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Background: automation offers the potential to mitigate or reduce the risks related to 

driving. However, there are also some new challenges for drivers related to semi‐

automated driving. Two phases of semi-automated driving that raised concerns of the 

researchers were a period of automation that requires a monitoring activity from the driver 

and the take-over of manual control following the automated mode. Topic: the aim of this 

doctoral thesis was to propose models of the driver state monitoring in semi-automated 

vehicles and present data on the psychophysiological changes occurring during semi-

automated driving, as well as the circadian effect on semi-automated driving and driver 

state monitoring. Methods: fifty-two participants were recruited to the experiment on semi-

automated driving. They participated in two experimental sessions day-time session (9 

a.m.- 1 p.m.) and a night-time session (10 p.m.- 2 a.m.). They went through the

experimental scenario simulating semi-automated driving with phases of manual driving, 

automated phase, take-over and manual driving. During the experiment their 

psychophysiological functions were recorded with the following measures: 

electrooculography, electromyography, electrocardiography, respiration belt, electrodermal 

activity device, oximetry for the pulse and blood oxygenation, their voice was recorded for 

the acoustic voice analysis, saliva was collected for the hormonal analysis, and four 

questionnaires were collected at different stages of the experiment. Additionally, 

electroencephalography was recorded; however, its analysis was not included in this thesis. 

Results: two predictive models were proposed to predict performance after take-over and 

attention during automation. Analysis of the time-course of the semi-automated driving 



suggested a decrease of the driving performance after automation associated with increased 

sleepiness, increased fatigue, decreased readiness to take-over and decreased mental 

workload. Some physiological changes suggested mental underload. Comparison of the 

circadian phases resulted in multiple physiological, behavioural and cognitive changes. 

Conclusions: physiology can be used to predict the driver’s performance in semi-

automated vehicles; however, the proposed models are not ready to be implemented in the 

cars. Automation creates a risk for driving safety due to mental underload. Sleepiness and 

fatigue present the largest risk for automation monitoring, while suboptimal mental 

workload and arousal for the safety of the take-over. The circadian phase affects the 

psychophysiology and performance of the driver; however, the direction of the effects 

requires further investigation.  
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DEFINITIONS AND ABBREVIATIONS 

ANN- artificial neural network 

ECG- electrocardiography 

EDA- electrodermal activity 

EEG- electroencephalography 

EMG- electromyography 

EOG- electrooculography 

ERP- event-related potential  

fNIRS- functional near-infrared spectroscopy 

HI:DAVe- Human Interaction: Designing Autonomy in Vehicles 

HRV- heart rate variability 

KSS- Karolinska sleepiness scale 

NASA-TLX- NASA task load index 

NN50%-  number of pairs of successive NN (R-R) intervals that differ by more than 50 ms 

PERCLOS- Percentage closed 

PNN50%- the proportion of NN50 divided by the total number of NN (R-R) intervals 

RMSSD- root mean square of successive differences between normal heartbeats 

RSA- respiratory sinus arrhythmia  

SCL- skin conductance level 

SDSD- standard deviation of successive RR interval differences  

SNR- signal to noise ratio 

SVM- support vector machine 

TASCC- Towards Autonomy – Smart and Connected Control 

TORS- take-over readiness scale 

XLR- external line return 
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1. INTRODUCTION 

1.1 BACKGROUND 

This doctoral research formed part of a larger project called HI:DAVe (Human Interaction: 

Designing Autonomy in Vehicles). HI:DAVe was a collaboration between the University 

of Southampton, Cambridge University and Jaguar Land Rover with funding from the 

Engineering and Physical Sciences Research Council. The project examined the use of 

semi-automated vehicles from a Human Factors perspective. The critical topic of the 

investigation was the transition between semi-automated driving and manual driving, the 

so-called take-over problem.  

The take-over is perceived as one of the potential risk sources in semi-automated driving, 

and therefore many investigators put effort into unravelling its dynamics and 

characteristics. It motivated the joint effort to understand semi-automated driving take-over 

from a human factors perspective.  

A wide variety of literature suggested that semi-automated driving can alter the state of the 

driver (Kyriakidis et al., 2019), potentially impacting their capacity to safely resume 

manual control of the vehicle. Partial automation shifts the role of the driver from active 

vehicle control to that of passive monitoring activities. Unfortunately, monitoring is a role 

challenging from the perspective of human cognitive systems (Kyriakidis et al., 2019). It 

requires sustained attention but does not provide sufficient mental stimulation (Kyriakidis 

et al., 2019; Oken et al., 2006; Warm et al., 2008). Therefore, it might lead to a reduction 

in situation awareness (‘falling out of the control loop’), ‘mind-wandering’, fatigue or even 

falling asleep (Stanton, 2015). People might also choose to engage in a more stimulating 

task and neglect driving safety monitoring (Dogan et al., 2017; Eriksson & Stanton, 2017; 

Kyriakidis et al., 2019). Several states, including distraction, lack of situation awareness, or 

fatigue have been demonstrated the negative impact of semi-automated vehicles on driving 

behaviour (Heikoop et al., 2016; Parnell et al., 2016). Moreover, people tend to wrongly 

assess their fitness to drive (Filtness et al., 2017; Ftouni et al., 2013; Howard et al., 2014). 

Therefore, it is necessary to understand the driver state before take-over, as well as develop 

methods of assuring the safety of the process.  

One possible method to alleviate the risk identified above could be using information 

derived from driver psychophysiology to detect the driver state and readiness to take over 

manual control of the vehicle. However, the ability to effectively measure the state of the 

driver in relation to driving performance is a relatively neglected area of research. Also, 
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information about the application of the driver state monitoring systems in semi-automated 

vehicles are scarce. 

The main aim of this research work was to evaluate a wide range of methods for 

psychophysiological driver state monitoring in the semi-automated vehicle. The evaluation 

was meant to give a possibility to compare the effectivity of different methods as well as to 

assess their potential value in the prediction of actual driving performance. This main aim 

was accompanied by the analysis of the patterns in driver state during semi-automated 

driving and circadian effect on driver state monitoring and driver performance in semi-

automated vehicles.  

1.2 RESEARCH MOTIVATION 

The primary motivation of this research was to increase road safety in the perspective of 

the newly introduced technology of semi-automated vehicles. New technologies, including 

artificial intelligence, bring exciting opportunities to the society. It is the responsibility of 

scientists and manufacturers to ensure their safety and sustainability. This work 

experimentally investigated the physiology, driving performance, and psychological state 

of the driver in a simulated semi-automated vehicle. The main goal of this investigation 

was to evaluate and compare the practical value of different methods of driver state 

monitoring in the semi-automated vehicle but it also offered an analysis of the circadian 

effect on semi-automated driving, the circadian effect on driver state monitoring and 

analysis of general patterns of driver state in the semi-automated vehicle. It has been 

proposed that approaches to driver state monitoring should be investigated to provide a 

better understanding of the psychophysiological processes together with the effects of the 

circadian rhythm on semi-automated driving.  

The topic of semi-automated driving is relatively new and the knowledge about driver state 

in the process of automation and take-over is mainly based on predictions, rather than 

empirical science (Kyriakidis et al., 2019). There were many attempts to assess different 

physiological recordings methods in the context of driver state monitoring or risky state 

detection; however, they were mostly evaluated in the context of manual driving. They 

allowed associating many physiological states with driving risks. For example, the analysis 

of spectral features in ECG and EMG with KNN classifier allowed to obtain even 96.75% 

and 92.31 accuracy in drowsiness and distraction detection (Sahayadhas et al., 2015). 

Electrodermal liability in sleep-deprived people allowed to predict drowsiness (Michael et 

al., 2012), as well as neural network-based LDS analysis of EOG signal (Zhu et al., 2014). 

However, the majority of the studies lacked an ecological validity for the driving 
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environment. To validate the accuracy of their predictions, they used other physiological 

measures, questionnaires, experimental manipulation in the non-driving laboratory or basic 

cognitive tasks not related to driving. For example, Sahayadhas et al. (2015) created a 

number of experimental conditions to induce distraction and sleepiness. Behavioural 

distraction was induced with reading and answering the text message while driving the 

driving simulator, cognitive distraction by talking on the phone and solving mathematical 

equations, while drowsiness by a long period of the experiment. The high accuracy of 

classification that was reported was classification between different stages of the 

experiment. These results showed that ECG and EMG significantly differed between the 

situations when people answered the text message or talked on the phone. It brought an 

important knowledge about physiology but did not imply that distraction can be detected 

that way in a driver and moreover that it can be a predictor of driver performance. Another 

example is an experiment by Michael et al. (2012). They validated the level of drowsiness 

in sleep-deprived participants with a subjective scale and observation of sleepiness 

symptoms. Their results indicated electrodermal liability as a strong correlated of 

subjective sleepiness of participants, which still does not immediately apply to the driver 

performance. Zhu et al. (2014) used a simple button-press task and managed to predict 

results with EOG data, which does not mean that this could be immediately applied in the 

prediction of the performance in a complex activity that is driving. Such methods of 

validation confirmed the possibility of state detection with psychophysiology but there is a 

need for additional research investigating its ecological validity in the driver state 

monitoring. One of the reasons is that driving performance does not always change with 

the state of the driver. For example, a sleepy or distracted driver might still drive well 

using their additional available cognitive capacity (Parasuraman et al., 2008; Ross et al., 

2014; Young & Stanton, 2002). The current study aimed to predict performance and bring 

more ecological value that could be applied in real-life situations. It also used a semi-

automated driving experimental scenario to evaluate the methods in this type of vehicle.   

Psychophysiological monitoring is a complicated area because it requires a detailed 

collection of physiological data in an environment that creates a lot of signal noise. A 

proper selection of factors in complex physiological signals is needed, as well as for 

analytic methods that could derive meaningful information from the complex signals. In 

the case of this work, over ten psychophysiological functions were recorded 

simultaneously, which created an extremely difficult experimental environment as well as 

a challenging analytic task due to the need for features selection. This added more 

experimental data to support or confront the theoretical predictions of the effects of 

automation. 



 

26 

1.3 RESEARCH OUTCOMES AND HYPOTHESES 

The purpose and the main topic of this research thesis was driver state monitoring in semi-

automated driving. The experiment was designed to create an opportunity to compare the 

effectivity of multiple physiological methods of driver state monitoring and to evaluate 

their potential in the prediction of actual driver performance, rather than the subjective 

state. The psychophysiological experiment in the driving simulator set-up offered the 

opportunity to investigate psychophysiological changes during the time-course of semi-

automated driving as well as the circadian effect on the driver state monitoring. This 

project investigated four main research questions:  

1. What are the physiological measures and strategies of analysis that could allow 

effective monitoring of the driver state before manual driving take-over and 

prediction of the driving performance after the take-over?  

2. What are the physiological measures and strategies of analysis that could allow 

effective monitoring of the driver state during the automated phase to assess if the 

driver is paying appropriate attention?  

3. What is the general tendency of the psychophysiological driver state during the 

time-course of semi-automated driving (manual driving, automated phase, take-

over, and manual driving)? 

4. What is the effect of the circadian rhythmicity on the driver state monitoring during 

semi-automated driving? 

The primary aim of this research was the identification of an effective and accurate system 

of psychophysiological monitoring of the driver in semi-automated vehicles. Semi-

automated vehicles are still a relatively new technology and therefore understanding the 

mechanisms that could assure safety would be both crucial and novel. Driving safety, no 

matter if manual or semi-automated, is a topic of global importance. World Health 

Organization identified vehicle collisions as an epidemic and united with ministers in over 

one-hundred countries. Ministers agreed to halve road-related deaths by 2030 in the 3rd 

Global Conference on the Road Safety (Ministers to Agree New Global Road Safety 

Agenda to 2030, n.d.). Automated driving could help in this endeavour. 

The circadian perspective in this research was motivated by two lines of thought. Night-

time manual driving was documented as being significantly riskier; however, the circadian 

effect on driving has been generally neglected despite evidence (Akerstedt et al., 2013; 

Matthews, Ferguson, Zhou, Sargent, et al., 2012; Mitler et al., 1988). A similar 

phenomenon could be observed in semi-automated driving and the topic is worthy of 
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investigation. The second reason is that circadian rhythmicity influences many 

physiological functions (Blatter & Cajochen, 2007; Dijk et al., 1992; Van Dongen & 

Dinges, 2000) and as so, could also affect the interpretation of the signals in the system of 

physiological monitoring of the driver.  

The research aimed to offer both innovation for semi-automated vehicles and understand 

the processes related to semi-automated driving from the perspectives of physiology and 

circadian rhythms.  

1.3.1 RESEARCH HYPOTHESES 

The following research hypotheses were based on the literature reviews: 

1. Psychophysiological measurements of the driver during semi-automated driving 

can provide a prediction of the driving performance after take-over.  

a. Sub-hypothesis: psychophysiological indicators that can predict driving 

performance are related to one of the risky states identified in chapter 2, 

namely sleepiness, fatigue, distraction, mental workload or situation 

awareness. 

2. Psychophysiological measurements of the driver during semi-automated driving 

can provide a prediction of their attention during the automated mode of semi-

automated driving.  

a. Sub-hypothesis: psychophysiological indicators that can predict driver 

attention are related to one of the risky states identified in chapter 2, namely 

sleepiness, fatigue, distraction, mental workload or situation awareness. 

3. Driver psychophysiological state and performance differ before and after 

automated mode.  

4. Driver performance is worse after automated mode, while their 

psychophysiological state is related to the lower cognitive state.  

5. Driver psychophysiological state and performance in semi-automated vehicles 

differ between day and night.  

a. Sub-hypothesis: driving performance and attention during automation 

decrease during the night. 

 

1.3.2 RESEARCH OUTCOMES 
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Modelling of psychophysiological and performance data led to predictive models that 

partially explain changes in driver performance and attention during semi-automated 

driving. The models did not explain enough variance to be implemented in the vehicles at 

the present moment; however, they provided a base for future research and knowledge 

about risky driver states for different stages of semi-automated driving.  

The comparison of the driver performance and the driver state during the time-course of 

semi-automated driving suggested that driving performance was worse after automation 

due to cognitive underload. 

The comparison of the driver performance and the driver state between day and night 

experimental sessions allowed to identify several circadian differences; however, the 

assumed direction of worse performance at night was not confirmed.  

1.4 THESIS STRUCTURE 

This thesis contains eleven chapters and nine appendices. Chapter one is the introductory 

chapter and chapters two to six present findings from various reviews of the literature. The 

literature reviews provide an overview of the research landscape as well as identify gaps in 

knowledge. The reviews have also helped to identify driver states that jeopardize driving 

safety, available methods of driver state monitoring, and the existing information about the 

circadian effect on manual driving, semi-automated driving, as well as driver state 

monitoring. As the primary strategy of all the five literature reviews has been the same, it 

was described once below to avoid repetitions. Only the details, such as databases or 

inclusion/exclusion criteria, were defined separately for each case.  

The methodology of the literature reviews was based on the grounded theory approach, 

which was previously used in the driving research (Parnell et al., 2016), as well as the 

other human factors areas (Rafferty et al., 2010). Grounded theory was used in exploratory 

social research when the hypotheses were developed in the process of the literature search. 

The literature was compared continuously to establish search directions. The process was 

based on induction, deduction, and verification. The researcher was looking for questions 

and patterns emerging from the literature. The method used a strategy of open, axial and 

selective coding to identify main themes or factors for a given problem (Heath & Cowley, 

2004). Such an approach was beneficial in the case of this work because it allowed a 

broader view not overly restrained by the presumptions. 

Chapter seven presented a more technical and practical description of the laboratory 

construction and set of recommendations for the simultaneous measurements of multiple 
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psychophysiological functions. Psychophysiological experiments have a variety of 

requirements to ensure the high quality of the data (Cacioppo et al., 2007; Cutmore & 

James, 1999). There was a need for a laboratory construction to minimize acoustic noise, 

electromagnetic noise and to provide a suitable environment for other measures, for 

example, a freezer for saliva or a driving simulator. The noise insulated Faraday Cage with 

a low fidelity driving simulator was built in the Transportation Research Group garage.  

One elaborate experiment was conducted during this doctorate and different perspectives 

of the analysis led to the results presented in the chapters from eight to ten. Chapter eleven 

gathered results shown in all the chapters, discussed them and gave recommendations 

based on the experimental and theoretical work, as well as future research directions.   

1.4.1 CHAPTER 2: RISKY DRIVER STATES IN SEMI-AUTOMATED 

VEHICLES- REVIEW 

Chapter 2 reviewed literature related to the risky driver states to identify the states that 

could be interesting for a driver state monitoring system. The most commonly described 

states were drowsiness, fatigue, behavioural distraction, and cognitive distraction (Caird, 

2015; Jackson, Raj, et al., 2016; Johns, 2000; Liang & Lee, 2010); however, most of the 

literature was related to the manual driving. Based on the Consensus Model (Heikoop et 

al., 2016) also suboptimal mental workload and insufficient situation awareness were 

treated as relevant risks in semi-automated driving. The chapter also described risks 

coming from sleep inertia (Ferrara & De Gennaro, 2000; Wörle et al., 2020) that was 

identified as a new driving risk emerging from vehicle automation.  

1.4.2 CHAPTER 3: METHODS OF THE DRIVER STATE MONITORING- 

REVIEW 

Chapter 3 presented a review of the literature related to driver state monitoring or risky 

state detection. The aim was to identify available psychophysiological measures and select 

the most promising for the experimental work. An abundant list of methods used for the 

driver state monitoring was identified: electroencephalography (EEG) (Dhupati et al., 

2010), Hybrids of Methods (Sahayadhas et al., 2013), Eye-Tracking (Hogervorst, Brouwer, 

& van Erp, 2014), electrocardiography (ECG) (Brookhuis et al., 1991), electrooculography 

(EOG) (Borghini et al., 2014), functional near-infrared spectroscopy (fNIRS) (Aranyi et 

al., 2015), electrodermal activity (EDA) (Miyake et al., 2009), Acoustic Voice Analysis 

(Krajewski, Batliner, et al., 2009), event-related potential (ERP) (Resalat et al., 2012), 

electromyography (EMG) (Oken et al., 2006), Questionnaires (Horne & Baulk, 2004), 
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Blood Pressure (Veltman & Gaillard, 1996), Infrared Video Camera (Vitabile et al., 2010), 

Facial Expression (Fan et al., 2010), Saliva Analysis (Zeier et al., 1996), Body 

Temperature (Milosevic, 1997), Pupillometry (Mitler et al., 1988), Respiration (Rodríguez-

Ibáñez et al., 2011), Driving Performance (Bando & Nozawa, 2015), Body Position (Van 

Dongen & Dinges, 2000), Head Movements (Murata et al., 2015), Oximetry (Sharma & 

Bundele, 2015), Actigraphy (Mullaney et al., 1980), Blood Glucose (Fairclough & 

Houston, 2004), and Doppler Flow Meter (Miyake et al., 2009). The most commonly used 

measures were discussed in detail. 

1.4.3 CHAPTER 4: CIRCADIAN EFFECT ON MANUAL DRIVING- 

REVIEW 

Chapter 4 reviewed existing knowledge about the influence of the circadian phase on 

manual driving. Night and afternoon were times of documented decrements in driving 

performance (Akerstedt et al., 2013; Lowden et al., 2009); however, the methodology used 

in the majority of the studies did not allow the identification of circadian phase as the sole 

cause, as it is challenging to dissociate it from sleep deprivation (Blatter & Cajochen, 

2007).  

1.4.4 CHAPTER 5: CIRCADIAN EFFECT ON SEMI-AUTOMATED 

DRIVING- REVIEW 

It was documented that manual driving was significantly riskier at night. However, there 

are no experimental data about the influence of the circadian rhythm on semi-automated 

driving. Chapter 5 used a consensus model of the driver in automation (Heikoop et al., 

2016) and provided evidence that multiple factors in the model could be affected by 

circadian rhythm. A multi-period consensus model of the driver in automation was 

proposed (Kaduk et al., 2020) to create a theoretical basis for experimental research about 

the circadian effect on semi-automated driving.  

1.4.5 CHAPTER 6: CIRCADIAN EFFECT ON DRIVER STATE 

MONITORING- REVIEW 

Systems of the driver state monitoring use various psychological observations or 

physiological signals to derive information about the driver state and predict risks 

(Melnicuk et al., 2016). Many physiological and psychological states undergo circadian 

rhythmicity (Blatter & Cajochen, 2007; Dijk et al., 1997), and therefore have a different 

baseline at different circadian phases. Chapter 6 used a literature review to support the 
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suggestion that interpretation of the information from the driver state monitoring should 

take a circadian phase into account.  

1.4.6 CHAPTER 7: CREATION OF THE LABORATORY FOR 

PSYCHOPHYSIOLOGICAL MEASUREMENTS OF THE DRIVER 

The experimental data gathered during this doctorate presented a tremendous technical 

challenge. Multiple physiological functions were recorded simultaneously during the 

simulated semi-automated drive. For this purpose, a laboratory was constructed in the 

garage of Transportation Research Group. A driving simulator was placed inside a noise 

insulated Faraday Cage. Several steps were undertaken to assure the best quality of data 

recording and reduce the amount of noise in signals. Chapter 7 described the laboratory 

construction and provided recommendations for a laboratory measuring multiple 

physiological functions simultaneously. A decision tree was presented as a prototype of a 

research support tool with a unique set of recommendations for laboratory and 

experimental set-up for different combinations of physiological recordings used in the 

experiment.  

1.4.7 CHAPTER 8: TIME-COURSE OF SEMI-AUTOMATED DRIVING- 

EXPERIMENTAL RESULTS 

Chapter 8 provided details of the experimental work conducted during this doctorate and 

analysis related to the time-course of semi-automated driving. The results supported the 

hypotheses suggesting that driving performance decreased after automation, participants 

felt sleepier, more fatigued, and less ready to take-over the manual control over the 

vehicle. Their physiology suggested a cognitive underload that could explain the decrease 

in their performance. Moreover, participants were not able to accurately assess their own 

fitness to drive.  

1.4.8 CHAPTER 9: CIRCADIAN EFFECT ON SEMI-AUTOMATED 

DRIVING AND DRIVER STATE MONITORING- EXPERIMENTAL 

RESULTS 

Three literature reviews suggested a potential decrease in driver performance in semi-

automated vehicles at night. Chapter 9 provided results of the statistical analysis of the 

experimental data, comparing day and night driving performance and psychophysiological 

states. The results only partially supported the hypotheses. There were multiple circadian 

differences that could affect the driver state monitoring system; however, the direction of 

the changes was not clear, and the topic requires further research.  
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1.4.9 CHAPTER 10: DRIVER STATE MONITORING IN SEMI-

AUTOMATED VEHICLES- EXPERIMENTAL RESULTS 

Chapter 8 suggested a decrease in driving performance after the automated phase 

accompanied by an inability of the driver to accurately assess their own fitness to drive. By 

way of a follow-up, Chapter 10 presented the results of the modelling of the 

psychophysiological and driving data to create prediction models. The aim of the models 

was to suggest a system of driver state monitoring to assure safe-take over and attention 

during the automated phase. It was possible to partially predict driver performance with 

linear equations based on the psychophysiological functions, which partially confirmed the 

hypotheses. A model predicting driving performance after take-over used factors derived 

from ECG, some factors derived from EDA, and scores from the NASA-TLX 

questionnaire. Although it was a statistically significant linear model, it explained only 

22% of the variance in driving performance after the take-over. The model predicting 

attention during the automated phase used a factor derived from EOG and explained 23% 

of the variance in the attention test during automation. Both models presented valid 

associations between performance and physiology; however, at this stage, they are not 

ready to be implemented in road-going vehicles and requires more research.  

1.4.10  CHAPTER 11: DISCUSSION AND CONCLUSIONS 

Chapter 11 summarized all the work presented in the previous chapters, discussed it, and 

listed its limitations. It offered several recommendations for the manufacturers as well as 

directions for future research.  

1.5 CONTRIBUTION OF KNOWLEDGE 

This doctoral thesis presented a novel work on the psychophysiology of the driver in the 

semi-automated vehicles, circadian effect on semi-automated driving and driver state 

monitoring in the semi-automated vehicles. It supported previous concerns related to the 

underload of the driver during automation and its detrimental effect on the performance. 

Additionally, this research has provided evidence that such a result might be more 

exaggerated at night. Moreover, it has shown that drivers are not effective in self-

assessment of their own fitness to drive. These were novel results because of the variety of 

psychophysiological methods used in this study simultaneously. Besides, two predictive 

models were proposed as systems of psychophysiological driver state monitoring. 

However, the predictive power of the models was low, so they are not ready to be 

implemented in the vehicles at this present moment. The models can be used as a basis for 
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further psychophysiological research into driver state monitoring and the more general 

topic of the monitoring of any human operator of technology.  

This thesis also offered a tool for the researchers to optimize laboratory work and select the 

most effective ways of noise reduction when using multiple physiological recording 

simultaneously at the laboratory. The novelty of this work is related to the high amount of 

physiological measures used simultaneously, the circadian approach to semi-automated 

driving, and predictive modelling of physiology in the semi-automated set-up.  

 

1.6 FUTURE DIRECTIONS  

This work presented the analysis of rich psychophysiological data gathered in the semi-

automated driving experiment. The analysis presented in this thesis is only part of what 

could be undertaken with these data. When creating predictive models, only linear and 

binomial regression models were applied. Quadratic and exponential regression could be 

used to depict regularities in this dataset. Also, machine learning and deep learning 

algorithms could be used to analyse the physiology of the driver during automated mode 

and characterise patterns related to the performance decrease.  

This work indicated drowsiness and sleepiness as detrimental for monitoring during 

automation and suboptimal mental workload and arousal as the most negative states for the 

take-over performance. These states should be further studied to better understand the 

driving risks. Especially, mathematical modelling of the association between mental 

workload, arousal, and performance could bring better insight into driver states and safety.  

This experiment suggested that the monitoring role that driver must assume during semi-

automated driving had a negative effect on driving safety. Therefore, it is recommended to 

keep drivers more involved in the active process of vehicle control until full automation is 

ready.  

The results presented some circadian effects in the driver performance and state; however, 

the direction of the changes was not clear, and as so more research would be recommended 

in this area, especially in the forced-desynchrony protocol (Blatter & Cajochen, 2007). 
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2. RISKY DRIVER STATES IN SEMI-AUTOMATED VEHICLES- REVIEW  

2.1 INTRODUCTION  

In 2016 car accidents were the primary death reason for the people aged 15-29, and over 

1.35 million people died in car accidents worldwide (World Health Organization, 2018). 

Based on the National Highway Traffic and Safety Administration (NHTSA) data, 94% of 

car accidents have been classified as being caused by human-machine system error 

(Melnicuk et al., 2016).  

Automation offers the potential to mitigate or reduce such risk. It can also increase 

effectivity, alleviate workload and improve the transport capacity (Kyriakidis et al., 2019). 

In the aviation domain, the use of automation has risen rapidly over the past three decades 

and significantly improved safety (Chialastri, 2012). It is, therefore, anticipated that higher 

levels of automation could be incorporated into automobiles to reduce safety risks to road 

users and pedestrians alike (Kyriakidis et al., 2019).  

However, there are different levels of automation that enable such requirements to 

different extents. The Society of Autonomous Engineers, as shown in figure 2.1, proposed 

a classification system ranging from 0 (no automation) to 5 (full automation). In the short 

term, full automation is not realistic due to legal challenges and technical limitations. In the 

coming decades, it is anticipated that levels 3 and 4 automation will become more 

prevalent. Therefore, these are the levels of automation that will form the basis of the 

current review.  

As shown in figure 2.1, level 3 of the automation allows complete automated control over 

dynamic driving in particular circumstances, for example on the highway, but requires a 

human driver to stay fully attentive to the road and regain control over the dynamic driving 
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functions (take-over) when requested. Level 4 of the automation allows fully automated 

control over dynamic driving in certain circumstances. This level of automation does not 

require a human driver to stay fully attentive to the road environment, but they still have to 

take-over when requested (Kyriakidis et al., 2019). 

Table 2.1: A gradient of car automation levels based upon classification generated by Society of Autonomous 

Engineers (Kyriakidis et al., 2019). 

Automation Level Role of a human driver Role of automation 

0: Driver only All aspects of the driving. None. 

1: Assisted automation Driver carries on most of the 

driving tasks, except for one 

performed by automation. 

The automated system performs 

either steering or 

acceleration/deceleration. 

2: Partial automation Driver carries on most of the 

driving tasks, except for the few 

performed by the automation. 

One or more automated systems 

perform both steering and 

acceleration/deceleration. 

3: Conditional automation The driver carries driving in some 

periods of the time, and is 

expected to monitor the road, and 

respond when requested or in an 

emergency during the automated 

driving. 

The automated systems perform all 

the driving tasks in the conditions 

for which they are designed if the 

human responds accurately to the 

requests to intervene. 

4: High automation The driver carries driving in some 

periods of time and should 

monitor the road but is not 

required to do so during 

automated driving. 

The automated systems perform all 

the driving tasks in the conditions 

for which they are designed, even 

if a human does not respond 

accurately to requests to intervene. 

5: Full automation None. The automated systems carry on all 

aspects of driving in all 

environments. 

On 7th May 2016, a tragic accident of the Tesla Model S led to the death of the driver, 

Joshua Brown. Tesla Model S could be classified as an enhanced level 2 of automation, as 

it could automate both longitudinal and lateral aspects of driving. The computer vision 

system did not detect a white tractor on the background of the bright blue sky and drove 

straight under it. Unfortunately, the driver did not intervene and there were no recorded 

attempts by him to stop or redirect the vehicle. Also, for the majority of the drive, he did 

not have his hands on the wheel, despite the warning signals of the car (Banks et al., 2018). 

Some journalists claimed that he was watching a movie during the journey (Lambert, 2016; 

Neumann, 2016). The driver who was killed was actually an advocate for automation and 

was quoted saying that full attention is still required when using Tesla’s autopilot 

(Lambert, 2016; Neumann, 2016). This crash has shown that the critical challenge is 

understanding how automation can best be integrated into current transport systems to 

maximise safety, comfort and productivity. The victim was a strong advocate of 

automation and knew that he was required to be attentive, but still, he was not. It 

exemplifies how an individual, even if they know about how behaviour should be 
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governed, does not mean that they will or even have the capacity to act appropriately. 

Behaviour and knowledge are not always coherent. 

Vigilance is an ability to maintain an attentive and alert state and is crucial for take-over 

safety. The problem is that people find it tiring, demanding and stressful to stay vigilant for 

more extended periods, especially during monotonous tasks. Whilst semi-automated 

driving requires vigilance; it also creates a challenging environment for its maintenance 

(Warm et al., 2008). 

The transition between automated and human driving modes creates particular challenges, 

as does staying vigilant during prolonged automated driving. The period of automated 

driving can influence the driver's state, and at the moment of the transition, a driver might 

not be ready to take-over. Until level 5 automation is released in automobiles, there will 

always be a requirement for the driver to monitor the automation and at some point, to take 

back manual control. A critical question is whether the state of a driver can be monitored 

to assess if (1) they are monitoring the automation and (2) if they are in the right condition 

to safely transition from automated to manual control, commonly referred to as ‘taking 

back control' or ‘take-over’. 

Understanding the physiology of the driver has the potential to provide insight into the 

mechanisms that underpin performance that could be defined as the ‘state' of the driver. In 

this work, a state was treated as a temporary psychophysiological condition of the driver 

(Chaplin et al., 1988). A critical task was defining the driver states that impact upon the 

capacity of the driver to optimally perform driving tasks, automation monitoring and, in 

particular, the transition between the two.  

2.2 METHODS OF THE LITERATURE REVIEW 

The databases used were Scopus, Web of Science, Google Scholar and DelphiS. Only the 

papers with the whole text available were used for the analysis.  

To identify driver's states that present a threat for a take-over safety and to understand the 

capacity of the driver to regain control over the vehicle, the literature search was also 

extended to manual driving. It was motivated by two factors. Firstly, semi-automated 

driving is a relatively new area of research with a small number of experimental papers. At 

the same time, the risks that occur in the case of manual driving could also apply to this 

environment. Secondly, the task of the driver after the take-over is actual manual driving, 

so the risks that appear there are still valid for semi-automated driving, just modulated by 

new factors like prolonged time of inactivity during the automated phase.  
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The initial search terms used in the databases were: car OR driv* OR vehicle; human 

factors OR psycholog*; accident* OR disturb* OR fail*; state monitoring. Those terms 

were purposely selected to be broad and create a good base for the further iterative 

research in references and terms suggested by the initially identified literature, as 

recommended by the grounded theory (Heath & Cowley, 2004a). After primary search key 

references of the relevant publications were analysed to identify additional positions. The 

key references analysis was used iteratively. The initial number of results in the databases 

was: 53 in Web of Science, 178 000 in Google Scholar, 546 in DelphiS, and 211 in 

Scopus.  

Exclusion Criteria: the articles that described risky traits like age, long-term health 

problems or personality were excluded, the same positions that analysed external risk 

factors, like bad weather. Articles that explored the risky states of the other types of 

operators, like pilots or controllers, were also excluded. 

Inclusion Criteria: only full access articles in the English language were included in the 

criteria. Only the first 500 results of the search in the database results were included. The 

included materials analysed temporary driver's condition or a state as a risk factor for 

driving safety.  

As a result, 168 papers were identified and included in the analysis of drivers' state. These 

papers were taken forward into the review in the next section.  

2.3 RESULTS OF THE LITERATURE REVIEW 

The aim of the review was to identify driver states that might present a threat to driving 

safety. Papers were evaluated to extract such factors and understand their role in driving 

safety. A list of all the identified papers, grouped by categories and provided definitions 

can be seen in Appendix 1. As shown in figure 2.1, drowsiness, fatigue, behavioural 

distraction, and cognitive distraction were the most frequently mentioned states that 

jeopardise the safety of the driving. The following chapters discussed them in details. 

Some states beyond the cut-off point were also discussed because although they were not 

mentioned that frequently in the literature, there were other reasons to treat them as 

relevant for semi-automated driving. Sleepiness and sleep were included in the detailed 

descriptions because their definitions were very close to drowsiness, and they were often 

used as interchangeable terms (Johns, 2000). Suboptimal mental workload and insufficient 

situation awareness were frequently predicted as new types of risks related to semi-

automated driving (Salmon et al., 2006; Young & Stanton, 2005), which made them 
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relevant to the topic. Sleep inertia was mentioned only once; however, there were 

arguments provided advocating that it can become a new risk factor characteristic for semi-

automated driving. 

Literature provided a variety of definitions for each state. All the definitions were grouped 

into categories and presented in the table in Appendix 1. The subchapters provided only 

the most frequent definitions.  

 

Figure 2.1: a scree plot presenting frequency of different factors in the analysed 168 papers. The blue and 

orange lines are the approximate trend lines for blue and orange parts of the plot. Their crossing point was a 

cut-off point. The trend lines were estimated rather than formally calculated.  

2.3.1 DEFINITIONS 

Literature provided an abundance of definitions for each of the analysed factors. Some of 

the definitions differed significantly from each other while other presented a very similar 

understanding of the concept and diverged only in small details. The definitions grouped 

into categories were presented in Appendix 1. Only one of the definitions was chosen for 

the detailed description based both on frequency and accuracy.  

Exceptional cases were definitions of drowsiness, sleepiness and fatigue. The meaning of 

those terms varied depending on a scientific position. They were often used in the context 

of being tired and close to the state of sleep, but authors rarely defined them. Due to such 

ambiguity in the terminology, some scientists tried to come up with clear definitions. 

Drowsiness was defined by Johns (2000) as a state between wakefulness and sleep 

determined with the use of the EEG oscillations pattern, eye movements, and muscle 
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activity. It started before the onset of stage-1 sleep. Stage-1 sleep is an initial stage of 

sleep.  

Sleepiness could be identified as a sleep propensity that is a probability of transitioning 

from wakefulness to drowsiness, and later into stage-1 sleep. Subjective sleepiness might 

be different from physical sleepiness and is related to mental and physical feelings 

associated with drowsiness (Johns, 2000).  

Fatigue was defined as a subjective feeling of being tired due to the performed task. It was 

associated with a persistent need to stop it and it disappeared when a person switched to a 

different task (Johns, 2000). Fatigue could be divided into different categories: local 

physical fatigue, general physical fatigue, central nervous fatigue (which might be similar 

or equal to sleepiness), and mental fatigue (Dong et al., 2011).  

While the term fatigue was mostly used according to the definition of Johns (2000) and 

Dong et al. (2011) sleepiness and drowsiness were often used interchangeably even within 

one paper. The same applied to the adjectives ‘drowsy’ and ‘sleepy’. They were rarely 

defined. One of the reasons might be that their outcomes on driving were very similar if 

not the same, and their physiological markers were also hard or sometimes impossible to 

distinguish (Johns, 2000). For these reasons, in this work, terms drowsiness and sleepiness 

were treated as synonyms and discussed collectively while the term fatigue was used in the 

understanding of Johns (2000) and Dong et al. (2011). 

2.3.2 SLEEP 

The factor of sleep was only identified in six papers; however, drowsiness that is a state in 

between wake and sleep was the most prevalent factor. As sleep and sleep drive play an 

essential role in drowsiness mechanisms (Johns, 2000), it is relevant to elaborate on it. 

Also, some papers did not use precise definitions and it was not clear if the accident risk 

they described was related to sleepiness or falling asleep.  

Sleep is notoriously tricky to define. The Merriam-Webster dictionary gave a following 

definition of sleep: ‘the natural, easily reversible periodic state of many living 

things that is marked by the absence of wakefulness and by the loss of 

consciousness of one's surroundings, is accompanied by a typical body posture 

(such as lying down with the eyes closed), the occurrence of dreaming, and 

changes in brain activity and physiological functioning, is made up of cycles 

of non-REM sleep and REM sleep, and is usually considered essential to the 
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restoration and recovery of vital bodily and mental functions’ (Merriam-Webster, 

2018).  

Sleep is closely related to the sleep drive. The classical models of the sleep drive divide it 

into two components: a homeostatic and a circadian, with a correction for the sleep inertia 

(Akerstedt & Folkard, 1995). Sleep inertia is a state of the decreased cognitive and 

psychomotor functions and increased sleepiness just after waking up (Blatter & Cajochen, 

2007). The term homeostatic refers to the balance between the amount of sleep, and the 

time that passed since waking-up. People who slept less, and have been awake longer have 

a stronger homeostatic drive to fall asleep, while people who slept a lot a short time ago 

have a weaker homeostatic sleep drive (Cluydts et al., 2002). The circadian drive refers to 

the body rhythms over the 24-hour cycle. People tend to feel more sleepy during the night 

and less sleepy during the day (Blatter & Cajochen, 2007). The newer models included the 

influence of the wake drive, also called arousal. The wake drive is related to the activity 

performed by the person, the body posture, and the potential soporific influences like 

boredom. The wake drive opposes the sleep drive, such that a highly aroused person might 

have troubles falling asleep in the night, even after a long period of wakefulness (Cluydts 

et al., 2002).  

Sleep comprises of five stages characterised by different muscular and 

electroencephalographic activity (Ackermann & Rasch, 2014). In the case of driving, 

people mostly experience NREM stage-1, which is the entry-stage of sleep (Ackermann & 

Rasch, 2014). 

Horne and Reyner (1995) reported that sleep-related accidents comprised 16% of the 

overall accidents and even 20% of motorway accidents. They suggested that this number 

might be understated. They observed that the sleep-related accidents occurred most often 

between midnight and 2:59 a.m. and had two peaks during the day, around 6 a.m. and 4 

p.m. They emphasised that sleep-related accidents led to more serious injuries. Hakkaken 

and Summala (2001) who studied truck accidents, found that 5.3% of truck drivers who 

caused the accidents fell asleep behind the wheel, even though none of them had increased 

daytime sleepiness. Sahayandhas et al. (2013) cited the National Sleep Foundation, 

pointing out that 28% of Americans fell asleep behind the wheel. Higgins et al. (2017) in 

their review gave even larger statistics stating that up to 41% of American drivers reported 

that they fell asleep behind the wheel at least once. 

In their review paper, Horne and Reyner (1999) stated that the circadian factors are as 

crucial for falling asleep behind the wheel as time spent driving before the incident. They 
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pointed out that many drivers were not aware of their sleep episodes during driving, which 

could lead to a worse sleep control, but also a statistical underestimation of the number of 

accidents caused by a driver falling asleep. Moreover, even when drivers were aware of 

increasing sleepiness, methods used by them to alleviate it were mostly ineffective.  

The group that was at the most significant risk of falling asleep behind the wheel were 

young, educated men, who drive a lot, with obstructive sleep apnea syndrome. Falling 

asleep was also most likely when they are driving alone (Gonçalves et al., 2015; Sagberg, 

1999).  

Sleep was closely related to drowsiness, sleepiness, and sleep inertia. Individuals who 

experienced sleep deficits felt more drowsy. At the same time, people experiencing 

drowsiness fell asleep much quicker (Higgins et al., 2017), while sufficient sleep decreased 

the probability of dozing-off (Cluydts et al., 2002), except for the period of sleep inertia 

(Blatter & Cajochen, 2007).  

2.3.3 DROWSINESS AND SLEEPINESS 

Drowsiness was identified as the driving safety risk factors in fifty-eight papers, while 

sleepiness in twenty-three. As explained in the Definitions subchapter, for the purpose of 

this work, those two terms were treated as synonyms. Drowsiness and sleepiness were then 

the most prevalent factors as in sum they were mentioned in eighty-one identified articles.  

Drowsiness and sleepiness are the terms describing a state in between sleep and wake that 

is associated with reduced performance and attention (Jackson et al., 2016).  

Various authors indicated them as a high and underestimated risk for driving safety and 

stressed the need of developing proper countermeasures (Jackson, Raj, et al., 2016; Smith 

et al., 2003; Van Winsum, 2000). Statistical estimations presenting the prevalence of 

accident caused by drowsiness varied depending on the methodology and place of the 

research. Depending on a source, up to 75% of drivers reported driving while feeling 

drowsy, up to 45% of accidents and up to 40% of fatal accidents were related to driver's 

drowsiness (Bekiaris, 1999; Ebrahim et al., 2013; Kwai et al., 2016; Ma’touq et al., 2014; 

Murata et al., 2017.; Rodríguez-Ibáñez et al., 2011; Solaz et al., 2016; Wang et al., 2017).  

Driving while drowsy increased the risk of an accident fivefold (Wang et al., 2016). 

Fairclough and Graham (1999) found that severe drowsiness created a hazard for driving 

safety as high as alcohol intoxication.  

According to Higgins et al. (2017), drowsiness behind the wheel could lead to the accident 

in two ways: driver might either shift from drowsiness to sleep and drive off from their 
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lane or stay in the state of drowsiness and cause an accident due to their decreased 

cognitive capabilities. Drowsy drivers had impaired visual perception, sustained attention, 

lower cognitive functions, decision making, reaction time (da Silveira et al., 2016; Higgins 

et al., 2017; Jackson, Kennedy, et al., 2016; Kumari & Kumar, 2017), volition (Johns, 

2000; Yang & Jeong, 2015) visual sensitivity, late motor processing, speed and accuracy of 

various cognitive processes, working memory, short-term memory, executive functions, 

supervisory control, spatial orientation, situation awareness, mathematical processing, 

motor task abilities and divergent thinking capacity (Ftouni et al., 2013; Howard et al., 

2014; Krajewski, Batliner, et al., 2009). Additionally, drowsiness was often observed to 

decrease mood (Krajewski, Batliner, et al., 2009). Drowsiness increased the risk of lane 

departure (Liu et al., 2009; Sahayadhas et al., 2013) and speed variability (Sahayadhas et 

al., 2013); however, effects of drowsiness were not always visible in the driving 

performance, and some drivers could perform well despite high drowsiness (Sahayadhas et 

al., 2013).  

Drowsiness-related accidents had their peak at night, early morning hours, and a smaller 

rise in the afternoon hours. It was more prevalent at night, but people could experience 

high sleepiness also during the day. Goncalves et al. (2015) reported that in Europe, the 

prevalence of high daytime sleepiness among drivers varied from 1% to 8%. Excessive 

daytime sleepiness was associated with an increased frequency of falling asleep behind the 

wheel and an increased amount of sleepiness-related accidents. 

There were mixed findings related to the drivers’ awareness of their own sleepiness. Some 

authors reported that drivers did not know that they were going to fall asleep (Filtness et 

al., 2017; Ftouni et al., 2013; Howard et al., 2014), while other that drivers manifested 

relatively high awareness of their sleepiness level (Akerstedt et al., 2013; Filtness et al., 

2017). 

Drowsiness could be addressed mostly to the four factors: circadian phase, amount of time 

spent without sleep (Johns, 2000; Kumari & Kumar, 2017; Rahman et al., 2015; 

Sahayadhas et al., 2015), time on task (Sahayadhas et al., 2013; Wang et al., 2017), and a 

level of arousal (Rahman et al., 2015). The drivers who were reported to be most 

vulnerable to sleepiness were the young men who were alone in the car. Moreover, 

professional drivers, shift workers, and people working extended hours were more likely to 

experience drowsiness while driving (Higgins et al., 2017; Johns, 2000; Wierwille et al., 

1994). 

2.3.4 FATIGUE 
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The risk factor of fatigue was identified in forty papers.  

Fatigue is a state caused by the prolonged performance of one task. It can comprise of 

feeling tired, sleepy, need to stop the task, and decreased cognitive or muscular 

performance (Johns, 2000). It can be easily distinguished from drowsiness, because a 

period of rest or change of the task alleviates fatigue, while it often makes drowsiness 

worse. Fatigue is also steady, cumulative process increasing with the time on task, while 

drowsiness can fluctuate rapidly (Borghini et al., 2014).  

Two types of fatigue could be distinguished based on the causal factor, sleep-related 

fatigue and task-related fatigue. Sleep-related fatigue could be caused by both insufficient 

sleep and driving during the circadian night. Task-related fatigue could be caused by a task 

that requires too much workload as well as by a monotonous task that requires only 

sustained attention (May & Baldwin, 2009).  

Many car accidents could be addressed to fatigue (Borghini et al., 2014; Di Stasi et al., 

2015; Haq & Hasan, 2016; Lal & Craig, 2002). It decreased driving performance (Haq & 

Hasan, 2016; Lal & Craig, 2001; Melnicuk et al., 2016) and drivers themselves indicated it 

as a severe driving risk (Häkkänen & Summala, 2001). Depending on the publication up to 

45% of the overall car accidents and 30% of the fatal road accidents were addressed to 

fatigue (Fan et al., 2010; Fu et al., 2016; Simon et al., 2011). Even up to 55% of the drivers 

have driven while fatigued over a period of a year (Wijesuriya et al., 2007). 

Symptoms of the fatigue in drivers were body pains and discomfort, drowsiness, decreased 

mood, slower activity, irritability, attention deficits, problems with signs observation, 

decreased performance, and difficulties in decision making (Haq & Hasan, 2016; Li et al., 

2015; Tran et al., 2014). Fatigue increased reaction time, but what was interesting it 

decreased reaction time in case of wrong responses (Milosevic, 1997). Fatigue also caused 

a decrease in attention (Dhupati et al., 2010; Lal & Craig, 2001; Liu et al., 2010), could 

lead to falling asleep, a decrease in road position control and speed control (Lal & Craig, 

2002, 2005; Mittal et al., 2016), increased subjective stress and workload, increased 

heading error, and reduced steering activity (Matthews & Desmond, 2002). Even a 

moderate level of fatigue could induce driving mistakes comparable to ones caused by 

alcohol intoxication (Arnedt et al., 2001; Jap et al., 2009).  

Fatigue was associated with sleepiness, and the peak of the fatigue-related accidents was 

synchronised with the circadian phases with the highest sleepiness level (night and 

afternoon) (Arnedt et al., 2001; Lal & Craig, 2005; Puspasari et al., 2015). The long, 

monotonous or boring tasks also increased fatigue (Borghini et al., 2014; Di Stasi et al., 
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2015; Lal & Craig, 2001), as well as the highly demanding tasks (Heikoop et al., 2016). 

There was a U shaped association between fatigue and a mental workload, too low and too 

high a mental workload could induce fatigue (Heikoop et al., 2016).  

Drivers more susceptible to fatigue were younger (Häkkänen & Summala, 2001), and had 

a disturbed sleep cycle (Lal & Craig, 2001). The group significantly affected by fatigue 

were professional drivers and they frequently addressed their accidents to this factor 

(Borghini et al., 2014; Lal & Craig, 2001).  

A subjective feeling of fatigue was observed to often dissociate from the fatigue-related 

performance drop (Wijesuriya et al., 2007). Drivers reporting feeling fatigued not always 

presented performance drop, and fatigue-related performance drop was not always 

accompanied by a subjective feeling of fatigue (Brown, 1994). Similar dissociation 

between subjective state and performance was also observed in the case of drowsiness 

(Filtness et al., 2014; Ftouni et al., 2013). Such a lack of awareness might increase the risk 

of fatigue-related accidents. 

2.3.5 BEHAVIOURAL DISTRACTION 

Twenty-six identified papers described behavioural distraction as a driving safety risk 

factor.  

In this work, driver's distraction was divided into two categories, behavioural- associated 

with some physical activities unrelated to driving, like scrolling or texting, and cognitive- 

associated with the mind-wandering, attending to something else than the road or not 

paying enough attention to the driving tasks.  

The term ‘behavioural distraction' was rarely defined, often replaced by a description of the 

distracting behaviours. The examples of mentioned distracting behaviours were, talking on 

the mobile phone (Caird, 2015; Márquez et al., 2015; Seiler, 2015), dialling (Klauer et al., 

2014; Petridou & Moustaki, 2000) or lighting a cigarette (Petridou & Moustaki, 2000), but 

the list is as long as a human's imagination (Caird, 2015; Klauer et al., 2014; Petridou & 

Moustaki, 2000). Behavioural distraction can be defined as using attention for the activity 

competing with the primary task (Hosking et al., 2009) and was sometimes called ‘eyes-

off-road’ (Liang & Lee, 2010).  

Disturbed attention was often mentioned as an essential risk factor for driving (Caird, 

2015; Chan et al., 2016; Rumschlag et al., 2015). According to the multiple resources 

theory when the different thoughts and actions compete for the attentional resources the 
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performance decreases (Liang & Lee, 2010), hence various activities undertook while 

driving might decrease a driving performance.  

Talking on the phone while driving increased the risk of the car accident even four times 

(Redelmeier & Tibshirani, 1997), decreased the lateral position control, delayed the speed 

adaptation (Lamble et al., 1999), made the steering behaviour more violent within a city 

(Brookhuis et al., 1991), increased the number of the off-road excursions (Haigney et al., 

2000), increased the risk of the traffic lights missing (Strayer & Drew, 2004), increased the 

reaction time (Horrey & Wickens, 2006), and increased the mental workload (Brookhuis et 

al., 1991). Some authors claimed, that a decrease in the performance was worse with the 

hand-held phones than with the hands-free phones (Haigney et al., 2000), while some 

argued that the outcome of those two is the same (Horrey & Wickens, 2006; Márquez et 

al., 2015; Strayer & Drew, 2004). Individuals with a tendency to the compulsive phone 

using, and those that were awaiting a phone call were more likely to talk on the phone 

while driving (O’Connor et al., 2017).  

Texting while driving was also a prevalent behaviour and created a significant safety risk 

estimated as even more prominent than talking on the mobile phone (Drews et al., 2009; 

Hosking et al., 2009). Texting while driving impaired lateral vehicle position control 

(Rumschlag et al., 2015), traffic signs recognition, road focus, reaction time (Hosking et 

al., 2009), and lane maintenance (Drews et al., 2009; Hosking et al., 2009). However, 

texting drivers also decreased their speed (Hosking et al., 2009), and kept a bigger distance 

to the vehicle in front, as a compensation attempt (Drews et al., 2009). People who had 

internet access on their phones, talked on the phone while driving, were in the car with 

other drivers who text and drive, as also people who sexted regularly and used their 

mobiles when they were bored were more likely to text behind the wheel (Seiler, 2015).  

Hoel et al. (2011) studied the effect of the different types of behavioural distraction on 

driving safety. They found that it mostly led to detection and execution failures, but unlike 

other studies, they concluded that it rarely led to accidents. Klauer et al. (2014) found that 

most of the behavioural distractors created more risk for the novice than for the 

experienced drivers. Talking on the phone did not increase the risk of the crash, while 

dialling on the phone did. The effects of a distraction on driving performance were related 

to working memory and working memory capacity. Individuals with a bigger working 

memory capacity performed better under distracting stimulation (Ross et al., 2014). Also, 

experienced individuals (Pope et al., 2017) and individuals in middle age were less 

susceptible to the distraction-related performance drop than young, older, and novice 

drivers (Rumschlag et al., 2015). At the same time young, and middle-aged drivers were 
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more likely to engage in distracting behaviours than older ones (Pope et al., 2017). 

Behavioural distraction was a very prevalent phenomenon, and most of the drivers 

involved in the distracting activities from time to time (Márquez et al., 2015; Pope et al., 

2017; Seiler, 2015). 

 

2.3.6 COGNITIVE DISTRACTION 

Twenty-four of the analysed papers identified cognitive distraction as a driving safety risk 

factor.  

Cognitive distraction could be defined as the diversion of attention towards mental activity 

unrelated to the main task (Wesley et al., 2010), also called ‘mind-off-road’ (Liang & Lee, 

2010). Different expressions were used in the literature in the same meaning as a cognitive 

distraction: attention laps (Parker et al., 1995), diminished vigilance (Ji & Yang, 2002), 

inattention (Bando & Nozawa, 2015; Casner et al., 2016; Regan et al., 2011), mind 

wandering (He et al., 2011), lowered concentration (Kawanaka et al., 2013) and 

hypovigilance (as a term including both cognitive distraction and drowsiness) (Sahayadhas 

et al., 2015).  

Driver’s cognitive distraction was often described as a cause of car accidents (Melnicuk et 

al., 2016; Sahayadhas et al., 2015; Yang & Jeong, 2015); however, depending on the study 

there was a different estimation of the prevalence. Research by Parker et al. (1995) has 

shown that only a small amount of car accidents was caused by lapses in attention. There 

were also other studies proving that behavioural distraction is much more detrimental for 

driving than cognitive (Hoel et al., 2011). However, many other authors listed it as a 

leading cause of the accidents estimating that even up to 80% of crashes can be related to 

inattention (Melnicuk et al., 2016; Miyaji et al., 2009; Parnell et al., 2016). Some studies 

classified even 40% of the driver's errors as related to inattention (Stanton & Salmon, 

2009). 

Inattention can have even larger negative effect on driving of semi-automated vehicles, due 

to the periods of automated driving, and was identified as a risk factor specific for semi-

autonomous driving (Casner et al., 2016; Dogan et al., 2017; Heikoop et al., 2016; Merat et 

al., 2014).  

Cognitive distraction affected the quality of driving by reduction of attentive resources 

available for driving tasks. According to the multiple resources theory, when different 

thoughts compete for the attentional resources, it decreases the performance (Liang & Lee, 
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2010). Cognitively distracted drivers often concentrated their gaze on the centre of the road 

but had reduced peripheral vision and limited ability to detect targets from the whole range 

of the visual field (He et al., 2011; Liang & Lee, 2010). They also had a longer reaction 

time (He et al., 2011; Yang & Jeong, 2015), worse signal detection, vigilance, and memory 

(He et al., 2011), longer time on task, and more steering errors (Yang & Jeong, 2015). 

They manifested frequent detection errors, diagnosis failures and prognosis failures (Hoel 

et al., 2011). Cognitive distraction also led to recognition errors (Melnicuk et al., 2016). 

Cognitive distraction could be caused by a variety of factors, like overfamiliarity with the 

environment, long driving experience, generally low level of attention, thoughts and 

concerns (Hoel et al., 2011), fatigue or drowsiness (Chakraborty & Aoyon, 2014). 

According to PARRC model by Parnell et al. (2016) main factors contributing to driver’s 

distraction were goal conflict, adaptation to the demands, behavioural regulation, goal 

priority, and constraints of the resources. There is an inverted- U relationship between 

attention and mental workload, too small and too big mental workload was associated with 

attention deficits. Stress was shown to decrease attention (Heikoop et al., 2016). A 

propensity for cognitive distraction behind the wheel increased with age (Stanton & 

Salmon, 2009).  

In the driving errors, taxonomy by Donald Norman, errors related to the lack of attention 

were categorised as slips that led to unintended wrong actions. The examples of slips were 

misperception, action intrusion or omission of action. Other studies showed that cognitive 

distraction could lead to recognition errors (Stanton & Salmon, 2009).  

2.3.7 SUBOPTIMAL MENTAL WORKLOAD 

Only twelve of the analysed papers listed suboptimal mental workload as a risk factor for 

driving safety. However, it was described as a distinctive risk factor that will probably 

increase with the development of car automation, due to the small number of tasks in the 

automated mode. Drivers inactive during the longer periods of automated driving might 

experience underload and related to that cognitive decrease (De Winter et al., 2014; 

Heikoop et al., 2016; Melnicuk et al., 2016). Because it is a problem that might become 

more significant with the development of automation, this factor was also included in the 

detailed description of the risky driver’s states.  

The mental workload was related to the proportion of available mental resources of the 

operator and the number of resources necessary for the task. If the resources required by 

the task exceeded an optimal level, the workload was too high, while if they were lower 

than the optimal level, the workload was too low. However, the level of optimal mental 
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workload was individual and depended on circumstances, task and operators skills (Palinko 

et al., 2010; Young & Stanton, 2005).  

In driving, the mental workload could be affected by the driver's skills, age and state, road 

and traffic-related circumstances as well as a car (Young & Stanton, 2005).  

The mental workload was also sometimes addressed using different terms such as mental 

effort (Brookhuis & de Waard, 2010), cognitive load (Engström et al., 2017; Palinko et al., 

2010), visual perception, mental/cognitive processing, overload/underload, cognitive 

resources or cognitive activity/task (Heikoop et al., 2016).  

Gregerseb and Bjurulf (1996) analysed the reasons for accidents in young drivers, 

concluding that their lack of experience increased mental workload making it more 

difficult to drive safely. There were also other studies supporting the negative effect of an 

overload on performance (Brookhuis & de Waard, 2010; Melnicuk et al., 2016; Yang & 

Jeong, 2015).  

The too-high mental workload was detrimental to the driving performance, but it came out 

that too low a workload was at least as bad. The association between mental workload and 

performance can be represented with an inverted U-shaped function, with low performance 

associated with low and high mental workload, and the most optimal performance with the 

middle workload (Heikoop et al., 2016; Young & Stanton, 2002). The association between 

the mental workload and attention was similar. In contrast, the association between mental 

workload and stress could be represented by a U-shaped function, with the low and high 

levels of the mental workload associated with larger stress than the middle levels (Heikoop 

et al., 2016).  

One of the explanations of the negative underload effect on the performance was that the 

operator tends to adjust the level of used resources to the situation difficulties, hence uses 

fewer resources in the case with lower demands (Young & Stanton, 2002). Engstrom et al. 

(2017) suggested that the increased mental workload affected only those aspects of the 

driving performance that relied on the cognitive control, while did not affect functions that 

were habituated (Engström et al., 2017). Various studies showed that mental workload was 

increased by stress, task demands, and attention. Feedback during tasks had the potential 

both to increase mental workload because of information amount and decrease the mental 

workload because of increased situation awareness (Engström et al., 2017; Heikoop et al., 

2016).  
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Automation was presented to decrease the mental workload (De Winter et al., 2014; 

Stanton et al., 1997); however, Yong and Stanton (2002) suggested that it can also 

sometimes increase mental workload due to the complication of the computer system, and 

the abundance of the system modes. An example can be a category of operating errors 

addressed as a mode error when the operator finds it hard to realise what mode is the 

system in, and because of this undertakes actions unsuitable for the situation (Stanton & 

Salmon, 2009). It needs to be borne in mind, that not every level of mental workload 

increase, or decrease can be observed in the performance. The changes in performance also 

depended on the level of available cognitive resources. If such a level is high, an increase 

of mental workload might not change the performance but decrease a potential reactivity to 

the additional tasks (Parasuraman et al., 2008; Young & Stanton, 2005). 

2.3.8 INSUFFICIENT SITUATION AWARENESS  

The risk factor of insufficient situation awareness was only mentioned in the eleven 

analysed positions. Still, the same as in the case of mental workload, some authors stressed 

that it is a characteristic risk for automated driving. The reasons for this are feedback given 

by the system, the passive role of the operator, and the necessity of the long-term sustained 

attention, that humans are poor at (Endsley, 1996; Heikoop et al., 2016; Stanton & Young, 

1998).  

Endsley (1996) defined situation awareness as ‘the perception of the elements in the 

environment within a volume of time and space, the comprehension of their meaning and 

the projection of their status in the near future. She divided situation awareness into three 

levels: level 1 based on the perception of the situation, level 2 based on the correct 

interpretation of the perceived stimuli, and level 3 based on the effective prediction of the 

near-future. The deficit in any of those three levels defined an insufficient situation 

awareness. Other authors simply describe situation awareness as ‘knowing what is going 

on' and argued if Endsley’s definition includes the full scope of the topic (Stanton & 

Salmon, 2009).  

A low level of situation awareness might lead to bad decision making and result in the 

accident (Borghini et al., 2014; Endsley, 1996). According to Reason's classification of the 

driving errors, mistakes mostly come from insufficient situation awareness. Many other 

driving errors fully or partially came from the lack of situation awareness, and even up to 

88% of the car accident were addressed to this risk factor (Stanton & Salmon, 2009).  
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An interesting example of insufficient situation awareness in automation is a mode error, 

which happens when the operator does not realise what mode is the machine in (for 

example manual or automated driving modes) and chooses wrong actions based on 

incorrect assumptions. The abovementioned issue is related to the broader problem of 

feedback. If the driver does not receive proper feedback from the automated car might get 

confused and detached from process monitoring. Understanding feedback also requires a 

general knowledge of the automation that might present a challenge to some drivers 

(Endsley, 1996). However, automation might confuse but could also lead to increased 

situation awareness due to decreased mental workload. But yet, workload only reduced if 

the driver stayed focused on the main task. If they engaged in competing activities, 

situation awareness tended to decrease even more (De Winter et al., 2014).  

Another listed challenge of automation was that it could shift the driver's tasks from 

manual control to monitoring. Monitoring requires sustained attention and vigilance that 

are difficult to maintain for many people. Especially drivers with a high level of trust 

towards automation might detach from their monitoring task (Dogan et al., 2017). The 

situation awareness might also be decreased by necessity of long-term machine 

monitoring, too big reliance on the automation, false alarm incidents, passive role of the 

operator (Stanton & Young, 1998), inappropriate feedback (Heikoop et al., 2016), lack of 

automation understanding, the complexity of the automated systems (Endsley, 1996), 

distraction (Dogan et al., 2017; Johannsdottir & Herdman, 2010), too big or too small 

mental workload (Borghini et al., 2014; Heikoop et al., 2016), stress, and too big trust to 

the automation (Heikoop et al., 2016). The operators were also shown to have smaller 

situation awareness when sleep deprived (Sneddon et al., 2013).  

Situation awareness could be improved by an optimal mental workload and attention 

(Heikoop et al., 2016). Some studies showed that some levels of automated support could 

increase the driver's situation awareness, but only when a driver was motivated, properly 

instructed, and not engaged in the competing task. Unfortunately, drivers using vehicles 

with higher levels of automation were strongly inclined to involve in activities not related 

to driving (De Winter et al., 2014). 

2.3.9 SLEEP INERTIA 

Sleep inertia was only investigated in one identified paper. However, this work argued that 

it might become a new type of risk in semi-automated driving, also the identified article 

researched sleep inertia in the context of semi-automated driving and take-over after 

waking-up.  
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In the lower levels of automation falling asleep already creates such a high risk, that its 

aftermaths following the waking-up moment are not even considered. However, in the 

higher levels of the automation driver might sleep during the automated mode without 

causing an accident and then wake-up to take-over. In such a case, sleep could influence 

the driver's performance after waking-up, not at the moment of falling asleep.  

Sleep inertia is a state of increased sleepiness, hypovigilance and decreased mental, and 

physical functions after waking up (Ferrara & De Gennaro, 2000). It could be considered a 

paradoxical state because people experience high sleep drive when homeostatic sleep drive 

should be absent. Some authors hypothesized that that mechanism of sleep inertia is a low 

level of arousal caused by prior sleep (Tassi et al., 2006), other stress that it is not easy to 

distinguish between cognitive and psychomotor effects of sleep inertia and sleepiness. It 

might be that they can be treated as the same state, just caused by the different factors 

(need for sleep vs effect of sleep) (Balkin & Badia, 1988).  

Cognitive functions that were mainly affected by sleep inertia were the ones that require 

high accuracy, attention (Ferrara & De Gennaro, 2000), decision making (Bruck & Pisani, 

1999) and speed (Hofer-Tinguely et al., 2005). Even though, these functions were affected 

the most, the effect of sleep inertia could also be observed in working memory, grip 

strength, steadiness and coordination, time perception, complex behaviours, logical 

reasoning, arithmetical operations and many other (Tassi & Muzet, 2000).  

The length of sleep inertia could vary from one minute up to four hours, but the most 

intensive symptoms occurred between five to twenty minutes (Kolff et al., 2003). Not all 

the functions were restored at the same time, and some of the mental processes came back 

to normal after no more than four minutes (Tassi & Muzet, 2000).  

Sleep inertia might be stronger and last longer in a case when a person woke-up from a 

sleep that did not last sufficiently long (Kolff et al., 2003; Tassi et al., 2006). The strength 

and length of sleep inertia were modulated by a circadian phase, a length of the sleep, and 

a level of sleep deprivation (Ferrara & De Gennaro, 2000; Muzet et al., 1995). Longer and 

stronger sleep inertia occurred mostly in the night and after sleep deprivation (Tassi & 

Muzet, 2000). Experimental research suggests that the early stage of sleep inertia might be 

more influenced by the depth of preceding sleep while following stages by the circadian 

phase (Wilkinson & Stretton, 1971). The stage of sleep prior to awaking also influenced 

the strength of sleep inertia (Tassi & Muzet, 2000). 

Driving performance highly relies on attention (Giorgetti et al., 2015; McKenna, 1998) and 

speed of information processing, likewise on many other cognitive functions (Brouwer & 
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Withaar, 1997). Because of that, all the states distorting attention or speed might also 

distort driving safety. Ferrara and De Gennaro (2000) suggested that sleep inertia is an 

important reason to restrain from naps when an operator might be required to perform the 

demanding tasks just after waking up. Also, Muzet et al. (1995) indicated sleep inertia as 

an important side effect of napping at work and suggested that operators after the nap 

should be assigned to the tasks that are less affected by sleep inertia. While it might be a 

good strategy for the industry, there is no diversity of tasks in manual driving. It should 

also be taken into account that naps during the automated driving mode might be related to 

prior sleep deprivation or night driving. Hence effects of sleep inertia could be especially 

strong. The study on sleep inertia in semi-automated driving and take-over showed that 

reaction time increased and the quality of take-over significantly deteriorated when 

participants were in the state of sleep inertia (Wörle et al., 2020).  

2.3 CONCLUSIONS  

This chapter reviewed the literature to identify driver’s states that could present a risk for 

semi-automated driving. It identified sleep, sleepiness, fatigue, behavioural distraction, 

cognitive distraction, suboptimal mental workload, insufficient situation awareness, and 

sleep inertia. Research showed that drivers were often unaware of these states (Ashleigh J 

Filtness et al., 2014; Wijesuriya et al., 2007), which creates a need for a driver state 

monitoring system. As so, chapter 3 reviewed available tools of psychophysiological 

monitoring of the driver state. The big challenge for such devices is that driver’s state and 

performance are not perfectly correlated and a decreased driver state might not always lead 

to a reduced performance if the skills or mental capacity of the driver were high (Ross et 

al., 2014). 
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3. METHODS OF THE DRIVER STATE MONITORING- REVIEW 

3.1 INTRODUCTION 

In Chapter 2 a number of states that created a risk for driving safety were identified: 

drowsiness/sleepiness, fatigue, behavioural distraction, cognitive distraction, suboptimal 

mental workload, insufficient situation awareness, sleep, and sleep inertia. Studies showed 

that drivers are often not accurate in the assessment of their state (Filtness et al., 2017; 

Ftouni et al., 2013; Howard et al., 2014); therefore, methods that could detect risky states 

could increase driving safety. There have been many attempts to create systems of driver’s 

state monitoring (Aghaei et al., 2016; Bekiaris, 1999; Parasuraman, 2011). This chapter 

aimed to review available measures of the driver’s state.  

Available reviews of the driver’s state monitoring mostly concentrated on monitoring of 

one state (Lal & Craig, 2002) and did not present a full scope of available methods. The 

review is meant to play the role of a guide over known measures of the driver's state. 

3.2 METHODOLOGY OF THE LITERATURE SEARCH  

The search was initially conducted in Web of Science, Scopus, Google Scholar and 

DelphiS. The initial search terms were combined from the name of one of the risky driver's 

states identified in Chapter 2 for example sleep and following terms measur* OR indic* 

OR detecti*; psychophysiolog* OR physiolog* or psycholog*. After identification of 

several methods of driver state monitoring the second search was conducted. During the 

second search risky driver’s states were combined with names of different 

psychophysiological methods to obtain detailed knowledge about particular measures, for 

example: sleep; EEG, measur* OR indic* OR detecti*. A further search was based on the 

relevant citations from the analysed papers, as recommended in the grounded theory 

(Heath & Cowley, 2004).  

Inclusion criteria. To be included in the analysis, the paper had to be in English with full 

text available. Both experimental articles and reviews were included. The article had to 

describe a psychophysiological measure of the driver's state or psychophysiological 

measurement that can detect one of the states risky driver states (see chapter 2). Only 



 

54 

papers describing in details indicators used to detect the state were included in the further 

analysis. 

Exclusion criteria. Studies conducted on animals were excluded from the analysis. Also, 

studies that investigated diagnosis with the use of psychophysiological methods on the 

pathological health states were not analysed. Papers that described a technique of state 

detection but did not include indicators of the state were excluded from further analysis. 

For example, an article that stated that EEG can be used to detect drowsiness but did not 

state what frequencies can gauge it was excluded from the analysis.  

As a result, 136 papers were included in further analysis.  

3.3 RESULTS OF THE LITERATURE REVIEW 

One hundred and thirty-six papers were included in the analysis of psychophysiological 

methods. They were either experimental studies or literature reviews exploring measures of 

the driver’s state or measures of one of the states previously identified as driving safety 

risk (see Chapter 2) but in a different context than driving.  

Out of one hundred-thirty-six identified papers, thirty-two explored EEG with an analysis 

of oscillations, twenty hybrids of measures, twenty eye-tracking, eighteen ECG, sixteen 

EOG, nine fNIRS, nine EDA, seven acoustic speech analysis, seven ERP, six EMG, six 

questionnaires, six blood pressure, five infrared video camera, four facial expression, four 

saliva analysis, four body temperature, three pupillometry, three respiration, two driving 

performance, two psychomotor performance, one head movements, one oximetry, one 

actigraphy, one blood glucose, and one Doppler flow meter. The detailed list of all the 

analysed factors, measured states and references was included in the table in Appendix 2. 

As shown in figure 3.1, an arbitrary cut-off point was placed after the second change of 

slope representing the frequency of different psychophysiological measures in the 

literature. A cut-off point allowed to select five measurement methods for further analysis: 

EEG, hybrid of methods, eye-tracking, ECG and EOG. Their meaning for driving research 

and safety was described in the separate chapters.    

 



Methods of the Driver State Monitoring- Review  

 

 

Figure 3.1: A scree plot representing a frequency of different psychophysiological measurements within the 

identified literature. A blue, vertical line represents a cut-off point. The cut-off point was chosen arbitrarily 

rather than based on the trend lines to stay more inclusive.   

3.3.1 ELECTROENCEPHALOGRAPHY 

EEG is a measure of the inhibitory and excitatory postsynaptic potentials of the cortical 

nerve cells. It can be either used to analyse individual potential (ERP) or frequencies of 

potential oscillations, widely just called EEG.  

Frequencies of oscillations are often grouped into categories: Delta 0.5-4 Hz, theta 4-7 Hz, 

alpha 8-13 Hz, beta 13-30 Hz and gamma over 30 Hz. Different frequencies over different 

brain regions are related to different mental states and activities (Lal & Craig, 2001). 

Because of this, the measurement of the oscillations can be used for state detection. 

In the identified literature, EEG was used to detect drowsiness, fatigue, vigilance decrease, 

mental workload, behavioural distraction and episodes of sleep. Thirty-two papers reported 

the use of EEG as a state detection method. The detailed list of algorithms used to detect 

those states was presented in the table in Appendix 2, and this chapter will only give a brief 

description.  

In a majority of papers, the analysis was based either on power in one or more frequencies 

(Dhupati et al., 2010) or spectral entropy (Sriraam et al., 2016). However, some studies 

used machine learning algorithms like an artificial neural network (ANN) (Subasi, 2005) 

or a support vector machine (SVM) (Hogervorst, Brouwer, & van Erp, 2014) and found 

multiple features for classification. Some authors used devices with a state classification 

already implemented by the company, like B-Alert (Berka et al., 2004). Interesting 
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exceptions were experiments that used EEG device to detect eye-movements, not brain 

activity (Jiao & Lu, 2016).  

Drowsiness, fatigue, decreased vigilance and sleep were often related to power increase in 

slower frequencies, like theta and delta and a decrease in faster frequencies like beta 

(Borghini et al., 2014). Alpha frequencies were controversial because they were both 

reported to increase (Dhupati et al., 2010) and decrease ( Oken et al., 2006). Increased 

alpha power could be treated as an indicator of mental activation as well as drowsiness, but 

only when accompanied by slow eye movements. Therefore, in the case of alpha measures, 

eye movements should be taken into account (Jödicke et al., 2013). The increased mental 

workload was repeatedly reported to be correlated with lower frequencies, suggesting 

cognitive activation decrease (Borghini et al., 2014; Kamzanova et al., 2014). Borghini et 

al. (2014) reported that behavioural distraction could be detected with an increase of theta 

power.  

Summarizing, most of the methods developed so far detected risky driver's state with an 

increase in slower frequencies power, slow eye movements or machine learning 

algorithms.   

3.3.2 HYBRIDS OF MEASURES 

Twenty papers reported the classification of states based on a variety of 

psychophysiological measures. They used combinations of methods and classified them 

with various machine learning algorithms. Some of them reached very high classification 

accuracy, for example, 99.3% (Yeo et al., 2009). However, it has to be taken into account 

that machine learning equations were separately trained for every user and based their 

classification only on the pattern observed during the training phase (Alpaydin, 2014).  

Papers using hybrids of methods described attempts to detect drowsiness (Ha & Yoo, 

2016), cognitive distraction (Miyaji et al., 2009), stress (Healey & Picard, 2005), mental 

workload (Bundele & Banerjee, 2010) and fatigue (Wilson & Russell, 2003). All the 

algorithms used at least two psychophysiological measures and extracted multiple features 

from them. The details of the algorithms and psychophysiological measures were presented 

in the table in Appendix 2. 

3.3.3 EYE-TRACKING 

Twenty identified papers used eye-tracking as a state measure. Eye-tracking devices used 

video cameras to record ocular behaviours. The analysed factors were changes in pupils 
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size (Di Stasi et al., 2015), different characteristics of blinking (May et al., 1990) and 

various characteristics of horizontal eye movements (May et al., 1990).  

Analysed papers used eye-tracking to detect drowsiness, mental workload and cognitive 

distraction. The increased mental workload was associated with increased pupils’ size, and 

a decrease in the number of blinks, spontaneous eye-movements and blinks duration (May 

et al., 1990; Palinko et al., 2010). Cognitive distraction was detected with PERCLOS 

algorithm (Di Stasi et al., 2015; Rodríguez-Ibáñez et al., 2011), decreased pupils size 

(Kristjansson et al., 2009) and reduced the speed of micro-saccades (Di Stasi et al., 2015). 

PERCLOS was defined as a proportion of time when eyes were closed over a certain 

period (Abe et al., 2014). However, PERCLOS was reported effective in the detection of 

distraction; it was mainly a tool to detect drowsiness (Abe et al., 2014; Brookhuis & de 

Waard, 2010). Drowsiness could also be detected with an increased blink duration, delayed 

lid opening, decreased lid closure speed, increased number and speed of saccades, 

increased number of off-road fixation (Schleicher et al., 2008; Wang et al., 2017). There 

were some differences in results related to drowsiness and pupils’ size. Some authors 

reported an increase (Wang et al., 2017) and some a decrease (Oken et al., 2006).  

3.3.4 ELECTROCARDIOGRAPHY  

ECG is a measure of the electrical activity of the heart (Saritha et al., 2008).  

Eighteen identified papers used some properties of heart functioning as a state indicator. 

The states identified with ECG were mental workload, drowsiness, fatigue, behavioural 

distraction, stress and anger. They were either identified using heart rate (Averty et al., 

2002), inter-beat interval ( Veltman & Gaillard, 1996), heart rate variability (HRV) 

(Wilson, 2002), or machine learning algorithms with multiple heart-related features 

(Sahayadhas et al., 2015). HRV is a measure of a natural, physiological variation in the 

heart rate (Roscoe, 1992). Drowsiness and fatigue were presented to correlate with a 

decreased (Maglione, Borghini, Arico, et al., 2014; Ogorevc et al., 2011), while stress with 

an increased heart rate (Schreinicke et al., 1990). Both anger and distraction were 

identified with machine learning algorithms using multiple features (Minhad et al., 2017; 

Sahayadhas et al., 2015). The increased mental workload was found to be correlated with 

increased heart rate (Averty et al., 2002), decreased heart rate variability (Roscoe, 1992) 

and decreased inter-beat interval (Veltman & Gaillard, 1996).  

3.3.5 ELECTROOCULOGRAPHY 
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EOG is a measure of the ocular behaviours through the resting potential of the retina 

(Siddiqui & Shaikh, 2013). Similarly to eye-tracking, it provides data about blinks and 

horizontal eye movements, but it does not show changes in pupil size.  

Sixteen of the identified papers measured state with EOG. The measured states were 

drowsiness (Borghini et al., 2014), fatigue (Lal & Craig, 2001), sleep (Oken et al., 2006) 

and mental workload (Richter et al., 1998).  

The increased mental workload was associated with decreased blinking rate and blinking 

duration (Borghini et al., 2014). Drowsiness was reported to be correlated with the 

decreased saccadic eye-movements, increased slow eye-movements, increased blinking 

duration, delayed lid opening, and decreased lid closure (Borghini et al., 2014; Schleicher 

et al., 2008). It was also identified with PERCLOS (Papadelis et al., 2007). Two papers 

reported an increase in the blinking rate due to drowsiness (Borghini et al., 2014; Papadelis 

et al., 2007), but one reported a decrease (Minhad et al., 2017). Fatigue was reported to be 

associated with the increased blinking speed, the disappearance of saccadic eye 

movements, and an increase of PERCLOS ( Lal & Craig, 2002; Rodríguez-Ibáñez et al., 

2011). One paper reported a rise in the blinking rate (Stern et al., 1994), while one a 

decrease (Morris & Miller, 1996). Sleep was identified with slow eye movements (Oken et 

al., 2006).  

Most of the results were consistent with eye-tracking data except for the reported decrease 

of saccades number that contradicted the finding of Wang et al. (2017); however, saccades 

are very fast movements and their detection might depend on the sampling rate of the 

device. 

3.4 CONCLUSIONS 

This chapter reviewed available methods of driver state monitoring or of 

psychophysiological detection of the states previously identified as risky for driving. It was 

a crucial step for further review of the circadian influence on the driver state monitoring  

(see Chapter 6) and for the selection of measures for the experiment (see Chapter 7). It was 

also a basis for the further selection of the tools for the experiment. The formal process of 

how the experimental tools were selected was described in detail in chapter 7. EEG and 

eye-tracking were identified as frequently used methods, and later in Chapter 7, they were 

selected for the experiment due to their high usability. However, this thesis did not 

describe the results from them. Eye-tracking was excluded at the phase of the pilot study. It 

created a high computational load that disabled other measurements, as well as 

participants, experienced high discomfort due to the eye-tracking headset and were not 
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able to participate in the full experiment. Electroencephalography was recorded during the 

experiment, but the analysis of the brain signals was not included in this work due to the 

high temporal load of the pre-processing, technical problems and lower data quality in 

comparison to other recorded signals.  
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4. CIRCADIAN EFFECT ON MANUAL DRIVING- REVIEW 

4.1 INTRODUCTION 

A number of psychophysiological states have been reported as potentially jeopardizing 

driving safety (see chapter 2). The most significant were, sleep, sleep inertia, 

drowsiness/sleepiness, fatigue, cognitive distraction, behavioural distraction, suboptimal 

mental workload and insufficient situation awareness. Sleep inertia, drowsiness/sleepiness 

and fatigue are closely related to sleep, and the driver might fall asleep as a result of these 

states (Higgins et al., 2017; May & Baldwin, 2009). Sleep undergoes circadian 

rhythmicity; hence, it is likely that driving risk factors also change over the 24-hour cycle. 

Also, the vast majority of the risk factors identified have a large physiological component. 

Therefore, understanding the physiology of the driver has the potential to provide insight 

into the mechanisms that underpin performance that we can define as the ‘state' of the 

driver. A critical task is defining the driver states that impact upon the capacity of the 

driver to optimally perform driving tasks, automation monitoring and in particular the 

transition between the two. A critical governor of an individual's physiology is the daily 

circadian cycle, promoting sleep alertness at specific points in time most frequently 

synchronised with day and night (Dijk et al., 1992; Van Dongen & Dinges, 2000). It could 

have profound implications on the ‘state' of the driver at different times of day but is rarely 

considered when examining automated driving. This chapter aimed to review the existing 

knowledge of the circadian rhythmicity in manual driving. It provided a base for reasoning 

about circadian rhythmicity in semi-automated driving. 

4.2 METHODOLOGY OF THE LITERATURE SEARCH  

The databases used were: Scopus, Web of Science, Google Scholar and DelphiS. The 

initial search terms used in the databases were the circadian effect on driving; car OR 

vehicle OR automotive. Those terms were purposely selected to be broad and create a good 

basis for further iterative research in references and terms suggested by the initially 

identified literature as recommended in grounded theory (Heath & Cowley, 2004). After 

the primary search, key references of the relevant publications were analysed to identify 

additional positions. The key references analysis was used iteratively. The initial number 

of results was, 32 in Web of Science, 28 600 in Google Scholar, 127 in DelphiS, and 83 in 

Scopus. 



Circadian Effect on Manual Driving- Review  

 

Inclusion Criteria: only full access articles in the English language were included in the 

criteria. Only 500 first results of the search in the database results were included. The 

included materials concerned circadian effect on driving performance. 

Exclusion Criteria: The papers about the circadian effect on other kinds of operations than 

driving were excluded. Also, papers that analysed potential interventions in night-driving 

were not further evaluated.  

As a result, 23 papers were included in the analysis. 

4.3 RESULTS 

Circadian variations in bodily functions depend on a variety of regulating mechanisms. 

Melatonin plays the role of an internal while the light of an external controlling factor of 

those rhythms (Blatter & Cajochen, 2007; Dijk et al., 1992). Studies have repeatedly 

reported that many cognitive and psychomotor functions decreased in the circadian night 

when the melatonin level is the highest. There was also a smaller cognitive decrease during 

the so-called ‘mid-afternoon dip'. These periods of times were also associated with the 

increased subjective feeling of being tired (Dijk et al., 1992; Van Dongen & Dinges, 2000). 

This chapter summarised papers addressing the influence of the circadian rhythms on 

manual driving.  

That was not a trivial question to answer because of the confounding effect of sleep 

deprivation. Frequently, the activity observed during the circadian night followed a long 

period of no sleep; hence its quality might be influenced both by circadian rhythmicity and 

sleep deprivation (Dijk et al., 1992). Most of the studies analysed did not disentangle those 

two effects, leaving an open question about the proportions of circadian and sleep 

deprivation effects on the observed variables.  

The approach taken in the studies fell into three basic types; an analysis of the police 

reports comparing day and night accidents, driving simulator experiments, and real-life 

driving experiments.  

Analysis of the police reports and real-life driving experiments did not allow unambiguous 

identification of the causal factors. Drivers who drove at night could be sleep deprived 

more often than drivers who drove in the day. Therefore, it is was possible to evaluate what 

was the contribution of the circadian effect in the changes in their performance. 

Experiments conducted in the driving simulator might use different experimental designs. 

Only two procedures allow for untangling the circadian effect from the sleep deprivation 
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effect. Forced desynchrony protocol uses an isolated laboratory environment without time 

cues to change sleep/wake rhythm. The time for sleep and wake is increased in the way 

that participants who live in the laboratory respectively sleep in every part of the circadian 

cycle without sleep deprivation (Kosmadopoulos et al., 2017; Matthews, Ferguson, Zhou, 

Kosmadopoulos, et al., 2012; Matthews, Ferguson, Zhou, Sargent, et al., 2012). The 

alternative option is testing highly sleep-deprived participants in different circadian phases 

(Williamson & Friswell, 2008). To address this problem, the methods of the included 

studies were listed in Table 4.1. 

As a result of the literature review, twenty-three papers that evaluated the effect of 

circadian rhythm or melatonin level on the different aspects of driving were included in 

further analysis. The most frequently described effect was a decrease of some functions or 

increase of negative influences during the circadian night and some particular times during 

the circadian day. Table 4.1 listed periods when respective risky states of the driver were 

experienced with higher intensity or were more likely to occur. There was a distinction in 

the table between Sleep and Sleepiness causes of the accident risk, as these were terms that 

have been used in the papers. They were mostly not defined; however, the literature 

defined sleepiness as a state in between sleep and wake that is associated with reduced 

performance and attention (Jackson et al., 2016). 

Table 4.1: List of the driver's states that were observed to be affected by circadian rhythmicity, the reference 

to the relevant paper, and a brief description of the methodology of the study. 

Risk factor Time of the day when 

increased 

References  Methodology 

Distraction 2 a.m. – 7 a.m., 2 p.m. – 

5 p.m. 

(Mitler et al., 1988)  Analysis of the police 

and hospital reports 

Sleep 2 a.m.- 6 a.m.; 2 p.m.- 4 

p.m. 

(Pack et al., 1995)  Statistical analysis of the 

police reports 

2 a.m. – 7 a.m., 2 p.m. – 

5 p.m. 

(Mitler et al., 1988)  Analysis of the police 

and hospital reports 

0-2:59 a.m. with a peak 

at 2 a.m., 6 a.m., 4 p.m. 

(Horne & Reyner, 1995)  Analysis of police 

statistics and spot 

interviews 

Sleepiness 11 p.m. – 1 a.m. (Otmani et al., 2005)  Driving simulator 

experiment 

Night (Lowden et al., 2009)  Driving simulator 

experiment among 

young and older drivers. 

Young drivers are more 

susceptible to night 

sleepiness. 
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Risk factor Time of the day when 

increased 

References  Methodology 

Night, with a peak 

around 3.30 a.m. 

(Sandberg et al., 2011)  Real-life driving 

experiment 

Night, increasing with 

increasing time of 

wakefulness 

(Akerstedt & Folkard, 

1995)  

Real-life driving 

experiment 

Night (Akerstedt et al., 2013)  Real-life driving 

experiment 

0 a.m.- 2 a.m., 3 a.m.- 

5a.m. 

(Sahayadhas et al., 2013)  Real-life driving 

experiment  

Night (Gillberg et al., 1996)  Driving simulator 

experiment 

Fatigue Night (Williamson & Friswell, 

2008)  

Sleep deprivation in 

different circadian 

phases experiment 

Impairing effect of 

alcohol consumption 

Night and early morning (Garbarino et al., 2016)  Testing the level of 

alcohol in breath in the 

drivers involved in the 

car accident. Analysis of 

circadian effect and 

comparison to the 

control group. 

Generally the low driving 

quality 

Night, with a peak 4 

a.m.-6 a.m. 

(Akerstedt & Kecklund, 

2001)  

Statistical analysis of the 

accidents data.  

2 a.m. – 7 a.m., 2 p.m. – 

5 p.m. 

(Mitler et al., 1988)  Analysis of the police 

and hospital reports 

2 a.m.- 5 a.m. (Chipman & Jin, 2009)  Analysis of the police 

reports 

Early morning, with a 

peak at 4 a.m. 

(Akerstedt et al., 2001)   Analysis of the police 

reports 

Night (Williams, 1985)  Analysis of the accidents 

data from the Bureau of 

the Census 

Night (Matthews, Ferguson, 

Zhou, Kosmadopoulos, et 

al., 2012)  

Forced desynchrony 

with sleep restriction 

protocol  

Night (Matthews, Ferguson, 

Zhou, Sargent, et al., 

2012)  

Forced desynchrony 

with sleep restriction 

protocol 

8 a.m.- 10 a.m. after a 

night shift  

(Akerstedt et al., 2005)  Driving simulator 

experiment 

Night (Gillberg et al., 1996)  Driving simulator 

experiment  

 

Driving performance generally improved throughout the day (Lenné et al., 1998) with a 

decrease between 2 p.m. and 5 p.m. (so-called ‘mid-afternoon’ dip) (Mitler et al., 1988) 

and then a more substantial reduction at night (with the lowest scores between 2 a.m. and 5 

a.m. and accidents risk peak at 4 a.m.) (Akerstedt & Kecklund, 2001). Figure 4.1 presented 
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an example of a graphical approximation of the driving performance in different circadian 

phases. It is important to note that the methodology of this work did not allow to draw a 

precise curve of performance or to establish local extrema, a slope of the curve, or the 

inflexion points. 

Even though there were fewer vehicle collisions during the night, the risk of getting into an 

accident was significantly higher at this time. Such accidents risk could not be explained 

solely by reduced visibility (Akerstedt & Kecklund, 2001; Chipman & Jin, 2009).  

The groups that were at the highest risk were young males (Akerstedt & Kecklund, 2001) 

and young people in general (Otmani et al., 2005).  

In terms of risky driver states, sleepiness was significantly increased at night (Akerstedt et 

al., 2013), especially in young drivers (Lowden et al., 2009). The peak of the night-time 

sleepiness was observed around 3.30 a.m. (Sandberg et al., 2011). Akerstedt and Folkard 

(1995) reported that sleepiness was gradually increasing at night with growing wakefulness 

time and reached its peak at the end of the night shift. Exposure to the bright light, which 

decreased the level of melatonin, also reduced the amount of night-time fatal accidents in 

driving simulators (Leger et al., 2009; Weisgerber et al., 2017). Driving research showed 

that certain types of accidents had distinctive frequency changes during the twenty-four 

hours cycles. Most of the sleep-related crashes occurred between 2 a.m. and 6 a.m., and 

then from 2 p.m. to 4 p.m. (May & Baldwin, 2009). Circadian rhythm interacted with the 
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Figure 4.1: A sample curve approximating the changes in driving performance over 24-hours. The graph 

shows the worst driving performance period between 3.30 and 5. - 2p.m.-5p.m. mid-afternoon dip, peak 

of accidents, higher probability of falling asleep, peak of distraction-related accidents (Horne & Reyner, 

1995; Mitler et al., 1988; Pack et al., 1995, p. 19) - 11 p.m.- 1 a.m. peak of sleepiness (Otmani et al., 

2005)  - 2 a.m.- 5 a.m. peak of accidents (Mitler et al., 1988) - 2 a.m.- 6 a.m. the highest risk of falling 

asleep (Horne & Reyner, 1995; Pack et al., 1995) - 2 a.m.- 7 a.m. the highest risk of falling asleep (Mitler 

et al., 1988) - 3.30 peak of sleepiness (Sandberg et al., 2011) - 4 a.m. peak of accidents (Akerstedt et 

al., 2001) - 4 a.m.- 6 a.m. peak of accidents  (Akerstedt & Kecklund, 2001). 
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effects of alcohol consumption, which made collisions more likely to when drinking and 

driving at night rather than during the day (Garbarino et al., 2016).  

There are few studies that disentangled the circadian effect from sleep deprivation effect 

on driving. Matthews, Ferguson, Zhou, Kosmadopoulos et al. (2012), Matthews, Ferguson, 

Zhou, Sargent, et al. (2012) and Kosmadopoulos et al. (2017) analysed the data based on 

the forced desynchrony experiment with sleep restriction protocol. They found that the 

circadian phase had a significant effect on driving performance only when the driver has 

been awake for a long time or sleep-deprived. It means that drivers had more collisions if 

they drove at night, but only if they were awake for a long time prior to the driving or they 

did not have a sufficient amount of sleep. Williamson et al. (2008) found a similar effect in 

their study based on sleep deprivation in different circadian phases.   

4.4 CONCLUSIONS 

This chapter provided evidence that circadian rhythmicity affects manual driving. 

However, there is no data on the circadian effect on semi-automated driving. Whilst, it 

might seem that many tasks in semi-automated driving are similar to manual driving and 

hence could be affected by circadian rhythmicity, such a statement requires further 

investigation. Chapters 5 and 6 provided literature reviews on the topic of the circadian 

effect on semi-automated driving and driver state monitoring. Chapters 8, 9, and 10 

presented experimental results related to the role of the circadian rhythmicity in the time-

course of semi-automated driving (chapter 8), driver state monitoring (chapter 10), and 

general circadian differences in driving performance and driver physiology in semi-

automated driving.  

 

 

 

 

 

 

 

 



 

66 

5. CIRCADIAN EFFECT ON SEMI-AUTOMATED DRIVING- REVIEW 

5.1 MODELS OF DRIVER IN MANUAL DRIVING MODE 

A variety of studies attempted to introduce a human driver model. Many models were 

related to the particular environment, like intersection (Liu & Ozguner, 2007) or specific 

cognitive context, like perceived risk (Liu & Ozguner, 2007). The attempts to create a 

universal model resulted in the cognitive types of models that focused on the cognitive 

processes that underlie the behaviours of the driver. One of the widely used models was 

COSMODRIVE, presented in figure 5.1, developed by the French Institute of 

Transportation Research and Safety INRETS. It was based on the framework from 

cognitive psychology and ergonomics (Delorme & Song, 2001). It divided the cognitive 

functions of the driver into different modules: strategic, tactical, operational, emergency 

management, management and control, perception, and execution.  

 

Figure 5.1: The general architecture of the COSMODRIVE from (Delorme & Song, 2001). 

Each of the modules was a complex and experimentally motivated construct, as shown in 

figure 5.2 on the example of the Perception and Tactical Modules.    
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Figure 5.2: Schematic Diagram of the Perception and Tactical Modules in COSMODRIVE. Model from 

(Delorme & Song, 2001). 

Some researchers attempted to simplify the COSMODRIVE to achieve a better practical 

impact. An example could be a Human Driver Model for SmartAHS that mainly 

concentrated on the Perception and Tactical Modules in the modelling of the driver 

cognition (Delorme & Song, 2001). Another widely deployed cognitive model of the driver 

was the Driver Behaviour Model that is used by the human factors team from TNO. As 

shown in figure 5.3, it stressed the importance of factors like visual attention, workload, 

comfort, and acceptance (Keith et al., 2005).   

 

Figure 5.3: TNO driver behaviour model from (Keith et al., 2005).  

These examples did not cover all the models of the driver; however, they are widely 

approved by road safety and human factors research institutes. They all created a picture of 
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a complex cognitive process involving functions like attention, mental model, workload or 

perception (Delorme & Song, 2001; Keith et al., 2005; Liu & Ozguner, 2007).   

5.2 MODELS OF THE DRIVER IN THE AUTOMATION 

Understanding the driver role and state in semi-automated driving is essential for 

addressing the challenges and designing safer systems (Endsley, 2019). There are a variety 

of models describing human-automation interactions; however, not many models 

concentrate directly on semi-automated driving (Heikoop, de Winter, van Arem, & 

Stanton, 2016).  

Stanton and Young (2000) proposed a model of the driver when using vehicle automation. 

They utilized existing literature to select the most significant psychological factors that can 

influence driver and driving in a semi-automated vehicle. They modelled the direction of 

the interactions between the selected factors. As shown in figure 5.4, the factors identified 

as the most significant were: task demands, stress, feedback, the locus of control, situation 

awareness, mental workload, trust, and mental model. Situation awareness was affected by 

the trust of automation, mental model, stress and mental workload. Stress and mental 

workload both influenced each other. Stress was also affected by task demands and locus 

of control, while the mental workload was affected by feedback (Stanton & Young, 2000). 

Task Demands

Stress
Situation 

awareness

Feedback Mental workload

Mental model

TrustLocus of control

 

Figure 5.4: Graphical representation of driver in automation psychological model by Stanton and Young 

(2000). 

HASO model depicted interactions between the automated system and operator, 

highlighting the most important states and factors in the system design and the 
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environment. As shown in figure 5.5, the critical operator states in the HASO model were 

situation awareness, mental model, engagement, workload, attention allocation, and trust 

of automation. Together with different parts of the system design, they led to an optimal or 

suboptimal automation oversight and interaction performance (Endsley, 2016).  

Unlike the model by Stanton and Young, it did not only concentrate on the driver in 

automation but on any type of operator of the automated or semi-automated system 

including the design of the system and external parts of the environment. Both models 

included situation awareness, workload, mental model, and trust as essential states of the 

operator. However, the model by Stanton and Young (2000) also included task demands, 

stress, feedback, and locus of control, while the HASO model included engagement and 

attention allocation.  

 

Figure 5.5: Graphical representation of the HASO model (Endsley, 2016) 

Heikoop et al. (2016) updated the model by Stanton and Young (2000) and complemented 

it with the causal links. As a result, the Consensus Model was proposed, as shown in figure 

5.6. The consensus Model did not include locus of control as a factor, but it added fatigue 

and attention as significant factors. Attention allocation was also a factor included in the 

HASO model (Endsley, 2016). The causal links were based on a thorough literature review 

(Heikoop et al., 2016).  
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This chapter used the Consensus Model as a base for further investigation into semi-

automated driving. One of the reasons was that it is a comprehensive and contemporary 

model created as a result of an immense literature review. Unlike the HASO model, it is 

specific for a driving domain and entirely concentrated on the state of the driver. As also, it 

included fatigue as an important factor (Endsley, 2016; Heikoop et al., 2016), which is 

highly influenced by a circadian phase (Lowden et al., 2009; Otmani et al., 2005) and thus 

important for the topic. However, this model did not include all the factors involved in 

semi-automated driving, and more research might be necessary. Nevertheless, the aim of 

this chapter was to add circadian context to the Consensus Model without applying any 

changes to the model or the factors included in it.  

 

Figure 5.6: Graphical representation of the consensus model (Heikoop et al., 2016). 

5.3 METHODS OF THE LITERATURE REVIEW 

In their model, Heikoop et al. (2016) identified nine factors significant for the driver in 

automation, feedback, trust, mental model, task demands, mental workload, attention, 

fatigue, stress, and situation awareness. Each of these factors was used as a search term in 

Scopus and Web of Science databases. The search terms were a name of one of the factors 

(for example task demands) AND circadian effect AND driv* OR car OR vehicle. The first 

three hundred results were evaluated based on abstracts from the perspective of inclusion 

and exclusion criteria.  
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Inclusion criteria: papers included for evaluation were peer-reviewed publications in 

English with full text available. Both experimental articles and literature reviews were 

included. Papers had to evaluate or analyse the effect of one or more of the factors from the 

Consensus Model on driving performance in the circadian context.  

Exclusion criteria: papers that only evaluated the circadian effect on driving performance 

without one of the factors from the model were excluded from the analysis. Similarly, 

papers that only evaluated the circadian influence on the factor from the model, but not in 

the driving environment were excluded. Publications that analysed different interventions 

to increase driving performance or used clinical groups were also excluded from the 

analysis.  

As a result, only nine papers were identified as meeting the criteria. Because of this, a 

second search was performed. The second search extended the area of interest to pilots and 

operators of other types of vehicles or machines. Search engines again were Scopus and 

Web of Science. Search terms used in the second search were, a name of one of the factors 

AND circadian effect AND pilot OR operat* OR air* OR aviati*. The first three hundred 

results were evaluated based on abstracts from the perspective of inclusion and exclusion 

criteria. 

The inclusion and exclusion criteria were the same as for the driving papers.  

As a result of the two searches, fourteen (one paper included two factors) papers were 

selected for evaluation. The table presented the number of papers found and selected in 

each of the searches.  

Table 5.1: Number of results given by search engines and the number of papers selected in each of the 

searches. The number of papers selected for further evaluation is presented in brackets. One of the paper 

included two factors; hence, the table included fifteen results in sum. 

Factor from the 

Consensus Model 

Web of Science: 

circadian effect on 

factors in driving 

Scopus: circadian 

effect on factors in 

driving 

 

Web of Science: 

circadian effect on 

factors in different 

machine operators 

Scopus: circadian 

effect on factors in 

different machine 

operators 

Fatigue 84 (2) 4667 (4) 156 (2) 7455 (2) 

Attention 53 (1) 4731 (1) 68 (0) 6230 (1) 

Mental Workload 0 (0) 582 (1) 4 (0) 781 (0) 

Feedback 105 (0) 1652 (1) 45 (0) 5047 (0) 

Trust 2 (0) 79 (0) 32 (0) 163 (0) 

Mental Model 6 (0) 641 (0) 10 (0) 1043 (0) 

Stress 149 (0) 17152 (0) 208 (0)  22010 (0)  

Situation 

Awareness 

3 (0)   238 (0 ) 2 (0)  302 (0)  
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Factor from the 

Consensus Model 

Web of Science: 

circadian effect on 

factors in driving 

Scopus: circadian 

effect on factors in 

driving 

 

Web of Science: 

circadian effect on 

factors in different 

machine operators 

Scopus: circadian 

effect on factors in 

different machine 

operators 

Task Demands 5 (0) 158 (0) 13 (0) 1026 (0) 

 

5.4 RESULTS 

To analyse the circadian effect on semi-automated driving each factor from the Consensus 

Model (Heikoop et al., 2016) was investigated in the context of circadian effect and driving 

performance. The factors affected by the circadian phase directly or indirectly were 

discussed below.  

5.4.1 FATIGUE 

Fatigue is a state caused by the prolonged performance of one task. It can comprise of 

feeling tired, sleepy, need to stop the task, and decreased cognitive or muscular 

performance (Johns, 2000).  

Ten papers related to fatigue were selected for further analysis. They either evaluated the 

association between circadian rhythms and fatigue in the driving domain, piloting, or 

machine inspection tasks. The results presented in the papers were highly consistent. 

Fatigue significantly increased at night in drivers (Lowden et al., 2009; Otmani et al., 

2005; Phipps‐Nelson et al., 2011), pilots (Caldwell, 2005; Gander et al., 2015; van den 

Berg et al., 2016) and machine controllers (Drury et al., 2006). One study also observed a 

significant fatigue increase in drivers during the mid-afternoon dip period (Zhang et al., 

2017). This trend was visible in performance, subjective fatigue reports and physiological 

measures (Caldwell, 2005). Studies that allowed dissociation between circadian effect and 

sleep deprivation found that fatigue increased at night, but only in interaction with higher 

sleep deprivation (Matthews, Ferguson, Zhou, Sargent, et al., 2012; Williamson & 

Friswell, 2008). Fatigue also increased when the mental workload was higher than optimal, 

and there is evidence that mental workload is higher at night (Otmani et al., 2005). 

5.4.2 ATTENTION 

According to Wickens et al. (2015) ‘Attention may be described by the metaphor of a 

searchlight (Wachtel, 1967). Two properties of the searchlight are relevant: its breadth and 

direction. The beam’s breadth can be subdivided into two components: that which we want 

to process (focused attention), and that which we must process but do not want to (divided 

attention). The direction of the searchlight—how it knows when, what, and where in the 
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environment to illuminate—describe the properties of selective attention.’ (Wickens et al., 

2015, p. 70).  

Three papers were identified in the area of the effect of the circadian phase on distraction 

and driving. One of them analysed the police reports about distraction-related accidents. 

The second was a detailed analysis of distraction from the real-life 100 cars study (Klauer 

et al., 2006). The third paper analysed sustained attention in the shift workers. Driver's 

distraction was found to be the highest between 2 a.m. and 7 a.m. with a smaller effect 

during the mid-afternoon dip between 2 p.m. and 5 p.m. (Mitler et al., 1988). Also, Klauer 

et al. (2006) found that distraction-related to secondary tasks had a higher impact on 

driving at night. Shift workers had a much worse cognitive performance during the night 

shift. A significantly affected function was sustained attention (Chellappa et al., 2019). 

Sustained attention is critical in semi-automated driving, because of the long periods when 

a driver might be required to stay vigilant without the subsequent performance of the 

manual driving tasks (Kyriakidis et al., 2019; Warm et al., 2008; Young & Stanton, 2002). 

The night could then be even a more risky period for semi-automated driving than for 

manual driving (Otmani et al., 2005). Interaction with Mental Workload depicted in the 

Consensus Model (Heikoop et al., 2016) also suggests a decrease of attention at night, due 

to the increase of mental workload (Otmani et al., 2005). 

5.4.3 MENTAL WORKLOAD  

One paper was selected in the area of circadian effect on mental workload and driving 

(Otmani et al., 2005). The mental workload of professional drivers was assessed after the 

day-time and night-time drives using the NASA-TLX. The mental workload was rated by 

the drivers as significantly higher after the night-time drive. The study design did not allow 

a dissociation between the circadian effect and sleep deprivation (Otmani et al., 2005). 

However, studies on the nuclear plant supervisors have provided evidence that supervising 

strategies significantly differed between the day-time and the night-time shifts (Andorre & 

Quéinnec, 1998; Andorre-Gruet et al., 1998). One of the possible explanations is a 

compensating strategy for the increased mental workload during the lower circadian 

periods, as participants declared being more tired during the night. In the case of mental 

workload increase, it is not straight-forward to predict its effect on driving performance. 

The highest performance occurs when the mental workload is on the optimal level (Young 

& Stanton, 2005), thus increased mental workload might have a positive or negative effect 

on performance.   
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5.4.4 FEEDBACK 

The definition of feedback was often dimensionalised as it can describe a variety of 

information given to the user (Heikoop et al., 2016).  

One paper that evaluated the feedback and circadian rhythmicity in driving was identified 

(Aidman et al., 2015). Feedback is a broad term and its effect on driving might differ 

depending on the type, quantity and form of the feedback. The selected paper analysed the 

effect of drowsiness feedback on performance in military drivers. Feedback about 

drowsiness level decreased drowsiness and increased driving performance. However, the 

improvement in performance due to the feedback was only observed during the day. The 

effect of feedback gradually reduced in the evening. Unfortunately, the authors did not 

have sufficient night data to judge the night-time effectiveness of the feedback (Aidman et 

al., 2015). Thus it is difficult to draw a general conclusion about how effective feedback is 

in different circadian phases. However, considering the general decline of cognitive 

performance in the night (Dijk et al., 1992) it could be hypothesized that cognitive 

processing of feedback is less effective in the night, but this requires empirical 

investigations.  

5.4.5 TRUST 

Trust was defined in a variety of ways, mostly including a state or approach characterised 

by vulnerability (Heikoop et al., 2016). Trust was repetitively documented as an important 

factor for automation (Endsley, 2016). Interaction with the automated system might be 

associated with two types of trust-related risks. Too high level of trust might lead to 

complacency and decreased situation awareness (Bailey & Scerbo, 2007; Endsley, 2016). 

At the same time, the too low trust might lead to disuse of the automation (Wiegmann et 

al., 2001). In fact, trust was proven to be one of the most important factors influencing the 

decision about the use or disuse of automation (Madhavan & Wiegmann, 2007).  

It was a well-documented phenomenon that cognitive performance, as well as driving 

performance, dropped down during the night. Nonetheless, the literature that would 

combine the circadian effect with driving and different factors for semi-automated safety is 

quite scarce. Some of the factors from the Consensus Model were not analysed in such a 

combination; however, the model depicted the causality between the factors. To the 

knowledge of the author, trust was not yet analysed from the perspective of the circadian 

phase. Trust in the model by Heikoop et al. was negatively affected by the feedback and 

modulated by the mental model (Heikoop et al., 2016). Increased feedback decreased the 

level of trust for automation. Effectivity of feedback might be negatively affected by the 
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circadian night (Aidman et al., 2015). It is not clear how would this, as a result, influence 

the trust.  

5.4.6 MENTAL MODEL 

An accurate mental model is essential to understand the environment and react adequately 

(Stanton & Young, 2000). The literature search did not allow to identify any papers on 

circadian effect on mental model and driving. However, the Consensus Model indicated 

that increased attention improved the use of the mental model (Heikoop et al., 2016). As 

attention decreases during the night (Dijk et al., 1992), it is likely that the retrieval and 

application of the mental model might be affected. The use and recovery of the mental 

model improves with improved attention (Heikoop et al., 2016). As attention decreases 

during the night (Mitler et al., 1988), the quality retrieval and applying of the mental model 

might also decrease.  

5.4.7 STRESS 

Stress was repetitively ill-defined; however, most of the definitions described it as a 

physiological and psychological reaction to the perceived danger (Heikoop et al., 2016; 

Matthews, 2002). No literature was identified in the area of a circadian effect on stress and 

driving. However, the consensus model depicted that fatigue as well as mental workload 

when higher than optimal, increased stress (Heikoop et al., 2016). Both fatigue and mental 

workload increased at the night (Dijk et al., 1992; Otmani et al., 2005). It is not easy to 

predict what would be an effect of increased mental workload on stress, as the relationship 

between them is a ‘U' shaped function.  

5.4.8 SITUATION AWARENESS 

Endsley (1996) defined situation awareness as ‘the perception of the elements in the 

environment within a volume of time and space, the comprehension of their meaning and 

the projection of their status in the near future'. She divided situation awareness into the 

three levels: level 1 based on the perception of the situation, level 2 based on the correct 

interpretation of the perceived stimuli, and level 3 based on the effective prediction of the 

near future. The deficit in any of those three levels defined an insufficient situation 

awareness (Endsley, 1996). Other authors simply described situation awareness as 

‘knowing what is going on' (Stanton & Salmon, 2009). There were also no publications 

identified on the topic of circadian effect on situation awareness and driving. It is possible 

that situation awareness decreases at night as a result of reduced attention.  
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5.5 CIRCADIAN EFFECT ON THE CONSENSUS MODEL 

The literature search showed that some factors from the Consensus Model undergo 

circadian fluctuations in the driving environment. Fatigue increased at night and mid-

afternoon dip, attention decreased at night and mid-afternoon dip, the mental workload 

increased at night, and the effectivity of the feedback dropped at night. Trust, stress, mental 

model and situation awareness might also change with circadian phases because the other 

factors from the model influence them. However, it is not always easy to predict the effect 

of the fluctuation. The increase of the mental workload might lead to increased stress if the 

baseline mental workload was in the optimal range. It is also not easy to predict changes in 

trust as a result of the decreased effectivity of feedback and degraded mental model. Table 

5.2 summarized circadian effects on the factors in the Consensus Model. Each row 

contained one factor. Each column represented the circadian phase: day, mid-afternoon 

dip, and night. Numbers in the cells represent numbers of papers identified during the 

literature search that evidenced an increase of these factors over a particular phase (number 

on the left), or the decrease (number on the right). Numbers in italics represented a number 

of papers that identified the circadian effect on factors influencing this particular one. For 

example, the mental model row had 2/0 in the day column because two articles identified 

that attention increased during the day, while according to the Consensus Model attention 

positively influenced stress. Question marks in the Trust represented the difficulty in 

modelling the effects of feedback and mental model changes on trust. Question marks in 

the Stress road represent the difficulty in modelling changes in stress without knowledge 

about the baseline level of Mental Workload.  

Table 5.2: Summary of the circadian fluctuations of the factors from the Consensus Model 

 Circadian Day 

  

Mid-Afternoon Dip 

 

Circadian Night  

Fatigue ↑0/10↓ ↑1/0↓ ↑10/0↓ 

Attention ↑2/0↓ ↑0/1↓ ↑0/3↓ 

Mental Workload ↑0/1↓ ↑0/0↓ ↑1/0↓ 

Feedback ↑1/0↓ ↑0/0↓ ↑0/1↓ 

Trust ? ? ? 

Mental Model ↑2/0↓ ↑0/1↓ ↑0/2↓ 

Stress  ? ? ? 

Situation Awareness ↑2/0↓ ↑0/1↓ ↑0/2↓ 

Task Demands ↑0/0↓ ↑0/0↓ ↑0/0↓ 

It is important to note that the studies included in this literature review did not allow 

precise modelling of the circadian effect. The studies used different methods to measure 
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changes in factors like fatigue or attention; therefore, it is not possible to assess the 

magnitude of the change. The only indicator of the magnitude could be the frequency of 

the literature descriptions.  

Papers also either aggregated results from long periods, measured factors at only particular 

time-moments or did not even give precise time information but used terms like ‘night’ or 

‘day’. As a result of this, available data did not allow modelling of changes, local extrema 

or exact inflexion points. Therefore, this chapter presented an example of an approximation 

of the circadian changes in the Consensus Model. The size of the changes, as well as local 

extrema, inflation points and slope, were beyond the scope of this chapter and require 

additional experimental research.  

The Consensus Model is a one-period model that does not include circadian rhythms or 

other time-related fluctuations. The proposition presented in this chapter offers a multi-

period Consensus Model that included a circadian effect on the factors (Aronson, 1986). 

The multi-period model was given for a basic period of 24 hours. The underlying graph is 

the Consensus Model from Heikoop et al. (2016). The interactions between the factors 

stayed the same; however, the level of the factors changed depending on the circadian 

phase. Figure 5.7 presented the multi-period Consensus Model over four time periods, T1- 

day (before the mid-afternoon dip), T2- mid-afternoon dip, T3- day (after mid-afternoon 

dip), and T4- evening and night. The time was represented on the horizontal axis. 

The vertical axis represented the performance of the driver in automation. The higher the 

model was placed in relation to the vertical axis, the better the performance was. The 

factors that were highlighted in blue grating increased in a particular period, while factors 

depicted in solid red decreased. Arrows placed next to the factors also represented the 

increase or decrease with a number above representing a number of papers that described 

such an effect. This frequency indicator could also be treated as an initial attempt to model 

the magnitude of the effect. Some arrows within the model were highlighted in blue, 

indicating a positive effect of the factor on the other factors. The proposed model did not 

describe the full scope of the circadian rhythmicity within the Consensus Model, but an 

initial proposition of the most prominent diurnal fluctuations. The literature review 

extracted factors from the Circadian Model that were documented to change within the 

circadian cycle in the driving domain and the ones that might change due to the 

interactions with other factors. Only the factors directly reported to fluctuate within the 

circadian cycle were included in circadian modelling. The exception was the effect of 

circadian rhythmicity on Feedback that was not indicated in the model. The reason was the 

unclear shape of the interaction. Also, the feedback described in the Consensus Model was 
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related to automation, while the type of feedback evaluated from the circadian literature 

was associated with the state of the driver. The effect of the mid-afternoon dip was 

included in the model, even though it was smaller and less documented than the effect of 

the circadian night. However, there was a reported increase in road accidents in the 

afternoon that cannot be fully explained by the changes in traffic. At the same time, the 

number of studies tackling that phenomenon is even smaller than the number of studies on 

night driving. Because of that, it is essential to include it in the model to avoid the 

complete omission of this problem.  
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Figure 5.7: Multi-period Consensus Model representing circadian fluctuations of factors. The vertical axis 

represented the performance of the driver in automation. The horizontal axis represented circadian time, and 

it was divided into four periods: T1- the day before the mid-afternoon dip (7-14), T2- Mid-afternoon dip (14-

17), T3- the day after mid-afternoon dip (17-21), and T4-night (21-7). Factors that increased in a particular 

phase were highlighted in the blue grating, and factors that decreased were highlighted in solid red. The 

arrows additionally indicated the direction of change. The number above the arrow represented the number of 

evaluated papers that described this process.   
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The multi-period Consensus Model proposed similar fluctuations of semi-automated 

driving performance to manual driving performance. Night and mid-afternoon dip might be 

characterised by a decreased performance due to the increased fatigue, decreased attention, 

decreased feedback effectivity and increased mental workload.   

5.6 CONCLUSIONS 

Humans are naturally diurnal animals and their cognitive performance decreases at night 

(Blatter & Cajochen, 2007; Dijk et al., 1992, 1997). Both statistical analyses of collisions 

and experimental studies provided evidence that night-time manual driving is significantly 

more dangerous than day time driving ( Akerstedt & Kecklund, 2001; Horne & Reyner, 

1995; Mitler et al., 1988). Surprisingly, the research related to driving and circadian 

rhythmicity is scarce. Moreover, the methodology of the majority of the studies did not 

allow dissociation between circadian effect and sleep deprivation. Many experiments did 

not model detailed changes in driving performance over hours but just differentiated 

between day and night. 

Additionally, statistical analysis of the police reports did not enable an in-depth 

understanding of the collisions’ causality. To the knowledge of the author, there is no 

research investigating the circadian effect on semi-automated driving. Such negligence of 

the importance of the circadian effect is not specific for a driving domain. A similar 

phenomenon could be observed in pharmacology, where the circadian phase might highly 

modulate the effect of the drug, but the research in this area is scarce (Lemmer, 1995). This 

chapter proposed a multi-period, Consensus Model, of the circadian effect in driving 

automation. The literature review suggested an increased risk in automated vehicles at 

night and during the mid-afternoon dip due to the decreased attention, increased fatigue 

and increased mental workload. The multi-period Consensus Model proposed a theoretical 

background for the experimental studies in this domain. This chapter was also a call 

encouraging more work in this area. Negligence of this topic leads to a lower 

understanding of the phenomenon and decreased road safety. Future studies should provide 

more experimental evidence for the circadian changes in driver attention, fatigue and 

mental workload, and explore potential circadian fluctuations in other factors from the 

Consensus Model, for example, trust or feedback. It should also investigate driver 

performance in the semi-automated vehicles over different times of the day and night. 

Additionally, the amount of studies dissociating between changes in driving performance 

due to the circadian influence and sleep deprivation is low. Because of that, it is still an 

open question if night driving riskiness is mainly caused by the circadian effect or by 
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fatigue related to prolonged wakefulness. Answering such a question would give a better 

theoretical basis for actions aiming for an increase in driving safety. The understanding of 

how the circadian phase influences driver state, driving performance, ability to take-over 

and to cooperate with the automation could allow the better design of the automated 

systems. The artificial intelligence could support the driver differently during the night to 

compensate for the weakest points in their performance. Even though, some aspects of 

night driving, like reduced visibility, might present a challenge for the automated system, 

some other might be easier for the automation than for the human driver, for example, 

prolonged sustained attention and monitoring.  
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6. CIRCADIAN EFFECT ON DRIVER STATE MONITORING- REVIEW 

6.1 INTRODUCTION 

Driving performance and driving safety undergo a distinctive circadian fluctuation with 

night and mid-afternoon dip being characterized by worse performance and a larger 

accident risk (Akerstedt et al., 2001; Matthews, Ferguson, Zhou, Kosmadopoulos, et al., 

2012; Mitler et al., 1988). Most of the physiological functions also undergo circadian 

variability (Frank et al., 1966), for example, the amount of cortisol decreases in the 

evening and at night and increases in the morning (Del Corral et al., 2016). As so, accuracy 

and interpretation of the driver state monitoring might be affected by the time of the day. 

Suppose the measured physiological functions had different baseline value depending on 

the time of the day (or night). In that case, the interpretation of its value should take a 

circadian phase into account. In a given situation, a physiological state associated with 

sleepiness during the day could be a normal baseline at night. Similarly, decreased driving 

performance at night should lead to more sensitive or careful monitoring systems in this 

circadian phase. Considering the danger of driving accidents, such conclusions are not 

merely theoretical considerations but might have severe and practical safety consequences.  

This chapter reviewed the literature about circadian variations in physiological processes 

that underly measures used for driver state monitoring. It was undertaken to create the 

theoretical basis for experimental research in the area of circadian rhythms in driver state 

monitoring, as well as to encourage and justify the need for such research. The knowledge 

about the mechanisms and dynamics of physiological processes can ensure effectivity and 

accuracy of the monitoring systems that use them. There have been little experimental 

studies on driver state monitoring that has considered circadian rhythmicity. Considering 

the likely effects of circadian rhythms on driver physiology, the current lack of knowledge 

on the topic means that driving safety may be compromised. As such, this review does not 

only play a theoretical role but could also contribute to driving safety.  

6.2 METHODS OF THE LITERATURE REVIEW 

The primary strategy of this literature review was based on the grounded theory approach 

(Parnell et al., 2016; Rafferty et al., 2010). The work attempted to integrate knowledge 

about driver state monitoring, monitoring of the states that can jeopardize driving safety 

and circadian physiology. Because of that, there is no common framework that could be 

used as a method for a literature search. The grounded theory allows a broad, explorative 

approach and comprehensive perspective, which made it suitable for this research.  
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A search was meant to explore the circadian effect on the variety of measures used for 

driver state monitoring. It was conducted in Web of Science, Scopus and Pubmed. The 

selection of the databases was caused by their content in areas of medicine, physiology, or 

social sciences, as well as a wide selection of peer-reviewed journals (Burnham, 2006; 

Shultz, 2007). Search terms were a combination of the name of one of the driver state 

monitoring method and the terms ‘circadian effect OR diurnal effect’. For example, 

Electroencephalography AND (circadian effect OR diurnal effect). The driver state 

monitoring methods used for this search were the ones previously identified in chapter 3. 

The search was intended for the circadian effect on the listed measures in any context, not 

necessarily in driver state monitoring. Abstracts of the first three hundred results were 

evaluated based on the inclusion and exclusion criteria and incorporated into further 

analysis. Table 6.1 presented the number of initial results for each search term and the 

number of papers that were included in the further analysis after evaluation of the 

abstracts.  

Table 6.1: Number of results in the three databases and the number of papers selected for the analyses for 

every search term 

 Number of 

initial results in 

Pubmed 

Number of 

initial results in 

Scopus 

Number of 

initial results in 

Web of Science 

Number of 

papers finally 

included in the 

analysis 

Electroencephalography 387 10198 45 6 

Eye-tracking 2 295 4 0 

Electrocardiography 303 4283 35 5 

Electrooculography 29 353 4 2 

Functional Near-Infrared 

Spectroscopy 

0 562 0 0 

Electrodermal Activity 6 515 7 1 

Speech 15 2383 15 2 

Event-Related Potential 87 12827 87 3 

Electromyography 126 1938 28 1 

Questionnaires 52 9147 265 1 

Blood Pressure 1765 34011 2138 5 

Infrared Camera 2 312 24 0 

Facial Expression 10 2037 12 1 

Saliva Analysis 442 5293 450 5 

Body temperature 1028 26828 1806 7 

Pupillometry 2 0 11 0 

Respiration 300 10306 580 1 

Psychomotor Performance 274 5079 208 1 

Body Position 235 6382 111 1 

Head Movements  5 3374 13 0 

Oximetry 25 574 10 0 

Actigraphy 189 4806 354 0 

Blood Glucose  675 32080 529 0 
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 Number of 

initial results in 

Pubmed 

Number of 

initial results in 

Scopus 

Number of 

initial results in 

Web of Science 

Number of 

papers finally 

included in the 

analysis 

Doppler Flow Meter 0 48 6 0 

 

Inclusion criteria. Only studies in English, with the full text available, both experimental 

papers and reviews were included. The papers had to describe an exact effect of the 

circadian phase on one of the psychophysiological functions listed before. Studies had to 

analyse the circadian influence on healthy, human physiological processes. 

Exclusion criteria. Studies conducted on animals were excluded from the analysis. Also, 

studies that investigated disruptions in the circadian cycle or circadian cycles in atypical or 

clinical states were excluded. Papers that mentioned the effect of the circadian phase on 

physiology but did not describe the nature of this effect were also excluded.   

As a result, 36 papers were identified and included in further analysis. Some articles 

investigated more than one physiological function, hence the number of the analysed 

papers in table 6.1 summed up to 42.  

6.3 RESULTS 

The evaluation of thirty-six identified papers showed that time of the day (or night) 

influenced psychomotor performance, body temperature, salivary cortisol, salivary alpha-

amylase, speech, subjective alertness, cognitive performance, blood pressure, facial 

expression, ECG, EEG oscillations, ERP, EMG, EOG, EDA, respiration and bodily 

posture. The full list of these effects is presented in Table 6.2. A detailed description was 

included for the most frequently used methods of driver state monitoring. The methods 

were electroencephalography, eye-tracking, electrocardiography, and electrooculography. 

Table 6.2: List of all the identified circadian effects on the psychophysiological measures, with references 

and number of papers. 

Measure Number of 

papers that 

identified the 

circadian 

effect 

The type of circadian effect References 

Electroencephalography 6 Multiple changes in slow-wave sleep EEG 

caused by circadian phase 

(Lazar et al., 

2015)  

Increased wake delta power during the 

circadian day and decreased during the 

circadian night, wake alpha peak frequency 

decreased during the circadian night and 

increased during the circadian day 

(Gundel & 

Witthöft, 1983)  
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Measure Number of 

papers that 

identified the 

circadian 

effect 

The type of circadian effect References 

Increased sleep delta during the circadian 

night and decreased during the circadian day 

(Tan et al., 

2003)  

Increased alpha activity in REM during the 

circadian day and decreased during the 

circadian night, increased sleep spindles power 

during the circadian night and decreased 

during the circadian day 

(Dijk, 1999)  

Nadir of alpha power around 4 a.m. (Cajochen et al., 

2002)  

Theta power highest between 4 a.m. and 8 

a.m. linear decreases in the afternoon and 

reaches the flat plateau in the evening, lower-

alpha presents a similar pattern, while the 

lower beta is highest between 8 a.m. and 12, 

and has the second peak around midnight 

(Cummings et 

al., 2000)  

Electrocardiography 5 Heart rate decreased during the circadian night 

and increased during the circadian day 

(Gubin et al., 

2017) 

(Prattichizzo & 

Galetta, 1995) 

Heart rate variability decreased in the 

afternoon and increased in the evening 

(Cavallari et al., 

2010)  

Increase of the heart rate variability in high 

frequencies overnight and decrease over a day 

(Amirian et al., 

2014)  

Electrooculography 2 EOG peak-to-peak amplitude in red dot 

tracking task highest in the late morning with 

acrophase at 12:22 a.m. 

(Tuunainen et 

al., 2001)  

An increased amount of slow eye movements 

during the circadian night 

(Christian 

Cajochen et al., 

1999)  

Electrodermal Activity 1 A linear increase of EDA over a day (Hot et al., 1999)  

Acoustic Speech 

Analysis 

2 A decrease of the fundamental frequency in 

the night 

(Whitmore & 

Fisher, 1996a)  

An increase of the fundamental frequency in 

the afternoon, increase of alpha ratio and vocal 

loading in the afternoon for women and 

decrease for man 

(Artkoski et al., 

2002)  

Event-related Potential  3 The increased amplitude of P200 in the 

evening in visual ERP 

(Wesensten & 

Badia, 1992)  

Increased duration of VEP P100 and N140 

components between 2 a.m. and 5 a.m. and 

decreased at 5 p.m.  

(Stolz et al., 

1988)  

P300 amplitude and latency highest in the 

morning 

(Higuchi et al., 

2000)  

Electromyography 1 Elbow flexor torque has an acrophase at 6 p.m. 

and bathyphase at 6 a.m.  

(Gauthier et al., 

1996)  

Questionnaires 1 Decreased subjective alertness during the 

circadian night, and a smaller decrease during 

the mid-afternoon 

(Dijk et al., 

1992)  

Blood Pressure  5 Increased during the circadian day and 10%-

20% decreased during the circadian night 

(Douma & 

Gumz, 2017), 

(Gubin et al., 

2017), (Hermida 

et al., 2004), 

(Prattichizzo & 
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Measure Number of 

papers that 

identified the 

circadian 

effect 

The type of circadian effect References 

Galetta, 1995), 

(Pickering et al., 

1996) 

Facial Expression 1 A decrease in skin thickness, increase in 

elasticity and increase of wrinkles in the 

afternoon 

(Tsukahara et 

al., 2004)  

Saliva Analysis 5 Salivary cortisol increased during the circadian 

morning, decreased during the circadian night 

(Del Corral et 

al., 2016), 

(Heaney et al., 

2012), 

(Pickering et al., 

1996) 

A rapid drop of salivary alpha-amylase in the 

morning and a gradual increase over a day 

(Nater et al., 

2007), (Strahler 

et al., 2010)  

Body temperature 7 Lowest during the circadian night and highest 

during the circadian day, with a peak in the 

late afternoon and dip in the early morning 

(Blatter & 

Cajochen, 2007), 

(Brown et al., 

2000), (Cuesta et 

al., 2017), (Dijk 

et al., 1992), 

(Gubin et al., 

2017), (Ekhart et 

al., 2018), 

(Gundel & 

Witthöft, 1983)  

Respiration 1 A decrease of respiratory rate and respiratory 

amplitude in the night 

(Bonnet et al., 

1998) 

Psychomotor 

Performance 

4 A decrease in Psychomotor Vigilance Task, 

executive function, pre-frontal cortex related 

functions, sustained attention, go/no-go task 

during the circadian night 

(Blatter & 

Cajochen, 2007), 

(Graw et al., 

2004), (Sagaspe 

et al., 2012)  

Cognitive performance decreased during the 

circadian night and a smaller decrease during 

the mid-afternoon dip 

(Dijk et al., 

1992)  

Body Position 1 Change in centre of pressure characteristics 

over the day 

(Baccouch et al., 

2015)  

 

Six papers reported some circadian effect on the EEG oscillations. Both sleep and wake 

brain electrical activity differed depending on the circadian phase (Lazar et al., 2015). 

Delta power during sleep was larger in the circadian night (Tan et al., 2003), alpha activity 

in rapid eye-movements (REM) sleep was higher during the circadian day, and alpha 

spindles power was higher during the circadian night (Dijk, 1999). These differences might 

influence the driver's state monitoring accuracy when the driver experiences sleep 

episodes. In the wake EEG, delta power was higher during the circadian day (Gundel & 

Witthöft, 1983), theta was at its peak between 4 a.m. and 8 a.m., while beta between 8 a.m. 

and 12 a.m. (Cummings et al., 2000). Gundel and Witthoft (1983) and Cummings et al. 
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(2000) reported alpha to be at its peak in the night, while Cajohen et al. (2000) to have its 

nadir at 4 a.m.. Figure 6.1 showed a conceptual presentation of circadian changes in wake 

EEG, whilst Figure 6.2, a conceptual representation of circadian oscillations in sleep EEG. 

Both figures presented the visual simplification of the circadian fluctuations. 

 

Figure 6.1: Approximate sample curves representing changes over the circadian cycle in wake EEG. 

Different curves represent lower beta, higher alpha, lower-alpha, theta and delta frequencies. 
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There were no papers on circadian effect on eye-tracking; however, two papers identified 

circadian changes in ocular behaviours based on electrooculography. As eye-tracking 

measures the same ocular behaviours (extended with the pupil size change) as an 

electrooculogram it could be assumed that the same circadian effects would apply to both 

methods. Tuunainen et al. (2001) reported that EOG peak-to-peak amplitude in the red dot 

tracking task was the highest in the late morning with an acrophase at 12:22 a.m. Also, an 

increase in slow eye movements was observed at night (Cajochen et al., 1999). 

Five papers described the effect of the circadian phase on ECG. Cavallari et al. (2010) 

reported a decrease in heart rate variability in the afternoon followed by an increase in the 

evening, while Amirian et al. (2014) and Rodriguez-Colon et al. (2014) increase of heart 

rate variability in high frequencies over a night and a decrease over a day. Gubin et al. 

(2017) and Pratichizzo et al. (1995) reported that the heart rate decreased in the circadian 

night and increased in the circadian day. A conceptual presentation of the circadian 

changes in ECG was presented in Figure 6.3. It was an example, an approximate curve 

demonstrating heart rate and heart rate variability over the circadian cycle.  

Figure 6.2: Approximate sample curves representing changes over the circadian cycle in sleep EEG. 

Different curves represent alpha frequency during REM sleep, power in sleep spindles and power in delta 

frequencies.  
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6.4 DISCUSSION 

This chapter reviewed the literature and identified the circadian effect on 

psychophysiological methods that can be used in driver state monitoring. It is important to 

note that increased sleepiness and fatigue could not fully explain such an effect at night. It 

hence would represent a different physiological baseline related to the point in the diurnal 

cycle.  

The review was related to the measures identified in chapter 3 as potential tools of driver 

state monitoring. Papers that were reviewed concerned these methods but were not 

associated with the driving domain. They described the circadian effect on the underlying 

physiological processes or results obtained with these methods.  

The review of the thirty-six papers showed some circadian influence on 

electroencephalography, electrocardiography, electrooculography, electrodermal activity, 

speech, event-related potential, electromyography, subjective alertness, blood pressure, 

facial expression, salivary hormonal content, body temperature, respiration, psychomotor 

performance and body position. The detailed list of all the identified circadian influences 

was presented in Table 6.2. 

Figure 6.3: An example of the curve approximating circadian fluctuations of ECG functions. Different 

curves represent heart rate, heart rate variability, and power in high frequencies in heart rate variability. 
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As the papers came from a variety of domains and did not specifically focus on driver state 

monitoring, it was not possible to assess an effect size that described circadian changes in 

physiology would have on the driver state monitoring. This work merely raised an issue 

and pointed out scientific evidence that such an effect could cause errors in the monitoring 

systems. The list of physiological changes due to circadian rhythmicity was not exhaustive 

or complete. Likely, other physiological states used for monitoring could also change 

depending on the time of the day (or night). For example, as body temperature changes 

depending on the circadian phase (Blatter & Cajochen, 2007), such change may also be 

visible with an infrared video camera.  

The consequence of such findings is not trivial. For example, Gundel and Witthof (1983) 

reported that when the subject was awake power in delta frequency was higher during the 

day than during the night. An increase in delta power was one of the indicators of 

sleepiness (Dhupati et al., 2010). Let us imagine that the EEG based driver state 

monitoring system was used without control for the circadian phase. A certain increase in 

delta power would then be treated as an alarming indicator of sleepiness. However, as delta 

power is lower at night in wake EEG independently from the sleepiness level, the level of 

growth could still stay within the normal range. In such a case, the driver’s sleepiness 

could remain undetected. It could be especially dangerous considering that night-time is a 

generally more difficult time for driving (Åkerstedt & Kecklund, 2001; Matthews, 

Ferguson, Zhou, Kosmadopoulos, et al., 2012; Mitler et al., 1988). This review identified 

several circadian effects that could cause changes in the baseline values and dynamics in 

measurements of the driver state. It was just one example of how neglecting the impact of 

the circadian phase could lead to a poorer driver state monitoring system. It is undeniable 

that the amount of literature on circadian rhythmicity in monitoring methods is scarce. 

Such lack of experimental knowledge could also lead to the situation when scientists and 

designers would not be aware of the potential consequences of the circadian phase on a 

particular method of driver monitoring.  

This chapter created a summary of what is currently known in terms of the circadian effect 

on physiological mechanisms that underlie driver state monitoring methods. It used a wide 

variety of psychophysiological measures that were either already used in driver state 

monitoring, were proposed as driver state monitoring measures after laboratory tests or 

were used for detection of states that could jeopardize driving safety. The results led to 

several important conclusions. First, there is a circadian effect on many physiological 

functions that are used in the methods of driver state monitoring. Second, the direction and 

type of effect is not trivial and should be separately studied for every physiological 
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function. The types of circadian fluctuations were described in the results section. Third, 

there might be a circadian effect on other physiological function that could be used in 

methods of driver state monitoring that were not identified in this review. It is because the 

reviewed research was not directly aimed to study driver state monitoring in the circadian 

context. It led to two conclusions, the circadian phase should be considered in the creation 

and design of driver state monitoring systems, and there is a need for more research in the 

area of circadian effect on psychophysiology, psychophysiological monitoring, and 

implementation of those in driver monitoring systems. This approach could also be used to 

monitor operators of different machines such as pilots of the aircraft, motorcyclists and 

nuclear plants operators to mention just a few. This research has created a theoretical basis 

for further investigation of the topic. It also placed chronophysiology in the area of interest 

of human factors engineers, designers, and safety scientists.  

One limitation of this study was the small amount of literature available on the topic; 

however, this was also a reason why this work is a call for more research. Also, each of the 

analysed papers considered the physiological functions from a particular perspective, that 

might not necessarily apply to a driver state monitoring. For example, Tuunainen et al. 

(2001) observed circadian variation in the red dot tracking task, while ocular state 

monitoring is mostly based on blinks and saccades. Circadian fluctuation in ocular 

behaviours might be broader than just a red dot tracking task and further research about 

circadian variations in EOG and eye-tracking.  

6.5 CONCLUSIONS 

This review has presented a wide variety of circadian influences on the physiological 

functions used in the methods of driver state monitoring, namely electroencephalography, 

electrocardiography, electrooculography, electrodermal response, speech, event-related 

potential, electromyography, questionnaires, blood pressure, facial expression, hormonal 

salivary content, body temperature, respiration, psychomotor performance, and body 

position. The circadian perspective was often neglected in research in this area. It is 

necessary to expand existing knowledge about the circadian effect on different aspects of 

physiology, psychophysiological monitoring, and driving. The circadian phase should be 

considered as one of the essential variables in the design of the systems of driver state 

monitoring and driving safety. From the perspective of researchers and manufacturers, the 

methods of driver state monitoring should be tested and validated both during the day-time 

and night as some physiological functions might be less effective as indicators in different 

circadian phases. Also, some other safety systems should be applied for night driving. It is 

especially relevant in semi-automated driving as automation might increase sleepiness, and 
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the circadian phase might influence the interaction between the automated system and the 

human driver (Kaduk et al., 2020). Such a perspective could also be relevant for operators 

of other machines, their monitoring and the general topic of the shift work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

92 

7. CREATION OF THE LABORATORY FOR PSYCHOPHYSIOLOGICAL 

MEASUREMENTS OF THE DRIVER 

Psychophysiology offers great potential to human factors engineering and ergonomics 

(Parasuraman, 2011); however, at the same time, it introduces some challenges related to 

the proper measurements of the physiological functions. This chapter described the process 

of developing a psychophysiological laboratory with a driving simulator. The challenges of 

the laboratory construction that aimed to reduce the amount of noise in signals, other 

methods of noise reduction, choice of optimal measures, and selection of brands of the 

psychophysiological devices were also described.  

7.1 CHOICE OF THE MEASURES 

Literature review in chapter 3 allowed to identify several methods as potentially useful for 

the driver’s state identification. EEG with analysis of oscillations, eye-tracking, ECG, 

EOG, functional near-infrared spectroscopy (fNIRS), EDA, acoustic speech analysis, ERP 

(event-related potential), EMG, questionnaires, blood pressure, infrared video camera, 

facial expression, saliva analysis, body temperature, pupillometry, respiration, driving 

performance, psychomotor performance, head movements, oximetry, actigraphy, blood 

glucose, and Doppler flow meter. Due to the technical, temporal and financial limitations, 

there was a need to select the most promising measures for further experimental 

evaluation. 

Initially, some methods were eliminated due to their low usability. Blood pressure measure 

was eliminated due to its low specificity (Roscoe, 1992), Doppler flow meter due to lack of 

experimental literature that would prove its effectivity in the state identification, and the 

psychomotor tests because performing them would highly interfere with the driving tasks. 

Body position, head movement and facial expression measures were also excluded, 

because they present a high challenge for computer vision and tactile recognition systems, 

while the study was mostly concentrated on psychophysiology (Fan et al., 2010; Murata et 

al., 2015). Blood glucose was excluded because of the low number of citations and high 

invasiveness of this measure. Eye-tracker was initially included in the experiment because 

the necessary equipment was already in possession of the laboratory; however, the 

technical problems led to further exclusion of this tool. As eye-tracker offers the possibility 

of pupils' size measure, pupilometer was treated as not necessary and excluded.  

The tools necessary for ECG, respiration and blood oxygenation measurement were 

already in possession of the human factors group, so they were arbitrarily included in the 

study.  
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The questionnaires were included because they did not bring any additional financial costs 

and could provide important information about the level of self-awareness that people have 

about their state while driving.   

To choose the methods from the rest of the measures, a systematic cost versus benefits 

analysis was conducted. The results of the analysis were presented in Table 7.1. A point 

system was created to evaluate the costs versus benefits balance for each method. The 

following criteria were used: spatial accuracy, temporal accuracy, the accuracy of the state 

classification reported in the literature, prevalence of the papers using this method in the 

driving safety research, prevalence of the papers using this method in the state detection 

research outside of the driving domain, financial cost of the necessary devices, and 

susceptibility to artefacts. The arbitrary system of points was used. Positive points were in 

the range of 0 to 3, and negative points in the range of 0 to -3. They expressed the usability 

of the method. A higher score expressed higher usability. 

Table 7.1: Summary of the points that psychophysiological measures received for different usability criteria 

and the final usability classification. 

 EDA EEG fNIRS EOG Acoustic 

Speech 

Analysis 

Actigraphy EMG Saliva 

Analysis 

Near-

Infrared 

Camera 

Spatial 

Accuracy 

2 1 2 3 2 2 3 2 3 

Temporal 

Accuracy 

3 3 2 3 2 2 3 0 3 

Classification 

Accuracy 

2 3 2 2 3 3 2 2 2 

Prevalence in 

Driving 

Papers 

2 3 1 3 1 1 1 1 1 

Prevalence in 

State 

Classification 

Papers 

2 3 2 2 1 0 1 1 1 

Novelty 0 0 1 0 0 0 0 0 0 

Cost 0 -1 -3 0 0 0 0 -1 -2 

Susceptibility 

to artefacts 

-3 -3 -3 -2 -1 -1 -2 0 -1 

Sum 8 9 4 11 8 7 8 5 7 

Usability 

Score 

High High Medium High High Medium High Medium Medium 

 

Spatial and temporal accuracy were assessed arbitrary based on Parasurman (2011), and 

Parasurman et al. (2008), as well as the expertise of the researcher (with 0 points for the 
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lowest accuracy, and 3 for the highest accuracy). As temporal and spatial accuracy are 

related to many factors, there was a need for an arbitrary numerical value to express the 

accuracy of the method. Temporal accuracy was treated as very high when it was possible 

to obtain a physiological gauge after 1-5 second and as very low when it was necessary to 

wait for the result for more than two minutes. In the case when the accuracy did not apply 

to the method, the score was two.  

The accuracy of the state classification was averaged between papers from the review 

presented in Chapter 3. It was only considered when accuracy was unambiguously 

mentioned in the paper: with 0 for the accuracy lower than 40%, 1: 41%-60%, 2: 61%-

80%, 3: 81%-100%. If the method was used in combination with other methods with 

accuracy higher than 90% more than three times, one accuracy point was added to the 

score.  

Prevalence of the method in the driving safety papers was based on the literature review 

(see Chapter 3) and expressed in the following way: 0: 0 papers, 1: 1-5 papers, 2: 6-10 

papers, 3: more than 10 papers. Prevalence of the method in the state classification papers 

was based on the literature review (see Chapter 3) and expressed in the following way: 0- 0 

papers, 1: 1-5 papers, 2: 6-10 papers, 3: more than 10 papers. Papers with high (2 or 3 

points) prevalence of method in state classification, but low (0 or 1 points) in driving safety 

classification received one additional point for the potential for the novelty of the findings.  

Negative points were allocated for the costs based on the cheapest quote given by the 

companies in the following way: 0: less than 5000 pounds, -1: 5001-15 000 pounds, -2: 15 

001- 25 000 pounds, -3: more than 25 000 pounds.  

Susceptibility to the artefacts received -1 point for susceptibility to the muscular movement 

like blinking, breathing or talking, -1 for susceptibility to the general body movement like 

walking, typing etc. and -1 point for susceptibility to the external artefacts like noise, light 

or temperature changes (Cacioppo et al., 2007; Mehta & Parasuraman, 2013; Parasuraman, 

2011; Wickens et al., 2015).  

The final score was classified as an indicator of usability, with the following interpretation: 

less than 4 points- small usability, 4-7 points: medium usability, 8-11points: high usability, 

and more than 11 points: very high usability. According to the proposed classification, 

EDA, EEG, EOG, acoustic speech analysis and EMG were classified as high usability 

methods. Actigraphy, saliva analysis, infrared camera and fNIRS as the medium usability 

methods.  
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This method of the usability assessment was created as a tool for this research and 

presented just a part of information related to the value of the assessed research methods. It 

was used as a strategy of measures selection for this study.  

Out of the measures classified as highly usable, all were included in the experiment. 

Additionally, saliva cortisol and alpha-amylase analysis were included in the category of 

medium usability methods. The decision was based on the costs (fNIRS and infrared 

camera costs were higher than the available funds). The second reason was the fact that the 

analysis of saliva introduced an entirely new category of measures to the experiment. 

While most of the measures controlled electrical activity of different body parts, saliva 

analysis is a hormonal measure that might give a new perspective of the physiology of 

driving. Additionally, both cortisol and alpha-amylase are strongly influenced by the 

circadian rhythms and cortisol is sometimes used as a circadian phase indicator, which 

gives another tool for the circadian analysis in the study (Del Corral et al., 2016; Strahler, 

Berndt, Kirschbaum, & Rohleder, 2010). 

Even though EEG was selected as a tool, the results of EEG were not presented in this 

thesis due to the temporal restraints, technical reasons, and highly time-demanding pre-

processing process. Nevertheless, the data related to the noise reduction in EEG recording 

as well as EEG brand choice was included in this chapter as it might present a value of the 

technical recommendation.  

7.2  CHOICE OF THE BRANDS 

The market offers a variety of models and brands of psychophysiological measurements 

devices. A review of the available models was conducted to assure the most beneficial 

choice.  

As the research group already possessed ECG, and respiration measurement devices from 

BioPac, purchasing EDA, EMG and EOG from this company allowed the lowest price and 

possibility to combine modules and use the software that was already available.  

A microphone, pre-amplifier and a recorder for speech analysis were chosen based on 

several indicators. The characteristics of the devices were based on the scientific literature. 

The microphone was selected based on the frequency curve (it should be flat). Recorder 

and pre-amplifier were chosen in the way to preserve recorded sound from frequency 

modifications (Švec et al., 2003; Hunter et al., 1997). 
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The choice of the laboratory engaged in saliva analysis was based on the Salimetrics 

approved laboratories list. The only laboratory in the United Kingdom that had such 

approval was Anglia Ruskin BioLab and it was contracted for the saliva analysis. 

The biggest challenge was presented by the choice of the EEG device model. Four offers 

met the financial constraints of the project Mobita 32, Enobio 20, EEGO Sports and Quick 

20. They were all wireless, portable models. Mobita 32 had water tap electrodes, Quick 20 

dry electrodes, EEGO Sports gel electrodes, and Enobio 20 offered both dry and gel 

electrodes. As dry electrodes were reported to generate more signal noise (Mathewson et 

al., 2017), Quick 20 was excluded. Experimental papers using three remaining models: 

Mobita 32, Enobio 20 and EEGO Sport were analysed from the point of view of signal 

noise, mobility, quality of the signal and use in driving research. The effect of analysis for 

each of the models, together with the list of investigated research papers can be found in 

the tables in Appendix 4. The summary of the comparisons was presented in Table 7.2. 

Table 7.2: Summary of the data related to the 3 analysed EEG models Mobita 32, Enobio 20 and EEGO 

Sports. 

EEG Model Amount of 

papers 

Data quality Level of 

Mobility 

Number of 

channels 

Other comments 

Mobita 4 Very good, but 

only one paper 

analysed it 

High 32 Shielded 

electrode cables 

Enobio >12 Very good in 

comparison with 

other EEG 

models, used 

multiple times in 

BCI projects 

with high 

accuracy 

High 20  

EEGO Sport >7 No actual 

analysis of data 

quality, but one 

study managed 

to measure EEG 

oscillations 

during running 

and walking, 

another obtained 

good quality 

P300 outside of  

the lab, used 

multiple times 

with high 

accuracy of 

classification 

High 32  
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As a result of this analysis, Enobio 20 was chosen for the purchase due to the high number 

of experiments that used this model with good data quality and a high number of driving 

research papers. All the papers were listed in the table in Appendix 4.  

7.3 CONSTRUCTION OF THE LABORATORY 

7.3.1 MONITORING WITH MULTIPLE SENSORS 

The development of automated technologies made monitoring the operator’s state more 

important to ensure safety. One of the examples is semi-automated driving, where the 

function of the driver is shifted into a more supervisory role (Kyriakidis et al., 2019). 

Unfortunately, people tend to perform poorly in tasks that require sustained attention 

(Warm et al., 2008).  

Driver state monitoring could improve safety by surveillance of a driver to ensure that they 

are in an appropriate state and engaged in driving-related tasks (Kyriakidis et al., 2019). 

The combination of multiple physiological recordings might provide more information. 

Moreover, a comparison of effectivity and accuracy of different measures might enable the 

most optimal choice of the monitoring system. It could allow a selection of the method 

most suitable for requirements of a particular situation in a manner of cost, efficacy, 

accuracy, speed and others. However, conducting a study using multiple sensors creates 

specific challenges. Each type of physiological signal might be confounded by the different 

kinds of noise that should be reduced as far as possible (Sweeney et al., 2012). A 

combination of various measures might increase the number of potential sources of noise 

that can affect such measurements (Cacioppo et al., 2007; Sweeney et al., 2012). The 

control of all potential signal issues across methods requires a variety of strategies, which 

can increase the complexity of the experimental environment. The processes undertaken 

are often needed to become more complex and cumbersome. A combination of different 

measures might also be affected by a combination of various noise sources; therefore, 

might require more complex noise control. Additionally, a set-up of multiple sensors can 

be more complicated, especially if they interfere with each other.  

There is a gap in the literature regarding the set-up and the laboratory space preparation 

that would ensure the best data quality for the multiple simultaneous psychophysiological 

recordings. The aim of this chapter was to address this gap by describing the experimental 

set-up and laboratory construction for a multisensory recording on the example of a 

multisensory, low-low fidelity driving simulator. It provided a decision-tree with some 

recommendations. The unique suite of recommendations was generated based on a specific 
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set of methods chosen by a user. It is meant to be a prototype of a practical tool for 

enhancing high-quality data collection. 

7.3.2 MULTIPHYSIOLOGICAL MEASUREMENTS IN HI:DAVE 

This research project studied driver state monitoring using a wide variety of different 

psycho-physiological measures. Initially, proposed methods were electroencephalography 

(EEG), camera-based eye-tracking, electrooculography (EOG), electromyography (EMG), 

electrocardiography (ECG), respiration belt, electrodermal response (EDA), saliva-based 

cortisol and alpha-amylase analysis, acoustic voice analysis, oximetry and questionnaires. 

These measures were chosen after the completion of an extensive literature review 

revealing what measures have the maturity for use in applied environments in the short, 

medium and long term (see Chapters 3, 7.1, and 7.2). After the pilot study, the eye-tracker 

was removed from the measurement methods due to its interference with forehead 

electrodes of EEG, EMG, and EOG and high computational load of the recording, such a 

variety of the recorded signals required a cautious approach towards noise reduction. So-

called signal noise, which is a recording of artefacts, can be reduced with an appropriate 

laboratory construction and experimental set-up. Unavoidable noise can be rejected from 

the data with different strategies of data pre-processing. However, algorithms that reject 

artefacts may lead to some signal loss; therefore, the experimental set-up should be 

designed in a manner to reduce the artefacts as far as possible. Two versions of the 

experimental set-up were depicted in figure 7.1 and 7.2.  
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Figure 7.1: Participant driving a driving simulator with EOG electrodes around the eyes, EMG electrodes on 

the forehead, EDA electrodes and oximetry sensor on the fingers. It is also visible that he has a respiration 

belt around the abdomen and a head-mounted microphone. The ECG electrodes are hidden under the t-shirt.   

 

 

 



 

100 

 

 

 

Figure 7.2: : Participant driving a driving simulator with EEG cap on the head, EDA electrodes and oximetry 

sensor on the fingers. It is also visible that he has a respiration belt around the abdomen and a head-mounted 

microphone. The ECG electrodes are hidden under the t-shirt.   
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7.3.3 TYPES OF SENSORS AND SOURCES OF NOISE 

EEG, EMG, EOG, and ECG estimate an electric activity of the brain, muscles, retina and 

heart, respectively. They use electrodes placed on the surface of the skin (Chang, 2010; 

Phinyomark et al., 2012; Reddy et al., 2011; Urigüen & Garcia-Zapirain, 2015). The EDA 

is a measure of electric potential on the skin surface assessed between two electrodes 

(Taylor et al., 2015). Eye-tracking is a broad group of methods of eye movements 

monitoring (Duchowski & Duchowski, 2017). In the case of this research project, 

considered eye-tracker was a helmet with two cameras recording the eyes and one camera 

recording the visual field; however, there is also an option of eyes monitoring with desktop 

mounted camera (Duchowski & Duchowski, 2017). There is a variety of devices 

measuring breathing amplitude and frequency, but in this project, it was measured with a 

belt placed on the upper abdomen (Sweeney et al., 2012). Acoustic voice analysis uses a 

voice recording to analyse the acoustic characteristics of the speech (Plichta, 2002). 

Oximetry is the measure of blood oxygenation level and a pulse with the use of near-

infrared light generated by a device placed on a finger or an ear (Ram et al., 2012; 

Sweeney et al., 2012). 

Each of the methods above has a specific set of potential artefact sources that need to be 

controlled to achieve as clean data as possible. In the case of acoustic speech analysis 

artefacts in the signal might be either caused by the noises other than speech or by changes 

in signal property caused by the microphone, pre-amplifier, recorder or data conversion 

(Plichta, 2002). Electrophysiology is sensitive to any type of movements, muscle activity, 

electrodes displacement, sweat, and influence of surrounding electromagnetic signal, even 

the signal of the recording devices (Kirst et al., 2011; Phinyomark et al., 2012; Rahman et 

al., 2011; Sweeney et al., 2012). Likewise, the measurement of the electrodermal activity 

can be disturbed by electromagnetic impulses, body movements, temperature changes or 

the displacement of the electrode (Taylor et al., 2015). Respiratory signals can be changed 

with body movements (Sweeney et al., 2012). The eye-tracking signal can be disturbed by 

blinking (in the case of gaze monitoring), eye-lashes and light instability (Duchowski & 

Duchowski, 2017). Oximetry is susceptible to movement, other body signals, 

electromagnetic influences (Chong et al., 2014) and changes in the light (Sweeney et al., 

2012). Many of the noise sources are quite common in the environment; for example, 

electromagnetic impulses are generated by the surrounding electrical devices or electrical 

wires. Similarly, acoustic noise can be generated by objects like fans, crackling noise from 

the cables, elevators and others.  

 



 

102 

 

7.3.4  EXPERIMENTAL SET-UP: A DECISION TREE 

The decision tree presented below was a result of a literature evaluation and hands-on 

comparison of different set-up strategies. It is a prototype of a guide tool that could support 

the choice of the most optimal experimental set-up for the measures selected for the 

experiment. This tool was an attempt to answer the gap in the literature that would 

combine recommendations for set-up strategies while combining different physiological 

measuring devices. It included EEG, EMG, EOG, ECG, EDA, camera-based eye-tracking, 

respiration belt, oximetry and voice recording. The user should follow descending decision 

nodes and answer the questions asked in the nodes. The arcs represent the answers ‘yes’ 

and ‘no’. They lead to additional questions and finally to the unique set of 

recommendations for the particular experiment. Recommendations were expressed as a list 

of numbers. Numbers were explained in table 7.3. The explication of the recommendations 

was included in the next chapters. Due to the complexity of the decision-tree and the 

visibility issues, the graph was divided into two parts 2A and 2B. A user following the arcs 

from graph A to graph B should continue following the arc with the same numerical 

description.  
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Figure 7.3: The flow chart presents a decision-tree leading to some recommendations for noise reduction in 

an experiment. The chart contains two parts, figure 2a and figure 2b. Each level represented one decision, for 

example, if electrophysiology is used in the experiment. A black connector on the left represented a ‘yes' 

choice and a grey connector on the right represented a ‘no' choice. The bottom level consisted of a unique set 

of recommendations for the chosen experimental design. Numbers representing recommendations werelisted 

in Table 7.3  

 

Table 7.3: Recommendations and representing numbers from the decision tree (Figure 7.3). 

Number Recommendation 

1 Reduce acoustic noise in the lab, insulate walls from noise, use silent equipment.  

2 Reduce electromagnetic influences, preferably use a Faraday Cage. 

3 Prepare the skin for the electrophysiological electrodes. 

4 Use the electrolyte for the electrophysiological electrodes. 

5 Ask participants not to use soap, detergents, alcohol or hand-cream in the area where you apply 

EDA electrodes. 

6 Reduce the movements of the participant. 7 

7 Keep a stable temperature in the lab. 

8 Keep the light in the lab at a stable level. 

9 Ask participants not to use mascara. 

10 Avoid the interactions between facial EMG, EOG and EEG electrodes, choose an alternative 

montage of EOG. 

 

7.3.5  ARTEFACTS REDUCTION- EXPERIMENTAL SET-UP  

Some techniques exist to reduce noise and artefacts contained in physiological data(e.g. 

artefact detection algorithms). However, the accuracy of such tools is not always apparent 

and the process typically leads to a loss/replacement of data, which can negatively impact 

the analysis results once such pre-processing has been completed. The best way to ensure 

high-quality physiological recording is via a diligent experimental set-up and data 

collection process, reducing the level of noise contained in the raw data collected (Plichta, 

2002).  

ELECTROENCEPHALOGRAPHY  

To avoid movement artefacts, participants are often required to fixate their gaze (Plöchl et 

al., 2012) and reduce movements (Islam et al., 2016); however, it is hardly feasible in 

many experimental scenarios. For instance, driving tasks might require hand movements, 

whole-body movements and vibration. Due to such difficulty, EEG devices are often used 

in combination with additional instruments to measure potential sources of signal 

disturbances, like EOG, EMG, gyroscope (O’Regan et al., 2013), eye-tracker (Noureddin 

et al., 2012) or a camera recording head movements (Bang et al., 2013). In such instances, 
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it is vital to avoid putting electrodes too close to each other or pressing EOG/EMG 

electrodes with an EEG cap. Such pressure could lead to a detachment of the electrodes 

and increased skin impedance. Any detachment of the electrodes or deficiency in the 

electrolyte can decrease signal quality (Nolan et al., 2010). Other factors might also 

increase skin impedance, for example, sweat or not enough electrolyte used. To decrease 

the impedance of the skin, there should be a thorough skin abrasion applied to remove a 

dead epidermis (Burbank & Webster, 1978). Impedance and signal quality might also 

depend on the equipment used. Even though there is a constant development of EEG 

technologies, devices recording signal with dry electrodes provide significantly worse data 

quality than gel or tap water-based. Commercially distributed, cheap EEG devices with a 

small number of dry electrodes, also have significantly worse quality than scientific 

models (Pinegger et al., 2016). In terms of the electrodes, montage caps give the higher 

signal quality that headsets supporting electrodes (Bang et al., 2013).  

Electroencephalography was used in the experimental work for this PhD; however, due to 

the temporal restriction, technical problems with the recorded signal, and high time-

demand of the data pre-processing, the analysis of EEG was not included in the results 

section.  

EYE-TRACKING 

Most of the video-based eye-trackers require a calibration process before the recording and 

repeated during the experiment, which can be time-consuming and break immersion during 

the experimental procedure. Some authors recommend planning a short experiment to 

avoid repetitive calibrations (Duchowski & Duchowski, 2017). Aside from this, some 

simple steps can reduce the likelihood of common signal disturbances. For example, 

eyelashes are often a problem; participants should not wear mascara for the experiment. A 

further consideration is that the laboratory should have a stable light intensity (Duchowski 

& Duchowski, 2017). In the case of this research project, eye-tracker was significantly 

reducing signal quality from the forehead electrodes of EOG and EEG and appeared to 

cause headaches in the pilot participants. The computational weight of the recorded signal 

led to frequent crashes of the software. Due to these problems, an eye-tracker was not used 

in the experiment.  

ELECTROOCULOGRAPHY 

EOG is often measured together with EEG or EMG. Many EEG devices include additional 

EOG electrodes that use the same grounding and reference as EEG. However, if a separate 

EOG device is used, electrodes for vertical eye-movements might interfere with forehead 
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electrodes or a cap in EEG. An additional challenge is the placement of ground electrodes 

that is mostly recommended on the bony area in the middle of the forehead (Reddy et al., 

2011). These electrodes can interfere with EEG electrodes, EEG cap and the electrodes of 

the forehead EMG. Therefore, it is recommended to use those devices separately. If they 

need to be combined, it is acceptable to use alternative EOG electrodes placement with two 

electrodes placed in the external eye edges and only one ground electrode in the middle of 

the forehead (Lopez et al., 2016). Previous work described experimentally validated, 

acceptable set-ups of the EOG electrodes (Lopez et al., 2016). Same as with other 

electrophysiological methods, an electrode site should be prepared with a thorough skin 

abrasion process (Burbank & Webster, 1978). In this experiment, EEG and EOG were used 

separately due to the interference between the electrodes. Participants were randomly 

assigned to the group with EEG measurement or EOG and forehead EMG measurement.  

ELECTROMYOGRAPHY  

EMG electrodes can be placed anywhere on the skin surface. It is recommended not to 

combine forehead EMG and frontal cortex EEG or an EEG cap. In this project, it was 

observed that signal quality decreased and impedance increased more rapidly over time 

when forehead EMG electrodes were additionally pressed by the EEG cap. In a case, when 

EEG and forehead EMG need to be combined, the solution might be using a loose 

electrodes EEG montage. As with other electrophysiological methods, an electrode site 

should be prepared with a thorough skin abrasion process (Burbank & Webster, 1978). 

ELECTROCARDIOGRAPHY 

The skin impedance highly influences the quality of the signal received by electrodes. 

Therefore, it is recommended to use wet electrodes with highly conductive electrolyte to 

maximally reduce the impedance (Kirst et al., 2011). Same as with other 

electrophysiological methods, an electrode site should be prepared with a thorough skin 

abrasion process (Burbank & Webster, 1978). 

RESPIRATION 

Respiration measured with an abdominal belt is quite an artefact-resilient method. 

However, like many other physiological signals, it can be disturbed by the noise created by 

body movements. Hence, it is recommended that the participant remains still during the 

experiment (Sweeney et al., 2012). In this research project, it was observed that when 

participants wore the top of a slippery fabric, it often led to belt displacement.  
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ELECTRODERMAL RESPONSE  

As EDA is a measurement related to the sweat glands activity, the laboratory that uses this 

method should put special attention into keeping a stable temperature in the room 

(Measures et al., 2012). Different guides recommend placing EDA electrodes on the non-

dominant hand if the measurement is taken from the fingers, palm, or wrist. Unlike 

electrophysiology, the skin should not be scraped before the recording. The use of soaps, 

alcoholic substances and other detergents can disturb the recording and because of that 

participants should be asked to clean their hands only with water before the experiment and 

not to use the hand-cream (Cacioppo et al., 2007). 

ACOUSTIC SPEECH ANALYSIS 

External noise can be reduced with a noise-insulation of the lab space (Plichta, 2002). It 

will be described in details in subchapter 7.3.6. Other research devices that need to stay 

inside the insulated room might produce low-frequency noise, for example, with fans or 

cables buzzing. If possible, the choice of the other devices should take into account the 

level of the low-frequency noise that they generate (Plichta, 2002). Especially the 

recording equipment should be as noise-free as possible. The pre-amplifier should have a 

balanced XLR to minimalize artefacts caused by cables. It should, also, have a high gain, 

broad dynamic range, high SNR (signal to noise ratio), and phantom power (Plichta, 2002). 

The microphone should be either head-mounted or kept in the stable, very close distance 

from the mouth. The distance of the four centimetres is preferable and allows to reduce lots 

of external noise (Plichta, 2002). It is important to choose a microphone that has a wide 

and flat frequency curve to avoid different responses to the different frequencies of the 

speech (Plichta, 2002). Omnidirectional microphones mostly have a more even response to 

different frequencies; however, they should be used only in very quiet laboratories (Hunter 

et al., 1997).  

OXIMETRY 

Oximetry is an optical method; hence, it is susceptible to the noise related to sources of 

light. It is recommended to keep the light at a constant level. Movements of the participant 

can also disturb the measurement, so they should be reduced to the minimum (Ram et al., 

2012; Sweeney et al., 2012). If the sensor is placed on the finger, it is beneficial to put it on 

the less active hand. It is not recommended to use finger sensors on the ears and vice versa, 

due to a decrease in signal quality (Haynes, 2007). 
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7.3.6  ARTEFACTS REDUCTION- LAB CONSTRUCTION 

The laboratory environment for a voice recording should be noise-insulated. Some 

researchers use anechoic chambers (Hunter et al., 1997); however, they are expensive and 

pre-dominantly used solely for voice recording purposes. In the case of multisensory re-

cording, the laboratory should meet multiple requirements to reduce different noise types. 

Therefore, it is optimal to build an isolation booth with different types of insulation 

depending upon the sensory recording(s) being focused upon. If recording voice, for 

example, the booth, should be constructed using materials that provide noise insulation, 

ideally with double walls or walls insulated with acoustic material, and a floating floor 

(Hunter et al., 1997). It is optimal to remove loud devices from the booth, such as air-

conditioning fans, loud lights and PCs with loud fans (Hunter et al., 1997). 

In an experiment using electrophysiological methods, electrodermal activity, or oximetry it 

is beneficial to reduce the surrounding electromagnetic signals (Chong et al., 2014; Kirst et 

al., 2011; Taylor et al., 2015). The recommended method is the construction of the Faraday 

cage (Fathima & Umarani, 2016). 

Additionally, in the case of EDA measurements, the temperature inside the booth should 

be kept at a stable level (Measures et al., 2012).  

The optical measuring methods, such as oximetry and camera-based eye-trackers, are 

susceptible to sources of light and because of this, it is recommended to keep the light 

inside the laboratory at a constant level (Duchowski & Duchowski, 2017; Sweeney et al., 

2012). 

The laboratory constructed for this project was a noise-insulated Faraday Cage configured 

with a low-fidelity driving simulator, as shown in figures 7.4, 7.5, and 7.6. However, it 

would be possible to reconfigure the simulation suite to facilitate studies using 

physiological recordings across many domains (e.g. flight simulator), as the fundamental 

issues, concerning the quality of data collection would remain the same. The walls inside 

the booth were covered with multiple levels of heavy-duty aluminium foil (Fathima & 

Umarani, 2016) and later with fire-retardant plastic to reduce light effects caused by the 

aluminium foil. The booth was constructed from plywood and a fire-retardant cortex-like 

plastic. PCs, BioPac signal receiver and an oximeter were placed outside of the booth to 

reduce their electromagnetic influence on the signal. The holes were drilled in the walls to 

put receiving antennas and power cables through them. The receiving antennas from the 
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BioPac receiver were extended with RP-SMA cables and the Enobio-20 USB receiver was 

extended with a USB extension cable. Power cables and a voice recorder that had to stay 

inside were wrapped in aluminium foil.  

 

Figure 7.4: Outside of the laboratory booth insulated with fire-retardant acoustic foam to reduce acoustic 

noise in the voice recording. 

 

Figure 7.5: Inside of the laboratory booth insulated from electromagnetic noise with several layers of a 

heavy-duty aluminium foil. 
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Figure 7.6: The way to connect aluminium foil with a cable. Cable has only a ground wire inside. The cable 

is led outside of the booth through the hole drilled in the wall and switched to the socket. 

To ensure a reduction in electromagnetic interference, the Faraday Cage had to be evenly 

covered with the conductive material. It does not have to be a sealed unit; it can also be 

covered with mesh or wire with the size of holes respective to the level of undesired 

frequencies. Materials recommended for electrophysiology are copper or several layers of 

heavy-duty aluminium foil (Cutmore & James, 1999; Fathima & Umarani, 2016). Even 

though small cages can properly shield without a grounding, much larger Faraday Cages 

need to be grounded to maintain shielding properties (Cutmore & James, 1999). In the case 

of this Faraday Cage aluminium foil from two walls were formed into ‘pony-tails’, clipped 

with a metal clip was used to connect these to the cables. The cables were plugged into the 

electrical sockets outside of the laboratory booth for grounding purposes. The cables were 

led outside through the holes drilled in the walls.  

Touching the aluminium walls of the Faraday Cage might cause a tiny shock due to the 

static potential being transported from the body or clothes to the ground. Therefore, it is 

recommended to put non-conductive shielding on the walls. It is, also, beneficial as it 

reduces light reflexes created by the aluminium that might disturb eye-tracking recording. 

It is important to remember that all of the materials (e.g. staples) used to attach things to 

the walls should be highly conductive, so they do not disturb the Faraday Cage effect. In 

the case of this project, plastic sheets were attached to the aluminium walls with 

construction staples made of metal.  

This chapter presented a decision tree, which could be utilized when undertaking the 

construction of a space to be used for applied experimentation using physiological 

recording techniques. The construction of a noise insulated faraday caged laboratory was 

detailed alongside recommendation for signal noise reductions. 
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8. TIME-COURSE OF SEMI-AUTOMATED DRIVING- EXPERIMENTAL 

RESULTS 

8.1 INTRODUCTION 

The literature presented in the previous chapters raised some concerns related to the safety 

of semi-automated driving and especially a decrease in driving performance related to the 

automated mode. At the same time, there were some predictions related to the positive 

influence of automation on driving safety. Automation might offer the potential to mitigate 

or reduce driving risks (Stanton & Marsden, 1996). It can also increase efficiency, alleviate 

the workload, and improve transport capacity (Kyriakidis et al., 2019). In the aviation 

domain, the use of automation has increased over the past three decades and has 

contributed significantly to improved safety (Chialastri, 2012). Therefore, it is anticipated 

that higher levels of automation can be incorporated into automobiles to reduce safety risks 

to road users and pedestrians alike (Kyriakidis et al., 2019). There are, however, still 

concerns related to the role of a human driver in partially automated systems. Even though 

some functions might be automatized, there is an ongoing discussion about who would be 

responsible for the system’s failure. Similarly, the ability of human drivers to safely 

interact with automation is questionable (Hancock, 2019). As a result, along with all the 

benefits, semi-automated driving introduces a specific set of challenges. For example, 

staying attentive while using automatic driving mode requires sustained attention and 

vigilance. People find it tiring, hard, and stressful to stay vigilant for longer periods, 

especially during monotonous tasks (Hancock, 2015; Warm et al., 2008). In a perfect 

world with no automation failures, the driver may still be required to monitor the driving 

processes but would not necessarily have to intervene. Such a situation would require long 

periods of attention but without stimulating tasks, which could help the driver to maintain 

vigilance. As such, while semi-automated driving requires vigilance, it also creates a 

difficult environment for its maintenance. Even if drivers restrained themselves from 

activities not related to driving (e. g., texting or reading), they might still experience 

cognitive distraction (Liang & Lee, 2010), fatigue or increased sleepiness (Schömig et al., 

2015; Warm et al., 2008). However, not all the experimental data confirm the concerns 

related to automated mode. Some show no performance decrease in high-automation 

(Merat et al., 2014). Until level 5 automation is released; however, there will always be a 

requirement for the driver to both monitor the automation and to take back control at some 

point (Kyriakidis et al., 2019; Warm et al., 2008; Young & Stanton, 2002). It is related to 

the fact that automation of the variety of driving functions does not necessarily introduce 

autonomy of the vehicle.  
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Another potential challenge is suboptimal mental workload. The data show an inverted U-

shaped association between mental workload and performance. If automation reduced the 

amount of mental workload, it could lead to underload (Heikoop et al., 2016; Young & 

Stanton, 2002, 2002, 2007), and as a result, decrease driving performance. Decreased 

performance could mean worse or slower intervention as well as worse driving 

performance after take-over. Paradoxically, a less demanding automated phase could 

increase the driving risk.  

Another risk could be related to night-time semi-automated driving. Accident risk 

significantly increases at night during manual driving (Matthews, Ferguson, Zhou, Sargent, 

et al., 2012; Mitler et al., 1988). Based on the review of the literature, it has been proposed 

that such risk might be even more pronounced in semi-automated driving (Kaduk et al., 

2020), possibly because of circadian changes in fatigue and attention. The increased 

demand for sustained attention might induce fatigue at any time of the day or night, but 

night-time is generally related to increased fatigue. Likewise, sustained attention is one of 

the functions highly affected by circadian rhythmicity and it gets worse during the night 

(Kaduk et al., 2020).  

Owing to the monitoring requirement, the need to take-over and the possible need to 

intervene remains an integral part of the semi-automated system not only as a user but also 

as an active agent. Because of this, proper human-automation interaction remains crucial 

for driving safety (Kaber, 2018). It is therefore vital to understand the effect that 

automation has on manual driving and driver state.  

This chapter presented the results of the analysis of the experimental data related to the 

time-course of semi-automated driving, the dynamics of the driver performance, driver 

state, and driver physiology. The hypothesis of this chapter was that there is a change in 

driver performance and driver state after automated mode characterised by a decrease in 

driving performance and a less alert state.  

8.2 EXPERIMENTAL METHODS 

8.2.1 PARTICIPANTS 

CALCULATION OF THE SAMPLE SIZE 

The data analysis used a variety of different statistical tools; however, the required number 

of participants was calculated based on the assumption that the main statistical model used 

in the analysis will be hierarchical regression. The calculation of the sample size used the 
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following assumptions about the data analysis models. The dependent variables were 

related to driving performance or attention during automation. The independent variables 

were based on all the psychophysiological measures. To estimate the necessary sample 

size, small, medium and big effect sizes were used based on Cohen’s f. The maximal 

number of independent variables included in the regression equation could be over seventy 

that included all the physiological factors, questionnaires, condition and time of the day. 

However, the problem of overfitting of the regression models makes it more reasonable to 

reduce the number of factors for one model and compare different models among each 

other during the later analysis. Because of that, the maximal number of the independent 

variables that was assumed for one model was ten. The sample size was calculated for 

multiple linear two-tailed regression in G*Power software. For small effect size, the 

recommended sample size was two hundred fifty-four, for a medium effect size one 

hundred and eight, and large effect size seventy-one. The project required a very long 

experimental process. Also, each participant was remunerated for their time and effort. 

Because of the financial and temporal restraints of the project, the assumed sample size 

was one hundred and two (fifty-one participants, each of them tested twice). This amount 

was in between the minimal sample size for large and medium effect and was the highest 

feasible amount that could meet the financial and temporal restraints of the project.  

PARTICIPANTS  

Sixty individuals were recruited for the experiment. They were healthy males and females 

with a full driving licence, who had not experienced motion sickness in the past. They 

were all informed about the procedure of the experiment and signed the informed consent. 

All the participants were required to come to the laboratory twice, once for the night-time 

experiment and once for the day-time experiment. It was assumed that the second 

experimental session might be characterised by different driving performance due to the 

learning effect. Because of that, the sessions were scheduled in the way that half of the 

participants had a night session as their first experimental session, and the other half a day 

session as their first experimental session. That way, the learning effect would not 

confound the impact of the circadian phase. In the further description of the results, the 

term session was related to the variable indicating if the participant came to the lab for the 

first or for the second time.  

Each session consisted of the same experimental scenarios, including two manual driving 

tasks. So, the task described as a first driving task, second session, would indicate the 

second time when participant came to the lab, and the first driving task of this experiment.  
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Eight participants had to terminate the experiment due to motion sickness. Out of the 

remaining fifty-two participants, three participated only in one experimental session, and 

forty-nine completed two full experimental sessions. Despite the attempts to recruit 

participants with an even distribution over genders and age groups, there was a particular 

bias towards male and young participants. The mean age of the participants who did not 

experience motion sickness was 28.33, and the median age was 26 years old. The 

demographics of the participants were presented in Figures 8.1, 8.2, and 8.3.  

The psychophysiology of motion sickness was not a topic of this thesis; however, 

incomplete data from the participants who experienced motion sickness was analysed and 

published as a conference paper. The paper depicted some differences between the 

participants with and without motion sickness, mostly related to the breath, sleepiness, and 

the number of hours they have slept before the experiment (Kaduk et. al 2021. 

 

Figure 8.1: The gender distribution of the participants of the experiment. 

As shown in figure 8.1, 58% of the participants were male and 42% were female.  

Male; 
30; 58%

Female; 
22; 42%

GENDER
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Figure 8.2: The age distribution of the participants of the experiment. 

 

Figure 8.3: The number of participants who started the experiment from the day vs from the night session. 

As shown in figure 8.3, 58% of the participants had a day-time session as their first 

session, and 42% had the night-time session as their first experimental session. 

Several technical and participant related reasons led to the loss of some data recordings. 

Tables 8.1 present the number of recordings gathered with different measures, and table 

8.2 the number of questionnaires collected and completed driving tests.  
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Table 8.1: Number of participants and measures collected with different methods. 

 Number of all 

recordings 

Number of 

Recordings 

without Motion 

Sickness 

Number of 

Participants 

Number of 

Night 

recordings 

Number of 

Day 

Recording 

EEG 47 47 27 23 24 

ECG 108 101 52 50 51 

Respiration 107 100 52 49 51 

EMG 57 50 26 26 24 

EOG 56 49 25 25 24 

EDA 99 92 51 45 47 

 

Table 8.2: Number of participants and measures collected with different questionnaires and driving test 

methods. 

 KSS Fatigue scale TORS NASA-TLX Driving Test  

M1 101 99 91 89  

T1     99 

M2 101 98 90 90  

M3 99 99 90 88  

T2     100 

 

8.2.2 ENVIRONMENT OF THE EXPERIMENT 

The experiment was conducted in a controlled laboratory environment. Driving tasks were 

performed in the low-fidelity driving simulator. The driving simulator was placed inside 

the enclosed Faraday Cage (see chapter 7). The simulator comprised of the set of three 

screens placed in the way to simulate the surrounding of the participant, driver seat, 

steering wheel, and the set of pedals. The software of the driving simulator was STISIM 3. 

The set-up of the driving simulator can be seen in Figure 8.4. The term ‘low-fidelity 

driving simulator’ corresponds to the fact that the experiment used a driver seat, steering 

wheel, and pedals instead of the whole vehicle. It does not correspond to the quality of the 

simulation itself, realism or the software used. It means, therefore, low physical fidelity 

rather than low task fidelity (Roberts et al., 2020).  
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Figure 8.4: The set-up of the driving simulator inside the Faraday Cage. 

Psychophysiological measurements were conducted with Enobio-20 EEG device, 

BioNomadix BioPac devices for EMG, EOG, EDA, ECG and respiration measures, 

Nellcor n-595 oximeter, Zoom H4N pro voice recorder. Saliva was collected with 

Sallimetrics cotton swabs. Questionnaires used were Karolinska Sleepiness Scale (KSS) 

( Akerstedt et al., 2014; Akerstedt & Gillberg, 1990), Samn-Perelli Fatigue Scale (Samn & 

Perelli, 1982), NASA-TLX mental workload scale (Hart & Staveland, 1988) and self-

created take-over readiness scale (TORS) that can be seen in Appendix 3. The details of 

the measurements’ choice can, experimental set-up, and laboratory construction can be 

found in Chapter 7.   

8.2.3 EXPERIMENTAL PROCEDURES 

Each of the participants participated in the same experimental session twice, once during 

the day-time circadian hours of high performance between 9 a.m. and 1 p.m. and once 

during the night, during the circadian low-performance hours between 10 p.m. and 2 a.m. 

Each of the experimental sessions had different durations due to the individual time of the 

task completion. The hours of the experiments provided above was then a given time 

range, but many of the experimental session finished earlier.  

The experiment consisted of a challenging manual driving task, subsequent automated 

driving task and then manual driving task again. Such a configuration was aimed to 

simulate a driving sequence when a driver drives manually, then enters the automated 

mode and then is required to take-over the manual driving. Due to the high amount of 

psychophysiological measurements, take-over was not realistically simulated but was 

rather a break for the measurements collection between the automated mode and the 

second manual driving task. The take-over simulated in this experiment was a particular 
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type of take-over when manual driving was resumed in a planned way when the vehicle 

left the area designated for automation rather than a take-over caused by a sudden 

emergency. This work did not analyse emergency take-over; however, some parts of it 

could be applied to such an event. This enabled investigation into the effect of automation 

on the subsequent manual driving as well as attention processes during the automated 

mode. The driving tasks were highly challenging to achieve the sensitive measurement of 

the small changes in the driving performance. The driving scenarios consisted of the 

sequence of the same driving scenes but presented in different order to reduce learning 

effects.  

The EEG (results not included in this thesis), ECG, EOG, EMG, respiration and EDA were 

continuously measured during the whole scenario. Still, only some parts of the recording 

were analysed later. Voice, pulse, blood oxygenation and saliva measures were collected 

only at some points of the experiment. The experimental procedure is presented in Figure 

8.5. 
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Figure 8.5: Graphical representation of the stages of the experiment. Grey boxes represent additional stages, 

green stages with a discrete collection of psychophysiological measurements, blue stages with the manual 

driving measures, red with automated driving measures, and purple continuous physiological measurements. 

The calibration of the devices was in the first phase of the experiment when participants 

were asked to perform different activities such as blinking or clenching the teeth to 

establish sample signals for noise removal during the data pre-processing. 

During Measurement 1, Measurement 2, and Measurement 3 participants were asked to sit 

still for two minutes with eyes open to collect the resting measures of EEG, ECG, EOG, 

EMG, EDA, respiration, pulse, and blood oxygenation. Subsequently, they were asked to 

read the sentence ‘good bed is more positive than a hot toe' that contains many of the 

voiced and unvoiced consonants for the acoustic voice analysis. The two samples of the 

saliva were collected during Measurement 1 and Measurement 3 (four in sum) for the 

cortisol and alpha-amylase analysis. Set of questionnaires: KSS, Fatigue scale, NASA-

TLX and TORS were given to the participants at each measurement. 
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Training Drive was a concise driving scenario that participants undertook to become 

familiar with the operation of the driving simulator.  

Test Drive 1 and Test Drive 2 (later called Test 1 and Test 2 or T1 and T2) were very 

challenging driving scenarios containing several scenes with the driving challenges or 

unexpected change that drivers had to react to. The order of the scenes was randomized to 

reduce the learning effect on the scores. Each scene contained a particular type of driving 

challenge: driving through a city with traffic lights and pedestrian crossings, driving 

through a village, long period of highway with cars suddenly changing lane, fog, driving 

up the hill through the narrow, steep road with low visibility, driving down the hill through 

the slippery road and going into the slide, and construction on the road and the lorry 

suddenly blocking the middle of the road. Test Drives were the sensitive measures of the 

participants' driving performance. Before each driving task participants were asked to drive 

as well and as accordingly to the rules as they can.  

Automation was the period when the car was driving itself through the area of 

Southampton. Participants were asked to press a key whenever they have seen a Red Car as 

a measure of attention. There were five Red Cars in the thirty-four minutes of the 

automated scenario. The number of Red Cars detected was a measure of attention. Before 

the automated task participants were asked to stay as attentive as possible and monitor the 

progress of the vehicle.  

Participants had two breaks after Measurement 1 and Measurement 3 when they were 

offered water and snacks. It was an ethical requirement due to the long duration of the 

experiment. Except for the snack breaks, each stage of the experiment was performed in 

sequence. Participants were allowed to ask for a comfort break at any time. As so, in some 

cases, there were longer intervals between the stages of the experiment. It could create a 

confounding influence; however, due to the long duration and tiring circumstances, it 

would be unethical to enforce a strict schedule onto participants. Also, the duration of the 

whole experiment differed for every participant because the length of the driving tasks 

depended on the individual driving speed as well as differences in the time it took to 

complete the questionnaires. In sum, the experiment lasted between two and a half and four 

hours.  
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8.2.4 MEASURES USED IN THE PILOT STUDY AND THE MAIN 

EXPERIMENT 

Due to the technical malfunction, EDA was not used in the pilot experiment, but only in 

the main experiment after being repaired by the company. Eye-tracker was completely 

excluded after the pilot experiment because of the high frequency of software and 

hardware failures, interference with electrodes and headache caused after a long period of 

wearing it together with the forehead electrodes. As a result, the following devices were 

used in the pilot experiment ECG, respiration belt, EMG and EOG BioNomadix models 

with MP150 module by BioPac. Voice was recorded with Zoom H4N pro recorder, 

Sennheiser phantom power adapter MZA 900 P, and Sennheiser head-mounted 

microphone HSP 4. Blood oxygenation and pulse were measured with a Nellcor n-595 

oximeter. Saliva was collected with Salimetrics oral cotton swabs and frozen at -26 Celsius 

degrees; however, analysis of the saliva was conducted cumulatively after all the samples 

were gathered. Driving task and driving performance measurements were conducted with 

STISIM 3 driving simulator with the steering wheel, driver's seat and pedals. There was 

also an additional attention task during the automated mode. Participants were asked to 

press a button every time they saw a red car. The number of red cars detected was treated 

as an indicator of attention during automation. Questionnaires used for subjective state 

measurements were Karolinska Sleepiness Scale (KSS) for drowsiness/sleepiness 

assessment (Akerstedt et al., 2014; Akerstedt & Gillberg, 1990), NASA-TLX for the 

mental workload assessment (Hart & Staveland, 1988), and Samn-Perelli scale for the 

fatigue assessment (Samn & Perelli, 1982). There was also a scale created for this 

experiment to assess the subjective readiness of the participant for the driving take-over. 

The scale called TORS (Take-Over-Readiness-Scale) can be seen in Appendix 3. For the 

main experiment, the following methods were used: EEG, EMG, EOG, ECG, respiration, 

EDA, blood oxygenation, pulse, voice recording, saliva analysis, KSS questionnaire, 

Samn-Perelli Fatigue Scale, NASA-TLX questionnaire, TORS questionnaire, driving 

performance and attention during automation. It is important to note that even though the 

EEG signal was gathered during the main experiment it is not a subject of this thesis due to 

the high temporal demand of the data pre-processing. It is going to be pre-processed an 

analysed in future.  

Driving performance was calculated with the indicators provided by STISIM 3: total 

number of the off-road accidents, total number of collisions, total number of pedestrian 

hits, total number of speed exceedances, the total number of speeding tickets, total number 

of traffic light tickets, total number of stop signs missed, total number of centreline 
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crossing, the total number of road edge excursion, the standard deviation of the lane 

position, standard deviation of the steering wheel rate, the standard deviation of the vehicle 

heading angle, the standard deviation of the longitudinal speed and acceleration of the 

vehicle, and a variable summarizing general driving performance. Higher variables 

indicated worse driving performance.  

Attention during the automated mode was calculated with the number of red cars detected 

during the automated scenario. The number of red cars in the thirty-four minutes 

simulation was five. A low number was aimed to challenge sustained attention.  

Scores from KSS and Samn-Perelli scale were calculated as a straightforward indicator of 

the subjecting sleepiness and fatigue. Higher scores indicated a higher level of sleepiness 

or fatigue with nine points as a maximum in KSS and seven points as a maximum in 

Samn-Perelli Scale (Akerstedt et al., 2014; Akerstedt & Gillberg, 1990; Samn & Perelli, 

1982). Scores from scales of NASA-TLX were calculated with the weighting in the way 

recommended in the manual (Hart & Staveland, 1988). TORS was measured each time and 

a score indicated by the participant was expressed in the form of a percentage, a higher 

percentage representing a lower level of readiness to take over manual driving. The 

questionnaires can be found in Appendix 3. 

8.2.5 EXPERIMENTAL SET-UP 

While careful laboratory construction allows reduction of the number of potential noise 

sources, it is impossible to eliminate all of them. Many measures are susceptible to body 

movements or muscle spasms (Chong et al., 2014; Taylor et al., 2015). Because of this, 

there is a need for a careful devices set-up and some preparations. Also, before each 

experimental session signal from the devices was checked through the process of 

calibration. Participants were asked to perform some actions or movements and recordings 

were checked in terms of proper reaction. For example, participants were asked to blink 

and move their eyes, and the EOG recording was checked for the movement signal. If the 

devices did not display proper signal, they were repaired until it was obtained. The 

following sections described additional activities undertaken to improve the signal from 

each of the devices. The impedance of the ECG, EMG, and EOG electrodes was checked 

after application with electrodes impedance checker and electrodes were repaired if the 

impedance was too high. The experimental set-up of the devices can be seen in figures 8.6 
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and 8.7. 

 

Figure 8.6: Experimental set-up of the participant allocated to group 1 with EEG measurements. 
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Figure 8.7: Experimental set-up of the participant allocated to group 2 with EOG and forehead EMG 

measurements. 

ELECTROENCEPHALOGRAPHY  

EEG was collected with Enobio20 device, with geltrodes and foretrodes by Neurolectrics 

as electrodes. The scalp of the participants was thoroughly prepared for the electrodes 

through scrubbing with a NuPrep gel. The electrolytic Signa Gel was used to enhance 

electrical conductivity. The pattern of movements was recorded during the calibration. 

Also, the impedance of the electrodes was monitored continuously. The skin was 

additionally cleaned and scrubbed in case of an impedance increase.  

ELECTROOCULOGRAPHY 

EOG was measured separately from EEG. The signal was recorded with BioNomadix 

EOG 2 amplifier and MP150 BioPac module. Electrodes used were BioPac EL254 Ag-

AgCl EMG electrodes. The skin around the eyes was prepared with NuPrep gel, and the 

conductivity was increase with SignaGel. The quality of the signal was first checked 

during calibration and then monitored during the whole experiment. In case of signal 
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quality decrease electrodes were disconnected, cleaned and applied again after renewed 

skin preparation.  

ELECTROMYOGRAPHY 

EMG was measured separately from EEG as the cap was displacing forehead electrodes. 

The signal was recorded with BioNomadix EMG 2 amplifier and MP150 BioPac module. 

Electrodes used were BioPac EL254 Ag-AgCl EMG electrodes. The skin was prepared 

with a NuPrep gel, and conductivity was increased with a SignalGel. During calibration, 

participants were asked to perform several forehead movements to check the quality of the 

signal. Later, the quality was monitored continuously during the experiment. In case of the 

quality decrease, electrodes were removed, cleaned, and applied again after renewed skin 

preparation.  

ELECTROCARDIOGRAPHY 

The ECG signal was collected with a BioNomadix ECG amplifier and MP150 module. In 

this experiment, the skin of the participants was prepared with the NuPrep Gel. The 

electrodes used were disposable electrode stickers manufactured by BioPac, and they 

already contained electrolytic gel. ECG has a very distinctive signal with QRS peaks. This 

signal was monitored continuously during the experiment. In the case of signal distortion, 

electrodes were removed from the chest of the participants, the skin was prepared again, 

and the new electrode stickers were applied.  

RESPIRATION 

The respiration signal was collected with a respiration belt by BioPac connected with an 

ECG amplifier, and MP150 module. The respiration signal was monitored continuously 

during the experiment, and in case of significant amplitude reduction, participants were 

asked to breathe deeply. If the signal did not display deep breathe, the belt placement was 

improved as it sometimes slipped down the participants’ abdomen.  

ELECTRODERMAL RESPONSE 

EDA was recorded with a BioNomadix PPGED amplifier and MP150 module. In this 

experiment, EDA electrodes were placed on the index and middle finger of the 

participants’ non-dominant hand. Participants were asked to wash their hands only with 

water just before the experiment and refrain from using any hand creams. Their fingers 

were cleaned with a dry cotton swab before application of the electrodes. The electrodes 

used were BioPac disposable EL507 electrodes, which were enhanced with an additional 

102 BioPac Gel that induces signal conductivity without confounding it.  
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ACOUSTIC SPEECH ANALYSIS 

In this experiment microphone used was head-mounted microphone HSP 4, with 

Sennheiser phantom power adapter MZA 900 P, and Sennheiser Zoom H4N pro voice 

recorder. The choice of the tools was based on the professional advice of the specialized 

company.  

OXIMETRY 

In this experiment, the light inside the laboratory was kept on a constant stable level. The 

oximetry sensor was placed on the ring finger of the non-dominant hand of the participant. 

The finger was previously cleaned with a dry cotton pad.  

SALIVA COLLECTION 

Cortisol and alpha-amylase saliva analysis are analytical procedures on human or animal 

saliva. To avoid disturbances in the analysis participants cannot consume food and 

beverages other than water for sixty minutes before the saliva collection. Consumption of 

medications, drugs and nicotine should be reported, as well as vigorous exercises before 

the collection. In the case of cortisol and alpha-amylase saliva can be collected with a 

cotton swab or passive drool. The cotton swab should be placed in the bottom area between 

the teeth and the cheek. After the collection saliva must be frozen immediately at a 

temperature lower than -20 Celsius degrees. If stored at a temperature of over -80 Celsius 

degrees samples must be analysed within a period of four months (Salimetrics & 

SalivaBio, 2011). 

In this experiment, participants were asked to refrain from eating for an hour before the 

experiment. They were also requested only to drink water. During the experiment, they 

were offered snacks just after each of the saliva collections, so there was at least an hour 

break between the snack and following saliva collection. They received cotton swabs and 

were asked to keep them in between their upper chick and the teeth for two minutes. After 

collection, cotton swabs were placed in the labelled tubes and frozen at -26 degrees. The 

samples were shipped to the Anglia Ruskin BioLab in dry ice packaging no longer than 

three months after collection. At the laboratory, they were stored at -80 degrees until the 

analysis.  

 8.2.6 DATA ANALYSIS 

The data analysis consisted of three major steps: data pre-processing, signal analysis and 

statistical analysis.  
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DATA PRE-PROCESSING 

Pre-processing of the physiological data is the process of noise rejection to keep the only 

physiological signal for further signal analysis. The most commonly used methods are 

filters that reject frequencies that are not possible for the particular physiological function 

or manual artefact rejection based on the visual inspection of the signal (Berntson et al., 

1997; Cacioppo et al., 2007; Delorme & Makeig, 2004). 

ECG was pre-processed in AcqKnowledge software. First, it was filtered with a bandpass 

filter with a 0.05 Hz lower border and 35 Hz higher border with 8000 coefficients. After 

that, a peak identification function was used, peaks that were not identified or inter-beat 

periods that were identified as peaks were supposed to be manually corrected. However, 

the data was of high quality and there was only one recording that needed manual 

correction (Berntson et al., 1990, 1997; Berntson & Stowell, 1998).  

Respiration was pre-processed in AcqKnowledge software. First, it was resampled into 50 

samples per second rate to reduce the computational weight of the file. After that, it was 

filtered with a band-pass filter with 0.01 Hz lower border and 1 Hz higher border with 

4000 coefficients (Kim et al., 2007; Lanatà et al., 2009; G. Liu et al., 2013).  

EMG was pre-processed in AcqKnowledge software. The data was filtered with a 5 Hz 

high pass filter and visually inspected. In the case of noisy data, parts of the recording were 

rejected from the analysis (De Luca et al., 2010; Van Boxtel, 2001).  

EOG was pre-processed in Acqknolwedge software. It was filtered with a band-pass filter 

with 0.1 Hz lower border and 20 Hz higher border (Banerjee et al., 2013).  

EDA was pre-processed in Acqknolwedge software. It was first resampled into 50 samples 

per second rate to reduce the computational weight of the file. After that, it was smoothed 

with a median smoothing and filtered with a low pass 1 Hz filter (Braithwaite et al., 2013).  

In the case of voice recordings, there was no need for artefact rejection; however, the 

recordings were cut into small pieces containing the only sentence of interest in the 

PRAAT software (Boersma & Van Heuven, 2001).  

Oxymetry did not require pre-processing as the Nellcor device was giving pre-processed 

and analysed output.  
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SIGNAL ANALYSIS 

Signal analysis is a branch of knowledge and techniques of processing pseudo-continuous 

signals into factors like time, frequency or power (Allen & Mills, 2004). The methods of 

signal analysis chosen for this work were based on the literature review on the driver state 

monitoring and technical manuals.  

ECG was analysed with AcqKnowledge 5 software. Heart rate was calculated with a ‘find 

rate’ function. Heart rate variability was calculated both in a statistical and frequency 

manner (Brookhuis & de Waard, 2010; Fairclough & Houston, 2004). 

The respiration signal was analysed with AcqKnolwedge 5 software. The ‘Find rate’ 

function was used to calculate breathing frequency, and the standard deviation of the 

original signal was calculated to estimate the mean breathing depth (Rodríguez-Ibáñez et 

al., 2011; Schreinicke et al., 1990). 

EMG signal was analysed with AcqKnowledge 5 with 30 seconds epoch frequency power 

analysis (Van Boxtel, 2001). 

EOG was analysed to estimated blinking rate, mean blinking duration, PERCLOS, rate of 

horizontal eye movements and mean duration of horizontal eye movements (Borghini et 

al., 2014; Rodríguez-Ibáñez et al., 2011). The signal was collected with Acqknolwedge 5; 

however, this software does not provide a function for EOG factors calculation. Signal was 

analysed using Matlab R2020a with a self-written code using two columns with voltage as 

input data. Code can be found on the author’s GitHub account 

(https://github.com/SylwiaKaduk).  

EDA was analysed in Acqknolwedge 5. Amplitude and frequency were calculated for 

focus areas to obtain parameters of the skin conductance level (Braithwaite et al., 2013).  

Voice was analysed using PRAAT software to estimate the following voice properties 

mean pitch, maximum pitch, minimum pitch, voice frequency range, the standard deviation 

of the pitch, number of pulses, number of periods, the fraction of locally unvoiced frames, 

number of voice breaks, degree of voice breaks, jitter, shimmer, mean autocorrelation, 

mean noise to harmonics ratio, mean harmonics to noise ration, mean speech intensity, 

maximum speech intensity, and minimum speech intensity (Boersma & Van Heuven, 

2001). 

Oximetry did not require signal analysis as the Nellcor device was giving pre-processed 

and analysed output. Blood oxygenation and pulse were averaged over the two minutes of 

https://github.com/SylwiaKaduk
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Measurement 1, Measurement 2, and Measurement 3. It was also recorded at the moment 

of each red car appearance in the automated mode.  

STATISTICAL DATA ANALYSIS 

Each of the physiological variables was tested for normality with the Kolmogorov-

Smirnov test. All tests indicated non-normal distributions of the variables, so the statistical 

tests used in the analyses were non-parametric ones.  

To analyse a time-course of psychological and physiological variables were centralized. 

Centralization was meant to allow both within and between subjects’ analysis. Kruskal-

Wallis test and multiple comparisons tests with Bonferroni corrections were used to 

compare psychophysiological measures at Measurement 1, Measurement 2, and 

Measurement 3. Driving performance was not centralized as there were only two 

measurement points during the experimental session and centralization would not allow 

seeing to the magnitude of the change between the driving tests. Because of that, driving 

test 1 and test 2 were compared with Wilcoxon signed ranks test. The statistical analysis 

and data processing were conducted in Matlab R2020a and Excel. 

8.3 THE TIME COURSE OF SEMI-AUTOMATED DRIVING- 

EXPERIMENTAL RESULTS 

8.3.1 MANUAL DRIVING PERFORMANCE 

The Wilcoxon signed ranks test was used to compare different factors of the driving 

performance during the first (T1) and second (T2) manual driving tasks. Only the second 

experimental sessions were analysed to avoid the confounding effect of learning on the 

difference between T1 and T2. The standard deviation of lane position, a standard 

deviation of steering wheel angle, a standard deviation of the vehicle heading angle, a 

standard deviation of vehicle’s longitudinal speed, and general driving performance 

significantly differed between the driving tasks. All the factors indicated worse driving 

performance after the automated phase. The exact values of the factors that significantly 

differed between T1 and T2 were presented in Table 8.4. The differences were shown in 

Figures 8.8 and 8.9.  
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Table 8.3: Factors affecting driving performance that significantly differed between T1 and T2. A higher 

value of the factors indicates worse driving performance.  

 Z value P value Mean before 

automated 

phase 

Mean after 

automated 

phase 

SD for 

T1 

SD for 

T2 

SD for 

T1 and 

T2 

Standard Deviation 

of Lane Position 

-2.55 <.05 10.11 12.18 6.54 8.74 7.32 

Standard Deviation 

of Steering Wheel 

Angle  

-4.85 <.05 255.73 287.11 37.85 43.35 41.20 

Standard Deviation 

of Vehicle Heading 

Angle 

-3.41 <.05 123.30 135.21 20.50 5.48 14.29 

Standard Deviation 

of Vehicle 

Longitudinal Speed 

-3.25 <.05 27.17 30.03 5.92 5.54 5.67 

General Driving 

Performance (higher 

the value, lower the 

performance) 

-2.84 <.05 1172.76 1254.88 181.95 166.74 169.98 

 

 

Figure 8.8: Comparison of general driving performance before and after automation. A dot represents the 

mean value. A higher value of the factors represents worse driving performance.  
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Figure 8.9: Comparison of different driving performance factors before and after automation. A dot 

represented the mean value. The plots represent following factors of driving performance: left-up: standard 

deviation of the steering wheel angle, right-up: standard deviation of the vehicle heading angle, left-down: 

standard deviation of the vehicle lane position, right-down: standard deviation of the vehicle longitudinal 

speed. 

As an additional analysis, the same comparison was conducted separately for the day and 

night experiments. For both circadian phases, there was a decrease in driving performance 

after the automated phase; however, during the night experiment, there were more factors 

that significantly deteriorated as presented in tables 8.5, 8.6, and figure 8.10.  

Table 8.4: Factors in driving performance that significantly differed between T1 (before automation) and T2 

(after automation) for the day-time experimental session. 

 Z value P value Mean before 

automation 

Mean after 

automation 

SD for 

T1 

SD for 

T2 

SD for 

T1 and 

T2 

Standard Deviation 

of Steering Wheel 

Angle  

-2.97 <.05 258.02 292.95 45.03 51.53 48.59 

Standard Deviation 

of Vehicle Heading 

Angle 

-3.04 <.05 122.57 136.44 17.63 6.98 12.69 

Standard Deviation 

of Vehicle 

Longitudinal Speed 

-1.93 <.05 27.99  30.23 6.25 5.25 5.73 
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Table 8.5: Factors in driving performance that significantly differed between T1 (before automation) and T2 

(after automation) for the night-time experimental session. 

 Z value P value Mean before 

automation 

Mean after 

automation 

SD for 

T1 

SD for 

T2 

SD for 

T1 and 

T2 

Standard Deviation 

of Lane Position 

-2.53 <.05 8.76  12.68 5.88 8.49 6.91 

Standard Deviation 

of Steering Wheel 

Angle  

-3.62 <.05 255.09  281.83 29.17 33.32 32.04 

Standard Deviation 

of Vehicle Heading 

Angle 

-1.89 <.05 124.06  134.38 23.00 3.33 15.71 

Standard Deviation 

of Vehicle 

Longitudinal Speed 

-2.76 <.05 26.52  29.82 5.62 5.87 5.62 

General Driving 

Performance (higher 

the result, lower the 

performance) 

-2.27 <.05 1155.18  1238.59 170.40 142.58 151.91 

 

 

Figure 8.10: % change in the driving performance between T1 and T2, day and night comparison. The higher 

increase in scores represents a larger decrease in driving performance. 
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8.3.2 QUESTIONNAIRES 

The Kruskal-Wallis test with multiple comparisons was used to test differences between 

questionnaires’ scores collected at M1 (baseline level), M2 (after manual driving), and M3 

(after automation). Before conducting the statistical tests, questionnaires’ scores were 

centralised to keep within-participant information during the between-participant analysis. 

Centralisation was applied to each participant and each session separately. Table 8.7 

presented the p values of the multiple comparisons tests and mean values of the 

questionnaires’ scores for the different measurement points.  

Table 8.6: p values of the Kruskal-Wallis multiple comparisons with Bonferroni correction between 

questionnaires collected at M1 (baseline measurement), M2 (measurement after manual driving), and M3 

(measurement after automation) with mean values for each measurement point. 

 Chi^2 P 

value 

M1 vs 

M2 

P value 

M1 vs 

M3 

P 

value 

M2 vs 

M3 

M1-

baseline 

mean 

M2- 

after 

manual 

mean 

M3-

after 

aut. 

mean 

SD 

for 

M1 

SD 

for 

M2 

SD 

for 

M3 

SD 

for 

M1, 

M2, 

and 

M3 

KSS 172.75 NS <.05 <.05 4.01 4.19 6.50 1.95 2.09 1.99 2.16 

TORS 

(higher the 

score, lower 

the readiness 

to take-over) 

139.96 <.05 <.05 <.05 1.96 2.38 3.43 0.77 1.08 1.31 1.14 

Fatigue 184.04 <.05 <.05 <.05 2.57 2.91 4.15 1.27 1.29 1.27 1.37 

NASA-TLX 

mental 

demand scale 

89.29 <.05 <.05 NS 8.91 32.42 26.51 14.91 24.49 28.29 23.66 

NASA-TLX 

physical 

demand scale 

15.85 <.05 NS  <.05 6.10 9.87 7.57 12.32 12.36 14.18 12.20 

NASA-TLX 

temporal 

demand scale 

18.25 <.05 <.05 NS 6.19  12.78 11.90 11.45 16.97 19.33 15.26 

NASA-TLX 

performance 

scale 

64.22 <.05 <.05 <.05 9.03  22.78 12.89 15.52 19.94 12.79 15.93 

NASA-TLX 

effort scale 

124.17 <.05 <.05 NS 4.63 32.51 35.57 9.69 24.28 26.20 22.99 

NASA-TLX 

frustration 

scale 

122.41 <.05 <.05 <.05 5.54 39.80 31.81 11.26 26.08 27.55 24.35 

NASA-TLX 

general 

mental 

workload 

162.23 <.05 <.05 <.05 2.60  9.82 8.38 2.90 5.19 5.05 4.80 

Sleepiness significantly increased after the automated phase, but not after manual driving. 

Participants felt less ready to take-over manual driving after they went through the manual 
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driving task, and then even less after the automated phase. Fatigue increased after manual 

driving and then almost doubled after the automated phase. Mental workload showed a 

different tendency. The majority of scales from NASA-TLX showed a trend to increase 

after manual driving and decrease after automation; however, not all the changes were 

significant. Only the Effort scale scores increased after automation, but the increase was 

not significant. Figures 8.11, 8.12, 8.13, and 8.14 showed changes in sleepiness, readiness 

to take-over, fatigue, and general NASA-TLX scores over the time-course of the 

experimental sessions.  

 

Figure 8.11: Mean Values with standard deviations of the Karolinska sleepiness scale during the 

experimental session. The change between M1 (baseline measurement) and M2 (measurement after manual 

driving) was not significant. 
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Figure 8.12: Mean values the Take-Over Readiness Scale with standard deviation during the experimental 

sessions. Higher results on the scale indicate lower readiness to take-over manual driving. 

 

Figure 8.13: Mean Values of the Samn-Perelli Fatigue Scale scores with standard deviation during the 

experimental sessions. 
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Figure 8.14: Mean Values of the general mental workload NASA-TLX scores with standard deviation during 

the experimental sessions. 

The driving performance tended to decrease after using the automated mode. Sleepiness 

tended to increase as well as fatigue. Participants tended to feel less ready to take-over 

manual control of the car after using the automated mode in comparison to previous 

measurements. They also felt less ready to take-over manual control after first manual 

driving in comparison to the baseline measurement. It could be hypothesized that it was a 

matter of how challenging the driving task was or of the driver fatigue. At the same time, 

the mental workload showed a decreasing trend after activating the automated mode. To 

investigate whether the changes in the subjective state could address driving performance 

decreases, rho-Spearman correlations were calculated between all the driving performance 

factors and all the questionnaires’ results. The majority of correlations were non-

significant, and the significant correlations were low. After the Bonferroni correction only 

the correlation between overall NASA-TLX scores and standard deviation of the vehicle 

heading angle was significant (rs(197)=0.34, p<.05).  

8.3.3 ELECTROCARDIOGRAPHY 

To investigate the changes in ECG over the experimental session, the Kruskal-Wallis test 

was conducted to compare each of the ECG variables during M1, M2 and M3. The 

comparison was conducted on the centralised values of the variables to combine both 

within and between subjects’ information. In the case of significant results, multiple 

comparisons test was conducted for further investigation. The results described below 

included only ECG variables that significantly differed between M1, M2, and M3.  
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Heart rate significantly differed between the measurement points. A multiple comparisons 

test showed that heart rate during baseline measurement was significantly higher than heart 

rate after manual driving, and heart rate after automation. But the difference in heart rate 

after manual driving and automation was insignificant.  

Power in low heart rate variability frequencies significantly differed between measurement 

points. The multiple comparisons test showed that change after manual driving was 

insignificant, but there was a significant increase in power after automation.  

Power in high heart rate variability frequencies significantly differed between 

measurement points. The multiple comparisons test showed a significant increase after 

manual driving but not after automation.   

Power in heart rate variability sympathetic tone and vagal tone significantly differed 

between measurement points. The multiple comparisons test showed a significant increase 

of the sympathetic tone and a decrease of the vagal tone between the measurement of 

baseline level and measurement after automation but not between baseline level and after 

manual driving or after manual driving and after automation.  

RSA in heart rate variability significantly differed between measurement points. The 

multiple comparisons test showed a significant increase between baseline measurement 

and measurement after automation but not between baseline level and after manual driving 

or after manual driving and after automation. 

PNN50% in heart rate variability significantly differed between measurement points. The 

multiple comparisons test showed a significant increase between baseline measurement 

and measurement after manual driving and between baseline measurement and 

measurement after automation but not between after manual driving and after automation.  

The detailed results of multiple comparison tests were presented in the table. The ECG 

fluctuations during the experimental session were visualised in the figure.  

Table 8.7: Results of multiple comparisons test with Bonferroni correction for the ECG variables that 

significantly differed during the time-course of the experimental session. 

 Chi^2 P 

value 

M1 

vs 

M2 

P 

value 

M1 

vs 

M3 

P 

value 

M2 

vs 

M3 

M1-

baseline 

mean 

M2- 

after 

manual 

mean 

M3-

after 

aut. 

mean 

SD for 

M1 

SD for 

M2 

SD for 

M3 

SD for 

M1, 

M2, 

and M3 

HR 22.78 <.05 <.05 NS 67.63 65.43 63.75 11.32 10.37 9.77 12.19 

HRV low 

frequencies 

15.96 NS  <.05 <.05 2177.3 2195.3 2980.1 4487.44        3112.54        3887.49        4586.47        
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 Chi^2 P 

value 

M1 

vs 

M2 

P 

value 

M1 

vs 

M3 

P 

value 

M2 

vs 

M3 

M1-

baseline 

mean 

M2- 

after 

manual 

mean 

M3-

after 

aut. 

mean 

SD for 

M1 

SD for 

M2 

SD for 

M3 

SD for 

M1, 

M2, 

and M3 

HRV high 

frequencies 

9.53 <.05 <.05 NS 2903.2 2933.8 3029.8 6631.83 

 

6621.39 

 

5460.99 

 

6520.28 

 

HRV 

sympathetic 

tone 

7.60 NS <.05 NS 0.48 0.49 0.55 0.23           0.23           0.21           0.22 

HRV vagal 

tone 

7.60 NS <.05 NS 0.52 0.51 0.45 0.23           0.23           0.21           0.22           

HRV RSA 7.90 NS  <.05 NS 6.91 7.02 7.13 1.42         1.39         1.36         1.40 

HRV 

pNN50% 

17.55 <.05 <.05 NS 34.33 38.20 39.23 21.59           23.01           22.38           22.71           

 

   

Figure 8.15: Percentage change in the ECG variables that significantly differed between measurement points 

during the experimental session: blue bars represent change between baseline measurement and measurement 

after manual driving, red bars change between baseline measurement and measurement after automation, and 

green bars change between measurement after manual driving and measurement after automation. Positive 

values represented the percentage increase and negative values percentage decrease in the ECG variables. 

8.3.4 VOICE 

To investigate the changes in voice over the experimental session, the Kruskal-Wallis test 

was conducted to compare each voice variables during M1, M2 and M3. The comparison 

was conducted on the centralised values of the variables to combine both within and 

between subjects’ information. In the case of significant results, multiple comparisons test 

was conducted for further investigation. The results described below included only voice 

variables that significantly differed between M1, M2, and M3.  
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The number of pulses, defined as large maxima in harmonic voice signal (Boyanov & 

Hadjitodorov, 1997), significantly differed between the measurement points. A multiple 

comparisons test showed that the number of pulses during baseline measurement was not 

significantly different from the number of pulses after manual driving, but there was a 

significant decrease after the automation. 

The number of periods, defined as the number of cycles in a given time (Boyanov & 

Hadjitodorov, 1997), significantly differed between the measurement points. A multiple 

comparisons test showed that the number of periods during baseline measurement was not 

significantly different from the number of periods after manual driving, but there was a 

significant decrease in the number of periods after automation.  

The number of breaks, defined as unvoiced segments of the speech (Boyanov & 

Hadjitodorov, 1997), significantly differed between the measurement points. A multiple 

comparisons test showed a significant decrease between the baseline measurement and the 

measurement after automation. 

Shimmer, defined as irregularities in voice amplitude (van Lieshout, 2003), significantly 

differed between the measurement points. There was a significant increase in shimmer 

between the baseline measurement and the measurement after the automated mode.  

The mean autocorrelation, defined as the mean correlation between voice signals separated 

with a unit of time (Gibbon et al., 1997), significantly differed between the measurement 

points. A multiple comparisons test showed that mean autocorrelation significantly 

decreased between the baseline measurement and the later measurements but not between 

the measurement after manual driving and after automation.  

The noise to harmonics ratio, defined as the ratio of noise to harmonics sound energy 

(Maryn et al., 2010), and related to its harmonics to noise ratio, significantly differed 

between the measurement points. A multiple comparisons test showed that the mean noise 

to harmonics ratio significantly decreased between baseline measurement and later 

measurements but not between the measurement after manual driving and after automation.  

The mean intensity, where speech intensity was defined as the squared amplitude of the 

voice from the beginning of the period until the given point (Gibbon et al., 1997), 

significantly differed between the measurement points. A multiple comparisons test 

showed that mean intensity significantly decreased between baseline measurement and 

later measurements but not between the measurement after manual driving and after 

automation. 
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The maximal intensity significantly differed between the measurement points. A multiple 

comparisons test showed that maximal intensity significantly decreased between baseline 

measurement and later measurements but not between the measurement after manual 

driving and after automation.  

The detailed results of multiple comparisons tests were presented in table 8.10. The 

percentage of voice fluctuations during the experimental session was visualised in figure 

8.15.  

Table 8.8: Results of multiple comparisons test with Bonferroni correction for the voice variables that 

significantly differed during the time-course of the experimental session. 

 Chi^2 P 

value 

M1 vs 

M2 

P 

value 

M1 vs 

M3 

P 

value 

M2 vs 

M3 

M1-

baseline 

mean 

M2- 

after 

manual 

mean 

M3-

after 

aut. 

mean 

SD 

for 

M1 

SD 

for 

M2 

SD 

for 

M3 

SD for 

M1, 

M2, 

and 

M3 

Number of 

pulses 

23.05 NS <.05 NS 248.16 242.16 230.43 88.28    

 

90.55    

 

77.36    

 

84.43    

Number of 

periods 

21.34 NS 

 

<.05 <.05 231.52 226.77 215.95 87.75    84.23    75.25    81.44    

Number of 

breaks 

8.90 NS <.05 NS 9.99 9.41 9.07 4.72 2.28 2.11 3.05 

Shimmer 11.55. NS <.05 NS 9.84 10.31 10.60 3.69     3.86     3.95     3.78     

Mean 

autocorrelation 

14.27 <.05 <.05 NS .8554 .8553 .8514 0.07     0.04     0.04     0.05     

Mean noise to 

harmonics 

ratio 

12.16 <.05 <.05 NS 0.29 0.21 0.22 0.86     0.06     0.08    0.46     

Mean 

harmonics to 

noise ratio 

23.41 <.05 <.05 NS 10.98 10.61 10.41 2.20     2.06    2.23     2.13     

Mean intensity 18.34 <.05 <.05 NS 61.24 60.25 60.08 5.55 5.97     6.30     5.85    

Maximal 

intensity 

16.44 <.05 <.05 NS 75.57 70.42 69.36 41.87     6.08     8.65 22.93     
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Figure 8.16: Percentage change in the voice variables that significantly differed between measurement points 

during the experimental session: blue bars represent change between baseline measurement and measurement 

after manual driving, red bars change between baseline measurement and measurement after automation, and 

green bars change between measurement after manual driving and measurement after automation. Positive 

values represented the percentage increase and negative values percentage decrease in the voice variables.  

8.3.5 ELECTROOCULOGRAPHY 

To investigate the changes in EOG over the experimental session, the Kruskal-Wallis test 

was conducted to compare each EOG variables during M1, M2 and M3. The comparison 

was conducted on the centralised values of the variables to combine both within and 

between subjects’ information. In the case of significant results, Bonferroni corrected 

multiple comparisons test was conducted for further investigation. The results described 

below include only EOG variables that significantly differed between M1, M2, and M3.  

Mean Blink Duration significantly differed between the measurement points 

(chi^2(2,46)=7.29, p<.05). A multiple comparisons test showed that mean Blink Duration 

during baseline measurement (M = 0.15, SD = 0.09) was not significantly different from 

the mean Blink Duration after manual driving (M = 0.17, SD = 0.1), but significantly 

different than the mean Blink Duration after automation (M = 0.21, SD = 0.14). The 

difference in mean Blink Duration after manual driving and automation was non-

significant.  
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8.3.6 ELECTRODERMAL ACTIVITY 

To investigate the changes in EDA over the experimental session, the Kruskal-Wallis test 

was conducted to compare each EDA variables during M1, M2, and M3. The comparison 

was conducted on the centralised values of the variables to combine both within and 

between subjects information. In the case of significant results, multiple comparisons test 

was conducted for further investigation. The results described below include only EDA 

variables that significantly differed between M1, M2, and M3.  

Mean SCL significantly differed between the measurement points (chi^2(2,85)=73.11, 

p<.05). A multiple comparisons test showed that mean SCL has significantly decreased 

between the baseline measurement (M = 7.39, SD = 5.15) and the measurement after 

automation (M = 8.63, SD = 5.62), but not between the baseline measurement and 

measurement after a manual drive (M = 9.88, SD = 5.62)  or measurement after manual 

drive and measurement after automation.  

8.3.7 ELECTROMYOGRAPHY 

To investigate the changes in EMG over the experimental session, the Kruskal-Wallis test 

was conducted to compare each EMG variables during M1, M2 and M3. The comparison 

was conducted on the centralised values of the variables to combine both within and 

between subjects information. In the case of significant results, multiple comparisons test 

was conducted for further investigation. The results described below included only EMG 

variables that significantly differed between M1, M2, and M3.  

Mean power in corrugator supercilii significantly differed between the measurement 

points. The mean power significantly decreased between the baseline measurement and the 

measurement after automation, but not between measurement after manual driving and 

after automation or at baseline and after manual driving.  

Total power in corrugator supercilii significantly differed between the measurement points. 

The same as mean power it also significantly decreased only between the baseline 

measurement and the measurement after automation.  

The table listed all the details of the multiple comparisons test. The figure presented the 

percentage of significant changes between the measurement points in the EMG variables.  
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Table 8.9: Results of multiple comparisons test with Bonferroni correction for the EMG variables that 

significantly differed during the time-course of the experimental session. 

 Chi^2 P 

value 

M1 

vs 

M2 

P 

value 

M1 

vs 

M3 

P 

value 

M2 

vs 

M3 

M1-

baseline 

mean 

M2- 

after 

manual 

mean 

M3-

after 

aut. 

mean 

SD for 

M1 

SD for 

M2 

SD for 

M3 

SD for 

M1, 

M2, 

and M3 

Mean 

Power 

Corrugator 

Supercilii 

8.26 NS 

 

<.05 NS 43.12 × 

10-12 

131.68 

× 10-12 

31.96 

× 10-12 

0.0001× 

10-6 

0.0007× 

10-6 

0.0001   

× 10-6 

0.0004× 

10-6 

Total 

Power in 

Corrugator 

Supercilii 

3.38 NS <.05 NS 353.29 

× 10-9 

1.0788 

× 10-6 

261.85 

× 10-9 

0.74× 

10-6 

5.73× 

10-6 

0.63× 

10-6 

3.60× 

10-6 

 

Figure 8.17: Percentage change in the EMG variables that significantly differed between measurement points 

during the experimental session: blue bars represent change between baseline measurement and measurement 

after manual driving, red bars change between baseline measurement and measurement after automation, and 

green bars change between measurement after manual driving and measurement after automation. Positive 

values represented the percentage increase and negative values percentage decrease in the voice variables. 

8.3.8 RESPIRATION 

To investigate the changes in Respiration over the experimental session, the Kruskal-

Wallis test was conducted to compare each Respiration variables during M1, M2 and M3. 

The comparison was conducted on the centralised values of the variables to combine both 
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within and between subjects’ information. In the case of significant results, multiple 

comparisons test was conducted for further investigation. The results described below 

include only Respiration variables that significantly differed between M1, M2, and M3.  

The mean standard deviation of the breath amplitude (SD of breath) significantly differed 

between the measurement points. A multiple comparisons test showed that the mean SD of 

breath differed significantly decreased between the baseline measurement (M = 1.27, SD = 

1.21)  and the measurement after manual driving (M = 1.09, SD = 1.54), but not between 

these measurements and the measurement after automation (M = .16, SD = 1.33).  

8.3.9 OXIMETRY 

To investigate the changes in oximetry based variables over the experimental session, the 

Kruskal-Wallis test was conducted to compare each variable during M1, M2 and M3. The 

comparison was conducted on the centralised values of the variables to combine both 

within and between subjects’ information. In the case of significant results, multiple 

comparisons test was conducted for further investigation. The results described below 

included only oximetry variables that significantly differed between M1, M2, and M3.  

Mean blood oxygenation significantly differed between the measurement points. A 

multiple comparisons test showed that mean blood oxygenation increased significantly 

between the baseline measurement and measurement after automation.  

The mean pulse also significantly differed between the measurement points. A multiple 

comparisons test showed that the mean pulse was significantly decreasing during the 

experimental session.  

Table 8.12 listed all the details of the multiple comparisons test. The figure presented the 

percentage of significant changes between the measurement points in the oximetry-based 

variables.  

Table 8.10: Results of multiple comparisons test with Bonferroni correction for the EMG variables that 

significantly differed during the time-course of the experimental session. 

 Chi^2 P 

value 

M1 vs 

M2 

P value 

M1 vs 

M3 

P 

value 

M2 vs 

M3 

M1-

baseline 

mean 

M2- after 

manual 

mean 

M3-after 

aut. 

mean 

SD 

for 

M1 

SD 

for 

M2 

SD 

for 

M3 

SD 

for 

M1, 

M2, 

and 

M3 

Blood 

Oxygenation 

10.16   NS 

 

<.05 NS 97.83% 98.08% 98.09% 1.30   1.47    1.53    2.27    

Pulse 35.68 <.05 <.05 <.05 66.96 64.90 64.47 10.19 11.00 16.04 11.56 
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Figure 8.18: Percentage change in the oximetry based variables that significantly differed between 

measurement points during the experimental session: blue bars represent change between baseline 

measurement and measurement after manual driving, red bars change between baseline measurement and 

measurement after automation, and green bars change between measurement after manual driving and 

measurement after automation. Positive values represented the percentage increase and negative values 

percentage decrease in the voice variables. 

8.4 DISCUSSION 

The analysis reported in this chapter compared manual driving performance before and 

after automation, as well as physiology and subjective psychological state of the 

participants at the baseline level, after manual driving, and after automation. The 

hypothesis was supported, suggesting that the driving performance, subjective sleepiness, 

subjective fatigue, and subjective readiness to take-over manual driving were worse after 

the driver experienced automation. Also, changes in ECG could indicate lower mental 

workload after automation, maybe to the extent of the underload. However, it is essential 

to note that the experiment did not allow dissociation between the effect of automation and 

the effect of prolonged participation in the experiment. To fully confirm that the effects 

were related to the automation, not to the time-on-task, another experimental work needs to 

be conducted with the control group of the same task duration but without the automated 

mode. Such a control group was not included in this experimental design due to the 
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temporal and financial limitations. It would either require recruiting twice more 

participants or assign half of the participants to the group without the automation, which, 

as a result, would reduce the statistical power of the models of take-over and automation 

monitoring. Experimental work took ten months, and the number of participants was not 

enough to divide it in half.  Due to these reasons, such validation was left for future 

experimental work.  

The experiment might provide some data consistent with previous predictions related to 

semi-automated driving. Several researchers have suggested that automation might reduce 

the performance of drivers. The reasons might be the demand for sustained attention, being 

out of the control group (or in other words not being fully aware of the situation), as well 

as fatigue (Hancock, 2015; Kyriakidis et al., 2019; Young & Stanton, 2007). Previous 

results have shown an increase in drowsiness after both manual and automated driving 

(Schömig et al., 2015). The analysis of the experimental data showed a decrease in driving 

performance after participants went through the automated phase; however, the current 

experiment did not provide enough evidence to fully differentiate it from the effects of 

time on task, especially as manual driving might also increase sleepiness (Schömig et al., 

2015). 

Moreover, the decrease was more profound during night-time driving than during daytime 

driving. The negative influence of the night circadian phase confirmed predictions that 

were previously only formed based on manual driving or various literature reviews. It was 

previously predicted that changes in attention, fatigue, and other cognitive functions that 

people experience at night might worsen driver performance in semi-automated driving 

(Kaduk et al., 2020); however, again it is necessary to differentiate it in future research 

from the effects of time on task. In the current experiment, driving performance decreased 

after automation both during day and night experimental sessions; however, more driving 

factors deteriorated at night. Subsequently, with the decrease in the driving performance, 

participants also experienced some changes in sleepiness, fatigue, subjective readiness to 

take-over manual driving, and mental workload after the automated phase. They felt 

sleepier, more fatigued, and less ready to take-over manual control after the automation. It 

was also notable that they assessed the mental workload during automation as lower than 

the mental workload during manual driving. If it were assumed that such a decrease 

resulted in a mental underload, it would be consistent with the data showing a performance 

decrease when the mental workload is too low as well as the predictions that automation 

might decrease the mental workload of the driver (Heikoop et al., 2016; Young & Stanton, 

2002, 2007). The increase in sleepiness, fatigue, and feeling of not being ready to drive 
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could also be related to the depletion of mental resources caused by prolonged and 

sustained attention (Hancock, 2015; Warm et al., 2008). 

Interestingly, the subjective state of the participants was not correlated with the changes in 

driving performance. It indicated that participants’ manual driving was poorer after 

automation and subjectively they felt more tired and less ready to drive. Still, the 

magnitude and occurrence of these two processes did not significantly correlate. It could be 

related to several functions, such as subjective sleepiness and fatigue, which are different 

from biological sleepiness and fatigue. However, the information that might have even 

more profound consequences for driving was that participants were not able to predict how 

ready they were to take-over manual driving with the TORS questionnaire. It could 

indicate that drivers were not able to accurately assess their state or the fitness to drive. 

Such a lack of awareness could lead to take-overs in inappropriate situations and 

continuation of driving when drivers should take a break. These findings suggested that 

there is a requirement for additional methods of driver state monitoring, for example, in-

car physiological sensors.  

There is an ongoing discussion in the scientific literature about whether driving 

performance reduces as a result of automation. Many researchers have predicted that 

automated vehicles could negatively affect manual driving; however, some did not observe 

any performance decrease (Merat et al., 2014). In the current study, a reduction in driving 

performance was observed after the automated phase. It is possible that it was an effect of 

the automated mode; however, it could also be caused by other factors, such as time on 

task. The reduction in manual driving performance was not restricted to the period just 

after take-over, as manual driving in the current experiment took place approximately ten 

minutes after the end of the automated mode. Participants were not accurate in the 

assessment of their fitness to drive, which made such a risk more profound.  

In respect to physiology, there were many changes observed during the time-course of the 

experimental session. From the perspective of the research questions, the most interesting 

changes were from the measurements taken after manual and automated driving. The 

period in between these measurements was mainly filled with a simulation of the 

automated mode, and hence it was possible that the changes were related to the 

automation.  

Power in low frequencies in heart rate variability significantly increased after automation. 

This range of frequencies, especially the 0.1 Hz component, were previously associated 

with the mental effort, mental workload and time on task (Fairclough & Houston, 2004). 
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The increase in power could indicate decreased mental workload or underload related to 

automation.  

The number of pulses and the number of periods significantly decreased between the 

measurement after manual driving and measurement after automation. They were not 

previously used in state monitoring.  

Pulse has significantly decreased between the measurement after manual driving and after 

automation. Sanpeng et al. (2010) reported that increased pulse could be an indicator of 

extreme fatigue; however, the pulse is a highly unspecific method and it is hard to draw 

precise psychological or behavioural conclusions based on it.  

This study was not without the limitations that should be understood as a part of data 

interpretation. The experimental design did not allow dissociation between the effect of 

automation and time on task. The sample size in the circadian analysis was too small to 

draw definite conclusions. Also, it should be noted that the standard deviation of some of 

the driving performance measures was relatively high and could lead to confounding 

effects, despite the statistical significance of the results. There is a need for future work to 

control for these variables. 

8.5 CONCLUSIONS 

This study indicated certain risks for manual driving after the preceding automated phase. 

People generally seemed to drive worse after using vehicle automation. They also reported 

feeling more fatigued, sleepy, and less ready to drive after using automation, particularly at 

night. Their heart rate variability also suggested mental underload related to vehicle 

automation. As semi-automated vehicles are entering the marketplace, it is, therefore, 

crucial to understand the mechanisms that cause driver performance decrements. As people 

are not good at assessing their fitness to drive, manufacturers cannot solely rely on the 

judgment of the driver. Potential mitigating measures could include psychophysiological 

monitoring systems in the vehicle that would assess the driver state as well as a change in 

the design of automation to better interact with human cognition.  
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9. CIRCADIAN EFFECT ON SEMI-AUTOMATED DRIVING AND DRIVER 

STATE MONITORING- EXPERIMENTAL RESULTS 

This chapter included the results of the circadian analysis of the experimental data. 

Literature reviews on circadian effect on manual driving, semi-automated driving, and 

driver state monitoring suggested an adverse effect of night-time on driving performance 

and changes in the interpretation of physiological data based on the circadian phase. The 

following subchapters described experimental validation of these theoretical predictions.  

9.1 OVERVIEW OF THE GENERAL EXPERIMENTAL METHODS AND THE 

STUDY SPECIFIC DIFFERENCES 

Chapters 4, 5, and 6 showed evidence that the circadian phase might affect driving 

performance in manual and semi-automated driving, as well as should be included in the 

systems of driver state monitoring to assure better accuracy and interpretation of the 

signals. The following sections described experimental work and analysis of the circadian 

effect on simulated semi-automated driving. The main hypotheses for this chapter were 

that there is a circadian effect on semi-automated driving and psychophysiology of the 

driver in the semi-automated vehicle. The sub-hypotheses were that driving performance 

and attention during automation decrease during the night. 

The experimental design, participants and set-up were already described in chapter 8.2; 

however, this section presented the perspective of the circadian effect.  

Data collected from fifty-two participants were analysed in the circadian context. The 

analysed variables were related to driving performance, attention during automation, EMG, 

EOG, ECG, respiration, EDA, voice, oximetry, salivary cortisol and alpha-amylase, 

subjective sleepiness measured with KSS, subjective readiness to take-over measured with 

TORS, subjective fatigue measured with Samn-Perelli Fatigue scale, and subjective mental 

workload measured with NASA-TLX.  

The driving tasks were performed in the low-fidelity driving simulator with the STISIM 3 

software. The simulator was placed inside the noise-insulated Faraday cage,  

The analysed psychophysiological variables came from the periods of resting-state during 

M1, M2, and M3, the manual driving performance came from the driving tasks T1 and T2, 

and the attention measure came from the period of automated mode, as shown in figure 

9.1. The same experimental procedure was repeated twice for each participant, once during 

the high day-time circadian phase (9 a.m.- 1 p.m.) and once during the low night-time 

circadian phase (10 p.m.- 2 a.m.). 
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Figure 9.1: The outline of the experimental design. 

9.1.1 STATISTICAL DATA ANALYSIS 

The data analysis consisted of three major steps: data pre-processing, signal analysis and 

statistical analysis. As pre-processing and signal analysis did not differ for the circadian 

analysis, only the statistical analysis was described in this chapter.  

The Kolmogorov-Smirnov test showed that none of the experimental variables had a 

normal distribution, hence only non-parametric correlation tests were used. 

To compare different factors between the circadian phases, the rho-spearman correlation 

was calculated between the circadian phase (binary variable with values 0 for the day and 1 

for the night) and different psychophysiological variables. The analysis of the 

psychophysiological variable was conducted for the resting state measurements M1, M2, 

and M3. Only the factors that significantly correlated with the circadian phase were 
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described in the next subchapter. The statistical analysis and data processing were 

conducted in Matlab R2020a and Excel. 

9.3 RESULTS OF THE EXPERIMENT 

9.3.1 MANUAL DRIVING PERFORMANCE  

The Bonferroni corrected rho-Spearman correlation was calculated between driving 

performance and circadian phase. None of the correlations reached the significance level.   

The first experimental session was characterised by a stronger learning effect on the 

driving performance as participants were doing the driving tests for the first time, and most 

of them were using the driving simulator for the first time. Because of that, analysis of the 

association between circadian phase and driving performance was conducted again 

separately for the first and second session.  

During the first experimental session, there was a significant positive correlation between 

the number of collisions and circadian phase (rs(100) = .29, p<.05 ). While for the second 

experimental session, the association between the number of collisions and the circadian 

phase was also significant but with an opposite direction (rs(93) = -.21, p<.05 ). The 

association was visualized in figure  

 

Figure 9.2: Association between the number of collisions and circadian phase during the first and the second 

experimental session. 

As the previous research in the forced desynchrony protocol showed that circadian phase 

affected driving performance only in interaction with the sleep deprivation (Matthews, 

Ferguson, Zhou, Kosmadopoulos, et al., 2012; Matthews, Ferguson, Zhou, Sargent, et al., 

2012) a stepwise regression was tested using the mean of general driving performance as a 
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dependent variable and circadian phase, the number of hours slept before the experiment, 

and mean of KSS results as independent variables. P value and adjusted r-squared were 

used as criteria for the addition or removal of the factors. All the independent factors were 

removed and the model was insignificant (F(1,97) = 1.24, adjusted r-squared =NA, p:NS). 

9.3.2 QUESTIONNAIRES 

Participants reported their subjective sleepiness, fatigue, readiness to take-over manual 

driving and mental workload using questionnaires. The questionnaires’ results were 

correlated with circadian phase. As shown in figures 9.2, 9.3, 9.4, and 9.5 scores that 

significantly correlated with circadian phase were KSS (rs(301) = .33, p<.05 ), TORS 

(rs(271) = .24, p<.05 ), Fatigue Questionnaire (rs(296) = .40, p<.05 ) and NASA-TLX 

physical demand scale (rs(265) = .06, p<.05 ).  

 

Figure 9.3: Sleepiness increased at night. The size of the markers represents the frequency of the values.  
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Figure 9.4: Participants felt less ready to take-over at night. The size of the markers represents the frequency 

of the values. 

 

Figure 9.5: Fatigue increased at night. The size of the markers represents the frequency of the values. 
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Figure 9.6: Physical demand had a very low tendency to increase at night. The size of the markers represents 

the frequency of the values. 

9.3.3 VOICE 

Rho-Spearman correlation test between the Voice measures and a circadian phase (0=day, 

1=night) showed a small significant correlation between circadian phase and voice mean 

autocorrelation (rs(299) = .2, p<.05), and between circadian phase and mean noise to 

harmonics ratio (rs (299) = -.2, p<.05) as shown in figure 9.7 and 9.8 

 

Figure 9.7: Mean voice autocorrelation for day and night experimental sessions. The formula to calculate Rx 

was provided in a glossary of terms (Yoon et al., 2006).  
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Figure 9.8: Mean voice noise to harmonics ratio for day and night experiments. 

9.3.4 ELECTROOCULOGRAPHY 

The rho-Spearman correlation was used to test the association between circadian phase and 

EOG variables. There was a significant correlation with the rate of horizontal eye-

movements (rs (145) = -.22, p<.05), as shown in figure 9.9.  

 

Figure 9.9: Rate of horizontal eye-movement decreased at night. 

9.3.5 ELECTROMYOGRAPHY 

The rho-Spearman correlation was used to test the association between circadian phase and 

EOG variables. There was a significant correlation with the mean frequency in frontalis 

muscle (rs (147) = -.18, p<.05), mean power in frontalis muscle (rs (147) = .18, p<.05), 

and total power in frontalis muscle (rs (147) = .18, p<.05) as shown in figure 9.10, 9.11 

and 9.12.  
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Figure 9.10: Frequency in frontalis muscle tended to decrease at night. 

 

 

 

Figure 9.11: Mean power in frontalis muscle tended to increase at night. 
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Figure 9.12: Peak power in frontalis muscle tended to increase at night. 

9.3.6 SALIVA 

Rho-Spearman correlation between circadian phase and cortisol salivary content was 

significant and high negative (rs(206)=-0.76, p<.05) as shown in figure 9.13. In contrast, 

the correlation with the alpha-amylase content was insignificant.  

 

Figure 9.13: Cortisol level was higher during the day. 

9.4 DISCUSSION 

This chapter investigated the circadian effect on semi-automated driving and driver state 

monitoring. The literature reviews presented in chapter 4, 5, and 6 provided data about the 

potential circadian effect on semi-automated driving and driver state monitoring. It allowed 

formulating of hypotheses for this experiment. The main hypotheses for this chapter were 

that there is a circadian effect on psychophysiology and performance of the driver in the 
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semi-automated vehicle. The sub-hypotheses was that driving performance and attention 

during automation decrease during the night. The main hypothesis was supported, but the 

sub-hypothesis failed to match experimental evidence.  

To investigate the circadian effect on psychophysiology and semi-automated driving, the 

binary variable representing the circadian phase (0-day, 1-night) was correlated with 

driving performance, attention during automation, and psychophysiological variables. 

Driving performance, questionnaires’ results, voice, EOG, EMG, and salivary cortisol 

content were found to change with the circadian phase; however, only cortisol level 

displayed a high correlation. These changes supported the main hypotheses that there are 

changes in driving performance and psychophysiology of the driver in a semi-automated 

vehicle.  

Driving performance did not differ significantly between day and night session; however, 

when divided into the first and second experimental session, the number of collisions 

correlated on the low level with a circadian phase. During the first experimental session, 

which was characterised by a lower familiarity with the tasks, there were more collisions at 

night. However, during the second experimental session, when the tasks were more 

familiar, there were fewer collisions at night. Such results did not support the sub-

hypotheses and seemed to contradict the previous literature (Akerstedt et al., 2001; 

Chipman & Jin, 2009; Mitler et al., 1988). The decrease of the driving performance at 

night during the first experimental session could be explained by the higher cognitive 

demand of the unfamiliar tasks; however, it requires further investigation to explain the 

increase of the driving performance at night during the second session. Future research 

with different types of driving tasks could give a better understanding of this finding.  

The subjective state of the participants differed between the day and night. They declared 

being sleepier, more fatigued and less ready to take-over manual driving at night than 

during the day. There was also a small increase in the subjective physical demand of the 

tasks at night, but the correlation was very low. Higher sleepiness and higher fatigue at 

night were already researched in the past (Lowden et al., 2009; Otmani et al., 2005); 

however, lower readiness to take-over is a newly reported phenomenon. It is a factor that 

could negatively influence the comfort of the night-driving in semi-automated vehicles and 

lead to disuse or misuse of automation at night.   

Two acoustic properties of voice displayed changes during the circadian cycle. Mean 

autocorrelation showed a small tendency to increase at night, while mean harmonics to 

noise ration to decrease at night. The tendency was small but statistically significant. 
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Neither of these properties was reported to be used in state monitoring; however, both 

increase of autocorrelation and a decrease of harmonics to noise ratio were associated with 

negative emotions or negative arousal (Linhart et al., 2015; Mongia & Sharma, 2014). 

Mean frequency in frontalis muscle tended to increase at night, while mean power and 

peak power in frontalis muscle tended to decrease at night. This result might have 

consequences for some systems of driver state monitoring as the increased power in 

frontalis muscle was previously reported to be associated with increased mental workload 

(Cohen et al., 1992). Considering that there were almost no circadian differences in mental 

workload, the changes in frontalis muscle could be addressed to the circadian phase. In the 

case of driver state monitoring with the use of EMG of the frontalis muscle, this effect 

should be taken into account.  

There was a tendency to the decreased rate of the horizontal eye-movements at night. 

Previous literature identified a decrease in spontaneous and saccadic eye-movements as an 

indicator of increased mental workload (May et al., 1990) as well as with increased fatigue 

(Lal & Craig, 2001, 2002) and drowsiness (Borghini et al., 2014). It would require 

additional experimental work to dissociate the effect of the circadian phase from the 

influence of drowsiness and fatigue on horizontal eye-movements as both fatigue and 

drowsiness increased at night. If there was a circadian change in the rate of horizontal eye-

movements, it would be recommended to treat the circadian phase as a factor in driver state 

monitoring systems that use ocular behaviours.  

Cortisol level in saliva significantly decreased at night, which is a result repeatedly 

reported before. Cortisol is treated as one of the main hormonal components of the 

circadian cycle, together with melatonin (Blatter & Cajochen, 2007; Cajochen et al., 2002).  

These results allowed to support the suggestion presented in the review in chapter 6, that 

the circadian phase might influence systems of driver state monitoring. However, it was 

not confirmed that the driving performance in semi-automated vehicle decreased at night, 

which was suggested in the theoretical chapter 5.  

9.5 CONCLUSIONS 

The circadian phase can influence the driver psychological and physiological state. Such 

influences should be taken into account when designing a semi-automated system.  

In the design process of the systems of driver state monitoring, the circadian effect should 

be tested as one of the variables, particularly as some of the factors in driving performance 

might get worse at night.  
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Increased feeling of sleepiness, fatigue, and decreased readiness to take-over manual 

driving at night might reduce the willingness of drivers to engage in a semi-automated 

driving system. The design of automated systems should anticipate the potential states of 

the driver at night.  

To conclude, the circadian effect tends not to be included in the design of semi-automated 

vehicles, but it is worth considering the potential effect on a driver’s state and physiology. 

Clearly then, more research is urgently needed.   
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10. DRIVER STATE MONITORING IN SEMI-AUTOMATED VEHICLES- 

EXPERIMENTAL RESULTS 

The two literature reviews described in chapters 2 and 3, allowed to identify a list of risky 

driver states and a variety of psychophysiological measures that could detect them. The 

main question of this doctoral project was what are the most accurate methods to monitor 

driver state to ensure safe take-over. It would mean monitoring of the driver attention 

during automated mode to ensure that they are monitoring the process, as well as the short 

measurement of the driver state before the take-over to check if they are ready to safely 

resume manual control over the vehicle. To answer these questions, the experiment was 

conducted in the driving simulator using a high amount of psychophysiological measures. 

The choice of the measures and the laboratory environment were described in Chapter 7.  

The experiment was conducted in the laboratory to ensure the precision of the 

physiological measurements (see chapter 7); however, there was also a need for a certain 

ecological validity. Many studies investigated driver state monitoring comparing 

physiological indicators to the questionnaires or experimentally inducing sleepiness and 

observing accompanying physiological changes (Jiao & Lu, 2016; Samn & Perelli, 1982). 

This experiment examined the potential to predict actual driving performance or 

performance in attention task with physiological measures. It was a novel step further into 

the application of the current knowledge about physiology. However, it also created a more 

challenging situation, as driving performance does not always change with the state of the 

driver. For example, a sleepy or distracted driver might still drive well using their 

additional available cognitive capacity (Parasuraman et al., 2008; Ross et al., 2014; Young 

& Stanton, 2002). Another challenge was that physiological states often are not unique for 

some mental states. For example, increased heart rate might be related to any type of 

increased arousal not being selective for one specific mood. At the same time, it might be 

associated with the change of bodily position, hence indicate more physical arousal. The 

following chapters described the methods and results of the experiment. The main 

hypotheses of this analysis were that 1. psychophysiological measures can predict 

performance after take-over and 2. Psychophysiological measures can predict attention 

during automation. The sub-hypotheses was that psychophysiological indicators that can 

predict driving performance and attention are related to one of the risky states identified in 

chapter 2, namely sleepiness, fatigue, distraction, mental workload or situation awareness.  
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10.1 OVERVIEW OF THE GENERAL EXPERIMENTAL METHODS AND 

THE STUDY SPECIFIC DIFFERENCES 

Data collected from fifty-two participants was used to created predictive models of driver 

performance in the semi-automated vehicle. The independent variables were related to 

EMG, EOG, ECG, respiration, EDA, voice, oximetry, salivary cortisol and alpha-amylase, 

subjective sleepiness measured with KSS, subjective readiness to take-over measured with 

TORS, subjective fatigue measured with Samn-Perelli Fatigue scale, and subjective mental 

workload measured with NASA-TLX. The dependent variables were related to driving 

performance and attention during automation. 

The driving tasks were performed in the low-fidelity driving simulator with the STISIM 3 

software. The simulator was placed inside the noise-insulated Faraday cage,  

The analysed psychophysiological variables came from the periods of resting-state during 

M1, M2, and M3, the manual driving performance came from the driving tasks T1 and T2, 

and the attention measure came from the period of automated mode, as shown in figure 

10.1. The same experimental procedure was repeated twice for each participant, once 

during the high day-time circadian phase (9 a.m.- 1 p.m.) and once during the low night-

time circadian phase (10 p.m.- 2 a.m.). 
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Figure 10.1: The outline of the experimental design. 

10.1.1 STATISTICAL ANALYSIS 

Each of the physiological variables was tested for normality with the Kolmogorov-

Smirnov test. All tests indicated non-normal distributions of the variables, so the statistical 

tests used in the analyses were non-parametric ones.  

To analyse driver state monitoring before take-over new variables were created by 

subtraction of physiological variables at Measurement 1 and Measurements 3 (M1-M3) 

and driving performance at Test 1 and Test 2 (T1-T2). It allowed to assess change in 

physiology and driving performance and avoid confounding results with differences in 

baseline physiology or baseline driving performance in different subjects. Following this 

data manipulation linear models were tested using various M1-M3 factors, and some other 

variables like circadian phase as independent variables and T1-T2 as the dependent 

variable. Also, the rho-Spearman correlation was calculated between all the physiological 
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variables and different factors of the driving performance. The first step of the analysis was 

the features selection based on the p values and adjusted r-squared of the linear models 

using only factors derived from one physiological function as independent variables, as 

well as rho-Spearman correlation values of the correlation between physiological factors 

and factors in driving performance. The second step of the analysis was step-wise 

regression using features selected previously as independent variables and change in 

general driving performance as the dependent variable. As a third step, leave-one-out 

cross-validation was conducted on the model created with step-wise regression to establish 

the most accurate coefficients and parameters of the model.   

To analyse monitoring of the driver attention during the automation, three types of models 

were tested. Linear model with the physiological recordings from Measurement 2 as 

independent variables and number of red cars detected as the dependent variable. Linear 

model with physiological recordings from the automation period as independent variables 

and the number of red cars detected as the dependent variable. And the binomial model 

with the physiological recordings from 30 seconds period before the red car as independent 

variables and a binary variable indicating if the red car was detected (0-not detected, 1-

detected) as a dependent variable. The same approach was used for take-over monitoring, 

as the analysis consisted of the same three steps. Features selection using uniphysiological 

linear and binomial regression models, step-wise regression using selected features, and 

leave-one-out cross-validation were used to establish the most accurate coefficients and 

parameters of the models. The code for linear and binary leave-one-out cross-validation 

can be found on the author’s GitHub account (https://github.com/SylwiaKaduk). The 

statistical analysis and data processing were conducted in Matlab R2020a and Excel. 

10.2 TAKE-OVER MONITORING 

This chapter described an investigation of the possibility to predict driving performance 

after take-over based on the psychophysiological measurement conducted just before take-

over. The measurement was either 2 minutes long recording of the resting state physiology, 

questionnaires collected before take-over, saliva samples collected before take-over or a 

voice recording collected before take-over.  

Every person has a different physiological baseline as well as different driving abilities. To 

reduce the confounding effect of the individual differences, regression models used the 

change in psychophysiology as independent variables and change in general driving 

performance as the dependent variable. The change in physiology was calculated with a 

subtraction between the physiological variable from M1 and M3. The change in driving 

https://github.com/SylwiaKaduk
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performance was calculated with a subtraction between driving performance during T1 and 

T2.  

A high number of variables created a risk of overfitting and hence there was a requirement 

for feature selection and reduction. The strategy of features selection and data modelling 

was graphically represented in figure 10.2. Firstly, each physiological function was used 

separately to fit a linear regression model using the change in the factors derived from this 

physiological function recording as independent variables and change in the general 

driving performance as a dependent variable. Among the statistically significant models, 

the one with the highest adjusted r-squared was chosen, and significant predictors from this 

model were selected for further analysis. Secondly, the Bonferroni corrected rho-Spearman 

correlation was calculated between the factors derived from the physiological recording 

and all the factors in driving performance. Physiological variables that absolute value of 

significant rho correlation was equal to or higher than 0.35 were selected for further 

analysis. As a third step, the rho-Spearman correlation was calculated between the selected 

physiological variables to avoid collinearity in the model. If the absolute value of rho was 

equal to or higher than 0.65, the variables were reduced. After such a process of features 

selection, a multiphysiological model was created using stepwise regression with adjusted 

r-squared and p values as criteria of the model selection. The model used the change in 

selected physiological variables as independent variables and change in the general driving 

performance as a dependent variable. The best selected model was then tested with leave-

one-out cross-validation to most accurately estimate the parameters of the model. The 

following subsections described the process of features selection and the final model 

creation and testing.  
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Figure 10.2: Steps of the features reduction and data analysis to create a model predicting driving 

performance after the take-over based on the physiology of the driver. 

10.2.1 QUESTIONNAIRES 

To see if the change in results of questionnaires can predict the change in the driving 

performance, three linear models were tested. The depended variable was the difference 

between the general driving performance during T1 and T2 (positive result suggested an 

increase in driving performance and negative a decrease). Initially, the independent 

variables were a circadian phase, chronotype, and differences between all the 

questionnaires results measured at M1 (before T1) and M3 (before T2). Later different 

linear models were tested using the most significant variables from the previous models. 

All the models can be seen in Appendix 5. The strongest significant model (model 2) used 

the change in KSS, Fatigue, NASA-TLX Mental Demand, and NASA-TLX Effort scales 

as independent variables (F(5,76) = 2.52, adjusted r-squared =.07, p<.05). The predictive 

power of the model was very low.  

Another analysis was Spearman correlation between the results of the questionnaire before 

the driving task (M1 before T1 and M3 before T2) and the factors of driving performance 

1. Uniphysiological linear 
regression

•Factors derived from one physiological function were used to fit linear regression 
models. Changes in physiological factors (M1-M3) were independent variables and 
change in general driving performance (T1-T2) was dependent variable.  

•The statistically significant model with the highest adjusted r-squared was selected. 
The significant variables from the model were selected for further analysis.

2. Correlation between 
physiological variables and 

driving performance

•Rho-Spearman correlation was calculated between the physiological factors and all 
the driving performance factors that made-up general driving performance. 

•Variables that correlated significantly on the level of 0.35 or higher or -0.35 or lower 
were selected for the further analysis. 

3. Correlation between the 
physiological variables

•Rho-Spearman correlation were calculated between all the selected physiological 
variables. 

•Variables that significantly correlated with rho equal or higher than 0.65 or equal or 
lower than -0.65 were reduced. 

4. Step-wise regression 
andcross-validation

•Stepwise regression was used to created a regression model with the highest 
adjusted r-squared. 

•The model was later analysed using leave-one-out cross-validation to establish the 
most accurate assesment of its parameters. 
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following the questionnaires’ completion. The table with all the significant correlations can 

be seen in Appendix 6. The majority of the correlations were low; however, some reached 

medium values, namely correlation between NASA-TLX frustration scale and standard 

deviation of the vehicle heading angle (rs(265) = .34, P<.05), the correlation between 

overall NASA-TLX and standard deviation of the steering wheel angle (rs(265) = .34, 

P<.05),  and the correlation between overall NASA-TLX and standard deviation of the 

vehicle heading angle (rs(265) = .35, P<.05). 

10.2.2 ELECTROCARDIOGRAPHY 

Three models were tested to find the best predictive variables in ECG. All the tested 

models can be seen in Appendix 5. The strongest significant model (model 2) used the 

circadian phase, change in very high frequencies in heart rate variability, change in 

sympathetic to vagal tonus ration, and change in RSA as independent variables. Its 

predictive power was low (F(5,91) = 3.67 , adjusted r-squared =.1, p<.05). 

As the following step rho-Spearman correlation was calculated between each of the ECG 

variable and different factors of driving performance during the driving test following the 

ECG measurement. The values of the significant correlations are presented in Appendix 6. 

All the significant correlations with ECG variables were small.  

10.2.3 VOICE 

Three linear models were tested to find the best predictive variables in acoustic voice 

properties. The details of the models can be seen in the Tables in Appendix 5. None of the 

models reached statistical significance.  

As the following step rho-Spearman correlation was calculated between each of the Voice 

variables and different factors of driving performance during the driving test following the 

Voice measurement. The values of the significant correlations were presented in Appendix 

6. Some of the correlations’ values reached the level of medium association, namely 

correlation between mean pitch and standard deviation of steering wheel angle (rs(299) 

= .37, P<.05), mean pitch and standard deviation o longitudinal speed (rs(299) = .30, 

P<.05), mean pitch and general driving performance (rs(299) = -.31, P<.05), number of 

pulses and speed exceedances (rs(299) = -.30, P<.05), number of pulses and speeding 

tickets (rs(299) = -.31, P<.05), number of pulses and standard deviation of steering wheel 

angle (rs(299) = -.39, P<.05), number of pulses and standard deviation of longitudinal 

speed (rs(299) = -.31, P<.05), number of pulses and general driving performance (rs(299) 

= -.31, P<.05), number of periods and speeding tickets (rs(299) = -.30, P<.05), number of 
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periods and standard deviation of longitudinal speed (rs(299) = -.30, P<.05), number of 

periods and general driving performance (rs(299) = -.33, P<.05), and number of breaks 

and general driving performance (rs(299) = -.30, P<.05). 

10.2.4 ELECTROOCULOGRAPHY 

Two linear models were tested to find the best predictive variables in EOG. None of the 

models reached statistical significance. The details of the models can be seen in the Tables 

in Appendix 5. 

As the following step rho-Spearman correlation was calculated between each of the EOG 

variables and different factors of driving performance during the driving test following the 

EOG measurement. The values of the significant correlations were presented in Appendix 

6. Almost all of the significant correlations had values on the medium level of association, 

namely correlation between blinking rate and the number of collisions (rs(145) = .37, 

P<.05), blinking rate and a number of centreline crossings (rs(145) = .35, P<.05), the 

correlation between blinking rate and standard deviation of longitudinal acceleration 

(rs(145) = .31, P<.05), and PERCLOS and number of centreline crossings (rs(145) = .34, 

P<.05). 

10.2.5 ELECTRODERMAL ACTIVITY 

Two linear models were tested to find the best predictive variables in EDA. The details of 

the models can be seen in Appendix 5. The strongest significant model (model 2) used the 

change in SCL Frequency and change in SCL Mean as independent variables. The 

predictive power of the model was low (F(5,91) = 3.67, adjusted r-squared =.1, p<.05). 

As the following step rho-Spearman correlation was calculated between each of the EDA 

variables and different factors of driving performance during the driving test following the 

EDA measurement. None of the correlations was statistically significant.  

10.2.6 ELECTROMYOGRAPHY 

Two linear models were tested to find the best predictive variables in EMG. The details of 

the models can be seen in Appendix 5. None of the models reached statistical significance. 

As the following step rho-Spearman correlation was calculated between each of the EMG 

variables and different factors of driving performance during the driving test following the 

EMG measurement. The only significant correlation was between the number of collisions 
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and median frequency in corrugator supercilii (rs(147) = -.21, P<.05) but its value was 

low. 

10.2.7 RESPIRATION 

One linear model was tested to find the best predictive variables in Respiration. It used a 

change in general driving performance as the dependent variable and change in respiration 

rate, change in the standard deviation of the respiration, session, and circadian phase as 

independent variables. It came out to be insignificant and with a very low predictive 

power. Also, none of the predictors reached statistical significance. As so, no further 

models were tested. The details of the model can be seen in Appendix 5.  

As the following step rho-Spearman correlation was calculated between each of the 

Respiration variables and different factors of driving performance during the driving test 

following the Respiration measurement. The significant correlations can be seen in the 

table in Appendix 6. All of the correlations’ values were low.  

10.2.8 SALIVA 

One linear model was tested to find the best predictive variables in saliva. It used the 

change in general driving performance as the dependent variable and change in salivary 

hormonal content, session, and circadian phase as independent variables. It came out to be 

insignificant and with a very low predictive power. Also, none of the predictors reached 

statistical significance. As so, no further models were tested. The details of the model can 

be seen in Appendix 5.  

As the following step, the rho-Spearman correlation was calculated between salivary 

hormonal content variables and different factors of driving performance during the driving 

test following the saliva collection. The only significant correlation was between cortisol 

content and stop signs violations; however, it was low. The details of the correlation can be 

seen in Appendix 6.  

10.2.9 OXIMETRY 

One linear model was tested to find the best predictive variables in Oximetry. It used the 

change in general driving performance as the dependent variable and change in Oximetry, 

session and circadian phase as independent variables. It came out to be insignificant and 

with a very low predictive power. Also, none of the predictors reached statistical 

significance. As so, no further models were tested. The details of the model can be seen in 

Appendix 5.  



Driver state monitoring in semi-automated vehicles- Experimental Results  

 

As the following step, the rho-Spearman correlation was calculated between each of the 

Oximetry variables and different factors of driving performance during the driving test 

following the Oximetry measurement. Two correlations were statistically significant; 

however, their values were low. The details of the correlations can be seen in Appendix 6.  

10.2.10 MULTIPHYSIOLOGICAL MODEL 

FEATURES SELECTION 

Based on the uniphysiological regression models and correlation tables following features 

were selected for further analysis: change in NASA-TLX scores Mental Demand Scale, 

change in NASA-TLX overall scores, change in power in very high frequencies in heart 

rate variability, change in heart rate variability RSA, change in frequency of skin 

conductance level, change in mean skin conductance level, change in mean pitch of the 

voice, change in the number of pulses of the voice, change in the number of periods of the 

voice, change in blinking rate. The analysis of the rho-Spearman correlation between these 

features demonstrated a significant correlation between change in Change in NASA-TLX 

Mental Demand scale and change in general scores of NASA-TLX (rs(265) = .99, P<.05), 

change in power in very high frequencies in heart rate variability and change RSA in heart 

rate variability (rs(200) = .76, P<.05), change in very high frequencies in heart rate 

variability and change in blinking rate (rs(145) = .45, P<.05), change in mean pitch of the 

voice and change in the number of pulses in the voice (rs(299) = .67, P<.05), change in 

mean pitch of the voice and change in the number of periods in the voice (rs(299) = .59, 

P<.05),  and change in the number of pulses in the voice and change in the number of 

periods in the voice (rs(299) = .93, P<.05). It allowed to further reduce the number of 

variables. Final variables selected for the stepwise regression modelling were change in 

NASA-TLX overall scores, change in power in very high frequencies in heart rate 

variability, change in mean pitch of the voice, change in the number of periods of the 

voice, change in blinking rate, change in frequency of the skin conductance level, and 

change in mean skin conductance level.  

STEPWISE REGRESSION 

The criteria for stepwise regression features addition or removal were adjusted r-squared 

and p value. The initial model contained intercept and linear terms for all the predictors. 

The final model used the change in very high frequency in heart rate variability, change in 

mean skin conductance level, and the product of the change in overall NASA-TLX and 
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change in frequency of skin conductance level. It had a predictive power of 0.21. The 

details of the model can be seen in table 10.1.  

Table 10.1: Multiphysiolocial model obtained with a step-wise regression modelling method. The 

independent variables were the most powerful predictors from the selected features and the independent 

variable was change on the driving performance: Number of observations: 81, Error degrees of freedom: 75, 

Root Mean Squared Error: 150, R-squared: .26,  Adjusted R-Squared: .21, F-statistic vs. constant model: 5.2, 

p value<0.05 

 Estimate SE t-Stat P Value 

Intercept -28.94        27.97      -1.04       NS 

Change in power 

in very high 

frequencies in 

HRV 

0.01     0.01       2.68     <.05 

Change in mean 

SCL 

10.58        5.53       1.91      NS 

Change in NASA-

TLX*Change in 

frequency of SCL 

-24314        7742.6      -3.14     <.05 

CROSS-VALIDATION 

Cross-validation was conducted in a leave-one-out way. A regression model with 

independent variables established with stepwise regression was fit to each training dataset 

and then tested on values from one experimental session left-out. Statistics for coefficients 

were calculated as the mean of all the estimates established with leave-one-out cross-

validation methods; the same root mean squared error, adjusted r-squared and p value. The 

mean error of estimation constituted 12.91% of mean driving performance and on average, 

184.93% of the observed variable. The details of the final model can be seen in the Table. 

The comparison of observed values of change in driving performance versus values 

predicted by the model can be seen in the figure. The association between predictive values 

and decrease or increase of driving performance was presented in the figure, while the 

figure showed an association between predictive values and a level of decrease or an 

increase in driving performance.  

Table 10.2: Regression model obtained with a leave-one-out cross-validation using features selected during 

step-wise regression: Number of observations: 81, Error degrees of freedom: 75, Root Mean Squared Error: 

152.25, Adjusted R-Squared: .22, F-statistic vs. constant model: 5.2, p value<0.05, p value<.05      

 Estimate SE t-Stat P Value 

Intercept -46.70 19.13 -2.44 <.05 

Change in power 

in very high 

frequencies in 

HRV 

0.01 0.01 2.62 <.05 

Change in mean 

SCL 

11.70 5.30 2.21 <.05 
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 Estimate SE t-Stat P Value 

Change in NASA-

TLX*Change in 

frequency of SCL 

-24107.57 5885.41 -4.10 <.05 

 

Figure 10.3: Comparison of estimated (y axis) vs observed (x axis) values of change in driving performance. 

The estimated values were obtained with the final model after cross-validation. The blue line represents a 

perfect fit of values. The positive values indicate the increased quality of driving performance and negative 

values a decrease.  

 

Figure 10.4: A graphical representation of the relationship between the predictors from the model and an 

increase or a decrease of the driving performance. The red dots represent the decrease and green dots the 

increase. The negative values of the predictors indicate an increase of the physiological variable and the 
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positive values a decrease. 

 

Figure 10.5: A graphical representation of the relationship between the predictors from the model and a level 

of an increase or a decrease of the driving performance. The different shades of the red dots represent the 

decrease and various shades of green dots the increase. The negative values of the predictors indicate an 

increase of the physiological variable and the positive values a decrease. 

 

10.2.11 DISCUSSION 

This subchapter presented results of the predictive modelling on driving performance after 

take-over. The type of take-over analysed was planned; one that could happen when 

leaving a designated automation driving road, rather than the emergency take-over that 

could be requested at any time. Some of the results could be extended to the problem of 

emergency take-over; however, this is beyond the scope of this thesis.   

The predictive models presented in this chapter predicted an actual decrease in driving 

performance rather than the risky driver states that could lead to it. It gave the model a high 

ecological validity as such a prediction would have an immediate on-road result. Also, the 

dependent variable in the model was the change in driving performance rather than an 

absolute value of driving performance. It enabled the prediction of a reduction in driving 

performance without the confounding effect of the individual driving style or capabilities. 

The predictive variables included change in physiology, which was a way to avoid the 

confounding effect of the interindividual physiological differences. That way, the model 

was more robust regarding interindividual differences as well as presenting ecological 

validity. 

The experimental data consisted of a high number of physiological measurements. To 

avoid overfitting of the model, there has been a feature selection process applied based on 

the and linear models. The final model used the following independent variables: change in 
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power in very high frequencies in heart rate variability, change in mean skin conductance 

level, and a product of the change in NASA-TLX score and change in frequency of skin 

conductance level.   

The mean error of the estimation of the model constituted 12.91% of the mean value of 

change in driving performance. The model explained 22% of the variance of change in 

driving performance. Such a value of the coefficient of determination would be treated as 

low. However, it needs to be taken into account that the model predicted an actual driver 

performance that is subject to many influences. Also, the physiological functions used to 

predict the change in the driving performance were not uniquely related to one mental state 

but to several states that could be both psychological and physiology (such as increased 

movement). The physiology was recorded during two minutes long resting state to 

decrease strict bodily influence; however, it still cannot be excluded entirely. As such, this 

model could not be implemented in road vehicles yet. However, the presented association 

between psychophysiological functions and driving performance is a good basis for future 

research. It is also important to note that the future inclusion of EEG signals in the model 

might significantly increase its predictive power. The use of the different indicators of 

driving performance could also change the predictive power of the model.  

The final predictive model requires some commentary to explain the meaning of the 

physiological functions included. 

The dependent variable was change in general driving performance. The general driving 

performance was a variable positively correlated with a number of driving mistakes. The 

higher values of the variable indicated the worse driving performance. The change in 

driving performance was calculated as a difference between the general driving 

performance during Driving Test 1 (T1) and Driving Test 2 (T2). The positive values of 

the change indicated better driving performance during T2 and the negative values 

indicated worse driving performance during T2.  

The first predictive variable was the change in power in very high frequencies in heart rate 

variability. The decrease in power between Measurement 1 (M1) and Measurement 3 (M3) 

was associated with a better driving performance during T2. The average value of change 

in this variable was -411.31 s^2, which indicated an increase in power in very high 

frequencies in heart rate variability of 411.31 s^2. According to a model, such change 

would result in a decrease in driving performance of 41.13, which constituted 3.4% of a 

mean change in driving performance. Previous literature reported that a decrease in power 

in very high frequencies in heat rate variability was associated 1to the increased mental 
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workload (Brookhuis & De Waard, 2010; Roscoe, 1992; Veltman & Gaillard, 1996; 

Wilson, 2002) 

The second predictive variable was the mean skin conductance level. The decrease in mean 

SCL between Measurement 1 (M1) and Measurement 3 (M3) was associated with a better 

driving performance during T2. The average value of change in this variable was -1.26 

microSiemens, which indicated an increase in mean skin conductance level of 1.26 

microSiemens. According to a model, such change would result in a decrease in driving 

performance of 14.74, which constituted 1.25% of a mean change in driving performance. 

Previous literature reported that a reduction in skin conductance level was associated with 

a decreased mental workload or a decreased arousal (Averty et al., 2002). 

The third predictive variable was a product of general NASA-TLX scores and frequency in 

skin conductance level. The simultaneous increase or decrease in both of these variables 

was associated with the decreased driving performance during T2, while the reduction of 

one of them simultaneously with the rise in another was associated with an increase of 

driving performance during T2. The average value of this product variable was 0.0002. 

According to a model, such change would result in a decrease in driving performance of 

4.82, which constituted 0.41% of a mean change in driving performance. Increased scores 

in NASA-TLX indicated increased mental workload. Increased frequency in SLC was 

reported to indicate increased vigilance and arousal (Posada-Quintero et al., 2017). The 

model would suggest that increased mental workload simultaneous with increased 

vigilance was associated with a worse driving performance the same as decreased mental 

workload concurrent with reduced vigilance. At the same time, high mental workload with 

low vigilance, and low mental workload with high vigilance would result in better driving 

performance.  

All the variables in the final model were previously reported to be associated with mental 

workload or an arousal level. However, the first variable (power in very high frequencies 

in HRV) indicated that increased mental workload was associated with improved driving 

performance. At the same time, the second variable (mean SCL) indicated that a decrease 

in arousal or mental workload were also associated with the increased driving 

performance. The third variable suggested that increased mental workload together with 

increased vigilance was associated with a decreased driving performance, the same as 

reduced mental workload together with reduced vigilance. In contrast, when one of the 

variables decreased while the other one increased, then it was associated with improved 

driving performance. The possible explanation would be related to an ‘inverted U’ shaped 

association between mental workload and performance and balance between underload and 
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overload (Young & Stanton, 2005). The strongest of the predictors indicates an adverse 

effect of the underload on the driving performance. The second predictors indicated a 

negative impact of overload on driving performance. While, the third and the weakest of 

the predictors, might be related to the balance between arousal and mental workload. The 

high mental workload with high arousal could lead to more driving mistakes due to 

hyperactivity and reduced concentration. The low mental workload and low arousal could 

be related to drowsiness. The high mental workload with low arousal could be associated 

with the calm state of relaxed concentration, and low mental workload with high arousal to 

the high cognitive resources. Supporting such an explanation would require additional 

experimental work and modelling of the association between mental workload, arousal and 

performance.  

10.3 MONITORING OF THE DRIVER STATE DURING AUTOMATION 

This chapter described an investigation of the possibility to predict or monitor driver 

attention during automated mode based on the psychophysiological measurements 

conducted just before automated mode, during the whole time-course of automated mode 

or during 30 seconds before attention task (red car detection).  

The same as in the case of take-over monitoring the first step of the analysis was features 

selection for the multiphysiological model. As the first step, three kinds of predictive 

models were tested for each psychophysiological function separately, linear models to 

predict attention during automation based on the psychophysiological data gathered before 

the automated mode, linear models to predict attention during automation based on the 

physiological data during the whole period of the automation and the binomial models 

predicting detection of the red car (0- not detected, 1- detected) based on the physiology 

recorded during 30 seconds before the red car appeared in the simulation.  

The linear models investigating the prediction of attention based on the measurement just 

before the automated mode used two minutes recording of the resting state of the 

physiology just before the automated mode, questionnaires collected just before automated 

mode, or voice recorded just before the automated mode. The level of attention was 

established based on the number of red cars detected during the automation. Such models 

would allow establishing if the driver can maintain a prolonged, attentive state during 

automation based on the short measurement before the automated mode. 

The linear models investigating the establishment of the level of attention state based on 

the overall physiological recordings during the automated mode used continuous 

physiological recordings from the period of thirty-four minutes of the automated mode. 
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Such a model could bring more knowledge about the general association between sustained 

attention and physiology over more extended periods. 

The binomial models investigating the prediction of the attention test (red car detection) 

based on the physiological recordings from the 30-seconds period before the red car 

appeared, used continuous recordings and oximetry recordings from the period of 30-

seconds before the red car appeared in the simulation. Such models could display the 

highest practical utility as they could allow to state if the driver is paying attention at the 

very moment of the physiological measurement.  

A high number of variables created a risk of overfitting and hence there was a requirement 

for feature selection and reduction. The strategy of features selection and data modelling 

was graphically represented in figure 10.6. Firstly, each physiological function was used 

separately to fit a linear or binomial regression model using factors derived from this 

physiological function recording as independent variables and the number of red cars 

detected as the dependent variable. In the case of binomial models, the dependent variable 

was either 0 for the unsuccessful attention test or 1 for the successful attention test. Among 

the statistically significant models, the one with the highest adjusted r-squared was chosen, 

and significant predictors from this model were selected for further analysis. As a second 

step, the rho-Spearman correlation was calculated between the selected physiological 

variables to avoid collinearity in the model. If the absolute value of rho was equal to or 

higher than 0.65 variables were reduced. After such a process of features selection, a 

multiphysiological model was created using stepwise regression with adjusted r-squared 

and p values as criteria of the model selection. The model used selected physiological 

variables as independent variables and attention tests as the dependent variable. The best 

selected model was then tested with leave-one-out cross-validation to most accurately 

estimate the parameters of the model. The following subchapters described the process of 

features selection and the final model creation and testing.  
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Figure 10.6: Graphical representation of the process of features selection and modelling of 

psychophysiological monitoring of the driver attention during the automated mode. 

10.3.1 QUESTIONNAIRES 

To investigate if the number of red cars detected can be predicted with questionnaires 

filled-out before the automated phase linear regression models were tested. The details of 

the tested models can be seen in the Tables in Appendix 7. The strongest significant model 

(model 3) used the circadian phase and fatigue as predictors. The predictive value of the 

model was very low (F(3,88) = 3.46, adjusted r-squared =.05, p<.05). 

10.3.2 ELECTROCARDIOGRAPHY 

Two linear models were tested to investigate the possibility to predict attention during 

automation based on the resting state ECG measurement just before the automated mode. 

They used the number of red cars detected during automated mode as a dependent variable. 

The details of the models can be seen in the Tables in Appendix 7. Neither of the models 

was statistically significant.  

Two linear models were tested to investigate the association between ECG recording from 

the whole period of automated mode and the number of red cars detected during the 

automated mode. The details of the models can be seen in the Tables in Appendix 8. 

Neither of the models was statistically significant.  

1. Uniphysiological linear models 
using psychophysiology before 

automation as independent variables 
and number of red cars detected as 

dependent variables. Significant 
models with highest adjusted r-

squared were selected for further 
analysis. Significant variables from 

these models were selected. 

2. Correlation between selcted factors and 
reduction of factors that correlated with 

rho<=-0.65 or rho>=0.65

3. Stepwise regression 

4. Cross-Validation

1. Uniphysiological linear models 
using physiology during automation 

as independent variables and number 
of red cars detected as dependent 
variable. Significant models with 
highest adjusted r-squared were 

selected for further analysis. 
Significant variables from these 

models were selected. 

2. Correlation between selcted factors and 
reduction of factors that correlated with 

rho<=-0.65 or rho>=0.65

3. Stepwise regression 

4. Cross-Validation

1. Uniphysiological binomial models 
using physiology during 30-seconds 

before red car appeared in 
automation as independent variables 

and binary variable representing 
succesfull (1) or unsuccesfull (0) red 

car detection. Significant models with 
highest adjusted r-squared were 

selected for further analysis. 
Significant variables from these 

models were selected. 

2. Correlation between selcted factors and 
reduction of factors that correlated with 

rho<=-0.65 or rho>=0.65

3. Stepwise regression 

4. Cross-Validation
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Three binomial models were tested to investigate the possibility to predict if participant 

detected red car (0-did not detect, 1-detected) based on the ECG recording from 30 

seconds before the red car appeared in the simulation of automation. The details of the 

models can be seen in the Tables in Appendix 9. The strongest model (model 2) used heart 

rate (Beta = 0.03, t(505) = 1.77, p: NS), power in very high frequencies in heart rate 

variability (Beta = 0.00, t(505) = 1.91, p: NS), and RSA (Beta = -0.42, t(505) = -2.23, 

p<.05)  as independent variables. The predictive power of the model was very low with 

(adjusted r-squared = .05). 

10.3.3 VOICE 

Two linear models were tested to investigate the possibility to predict attention during 

automation with acoustic properties of voice collected just before the automated mode. The 

dependent variable was the number of red cars detected during the automated mode. The 

details of the models can be seen in the Tables in Appendix 7. Neither of the models was 

statistically significant.  

10.3.4 ELECTROOCULOGRAPHY 

Four linear models were tested to investigate the possibility to predict attention during 

automation with ocular behaviours measured with EOG during a two-minutes resting state 

just before the take-over. The dependent variable was the number of red cars detected 

during the following automated mode. The details of the models can be seen in the Tables 

in Appendix 7. The strongest significant model (model 4) used only PERCLOS as an 

independent variable. The predictive power of the model was low (F(2,43) = 14.1, 

adjusted r-squared =.25, p<.05).  

As a second step, three linear models were tested to investigate the association between 

ocular behaviours recorded with EOG during the whole automation period and attention 

during automation measured with the number of red cars detected during the automated 

mode. The details of the models can be seen in the Tables in Appendix 8. The strongest 

significant model (model 1) used the circadian phase, blink rate, mean blink duration, 

PERCLOS, rate of horizontal eye-movements and mean duration of horizontal eye-

movements as independent variables. The predictive power of the model was low (F(7,38) 

= 3.7, adjusted r-squared =.27, p<.05). 

As a third step, two binomial models were tested to investigate the possibility to predict 

detection of the red car during automated mode (0-not detected, 1-detected) based on the 

ocular behaviour measured with EOG during 30 seconds period before the red car 
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appeared in the simulation. The details of the models can be seen in the Tables in 

Appendix 9. The strongest of the models (model 2) used PERCLOS (Beta = -0.07, t(225) 

= -1.15, p: NS) and rate of horizontal eye-movements (Beta = 0.05, t(225) = 1.18, p: NS) 

as independent variables and a predictive value of the model was middle (adjusted r-

squared=0.35); however, all of the predictors were insignificant.  

10.3.5 ELECTRODERMAL ACTIVITY 

One linear model was tested to investigate the possibility to predict attention during 

automation with EDA variables recorded during the two-minutes long resting-state period 

just before automation. The dependent variable was the number of red cars detected during 

automation. The details of the model can be seen in Table in Appendix 7. The model was 

insignificant with a very low predictive power. Also, all the predictors were insignificant.  

As the second step, two linear models were tested to investigate the association between 

the attention during automation and EDA variables recorded during the whole period of 

automation. The dependent variable was the number of red cars detected during the 

automated mode. The details of the model can be seen in the Tables in Appendix 8. Neither 

of the models was statistically significant.  

As a third step, two binomial models were tested to investigate the possibility to predict if 

the red car was detected (1) or not detected (0) based on the 30 seconds EDA recording 

just before the red car appeared in the simulation. The details of the models can be seen in 

the Tables in Appendix 9. The strongest model (model 2) used the mean skin conductance 

level (Beta = 0.07, t(460) = 2.36, p<.05)   as a predictor. The predictive power of the 

model was very low (adjusted r-squared = 0.01). 

10.3.6 ELECTROMYOGRAPHY 

Three linear models were tested to investigate the possibility to predict attention during 

automation with EMG variables recorded during a two-minutes resting state just before the 

automated mode. The details of the models can be seen in the Tables in Appendix 7. 

Neither of the models was statistically significant.  

As a second step, two linear models were tested to investigate the association between 

attention during automation and EMG recorded during the whole automated mode. The 

dependent variable was the number of red cars detected during automation. The details of 

the models can be seen in the Tables in Appendix 8. The strongest significant model 
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(model 2) used the mean frequency of frontalis muscles as an independent variable. The 

predictive value of the model was (F(2,40) = 6.38 , adjusted r-squared =.12, p<.05). 

As a third step, two binomial models were tested to investigate the possibility to predict 

detection of the red car (0-not detected, 1-detected) during the automated mode based on 

the 30-seconds periods of EMG recording before the red car appeared in the simulation. 

The details of the models can be seen in the Tables in Appendix 9. Model 1 used the 

following predictive factors, median frequency of frontalis muscle (Beta = -0.00, t(250) = 

-0.28, p:NS), mean frequency of the frontalis muscle (Beta = 0.01, t(250) = 1.93, p<.05), 

peak frequency of the frontalis muscle (Beta = 0.01, t(250) = 0.46, p:NS), mean power of 

the frontalis muscle (Beta = 0, t(250) = NA, p:NA), total power of the frontalis muscle 

(Beta = 671363.12, t(250) = 0.65, p:NS), median frequency of the corrugator supercilii 

(Beta = 0.01, t(250) = 0.59, p:NS), mean frequency of the corrugator supercilii (Beta = -

0.01, t(250) = 1.08, p:NS), peak frequency of the corrugator supercilii (Beta = 0.00, t(250) 

= 0.13, p:NS), mean power of the corrugator supercilii (Beta = 0, t(250) = NA, p:NA), total 

power of the corrugator supercilii (Beta = 6971138.35, t(250) = 1.76, p:NS). It had high 

predictive power (adjusted r-squared = 0.73); however, it was there was the probability 

that it was over-parametrized and the majority of the predictors were insignificant. Model 2 

used Mean Frequency of Frontalis Muscle (Beta = 0.01, t(250) = 3.12, p<.05),  and Total 

Power of Corrugator Supercilii Muscle (Beta = 3393865.24, t(250) = 1.97, p<.05), as 

independent variables. Both predictors were significant. The predictive power of the model 

was very low (adjusted r-squared=0.06). As so, the high predictive power of Model 1 

should be treated as a result of overfitting, and Model 2 should be taken as a realistic 

description of the predictive power of EMG over red car detection. 

10.3.7 RESPIRATION 

One linear model was tested to investigate the possibility to predict attention during 

automation with respiration variables recorded during resting state just before the 

automated mode. The dependent variable was the number of red cars detected during the 

automated mode. The details of the model can be seen in Table in Appendix 7. The model 

was insignificant, with a very low predictive power and all the predictors were 

insignificant.  

Two linear models were tested to investigate the association between respiration variables 

recorded during the whole automation period and attention during automation. The 

dependent variable was the number of red cars detected during automation. The details of 

the models can be seen in the Tables in Appendix 8. The strongest significant model 
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(model 2) used the respiration rate as an independent variable. The predictive power of the 

model was very low (F(2,91) = 6.12, adjusted r-squared =.05, p<.05). 

As a third step, two binomial models were tested to investigate the possibility to predict 

detection of the red car (0-not detected, 1-detected) during the automated mode based on 

the 30-seconds periods of EMG recording before the red car appeared in the simulation. 

The details of the models can be seen in the Tables in Appendix 9. The strongest model 

(model 2) used the mean breathing rate as a predictor (Beta = 0.12, t(500) = 2.80, p<.05). 

The predictive power of the model was low (adjusted r-squared = .03). 

10.3.8 OXIMETRY 

To investigate the possibility to predict attention during automation with Oximetry based 

variables linear model predicting the number of red cars detected was tested.  

Linear model with Oximetry variables measured during the resting state just before 

automated mode, circadian phase, session, and chronotype as independent variables and 

number of red cars detected as the dependent variable was tested. The model was 

insignificant and displayed a very low predictive power; also, all the predictors were 

insignificant. The details of the model can be seen in the Table in Appendix 7.  

As a further investigation, two binomial models were tested to investigate the possibility to 

predict if the red car was detected (1) or not detected (0) based on the 30 seconds Oximetry 

recording just before this red car. The strongest model used pulse as an independent 

variable (Beta = 0.03, t(515) = 2.59, p<.05). The adjusted r-squared was low (adjusted r-

squared = .04). 

10.3.9 MULTIPHYSIOLOGICAL MODELS 

FEATURES SELECTION 

Based on the uniphysiological models, several variables were selected for further analysis. 

For the linear model predicting attention during automation based on the physiological 

recordings conducted just before automation selected variables were fatigue questionnaire 

scores and PERCLOS.  

For the linear model predicting attention during automation based on the whole 

physiological recording during automation following variables were selected blinking rate, 

mean blink duration, PERCLOS, rate of horizontal eye-movements, mean duration of 

horizontal eye-movements, mean frequency of frontalis muscle and respiration rate.  
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Based on the binomial model predicting the outcome of the attention test based on the 30-

seconds physiological recording conducted before the red car appeared in the simulation, 

the following variables were selected RSA in heart rate variability, mean skin conductance 

level, mean frequency in frontalis muscle, the total power of corrugator supercilii muscle, 

mean breathing rate and pulse.  

The rho-Spearman correlation was conducted between all these factors to reduce 

collinearity in the models. Predictors from the model using measurements conducted just 

before the automation did not significantly correlate with each other.  

Among the predictors from the model using measurements conducted during the whole 

automated mode following variables significantly correlated with each other: respiration 

rate and rate of horizontal eye-movements (rs(145) = .31, P<.05), blink rate and mean 

blinking duration (rs(145) = -.55, P<.05), mean blink duration and mean horizontal eye-

movement duration (rs(145) = .37, P<.05), PERCLOS and rate of horizontal eye-

movements (rs(145) = .43, P<.05), blinking rate and PERCLOS (rs(145) = .61, P<.05). 

Among the predictors from the binomial model following predictors significantly 

correlated with each other: pulse and RSA (rs(200) = -.61, P<.05), RSA and total power in 

corrugator supercilii muscle (rs(147) = .25, P<.05), RSA and mean frequency on frontalis 

muscle (rs(147) = -.20, P<.05), total power in corrugator supercilii muscle and the mean 

frequency in frontalis muscle (rs(147) = -.21, P<.05).  

None of the correlations reached an arbitrary cut-off point for reduction. As so none of the 

variables was reduced before the step-wise regression analysis.  

STEP-WISE REGRESSION 

Stepwise regression models were conducted in MatlabR2020a using adjusted r-squared and 

p values as criteria for the addition or removal of the variables. Variables used for the 

models were previously selected through the process of uniphysiological regression models 

and reduction based on the correlation that was described in the previous chapters.  

The first multiphysiological model used psychophysiological measurements collected just 

before the automated mode as independent variables and a number of red cars detected as 

the dependent variable. Initial variables that were used in the model were scores from a 

fatigue questionnaire and PERCLOS. The final model can be seen in table 10.3. It used 

only PERCLOS as an independent variable. Its predictive power was low. 
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Table 10.3: Multiphysiological model fitted with a stepwise regression using adjusted r-squared and p value 

as criteria for addition or removal of the variables. The dependent variable was the number of red cars 

detected during the automated mode. Independent variables were measurements collected just before the 

automation. Number of observations: 43, Error degrees of freedom: 41, Root Mean Square: 0.91, R-

squared: .24,  Adjusted R-Squared: .22, F-statistic vs. constant model: 13.1, p value < .05 

 Estimate SE t-Stat P Value 

Intercept 4.88  0.21       23.03     <.05 

PERCLOS -0.14     0.04     -3.62     <.05 

The second multiphysiological model used psychophysiological measurements collected 

during the whole automated phase as independent variables and a number of red cars 

detected as the dependent variable. Initial variables that were used in the model were 

blinking rate, mean blink duration, PERCLOS, rate of horizontal eye-movements, mean 

duration of horizontal eye-movements, mean frequency of frontalis muscle and respiration 

rate. The final model can be seen in table 10.4. It used blinking rate, mean blink duration, 

rate of horizontal eye-movements, and a product of PERCLOS and the mean duration of 

horizontal eye-movements as independent variables. Its predictive power was on the 

medium level. 

Table 10.4: Multiphysiological model fitted with a stepwise regression using adjusted r-squared and p value 

as criteria. The dependent variable was the number of red cars detected during the automated mode. 

Independent variables were measurements collected during the whole period of automation. Number of 

observations: 44, Error degrees of freedom: 37 Root mean square: 0.85, R-squared: 0.41,  Adjusted R-

Squared: .32, F-statistic vs. constant model: 4.3, p value<.05 

 Estimate SE t-Stat P Value 

Intercept 8.80      1.15       7.64     <.05 

Blinking Rate -0.10     0.05      -2.19       <.05 

Mean blink duration -7.15       

 

3.19      -2.24       <.05 

Rate of horizontal 

eye-movements 
0.05      0.03       1.96       <.05 

PERCLOS*mean 

duration of 

horizontal eye-

movements 

1.16     0.53       2.19        <.05 

The third multiphysiological model used psychophysiological measurements collected 

during the period of 30-seconds before the red car appeared in the simulation of 

automation as independent variables and a binary outcome of the attention test as a 

dependent variable (0-red car not detected, 1-red car detected). Initial variables that were 

used in the model were RSA in heart rate variability, mean skin conductance level, mean 
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frequency of frontalis muscle, total power in corrugator supercilii muscle, mean breathing 

rate and pulse. The final model can be seen in table 10.5. It used RSA in heart rate 

variability, mean frequency in frontalis muscle, total power in corrugator supercilii muscle, 

and respiration rate as independent variables. Its predictive power was low. 

Table 10.5: Multiphysiological model fitted with a stepwise binomial regression using adjusted r-squared and 

p value as criteria. The dependent variable was a binary variable representing successful (1) or unsuccessful 

(0) attention test. Independent variables were measurements collected during the 30 seconds before the red 

car appeared in the automation. 186 observations, 181 error degrees of freedom, Dispersion: 1, Chi^2-

statistic vs. constant model: 24.3, p value<.05, Adjusted r-squared: .15. 

 Estimate SE t-Stat P Value 

Intercept 0.00            1.76     0.00      <.05 

RSA HRV -0.40         0.18       -2.20    <.05 

Mean Frequency in 

Frontalis  

0.01      0.00         2.25     <.05 

Total Power in 

corrugator supercilii 
3354800 1424500 2.36     <.05 

Breathing Rate 0.15     0.07       2.31    <.05 

CROSS-VALIDATION 

Cross-validation was conducted in a leave-one-out manner. Regression models with 

independent variables established with stepwise regression were fit to each training dataset 

and then tested on values from one experimental session left-out. Statistics for coefficients 

were calculated as the mean of all the estimates established with leave-one-out cross-

validation methods; the same for root mean squared error, adjusted r-squared and p value. 

The details of coefficients in models after cross-validation can be seen in tables 10.6, 10.7, 

and 10.8 below.  

For the model using resting-state recording just before automation, the mean error of 

estimation constituted 15.55% of the mean number of red cars detected during the 

automated phase and on average 13.69% of the observed variable. 

The mean error of estimation in the model using a recording from the whole automated 

mode constituted 8.11% of the mean number of red cars detected during the automated 

phase and on average 7.09% of the observed variable.  

In the case of the binomial model, the mean error constituted 162.30% of the mean result 

of the attention test and on average 143.69% of the observed variable.  
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The second and the third predictive models had negative adjusted r-squared values after the 

cross-validation, suggesting insignificance of the predictors and no predictive power of the 

models. The first model had low predictive power.  

Figure 10.7 presented an association between PERCLOS measured during the resting state 

before automation and the number of red cars detected during the automation. Figure 10.8 

presented a relationship between the observed number of red cars detected and the number 

of red cars detected estimated by the model. The plots showed that the model 

systematically underestimated the highest values of the red cars detected and overestimated 

the lower.  

Table 10.6: Multiphysiological model validated with a leave-one-out cross-validation. The dependent 

variable was the number of red cars detected during the automated mode. Independent variables were 

measurements collected just before the automation selected with a stepwise regression described in the 

previous chapter. Number of observations: 43, Error degrees of freedom: 41, Root Mean Square: 0.69, 

Adjusted R-Squared: .23, F-statistic vs. constant model: 13.1, p value < .05, P value<.05. 

 Estimate SE t-Stat P Value 

Intercept 4.91    0.20        24.05    <.05 

PERCLOS -0.14 0.04     -3.74 <.05 
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Figure 10.7: Graphical representation of the association between PERCLOS and number of red cars detected. 

The blue line represents the regression line. 
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Figure 10.8: The observed values of the number of red cars detected vs. estimated by the model. The blue 

line represents the 100% fit. 

Table 10.7: Multiphysiological model validated with a leave-one-out cross-validation. The dependent 

variable was the number of red cars detected during the automated mode. Independent variables were 

measurements collected during the whole automation period selected with a stepwise regression described in 

the previous chapter. Number of observations: 44, Error degrees of freedom: 37 Root mean square: 0.36, 

Adjusted R-Squared: -.05, F-statistic vs. constant model: 4.3, p value: NS, adjusted r-squared: -.05 

 Estimate SE t-Stat P Value 

Intercept 4.08           0.54     

 

    7.61    <.05 

Blinking Rate  0.01     0.02    0.39     NS    

Mean blink duration  1.97    1.81    1.09    NS     

Rate of horizontal 

eye-movements 
-0.00    0.02     -0.02    NS     

PERCLOS*mean 

duration of 

horizontal eye-

movements 

0.01    0.21 0.07 NS 

 

Table 10.8: Multiphysiological binomial model validated with leave-one-out cross-validation. The dependent 

variables were selected based on the stepwise regression described in the previous chapter. The dependent 

variable was a binary variable representing successful (1) or unsuccessful (0) attention test. Independent 

variables were measurements collected during the 30 seconds before the red car appeared in the automation. 

186 observations, 181 error degrees of freedom, Dispersion: 1, Chi^2-statistic vs. constant model: 24.3, p 

value<.05, Adjusted r-squared: -.01, mean error of estimation: 1.44. 

 Estimate SE t-Stat P Value 

Intercept 0.34 1.59 0.21 NS 

RSA HRV -0.33 0.16 -2.04 <.05 

Mean Frequency in 

Frontalis  

0.01 0.00 2.11 <.05 

Total Power in 

corrugator supercilii 
2933397.07 1330408.58 2.21 <.05 

Breathing Rate 0.13 0.06 2.10 <.05 

     

10.3.10 DISCUSSION 

This subsection investigated a possibility to predict or monitor attention during the 

automated mode with a variety of psychophysiological measurements. It compared three 

possible strategies for monitoring. The first one was based on the short 

psychophysiological measurement conducted before the automated mode. The idea of such 

a measurement would be to predict if the driver’s state makes them able to keep sustained 

attention during the following period.  
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The second approach investigated the association of the physiology recorded during the 

automation with the measurements of sustained attention.  

The third approach aimed to predict attention in the period just before the attentive task.  

The automated scenario used in the experiment did not require the driver to intervene at 

any moment. Participants were asked to stay as attentive as possible and monitor the 

automated driving process. However, in the absence of required interventions, the task 

required mainly sustained attention. It was measured with an additional task. Participants 

were asked to press a button every time they have seen a red car. There were five red cars 

during the thirty-four minutes of simulation. Such a low number of stimuli created an 

environment that could easily cause boredom, sleepiness, or distraction. These are the 

states that might occur in actual automation if it did not require frequent interventions.  

The first step of the analysis was features selection based on uniphysiological linear and 

binomial regression models. Selected features were then reduced based on the collinearity. 

The resulting variables were used in the process of stepwise regression to create linear and 

binomial predictive models. As the last step, leave-one-out cross-validation was used to 

validate the parameters and coefficients of the models. Only one of the models displayed a 

non-negative adjusted r-squared after the cross-validation.  

The final model used PERCLOS measured during the resting state before automated mode 

as a predictor of the number of red cars detected. The model explained 23% of the variance 

in the number of red cars detected. The mean error of estimation constituted 15.55% of the 

mean value of the number of red cars detected. Adjusted r-squared of 0.23 is considered as 

low; however, it presents a predictive value of just one variable over the sustained attention 

during the following thirty-four minutes.  

The model showed that the increased PERCLOS was associated with further worse 

sustained attention. PERCLOS was defined as a proportion of time when eyes were closed 

over a certain period (Abe et al., 2014). In the previous research, increased PERCLOS was 

often associated with drowsiness (Papadelis et al., 2007; Rodríguez-Ibáñez et al., 2011) 

and fatigue (Rodríguez-Ibáñez et al., 2011). 

10.4 DISCUSSION OF THE DRIVER STATE MONITORING BEFORE 

TAKE-OVER AND DURING AUTOMATION 

This chapter investigated the possibility to monitor driver state in semi-automated driving 

with different psychophysiological measures. Semi-automated driving is a technological 

development that could increase driving safety and improve traffic congestion (Kyriakidis 
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et al., 2019); however, it also introduced particular challenges related to human factors. 

People repetitively fail to maintain sustained attention and often make mistakes when 

performing monitoring role without many tasks or stimulation (Warm et al., 2008). The 

analysis presented in chapter 8 suggested that manual driving performance after the take-

over might be worse than before the automation. Also, the driver might experience 

increased sleepiness, fatigue and lower readiness to take-over after automation, as well as 

decreased mental workload.  

Semi-automated driving requires the driver to shift into more monitoring than an active 

role. Also, the transition from automation to manual driving might create certain risks as 

the driver might be in a state compromising driving safety. Automation might induce 

sleepiness, fatigue or distraction (Kyriakidis et al., 2019). A potential solution to these 

problems might be a system of driver state monitoring.   

This chapter described the process, results and analysis of the experimental work 

investigating a wide variety of psychophysiological measures as methods of driver state 

monitoring in semi-automated vehicles. The measures used during the experiment were 

EEG, EOG, EMG, ECG, respiration measurement, EDA, acoustic voice analysis, salivary 

cortisol and alpha-amylase analysis, pulse, blood oxygenation, Karolinska Sleepiness 

Scale, Samn-Perelli Fatigue Scale, NASA-TLX, and TORS (take-over readiness scale 

created for this study). However, EEG analysis was not described in this work due to the 

time restraints of the doctoral project and the technical problems.  

The psychophysiological recordings were analysed concerning their accuracy in the 

prediction of the driving performance after take-over based on the short measurements 

before take-over. While their accuracy in prediction of attention during automated mode 

was based on the short recording just before the automated mode, accuracy in prediction of 

attention during automated mode based on the continuous recording during the whole 

automation, and accuracy in prediction of the single result of the attention test during 

automation based on the 30-seconds recording collected just before the test.  

Two models displayed statistical significance and sufficient predictive power. A model 

predicting driving performance after take-over explained 22% of the variance in the 

driving performance. It used power in very high frequencies in heart rate variability, mean 

skin conductance level, and a product of the mean frequency of skin conductance and 

general scores of NASA-TLX questionnaires. The physiological variables were recorded 

during the two-minutes resting state just before take-over followed by the collection of the 

NASA-TLX questionnaire. All of the physiological variables from the model were 
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previously reported to be associated with the mental workload and arousal (Averty et al., 

2002; Brookhuis & De Waard, 2010; Posada-Quintero et al., 2017). They suggested a need 

for an optimal mental workload and optimal arousal level. At the same time, the strongest 

of the predictors suggests an adverse effect of the underload on the driving performance 

after take-over. It is possible that the previous automated mode might increase the risk of 

too low a mental workload.  

The second model predicted sustained attention during automated mode with PERCLOS 

calculated based on the two minutes EOG recording of the resting state just before the 

automation. It explained 23% of the variance in the attention task during automation. 

Previous research associated PERCLOS with fatigue and drowsiness (Papadelis et al., 

2007; Rodríguez-Ibáñez et al., 2011). The model suggested that increased fatigue and 

drowsiness before the automation might have the most detrimental effect on sustained 

attention during the automation and that the ocular behaviours are the most accurate 

measures that can be used. Both the KSS and fatigues scale proved to be less effective.  

The critical point is that subjective readiness to take-over manual driving did not predict 

well the quality of the manual driving after take-over. Similarly, ocular measurement 

related to sleepiness and fatigue came out to be more effective in the prediction of attention 

than the questionnaires. It is consistent with many studies suggesting that drivers are not 

good in the assessment of their own fitness to the driver (Abe et al., 2014; Schleicher et al., 

2008). It underlined the importance of the development of the driver state monitoring 

methods irrespective of the subjective feeling of the driver.  

Both models displayed a low predictive power; however, they were statistically significant 

and predicted real-life performance in the highly ecological experimental environment. 

They provided valid information about the role of different physiological functions in 

driving performance and their possible value as parts of the monitoring systems. 

Nevertheless, they require more work before implementing into the vehicles.  

The inclusion of the EEG recorded during the experiment might improve the models in the 

future and should be analysed. The use of non-linear models, machine learning or deep 

learning, could improve the predictive power. Also, these models were trained to predict a 

particular set of factors related to driving performance. It might be that the use of different 

measures of driving performance or attention could change their predictive power. For 

example, STISIM 3 driving simulator did not allow detection of ‘near-misses’ that could 

be a better indicator of driving safety, than the number of collisions. Not all the measures 

were used continuously over the whole experiment and it might be that some of them 
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would display higher predictive power if used at more time-points. For example, the voice 

could be recorded during the automated phase. To achieve high-quality data recording, 

EOG was used in half of the participants. Increasing the number of participants could 

improve the predictive power of the models.  

It needs to be borne in mind, that the analysed models used physiology to predict an actual 

driving performance rather than secondary measurements of the driver state. It created a 

more challenging task, as many physiological variables are associated with multiple 

psychological and physiological states (Ross et al., 2014) as well as a risky driver states do 

not always cause a decrease in the driving performance (Parasuraman et al., 2008; Young 

& Stanton, 2002).  

The analysis allowed to support the hypotheses and sub-hypotheses to a certain level. 

Physiology displayed a distinct possibility to predict driving performance and attention 

during automation. Also, the physiological states used in the strongest predictive models 

were previously associated with the risky driver states, namely suboptimal mental 

workload, sleepiness, and fatigue (Brookhuis & De Waard, 2010; Papadelis et al., 2007; 

Rodríguez-Ibáñez et al., 2011; Roscoe, 1992).  

 

10.5 CONCLUSIONS 

Physiological monitoring has proven to have predictive potential over the driving 

performance after take-over and attention during automation. However, the models created 

in this work do not have sufficient predictive power to be implemented in the vehicles. The 

performance of the models could be improved in a number of ways. The inclusion of EEG 

recordings, even though, cumbersome could highly increase their predictive power. 

Machine learning algorithms could select stronger predictive factors from the physiological 

signal. Inclusion of the driving performance measures together with physiology would also 

be an option. As PERCLOS displayed predictive power over attention during automation, 

the use of different ocular measures, like eye-tracking could improve its performance due 

to the higher accuracy of the measurement and classification.  

An optimal level of mental workload and arousal was showed to be the most critical state 

for driving safety after take-over. At the same time, sleepiness and fatigue came out to 

more detrimental to the ability of the driver to safely monitor the automation. Because of 

that interfaces and tasks in the semi-automated vehicles should be designed in a way to 

improve the level of mental workload and counteract drowsiness and fatigue. Also, more 



 

194 

research effort should be invested into a precise understanding of the most optimal balance 

between mental workload and arousal in a semi-automated environment.  

Participants were not effective in prediction of their own driving performance, sleepiness, 

or fatigue. As so, work on the systems of driver state monitoring seems to be an essential 

part of the improvement of driving safety. Physiological recording of the driver presents a 

high challenge for engineers, physiologists and analysts. Current models require more 

work to have a higher predictive power in real-life driving. Also, physiological sensors 

need to be developed into less invasive but also more noise-resistant devices. However, 

driving safety is an important aim raised by governments, scientists, and World Health 

Organisation (Ministers to Agree New Global Road Safety Agenda to 2030, n.d.; World 

Health Organization, 2015) and the opportunity to improve it should not be neglected. 
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11. CONCLUSION 

11.1 INTRODUCTION 

This work described doctoral research into driver state monitoring in semi-automated 

vehicles from the circadian perspective. The main aim of this work was to evaluate and 

compare different methods of driver state monitoring in semi-automated vehicle. The 

comparison was aimed to select the psychophysiological measures and develop a model 

that would be the most effective in the prediction of actual driver performance in the semi-

automated vehicle. However, the experiment assumed a perspective of the circadian 

rhythmicity and also allowed the analysis of the patterns in driver state throughout the 

time-course of the semi-automated driving. 

The literature reviews identified risky driver states that could jeopardize safety in semi-

automated driving and the methods of psychophysiological monitoring that have the 

potential to detect these states. Three following literature reviews identified circadian 

effect on manual driving and suggested a possibility of the circadian effect on the semi-

automated driving and driver state monitoring. It was hypothesised that semi-automated 

driving might be riskier at night and during the so-called ‘mid-afternoon’ dip and that 

circadian phase, which should be taken into account when interpreting a signal from the 

monitoring devices.  

The experiment investigated the time-course of the semi-automated driving during the day 

and at night to predict manual performance after the take-over as well as attention during 

semi-automated mode using psychophysiological measures. An additional chapter 

provided recommendations for the laboratory construction and set-up for multiple 

physiological recordings, giving an example of the faraday cage constructed for this 

experimental work.  

This work presented several notable findings that were listed in Table 11.1. A summary of 

these findings is presented in the next section. 

Table 11.1: Notable findings presented in this thesis with corresponding chapters. 

Theme Notable finding Corresponding Chapters 

The decrease in Driving 

Performance and Mental 

Underload Related to 

Automation 

Driving Performance decrease after 

automation 

8 

Sleepiness and fatigue increase after 

automation 

8 

Decrease of readiness to take-over 

after automation 

8 
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Theme Notable finding Corresponding Chapters 

Decrease of mental workload after 

automation 

8 

Mental Underload after automation 8 

Drivers are not accurate in the 

assessment of own fitness to drive 

8, 10 

Circadian Effect Circadian effect on semi-automated 

driving 

5, 6, 8, 9 

Monitoring of the Driver 

State for Take-Over Safety 

The predictive model of driving 

performance after take-over 

10 

Suboptimal mental workload and 

arousal are the most detrimental for 

performance after take-over 

10 

Monitoring of Attention 

During Automation 

The predictive model of attention 

during automation 

10 

Sleepiness and fatigue are most 

detrimental for attention after 

automation 

10 

Technical Recommendations 

for the Laboratories 

Recording Multiple 

Physiological Functions 

Simultaneously 

Recommendations for high-quality 

laboratory construction and set-up for 

multiple physiological recordings 

7 

11.2 SUMMARY OF FINDINGS 

11.2.1 DECREASE IN DRIVING PERFORMANCE AND MENTAL 

UNDERLOAD RELATED TO AUTOMATION  

The main focus of the analysis on the time-course of semi-automated driving was the 

change between the measurement before and after the automated mode. Such a change 

could be related to the effect of automation on the driver; however, due to the experimental 

design, it could not be dissociated from the effect of time-on-task. The analysis showed a 

decrease in manual driving performance after automation, increase of sleepiness, increase 

of fatigue, decrease of readiness to take-over manual control over the vehicle, decrease of 

mental workload, increase of power in low frequencies in heart rate variability, a decrease 

of the number of pulses in voice, decrease of the number of periods in voice, and a 

decrease in pulse. These results allowed to support hypotheses 3 and 4 that, Driver 

psychophysiological state and performance differ before and after automated mode, and 

that driver performance is worse after automated mode, while their psychophysiological 

state is related to the lower cognitive state. 

The decrease in driving performance was more generalized at night. It allowed to partially 

support hypothesis 5 that driver psychophysiological state and performance in semi-
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automated vehicles differ between day and night, and sub-hypothesis that, driving 

performance and attention during automation decrease during the night. 

These results could suggest underload during automated driving resulting in poorer 

subsequent manual performance after the take-over, as well as reduced readiness to drive 

and feeling more tired. It could imply that automation might negatively influence manual 

driving safety due to the underload (Young & Stanton, 2002, 2002). It is of particular 

concern because a period of automated driving is likely to be followed by manual driving 

if automated driving is reserved for motorway use only. This effect is pronounced for 

night-time driving. Additionally, as participants were not accurate in the assessment of 

their own fitness to drive there is a need for a supplementary assessment of the driver state 

independent from their self-awareness.   

11.2.2 CIRCADIAN EFFECT 

This work presented the analysis of the association between the circadian phase and 

psychophysiological variables from the day and night sessions recorded during the resting 

state and driving performance. It allowed supporting hypothesis 5 that driver 

psychophysiological state and performance in semi-automated vehicles differ between day 

and night.  

The analysis showed a variety of differences in the performance and physiology; however, 

the direction of the effect for the driving performance was not consistent, which did not 

allow to support the sub-hypothesis that: driving performance and attention during 

automation decrease during the night. Previous research showed that drivers performed 

worse at night only when the circadian phase was in the interaction with the sleep 

deprivation (Matthews, Ferguson, Zhou, Kosmadopoulos, et al., 2012; Matthews, 

Ferguson, Zhou, Sargent, et al., 2012). Analysis of stepwise regression using a number of 

hours slept before the experiment, circadian phase, and KSS results did not support it. 

However, this experiment did not use all the circadian phases and the participants were 

rarely sleep deprived even during the night experiment.  

Also, when the time-course of automation was analysed separately for day and night 

sessions, the decrease of driving performance after automation was more generalized at 

night. It was described in chapter 8. It partially supported the sub-hypothesis that: driving 

performance and attention during automation decrease during the night. Participants tended 

to feel sleepier, more fatigued, and less ready to take-over at night. EOG and EMG 

displayed circadian fluctuations and they were previously used in the systems of the driver 
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state monitoring. This supported previous predictions based on the literature review that 

the circadian phase might affect the interpretation of the measures in the driver state 

monitoring systems.  

11.2.3 MONITORING OF THE DRIVER STATE FOR TAKE-OVER SAFETY  

The analysis of driver state monitoring aimed to create predictive models that used 

psychophysiology to predict manual driving performance after take-over. It consisted of a 

process of features selection, step-wise regression, and leave-one-out cross-validation. The 

take-over monitoring model explained 22% of the variance in the change of driving 

performance before and after automation. Predictive variables were change in resting-state 

power in very high frequencies in heart rate variability, change in resting-state mean skin 

conductance level, and a product of the change in NASA-TLX score and change in resting-

state frequency of skin conductance level. All of the variables have been associated in 

previous studies of mental workload and arousal (Averty et al., 2002; Brookhuis & De 

Waard, 2010; Posada-Quintero et al., 2017; Roscoe, 1992). It allowed to partially support 

hypothesis 1 that psychophysiological measurements of the driver during semi-automated 

driving can provide a prediction of the driving performance after take-over, and sub-

hypothesis that psychophysiological indicators that can predict driving performance are 

related to one of the risky states identified in chapter 2, namely sleepiness, fatigue, 

distraction, mental workload or situation awareness. 

11.2.4 MONITORING OF ATTENTION DURING AUTOMATION 

The second predictive model aimed to predict attention during the automated mode. It 

explained 23% of the variance in attention during automation with PERCLOS measured 

during two minutes resting state just before the automated mode. In previous research, 

PERCLOS was used as an indicator of sleepiness and fatigue (Papadelis et al., 2007; 

Rodríguez-Ibáñez et al., 2011). It allowed to partially support the hypothesis 2 

psychophysiological measurements of the driver during semi-automated driving can 

provide a prediction of their attention during the automated mode of semi-automated 

driving, and sub-hypothesis that psychophysiological indicators that can predict driver 

attention are related to one of the risky states identified in chapter 2, namely sleepiness, 

fatigue, distraction, mental workload or situation awareness. 

11.2.5 TECHNICAL RECOMMENDATIONS FOR THE LABORATORIES 

RECORDING MULTIPLE PHYSIOLOGICAL FUNCTIONS 

SIMULTANEOUSLY 
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Chapter 7 provided a prototype for the support tool for the researchers. It combined the 

literature into a decision tree helping researchers to select the most optimal laboratory set-

up for the multiple simultaneous physiological measurements. It also described various 

strategies of noise reduction in the physiological signals. The decision tree was a result of 

the challenging set-up of this experiment. This experiment used over ten 

psychophysiological measures simultaneously, which is an exception in comparison to the 

experiments described in the literature. It required a very conscious use of the recording 

tools and multiple measures against the data noise. The laboratory was constructed to 

reduce signal noise. The process of laboratory construction was also described in chapter 7.   

11.3 EVALUATION OF THE RESEARCH APPROACH 

Multiple parts of this research were novel, unique and highly challenging due to the 

complexity of the experimental set-up and the number of psychophysiological measures 

that were taken. Multiple physiological signals were recorded simultaneously in the semi-

automated set-up. Such experimental designs are often not undertaken because it is highly 

challenging to collect multiple physiological recordings without loss in the data quality. 

Due to these issues, there was a diligent preparation of the laboratory and experimental set-

up that was described in Chapter 7 (Sweeney et al., 2012).  

The recording of the multiple physiological signals simultaneously allowed a comparison 

of the measures and evaluation of their joined usability. However, at the same time, it 

decreased the statistical power of the analysis. Hence, it was impossible to conduct more 

demanding models in terms of numbers of observations, for example, non-linear 

regression.  

The majority of previous investigations into driver state monitoring have validated 

predictive models with the questionnaire results or alternative physiological recordings. 

For example, they created the models of monitoring and checked their accuracy based on 

the sleepiness declared by the participants (Brookhuis & De Waard, 2010; Murata et al., 

2015). This research attempted more ecological validity and directly predicted driving 

performance. It was a highly challenging approach, because performance is a result of 

multiple factors, while the majority of the physiological functions is not uniquely related to 

the one mental state but might change in a variety of circumstances (Brookhuis & De 

Waard, 2010; Papadelis et al., 2007). This research also provided a novel perspective on 

the circadian effect on semi-automated driving. It created a theoretical basis as well as a 

partial validation of the theoretical predictions.  
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This research was not without some weaknesses and they need to be borne in mind when 

interpreting the results. Also, some parts of the experimental design were inevitable, but 

different variations of this study in future could bring more knowledge and understanding 

of the topic. Even though EEG was measured during the experiment, it was not used for 

the analysis due to technical reasons and temporal constraints. Adding EEG to the 

predictive models could have increased their power, as well as add some insight into the 

physiology and cognition of the driver in semi-automated vehicles. Not all the 

psychophysiological measures were used at all the time-points and not in all participants. 

For example, the voice was only recorded during three measurement points, while EOG 

and EMG were recorded only in half of the participants. Considering that one of the 

predictive models used PERCLOS as an only independent variable, increasing the number 

of participants could strengthen the model. Analysing the physiology of the participants 

with low and high driving capability could also increase the depth of analysis. Also, the 

analysed predictive models were only linear or binomial. At the same time, quadratic or 

exponential regression could explain changes in the driving performance better, especially 

considering the non-linear effect of mental workload on performance. To fully dissociate 

the impact of automation from the effect of time-on-task an experiment simulating semi-

automated driving should be compared to a control condition without the automated phase 

with the same duration. To better understand the impact of the circadian phase on semi-

automated driving more circadian phases should be studied in the forced desynchrony 

study design using the whole 24-hours cycle for the analysis (Dijk et al., 1992; Matthews, 

Ferguson, Zhou, Sargent, et al., 2012). The long duration of the experiment and a large 

number of measurement methods led to discomfort in some of the participants. Due to that, 

some of the participants had to take breaks during the experiment. To reduce the 

confounding effect of the unscheduled breaks, the most promising methods should be 

tested in a shorter experiment. Finally, this study was undertaken in a low-fidelity driving 

simulator. Therefore the predictive models should also be tested in an on-road vehicle. The 

measures of driving performance and attention used by the simulator could also impact the 

predictive power of the models. In future studies, other methods could be tested, for 

example, ‘near-misses’ that were not detected by STISIM 3.  

11.4 IMPLICATIONS OF THE RESEARCH 

This research showed that semi-automated driving might be risky due to the influence of 

automated mode on driver state. Participants’ driving was worse, and they felt less alert 

after automation. Some parts of their physiology suggested mental underload. This effect 

was more prominent at night; but, when different factors were compared between the 



Conclusion  

 

circadian phases, the results were not consistent. Also, participants were not able to 

accurately assess their own fitness to drive other ways of ensuring a safe driver state 

should be investigated.  

A wide variety of psychophysiological functions was investigated as methods of driver 

state monitoring, which was the main purpose of this research work. Two viable 

monitoring models were proposed to ensure attention during the automated mode and 

fitness to drive before the take-over. The models showed a potential of heart rate 

variability, skin conductance, NASA-TLX questionnaire, and some electrooculography-

based factors to provide a prediction of driver performance. However, the predictive power 

of the models was too low to be implemented in vehicles at this stage. They should be 

treated as a basis for further research. In a conclusion, physiological measures that are 

recommended for driver state monitoring are electrocardiography, electrodermal activity, 

and electrooculography. However, the predictive power of the models proposed in this 

thesis is not sufficient to immediately apply them in the vehicle.  

The interpretation of the psychophysiological factors in the models as well as the 

psychophysiological changes through the time-course of the semi-automated driving, could 

suggest a particular association between driver state and driver performance in semi-

automated driving. Drowsiness and fatigue seemed to be the most disruptive states for the 

successful monitoring of the automation while insufficient mental workload and arousal 

for safe manual driving performance after take-over from vehicle automation. It is also 

essential to bear in mind that the self-awareness of the driver and their subjective 

assessment of their own mental workload, sleepiness and fatigue were not sufficient to 

effectively predict their performance. Therefore there is a requirement for additional 

monitoring systems.  

These results were partially consistent with previous studies and predictions. They 

confirmed concerns related to the underload during automation and its negative effect on 

driver performance (Kyriakidis et al., 2019; Young & Stanton, 2002, 2002, 2005). They 

also confirmed that physiology could be used as a predictor of driver performance 

(Brookhuis & De Waard, 2010; Sahayadhas et al., 2015); however, the accuracy of 

predictions does not meet standards for commercial implementation at the moment. The 

expectation of the negative effect of the circadian phase on driving (Kaduk et al., 2020) 

was only partially confirmed.  

The research presented in this thesis had some unique and novel characteristics. To the 

knowledge of the author, it is the only experiment studying such a large number of 
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physiological measures in the same driving experiment. Also, the topic of driver state 

monitoring and driver physiology is quite widely studied, but not in semi-automated 

driving. Moreover, the majority of the studies that investigated driver state monitoring used 

physiological measurements to predict driver state measured by other methods, such as 

questionnaires, secondary tasks or EEG but did not attempt to predict actual driving 

performance (Borghini et al., 2014; Di Stasi et al., 2011; Rodríguez-Ibáñez et al., 2011). 

To the knowledge of the author, it is also a first attempt to assess the circadian effect on 

semi-automated driving. The decision tree with the recommendations for the 

multiphysiological measurements in the laboratory was also a unique attempt to create 

guidance for research using many psychophysiological measures simultaneously.  

The shortcomings of this doctoral project provided some recommendations for 

manufacturers, engineers, and researchers. Semi-automated driving seems to decrease 

driving safety and the automated phase might negatively affect driver state. Until level five 

of automation is introduced, the human driver should be the main actor controlling vehicles 

(Banks & Stanton, 2016). In the case of the introduction of semi-automated systems, 

special care should be taken to avoid sleepiness and suboptimal mental workload. Systems 

of driver state monitoring are recommended; however, they require more scientific work 

before implementation in vehicles. Psychophysiological measures that are recommended 

for further research are electrocardiography, electrodermal activity, and 

electrooculography. 

11.5 FUTURE WORK 

This research showed a possibility to predict driver performance in semi-automated driving 

with psychophysiological measurements. The most recommended psychophysiological 

measures were electrocardiography, electrodermal activity, and electrooculography. 

However, the proposed models were not sufficiently advanced to be implemented in road 

vehicles. Further work on the modelling of the proposed physiological functions is 

recommended. The models should be investigated in a more realistic driving environment. 

Also, alternative modelling strategies could bring more predictive power. Quadratic and 

exponential predictive models could better depict non-linear associations. Machine 

learning and deep learning could also prove to be useful to understand exact second-by-

second physiological changes associated with a decrease of the performance during 

automation and to dissociate exact physiological factors that could be further used in more 

accurate predictive models. 



Conclusion  

 

The circadian phase should be included in the research about semi-automated driving as it 

proved to affect the performance and physiology of the driver; however, understanding this 

effect requires more scientific work. It should be studied in the forced-desynchrony 

protocol with recording collected during the whole 24-hours cycle. 

Special research effort should be invested in the understanding and mathematical 

modelling of the interaction between mental workload, arousal and driving performance. 

Linear modelling seems to be insufficient to understand this association, so quadratic 

models, exponential models, and machine learning and deep learning methods would be 

recommended.  

As automation seems to put the driver in the role of cognitive underload, the future design 

of the semi-automated systems should place the driver in more active and involving tasks.  

11.6 CLOSING REMARKS  

Semi-automated driving shifts the role of the driver to the more monitoring role for the 

automated periods of the driving (Kyriakidis et al., 2019). This research, in-line with 

previous concerns, suggested that such a situation might negatively affect driver state and 

decrease driving safety after the take-over. It is, therefore, recommended to keep the driver 

as the primary active agent in the driving process until level 5 of automation is introduced 

to the market. Drivers are not accurate in the assessment of their own fitness to drive, so if 

semi-automated systems were to be introduced to the vehicle or other disciplines of 

technology, it is recommended to combine them with devices to monitor the state of the 

driver or other type of operator.  

This work proposed a system to predict performance after take-over with heart rate 

variability, skin conductance level, and NASA-TLX and a system to predict attention 

during the automated mode with PERCLOS. However, the predictive power of the models 

is not sufficient to be implemented to the vehicles and requires more scientific work 

before. The circadian effect proved to influence both performance in semi-automated 

driving and physiology of the driver; however, to fully understand the association more 

work is required with the forced-desynchrony research protocol and measurements during 

the whole 24-hours cycle. The driver states that proved to be most detrimental for the 

quality of the take-over were suboptimal mental workload and suboptimal arousal. At the 

same time, drowsiness and fatigue negatively affected attention during the automation.  

For future research, it is recommended to investigate the association between driving 

performance, mental workload, and arousal. To effectively use them in the driver 
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monitoring system, mathematical modelling of the association is required. Quadratic and 

exponential regression models could be more useful than linear regression. Also, machine 

learning and deep learning would be recommended to analyse second-by-second 

physiological changes in driver state during automation to fully understand a performance 

decrease and the physiological changes during the automation in a precise temporal 

resolution.  

This research showed that semi-automated vehicles are not yet proven to be completely 

safe, and the current potential of driver monitoring systems are not yet sufficiently 

advanced to determine if drivers are ready to assume manual control. Full automation is 

not yet ready to be introduced and semi-automated systems need more work in the area of 

driver state monitoring to improve safety. Further research is also needed in understanding 

the second-by-second psychophysiological changes that occur in the operator during the 

process of automation monitoring. At this stage of knowledge, it is better to keep people 

more involved in the active controlling processes rather than to shift them towards the 

monitoring role.  

 

 

12. APPENDIX 1- LIST OF RISKY DRIVER STATES WITH DEFINITIONS 

Table 12.1: The list of risky driver states and their definitions identified during the literature review described 

in the chapter 2. 

Factors Frequency 

of Factors   

Definition List of articles  

Drowsiness 58 No definition provided  

 

 

(Akrout & Mahdi, 2016), (Boverie, Giralt, & 

Le Quellec, 2008), (Grace et al., 1998), 

(Higgins et al., 2017), (Kumari & Kumar, 

2017), (Leng, Giin, & Chung, 2015), (C. C. 

Liu, Hosking, & Lenné, 2009), (Mittal, 

Kumar, Dhamija, & Kaur, 2016), (Petridou & 

Moustaki, 2000), (Popieul, Simon, & 

Loslever, 2003), (Smith, Shah, & da Vitoria 

Lobo, 2003) 

No definition, but authors 

provide psychological, 

behavioural or physiological 

symptoms 

 

(Choi & Kim, 2017), (Chuang, Huang, Ko, & 

Lin, 2015), (Daza et al., 2011), (Ebrahim, 

Stolzmann, & Yang, 2013), (Fairclough & 

Graham, 1999), (Ha & Yoo, 2016), (Jackson, 

Raj, et al., 2016), (He et al., 2017), (Kartsch, 

Benatti, Rossi, & Benini, 2017), (B.-G. Lee, 

Jung, & Chung, 2011), (C.-T. Lin et al., 

2006), (C.-T. Lin et al., 2008), (C. T. Lin et 

al., 2010), (Maglione et al., 2014), (Murata, 

Fujii, & Naitoh, 2015), (Murata, Naitoh, & 
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Factors Frequency 

of Factors   

Definition List of articles  

Karwowski, 2017), (Park, Xu, Sridhar, Chi, 

& Cauwenberghs, 2011), (Rodríguez-Ibáñez, 

García-González, Fernández-Chimeno, & 

Ramos-Castro, 2011), (Sahayadhas, Sundaraj, 

Murugappan, & Palaniappan, 2015), (Solaz et 

al., 2016), (Van Winsum, 2000), (Vitabile, 

De Paola, & Sorbello, 2010), (Vural et al., 

2007), (J. Wang, Sun, Fang, Fu, & Stipancic, 

2017), (M. Wang et al., 2016), (Y. Wang, 

Xin, Bai, & Zhao, 2017), (Wierwille, 

Wreggit, Kirn, Ellsworth, & Fairbanks, 

1994), (V. E. Wilkinson et al., 2013)  

State in between wake and 

sleep 

 

(Johns, 2000), (Jackson, Kennedy, et al., 

2016) 

Increased sleep propensity 

 

(Chipman & Jin, 2009), (G. Li, Lee, & 

Chung, 2015) 

Last period of wakefulness and 

the initial period of stage-1 

sleep 

(Kwai, Imtiaz, Bowyer, & Rodriguez-

Villegas, 2016), (Sahayadhas, Sundaraj, & 

Murugappan, 2013), (Thorslund, 2004) 

The first period of stage-1 

sleep 

(Yeo, Li, Shen, & Wilder-Smith, 2009) 

Psychological and 

physiological state related to 

the lack of sleep  

 

(Ma’touq et al., 2014) 

Feeling tired, weary, lacking 

energy and motivation 

 

(Borghini, Astolfi, Vecchiato, Mattia, & 

Babiloni, 2014), (Dhupati, Kar, Rajaguru, & 

Routray, 2010), (Qian et al., 2016), (da 

Silveira, Kozakevicius, & Rodrigues, 2016), 

(Yang & Jeong, 2015) 

Fatigue 40 No definition (Häkkänen & Summala, 2001), (Mittal et al., 

2016) 

No definition, but authors 

provide psychological, 

behavioural or physiological 

symptoms 

 

(Ahn, Nguyen, Jang, Kim, & Jun, 2016), 

(Damousis & Tzovaras, 2008), (Deng, Xu, 

Yang, Miao, & Northeastern Univ, 2010), 

(Leandro L Di Stasi et al., 2015), (Fan, Sun, 

Yin, & Guo, 2010), (Fu, Wang, & Zhao, 

2016), (Grace et al., 1998), (Haq & Hasan, 

2016), (Jap, Lal, Fischer, & Bekiaris, 2009), 

(Lal & Craig, 2005), (B.-G. Lee et al., 2011), 

(T. Li et al., 2015), (J. Liu, Zhang, & Zheng, 

2010), (Maglione et al., 2014), (J. F. May & 

Baldwin, 2009), (Min, Wang, & Hu, 2017), 

(Park et al., 2011), (Popieul et al., 2003), 
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Factors Frequency 

of Factors   

Definition List of articles  

(Qiong, Jingyu, Mingwu, & Yujie, 2006), 

(Simon et al., 2011), (Smith et al., 2003), 

(Tran, Thuraisingham, Wijesuriya, Craig, & 

Nguyen, 2014) 

Performance decrease and 

subjective feeling of 

weariness, lack of motivation 

and unwillingness to work 

caused by prolonged work or 

stress 

(Borghini et al., 2014), (I. D. Brown, 1994), 

(Chipman & Jin, 2009), (Milosevic, 1997), 

(Johns, 2000), (Puspasari, Iridiastadi, & 

Sutalaksana, 2015) 

State in between wake and 

sleep caused by prolonged 

work 

(Lal & Craig, 2001), (Lal & Craig, 2002) 

Mode of cognitive and 

physical energy saving in the 

high work environment 

(G. Matthews & Desmond, 2002) 

The feeling of being tired (Chakraborty & Aoyon, 2014), (Dhupati et 

al., 2010), (Heikoop, de Winter, van Arem, & 

Stanton, 2016), (Melnicuk et al., 2016), 

(Wijesuriya, Tran, & Craig, 2007) 

Decreased performance (Bundele & Banerjee, 2009) 

Behavioural 

Distraction 

26 No definition, but examples of 

distracting behaviours 

provided 

 (Bando & Nozawa, 2015), (Brookhuis, de 

Vries, & De Waard, 1991), (Caird, 2015), 

(Chan, Nyazika, & Singhal, 2016), (Drews, 

Yazdani, Godfrey, Cooper, & Strayer, 2009), 

(Haigney, Taylor, & Westerman, 2000), 

(Horrey & Wickens, 2006), (Hosking, 

Young, & Regan, 2009), (Klauer et al., 

2014), (Lamble, Kauranen, Laakso, & 

Summala, 1999), (J. D. Lee, Roberts, 

Hoffman, & Angell, 2012), (Márquez, 

Cantillo, & Arellana, 2015), (Petridou & 

Moustaki, 2000), (Redelmeier & Tibshirani, 

1997), (Rumschlag et al., 2015), (Seiler, 

2015), (Strayer & Drew, 2004),  

Attention directed towards 

activity competing with the 

main task, ‘eyes-off-road’ 

(Hoel, Jaffard, Boujon, & Van Elslande, 

2011), (Hosking et al., 2009), (Klauer et al., 

2014), (Liang & Lee, 2010), (Regan, Hallett, 

& Gordon, 2011), (Ross et al., 2014), 

(Sahayadhas, Sundaraj, Murugappan, & 

Palaniappan, 2015), (Taib, Yu, Jung, Hess, & 

Maier, 2013) 

Cognitive 

distraction 

24 No definition (Casner, Hutchins, & Norman, 2016), 

(Chakraborty & Aoyon, 2014), (Dogan et al., 

2017), (Parker, Reason, Manstead, & 

Stradling, 1995) 
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Factors Frequency 

of Factors   

Definition List of articles  

No definition, but authors 

provide psychological, 

behavioural or physiological 

symptoms 

 

(Bando & Nozawa, 2015), (Heikoop et al., 

2016), (Ji & Yang, 2002), (Melnicuk et al., 

2016), (Merat, Jamson, Lai, Daly, & Carsten, 

2014), (Miyaji, Kawanaka, & Oguri, 2009), 

(Sahayadhas et al., 2015), (Smith et al., 2003) 

Attention directed towards 

thoughts not related to the 

main task, ‘mind-off-road’ 

(Yanchao Dong, Hu, Uchimura, & 

Murayama, 2011), (He, Becic, Lee, & 

McCarley, 2011), (Hoel et al., 2011), (Liang 

& Lee, 2010), (Parnell et al., 2016), (Regan et 

al., 2011), (Sahayadhas et al., 2015), (Stanton 

& Salmon, 2009), (Taib et al., 2013), 

(Wesley, Shastri, & Pavlidis, 2010), (Yang & 

Jeong, 2015) 

Decreased vigilance (Kawanaka, Miyaji, Bhuiyan, & Oguri, 2013) 

Sleepiness  23 No definition  

No definition, but authors 

provide psychological, 

behavioural or physiological 

symptoms 

 

(Åkerstedt et al., 2013), (Åkerstedt, Peters, 

Anund, & Kecklund, 2005), (Daza et al., 

2011), (A. J. Filtness, Armstrong, Watson, & 

Smith, 2017), (Ftouni et al., 2013), (Horne & 

Baulk, 2004), (Jackson, Raj, et al., 2016), 

(Krajewski, Batliner, & Golz, 2009), 

(Krajewski, Schnieder, Sommer, Batliner, & 

Schuller, 2012), (Lowden, Anund, Kecklund, 

Peters, & Åkerstedt, 2009), (Maglione et al., 

2014), (Murata et al., 2017), (Papadelis et al., 

2007), (Perrier et al., 2016), (Resalat, Saba, & 

Afdideh, 2012), (Y. Wang et al., 2017), 

(Watling, Armstrong, & Radun, 2015) 

The propensity to fall asleep (Johns, 2000) 

Last period of wakefulness and 

an initial period of stage-1 

sleep 

(Thorslund, 2004) 

Suboptimal 

Mental 

workload 

12 No definition, but authors 

provide psychological, 

behavioural or physiological 

symptoms 

 

(Gregersen & Bjurulf, 1996), (Recarte & 

Nunes, 2003),  (Stanton, Young, & 

McCaulder, 1997) 

The disproportion between 

one's mental resources and task 

demands 

(Borghini et al., 2014), (Brookhuis & de 

Waard, 2010), (Engström, Markkula, Victor, 

& Merat, 2017), (De Winter, Happee, 

Martens, & Stanton, 2014), (Heikoop et al., 

2016), (Melnicuk et al., 2016), (Palinko, Kun, 

Shyrokov, & Heeman, 2010), (M. S. Young 

& Stanton, 2002),  
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Factors Frequency 

of Factors   

Definition List of articles  

Using too many mental 

resources for the competing 

task and not having enough for 

the main task 

(Yang & Jeong, 2015) 

Insufficient 

situation 

awareness 

11 No definition (Borghini et al., 2014), (Casner et al., 2016), 

(Dogan et al., 2017), (Hancock, 2015), 

(Kyriakidis et al., 2017), (Merat et al., 2014), 

(Stanton & Young, 1998) 

‘The perception of the 

elements in the environment 

within a volume of time and 

space, the comprehension of 

their meaning and the 

projection of their status in the 

near future’, knowing what’s 

going on and what to do. 

(De Winter et al., 2014), (Endsley, 1996), 

(Heikoop et al., 2016), (Johannsdottir & 

Herdman, 2010),  (Parasuraman, Sheridan, & 

Wickens, 2008), (Stanton & Salmon, 2009)  

Intoxication 11 A factor not included in further 

analysis 

(Stanton & Salmon, 2009), (World Health 

Organization, 2015), (Bekiaris, 1999), 

(Jonah, 1986), (Richer & Bergeron, 2009), 

(Arnedt, Wilde, Munt, & MacLean, 2001), 

(Petridou & Moustaki, 2000), (Fairclough & 

Graham, 1999), (Rogeberg & Elvik, 2016), 

(Sloan, McCutchan, & Eldred, 2017), 

(Behnood & Mannering, 2017) 

Anger 11 A factor not included in further 

analysis 

(Stanton & Salmon, 2009), (Melnicuk et al., 

2016), (Jonah, 1986), (Stanton & Young, 

1998), (Roidl, Frehse, & Höger, 2014), (Öz, 

Özkan, & Lajunen, 2010), (Arnett, Offer, & 

Fine, 1997), (Garrity & Demick, 2001), 

(Kawanaka et al., 2013), (G. Matthews, 

2002), (Minhad, Ali, & Reaz, 2017) 

Sleep 6 No definition provided by the 

analysed papers 

(Horne & Reyner, 1995), (Sagberg, 1999), (J. 

Horne & Reyner, 1999), (Häkkänen & 

Summala, 2001), (Sahayadhas et al., 2013), 

(Higgins et al., 2017) 

Stress 6 A factor not included in further 

analysis 

(Heikoop et al., 2016), (Stanton & Salmon, 

2009), (Damousis & Tzovaras, 2008; 

Petridou & Moustaki, 2000), (Garrity & 

Demick, 2001), (G. Matthews, 2002) 

Bad health  3 A factor not included in further 

analysis 

(Stanton & Salmon, 2009), (Häkkänen & 

Summala, 2001), (Vuurman, Vuurman, 

Lutgens, & Kremer, 2014) 

Loss of 

vigilance 

2 A factor not included in further 

analysis 

(Guo, Pan, Zhao, Cao, & Zhang, 2018), 

(Qiong et al., 2006) 
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Factors Frequency 

of Factors   

Definition List of articles  

Haste 1 A factor not included in further 

analysis 

(Stanton & Salmon, 2009) 

Motion 

Sickness 

1 A factor not included in further 

analysis 

(Diels & Bos, 2016) 

Arousal 1 A factor not included in further 

analysis 

(Heikoop et al., 2016) 

Sleep Inertia 1 ‘grogginess, disorientation, 

and sleepiness that can 

accompany awakening from a 

nap’ 

(Wörle et al., 2020) 

 

 

 

 

 

 

13. APPENDIX 2- LIST OF METHODS OF DRIVER STATE MONITORING 

 

Table 13.1: The list of the driver state monitoring methods with the exact state indicators identified in the 

literature review presented in the chapter 3. 

Method The 

frequency of 

the method 

in the 

literature 

Measured State An indicator of the 

state 

References 

Electroencephalography 

(oscillations) 

32 Drowsiness Increase in alpha 

power 

(Dhupati et al., 

2010) 

Increase in delta 

power 

(Rodríguez-

Ibáñez et al., 

2011) 

Increase in the delta, 

theta and alpha power 

over occipital areas, a 

general decrease of 

beta power 

(Borghini et al., 

2014) 
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Method The 

frequency of 

the method 

in the 

literature 

Measured State An indicator of the 

state 

References 

Increase in absolute 

and relative theta and 

delta power 

(Oken et al., 

2006) 

Alpha: theta ratio 

decrease 

(Oken et al., 

2006) 

Increase in alpha and 

theta power, decrease 

in beta power 

(Horne & 

Baulk, 2004; 

Lal & Craig, 

2001) 

Reappearing alpha 

trains that gradually 

disappear 

(Lal & Craig, 

2001) 

Increase in centro-

frontal alpha power 

and a decrease of 

occipital alpha 

amplitude in 1-10 

seconds series  

(Lal & Craig, 

2001) 

Increased blink 

duration, cumulative 

alpha and alpha 

lasting longer than 3 

seconds 

(Kartsch et al., 

2017) 

Simple thresholding 

classifier using Cz 

frequencies and 

relative alpha and 

delta power 

(Patrick et al., 

2016) 

Malahanois distance 

analysis with alpha 

and theta frequencies  

(Lin et al., 

2008) 

ICA of EEG power 

spectra 

(Chuang et al., 

2015; Lin et al., 

2006) 

γ/δ, (γ+β)/(δ+α) 

indices decrease 

(T. L. da 

Silveira et al., 

2016)  

Bayesian nonnegative 

CP decomposition 

(Qian et al., 

2016) 

ANN classification of 

the wavelet transform 

(Subasi, 2005) 

Slow eye movements (Jiao & Lu, 

2016) 

Absolute and relative 

powers and signal 

entropy complexity 

(Hwang et al., 

2016) 

The alpha increase, 

synchrony increase 

(Papadelis et al., 

2007) 



Appendix 2- List of Methods of Driver State Monitoring  

 

Method The 

frequency of 

the method 

in the 

literature 

Measured State An indicator of the 

state 

References 

SVMPPM analysis (G. Li et al., 

2015) 

Vigilance 

decrease 

Increase in theta 

power 

(Borghini et al., 

2014; Lal & 

Craig, 2001) 

Increase in slow 

frequencies power 

( Oken et al., 

2006) 

Mental workload Increase in theta 

power over frontal, 

prefrontal, central and 

parietal cortex 

(Borghini et al., 

2014) 

Decreased alpha and 

increased delta power 

(Wilson, 2002) 

SVM and Elastic Net 

on alpha power, theta 

power and the spectral 

characteristic 

(Hogervorst, 

Brouwer, & Van 

Erp, 2014) 

Linear DFA (Berka et al., 

2007) 

B-alert classification 

system 

(Berka et al., 

2004)  

Increased lower alpha 

power 

(Kamzanova et 

al., 2014) 

Fatigue Increase in theta 

power 

(Borghini et al., 

2014; Lal & 

Craig, 2001) 

Alpha spindles (Borghini et al., 

2014; Simon et 

al., 2011) 

Increase in alpha and 

theta activity 

(Boksem & 

Tops, 2008; Lal 

& Craig, 2001; 

Perrier et al., 

2016) 

Increase in theta and 

delta 

( Lal & Craig, 

2002, 2005) 

Increase in alpha 

power 

(Rodríguez-

Ibáñez et al., 

2011) 

KPCA-HMM and 

complexity parameters 

(J. Liu et al., 

2010) 

Deep belief algorithm 

analysis of single-

channel Fp1 

(P. Li et al., 

2016) 

The increase of the 

ratio of slow waves to 

fast waves 

(Jap et al., 2009) 
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Method The 

frequency of 

the method 

in the 

literature 

Measured State An indicator of the 

state 

References 

Alpha decrease, theta 

increase, θ/α increase, 

(θ+α)/β increase 

(Cheng & Hsu, 

2011) 

Behavioural 

distraction 

Increase in theta 

power 

(Borghini et al., 

2014) 

Sleep The decrease of alpha 

power, an increase of 

theta and delta power 

( Oken et al., 

2006) 

Increase in theta 

waves, an appearance 

of sleep spindles and 

k-complex 

( Lal & Craig, 

2001) 

MLP-FF analysis of 

spectral entropy 

(Sriraam et al., 

2016) 

Hybrid of methods 20 Drowsiness SVM- EEG and 

fNIRS 

(Ha & Yoo, 

2016) 

Increased occipital 

alpha with slow eye 

movements 

(Yeo et al., 

2009) 

 

Multilevel ordered 

logit on average eyelid 

closure, average pupil 

diameter, SD of the 

lateral position and 

steering wheel 

reversals 

( Wang & Xu, 

2016) 

 

ECH, PPG and EDA ( Hwang et al., 

2016) 

ANN and Random 

Forest algorithm on 

multiple driving 

performance features 

and EEG 

(Wang et al., 

2016) 

KNN analysis of PCA 

fusion of EMG and 

ECG 

(Sahayadhas et 

al., 2015) 

 

SVM model based on 

EDA and 

plethysmography  

(Leng et al., 

2015) 

 

Analysis of steering 

wheel movements and 

pulse 

(Sanpeng et al., 

2010) 

Combination of 

oximetry and 

PERCLOS 

(Sharma & 

Bundele, 2015) 

 

Cognitive 

distraction 

AdaBoost analysis of 

pupils size and an 

interval between heart 

rate R-waves   

(Miyaji et al., 

2009)  
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Method The 

frequency of 

the method 

in the 

literature 

Measured State An indicator of the 

state 

References 

AdaBoost analysis of 

gaze direction, pupils 

diameters, head 

orientation and ECG 

(Kawanaka et 

al., 2013a)  

Stress An algorithm based on 

ECG, EDA and EMG 

(Healey & 

Picard, 2005)  

SVM, Decision Tree 

and Naive Bayes 

Algorithm using EDA, 

Blood volume pulse, 

pupil diameter and 

skin temperature 

(Barreto et al., 

2007)  

Hidden Markov 

Model using EEG, 

EMG and respiration 

(Fu et al., 2016)  

EEG, EOG, ECG and 

fNIRS 

(Ahn et al., 

2016)  

Mental workload ANN analysis of EEG, 

EOG, heart rate and 

respiration 

(Wilson & 

Russell, 2003)  

Fatigue Hidden layers MLP 

NN analysis of 

oximetry and skin 

conductance 

(Bundele & 

Banerjee, 2009; 

Sharma & 

Bundele, 2015)  

Eye-tracking 20 Mental workload An increase in the 

pupil size 

(Di Stasi et al., 

2011; 

Marinescu et al., 

2018; Palinko et 

al., 2010)  

SVM and Elastic Net 

on Pupils size, blink 

rate and blink duration 

(Hogervorst, 

Brouwer, & Van 

Erp, 2014)  

A decrease of 

spontaneous eye 

movements, saccades 

and saccades extent 

( May et al., 

1990)  

Increased pupil size 

and decreased blink 

duration 

(Ahlstrom & 

Friedman-Berg, 

2006)  

Drowsiness PERCLOS (Abe et al., 

2014; Brookhuis 

& De Waard, 

2010; Grace et 

al., 1998; 

Rodríguez-

Ibáñez et al., 

2011; Wilkinson 

& Stretton, 

1971; Yang & 

Jeong, 2015)  
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Method The 

frequency of 

the method 

in the 

literature 

Measured State An indicator of the 

state 

References 

Pupils size decrease (Oken et al., 

2006)  

Increased blink 

duration, delayed lid 

opening, decreased lid 

closure speed 

(Schleicher et 

al., 2008)  

Increased pupil 

diameter, increased 

eye closure duration, 

increased blinks 

duration, increased 

number of saccades, 

increased number of 

off-road fixation, 

longer off-road 

fixations, faster 

saccades 

(J. Wang et al., 

2017)  

Fuzzy Expert System  (Damousis & 

Tzovaras, 2008)  

Increased blinking 

frequency 

(He et al., 2017)  

Cognitive 

distraction 

A decrease in pupils 

size 

(Kristjansson et 

al., 2009)  

PERCLOS (Rodríguez-

Ibáñez et al., 

2011)  

A decrease of 

microsaccade velocity 

(Di Stasi et al., 

2015)  

Electrocardiography 18 Mental workload A decrease of the 0.1 

Hz power in heart rate 

variability 

(Fairclough & 

Houston, 2004)  

An increase in heart 

rate and a decrease in 

heart rate variability 

(Brookhuis & 

De Waard, 

2010; Wilson, 

2002)  

Increased heart rate (Averty et al., 

2002; Maglione, 

Borghini, Aricò, 

et al., 2014; 

Wilson, 2002)  

A decrease in heart 

rate variability 

(Roscoe, 1992; 

Veltman & 

Gaillard, 1996)  

Decrease in inter-beat-

interval 

(Veltman & 

Gaillard, 1996)  

Drowsiness A decrease in heart 

rate 

(Maglione, 

Borghini, Aricò, 

et al., 2014; 

Oken et al., 

2006)  
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Method The 

frequency of 

the method 

in the 

literature 

Measured State An indicator of the 

state 

References 

LDA on heart rate 

variability 

(Vicente et al., 

2016)  

Analysis of spectral 

features with KNN 

classifier 

(Sahayadhas et 

al., 2015)  

A decrease of mean 

power frequency 

(Murata & 

Hiramatsu, 

2008)  

Behavioural 

distraction 

Analysis of spectral 

features with KNN 

classifier 

(Sahayadhas et 

al., 2015)  

Fatigue A decrease in heart 

rate 

(Lal & Craig, 

2001, 2002)  

Stress An increase in heart 

rate 

(Ogorevc et al., 

2011; 

Schreinicke et 

al., 1990)  

Anger SVM classification 

based on the root 

mean square 

successive difference 

and heart rate 

variability 

(Minhad et al., 

2017)  

Electrooculography 16 Mental workload Blink rate and blink 

duration decrease 

(Borghini et al., 

2014; Richter et 

al., 1998; 

Veltman & 

Gaillard, 1996)  

Drowsiness Increased blink rate, a 

decrease of saccadic 

eye movements 

(Borghini et al., 

2014) 

 

Increased slow eye 

movements 

(Oken et al., 

2006; Shin et 

al., 2011)  

Increased blink 

duration, delayed lid 

opening, decreased lid 

closure speed 

(Schleicher et 

al., 2008)  

PERCLOS (Papadelis et al., 

2007; 

Rodríguez-

Ibáñez et al., 

2011)  

LDS analysis (Zhu et al., 

2014)  

Increased blink 

duration, the increased 

standard deviation of 

the lateral eyes 

position 

(Ingre et al., 

2006)  
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Method The 

frequency of 

the method 

in the 

literature 

Measured State An indicator of the 

state 

References 

Increased blink rate (Papadelis et al., 

2007)  

A decrease in 

spontaneous blink rate 

and an increase of 

slow eye movements 

(Minhad et al., 

2017)  

Sleep Slow lateral eye-

movements 

(Oken et al., 

2006)  

Fatigue An increase of blinks 

speed and 

disappearance of 

saccadic movements  

(Lal & Craig, 

2001, 2002)  

An increase of blink 

rate 

(Stern et al., 

1994)  

PERCLOS (Rodríguez-

Ibáñez et al., 

2011)  

A decrease in blink 

amplitude and 

blinking rate, increase 

in eye closure time 

(Morris & 

Miller, 1996)  

Functional Near-infrared 

spectroscopy 

9 Anger  An increase of 

DLPFC oxygenation 

asymmetry 

(Aranyi et al., 

2015)  

Drowsiness Oxygenation increase (Khan et al., 

2016)  

LDA with mean 

oxyhemoglobin, signal 

peak and sum of peaks 

(Khan et al., 

2016; Khan & 

Hong, 2015)  

Fatigue Oxyhemoglobin 

increase in the frontal 

lobe 

(Li et al., 2015)  

Oxyhemoglobin 

decrease over frontal 

and superior temporal 

cortices  

(Suda et al., 

2009)  

Cognitive 

distraction 

Deoxyhemoglobin 

decrease in the frontal 

lobe 

(Li et al., 2015)  

Mental workload Increased activation in 

the prefrontal lobe 

(Mehta & 

Parasuraman, 

2013)  

Increased oxygenation (Ayaz et al., 

2012)  

Increased oxygenation 

in DLPFC 

(Bunce et al., 

2011)  

Electrodermal Activity 9 Mental workload Increased EDA (Aranyi et al., 

2015; Miyake et 
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Method The 

frequency of 

the method 

in the 

literature 

Measured State An indicator of the 

state 

References 

al., 2009; 

Wilson, 2002)  

Increased skin 

conductance 

(Averty et al., 

2002)  

Increased number of 

spontaneous 

fluctuations 

(Richter et al., 

1998)  

Stress Increased EDA (Ogorevc et al., 

2011; Perala & 

Sterling, 2007)  

Drowsiness Decreased EDA (Michael et al., 

2012)  

Sleep The gradual decrease 

of EDA 

(Hwang et al., 

2015) 

Acoustic speech analysis 7 Drowsiness A decrease in the 

voiced/unvoiced 

consonants duration 

(Dhupati et al., 

2010)  

SVM analysis of 

features based on 

unvoiced and voiced 

consonants duration, 

LFCC, MFCC, LPC, 

HNR, LTAS 

(Krajewski, 

Batliner, et al., 

2009)  

AdaBoost and 

Bagging algorithms 

classifications of 

different phonetic 

features of speech  

(Krajewski et 

al., 2012)  

LDA and ANN 

analysis of prosodic 

and spectral speech 

characteristics 

(Krajewski & 

Kröger, 2007)  

Fatigue Narrowing of spectral 

range and reduction of 

speech intensity 

(Milosevic, 

1997)  

Multiple classification 

algorithms with 

various acoustic 

features 

(Krajewski, 

Trutschel, et al., 

2009)  

A decrease of a 

fundamental 

frequency 

(Whitmore & 

Fisher, 1996b)  

Electroencephalography 

(event-related potential)  

7 Drowsiness Analysis of SSVEP 

with SVM and LDA 

(Resalat et al., 

2012)  

Mental workload P300 decrease in 

latency and decrease 

in amplitude  

(Brookhuis & 

De Waard, 

2010)  
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Method The 

frequency of 

the method 

in the 

literature 

Measured State An indicator of the 

state 

References 

SVM and Elastic Net 

algorithms on Pz ERP 

(Hogervorst, 

Brouwer, & Van 

Erp, 2014)  

Decreased 

vigilance 

Decreased amplitude 

of ERPs 

(Oken et al., 

2006)  

Sleep inertia Delayed P300 (Bastuji et al., 

2003)  

A smaller peak-to-

peak amplitude of N1-

P2 components 

(Kolff et al., 

2003)  

Fatigue P300 latency at Pz 

decrease 

(Cheng & Hsu, 

2011)  

Cognitive 

distraction 

N1 negativity and Nb2 

component in reaction 

to irrelevant stimuli 

larger or the same than 

in response to relevant 

stimuli.  

(Boksem & 

Tops, 2008)  

Electromyography 6 Sleep Pharyngeal dilator 

decrease 

(Oken et al., 

2006)  

Behavioural 

distraction 

Analysis of spectral 

features with KNN 

classifier 

(Sahayadhas et 

al., 2015)  

Anger Corrugator supercilii, 

levator palpebrae 

superiolis, orbicularis 

oculi increased 

activity 

(Van Boxtel, 

2010)  

Drowsiness Analysis of spectral 

features with KNN 

classifier 

(Sahayadhas et 

al., 2015)  

Mental workload Corrugator supercilii 

and frontalis increase, 

jaw decrease 

(Cohen et al., 

1992)  

Stress The tension in the 

trapezius muscle 

(Healey & 

Picard, 2005)  

Subjective report 6 Drowsiness Result in the 

sleepiness scale 

(Ftouni et al., 

2013; Horne & 

Baulk, 2004; 

Ingre et al., 

2006; Kaida et 

al., 2006; Oken 

et al., 2006; Van 

Dongen & 

Dinges, 2000)  

Blood pressure 6 Mental workload A decrease in blood 

pressure variability 

(Brookhuis & 

De Waard, 

2010)  
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Method The 

frequency of 

the method 

in the 

literature 

Measured State An indicator of the 

state 

References 

Increased blood 

pressure 

(Veltman & 

Gaillard, 1996)  

Fatigue Increase in diastolic 

blood pressure 

(Milosevic, 

1997)  

Stress Increased blood 

pressure 

(Larkin et al., 

1998; Ogorevc 

et al., 2011; 

Schreinicke et 

al., 1990)  

Infrared video camera 5 Drowsiness PERCLOS (Vitabile et al., 

2010)  

Increased blink 

duration 

(Caffier et al., 

2003; Ftouni et 

al., 2013)  

Cognitive 

distraction 

Changes in 

supraorbital facial 

temperature 

(Wesley et al., 

2010)  

Mental workload The decreased 

temperature on the tip 

and sides of the nose 

(Marinescu et 

al., 2018)  

Facial expression 4 Fatigue Rubbing face, 

yawning, nodding, 

slow eye-lid closure, 

decreased facial tonus 

(Lal & Craig, 

2001)  

Drowsiness Eye closure, head 

rotation, yawning 

(Smith et al., 

2003; Vural et 

al., 2007)  

Gabor based analysis 

of the facial features 

(Fan et al., 

2010)  

Saliva analysis 4 Drowsiness Decreased alpha-

amylase 

(Pajcin et al., 

2017)  

Mental workload Increased cortisol (Zeier et al., 

1996)  

Increased 

immunoglobulin 

(Zeier et al., 

1996)  

Stress Increased cortisol (Schreinicke et 

al., 1990)  

Increase in alpha-

amylase 

(Perala & 

Sterling, 2007)  

Body temperature 4 Fatigue Ear body temperature 

increased 

(Milosevic, 

1997)  

Mental workload A decrease of the 

temperature on the tip 

of the nose 

(Itoh, 2009)  

Drowsiness Decreased body 

temperature 

(Michael et al., 

2012)  
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Method The 

frequency of 

the method 

in the 

literature 

Measured State An indicator of the 

state 

References 

Stress Heat Flux (Ogorevc et al., 

2011)  

Pupillometry  3 Mental workload PCA and ICA pupils 

size change 

(Jainta & 

Baccino, 2010)  

Drowsiness A decrease in the 

pupil size 

(Ranzijn & 

Lack, 1997)  

Pupillographic 

sleepiness test 

(Wilhelm et al., 

2015)  

Respiration 3 Sleep Fall in abdominal 

respiration compared 

to thoracic 

(Oken et al., 

2006)  

Drowsiness Change in breathing 

frequency stability 

(Rodríguez-

Ibáñez et al., 

2011)  

Fatigue Change in breathing 

frequency stability 

(Rodríguez-

Ibáñez et al., 

2011)  

Stress Increased breathing 

rate 

(Schreinicke et 

al., 1990)  

Driving performance 2 Cognitive 

distraction 

Steering and throttling 

acceleration 

(Bando & 

Nozawa, 2015)  

Velocity, steering 

angle, longitudinal 

acceleration, gas pedal 

use, brake pedal use, 

steering wheel angle, 

lateral acceleration,  

(Yang & Jeong, 

2015)  

Drowsiness Velocity, gas pedal 

use, steering wheel 

angle 

(Yang & Jeong, 

2015)  

Mental workload Velocity, longitudinal 

acceleration, gas pedal 

use, brake pedal use, 

steering wheel angle, 

lateral acceleration 

(Yang & Jeong, 

2015)  

Psychomotor performance 2 Drowsiness Decreased speed and 

accuracy in 

psychomotor tasks 

(Lal & Craig, 

2001; Van 

Dongen & 

Dinges, 2000)  

Body position 2 Drowsiness Increase in horizontal 

and vertical neck 

bending, back 

pressure on the seat 

(Murata et al., 

2015, 2017)  

Doppler blood flow meter 1 Mental workload A decrease of the 

blood flow on the tip 

of the nose 

(Miyake et al., 

2009)  

Actigraphy 1 Sleep Actigraphy (Mullaney et al., 

1980)  
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Method The 

frequency of 

the method 

in the 

literature 

Measured State An indicator of the 

state 

References 

Head movements 1 Drowsiness Head movements 

dispersion 

(Popieul et al., 

2003)  

Oximetry 1 Fatigue K-means classifier (Sharma & 

Bundele, 2015)  

Blood glucose 1 Mental workload A decline of the blood 

glucose 

(Fairclough & 

Houston, 2004)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14. APPENDIX 3- TORS QUESTIONNAIRE 

Please choose the sentence that best describes how ready do you feel to take-over the 

manual driving during next minute.  

1. Could not be more ready 

 

2. Fully ready 

 

3. Somewhat ready 
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4. Not sure if I am ready 

 

5. Somewhat not ready 

 

6. I do not feel ready 

 

7. I do not feel able to drive manually at all 

 

 

 

 

 

 

 

 

 

15. APPENDIX 4- EEG BRANDS COMPARISON 

Table 15.1: List of the papers using Mobita-32 EEG device in the experiment with some technical properties 

of the EEG set. 

Studies that 

used Mobita-

32 

Studied 

function 

Data quality 

comments 

Models 

compared 

with Mobita  

Result of 

comparison 

Additional 

comments 

(Askamp & van 

Putten, 2014) 

Usability in at-

home EEG 

recording in 

epilepsy 

patients 

n/a Trea, Trackit 

and Safiro 

The only 

comparison of 

some technical 

parameters like 

size, battery 

type etc., not 

data quality 
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Studies that 

used Mobita-

32 

Studied 

function 

Data quality 

comments 

Models 

compared 

with Mobita  

Result of 

comparison 

Additional 

comments 

(van Erp, 

Hogervorst, & 

van der Werf, 

2016) 

Recording 

emotional state 

of the writer 

while writing a 

book 

n/a n/a n/a Authors 

achieved a 

high accuracy 

of a state 

classification 

(Pinegger, 

Wriessnegger, 

Faller, & 

Müller-Putz, 

2016) 

Comparison of 

3 mobile EEG 

devices in a 

BCI P300 

spelling device 

Mobita had the lowest 

noise level, had 93% 

mean accuracy of 

classification in 

comparison to 96% in 

gGammasys and 77% 

in gSahara, moderate 

interparticipant 

variance in comparison 

with low for 

gGammasys and high 

for gSahara 

gGammasys 

and gSahara 

 Mobita was 

perceived as 

most 

satisfactory by 

participants 

and researchers 

(Bateson, 

Baseler, 

Paulson, 

Ahmed, & 

Asghar, 2017) 

Classification 

of the level of 

mobility of 

various mobile 

EEG devices  

n/a 20 different 

mobile EEG 

models 

Mobita was 

classified as 

middle device 

mobility, high 

participant 

mobility, and 

high system 

specification 

 

 

Table 15.2: List of the papers using Enobio-20 EEG device in the experiment with some technical properties 

of the EEG set. 

Studies that 

used Enobio 

20 

Studied function Data quality 

comments 

Models 

compared 

with 

Enobio 

Result of comparison Additional 

comments 

(Mohamed et 

al., 2018) 

Different models 

of EEG signal 

analysis in 

left/right 

hand/foot EEG 

recognition 

n/a n/a n/a Up to 97.62% 

accuracy of 

classification 

(Ingle & 

Awale, 2018) 

Assessing effect 

of Vipasana 

meditation on 

brain  

n/a n/a n/a Up to 85% 

accuracy of 

classification 



 

224 

Studies that 

used Enobio 

20 

Studied function Data quality 

comments 

Models 

compared 

with 

Enobio 

Result of comparison Additional 

comments 

(Angulo-

Sherman, 

Rodríguez-

Ugarte, Iáñez, 

Ortiz, & 

Azorín, 2017) 

Motor imagery 

with and without 

TDCS stimulation 

n/a n/a n/a Accurate 

classification of 

central areas 

activity 

(Rodríguez-

Ugarte, Iáñez, 

Ortíz, & 

Azorín, 2017) 

EEG based BCI n/a n/a n/a 55.1 % of 

classification 

(Ratti, 

Waninger, 

Berka, 

Ruffini, & 

Verma, 2017) 

Comparison of 4 

EEG models  

All models 

were assessed 

as acceptable 

from the point 

of view of data 

quality. B-Alert 

and Enobio 

were viewed as 

better 

B-Alert, 

Muse and 

Mindwave 

B-Alert, Enobio and 

Mindwave have 

comparable Fp1 

power spectra; Muse 

has higher test-retest 

variation, Muse and 

Mindwave are more 

susceptible to 

movement artefacts, 

Muse and Mindwave 

are quicker to set-up 

 

(Sharma, Jain, 

& Pal, 2017) 

Manipulation of 

robotic arm with 

EEG extracted 

artifacts 

n/a n/a n/a High 

classification 

accuracy 

(Biswas et al., 

2016) 

Investigation of 

EEG reactions to 

the changing 

environment in 

the working place: 

temperature, 

humidity etc. 

n/a n/a n/a  

(Placidi, 

Petracca, 

Spezialetti, & 

Iacoviello, 

2016) 

Assessment of 

BCI technique 

and interface 

based on olfactory 

imagery 

n/a n/a n/a Up to 95% 

accuracy 

(Rodríguez-

Ugarte et al., 

2016) 

Detection of 

pedalling 

intention with 

EEG 

n/a n/a n/a Max 72.2% of 

accuracy 

(Pistoia et al., 

2015) 

Detection of 

olfactory imagery 

in minimally 

conscious state 

n/a n/a n/a ~70% of 

imagery 

classification 
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Studies that 

used Enobio 

20 

Studied function Data quality 

comments 

Models 

compared 

with 

Enobio 

Result of comparison Additional 

comments 

(Awais, 

Badruddin, & 

Drieberg, 

2014) 

Observing EEG 

frequency 

changes during 

monotonous 

driving 

n/a n/a n/a Significant 

increase of 

alpha and theta 

after 

monotonous 

driving 

(Abbate, 

Avvenuti, & 

Light, 2012) 

The idea of the 

minimally 

invasive system of 

sensors for early 

detection of brain 

problems (with 

Enobio for EEG) 

n/a n/a n/a Researchers 

assess the 

system as a 

reliable tool 

used when a 

patient is active 

 

Table 15.3: List of the papers using EEGO Sport EEG device in the experiment with some technical 

properties of the EEG set. 

Studies that 

used EEGO 

Sport 

Studied 

function 

Data quality 

comments 

Models 

compared with 

EEGO Sport 

Result of 

comparison 

Additional 

comments 

(Chen et al., 

2018) 

Assessment of 

the model of 

FCMC  

n/a n/a n/a  

(Stone, 

Tamburro, 

Fiedler, 

Haueisen, & 

Comani, 2018) 

Testing a new 

algorithm for 

physiological 

noise removal  

n/a ECI electrodes 

system with dry 

electrodes 

n/a 90% of noise 

successfully 

removed 

(Hall, 

Mattingley, & 

Dux, 2018) 

EEG activity 

related to 

expected and 

unexpected 

stimuli 

n/a n/a n/a 95.8% accuracy 

for EEG and 

ERP 

(Bigliassi, 

Karageorghis, 

Hoy, & Layne, 

2018) 

Investigation of 

EEG during 

positive mental 

states elicited by 

exercises and 

music 

n/a n/a n/a Successful 

oscillations 

recording during 

running 

(Yue Dong, Raif, 

Determan, & 

Gai, 2017) 

EEG based 

detection of 

auditory 

attention 

n/a n/a n/a Accuracy of 

classification 

70%-90% 
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Studies that 

used EEGO 

Sport 

Studied 

function 

Data quality 

comments 

Models 

compared with 

EEGO Sport 

Result of 

comparison 

Additional 

comments 

(Fehér, Nakataki, 

& Morishima, 

2017) 

EEG recording 

in DLFPC 

during TMS and 

tACS 

n/a n/a n/a  

(Griffiths, 

Mazaheri, 

Debener, & 

Hanslmayr, 

2016) 

Studying EEG 

mechanisms of 

memory 

formation 

during the walk 

around the 

campus 

P300 recorded 

in the lab was 

comparable to 

P300 recorded 

outdoors 

n/a n/a Participants 

were not 

walking during 

EPOCS of EEG 

recording 

 

 

 

 

 

 

 

 

 

 

 

 

16. APPENDIX 5- UNIPHYSIOLOGICAL REGRESSION ANALYSIS FOR 

TAKE-OVER MONITORING, TABLES WITH ALL TESTED MODELS 

 

Table 16.1: 1st linear model predicting change in driving performance based on change in questionnaires’ 

results: Number of observations: 79, Error degrees of freedom: 67, Root Mean Squared Error: 169, R-

squared: .15,  Adjusted R-Squared: .01, F-statistic vs. constant model: 1.04, p value: NS 

 Estimate SE t-Stat P Value 

Intercept -135.64      59.57       -2.28     .03 

Circadian Phase -10.17                            

     
41.58 -0.24      .81 

Chronotype -0.29 25.59     -0.01     .99 

Change in KSS  -12.90      

 

15.73      -0.82      .42 



Appendix 5- Uniphysiological Regression Analysis for Take-Over Monitoring, Tables with all Tested Models  

 

 Estimate SE t-Stat P Value 

Chane in TORS 11.46      

 

18.37       0.62      .54 

Change in Fatigue -37.88      

 

29.97       -1.26      .21 

Change in NASA-

TLX MD 

0.85     

 

0.74        1.15      .26 

Change in NASA-

TLX PD 

0.02      

 

1.33      0.02       .99 

Change in NASA-

TLX TD 

-0.17      

 

1.24      -0.13      .89 

Change in NASA-

TLX Per 

 1.21      

 

1.06        1.14      .26 

Change on NASA-

TLX Eff 

0.24     

 

0.79       0.31       .76 

Change in NASA-

TLX Frust 

  -0.53     

 

0.71       -0.75       .46 

Change in NASA-

TLX Overall 

0                              0 NaN NaN 

 

 

 

Table 16.2: 2nd linear model predicting change in driving performance based on change in questionnaires’ 

results: Number of observations: 81, Error degrees of freedom: 76, Root Mean Squared Error: 163, R-

squared: 0.12,  Adjusted R-Squared: .07, F-statistic vs. constant model: 2.52, p value <.05 

 Estimate SE t-Stat P Value 

Intercept -125.10       40.77     -3.07     .00 

Change in KSS -11.91       13.90 -0.86      .39 

Change in Fatigue -26.61       

 

25.04     -1.06       .29 

Change in NASA-

TLX MD 

1.14     

 

0.62      1.84       .07 

Change in NASA-

TLX Eff 

1.19      

 

0.92      1.29        .20 

 

 

Table 16.3: 2nd linear model predicting change in driving performance based on change in questionnaires’ 

results: Number of observations: 84, Error degrees of freedom: 81, Root Mean Squared Error: 164, R-

squared: .06,  Adjusted R-Squared: .03, F-statistic vs. constant model: 2.47, p value : NS 

 Estimate SE t-Stat P Value 

Intercept -51.20 23.13     -2.21     .03 

Change in NASA-

TLX MD 
1.22      

 

0.61      2.01     .05 

Change in NASA-

TLX Eff 
1.07      0.93      1.16      .25 
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Table 16.4: 1st linear model predicting change in driving performance based on change in ECG 

measurements: Number of observations: 96, Error degrees of freedom: 81, Root Mean Squared Error: 159, R-

squared: .17,  Adjusted R-Squared: .02, F-statistic vs. constant model: 1.17, p value : NS 

 Estimate SE t-Stat P Value 

Intercept -52.29 

 

-55.12    0.95      .35 

Circadian Phase -30.99         

 
33.94     -0.91 .36 

Session 3.08          35.13     0.09      .93 

Change in HR 2.08         4.05      0.51      .61 

Change in HRVvl 0.00       0.02      0.22      .83 

Change in HRVl -0.00                0.01 -0.18 .86 

Change in HRVh 0.00      0.01      0.52      .60 

Change in HRVvh 0.01      

 

0.01       2.36    .02 

Change in 

Sympathetic 

-171320000 283150000 -0.61     .55 

Vagal -171320000 283150000 -0.61  .55 

Change in 

Sympathetic to 

Vagal Ratio 

10.84         6.78       1.60      .11 

Change in RSA 35.83        29.80      1.20      .23  

Change in RMSSD -185.99         295.08     -0.63      .53 

Change in SDSD 186         295.09      0.63      .53 

Change in 

pNN50% 

-1.33         1.74      -0.77      .45 

 

 

 

Table 16.5: 2nd linear model predicting change in driving performance based on change in ECG 

measurements: Number of observations: 96, Error degrees of freedom: 91, Root Mean Squared Error: 153, R-

squared: .14,  Adjusted R-Squared: .10, F-statistic vs. constant model: 3.67, p value <.05 

 Estimate SE t-Stat P Value 

Intercept -36.52       22.55     -1.62      .11 

Circadian Phase -31.213 31.53    -0.99      .33 

Change in HRVvh 0.01     0.01      2.57    .01 

Change in 

Sympathetic to 

Vagal Ratio 

7.87        

 

5.27     1.49       .14 

Change in RSA 35.29        16.94      2.08   .04 
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Table 16.6: 3rd linear model predicting change in driving performance based on change in ECG 

measurements: Number of observations: 96, Error degrees of freedom: 93, Root Mean Squared Error: 154, R-

squared: .11,  Adjusted R-Squared: .09, F-statistic vs. constant model: 5.68, p value <.05 

 Estimate SE t-Stat P Value 

Intercept -57.47        16.35     -3.51    .00 

Change in HRVvh 0.01     0.01   2.46       .02 

Change in RSA 34.37        16.81     2.05       .04 

 

Table 16.7: 1st linear model predicting change in driving performance based on change in acoustic voice 

properties: Number of observations: 96, Error degrees of freedom: 76, Root Mean Squared Error: 16, R-

squared: .22,  Adjusted R-Squared: .02, F-statistic vs. constant model: 1.11, p value : NS 

 Estimate SE t-Stat P Value 

Intercept   -55.117      57.32 -0.96       .34 

Session -3.25   

 

34.58     -0.09       .93 

Circadian Phase -19.06      37.462      -0.51       .61 

Change in Mean 

Pitch 

-1.92      1.80       -1.09      .28 

Change in Max 

Pitch 

0.15     

 

0.74        0.20     .85 

Change in Min 

Pitch 

 0                               

 

0 NaN NaN 

Change in 

Frequency Range 

-0.61    0.75     -0.81       .42 

Change in Pitch 

SD 

4.22     

 

1.35       3.12     .00 

Change in Number 

of Pulses 

-4.91    

 

3.91      -1.25      .21 

Change in Number 

of Periods 

5.77      

 

3.94        1.47      .15 

Change in 

Fraction of Locally 

Unvoiced Frames 

2.58      

 

2.95     0.88      .38 

Change in Number 

of Voice Breaks 

-16.71      

 

12.18       -1.37      .17 

Change in Degree 

of Voice Breaks 

-1.04      2.49     -0.42      .68 

Change in Jitter -39.68      

 

29.92     -1.33       .19 

Change in 

Shimmer 

-7.99      10.25    -0.78       .44 

Change in Mean 

Autocorrelation 

-2443.6      

 

6325.4      -0.39     .70 

Change in Mean 

noise to harmonics 

ratio 

-950.56      

 

2655.3      -0.36     .72 

Change in Mean 

harmonics to noise 

ratio 

-2.58      

 

42.41 -0.06        .95 
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 Estimate SE t-Stat P Value 

Change in Mean 

Intensity 

-4.27     5.32      -0.80      .43 

Change in Max 

Intensity 

0.25      

 

0.44       0.55      .58 

Change in Min 

Intensity 

6.85     

 

4.22        1.63     .11 

 

Table 16.8: 2nd linear model predicting change in driving performance based on change in acoustic voice 

properties: Number of observations: 97, Error degrees of freedom: 92 

Root Mean Squared Error: 159, R-squared: .06,  Adjusted R-Squared: .02, F-statistic vs. constant model: 

1.47, p value : NS 

 Estimate SE t-Stat P Value 

Intercept -64.22      17.56    -3.66     .00 

Change in Pitch 

SD 

0.33     0.63     0.53       .60 

Change in Number 

of Periods 

0.18     

 

0.36     0.51      .61 

Change in Number 

of Breaks 

-8.16       

 

4.40     -1.86       .07 

Change in Min 

Intensity 

3.62        

 

3.65    0.99        .32 

 

Table 16.9: 3rd linear model predicting change in driving performance based on change in acoustic voice 

properties: Number of observations: 97, Error degrees of freedom: 94, Root Mean Squared Error: 158, R-

squared: .05,  Adjusted R-Squared: .03, F-statistic vs. constant model: 2.67, p value : NS 

 Estimate SE t-Stat P Value 

Intercept -61.15     

 

16.39    -3.73    .00 

Change in Number 

of Breaks  

-7.31      

 

3.39     -2.16     .03 

Change in Min 

Intensity 

3.66      

 

3.60      1.02        .31 

 

Table 16.10: 1st linear model predicting change in driving performance based on change in EOG variables: 

Number of observations: 21, Error degrees of freedom: 13, Root Mean Squared Error: 182, R-squared: .24,  

Adjusted R-Squared: -.16, F-statistic vs. constant model: 0.6, p value :NS 

 Estimate SE t-Stat P Value 

Intercept 95.58      135.88     0.70     .49 

Circadian Phase -95.76     

 

94.22   -1.07     .33 

Session -103.54      

 

102.82      -1.01      .33 

Change in 

Blinking Rate 

4.66     

 

8.77     0.53     .60 

Change in Mean 

Blink Duration 

432.9      

 

832.81     0.52     .61 

Change in 

PERCLOS 

-24.67      

 

23.04     -1.07     .30 

Change in Rate of 

Horizontal eye-

movements 

-1.20   

 

9.10    -0.13 .90 

Change in Mean 

Duration of 

37.86      

 

189.18     0.20     .85 
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 Estimate SE t-Stat P Value 

Horizontal Eye-

movements 

 

Table 16.11: 2nd linear model predicting change in driving performance based on change in EOG variables:  

Number of observations: 45, Error degrees of freedom: 41, Root Mean Squared Error: 153, R-squared: .13,  

Adjusted R-Squared: .07, F-statistic vs. constant model: 2.02, p value :NS 

 Estimate SE t-Stat P Value 

Intercept 91.21      76.14     1.20     .24 

Session -76.87 

 

45.91 -1.67     .10 

Circadian Phase -72.82      

 

47.20   - 1.54     .13 

Change in 

PERCLOS 

-9.66      

 

7.43 -1.30 .20 

 

Table 16.12: 1st linear model predicting change in driving performance based on change in EDA variables: 

Number of observations: Number of observations: 87, Error degrees of freedom: 82 

Root Mean Squared Error: 160, R-squared: .11,  Adjusted R-Squared: .06, F-statistic vs. constant model: 

2.42, p value :NS 

 Estimate SE t-Stat P Value 

Intercept -37.71  54.33     -0.69       .49 

Session -5.71    

 

34.97     -0.16       .87 

Circadian Phase -22.94     

 

34.74     -0.66      .51 

Change in SCL 

Frequency 

101660 37    2.68     .01 

Change in SCL 

Mean 

9.84     

 

5.15       1.91      .06 

 

Table 16.13: 2nd linear model predicting change in driving performance based on change in EDA variables: 

Number of observations: 87, Error degrees of freedom: 84, Root Mean Squared Error: 159, R-squared: .1,  

Adjusted R-Squared: .08, F-statistic vs. constant model: 4.68, p value <.05 

 Estimate SE t-Stat P Value 

Intercept -56.75     18.39   -3.09    .00 

Change in SCL 

Frequency 

103560 37555 2.76     .01 

Change in SCL 

Mean 

9.94 5.05      1.97     .05 

 

Table 16.14: 1st linear model predicting change in driving performance based on change in EMG variables: 

Number of observations: Number of observations: 42, Error degrees of freedom: 31 

Root Mean Squared Error: 157, R-squared: .16,  Adjusted R-Squared: -.12, F-statistic vs. constant model: 

0.58, p value <.05 

 Estimate SE t-Stat P Value 

Intercept 79.53        89.71       0.89     .38 

Session -66.05         

 

52.09       -1.27     .22 

Circadian Phase -29.68      51.75    -0.57   .57 

Change in Median 

Frequency of 

Frontalis  

0.37    0.92     0.40  .69 



 

232 

 Estimate SE t-Stat P Value 

Change in Mean 

Frequency of 

Frontalis  

0.22     

     

 

0.56      0.40     .69 

Change in Peak 

Frequency of 

Frontalis  

-1.91        

 

2.17      -0.88    .39 

Change in Mean 

Power of Frontalis  

0                              

 

0 NaN NaN 

Change in Total 

Power of Frontalis  

-29178000 42427000 -0.69     0.50 

Change in Median 

Frequency of 

Corrugator 

Supercilii 

-0.52        

 

0.83      -0.62      0.54 

Change in Mean 

Frequency of 

Corrugator 

Supercilii 

-0.05        0.60 -0.08    0.94 

Change in Peak 

Frequency of 

Corrugator 

Supercilii 

2.56          2.65      0.97     0.34 

Change in Mean 

Power of 

Corrugator 

Supercilii 

  0                               0 NaN NaN 

Change in Total 

Power of 

Corrugator 

Supercilii 

-44181000 37595000 -1.18     0.25 

 

Table 16.15: 2nd linear model predicting change in driving performance based on change in EMG variables: 

Number of observations: 42, Error degrees of freedom: 38, Root Mean Squared Error: 149, R-squared: .06,  

Adjusted R-Squared: -.01, F-statistic vs. constant model: 0.85, p value :NS 

 Estimate SE t-Stat P Value 

Intercept 53.27        76.56      0.70      .49 

Session -58.45       46.81      -1.25     .22 

Change in Peak 

Frequency in 

Frontalis 

0.04       

 

0.72     0.05     .96 

Change in Total 

Power in 

Corrugator 

Supercilii 

 -32531000 29778000 -1.09     .28 

 

Table 16.16: 1st linear model predicting change in driving performance based on change in respiration 

variables: Number of observations: 95, Error degrees of freedom: 90, Root Mean Squared Error: 162, R-

squared: .04,  Adjusted R-Squared: -.00, F-statistic vs. constant model: 0.94, p value :NS 

 Estimate SE t-Stat P Value 

Intercept -52.56      

 
53.48     -0.98   .33 
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 Estimate SE t-Stat P Value 

Session -4.07      

 

33.48    -0.12     .90 

Circadian Phase -23.19      

 

33.68     -0.69     .49 

Respiration Rate -11.48      

 

6.86      -1.68     .10 

SD of breath 3.94     

 

22.61      0.17     .86 

 

Table 16.17: 1st linear model predicting change in driving performance based on change in salivary 

hormonal content: Number of observations: 40, Error degrees of freedom: 35, Root Mean Squared Error: 

157, R-squared: .03,  Adjusted R-Squared: -.08, F-statistic vs. constant model: 0.28, p value :NS 

 Estimate SE t-Stat P Value 

Intercept -58.07       80.95       -0.72   .48 

Session 20.89       

 

52.15     0.40     .69 

Circadian Phase -49.32      

 

51.50     -0.96     .35 

Change in Cortisol -66.81     

 

217.52     -0.31     .76 

Change in Alpha-

Amylase 

0.11    0.28     0.39   .70 

 

Table 16.18: 1st linear model predicting change in driving performance based on change in salivary 

hormonal content: Number of observations: 94, Error degrees of freedom: 89, Root Mean Squared Error: 

163, R-squared: .04,  Adjusted R-Squared: -.00, F-statistic vs. constant model: 0.96, p value :NS 

 Estimate SE t-Stat P Value 

Intercept -59.34 55.20       -1.075     .29 

Session 4.05    34.98    0.12     .91 

Circadian Phase -20.34     

 

33.85     -0.60     .55 

Change in Sp02 18.74     16.75       1.12     .27 

Change in Pulse -1.82    

 

1.23      -1.48     .14 

 

17. APPENDIX 6- RHO-SPEARMAN CORRELATION TABLES BETWEEN 

PHYSIOLOGICAL FACTORS  AND FACTORS IN MANUAL DRIVING 

PERFORMANCE FOLLOWING THE MEASUREMENT 
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Table 17.1: Bonferroni corrected significant correlations between questionnaires results p<.05 and following 

driving performance. 

 Pedestr

ian Hit 

Speedi

ng 

Ticket

s 

Traffi

c 

Lights 

violati

on 

Centrel

ine 

Crossin

gs 

Road 

excursi

ons 

SD 

Lane 

positi

on 

SD 

Steeri

ng 

Whee

l 

Angle 

SD 

Vehic

le 

Headi

ng 

Angle 

SD 

Longitud

inal 

Accelerat

ion 

SD 

longitudi

nal 

speed 

Gene

ral 

Drivi

ng 

Perf. 

KSS 

rs 

(200) 

      .19 

 

.15  

 

 .17 

 

 

TOR

S rs 

(181) 

 -.15      .15    

Fatig

ue rs 

(207) 

    -.18  .17     

NAS

A-

TLX 

MD 

rs 

(179) 

22  .17 .18  .16 .29 .17  .18 .18 

NAS

A-

TLX 

TD 

rs(17

9) 

.16   .16 .20   .15    

NAS

A-

TLX 

Eff 

rs(17

9) 

      .29 .26  .18  

NAS

A-

TLX 

Frust 

rs(17

9) 

      .22 .34    

NAS

A-

TLX 

Over

all 

rs(17

9) 

      .34 .35  19 .22 
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Table 17.2: Bonferroni corrected significant correlations (p<.05) between ECG variables and driving 

performance variables.  

 Number of 

collisions 

Road 

Excursion

s 

SD lane 

position 

SD of the 

steering 

wheel 

angle 

SD of the 

vehicle 

heading 

angle 

SD 

longitudi

nal 

accelerati

on 

SD of the 

longitudi

nal speed 

General 

Driving 

Performa

nce 

HRV 

very 

low 

frequen

cies 

rs(202) 

   .18 

 

.26 

 

 .15 

 

.16 

 

HRV 

low 

frequen

cies 

rs(202) 

   .17 

 

.29 

 

 .15 

 

.17 

 

HRV 

high 

frequen

cies 

rs(202) 

.19 

 

 .16 

 

.14 

 

   .17 

 

HRV 

very 

high 

frequen

cies 

rs(202) 

.16 

 

 .16 

 

.17 

 

.21 

 

.17 

 

 

.16 

 

 

.21 

 

HRV 

sympat

hetic 

tonus 

rs(202) 

-.18 

 

       

HRV 

vagal 

tonus 

rs(202) 

.18 

 

       

HRV 

sympat

hetic 

vagal 

tonus 

ratio 

rs(202) 

-.18 

 

 

       

HRV 

RSA 

rs(202) 

.19 

 

 

 .16 

 

 

.14 

 

   .17 

 

 

HRV 

RMSSD 

rs(202) 

 -.18 

 

 .17 

 

 

  .21 
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 Number of 

collisions 

Road 

Excursion

s 

SD lane 

position 

SD of the 

steering 

wheel 

angle 

SD of the 

vehicle 

heading 

angle 

SD 

longitudi

nal 

accelerati

on 

SD of the 

longitudi

nal speed 

General 

Driving 

Performa

nce 

HRV 

SDSD 

rs(202) 

 -.18 

 

 .17 

 

  .21 

 

 

HRV 

PNN50 

rs(202) 

 -.21 

 

 .14 

 

 

  .14 

 

 

 

Table 17.3: Bonferroni corrected significant correlations (p<.05) between acoustic voice properties and 

driving performance, as well as some additional correlations between demografic variables and driving 

performance.  

 Collis

ions 

Pedest

rian 

Hit 

Speed 

Exceed

ances 

Spee

ding 

Ticke

ts 

Centr

eline 

Crossi

ng 

Road 

Excur

sions 

SD 

of 

Lan

e 

Posit

ion 

SD 

of 

steer

ing 

whe

el 

angl

e 

SD 

of 

Vehi

cle 

Hea

ding 

Angl

e 

SD of 

longitu

dinal 

acceler

ation 

SD of 

longitu

dinal 

speed 

Summa

ry of 

the 

Driving 

Perfor

mance 

Mean 

Pitch 

rs(203

)  

  -.27 

 

 

-.28 

 

 

-.18 

 

 -.19 

 

 

-.37 

 

 -.28 

 

 

-.3 

 

-.31 

 

Max 

Pitch 

rs(203

) 

 .14 

 

-.15 

 

    -.19 

 

  -.15 

 

-.17 

 

Frequ

ency 

Range 

rs(203

) 

       -.16 

 

   -.15 

 

Pitch 

SD 

rs(203

) 

  -.18 

 

-.17 

 

 

-.15 

 

 -.14 

 

-.24 

 

 -.2 

 

-.22 

 

-.24 

 

 

Numb

er of 

Pulses 

rs(203

) 

  -.3 

 

r-.31 

 

-.24 

 

 

 -.17 

 

-.39 

 

-.16 

     

 

-.29 

 

-.31 

 

-.35 

 

Numb

er of 

Period

s 

rs(203

) 

  -.28 

 

-.3 

 

-.23 

 

 -.17 

 

-.37 

 

-.16 

 

-.28 

 

-.30 

 

-.33 

 

Fracti

on of 

Locall

y 

Unvoi

          -.22 
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 Collis

ions 

Pedest

rian 

Hit 

Speed 

Exceed

ances 

Spee

ding 

Ticke

ts 

Centr

eline 

Crossi

ng 

Road 

Excur

sions 

SD 

of 

Lan

e 

Posit

ion 

SD 

of 

steer

ing 

whe

el 

angl

e 

SD 

of 

Vehi

cle 

Hea

ding 

Angl

e 

SD of 

longitu

dinal 

acceler

ation 

SD of 

longitu

dinal 

speed 

Summa

ry of 

the 

Driving 

Perfor

mance 

ced 

Frame

s 

rs(203

) 

Numb

er of 

Break

s 

rs(203

) 

  -.20 

 

-.18 

 

-.17 

 

-.23 

 

 -.27  -.24 

 

-.29 

 

-.3 

 

Degre

e of 

Break

s 

rs(203

) 

     -.14 

 

      

Jitter 

rs(203

) 

.14 

 

 .17 

 

     .19 

 

  .14 

 

Shim

mer 

rs(203

) 

       .18 

 

 .14 

 

.16 

 

.04 

 

Mean 

Harm

onics 

to 

Noise 

Ration 

rs(203

) 

       -.19 

 

  -.14 

 

 

Mean 

Intens

ity 

rs(203

) 

 .15 

 

.17 

 

      .19 

 

  

Max 

Intens

ity 

rs(203

) 

         .17 

 

  

 

Table 17.4: Bonferroni corrected significant correlations (p<.05) between EOG variables and factors of 

driving performance. 

 Collisions Centreline Crossing SD of longitudinal 

acceleration 

Blinking Rate rs(92) .37 .35 .31 
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 Collisions Centreline Crossing SD of longitudinal 

acceleration 

Mean Blink 

Duration rs(92) 

  .03 

-.29 

 

 

PERCLOS rs(92)  .34 

 

 

 

Table 17.5: Bonferroni corrected significant correlations (p<.05) between respiration factors and factors of 

driving performance. 

 Stop Signs Violations Traffic Lights 

Violations 

SD of lane position 

Breathing Rate 

rs(200) 

 .25 .15 

Standard Deviation 

of Breath rs(200) 

.16  -.18 
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18. APPENDIX 7- UNIPHYSIOLOGICAL REGRESSION MODELS 

PREDICTING ATTENTION DURING AUTOMATION WITH 

PHYSIOLOGICAL RECORDING COLLECTED BEFORE THE 

AUTOMATED MODE, TABLES WITH ALL TESTED MODELS 

 

Table 18.1: 1st linear model predicting attention during automated mode based on the questionnaires 

collected just before automation: Number of observations: 80, Error degrees of freedom: 68, Root Mean 

Squared Error: 0.94, R-squared: .102,  Adjusted R-Squared: -.04, F-statistic vs. constant model: 0.7, p value : 

NS 

 Estimate SE t-Stat P Value 

Intercept 4.51       0.59       7.61    .00 

Circadian Phase 0.38      0.25       1.54       .13 

Session 0.03     0.24     0.14        .89 

KSS 0.05       0.12     0.42        .68 

TORS 0.10     0.14     0.73        .47 

Fatigue -0.33   0.19     -1.73      .09 

NASA-TLX MD 0.01    

 

0.01      0.92       .36 

NASA-TLX PD -0.01    0.01      -0.60      .55 

NASA-TLX TD -0.00    0.01    -0.49       .63 

NASA-TLX Per -0.00   0.01     -0.47        .64 

NASA-TLX Eff 0.00   0.01      0.50       .62 

NASA-TLX Frust 0.00    0.00      0.51       .61 

NASA-TLX 

Overall 

0                                 

 

0 NaN NaN 

 

Table 18.2: 2nd linear model predicting attention during automated mode based on the questionnaires 

collected just before automation: Number of observations: 82, Error degrees of freedom: 78, Root Mean 

Squared Error: 0.91, R-squared: .07,  Adjusted R-Squared: .03, F-statistic vs. constant model: 1.85, p value 

:NS 

 Estimate SE t-Stat P Value 

Intercept 4.61   

 

0.28   16.67  .00 

Circadian Phase 0.38    

 

0.22      1.72     .09 

TORS 0.10    

 

0.13     0.76       .45 

Fatigue -0.22     

 

0.10     -2.09       .04 

 

Table 18.3: 3rd linear model predicting attention during automated mode based on the questionnaires 

collected just before automation: Number of observations: 91, Error degrees of freedom: 88, Root Mean 

Squared Error: 0.885, R-squared: 0.07,  Adjusted R-Squared: .05, F-statistic vs. constant model: 3.46, p value 

<.05 

 Estimate SE t-Stat P Value 

Intercept 4.79 0.23      21.33     .00 

Circadian Phase 0.38   0.20     1.89   .06 



 

240 

 Estimate SE t-Stat P Value 

Fatigue -0.19     0.08   -2.44    .02 

 

Table 18.4: 4th linear model predicting attention during automated mode based on the questionnaires 

collected just before automation: Number of observations: 91, Error degrees of freedom: 89, Root Mean 

Squared Error: 0.90, R-squared: .04,  Adjusted R-Squared: .03, F-statistic vs. constant model: 3.27, p 

Value:NS 

 Estimate SE t-Stat P Value 

Intercept 4.80     

 

0.23     21.11  .00 

Fatigue -0.13     0.07    -1.81     .07 

 

Table 18.5: 1st linear model predicting attention during automated mode based on the ECG collected in the 

resting state just before automation: Number of observations: 93, Error degrees of freedom: 77, Root Mean 

Squared Error: 0.92, R-squared: .12,  Adjusted R-Squared: -.05, F-statistic vs. constant model: 0.72, p value 

:NS 

 Estimate SE t-Stat P Value 

Intercept  -2298400  2822900 -0.81    .42 

Circadian Phase 0.05        

 

0.21    0.26       .80 

HR 0.02 0.02      1.41     .16 

HRVvl -0.00     0.00  -0.41      .69 

HRVl 0.00 0.00 -0.19    .85 

HRVh  -0.00  0.00 -0.60     .55 

HRVvh 0.00 0.00 1.75     .09 

HRV sympathetic 

tonus 

2298400 2822900 0.81   .42 

HRV vagal tonus 2298400 2822900 0.81   .42 

HRV 

sympathetic/vagal 

tonus ration 

0.01 0.09   0.09    .93 

RSA -0.28     0.22      -1.27  .21 

RMSSD -0.35        0.38     -0.93   .36 

SDSD 0.35     0.38     0.93      .36 

pNN50% 0.02 0.01       1.81  .07 

Chronotype  0.07       0.12  0.60   .55 

Session 0.04   0.20     0.20    .84 

 

 

Table 18.6: 2nd linear model predicting attention during automated mode based on the ECG collected in the 

resting state just before automation: Number of observations: 93, Error degrees of freedom: 88, Root Mean 

Squared Error: 0.89, R-squared: .07,  Adjusted R-Squared: .02, F-statistic vs. constant model: 1.53, p Value 

:NS 

 Estimate SE t-Stat P Value 

Intercept 4.59      1.08   4.26   .00 

HR 0.01     0.01     1.19       .24 

HRVvh 0.00     0.00 1.39      .17 
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 Estimate SE t-Stat P Value 

RSA -0.21   0.12 -1.85      .07 

pNN50% 0.01 0.01      1.79       .08 

 

Table 18.7: 1st linear model predicting attention during automated mode based on the acoustic voice 

properties from the voice recording collected just before the automated mode: Number of observations: 93, 

Error degrees of freedom: 72, Root Mean Squared Error: 0.94, R-squared: .15,  Adjusted R-Squared: -.09, F-

statistic vs. constant model: 0.61, p value :NS 

 Estimate SE t-Stat P Value 

Intercept 45.44       44.50  1.02 .31 

Chronotype 0.11   0.15      0.78     .44 

Session 0.03 0.21      0.13    .90 

Circadian Phase 0.14       0.21       0.66    .51 

Mean Pitch -0.00     0.01    -0.31     .76 

Max Pitch -0.01 0.01   -0.97   .34 

Min Pitch 0                             0 NaN NaN 

Frequency Range 0.01    0.01    1.18 .24 

Pitch SD -0.01    0.01     -0.84    .40 

Number of Pulses 0.00    0.02     0.43     .67 

Number of Periods -0.01     0.03     -0.28   .78 

Fraction of Locally 

Unvoiced Frames 

-0.00      0.02   -0.11 .91 

Number of Voice 

Breaks 

-0.09     0.07   -1.30     .20 

Degree of Voice 

Breaks 

0.01    0.02     0.24     .81 

Jitter -0.19       0.23     -0.85     .40 

Shimmer 0.05      0.07      0.77   .45 

Mean 

Autocorrelation 

-46.27   48.74     -0.95     .35 

Mean noise to 

harmonics ratio 

-15.51   22.02   -0.70     .48 

Mean harmonics 

to noise ratio 

0.26       0.27      0.96     .34 

Mean Intensity 0.09    0.08   1.06     .29 

Max Intensity -0.06      0.08     -0.68    .50 

Min Intensity -0.05  0.05      -1.16     .25 

 

Table 18.8: 2nd linear model predicting attention during automated mode based on the acoustic voice 

properties from the voice recording collected just before the automated mode: Number of observations: 93, 

Error degrees of freedom: 88, Root Mean Squared Error: 0.90, R-squared: .06,  Adjusted R-Squared: .02, F-

statistic vs. constant model: 1.36, p value :NS 



 

242 

 Estimate SE t-Stat P Value 

Intercept 4.68       1.20        3.89     .00 

Number of Breaks 0.00    0.00     0.80     .42 

Frequency Range -0.08      0.05     -1.68       .10 

Mean Intensity 0.02      0.02      1.26        .21 

Min Intensity -0.04  0.04    -0.93        .35 

 

Table 18.9: 1st linear model predicting attention during automated mode based on the ocular behaviours 

measured with EOG recording collected during the resting state just before the automated mode: Number of 

observations: 32, Error degrees of freedom: 25, Root Mean Squared Error: 0.991, R-squared: .39,  Adjusted 

R-Squared: .24, F-statistic vs. constant model: 2.63, p value <.05 

 Estimate SE t-Stat P Value 

Intercept 5.94     0.76      7.87   .00 

Circadian Phase -0.25    0.42     -0.58        .57 

Blink Rate -0.03    0.04    -0.73        .47 

Mean Blink 

Duration 

-4.29 3.34     -1.29       .21 

PERCLOS -0.10      0.15    -0.65       .52 

Rate of Horizontal 

Eye-Movements 

0.02     0.03      0.49      .63 

Mean Duration of 

Horizontal Eye-

Movements 

 0.68     0.63       1.07        .29 

 

Table 18.10: 2nd linear model predicting attention during automated mode based on the ocular behaviours 

measured with EOG recording collected during the resting state just before the automated mode: Number of 

observations: 32, Error degrees of freedom: 29, Root Mean Squared Error: 1.11, R-squared: .11,  Adjusted R-

Squared: .05, F-statistic vs. constant model: 1.77, p value :NS 

 Estimate SE t-Stat P Value 

Intercept 4.74      0.47      10.06 .00 

Mean Blink 

Duration 

-3.79       2.22     -1.71       .10 

Mean Duration of 

Horizontal Eye-

Movements 

0.76   

 

0.68     1.11        .28 

 

Table 18.11: 3rd linear model predicting attention during automated mode based on the ocular behaviours 

measured with EOG recording collected during the resting state just before the automated mode: Number of 

observations: 45, Error degrees of freedom: 41, Root Mean Squared Error: 0.92, R-squared: .25,  Adjusted R-

Squared: .20, F-statistic vs. constant model: 4.58, p value <.05 

 Estimate SE t-Stat P Value 

Intercept 4.93 0.22       22.25     .00 

Blink Rate 0.00 0.02     0.02        .99 

PERCLOS -0.16 0.08     -1.99       .05 

Rate of Horizontal 

Eye-Movements 

0.02 0.03      0.49        .63 

 

Table 18.12: 4th linear model predicting attention during automated mode based on the ocular behaviours 

measured with EOG recording collected during the resting state just before the automated mode: Number of 

observations: 45, Error degrees of freedom: 43, Root Mean Squared Error: 0.90, R-squared: .25, Adjusted R-

Squared: .23, F-statistic vs. constant model: 14.1, p value <.05 
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 Estimate SE t-Stat P Value 

Intercept 4.91    0.20    24.15 .00 

PERCLOS -0.14    0.04     -3.75    .00 

 

Table 18.13: 1st linear model predicting attention during automated mode based on the EDA variables 

collected during the resting state just before the automated mode: Number of observations: 85, Error degrees 

of freedom: 81, Root Mean Squared Error: 0.93, R-squared: .03,  Adjusted R-Squared: -.01, F-statistic vs. 

constant model: 0.79, p value<.50 

 Estimate SE t-Stat P Value 

Intercept 2.78       2.52     1.10   .27 

Circadian Phase 0.20     0.21    0.94    .35 

SCL Frequency 172.1       320.69     0.54     .59 

SCL Mean  0.02   0.02   0.99     .33 

 

Table 18.14: 1st linear model investigating association between attention during automated mode and EDA 

variables collected during the whole automated mode: Number of observations: 85, Error degrees of 

freedom: 80, Root Mean Squared Error: 0.93, R-squared: .06,  Adjusted R-Squared: .01, F-statistic vs. 

constant model: 1.16, p value :NS 

 Estimate SE t-Stat P Value 

Intercept 3.92    0.37 10.65   .00 

Chronotype 0.10  0.12  0.82     .41 

Session 0.04     0.20   0.22     .83 

Circadian Phase 0.20      0.20    1.00 .32 

SCL Frequency 0                            0 NaN NaN 

SCL Mean 0.03     0.02   1.59      .12 

 

Table 18.15:2nd linear model investigating association between attention during automated mode and EDA 

variables collected during the whole automated mode: Number of observations: 85, Error degrees of 

freedom: 83, Root Mean Squared Error: 0.92, R-squared: .03, Adjusted R-Squared: .02, F-statistic vs. 

constant model: 2.83, p value :NS 

 Estimate SE t-Stat P Value 

Intercept 4.15      0.18    23.30 .00 

SCL Frequency 0                                         0 NaN NaN 

SCL Mean 0.03   0.02    1.68       .10 

 

Table 18.16: 1st linear model predicting attention during automated mode based on the EMG variables 

collected during the resting state just before the automated mode: Number of observations: 43, Error degrees 

of freedom: 33, Root Mean Squared Error: 0.91, R-squared: .20,  Adjusted R-Squared: -.01, F-statistic vs. 

constant model: 0.94, p value :NS 

 Estimate SE t-Stat P Value 

Intercept 5.09         1.21    4.21    .00               

Circadian Phase 0.38        0.30       1.24        .22 

Median Frequency 

of Frontalis  

0.00      0.01     0.25      .80 

Mean Frequency 

of Frontalis  

0.00   0.00     0.13      .90 

Peak Frequency of 

Frontalis  

-0.01                                 0.01      -1.20        .24 
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 Estimate SE t-Stat P Value 

Mean Power of 

Frontalis  

0 0 NaN NaN 

Total Power of 

Frontalis  

-310300 447120 -0.69       .50 

Median Frequency 

of Corrugator 

Supercilii 

-0.00   0.00    -0.20       .84 

Mean Frequency 

of Corrugator 

Supercilii 

-0.00      0.00 -0.37      .71 

Peak Frequency of 

Corrugator 

Supercilii 

0.01       0.02    0.22        .83 

Mean Power of 

Corrugator 

Supercilii 

0                                  0 NaN NaN 

Total Power of 

Corrugator 

Supercilii 

-449460 353140 -1.27        .21 

 

Table 18.17: 2nd linear model predicting attention during automated mode based on the EMG variables 

collected during the resting state just before the automated mode: Number of observations: 43, Error degrees 

of freedom: 39, Root Mean Squared Error: 0.87, R-squared: .16,  Adjusted R-Squared: .09, F-statistic vs. 

constant model: 2.41, p value :NS 

 Estimate SE t-Stat P Value 

Intercept 5.03       0.54     9.31 .00 

Circadian Phase 0.33       0.27      1.21        .23 

Peak Frequency of 

Frontalis  

   -0.01     0.01     -1.25        .22 

Total Power of 

Corrugator 

Supercilii 

-496190 225500 -2.20      .03 

 

Table 18.18: 3rd linear model predicting attention during automated mode based on the EMG variables 

collected during the resting state just before the automated mode: Number of observations: 43, Error degrees 

of freedom: 41, Root Mean Squared Error: 0.88, R-squared: .09,  Adjusted R-Squared: .07, F-statistic vs. 

constant model: 3.91, p value :NS 

 Estimate SE t-Stat P Value 

Intercept 4.56       0.15       31.22     .00 

Total Power of 

Corrugator 

Supercilii 

-440910 222960 -1.98       .06 

Table 18.19: 1st linear model predicting attention during automated mode based on the respiration based 

variables collected during the resting state just before the automated mode: Number of observations: 93, 

Error degrees of freedom: 89, Root Mean Squared Error: 0.91, R-squared: .02, Adjusted R-Squared: -.02, F-

statistic vs. constant model: 0.44, p value :NS 

 Estimate SE t-Stat P Value 

Intercept 4.18    0.50      8.30     .00 

Circadian Phase 0.18      0.19     0.94        .35 

Respiration Rate 0.01     0.03    0.26        .80 
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 Estimate SE t-Stat P Value 

SD of Breath 0.04     0.06     0.60      .55 

 

 

Table 18.20: 1st linear model predicting attention during automated mode based on the oximetry based 

variables collected during the resting state just before the automated mode:  Number of observations: 90, 

Error degrees of freedom: 84, Root Mean Squared Error: 0.91, R-squared: .04,  Adjusted R-Squared: -.02, F-

statistic vs. constant model: 0.73, p value :NS 

 Estimate SE t-Stat P Value 

Intercept 3.99        7.14       0.56     .58 

Chronotype 0.10       

 
0.12       0.83     .41 

Session 0.02       

 
0.19      0.20    .92 

Circadian Phase 0.15       

 
0.19      0.75    .46 

Sp02 -0.01     

 

0.07          -0.07     .95 

Pulse 0.01  

 
0.01        1.21    .23 
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19. APPENDIX 8- UNIPHYSIOLOGICAL REGRESSION MODELS 

PREDICTING ATTENTION DURING AUTOMATION WITH 

PHYSIOLOGICAL RECORDING COLLECTED DURING THE WHOLE 

AUTOMATED MODE, TABLES WITH ALL TESTED MODELS 

 

Table 19.1: 1st linear model predicting attention during automated mode based on the ECG during the whole 

period of automation: Number of observations: 93, Error degrees of freedom: 78, Root Mean Squared Error: 

0.91, R-squared: .14,  Adjusted R-Squared: -.01, F-statistic vs. constant model: 0.91, p value :NS 

 Estimate SE t-Stat P Value 

Intercept 0                               0 NaN NaN 

Circadian Phase 0.12        0.20      0.62       .54  

HR 0.01       0.02       0.60       .55 

HRVvl -0.00 0.00 -1.55       .13 

HRVl 0.00     0.00  0.22       .83 

HRVh 0.00  0.00 0.08       .94 

HRVvh 0.00     0.00    1.34       .19 

HRV sympathetic 

tonus 

5.12        1.89       2.70     .01 

HRV vagal tonus 3.51        2.09     1.68   .20 

HRV 

sympathetic/vagal 

tonus ration 

-0.18     0.14   -1.28       .20 

RSA -0.08      0.28     -0.28       .78 

RMSSD -255.98         663.88     -0.39      .70 

SDSD 255.98         663.88      0.39      .70 

pNN50% 0.01      0.01      0.59      .56 

Chronotype  0.11      0.13       0.85     .40 

Session 0.07        0.20      0.34      .73 

 

Table 19.2: 2nd linear model predicting attention during automated mode based on the ECG during the whole 

period of automation: Number of observations: 93, Error degrees of freedom: 88, Root Mean Squared Error: 

0.90, R-squared: .06,  Adjusted R-Squared: .01, F-statistic vs. constant model: 1.3, p value :NS 

 Estimate SE t-Stat P Value 

Intercept 5.53        0.64       8.65     .00 

HRVvl -0.00 0.00     -0.76        .45 

HRVvh 0.00              0.00 1.41        .16 

HRV sympathetic 

tonus 

-0.21        0.12      -1.73       .09 

HRV vagal tonus 0.01      

 

0.01      1.47         .15 
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Table 19.3: 1st linear model investigating association between attention during automated mode and ocular 

behaviours measured with EOG recording collected during the whole automated mode: Number of 

observations: 45, Error degrees of freedom: 38, Root Mean Squared Error: 0.87, R-squared: .37, Adjusted R-

Squared: .27, F-statistic vs. constant model: 3.7, p value <.05 

 Estimate SE t-Stat P Value 

Intercept 7.34        1.03      7.14    .00 

Circadian Phase 0.40      0.28     1.45        .16 

Blink Rate -0.12    0.05     -2.76     .01 

Mean Blink 

Duration 

-8.84       3.20     -2.78      .01 

PERCLOS 0.27 0.13    2.18     .04 

Rate of Horizontal 

Eye-Movements 

0.05      0.03      2.06      .05 

Mean Duration of 

Horizontal Eye-

Movements 

  -4.93     1.75     -2.81     .01 

 

Table 19.4: 2nd linear model investigating association between attention during automated mode and ocular 

behaviours measured with EOG recording collected during the whole automated mode: Number of 

observations: 45, Error degrees of freedom: 39, Root Mean Squared Error: 0.89, R-squared: .33,  Adjusted R-

Squared: .25, F-statistic vs. constant model: 3.9, p value <.05 

 Estimate SE t-Stat P Value 

Intercept 7.54   1.03     7.29   .00 

Blink Rate -0.12     0.05   -2.64     .01 

Mean Blink 

Duration 

-8.71     3.24     -2.69     .01 

PERCLOS 0.28     0.13        2.17       .04 

Rate of Horizontal 

Eye-Movements 

0.05     0.03    1.72       .09 

Mean Duration of 

Horizontal Eye-

Movements 

-5.02      1.78    -2.83     .01 

 

Table 19.5: 3rd linear model investigating association between attention during automated mode and ocular 

behaviours measured with EOG recording collected during the whole automated mode: Number of, 

observations: 45, Error degrees of freedom: 40, Root Mean Squared Error: 0.91, R-squared: .28,  Adjusted R-

Squared: .21, F-statistic vs. constant model: 3.94, p value <.05 

 Estimate SE t-Stat P Value 

Intercept 7.85       1.04      7.52 .00 

Blink Rate -0.14     0.05     -3.16       .00 

Mean Blink 

Duration 

-10.58       3.13     -3.38     .00 

PERCLOS    0.39     0.11      3.39     .00 

Mean Duration of 

Horizontal Eye-

Movements 

  -4.18      1.75     -2.39       .03 

 

Table 19.6: 1st linear model predicting attention during automated mode based on the EMG variables 

collected during the resting state just before the automated mode: Number of observations: 41, Error degrees 
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of freedom: 31, Root Mean Squared Error: 0.89, R-squared: .28, Adjusted R-Squared: .07, F-statistic vs. 

constant model: 1.34, p value :NS 

 Estimate SE t-Stat P Value 

Intercept -0.61         2.26      -0.27      .79 

Circadian Phase 0.44       0.29        1.50      .15 

Median Frequency 

of Frontalis  

  -0.01        0.01    -0.90       .37 

Mean Frequency 

of Frontalis  

0.01     0.00            2.26 .03 

Peak Frequency of 

Frontalis  

0.04       0.03    1.30     .20 

Mean Power of 

Frontalis  

0                                 0 NaN NaN 

Total Power of 

Frontalis  

221550 581120 0.38      .71 

Median Frequency 

of Corrugator 

Supercilii 

-0.00      0.01     -0.09      .93 

Mean Frequency 

of Corrugator 

Supercilii 

0.00     0.01       0.57      .57 

Peak Frequency of 

Corrugator 

Supercilii 

0.01       0.03       0.31       .76 

Mean Power of 

Corrugator 

Supercilii 

0                                 0 NaN NaN                         

Total Power of 

Corrugator 

Supercilii 

925700 904750 1.02     .32 

 

Table 19.7: 2nd linear model predicting attention during automated mode based on the EMG variables 

collected during the resting state just before the automated mode: Number of observations: 42, Error degrees 

of freedom: 40, Root Mean Squared Error: 0.86, R-squared: .14,  Adjusted R-Squared: .12, F-statistic vs. 

constant model: 6.38, p value <.05 

 Estimate SE t-Stat P Value 

Intercept 3.15       0.52     6.05 .00 

Mean Frequency 

of Frontalis  

0.01     0.00    2.53       .02 

 

Table 19.8: 1st linear model predicting attention during automated mode based on the respiration variables 

collected during the whole automated mode: Number of observations: 93, Error degrees of freedom: 87, Root 

Mean Squared Error: 0.89, R-squared: .08, Adjusted R-Squared: .03, F-statistic vs. constant model: 1.49, p 

value :NS 

 Estimate SE t-Stat P Value 

Intercept 2.70      0.71       3.78     .00 

Chronotype 0.09      0.11       0.79       .43 

Session 0.01     0.19    0.08        .94 

Circadian Phase 0.11      0.19     0.58        .57 

Respiration Rate 0.10     0.04       2.38        .02 
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Recording Collected during the Whole Automated Mode, Tables with All Tested Models  

 

 Estimate SE t-Stat P Value 

SD of Breath 0.04      0.07      0.60        .55 

 

Table 19.9: 2nd linear model predicting attention during automated mode based on the respiration variables 

collected during the whole automated mode: Number of observations: 93, Error degrees of freedom: 91, Root 

Mean Squared Error: 0.88, R-squared: .06,  Adjusted R-Squared: .05, F-statistic vs. constant model: 6.12, p 

value <.05 

 Estimate SE t-Stat P Value 

Intercept 2.89      0.63     4.60     .00 

Respiration Rate 0.09     0.04     2.47        .02 
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20. APPENDIX 9- UNIPHYSIOLOGICAL BINOMIAL REGRESSION 

MODELS PREDICTING RESULTS OF THE ATTENTION TEST DURING 

AUTOMATION WITH PHYSIOLOGICAL RECORDING COLLECTED 

DURING PRECEDING 30-SECOND PERIOD, TABLES WITH ALL 

TESTED MODELS 

 

Table 20.1: 1st binomial model predicting detection of the red car based on the ECG recorded during 30 

seconds before red car appeared in the simulation: Error degrees of freedom: 453, R-squared: .02, Adjusted 

R-Squared: .00. 

 Estimate SE t-Stat P Value 

Intercept 6393383.80 4256291.22 1.50 .13 

HR 0.03 0.02 1.94 .05 

HRVvl 0.00 0.00  0.61 .54 

HRVl 0.00 0.00 0.47 .64 

HRVh -0.00  0.00 -0.93 .35 

HRVvh 0.00 0.00 1.92 .06 

HRV sympathetic 

tonus 

-6393416.29 

 

4256301.50 

 

-1.50 .13 

HRV vagal tonus -6393378.09 

 

4256290.40 -1.50 .13 

HRV 

sympathetic/vagal 

tonus ration 

20.97 

 

14.54 1.44 .15 

RSA -0.70 0.28 -2.47 .01 

RMSSD 0.01 0.02 0.27 .79 

SDSD -0.01 0.02   -0.27 .79 

pNN50% 0.02                0.01 1.38 .17 

 

Table 20.2: 2nd binomial model predicting detection of the red car based on the ECG recorded during 30 

seconds before red car appeared in the simulation: Error degrees of freedom: 462, R-squared: .05, Adjusted 

R-Squared: .05. 

 Estimate SE t-Stat P Value 

Intercept 2.86 1.82 1.57 .12 

HR 0.03 0.02 1.77 .08 

HRVvh 0.00 0.00 1.91 .06 

RSA -0.42 0.19 -2.23 .03 

 



Appendix 9- Uniphysiological Binomial Regression Models Predicting Results of the Attention Test During 

Automation with Physiological Recording Collected during Preceding 30-second Period, Tables with All 

Tested Models  

 

Table 20.3: 3rd binomial model predicting detection of the red car based on the ECG recorded during 30 

seconds before red car appeared in the simulation: Error degrees of freedom: 463, R-squared: .05, Adjusted 

R-Squared: .04. 

 Estimate SE t-Stat P Value 

Intercept 5.47 1.13 4.82 .00 

HRVvh 0.00 0.00 2.21 .03 

RSA -0.56 0.18 -3.18 .00 

 

Table 20.4: 1st binomial model predicting detection of the red car based on the ocular behaviours recorded 

with EOG during 30 seconds before red car appeared in the simulation: Error degrees of freedom: 137, R-

squared: .36, Adjusted R-Squared: .34. 

 Estimate SE t-Stat P Value 

Intercept 2.45 1.15 2.13 .03 

Blink Rate -0.01 

 

0.05 

 

-0.30 

 

.77 

 

Mean Blink 

Duration 

0.72 

 

3.03 

 

0.24 

 

.81 

 

PERCLOS -0.09 0.13 -0.64 

 

.52 

 

Rate of Horizontal 

Eye-Movements 

0.06 

 

0.05 

 

1.23 

 

.22 

 

Mean Duration of 

Horizontal Eye-

Movements 

1.31 2.13 0.61 .54 

 

Table 20.5: 2nd binomial model predicting detection of the red car based on the ocular behaviours recorded 

with EOG during 30 seconds before red car appeared in the simulation: Error degrees of freedom: 140, R-

squared: .36, Adjusted R-Squared: .35. 

 Estimate SE t-Stat P Value 

Intercept 2.58 0.59 4.36 .00 

PERCLOS -0.07 0.06 -1.15 .25 

Rate of Horizontal 

Eye-Movements 

0.05 0.04 1.18 .24 

 

Table 20.6: 1st binomial model predicting detection of the red car based on the ocular behaviours recorded 

with EOG during 30 seconds before red car appeared in the simulation: Error degrees of freedom: 423, R-

squared: .01, Adjusted R-Squared: .01. 

 Estimate SE t-Stat P Value 

Intercept 2.24 2.64 0.85 .40 

SCL Frequency -23.99 81.14 -0.30 .77 

 

SCL Mean 0.07 0.03 2.36 .02 
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Table 20.7: 2nd binomial model predicting detection of the red car based on the ocular behaviours recorded 

with EOG during 30 seconds before red car appeared in the simulation: Error degrees of freedom: 424, R-

squared: .01, Adjusted R-Squared: .01 

 Estimate SE t-Stat P Value 

Intercept 1.46 0.25 5.78 .00 

SCL Mean 0.07 0.03 2.36 .02 

 

Table 20.8: 1st binomial model predicting detection of the red car based on the EMG of corrugator supercilii 

and frontalis muscles recorded during 30 seconds before red car appeared in the simulation: Error degrees of 

freedom: 202, R-squared: .74, Adjusted R-Squared: .73. Model was overparametrized.  

 Estimate SE t-Stat P Value 

Intercept -3.51 2.04 -1.72 .09 

Median 

Frequency of 

Frontalis  

-0.00 

 

0.01 

 

-0.28 

 

.78 

 

Mean Frequency 

of Frontalis  

0.01 

 

0.01 

 

1.93 

 

.05 

 

Peak Frequency 

of Frontalis  

0.01 

 

0.02 

 

0.46 

 

.64 

 

Mean Power of 

Frontalis  

0 0 

 

NaN 

 

NaN 

 

Total Power of 

Frontalis  

671363.12 1030499.35 0.65 

 

.52 

Median 

Frequency of 

Corrugator 

Supercilii 

0.01 0.01 0.59 .55 

Mean Frequency 

of Corrugator 

Supercilii 

0.01 0.01 1.08 .28 

Peak Frequency 

of Corrugator 

Supercilii 

0.00 0.02 0.13 .89 

Mean Power of 

Corrugator 

Supercilii 

0 0 NaN NaN 

Total Power of 

Corrugator 

Supercilii 

6971138.35 3962619.11 1.76 .08 

 

Table 20.9: 2nd binomial model predicting detection of the red car based on the EMG of corrugator supercilii 

and frontalis muscles recorded during 30 seconds before red car appeared in the simulation: Error degrees of 

freedom: 208, R-squared: .06, Adjusted R-Squared: .06. 

 Estimate SE t-Stat P Value 

Intercept -0.40 0.68 -0.59 .55 
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Automation with Physiological Recording Collected during Preceding 30-second Period, Tables with All 

Tested Models  

 

 Estimate SE t-Stat P Value 

Mean Frequency 

of Frontalis  

0.01 
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Total Power of 

Corrugator 

Supercilii 

3393865.24 1721661.58 1.97 .05 
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Glossary of Terms 

Circadian rhythm- physiological rhythm related to the day and night cycle. 

Electrocardiography- a measure of the inhibitory and excitatory postsynaptic potentials of 

the cortical nerve cells. 

Electroencephalography- a measure of electrical heart activity. 

Electromyography- a measure of the electrical muscle’s activity. 

Electrooculography- a measure of the ocular behaviours through the resting potential of the 

retina. 

Electrodermal activity- a property of human physiology characterised by continuous 

variations in the electrical properties of the skin.  

Heart rate variability- natural phenomenon of the differences in between the time duration 

in between the consecutive heartbeats.  

Mean autocorrelation- in voice context, mean correlation between voice signals separated 

with a unit of time calculated with the following formula, where x(t) is a speech signal in 

time, τ is a time lag, and w(t) is a window of time: 

 

 

PERCLOS- a measure of ocular behaviour calculated as a ratio between the time that 

eyelid remains closed or almost closed and the whole given period.  

Shimmer- irregularities in voice amplitude. 

Speech intensity- squared amplitude of the voice from the beginning of the period until the 

given point. 

Take-over- the transition of the vehicle control from machine to human.  

Voice breaks- unvoiced segments of the speech. 
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