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Background: automation offers the potential to mitigate or reduce the risks related to
driving. However, there are also some new challenges for drivers related to semi-
automated driving. Two phases of semi-automated driving that raised concerns of the
researchers were a period of automation that requires a monitoring activity from the driver
and the take-over of manual control following the automated mode. Topic: the aim of this
doctoral thesis was to propose models of the driver state monitoring in semi-automated
vehicles and present data on the psychophysiological changes occurring during semi-
automated driving, as well as the circadian effect on semi-automated driving and driver
state monitoring. Methods: fifty-two participants were recruited to the experiment on semi-
automated driving. They participated in two experimental sessions day-time session (9
a.m.- 1 p.m.) and a night-time session (10 p.m.- 2 a.m.). They went through the
experimental scenario simulating semi-automated driving with phases of manual driving,
automated phase, take-over and manual driving. During the experiment their
psychophysiological functions were recorded with the following measures:
electrooculography, electromyography, electrocardiography, respiration belt, electrodermal
activity device, oximetry for the pulse and blood oxygenation, their voice was recorded for
the acoustic voice analysis, saliva was collected for the hormonal analysis, and four
guestionnaires were collected at different stages of the experiment. Additionally,
electroencephalography was recorded; however, its analysis was not included in this thesis.
Results: two predictive models were proposed to predict performance after take-over and

attention during automation. Analysis of the time-course of the semi-automated driving



suggested a decrease of the driving performance after automation associated with increased
sleepiness, increased fatigue, decreased readiness to take-over and decreased mental
workload. Some physiological changes suggested mental underload. Comparison of the
circadian phases resulted in multiple physiological, behavioural and cognitive changes.
Conclusions: physiology can be used to predict the driver’s performance in semi-
automated vehicles; however, the proposed models are not ready to be implemented in the
cars. Automation creates a risk for driving safety due to mental underload. Sleepiness and
fatigue present the largest risk for automation monitoring, while suboptimal mental
workload and arousal for the safety of the take-over. The circadian phase affects the

psychophysiology and performance of the driver; however, the direction of the effects

requires further investigation.
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Introduction

1. INTRODUCTION

1.1 BACKGROUND

This doctoral research formed part of a larger project called HI:DAVe (Human Interaction:
Designing Autonomy in Vehicles). HI:DAVe was a collaboration between the University
of Southampton, Cambridge University and Jaguar Land Rover with funding from the
Engineering and Physical Sciences Research Council. The project examined the use of
semi-automated vehicles from a Human Factors perspective. The critical topic of the
investigation was the transition between semi-automated driving and manual driving, the

so-called take-over problem.

The take-over is perceived as one of the potential risk sources in semi-automated driving,
and therefore many investigators put effort into unravelling its dynamics and
characteristics. It motivated the joint effort to understand semi-automated driving take-over

from a human factors perspective.

A wide variety of literature suggested that semi-automated driving can alter the state of the
driver (Kyriakidis et al., 2019), potentially impacting their capacity to safely resume
manual control of the vehicle. Partial automation shifts the role of the driver from active
vehicle control to that of passive monitoring activities. Unfortunately, monitoring is a role
challenging from the perspective of human cognitive systems (Kyriakidis et al., 2019). It
requires sustained attention but does not provide sufficient mental stimulation (Kyriakidis
et al., 2019; Oken et al., 2006; Warm et al., 2008). Therefore, it might lead to a reduction
in situation awareness (‘falling out of the control loop”), ‘mind-wandering’, fatigue or even
falling asleep (Stanton, 2015). People might also choose to engage in a more stimulating
task and neglect driving safety monitoring (Dogan et al., 2017; Eriksson & Stanton, 2017,
Kyriakidis et al., 2019). Several states, including distraction, lack of situation awareness, or
fatigue have been demonstrated the negative impact of semi-automated vehicles on driving
behaviour (Heikoop et al., 2016; Parnell et al., 2016). Moreover, people tend to wrongly
assess their fitness to drive (Filtness et al., 2017; Ftouni et al., 2013; Howard et al., 2014).
Therefore, it is necessary to understand the driver state before take-over, as well as develop

methods of assuring the safety of the process.

One possible method to alleviate the risk identified above could be using information
derived from driver psychophysiology to detect the driver state and readiness to take over
manual control of the vehicle. However, the ability to effectively measure the state of the

driver in relation to driving performance is a relatively neglected area of research. Also,



information about the application of the driver state monitoring systems in semi-automated

vehicles are scarce.

The main aim of this research work was to evaluate a wide range of methods for
psychophysiological driver state monitoring in the semi-automated vehicle. The evaluation
was meant to give a possibility to compare the effectivity of different methods as well as to
assess their potential value in the prediction of actual driving performance. This main aim
was accompanied by the analysis of the patterns in driver state during semi-automated
driving and circadian effect on driver state monitoring and driver performance in semi-

automated vehicles.

1.2 RESEARCH MOTIVATION

The primary motivation of this research was to increase road safety in the perspective of
the newly introduced technology of semi-automated vehicles. New technologies, including
artificial intelligence, bring exciting opportunities to the society. It is the responsibility of
scientists and manufacturers to ensure their safety and sustainability. This work
experimentally investigated the physiology, driving performance, and psychological state
of the driver in a simulated semi-automated vehicle. The main goal of this investigation
was to evaluate and compare the practical value of different methods of driver state
monitoring in the semi-automated vehicle but it also offered an analysis of the circadian
effect on semi-automated driving, the circadian effect on driver state monitoring and
analysis of general patterns of driver state in the semi-automated vehicle. It has been
proposed that approaches to driver state monitoring should be investigated to provide a
better understanding of the psychophysiological processes together with the effects of the

circadian rhythm on semi-automated driving.

The topic of semi-automated driving is relatively new and the knowledge about driver state
in the process of automation and take-over is mainly based on predictions, rather than
empirical science (Kyriakidis et al., 2019). There were many attempts to assess different
physiological recordings methods in the context of driver state monitoring or risky state
detection; however, they were mostly evaluated in the context of manual driving. They
allowed associating many physiological states with driving risks. For example, the analysis
of spectral features in ECG and EMG with KNN classifier allowed to obtain even 96.75%
and 92.31 accuracy in drowsiness and distraction detection (Sahayadhas et al., 2015).
Electrodermal liability in sleep-deprived people allowed to predict drowsiness (Michael et
al., 2012), as well as neural network-based LDS analysis of EOG signal (Zhu et al., 2014).
However, the majority of the studies lacked an ecological validity for the driving
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environment. To validate the accuracy of their predictions, they used other physiological
measures, questionnaires, experimental manipulation in the non-driving laboratory or basic
cognitive tasks not related to driving. For example, Sahayadhas et al. (2015) created a
number of experimental conditions to induce distraction and sleepiness. Behavioural
distraction was induced with reading and answering the text message while driving the
driving simulator, cognitive distraction by talking on the phone and solving mathematical
equations, while drowsiness by a long period of the experiment. The high accuracy of
classification that was reported was classification between different stages of the
experiment. These results showed that ECG and EMG significantly differed between the
situations when people answered the text message or talked on the phone. It brought an
important knowledge about physiology but did not imply that distraction can be detected
that way in a driver and moreover that it can be a predictor of driver performance. Another
example is an experiment by Michael et al. (2012). They validated the level of drowsiness
in sleep-deprived participants with a subjective scale and observation of sleepiness
symptoms. Their results indicated electrodermal liability as a strong correlated of
subjective sleepiness of participants, which still does not immediately apply to the driver
performance. Zhu et al. (2014) used a simple button-press task and managed to predict
results with EOG data, which does not mean that this could be immediately applied in the
prediction of the performance in a complex activity that is driving. Such methods of
validation confirmed the possibility of state detection with psychophysiology but there is a
need for additional research investigating its ecological validity in the driver state
monitoring. One of the reasons is that driving performance does not always change with
the state of the driver. For example, a sleepy or distracted driver might still drive well
using their additional available cognitive capacity (Parasuraman et al., 2008; Ross et al.,
2014; Young & Stanton, 2002). The current study aimed to predict performance and bring
more ecological value that could be applied in real-life situations. It also used a semi-

automated driving experimental scenario to evaluate the methods in this type of vehicle.

Psychophysiological monitoring is a complicated area because it requires a detailed
collection of physiological data in an environment that creates a lot of signal noise. A
proper selection of factors in complex physiological signals is needed, as well as for
analytic methods that could derive meaningful information from the complex signals. In
the case of this work, over ten psychophysiological functions were recorded
simultaneously, which created an extremely difficult experimental environment as well as
a challenging analytic task due to the need for features selection. This added more
experimental data to support or confront the theoretical predictions of the effects of

automation.



1.3 RESEARCH OUTCOMES AND HYPOTHESES

The purpose and the main topic of this research thesis was driver state monitoring in semi-
automated driving. The experiment was designed to create an opportunity to compare the
effectivity of multiple physiological methods of driver state monitoring and to evaluate
their potential in the prediction of actual driver performance, rather than the subjective
state. The psychophysiological experiment in the driving simulator set-up offered the
opportunity to investigate psychophysiological changes during the time-course of semi-
automated driving as well as the circadian effect on the driver state monitoring. This
project investigated four main research questions:

1. What are the physiological measures and strategies of analysis that could allow
effective monitoring of the driver state before manual driving take-over and
prediction of the driving performance after the take-over?

2. What are the physiological measures and strategies of analysis that could allow
effective monitoring of the driver state during the automated phase to assess if the
driver is paying appropriate attention?

3. What is the general tendency of the psychophysiological driver state during the
time-course of semi-automated driving (manual driving, automated phase, take-
over, and manual driving)?

4. What is the effect of the circadian rhythmicity on the driver state monitoring during

semi-automated driving?

The primary aim of this research was the identification of an effective and accurate system
of psychophysiological monitoring of the driver in semi-automated vehicles. Semi-
automated vehicles are still a relatively new technology and therefore understanding the
mechanisms that could assure safety would be both crucial and novel. Driving safety, no
matter if manual or semi-automated, is a topic of global importance. World Health
Organization identified vehicle collisions as an epidemic and united with ministers in over
one-hundred countries. Ministers agreed to halve road-related deaths by 2030 in the 3™
Global Conference on the Road Safety (Ministers to Agree New Global Road Safety
Agenda to 2030, n.d.). Automated driving could help in this endeavour.

The circadian perspective in this research was motivated by two lines of thought. Night-
time manual driving was documented as being significantly riskier; however, the circadian
effect on driving has been generally neglected despite evidence (Akerstedt et al., 2013;
Matthews, Ferguson, Zhou, Sargent, et al., 2012; Mitler et al., 1988). A similar
phenomenon could be observed in semi-automated driving and the topic is worthy of
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investigation. The second reason is that circadian rhythmicity influences many
physiological functions (Blatter & Cajochen, 2007; Dijk et al., 1992; Van Dongen &
Dinges, 2000) and as so, could also affect the interpretation of the signals in the system of

physiological monitoring of the driver.

The research aimed to offer both innovation for semi-automated vehicles and understand
the processes related to semi-automated driving from the perspectives of physiology and

circadian rhythms.

1.3.1 RESEARCH HYPOTHESES

The following research hypotheses were based on the literature reviews:

1. Psychophysiological measurements of the driver during semi-automated driving
can provide a prediction of the driving performance after take-over.

a. Sub-hypothesis: psychophysiological indicators that can predict driving
performance are related to one of the risky states identified in chapter 2,
namely sleepiness, fatigue, distraction, mental workload or situation
awareness.

2. Psychophysiological measurements of the driver during semi-automated driving
can provide a prediction of their attention during the automated mode of semi-
automated driving.

a. Sub-hypothesis: psychophysiological indicators that can predict driver
attention are related to one of the risky states identified in chapter 2, namely
sleepiness, fatigue, distraction, mental workload or situation awareness.

3. Driver psychophysiological state and performance differ before and after
automated mode.

4. Driver performance is worse after automated mode, while their
psychophysiological state is related to the lower cognitive state.

5. Driver psychophysiological state and performance in semi-automated vehicles
differ between day and night.

a. Sub-hypothesis: driving performance and attention during automation

decrease during the night.

1.3.2 RESEARCH OUTCOMES



Modelling of psychophysiological and performance data led to predictive models that
partially explain changes in driver performance and attention during semi-automated
driving. The models did not explain enough variance to be implemented in the vehicles at
the present moment; however, they provided a base for future research and knowledge

about risky driver states for different stages of semi-automated driving.

The comparison of the driver performance and the driver state during the time-course of
semi-automated driving suggested that driving performance was worse after automation

due to cognitive underload.

The comparison of the driver performance and the driver state between day and night
experimental sessions allowed to identify several circadian differences; however, the

assumed direction of worse performance at night was not confirmed.

1.4 THESIS STRUCTURE

This thesis contains eleven chapters and nine appendices. Chapter one is the introductory
chapter and chapters two to six present findings from various reviews of the literature. The
literature reviews provide an overview of the research landscape as well as identify gaps in
knowledge. The reviews have also helped to identify driver states that jeopardize driving
safety, available methods of driver state monitoring, and the existing information about the
circadian effect on manual driving, semi-automated driving, as well as driver state
monitoring. As the primary strategy of all the five literature reviews has been the same, it
was described once below to avoid repetitions. Only the details, such as databases or

inclusion/exclusion criteria, were defined separately for each case.

The methodology of the literature reviews was based on the grounded theory approach,
which was previously used in the driving research (Parnell et al., 2016), as well as the
other human factors areas (Rafferty et al., 2010). Grounded theory was used in exploratory
social research when the hypotheses were developed in the process of the literature search.
The literature was compared continuously to establish search directions. The process was
based on induction, deduction, and verification. The researcher was looking for questions
and patterns emerging from the literature. The method used a strategy of open, axial and
selective coding to identify main themes or factors for a given problem (Heath & Cowley,
2004). Such an approach was beneficial in the case of this work because it allowed a

broader view not overly restrained by the presumptions.

Chapter seven presented a more technical and practical description of the laboratory

construction and set of recommendations for the simultaneous measurements of multiple
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psychophysiological functions. Psychophysiological experiments have a variety of
requirements to ensure the high quality of the data (Cacioppo et al., 2007; Cutmore &
James, 1999). There was a need for a laboratory construction to minimize acoustic noise,
electromagnetic noise and to provide a suitable environment for other measures, for
example, a freezer for saliva or a driving simulator. The noise insulated Faraday Cage with

a low fidelity driving simulator was built in the Transportation Research Group garage.

One elaborate experiment was conducted during this doctorate and different perspectives
of the analysis led to the results presented in the chapters from eight to ten. Chapter eleven
gathered results shown in all the chapters, discussed them and gave recommendations
based on the experimental and theoretical work, as well as future research directions.

1.4.1 CHAPTER 2: RISKY DRIVER STATES IN SEMI-AUTOMATED
VEHICLES- REVIEW

Chapter 2 reviewed literature related to the risky driver states to identify the states that
could be interesting for a driver state monitoring system. The most commonly described
states were drowsiness, fatigue, behavioural distraction, and cognitive distraction (Caird,
2015; Jackson, Raj, et al., 2016; Johns, 2000; Liang & Lee, 2010); however, most of the
literature was related to the manual driving. Based on the Consensus Model (Heikoop et
al., 2016) also suboptimal mental workload and insufficient situation awareness were
treated as relevant risks in semi-automated driving. The chapter also described risks
coming from sleep inertia (Ferrara & De Gennaro, 2000; Worle et al., 2020) that was

identified as a new driving risk emerging from vehicle automation.

1.4.2 CHAPTER 3: METHODS OF THE DRIVER STATE MONITORING-
REVIEW

Chapter 3 presented a review of the literature related to driver state monitoring or risky
state detection. The aim was to identify available psychophysiological measures and select
the most promising for the experimental work. An abundant list of methods used for the
driver state monitoring was identified: electroencephalography (EEG) (Dhupati et al.,
2010), Hybrids of Methods (Sahayadhas et al., 2013), Eye-Tracking (Hogervorst, Brouwer,
& van Erp, 2014), electrocardiography (ECG) (Brookhuis et al., 1991), electrooculography
(EOG) (Borghini et al., 2014), functional near-infrared spectroscopy (fNIRS) (Aranyi et
al., 2015), electrodermal activity (EDA) (Miyake et al., 2009), Acoustic Voice Analysis
(Krajewski, Batliner, et al., 2009), event-related potential (ERP) (Resalat et al., 2012),
electromyography (EMG) (Oken et al., 2006), Questionnaires (Horne & Baulk, 2004),



Blood Pressure (Veltman & Gaillard, 1996), Infrared Video Camera (Vitabile et al., 2010),
Facial Expression (Fan et al., 2010), Saliva Analysis (Zeier et al., 1996), Body
Temperature (Milosevic, 1997), Pupillometry (Mitler et al., 1988), Respiration (Rodriguez-
Ibafiez et al., 2011), Driving Performance (Bando & Nozawa, 2015), Body Position (Van
Dongen & Dinges, 2000), Head Movements (Murata et al., 2015), Oximetry (Sharma &
Bundele, 2015), Actigraphy (Mullaney et al., 1980), Blood Glucose (Fairclough &
Houston, 2004), and Doppler Flow Meter (Miyake et al., 2009). The most commonly used

measures were discussed in detail.

1.4.3 CHAPTER 4: CIRCADIAN EFFECT ON MANUAL DRIVING-
REVIEW

Chapter 4 reviewed existing knowledge about the influence of the circadian phase on
manual driving. Night and afternoon were times of documented decrements in driving
performance (Akerstedt et al., 2013; Lowden et al., 2009); however, the methodology used
in the majority of the studies did not allow the identification of circadian phase as the sole
cause, as it is challenging to dissociate it from sleep deprivation (Blatter & Cajochen,
2007).

1.4.4 CHAPTER 5: CIRCADIAN EFFECT ON SEMI-AUTOMATED
DRIVING- REVIEW

It was documented that manual driving was significantly riskier at night. However, there
are no experimental data about the influence of the circadian rhythm on semi-automated
driving. Chapter 5 used a consensus model of the driver in automation (Heikoop et al.,
2016) and provided evidence that multiple factors in the model could be affected by
circadian rhythm. A multi-period consensus model of the driver in automation was
proposed (Kaduk et al., 2020) to create a theoretical basis for experimental research about

the circadian effect on semi-automated driving.

1.4.5 CHAPTER 6: CIRCADIAN EFFECT ON DRIVER STATE
MONITORING- REVIEW

Systems of the driver state monitoring use various psychological observations or
physiological signals to derive information about the driver state and predict risks
(Melnicuk et al., 2016). Many physiological and psychological states undergo circadian
rhythmicity (Blatter & Cajochen, 2007; Dijk et al., 1997), and therefore have a different

baseline at different circadian phases. Chapter 6 used a literature review to support the
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suggestion that interpretation of the information from the driver state monitoring should

take a circadian phase into account.

1.4.6 CHAPTER 7: CREATION OF THE LABORATORY FOR
PSYCHOPHYSIOLOGICAL MEASUREMENTS OF THE DRIVER

The experimental data gathered during this doctorate presented a tremendous technical
challenge. Multiple physiological functions were recorded simultaneously during the
simulated semi-automated drive. For this purpose, a laboratory was constructed in the
garage of Transportation Research Group. A driving simulator was placed inside a noise
insulated Faraday Cage. Several steps were undertaken to assure the best quality of data
recording and reduce the amount of noise in signals. Chapter 7 described the laboratory
construction and provided recommendations for a laboratory measuring multiple
physiological functions simultaneously. A decision tree was presented as a prototype of a
research support tool with a unique set of recommendations for laboratory and
experimental set-up for different combinations of physiological recordings used in the

experiment.

1.4.7 CHAPTER 8: TIME-COURSE OF SEMI-AUTOMATED DRIVING-
EXPERIMENTAL RESULTS

Chapter 8 provided details of the experimental work conducted during this doctorate and
analysis related to the time-course of semi-automated driving. The results supported the
hypotheses suggesting that driving performance decreased after automation, participants
felt sleepier, more fatigued, and less ready to take-over the manual control over the
vehicle. Their physiology suggested a cognitive underload that could explain the decrease
in their performance. Moreover, participants were not able to accurately assess their own

fitness to drive.

1.4.8 CHAPTER 9: CIRCADIAN EFFECT ON SEMI-AUTOMATED
DRIVING AND DRIVER STATE MONITORING- EXPERIMENTAL
RESULTS

Three literature reviews suggested a potential decrease in driver performance in semi-
automated vehicles at night. Chapter 9 provided results of the statistical analysis of the
experimental data, comparing day and night driving performance and psychophysiological
states. The results only partially supported the hypotheses. There were multiple circadian
differences that could affect the driver state monitoring system; however, the direction of
the changes was not clear, and the topic requires further research.



1.4.9 CHAPTER 10: DRIVER STATE MONITORING IN SEMI-
AUTOMATED VEHICLES- EXPERIMENTAL RESULTS

Chapter 8 suggested a decrease in driving performance after the automated phase
accompanied by an inability of the driver to accurately assess their own fitness to drive. By
way of a follow-up, Chapter 10 presented the results of the modelling of the
psychophysiological and driving data to create prediction models. The aim of the models
was to suggest a system of driver state monitoring to assure safe-take over and attention
during the automated phase. It was possible to partially predict driver performance with
linear equations based on the psychophysiological functions, which partially confirmed the
hypotheses. A model predicting driving performance after take-over used factors derived
from ECG, some factors derived from EDA, and scores from the NASA-TLX
questionnaire. Although it was a statistically significant linear model, it explained only
22% of the variance in driving performance after the take-over. The model predicting
attention during the automated phase used a factor derived from EOG and explained 23%
of the variance in the attention test during automation. Both models presented valid
associations between performance and physiology; however, at this stage, they are not

ready to be implemented in road-going vehicles and requires more research.

1.4.10 CHAPTER 11: DISCUSSION AND CONCLUSIONS

Chapter 11 summarized all the work presented in the previous chapters, discussed it, and
listed its limitations. It offered several recommendations for the manufacturers as well as

directions for future research.

1.5CONTRIBUTION OF KNOWLEDGE

This doctoral thesis presented a novel work on the psychophysiology of the driver in the
semi-automated vehicles, circadian effect on semi-automated driving and driver state
monitoring in the semi-automated vehicles. It supported previous concerns related to the
underload of the driver during automation and its detrimental effect on the performance.
Additionally, this research has provided evidence that such a result might be more
exaggerated at night. Moreover, it has shown that drivers are not effective in self-
assessment of their own fitness to drive. These were novel results because of the variety of
psychophysiological methods used in this study simultaneously. Besides, two predictive
models were proposed as systems of psychophysiological driver state monitoring.
However, the predictive power of the models was low, so they are not ready to be

implemented in the vehicles at this present moment. The models can be used as a basis for
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further psychophysiological research into driver state monitoring and the more general

topic of the monitoring of any human operator of technology.

This thesis also offered a tool for the researchers to optimize laboratory work and select the
most effective ways of noise reduction when using multiple physiological recording
simultaneously at the laboratory. The novelty of this work is related to the high amount of
physiological measures used simultaneously, the circadian approach to semi-automated

driving, and predictive modelling of physiology in the semi-automated set-up.

1.6 FUTURE DIRECTIONS

This work presented the analysis of rich psychophysiological data gathered in the semi-
automated driving experiment. The analysis presented in this thesis is only part of what
could be undertaken with these data. When creating predictive models, only linear and
binomial regression models were applied. Quadratic and exponential regression could be
used to depict regularities in this dataset. Also, machine learning and deep learning
algorithms could be used to analyse the physiology of the driver during automated mode

and characterise patterns related to the performance decrease.

This work indicated drowsiness and sleepiness as detrimental for monitoring during
automation and suboptimal mental workload and arousal as the most negative states for the
take-over performance. These states should be further studied to better understand the
driving risks. Especially, mathematical modelling of the association between mental

workload, arousal, and performance could bring better insight into driver states and safety.

This experiment suggested that the monitoring role that driver must assume during semi-
automated driving had a negative effect on driving safety. Therefore, it is recommended to
keep drivers more involved in the active process of vehicle control until full automation is

ready.

The results presented some circadian effects in the driver performance and state; however,
the direction of the changes was not clear, and as so more research would be recommended

in this area, especially in the forced-desynchrony protocol (Blatter & Cajochen, 2007).



2. RISKY DRIVER STATES IN SEMI-AUTOMATED VEHICLES- REVIEW

2.1 INTRODUCTION

In 2016 car accidents were the primary death reason for the people aged 15-29, and over
1.35 million people died in car accidents worldwide (World Health Organization, 2018).
Based on the National Highway Traffic and Safety Administration (NHTSA) data, 94% of
car accidents have been classified as being caused by human-machine system error
(Melnicuk et al., 2016).

Automation offers the potential to mitigate or reduce such risk. It can also increase
effectivity, alleviate workload and improve the transport capacity (Kyriakidis et al., 2019).
In the aviation domain, the use of automation has risen rapidly over the past three decades
and significantly improved safety (Chialastri, 2012). It is, therefore, anticipated that higher
levels of automation could be incorporated into automobiles to reduce safety risks to road

users and pedestrians alike (Kyriakidis et al., 2019).

However, there are different levels of automation that enable such requirements to
different extents. The Society of Autonomous Engineers, as shown in figure 2.1, proposed
a classification system ranging from 0 (no automation) to 5 (full automation). In the short
term, full automation is not realistic due to legal challenges and technical limitations. In the
coming decades, it is anticipated that levels 3 and 4 automation will become more
prevalent. Therefore, these are the levels of automation that will form the basis of the

current review.

As shown in figure 2.1, level 3 of the automation allows complete automated control over
dynamic driving in particular circumstances, for example on the highway, but requires a

human driver to stay fully attentive to the road and regain control over the dynamic driving
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functions (take-over) when requested. Level 4 of the automation allows fully automated
control over dynamic driving in certain circumstances. This level of automation does not
require a human driver to stay fully attentive to the road environment, but they still have to
take-over when requested (Kyriakidis et al., 2019).

Table 2.1: A gradient of car automation levels based upon classification generated by Society of Autonomous
Engineers (Kyriakidis et al., 2019).

Automation Level Role of a human driver Role of automation

0: Driver only All aspects of the driving. None.

1: Assisted automation Driver carries on most of the The automated system performs
driving tasks, except for one either steering or
performed by automation. acceleration/deceleration.

2: Partial automation Driver carries on most of the One or more automated systems
driving tasks, except for the few  perform both steering and
performed by the automation. acceleration/deceleration.

3: Conditional automation The driver carries driving in some The automated systems perform all
periods of the time, and is the driving tasks in the conditions

expected to monitor the road, and  for which they are designed if the
respond when requested or inan  human responds accurately to the
emergency during the automated  requests to intervene.

driving.

4: High automation The driver carries driving in some The automated systems perform all
periods of time and should the driving tasks in the conditions
monitor the road but is not for which they are designed, even
required to do so during if a human does not respond
automated driving. accurately to requests to intervene.

5: Full automation None. The automated systems carry on all

aspects of driving in all
environments.

On 71" May 20186, a tragic accident of the Tesla Model S led to the death of the driver,
Joshua Brown. Tesla Model S could be classified as an enhanced level 2 of automation, as
it could automate both longitudinal and lateral aspects of driving. The computer vision
system did not detect a white tractor on the background of the bright blue sky and drove
straight under it. Unfortunately, the driver did not intervene and there were no recorded
attempts by him to stop or redirect the vehicle. Also, for the majority of the drive, he did
not have his hands on the wheel, despite the warning signals of the car (Banks et al., 2018).
Some journalists claimed that he was watching a movie during the journey (Lambert, 2016;
Neumann, 2016). The driver who was killed was actually an advocate for automation and
was quoted saying that full attention is still required when using Tesla’s autopilot
(Lambert, 2016; Neumann, 2016). This crash has shown that the critical challenge is
understanding how automation can best be integrated into current transport systems to
maximise safety, comfort and productivity. The victim was a strong advocate of
automation and knew that he was required to be attentive, but still, he was not. It

exemplifies how an individual, even if they know about how behaviour should be



governed, does not mean that they will or even have the capacity to act appropriately.

Behaviour and knowledge are not always coherent.

Vigilance is an ability to maintain an attentive and alert state and is crucial for take-over
safety. The problem is that people find it tiring, demanding and stressful to stay vigilant for
more extended periods, especially during monotonous tasks. Whilst semi-automated
driving requires vigilance; it also creates a challenging environment for its maintenance
(Warm et al., 2008).

The transition between automated and human driving modes creates particular challenges,
as does staying vigilant during prolonged automated driving. The period of automated
driving can influence the driver's state, and at the moment of the transition, a driver might
not be ready to take-over. Until level 5 automation is released in automobiles, there will
always be a requirement for the driver to monitor the automation and at some point, to take
back manual control. A critical question is whether the state of a driver can be monitored
to assess if (1) they are monitoring the automation and (2) if they are in the right condition
to safely transition from automated to manual control, commonly referred to as ‘taking

back control' or ‘take-over’.

Understanding the physiology of the driver has the potential to provide insight into the
mechanisms that underpin performance that could be defined as the ‘state’ of the driver. In
this work, a state was treated as a temporary psychophysiological condition of the driver
(Chaplin et al., 1988). A critical task was defining the driver states that impact upon the
capacity of the driver to optimally perform driving tasks, automation monitoring and, in

particular, the transition between the two.

2.2 METHODS OF THE LITERATURE REVIEW

The databases used were Scopus, Web of Science, Google Scholar and DelphiS. Only the

papers with the whole text available were used for the analysis.

To identify driver's states that present a threat for a take-over safety and to understand the
capacity of the driver to regain control over the vehicle, the literature search was also
extended to manual driving. It was motivated by two factors. Firstly, semi-automated
driving is a relatively new area of research with a small number of experimental papers. At
the same time, the risks that occur in the case of manual driving could also apply to this
environment. Secondly, the task of the driver after the take-over is actual manual driving,
so the risks that appear there are still valid for semi-automated driving, just modulated by

new factors like prolonged time of inactivity during the automated phase.
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The initial search terms used in the databases were: car OR driv* OR vehicle; human
factors OR psycholog*; accident* OR disturb* OR fail*; state monitoring. Those terms
were purposely selected to be broad and create a good base for the further iterative
research in references and terms suggested by the initially identified literature, as
recommended by the grounded theory (Heath & Cowley, 2004a). After primary search key
references of the relevant publications were analysed to identify additional positions. The
key references analysis was used iteratively. The initial number of results in the databases
was: 53 in Web of Science, 178 000 in Google Scholar, 546 in DelphiS, and 211 in

Scopus.

Exclusion Criteria: the articles that described risky traits like age, long-term health
problems or personality were excluded, the same positions that analysed external risk
factors, like bad weather. Articles that explored the risky states of the other types of

operators, like pilots or controllers, were also excluded.

Inclusion Criteria: only full access articles in the English language were included in the
criteria. Only the first 500 results of the search in the database results were included. The
included materials analysed temporary driver's condition or a state as a risk factor for

driving safety.

As a result, 168 papers were identified and included in the analysis of drivers' state. These

papers were taken forward into the review in the next section.

2.3 RESULTS OF THE LITERATURE REVIEW

The aim of the review was to identify driver states that might present a threat to driving
safety. Papers were evaluated to extract such factors and understand their role in driving
safety. A list of all the identified papers, grouped by categories and provided definitions
can be seen in Appendix 1. As shown in figure 2.1, drowsiness, fatigue, behavioural
distraction, and cognitive distraction were the most frequently mentioned states that

jeopardise the safety of the driving. The following chapters discussed them in details.

Some states beyond the cut-off point were also discussed because although they were not
mentioned that frequently in the literature, there were other reasons to treat them as
relevant for semi-automated driving. Sleepiness and sleep were included in the detailed
descriptions because their definitions were very close to drowsiness, and they were often
used as interchangeable terms (Johns, 2000). Suboptimal mental workload and insufficient
situation awareness were frequently predicted as new types of risks related to semi-

automated driving (Salmon et al., 2006; Young & Stanton, 2005), which made them



relevant to the topic. Sleep inertia was mentioned only once; however, there were
arguments provided advocating that it can become a new risk factor characteristic for semi-

automated driving.

Literature provided a variety of definitions for each state. All the definitions were grouped
into categories and presented in the table in Appendix 1. The subchapters provided only

the most frequent definitions.
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Figure 2.1: a scree plot presenting frequency of different factors in the analysed 168 papers. The blue and
orange lines are the approximate trend lines for blue and orange parts of the plot. Their crossing point was a
cut-off point. The trend lines were estimated rather than formally calculated.

2.3.1 DEFINITIONS

Literature provided an abundance of definitions for each of the analysed factors. Some of
the definitions differed significantly from each other while other presented a very similar
understanding of the concept and diverged only in small details. The definitions grouped

into categories were presented in Appendix 1. Only one of the definitions was chosen for

the detailed description based both on frequency and accuracy.

Exceptional cases were definitions of drowsiness, sleepiness and fatigue. The meaning of
those terms varied depending on a scientific position. They were often used in the context
of being tired and close to the state of sleep, but authors rarely defined them. Due to such

ambiguity in the terminology, some scientists tried to come up with clear definitions.

Drowsiness was defined by Johns (2000) as a state between wakefulness and sleep
determined with the use of the EEG oscillations pattern, eye movements, and muscle
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activity. It started before the onset of stage-1 sleep. Stage-1 sleep is an initial stage of

sleep.

Sleepiness could be identified as a sleep propensity that is a probability of transitioning
from wakefulness to drowsiness, and later into stage-1 sleep. Subjective sleepiness might
be different from physical sleepiness and is related to mental and physical feelings
associated with drowsiness (Johns, 2000).

Fatigue was defined as a subjective feeling of being tired due to the performed task. It was
associated with a persistent need to stop it and it disappeared when a person switched to a
different task (Johns, 2000). Fatigue could be divided into different categories: local
physical fatigue, general physical fatigue, central nervous fatigue (which might be similar
or equal to sleepiness), and mental fatigue (Dong et al., 2011).

While the term fatigue was mostly used according to the definition of Johns (2000) and
Dong et al. (2011) sleepiness and drowsiness were often used interchangeably even within
one paper. The same applied to the adjectives ‘drowsy’ and ‘sleepy’. They were rarely
defined. One of the reasons might be that their outcomes on driving were very similar if
not the same, and their physiological markers were also hard or sometimes impossible to
distinguish (Johns, 2000). For these reasons, in this work, terms drowsiness and sleepiness
were treated as synonyms and discussed collectively while the term fatigue was used in the
understanding of Johns (2000) and Dong et al. (2011).

2.3.2 SLEEP

The factor of sleep was only identified in six papers; however, drowsiness that is a state in
between wake and sleep was the most prevalent factor. As sleep and sleep drive play an
essential role in drowsiness mechanisms (Johns, 2000), it is relevant to elaborate on it.
Also, some papers did not use precise definitions and it was not clear if the accident risk

they described was related to sleepiness or falling asleep.

Sleep is notoriously tricky to define. The Merriam-Webster dictionary gave a following
definition of sleep: ‘the natural, easily reversible periodic state of many living
things that is marked by the absence of wakefulness and by the loss of
consciousness of one's surroundings, is accompanied by a typical body posture
(such as lying down with the eyes closed), the occurrence of dreaming, and
changes in brain activity and physiological functioning, is made up of cycles

of non-REM sleep and REM sleep, and is usually considered essential to the



restoration and recovery of vital bodily and mental functions’ (Merriam-Webster,
2018).

Sleep is closely related to the sleep drive. The classical models of the sleep drive divide it
into two components: a homeostatic and a circadian, with a correction for the sleep inertia
(Akerstedt & Folkard, 1995). Sleep inertia is a state of the decreased cognitive and
psychomotor functions and increased sleepiness just after waking up (Blatter & Cajochen,
2007). The term homeostatic refers to the balance between the amount of sleep, and the
time that passed since waking-up. People who slept less, and have been awake longer have
a stronger homeostatic drive to fall asleep, while people who slept a lot a short time ago
have a weaker homeostatic sleep drive (Cluydts et al., 2002). The circadian drive refers to
the body rhythms over the 24-hour cycle. People tend to feel more sleepy during the night
and less sleepy during the day (Blatter & Cajochen, 2007). The newer models included the
influence of the wake drive, also called arousal. The wake drive is related to the activity
performed by the person, the body posture, and the potential soporific influences like
boredom. The wake drive opposes the sleep drive, such that a highly aroused person might
have troubles falling asleep in the night, even after a long period of wakefulness (Cluydts
et al., 2002).

Sleep comprises of five stages characterised by different muscular and
electroencephalographic activity (Ackermann & Rasch, 2014). In the case of driving,
people mostly experience NREM stage-1, which is the entry-stage of sleep (Ackermann &
Rasch, 2014).

Horne and Reyner (1995) reported that sleep-related accidents comprised 16% of the
overall accidents and even 20% of motorway accidents. They suggested that this number
might be understated. They observed that the sleep-related accidents occurred most often
between midnight and 2:59 a.m. and had two peaks during the day, around 6 a.m. and 4
p.m. They emphasised that sleep-related accidents led to more serious injuries. Hakkaken
and Summala (2001) who studied truck accidents, found that 5.3% of truck drivers who
caused the accidents fell asleep behind the wheel, even though none of them had increased
daytime sleepiness. Sahayandhas et al. (2013) cited the National Sleep Foundation,
pointing out that 28% of Americans fell asleep behind the wheel. Higgins et al. (2017) in
their review gave even larger statistics stating that up to 41% of American drivers reported

that they fell asleep behind the wheel at least once.

In their review paper, Horne and Reyner (1999) stated that the circadian factors are as

crucial for falling asleep behind the wheel as time spent driving before the incident. They
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pointed out that many drivers were not aware of their sleep episodes during driving, which
could lead to a worse sleep control, but also a statistical underestimation of the number of
accidents caused by a driver falling asleep. Moreover, even when drivers were aware of

increasing sleepiness, methods used by them to alleviate it were mostly ineffective.

The group that was at the most significant risk of falling asleep behind the wheel were
young, educated men, who drive a lot, with obstructive sleep apnea syndrome. Falling
asleep was also most likely when they are driving alone (Gongalves et al., 2015; Sagberg,
1999).

Sleep was closely related to drowsiness, sleepiness, and sleep inertia. Individuals who
experienced sleep deficits felt more drowsy. At the same time, people experiencing
drowsiness fell asleep much quicker (Higgins et al., 2017), while sufficient sleep decreased
the probability of dozing-off (Cluydts et al., 2002), except for the period of sleep inertia
(Blatter & Cajochen, 2007).

2.3.3 DROWSINESS AND SLEEPINESS

Drowsiness was identified as the driving safety risk factors in fifty-eight papers, while
sleepiness in twenty-three. As explained in the Definitions subchapter, for the purpose of
this work, those two terms were treated as synonyms. Drowsiness and sleepiness were then

the most prevalent factors as in sum they were mentioned in eighty-one identified articles.

Drowsiness and sleepiness are the terms describing a state in between sleep and wake that

is associated with reduced performance and attention (Jackson et al., 2016).

Various authors indicated them as a high and underestimated risk for driving safety and
stressed the need of developing proper countermeasures (Jackson, Raj, et al., 2016; Smith
et al., 2003; Van Winsum, 2000). Statistical estimations presenting the prevalence of
accident caused by drowsiness varied depending on the methodology and place of the
research. Depending on a source, up to 75% of drivers reported driving while feeling
drowsy, up to 45% of accidents and up to 40% of fatal accidents were related to driver's
drowsiness (Bekiaris, 1999; Ebrahim et al., 2013; Kwai et al., 2016; Ma’touq et al., 2014;
Murata et al., 2017.; Rodriguez-lbafiez et al., 2011; Solaz et al., 2016; Wang et al., 2017).
Driving while drowsy increased the risk of an accident fivefold (Wang et al., 2016).
Fairclough and Graham