of ADS

Scheme:

To realize the ADS (18)-(24) using a microcontroller or a 

digital signal processor the parameter estimate is calculated 

iteratively using the sampled quantities and previous values 

as follows. 

�̂�𝑐𝑖
𝑘 = �̂�𝑐𝑖

𝑘−1 + Ts𝜆𝑐𝑖z̃𝑘 sin(𝑖𝜔1
𝑘(𝑘 − 1)Ts) (25) 

�̂�𝑠𝑖
𝑘 = �̂�𝑠𝑖

𝑘−1 + Ts𝜆𝑠𝑖z̃𝑘 cos(𝑖𝜔1
𝑘(𝑘 − 1)Ts) (26) 

�̂�DC
𝑘 = �̂�DC

𝑘−1 + Ts𝜆DCz̃𝑘 (27) 

�̂�DC1
𝑘 = �̂�DC1

𝑘−1 − (𝑘 − 1)Ts
2𝜆DC1z̃𝑘 (28) 

𝑓1
𝑘+1 ≈ 𝑓1

𝑘 − 2𝜋Ts휂𝜔z̃𝑘 × (29) 

∑ {�̂�𝑐𝑖
𝑘 𝑖𝑘Tscos(𝑖𝑘𝜔1

𝑘Ts) − �̂�𝑠𝑖
𝑘 𝑖𝑘Tssin(𝑖𝑘𝜔1

𝑘Ts)}𝑛
𝑖=1

where, T𝑠 is the sampling time.

∴ �̂�1
𝑘 = ((�̂�𝑐𝑖

𝑘 )
2

+  (�̂�𝑐𝑖
𝑘 )

2
)

1/2 (30) 

and �̂�1
𝑘 = sin−1(�̂�𝑠1

𝑘 /�̂�1
𝑘) (31) 

These laws (25)-(31) can be directly derived from the discrete 

versions of (9) and (22), given by expressions (32) and (33) 

below, respectively. 

𝒯𝑘(Θ̃𝑘 , 𝛾𝑘) = 0.5(𝛾𝑘
Tℳ𝛾𝑘) + 0.5(Θ̃𝑘

TΛ−1Θ̃𝑘) (32) 

𝒥𝑘 = 0.5ℰ𝑘
2 = 0.5(�̂�𝑘 − 𝑠𝑘)2 (33) 

Theorem 1: The estimated frequency tracks its real time 

trajectory and the error decays exponentially if 휂𝜔
𝑘  

satisfies(34), 0 < 𝛽𝑓 < 2 and 휂𝜔
∗ = 𝛽𝑓Ts

−1/(𝜕ℰ𝑘/𝜕�̂�1
𝑘)

𝑚𝑎𝑥

2

0 < 휂𝜔
𝑘 = 휂𝜔

∗ < 2Ts
−1/(𝜕ℰ𝑘/𝜕�̂�1

𝑘)
𝑚𝑎𝑥

2
 (34)

Proof: Detailed Proof is not provided due to space 

constraints. Equations (29)-(31) are used to obtain current and 

voltage phasor parameters (amplitude, frequency and phase) 

which are then used to generate inputs 𝒖𝑘 = [V𝑘 fV,𝑘] and

measurements 𝒚𝑘 = [P𝑒,𝑘  I𝑒,𝑘] for the DDSE stage.

V. RSCKF BASED DECENTRALIZED DYNAMIC STATE

ESTIMATION FRAMEWORK 

Nonlinear robust square-root Bayesian filter employing 

3rd degree cubature rule has been used to estimate the 

unobservable internal states of the machine dynamically. This 

filter, like conventional Bayesian filters, uses two sequential 

update steps for state estimation: prediction of state vector 

from the previous estimate and correction using 

measurement. However, in the measurement update of the 

RSCKF, the noise covariance matrix ‘R𝑢
𝑘 ’ is modified (R̂𝑢

𝑘 ) to

account for higher order (non-Gaussian) statistics and 

counteract the impulsive noise of the measurement vector. 

R̂𝑢
𝑘  is derived using a nonlinear regression paradigm (35) of 

the measurement vector, and is given by (38). 

Y𝑘 = H𝑘(𝝃𝑘, 𝒖𝑘) + 휀𝑘, Y𝑘 = [𝒮𝑅
𝑘]−

1

2𝒚𝑘
(35) 

H𝑘(𝝃𝑘 , 𝒖𝑘) = [𝒮𝑅
𝑘]−

1

2𝒉𝑝(𝝃𝑘, 𝒖𝑘), 휀𝑘 = [𝒮𝑅
𝑘]−

1

2𝓻𝑘

where, R𝑢
𝑘 = (𝒮R

𝑘)(𝒮R
𝑘)T. Then the cost function 𝐉𝐂 (36) is

used to obtain the modulated error covariance R̂𝑢
𝑘 .

𝐉𝐂 = ∑ 𝐆б𝑖 𝑘
𝑛𝑦

𝑖=1
= ∑ 𝑒−𝜀𝑖 𝑘

2 /2б𝑖 𝑘
2𝒏𝒚

𝒊=𝟏
(36) 

Adapting the similar procedure as in [29], the re-weight 

matrix ℳ𝑘 is used to modify the covariance of R̂𝑢
𝑘  in (38) to

limit the variation in innovation vector, (�̃�𝑘 = �̂�𝑘 − 𝒚𝑘). The

variable 휀𝑖 𝑘 is the 𝑖𝑡ℎ element in �̃�𝑘 at 𝑘𝑡ℎ instant of time.

ℳ𝑘 = 𝑑𝑖𝑎𝑔(𝐆б1 𝑘 … 𝐆б𝑛𝑦 𝑘) (37)

where, 𝐆б𝑖 𝑘 = 𝑒−𝜀𝑖 𝑘
2 /2б𝑖 𝑘

2
, and б𝑖 𝑘 is the adaptive bandwidth

of the kernel and it is used to adjust the distribution width. 

R̂𝑢
𝑘 = [𝒮𝑅

𝑘][ℳ𝑘]−1[𝒮𝑅
𝑘]T (38) 

In the methods proposed in [15]-[16],[27]-[28], [30] the 

weight function is tweaked to avoid numerical instability in 

the inversion process and/or б𝑖 𝑘 is chosen arbitrarily.

However, in the proposed methodology, R̂𝑢
𝑘  (38) is 

modulated adaptively by the self-tuning weight function 𝐆б𝑖 𝑘

as discussed below (Fig. 2. (a)).  

A. Kernel bandwidth б𝑖 𝑘 design and RSCKF performance

The kernel width б𝑖 𝑘 significantly influences the steady

state performance and convergence rate of the RSCKF. If б𝑖 𝑘
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is too large, RSCKF reduces to a generic CKF and if б𝑖 𝑘 is

too small the filter estimate may diverge. As shown in Fig. 2. 

(b), RSCKF performance measured as normalized mean-

squared estimation error (MSE) varies with variation in б𝑖 𝑘

for different noise statistics. In the case of Gaussian noise б𝑖 𝑘

should be high for better performance whereas for non-

Gaussian noise it should be low. Therefore, the kernel 

bandwidth б𝑖 𝑘 is designed adaptively to ensure RSCKF

performance is better irrespective of the nature of noise 

statistics. A heuristic for adaptive evolution of б𝑖 𝑘 which

ensures enhanced robustness to noise statistics obtained 

from (36), (A4)-(A9) is given by (39). 

б𝑖 𝑘 = {
 б𝑖0        𝑖𝑓 б̃𝑖 𝑘 ≥ б𝑖0/𝓀б

 𝓀бб̃𝑖 𝑘     𝑖𝑓 б̃𝑖 𝑘 < б𝑖0/𝓀б

(39) 

with, б̃𝑖 𝑘 = ϱeб̃𝑖 𝑘−1 + (1 − ϱe)|�̃�𝑘|, 0 < ϱe < 1 whereas

б𝑖0 = 𝓀б = 20. The RSCKF algorithm equations for kth

iteration of the DDSE are given in Table-I.  

VI. DSE FILTER STABILITY

The choice of filter ensures balanced performance between 

computational efficacy and ability to deal with strong power 

system nonlinearities, as detailed in subsequent section. This 

section addresses the convergence of the DDSE algorithm 

without any modelling assumptions (unlike[30], [32]). 

Fig. 3. Convergence/dynamic performance of ADS against other methods. 

Fig. 4. Estimated parameters and corresponding errors of voltage V13. 

TABLE II; SIGNAL PARAMETER ESTIMATION ERRORS: 3% NOISE 

Errors ↓ GTWLS IDFT-KF DSTKF ADS 

Max (FE) (𝐻𝑧) 0.0776 0.0675 0.0651 0.0245 

RMSE (FE) (𝐻𝑧) 0.0295 0.0142 0.0584 0.0039 

Max (AE) (p.u.) 0.0126 0.0117 0.0109 0.0062 

RMSE (AE) (p.u.) 0.0087 0.0054 0.0025 0.0012 

TABLE III : Bias  (𝜇): Standard Error (𝜎) 

�̂�9
HuberM-CKF IDFT-UKF ADS-DDSE 

𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 

𝛼9 0.188 0.151 0.188 0.128 0.033 0.057 

𝜔9 -0.003 0.001 -0.004 0.001 0.001 0.000 

𝑒𝑑9
′ -0.067 0.032 -0.067 0.048 -0.017 0.016 

𝑒𝑞9
′ -0.236 0.188 -0.212 0.141 -0.034 0.069 

𝜓𝑑9 -0.268 0.218 -0.254 0.164 -0.028 0.054 

𝜓𝑞9 0.160 0.090 0.153 0.180 0.014 0.021 

E𝑓𝑑9 -0.122 0.298 -0.098 0.326 0.002 0.024 

𝑝𝑠𝑠1 9 -0.014 0.004 -0.012 0.003 -0.001 0.000 

𝑝𝑠𝑠2 9 -0.024 0.016 -0.026 0.014 0.005 0.004 

𝑝𝑠𝑠3 9 -0.025 0.015 -0.027 0.014 0.004 0.003 

A. Boundedness of Estimation Error

Let �̃�𝑘
− = 𝝃𝑘 − �̂�𝑘

−, �̃�𝑘 = 𝒚𝑘 − �̂�𝑘 and �̃�𝑘 = 𝝃𝑘 − �̂�𝑘 be the

prediction, measurement estimation and filtering errors of 

DDSE respectively. Using Table-I and equations in the 

Taylor series expansion of (2) around �̂�𝑘−1, we have 

�̃�𝑘
− = 𝑎𝑘F𝑘𝝃𝑘−1 − 𝑎𝑘F𝑘𝒵𝑘�̃�𝑘−1 + 𝓼𝑘−1 (40) 

𝒫𝜉
𝑘− = [𝔾]𝒫𝜉

𝑘−1 [𝔾]𝑇 + Q𝑘
∗ (41) 

where, 𝔾 = 𝑎𝑘F𝑘(𝐈 − 𝒵𝑘𝑏𝑘Ω𝑘), �̃�𝑘 = 𝑏𝑘Ω𝑘𝜉𝑘
− + 𝓇𝑘,

F𝑘 = (𝑑𝒇𝑝(𝑥, 𝑢)/𝑑𝑥)
𝝃=�̂�𝑘−1

, Ω𝑘 = (𝑑𝒉𝑝(𝑥, 𝑢)/𝑑𝑥)
𝝃=�̂�𝑘

−

where, diagonal matrices 𝑎𝑘, 𝑏𝑘 account for system

linearization errors and filter tuning. Q𝑘
∗ = Q𝑘 +

(𝑎𝑘F𝑘𝒵𝑘)R𝑘(𝑎𝑘F𝑘𝒵𝑘)T. Stability theorem stated below

resembles the Theorem 3.1 in [32] (for linear systems) with 

some simple extensions.  

Theorem 2: For a decentralized power system (2), the 

RSCKF algorithm (Table-I) convergence is guaranteed, i.e., 

the innovation error (�̃�𝑘) and the estimation error (�̃�𝑘) are

bounded with certainty ⇒ lim
𝑘→∞

�̃�𝑘 = 𝟎 and lim
𝑘→∞

�̃�𝑘 = 𝟎.

Proof: The boundedness of �̃�𝑘
−, �̃�𝑘 and �̃�𝑘 is proven by using

equations of the (Table-I), (40)-(41) and considering 

ℒ𝑘(�̃�𝑘
−) = (�̃�𝑘

−)𝑇(𝒫𝜉
𝑘−)−1(�̃�𝑘

−) as a Lyapunov function.

Measurement model here is nonlinear. Therefore, the proof 

here differs from the proofs given in [31], (wherein 

measurement model is linear and other unrealistic 

assumptions have been made). It can be proven that the 

convergence of innovation guarantees the convergence of 

estimates. A detailed derivation of the proof has been omitted 

here due to limited space.  

VII. CASE STUDIES

The proposed scheme has been tested on a benchmark 16-

machine-68-bus test system (Fig. A1 in the Appendix). An 

ADS based DDSE is located at each machine of the test 

system, and it estimates the states for the unit dynamically. 
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Fig. 5. Comparison of the proposed DDSE scheme with its precursors for 9th 

unit states for the base case scenario (200 Monte-Carlo runs). 

A. Performance of Adaptive Detection Scheme (ADS)

The convergence and the dynamic performance of the ADS

against its precursors like IDFT [5], GTWLS [20] and

DSTKF [22] was evaluated by estimating the frequency of a

synthetic signal given by (42) below.

𝑠(𝑡) = 𝑠1𝑠𝑖𝑛(2𝜋𝑓1𝑡 + 𝜋/3) (42) 

𝑓1 = {
50𝐻𝑧  𝑡 ≤ 4

49.75 𝐻𝑧     𝑡 > 4
where, 𝑠1 and 𝑓1 are respectively the amplitude and frequency

of this synthetic signal. The frequency estimate trajectory 

with different methodologies is depicted in Fig. 3. The 

convergence and the dynamic performance of the proposed 

ADS is comparatively better.  

The preceding stage of the methodology (i.e., ADS) uses 

instantaneous V(𝑡) and I(𝑡) as measurements, which are 

produced by adding noise to the analogue values of the 

current and the voltage of the unit. Dynamic phasor 

estimation via ADS was further illustrated by estimating the 

voltage phasor parameters of the 13th generator and 

subjecting the test system to a bolted 3-phase fault at bus 54 

at 𝑡 = 1𝑠 [4]. The fault was cleared at 𝑡 = 1.18𝑠 by opening 

the faulted tie-line of the double circuit. The estimated 

parameters are plotted in Fig. 4, wherein the performance of 

the ADS method is compared to state-of-the-art phasor 

estimation methodologies, namely, interpolated-DFT [5], 

generalized Taylor weighted least squares (GTWLS) [20] and 

DSTKF [22]. A DC bias of magnitude 0.0205 (2%) was 

added at 𝑡 = 5𝑠 for 0.5𝑠 to the instantaneous PT 

measurement to evaluate the robustness of the ADS scheme. 

The normalized signal parameter errors (both maximum and 

root-mean-squared values) for 200 Monte-Carlo runs have 

been tabulated in Table-II. In this table, AE represents the 

error in the estimated amplitude whereas FE represents the 

error in the estimated frequency of the signal respectively. 

The estimation errors with the proposed ADS are marginal 

compared to its state-of-the-art precursors [5], [20]-[22]. As 

established through theory and time domain simulations, the 

ADS is immune to distortions, stepped DC anomalies, and the 

noise present in the measurements, whereas other direct 

phasor estimation methods become unstable or do not 

produce accurate phasor estimates (Fig. 4). Hence, in the 

subsequent DDSE part, the comparison is made with PMU 

based DDSEs assuming a maximum total vector error TVE 

of 1% (although PMUs may also not guarantee 1% TVE 

under stepped amplitude/phase jumps, DC anomalies and 

distortions, unlike the proposed ADS method). 

B. Performance of Decentralized Dynamic State Estimator

The subsequent part uses robust SRCKF whose time step

is selected as 0.01s, as explained in [4]. Therefore, ADS 

estimates are supplied to the state estimation stage at a 

sampling time of 0.01s via zero order hold (ZOH). For 

performance comparison, the proposed DDSE scheme is 

compared with, robust CKF/UKF utilizing Huber 

function [27]-[28], [31], wherein it uses PMU measurements 

directly for the estimation of the states, and IDFT-UKF [5], 

which uses analogue measurements like the proposed DDSE. 

For base case comparison, the measurement error in the 

proposed methodology and IDFT-UKF is chosen as 3% as 

specified by the standards [39]-[40], whereas 1% TVE is 

chosen for PMU measurements as per IEEE standards [8]. A 

fast decaying DC component with 𝑠DC = 0.051 𝑝. 𝑢. (5%)

was also added to the measurements at t=2.5s. The 

effectiveness of the DDSE methodology was examined by 

subjecting the steady state system to aforementioned 

disturbance. Simulated states along with their dynamic 

estimates, with the proposed scheme and the other schemes 

for the base case, for the 9th unit have been plotted in Fig. 5. 

To save space, the plots for other units have not been shown. 

For 200 Monte-Carlo runs, the bar plots and corresponding 

probability distribution functions (PDFs) of the errors of the 

estimated states over the simulated time of 12s for 9th 

machine are shown in Fig. 6. The Normalized biases 𝜇 and 
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standard errors 𝜎 of the estimates for 9th machine are given in 

Table-III. With the proposed DDSE, the estimated states 

almost coincide with theoretical values with minimal bias 

(i.e., the estimates with ADS-DDSE are relatively unbiased) 

and the standard error (SE) is comparatively low. Therefore, 

its performance is better in comparison to its precursors for 

the base case scenario as established by test results. 

Fig. 6. Bar plots and corresponding PDFs of the estimation errors for 9th unit 
states for the base case (Gaussian Noise: 200 Monte-Carlo runs). 

Fig. 7. Estimation of ω13 with DC bias in the measurement (V13). 

Fig. 8. Comparison of estimation of ω9 for colored noise for base case 

Fig. 9. Two-area system: Comparison of estimation of ω1 for colored noise.

Fig. 10. Effect of instrumentation channel parameter variation (saturation 

factor) and harmonic distortion on DDSE performance. 

C. Robustness to stepped DC outliers in the Measurement

The robustness against stepped DC outliers has further

been tested by adding -0.011 (10%) DC bias from 𝑡 = 4𝑠 for 

1𝑠 to V13 and testing the DDSE performance. The estimates

(Fig. 7) with the proposed DDSE are accurate even with 

stepped outliers in the measurement data. 

D. Robustness to Measurement Noise Characteristics

Non-Gaussian measurement noise has been used to test the

sensitivity of the developed methodology. Estimation plot of 

𝜔9 in the presence of colored noises has been shown in Fig.

8 (a). Corresponding bar plots and PDFs of the estimation 

error for 200 Monte-Carlo runs is shown in Fig. 8 (b). It is 

clear from the test results that robust RSCKF based DDSE 

performs accurately whereas the estimation results in the case 

of other DDSE algorithms are comparatively inaccurate when 

the measurement noise is non-Gaussian. It has been further 

validated by performing a similar test on a 2-area 4-generator 

benchmark model (Fig. A2 in the Appendix) assuming 3% 

colored noise contamination of the analogue measurements. 

In this case, the test system was subjected to a 3-phase fault 

at bus 9 at t=1s and the fault was cleared at t=1.1s by opening 

the faulted tie-line of the double circuit. The proposed 

estimator performance is accurate compared to IDFT-UKF 

and Huber-M CKF estimators Fig. 9 (a)-(b).  

E. DDSE Accuracy, Measurement Chain and Harmonics

Variation in the measurement chain parameters (saturation

factor (SF) (Appendix-A), burden resistance, length of the 

control cables, etc.) impart distortion and have an adverse 
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impact on the quality of the data [13]-[14]. The saturation 

factor (SF) of ITs was varied over its range and the DDSE 

accuracy index (normalized mean square error: NMSE) was 

plotted (Fig. 10 (a)). This index remains constant as long as 

SF is less than unity and increases marginally as SF is 

increased beyond unity. The impact of the variation in other 

parameters of the instrumentation chain is similar. ADS-

DDSE is also robust to the harmonic contamination of CT/PT 

measurements (Fig. 10 (b)) and performs better than IDFT-

UKF [5]. 

Fig. 11. Observability and Scalability: Estimation of  𝛼13 and 𝛼9. 

Fig. 12. EMT test case two-area system: Estimation of ω1 via ADS-DDSE.

Fig. 13. Scaled Laboratory Setup for real-time implementation using Op5600 

multiprocessor. 

Fig. 14. Real-time results: (a): Gaussian Case (b) Non-Gaussian Case 

F. Scalability and Observability Condition

Observability refers to the ability of estimating the state

vector in its entirety from the accessible measurement vector 

whereas scalability refers to robustness of estimation 

accuracy/quality with an increase in the dimension of the state 

vector that needs to be estimated. Observability is assessed 

by checking the rank of the observability matrix “𝕆” [33].  

𝕆 = ∇ {[𝓛𝑓
𝟎𝒈 𝓛𝑓

𝟏𝒈 ⋯ 𝓛𝑓
𝒏−𝟏𝒈]

T
} (43) 

where, 𝓛𝑓𝒈 = ∇𝒈. 𝒇, 𝓛𝑓
𝟎𝒈 = ∇𝒈 and 𝓛𝑓

𝒊 𝒈 = ∇(𝓛𝑓
𝒊−𝟏𝒈). 𝒇

If the rank of “𝕆” is 𝑛𝑥, then the system is observable.

Based on the rank condition of (43), all the units of the test 

system are completely observable when P𝑒 and [P𝑒 I𝑒]T are

used as measurement sets separately. However, the numerical 

observability index [33] is smaller in the case of Pe as

measurement and relatively higher when [P𝑒 I𝑒]T is the

measurement vector for 9th unit. For 13th unit with only six 

states, there is not much difference in the estimation accuracy. 

Corresponding estimation results (Fig. 11) validate the 

observability analysis. Despite having full rank of the 

observability matrix in both the cases, the estimates show 

weak observability when Pe alone is the measurement for 9th

unit. Due to weaker observability, DDSE is very sensitive to 

measurement noise, and it limits the bad data identification 

and detection capability and necessitates the use of redundant 

(or derived) measurements, if available, to improve the 

estimation accuracy, particularly when the state vector 

dimension is high. 

G. High Fidelity EMT Models and ADS based DDSE

The proposed estimator works well even with high fidelity

EMTP models. For demonstration, the estimation of a 

generator-1 (G1) speed of an IEEE 2-Area 4-Generator model 

using the proposed methodology, and using analogue 
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measurements acquired from the EMTP model, is shown in 

Fig. 12. The analogue measurements were contaminated with 

3% colored noise as per standards. The accurate estimate of 

speed illustrates the efficacy and compatibility of the 

proposed ADS based estimation algorithm with high fidelity 

EMTP models. 

H. Computational Viability and Real-Time Implementation

A case study takes 0.79ms per iteration on a workstation

computer with 𝑖7-10070 CPU, 2.9 GHz processor and 

15.8GB usable RAM. Hence, the requirements of 

computation can be met by an average embedded processor. 

OP5600 Opal-RT multiprocessors were used to implement 

the above-mentioned test case scenarios in real-time (RT) 

Fig. 13. Linux Redhat platform-based Opal-RT processor 

was used to emulate the system/network dynamics and, 

therefore, worked as a real-time station and a QNX based 

OP5600 core was used to realize the ADS-DDSE algorithm. 

The workstation computer with RT-lab (𝑖7-10070 CPU, 2.9 

GHz processor and 15.8GB usable RAM), real-time station 

(RTS) and QNX core2 (implementing ADS-DDSE method) 

interact with each other through 100Mbit/𝑠 local area 

network (LAN) based ethernet connection. The OPAL RT-

lab central control was utilized to build the “C” code and 

subsequently used to run this code on multiprocessor of the 

RTS via a LAN ethernet link. The same central control of the 

OPAL RT-lab was utilized for code generation for the ADS-

DDSE algorithm, and to download it to QNX core2 for 

executing it in real-time via a LAN ethernet link. The 

interface between the two multiprocessor cores was setup in 

analogue domain through built-in DAC/ADC modules, so 

that it was virtually impossible for the ADS-DDSE estimator 

to distinguish between the emulated plant and the actual 

plant. It validates the practical applicability and 

implementation of the ADS-DDSE in real-time. The test 

results of the above-mentioned executed scenarios were 

captured using RT1004 digital storage oscilloscopes as 

shown in Fig. 14. (a) (wherein 3% Gaussian noise was added 

to the measurements), Fig. 14. (b) (wherein 3% non-Gaussian 

noise was added to the measurements). As deduced from the 

real-time test case scenarios, ADS-DDSE algorithm for 

estimation of machine states is robust and can be realized 

using a multiprocessor with similar computational 

characteristics as Opal-RT processor. 

 
Fig. A1: Simplified line diagram of the 68 bus test system [44] 

VIII. CONCLUSION 

ADS based DDSE methodology employing adaptive 

RSCKF with qualities like numerical accuracy, filter 

stability, robustness and swift convergence has been 

presented in this work. It has been implemented at each 

machine of the interconnected power system and it uses local 

analogue measurements for estimating the interior states of 

the synchronous machine dynamically. Proposed ADS-

DDSE methodology is immune to synchronization errors, 

harmonics, noise statistics and DDAs. The proposed DDSE 

is computationally less intensive and can be realized using an 

ordinary microcontroller. Benchmark power system was used 

to test the effectiveness of the scheme. It is well suited for a 

range of power system control [12], [30], [34]-[35] and 

protection applications [42]-[43]. 

APPENDIX A  

Fig. A2: Simplified line diagram of the two-area test system [44] 

Fig. A3: IEEE PSRC recommended CT model [36], [37] 

IEEE PSRC recommended CT model is shown in Fig. A3. 

The saturation and hysteresis characteristics of the CT is 

appropriately captured in the transmitted signal on the 

secondary side 𝑖𝑠(𝑡) (A1) when the excitation current 𝑖𝑒(𝑡) is

given by (A2).  
𝑖𝑠(𝑡) = 𝑖𝑝(𝑡)/NCT − 𝑖𝑒(𝑡) (A1) 

𝑖𝑒(𝑡) =
10(2𝜋𝑓)𝑆|𝜆𝑒(𝑡)|𝑆𝑠𝑔𝑛(𝜆𝑒(𝑡))

(√2V𝐸)
𝑆

𝑅𝑝

(A2) 

𝜆𝑒(𝑡) = 𝜆𝑒(𝑡 − 1) + Δ𝜆𝑒(𝑡 − 1) (A3) 

where, 

𝛥𝜆𝑒(𝑡) =
𝑅𝑏(𝑖𝑠(𝑡) − 𝑖𝑒(𝑡)) + 𝐿𝑏𝑑𝑖𝑠/𝑑𝑡 

1 + 𝐿𝑏𝑆|𝜆𝑒(𝑡)|𝑆−110(2𝜋𝑓)𝑆/ ((√2V𝐸)
𝑆

𝑅𝑝)
Δ𝑡 

and 𝑅𝑝 = √
1

2𝜋
∫ 𝑠𝑖𝑛2𝑆(2𝜋𝑓𝑡)𝑑𝑡

2𝜋

0
 

where, 𝑖𝑠(𝑡) is the current transformer secondary current,

𝑖𝑒(𝑡) is the CT exciting current whereas 𝑖𝑝(𝑡) is the CT

primary current. NCT is the turns ratio of the CT, 𝜆𝑒  (𝑡) is the

flux, 𝑅𝑏 and 𝐿𝑏 represent the burden resistance and the burden

inductance respectively, 𝑆 is the excitation curve slope, V𝐸 is

the exciting voltage at the rated exciting current whereas Δ𝑡 

is the time step of the integration. 

Saturation factor (SF): The ratio of voltage of an IT on the 

secondary side to voltage on the primary side is called 

saturation factor (SF). When SF is more than unity, it 

specifies the transformer core is saturated and the secondary 

side waveshape is significantly distorted. 
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Derivation of expression for adaptive Gaussian kernel width 

б𝑖 𝑘.

From equation (36) we have, 

𝐉𝐂 = ∑ 𝐆б𝑖 𝑘
𝑛𝑦

𝑖=1
= ∑ 𝑒−𝜀𝑖 𝑘

2 /2б𝑖 𝑘
2𝒏𝒚

𝒊=𝟏
(A4) 

For optimal value derivation of individual Gaussian 

kernel [45], 𝜕𝐆б𝑖 𝑘/𝜕휀𝑖 𝑘 = 0. Therefore,

𝜕𝐆б𝑖 𝑘/𝜕휀𝑖 𝑘 = 𝜕 (𝑒−𝜀𝑖 𝑘
2 /2б𝑖 𝑘

2
) /𝜕휀𝑖 𝑘 = 0 (A5) 

= 휀𝑖 𝑘б𝑖 𝑘
−3(б𝑖 𝑘 − 휀𝑖 𝑘𝜕б𝑖 𝑘/𝜕휀𝑖 𝑘)𝑒−𝜀𝑖 𝑘

2 /2б𝑖 𝑘
2

= 0 

Since б𝑖 𝑘 > 0, therefore,

б𝑖 𝑘 − 휀𝑖 𝑘𝜕б𝑖 𝑘/𝜕휀𝑖 𝑘 = 0

∴ 𝜕휀𝑖 𝑘/휀𝑖 𝑘 = 𝜕б𝑖 𝑘/б𝑖 𝑘

⇒ 𝑙𝑛(б𝑖 𝑘) = 𝑙𝑛(𝑘б휀𝑖 𝑘)

⇒ б𝑖 𝑘 = 𝑘б|�̃�𝑘|, ∵  б𝑖 𝑘 > 0  (A6)

where, 𝑘б is a positive constant. To enhance the robustness of

a simplistic heuristic (A6) against impulsive outliers, б𝑖 𝑘 is

given by  

⇒ б𝑖 𝑘 = 𝑘бб̃𝑖 𝑘, ∵  б𝑖 𝑘 > 0 (A7) 

where, 

б̃𝑖 𝑘 = ϱeб̃𝑖 𝑘−1 + (1 − ϱe)|�̃�𝑘|, 0 < ϱe < 1 (A8) 

Therefore for robustness against both Gaussian as well as 

non-Gaussian noise б𝑖 𝑘 is given by

б𝑖 𝑘 = {
    б𝑖0        𝑖𝑓 б̃𝑖 𝑘 ≥ б𝑖0/𝓀б

 𝓀бб̃𝑖 𝑘    𝑖𝑓 б̃𝑖 𝑘 < б𝑖0/𝓀б

(A9) 
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