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Analysis of cancerous and pre-cancerous skin lesions to generate a repository for studying 

the mutation burden of UV 

by 

Noeline Dharini Nadarajah 

Exposure of skin to ultraviolet radiation (UVR) can cause DNA mutations in skin and subsequent 

development of skin cancer, but UVR is also used is as a treatment for skin diseases. However, it is 

not known how many courses of UVR for skin disease a patient can receive over their lifetime 

without being at high risk of developing skin cancer.  One way to approach this is to identify all 

the genetic mutations in skin cancers, and to determine which mutated genes are driver genes, 

i.e. genes in which mutations promote the development of cancer.  Following that, one could use 

this information to look at mutations in the skin before and after a course of UVR treatment for 

skin disease to assess the amount of mutational damage in driver genes from that UVR course, in 

order to estimate the number of courses of UVR that patients with skin disease could safely have 

in their lifetime. 

This thesis used a bioinformatics approach to document the genetic mutations in skin cancer, 

including cutaneous squamous cell cancer (cSCC), basal cell cancer (BCC) and melanoma in order 

to identify driver genes in these cancers.  Along the way, the genetic mutations in squamous cell 

cancers (SCCs) of four other organs (lung, oesophagus, oropharynx and cervix) were documented 

to allow comparison of the driver genes in cSCC with SCCs of these other organs. 

Whole genome and whole exome sequencing data were identified from online genetic databases 

and literature searches. Driver genes and mutation signatures were extracted from this data for 

all the aforementioned cancers. Linux was used for data manipulation and R was used for data 

analysis. The results of this bioinformatic analysis identified driver genes in each of the three 



 

 
 

types of skin cancer and that most of the driver genes in cSCC, BCC and melanoma differed 

between these cancers.  However, some driver genes were common to more than one type of 

skin cancer, including TP53 as a driver gene in the three different types of skin cancer, CDKN2A as 

a driver gene in both cSCC and melanoma, PPP6C as a driver gene in BCC and melanoma, and 

CDC27 and TMEM222 as driver genes in cSCC and BCC.   In the comparison of cSCC with SCCs of 

the other organs, six driver genes (TP53, CDKN2A, FAT1, HRAS, NOTCH1 and NOTCH2) in cSCC 

were noted as driver genes in one or more of the other cSCC types. 

Whole exome sequencing data from precancerous skin lesions and targeted sequencing data from 

chronically sun exposed skin and chronically sun exposed normal melanocytes were also analysed. 

This data was used to identify driver genes, that were present in cSCC, BCC and melanoma, in 

these precancerous skin lesions as well as in the chronically sun exposed skin/melanocytes.  This 

allowed the generation of a repository or “adjunct” to a future pipeline for assessing the 

carcinogenicity of UVR treatment for skin disease.  Specifically, this repository will assist in 

assessing whether mutated genes in skin after a course of UVR treatment, in comparison with skin 

prior to that course of UVR, are likely to be driver genes (i.e. promoting skin cancer development).  

By comparing the number of driver genes mutated in skin after one course of UVR therapy with 

the number of driver genes mutated in non-cancerous skin of people with skin cancer, it is hoped 

that one can estimate the number of courses of UVR therapy for skin disease that patients can 

safely have without significantly increasing their risk of skin cancer development.  In this way, the 

data in this thesis could be used to help inform clinical practice on the maximum number of UVR 

courses for skin disease that dermatology patients should have in their lifetime. 
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Definitions and abbreviations 
 

AK Actinic Keratosis 

BCC Basal Cell Carcinoma 

BD Bowen’s Disease 

bp base pair 

BRAF Proto-Oncogene, Serine/Threonine kinase gene 

cm² Square centimetre 

COSMIC Catalogue Of Somatic Mutation In Cancer 

cSCC cutaneous Squamous Cell Carcinoma 

DNA DeoxyriboNucleic Acid 

EGFR Epidermal Growth Factor Receptor protein 

Gb Gigabase 

GRCh37 Genome Reference Consortium 37 

HPV Human Papilloma Virus 

HRAS Harvey Rat Sarcoma viral oncogene homolog gene 

ICGC International Cancer Genome Consortium 

Kb Kilobase 

KRAS Kirsten Rat Sarcoma viral oncogene homolog gene 

LOH Loss Of Heterozygosity 

MAPK Mitogen-Activated Protein Kinase protein 

Mb Megabase 

MC1R MelanoCortin 1 Receptor gene 

mRNA messenger RNA 

µm Micrometre 

NCBI National Center for Biotechnology Information 

NF1 NeuroFibromin 1 

NGS Next Generation Sequencing 

NMSC Non Melanoma Skin Cancer 

NRAS Neuroblastoma RAS viral (v-ras) oncogene homolog gene 
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PCR Polymerase Chain Reaction 

PI3K PhosphatIdylinositide 3-Kinases 

PIP P53 Immunopositive Patch 

RNA RiboNucleic Acid 

SNP Single Nucleotide Polymorphism 

TCGA The Cancer Genome Atlas 

TERT Telomerase Reverse Transcriptase gene 

TP53 Tumour Protein 53 

Tregs Regulatory T-cells 

UCSC University of California, Santa Cruz genome browser 

UV UltraViolet 

UVA UltraViolet A 

UVB UltraViolet B 

UVR UltraViolet Radiation 

VAF Variant Allele Frequency 

WES Whole Exome Sequencing 

WGS Whole Genome Sequencing 

XP Xeroderma Pigmentosum 
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1. Introduction 

1.1 Structure and function of the skin 

Skin is composed of three main layers: epidermis, dermis and the subcutaneous tissue (Rees, 

2004). The outermost layer is the epidermis which provides a waterproof barrier (Alberts, 2002). 

The dermis lies beneath the epidermis and protects the body from mechanical injury and controls 

thermal regulation. This layer contains collagen, elastic fibres and most of the skin’s structures 

such as blood vessels, lymph vessels, hair follicles and sweat glands (Haake, 2001).  The 

subcutaneous layer is the innermost layer of the skin and consists of a network of fat cells, where 

fat is stored as an energy reserve for the body. The blood vessels, nerves, and lymph vessels also 

cross through this layer (Figure 1-1).  

 

 

 

 

 

 

 

 

 

The epidermis can vary in thickness in different areas of the body, for example the epidermis on 

the palms and soles is thicker than that on the eyelids. 90% of the epidermal layer consists of 

keratinocytes, which produce keratin intermediate filaments to protect against trauma (Haake, 

2001).  

The other main types of cells in the epidermis are melanocytes, Langerhans cells and Merkel cells 

(Gleason et al., 2008). Langerhans cells are dendritic cells which have a role in immunity (Clayton 

Epidermis 

Figure 1-1: Cross-section of the skin showing the four different layers of the epidermis. The left image 
shows a cross-section of skin and the image on the right shows a labelled diagram of the epidermis. 

Keratinocyte Melanocyte 
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et al., 2017) and Merkel cells have been associated with neural development and tactile sensation 

(Moll et al., 1990, Abraham and Mathew, 2019). 

Melanocytes produce melanin and are responsible for skin pigmentation (Lin and Fisher, 2007). 

Melanin is synthesised within melanosomes and ultraviolet radiation (UV) exposure increases 

melanogenesis (Park et al., 2009). There are two types of melanin; brown-black eumelanin and 

red-yellow phaeomelanin (Ito and Wakamatsu, 2003).  Eumelanin, absorbs UV and helps to 

prevent DNA photodamage (Brenner and Hearing, 2008) however the function of phaeomelanin is 

not fully understood (Nasti and Timares, 2015).  The amount of melanin pigment in the skin 

(determined by skin colour) and the effect UV has on the skin, is used to predict the skin type of 

an individual. The Fitzpatrick classification system is the universal means of skin type 

characterisation (Fitzpatrick, 1988). Lighter skinned individuals’ sunburn easily and tan poorly 

whereas darker skinned individuals’ sunburn less and tan more easily.  

The epidermis usually has four sublayers, which are the stratum basale, stratum spinosum, 

stratum granulosum and stratum corneum (Figure 1-1). The epidermis on the palms and soles has 

an additional layer called the stratum lucidum which is situated between the stratum granulosum 

and stratum corneum (Narayan, 2009). 

The stratum basale is the innermost layer of the epidermis and consists of melanocytes that rarely 

undergo mitosis (Cichorek et al., 2013) and are surrounded by keratinocytes which reproduce to 

provide daughter cells that differentiate as they move towards the stratum corneum where they 

are eventually shed (Matsui and Amagai, 2015). 

The stratum spinosum is located above the basal layer and is characterised by spiny projections, 

called desmosomes, which hold adjacent cells together (Simpson et al., 2011). It is the thickest 

layer of the epidermis and contains the former basal cells which have been pushed upwards.  

The stratum granulosum has a granular appearance under light microscopy and is composed of 

keratinocytes that have been pushed up from the stratum spinosum (Simpson et al., 2011). At this 

stage, the cells become flatter as they differentiate further. 

The stratum corneum is the outermost layer of the epidermis consisting of 50 – 150 µm of 

continually shedding dead keratinocytes. This layer forms a barrier between the skin and the 

outside world and prevents the passage of water and electrolytes outwards from the body and 

protects against the entry of microbes and chemicals into the skin (Haake, 2001, Micali, 2001).  
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The duration for the keratinocytes to travel up from the basal layer to the stratum corneum is, on 

average, 28 days (Micali, 2001).  

 

1.2 Inflammatory skin conditions 

Atopic dermatitis (atopic eczema) is a chronic relapsing inflammatory skin condition which is 

characterised by itchy papules and vesicles and usually develops in childhood (Williams and 

Strachan, 1998, Thomsen, 2014). The condition affects up to 30% of children and 3% of adults (Bin 

et al., 2014). Topical agents such as moisturisers/emollients, corticosteroids and calcineurin 

inhibitors are used to treat eczema (Chong and Fonacier, 2016). Atopic eczema skin has a less 

effective outer skin barrier that allows the entry of allergens through the stratum corneum, thus 

causing an inflammatory response (Hara et al., 2000, Imokawa, 2001). The use of emollients helps 

restore the skin barrier, reduce the penetration of allergens into the skin and prevent the 

subsequent development of inflammation (Arkwright et al., 2013). Corticosteroids are medicines 

that suppress immune responses and thus treat inflammation, whereas calcineurin inhibitors are 

an alternative class or medications that are used to inhibit the immune system.  When these 

treatment measures have failed to control atopic eczema, the second line of intervention used is 

phototherapy (Chong and Fonacier, 2016).  

Psoriasis is another inflammatory skin condition which is described as presence of red scaly 

plaques on the skin and arises due to immune activation, inflammation and uncontrolled 

keratinocyte proliferation and dysfunctional differentiation. It affects 2-3% of the world 

population (Zhang and Wu, 2018) with 70 – 80% of patients suffering from mild psoriasis 

(Boehncke and Schon, 2015). The choice of therapy depends on the severity of the condition. Mild 

psoriasis is treated using a combination of topical agents such as glucocorticoids, vitamin D 

analogues, tar-based therapies etc. (Rendon and Schakel, 2019). 

Vitamin D analogues are a helpful treatment because they regulate immunity and control the 

proliferation and differentiation of keratinocytes (Barrea et al., 2017). Calcineurin inhibitors are 

used for psoriasis on the face and in flexures, and corticosteroids are used on a short-term basis 

for psoriasis on most body sites. UV therapy (termed phototherapy) is used when the psoriasis is 

more widespread and when topical treatments have failed to improve the skin condition. 

Systemic drugs such as methotrexate, cyclosporin and biologics are used for moderate to severe 

psoriasis but can have significant toxicities (Boehncke and Schon, 2015). 
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Phototherapy was first used as a treatment for the treatment of psoriasis in 1925 (Goeckerman, 

1925). In the 1920s, they also observed that eczema improved during the summer, but it was 

subsequently in 1948 that UV (from carbon arc lamps) was used as an effective treatment for 

eczema (Rodenbeck et al., 2016).  

 

1.3 UV 

UV is a form of electromagnetic radiation and includes UVA (315 nm – 400 nm), UVB (280-315 

nm), and UVC (100 – 280 nm) (Narayanan et al., 2010) as displayed in Figure 1-2.  The sun emits 

these three types of UV, however, UVC does not reach the earth’s surface due to its absorption by 

the ozone layer located in the earth’s stratosphere (D'Orazio et al., 2013). 

 

 

Figure 1-2: Ultraviolet radiation (UV) is part of the electromagnetic spectrum, and includes subtypes UV-C, UV-B and 
UV-A, which are named according to their wavelengths (nm). UVC has a wavelength spanning 100 –280 nm, UV-B is 
280 – 315 nm and UV-A is 315-400 nm. 

 

1.3.1 UV exposure 

The amount of UV that passes through the earth’s atmosphere (which absorbs UV) and that a 

person’s skin is exposed to from sunlight can vary according to certain factors as follows.  

The quantity of UV reaching the earth’s surface is at its highest when the sun is directly overhead 

because the pathway through the atmosphere is at its shortest. The distance that UV must pass 

from the outer atmosphere to reach the earth’s surface varies throughout the day and results in 

diurnal variation of UV during daylight hours (Monteith and Unsworth, 1990). Cloud cover can 
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also affect UV exposure. While clouds can reflect UV from sunlight back into space, thus reducing 

the terrestrial UV dose, UV can sometimes be increased at the earth’s surface in situations when 

clouds refract UV passing from the sun to the earth (Calbo et al., 2005).  

There is also seasonal variation of solar radiation which reaches the earth’s surface (Kumar et al., 

1997) with most UV present during the summer months. This relates to the fact that the distance 

that UV travels from the sun through the atmosphere varies throughout the year. Latitude can 

affect the amount of terrestrial UV, with higher doses closer to the equator and lower doses 

further away from the equator. This is due to the longer pathway that UV has to pass through the 

atmosphere at higher latitudes (Madronich et al., 1998).   

UV levels also increase with gains in altitude because of the reduced amount of atmosphere 

which the UV has to pass through (Blumthaler and Ambach, 1988). The physical features of the 

ground surface can also affect the amount of UV exposure, for example glass, sand and water can 

reflect UV, thus increasing the dose of UV in the close vicinity (Chadyšiene, 2010).  

The amount of UV which penetrates the layers of the skin also varies according to the wavelength 

of UV (Figure 1-3). UVA, which is of longer wavelength, can penetrate through the epidermis and 

into the dermis, whereas most UVB is absorbed by the epidermis of the skin with a minimal 

amount reaching the dermis (D'Orazio et al., 2013). UV has many effects on the skin, including 

DNA damage, inflammation (sunburn), immunosuppression, photoaging / photodegradation of 

collagen and skin cancer development (Meeran et al., 2008). UVB also causes vitamin D synthesis 

in skin; this occurs when 7-dehydrocholesterol absorbs UVB and is converted into pre-vitamin D3 

which then isomerizes into vitamin D3 (i.e. cholecalciferol) (Wacker and Holick, 2013). 
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1.3.2 Effect of UV on DNA 

UV, especially UVB, can damage DNA in cells within the skin (Brash, 1988, Sage, 1993). This 

damage from UV can be via the production of cyclobutane pyrimidine dimers (CPD), 6-4 

photoproducts (also known as a 6-4 pyrimidine-pyrimidone photoproduct; 6-4PP), 8-hydroxy-2’-

deoxyguanosine and double strand breaks (Jackson and Bartek, 2009). UVB predominantly 

promotes the formation of CPDs and 6-4PPs, with CPDs 3 to 4 times more common than 6-4PPs 

(You et al., 2001). These UV-induced damaging products can affect DNA conformation and 

regulatory functions (Rastogi et al., 2010). 

Formation of CPD occurs when the energy from a photon of UVB splits the double bond between 

the 5th and 6th carbon in pyrimidine bases which are adjacent to one another on a strand of DNA. 

As a result, a covalent bond is formed linking the 5th carbons of the adjacent pyrimidines and a 

second covalent bond is formed linking the 6th carbons of the adjacent pyrimidine bases, 

producing the CPD (Freeman, 1988, Parrish et al., 1982). Dimers can form between two thymine 

Figure 1-3:Labelled cross-section of skin showing UVA and UVB 
penetration. UVB only penetrates the epidermis of the skin and UVA 
penetrates the epidermis and the dermis. 
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bases producing a thymine dimer as shown in Figure 1-4 but can also form between a cytosine 

and thymine or two cytosine bases.  

 

 

 

 

 

 

Alternatively, a 6-4PP (Figure 1-5) can form as a result of the splitting of the double bond between 

the 5th and 6th carbons of one pyrimidine base and the subsequent formation of a bond between 

the 6th  carbon of that pyrimidine and the 4th carbon of the adjacent pyrimidine (Freeman, 1988).  

 

 

 

 

 

 

 

 

Evidence of the production of UV-induced CPDs and 6-4PPs in DNA leading to subsequent 

mutations can be identified by the presence of TC to TT or CC to TT transitions at bipyrimidine 

sites in genes, including in the TP53 gene (Mouret et al., 2006).  

DNA double strand breaks have been identified in UV-irradiated cells, especially in replicating 

DNA, where it has been observed in the replication of damaged DNA (Dunn et al., 2006). These 

double strand breaks have been identified in cells exposed to UVB radiation, where DNA lesions 

such as CPDs and 6-4 photoproducts can result in double strand breaks due to these lesions 

Figure 1-4: The formation of thymine dimer after UVB exposure. UVB exposure causes splitting of the double 
bond between the 5th and 6th carbon of two adjacent thymine bases, resulting in the formation of a covalent 
bond linking the two thymine bases, thus producing a thymine dimer.  

UVB photon 

UVB photon 

Figure 1-5: The formation of a 6-4 pyrimidine-pyrimidone after UV exposure of two adjacent thymine bases. 
The UVB photon breaks the bond between the 5th and 6th carbon atoms of one thymine base which allows the 
formation of a bond between the 6th carbon of that thymine base and the 4th carbon of an adjacent thymine 
base, resulting in a 6-4 photoproduct.  
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causing replication blockage. Therefore, it has been suggested that double strand breaks are 

produced because of an attempt to replicate DNA at the site of unrepaired DNA lesions (Dunn et 

al., 2006). Greinert et al., 2012 has proposed that UVA exposure can result in a replication-

independent induction of double strand breaks which has also been proposed by earlier studies 

(Greinert et al., 2012).  

Increased levels of 8-hydroxy-2’-deoxyguanosine (8-OH-dG), also known as 8-oxo-7,8-dihydro-2’-

deoxyguanosine (8-oxodG) (Valavanidis et al., 2009) have been identified in hairless mice and in 

human skin after UVB exposure (Hattori et al., 1996, Ahmed et al., 1999) and after UVA exposure 

(Griffiths et al., 1998). The presence of 8-hydroxy-2’-deoxyguanosine residues in DNA results in GC 

to TA transversions (Guo et al., 2016).  

In response to all the above photoproducts/DNA changes, progression through the cell cycle is 

usually stalled until DNA is repaired. DNA damage in human skin is thought to be repaired mainly 

via nucleotide excision repair (NER) and base excision repair (BER).  

NER is usually deployed in response to UVB damage in skin and is the principle pathway for repair 

of CPDs and 6-4PPs (Strachan, 2011). In this process, the damaged area of the DNA strand 

containing the photoproduct is cleaved and then exonucleases remove the surrounding DNA and 

DNA polymerase catalyses the re-synthesis of the correct sequence (using the opposite DNA 

strand as template) and is sealed by DNA ligase. Patients with Xeroderma Pigmentosum (XP), 

which is an autosomal recessive hereditary disease, have mutations in genes which code for 

proteins that are responsible for nucleotide excision repair (Cleaver, 2005). These patients are 

classified into eight subclinical types based on the genes affected, there are seven genetic 

complementation groups (XPA to XPG) from A to G and XPV which represents deficiency in trans-

lesion synthesis (DiGiovanna and Kraemer, 2012). Therefore, these patients are unable to remove 

the dipyrimidine photoproducts and have DNA repair deficiency which is associated with a 

massively increased risk of skin cancer.  

BER occurs in response to base lesions because of deamination, alkylation and oxidation and is 

the main repair pathway for removal of 8-OH-dG (Fortini et al., 1999, Kunisada et al., 2005, Javeri 

et al., 2008). Oxidation can occur indirectly via UV and the production of reactive oxygen species. 

This type of repair corrects small base lesions that does not affect DNA conformation. DNA 

glycosylases are used to remove the damaged base (Krokan and Bjoras, 2013). 

UV irradiation can affect energy supply in skin cells and DNA repair requires energy. 1α, 25-

Dihydroxyvitamin D3 is produced in the skin and reduces UV-induced DNA damage (Gordon-
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Thomson et al., 2012, Dixon et al., 2011). After UV exposure, energy availability is limited in 

keratinocytes, however in the presence of 1α, 25-Dihydroxyvitamin D3, there is increased energy 

availability due to increased glycolysis. This provides energy for NER and repair of CPDs with 

decreased oxidative DNA damage (Rybchyn et al., 2018).  

Unrepaired DNA can result in the generation of mutations or can trigger apoptosis (Rastogi et al., 

2010). Cells which survive UV-induced DNA damage frequently harbour UV mutation signatures, 

for example unrepaired CPDs and 6-4PPs resulting in C to T or CC to TT changes (Brash, 1988, 

Patrick, 1977, Sage, 1993, Sinha and Hader, 2002, Wang et al., 2008, Wikonkal and Brash, 1999, 

Brash et al., 1996). These mutations affect the protein products of affected genes and can cause 

alterations to the cell cycle and in cellular behaviour, resulting in the development of skin cancer. 

1.3.3 UV and skin cancer 

Skin cancer is the most common cancer in Caucasians, with the three main types of skin cancer 

comprising basal cell cancer (BCC), cutaneous squamous cell cancer (cSCC) and melanoma. BCC is 

the most common type of skin cancer and accounts for around 80% of all skin cancers (Berking et 

al., 2014); BCCs are very slow growing and do not usually spread to other parts of the body. In 

2015 there were 166,448 cases of basal cell carcinoma (BCC) in the UK (Venables et al., 2019). 

cSCC is the second most common type of skin cancer and 44,672 cases of cSCC occur annually in 

the UK (Venables et al., 2019). The five year rate of recurrence of primary cSCCs is 8% and the rate 

of metastasis is 5% (Alam and Ratner, 2001). BCC and cSCC arise from keratinocytes, whereas 

melanoma arises from melanocytes. Melanoma is less common than BCC and cSCC but is more 

likely to metastasise. There were 232,100 cases of global melanoma cases annually and 55,500 

cancer deaths (Schadendorf et al., 2018). Melanoma metastasis has been recorded to occur in 5 – 

15% of all melanoma cases (Kalady et al., 2003, Sandru et al., 2014, Meier et al., 2002). 

There are a number of risk factors for development of skin cancer, including endogenous factors 

(e.g. skin pigmentation, genetic alterations that predispose to fairer skin) and exogenous factors 

(e.g. lots of UV exposure, various medications, etc.). There is an inverse correlation between skin 

pigmentation and the incidence of skin cancer, which is due to the photoprotective role of 

melanin in darker skinned people preventing DNA damage and subsequent skin cancer (Gilchrest 

et al., 1999). Individuals with light skin are 70 times more likely to develop skin cancer compared 

to individuals with dark skin (Halder and Bang, 1988). UVB can also induce erythema (sunburn) in 

fairer skinned people, and this usually occurs 4 hours after UV exposure and peaks between 8 and 

24 hours which then fades over a day. In lighter skinned individuals, erythema can last for weeks. 
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Erythema is associated with apoptotic keratinocytes which are sunburn cells (Brenner and 

Hearing, 2008).  

In humans, MC1R variants are the cause of red hair and fair skin and are a risk factor for skin 

cancer (Valverde et al., 1995, Robles-Espinoza et al., 2016, Tagliabue et al., 2015). Due to the 

pleiotropic nature of MC1R variants, it has been identified that variants in MC1R can also 

determine sun sensitivity in individuals without red hair (Healy et al., 2000). MC1R signalling 

controls the production of eumelanin by inducing expression of proteins responsible for 

eumelanin synthesis (Rees and Harding, 2012). Inactivating mutations in MC1R, which are present 

in individuals with red hair can reduce the synthesis of eumelanin and increase the risk of skin 

cancer (Nasti and Timares, 2015). 

Drugs such as azathioprine which is an immunosuppressant used to prevent organ transplant 

rejection can increase the likelihood of developing cutaneous squamous cell carcinoma. 

Azathioprine has been linked with photosensitivity to UVA suggesting this might be a cause for 

the increased incidence of skin SCC (Inman et al., 2018). Psoralen is a medication used with UVA 

for the treatment of psoriasis and can intercalate with DNA to inhibit DNA synthesis and cell 

division. UVA exposure can activate psoralen to form covalent bonds with double bonds of 

thymines and the production of monoadducts which can lead to skin cancer (Derheimer et al., 

2009).  

1.3.4 UV and skin ageing 

UV can affect the connective tissue in the dermis and cause skin ageing. Skin ageing can be seen 

visibly as wrinkles and, histologically, via the loss of mature dermal collagen. There is evidence 

which suggests that there are higher concentrations of reactive oxygen species generated in vitro 

and in vivo after UVA and UVB irradiation. These reactive oxygen species can affect collagen 

metabolism which results in destroying interstitial collagen (Wlaschek et al., 2001). Although 

people develop wrinkles as they age, and skin cancer is more common in elderly people, one 

study has suggested that people who develop UV-induced wrinkling are less likely to develop BCC 

(Brooke et al., 2001). 

1.3.5 UV therapy for skin disease 

Due to its ability to immunosuppress, UV is used as a treatment (i.e. phototherapy) for common 

inflammatory skin conditions such as eczema and psoriasis (Ibbotson et al., 2004, Menter et al., 

2010, Pathirana et al., 2009). There are three main types of phototherapies: broadband UVB (BB-

UVB), narrowband UVB (NB-UVB), and PUVA (i.e. Psoralen with UVA). 
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Psoriasis is caused by the hyper-proliferation of keratinocytes mediated by T-cells (Gudjonsson et 

al., 2004). UV can immunosuppress in a variety of ways such as inhibiting the presentation of 

antigens, releasing immunosuppressive cytokines and causing the apoptosis of leukocytes such as 

T-cells (Schwarz, 2005). It has been found that T-cells are 10 times more sensitive than 

keratinocytes to UVB induced apoptosis; therefore the long remission periods of patients could 

reflect the apoptosis of psoriasis-specific T cells which have been exposed to UVB (Krueger et al., 

1995).  However, it has also been noted that UVB induces regulatory T cells (also known as Tregs), 

and it is likely that this also plays a role in the mechanism of clearance of psoriasis by narrowband 

UVB (Schwarz, 2008). 

NB-UVB has been identified as the most beneficial component of UV for the treatment of 

psoriasis (Chen et al., 2013). ‘Narrowband’ refers to a specific wavelength of UVB which is 311-

312 nm, as opposed to ‘broadband’ UVB which is a wavelength of 280-320 nm (and some UVA 

wavelengths also) (Ibbotson et al., 2004). BB-UVB has been identified as less effective for psoriasis 

than NB-UVB (Kirke et al., 2007). NB-UVB and PUVA are used as treatments for psoriasis and 

eczema (Ibbotson, 2018). PUVA has been used since 1974 and this phototherapy is carcinogenic 

and mutagenic. Studies have shown that patients exposed to high doses of PUVA have an 

increased risk of skin SCC and melanoma (Stern and Study, 2001) and studies have also shown a 

small significant increased risk in BCC (Nijsten and Stern, 2003).  

1.3.6 UV therapy 

NB-UVB was first reported to treat patients with psoriasis in 1988 (Green et al., 1988) and 

although it has been used for the past few decades as treatment, there is limited information 

about the long term likelihood of developing skin cancer in patients who have received this form 

of phototherapy.  There are some studies which have reported on previous NB-UVB exposure 

which have not shown an increased risk of skin cancer when compared to an age and sex matched 

control population (Hearn et al., 2008, Archier et al., 2012, Man et al., 2005). There has also been 

a Taiwanese population-based cohort study examining the long-term safety of NB-UVB treatment 

which concluded that long-term NB-UVB phototherapy does not increase risk for skin cancer 

compared to short-term phototherapy in individuals with skin phototypes III – V (Lin et al., 2019). 

However, it is known that individuals which have a skin phototype III – V are considered to rarely 

or never sunburn and also to tan easily (Fitzpatrick, 1988) therefore these people are at lower risk 

of skin cancer than more fair-skinned subjects.  

By contrast, some reports have suggested that NB-UVB is more carcinogenic than BB-UVB (van 

Weelden et al., 1988, Flindt-Hansen et al., 1991, Wulf et al., 1994, Gibbs et al., 1995). A study in 
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mice identified that more CPD were present in mice after NB-UVB treatment compared to BB-UVB 

suggesting higher carcinogenesis because of NB-UVB (Kunisada et al., 2007). Another study was 

conducted to follow up on this finding to identify the underlying genetic cause for the association 

between NB-UVB and carcinogenesis and it identified that 1 minimal erythemal dose of NB-UVB 

produced more UV mutation signatures in p53 than BB-UVB, which supported the original 

observation that there is more CPD formation and 6-4 photoproducts after NB-UVB exposure 

(Yogianti et al., 2012). A cohort human study was conducted which reported that cases of skin SCC 

and BCC were seen in patients after NB-UVB treatment but there were no cases of melanoma 

(Raone et al., 2018). The keratinocyte skin cancers were more frequently identified in patients 

who were at an older age (mean 68.8 years) during their first NB-UVB course. This suggests that 

patients are more likely to develop keratinocyte skin cancer after NB-UVB treatment if they have 

prior risk factors such as old-age. However, this study by Raone et al. only included 375 patients 

and had a short follow-up time (mean 6.9 years) which means that we still do not really know the 

long-term risk of NB-UVB treatment in relation to whether it significantly increases the risk of 

subsequent development of skin cancer.  

 

1.4 Cancer   

Cancer is the uncontrollable proliferation of cells (Hanahan and Weinberg, 2011). There are 

several hallmarks that are acquired by a cancer cell to survive, proliferate, and disseminate. These 

hallmarks are sustaining proliferative signalling, evading growth suppressors, resisting cell death, 

enabling replicative immortality, inducing angiogenesis, activating invasion and metastasis, 

reprogramming of energy metabolism and evading immune destruction (Hanahan and Weinberg, 

2011). These hallmarks are acquired via enabling characteristics such as the development of 

genomic instability in precancerous and cancerous cells and the inflammatory state of 

premalignant and malignant lesions.  

Genomic instability includes mutations and chromosomal rearrangements which occur in two 

broad classes of genes, proto-oncogenes and tumour suppressor genes (Weinstein, 2002).  Proto-

oncogenes encode proteins which stimulate cell growth, inhibit cell differentiation, and inhibit cell 

death. Gain of function mutations transforms proto-oncogenes into oncogenes. As a result, there 

is increased cell growth and abnormal cell proliferation (Carbone and Levine, 1990). Tumour 

suppressor genes encode proteins which inhibit cell proliferation or play a role in other important 

cell functions and these genes are prone to loss of function mutations which can prevent 

processes such as apoptosis and lead to the development of cancer (Lee and Muller, 2010).  
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Two of the aforementioned hallmarks were identified as emerging hallmarks, as they were not in 

the original six hallmarks of cancer, but were added subsequently (Hanahan and Weinberg, 2011). 

These two emerging hallmarks are deregulating cellular energetics to fuel cell growth and 

avoiding immune destruction. The tumour associated inflammatory response can lead to a 

dysfunctional immune system in the cancer microenvironment, thus promoting tumorigenesis 

(DeNardo et al., 2010, Grivennikov et al., 2010, Qian and Pollard, 2010, Colotta et al., 2009). 

Cancer cells can avoid immune destruction via ‘immunoediting’, which occurs in three phases: 

elimination, equilibrium, and escape. In the elimination phase, cells which have become 

precancerous or cancerous are recognised and killed by the innate and adaptive immune system. 

Cells which survive this process proceed to the equilibrium phase, where the tumour cells 

continue to proliferate but the immune system continues to kill a proportion of cancer cells, thus 

net tumour growth is reduced and can even be stalled. Tumour subclones with reduced 

immunogenicity, e.g., via loss of tumour antigens, can develop due to a combination of genomic 

instability and pressure from the adaptive immune system, whereby these immuno-edited 

tumours are now in the escape phase. In this phase the growth is not restrained, and the cancer 

becomes clinically apparent and/or metastasises (O'Donnell et al., 2019).  

 

1.4.1 Models/Understanding of cancer development 

In 1889, Paget examined the post-mortem data of 735 women with breast cancer and proposed 

the ‘seed and soil’ hypothesis (Paget, 1989). He noticed that the organ distribution of metastases 

was not random and suggested that tumour cells were the ‘seeds’ which grew in specific ‘soils’, 

the latter referring to the tumour micro-environments in these organs.  

In 1954, Armitage and Doll suggested through a statistical model, that the development of cancer 

is a multistage process. They produced a formula which aimed to weight the strength of the 

carcinogenic factors. The carcinogenic factors were responsible for cellular changes. The changes 

that were of greatest importance varied according to where the cell was considered to be in the 

multistage process leading to the development of cancer (Armitage and Doll, 1954).  

Subsequently, a two-hit hypothesis was proposed by Knudson in 1971, which was based on 

certain cancers occurring more frequently in families than in the general population, and the 

theory suggested that retinoblastoma was caused as a result of two mutational events (Knudson, 

1971). In patients who dominantly inherited the risk of developing this cancer, the tumour arose 

due to the first mutation being inherited in the germline and a subsequent second somatic 
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mutation arising in the cell which developed into the cancer. In individuals where there was not a 

family history of predisposition to the cancer, both mutations were somatically acquired. This 

hypothesis was based on 48 patients with retinoblastoma and was a key advance in 

understanding that most tumour suppressor genes require biallelic inactivation for cancer 

development and/or progression.  

In 1976, Nowell suggested that cancer is a stepwise, sequential evolutionary process consisting of 

an accumulating series of mutations, with the initial mutation resulting in a growth advantage 

permitting clonal expansion, and subsequent genetic instability/mutations leading to sub-clonal 

populations as highlighted in figure 1-6 (Nowell, 1976).  The environment of these sub-clones can 

affect their survival and their potential to evolve (Bierie and Moses, 2006). Restraints (e.g. 

metabolic or immunologic disadvantages) or selective pressures such as clonal interference and 

tissue ecosystems allow some sub-clones to expand, become extinct or remain dormant (Gatenby 

and Gillies, 2008). Clonal interference is the process where two or more different beneficial 

mutations arise in two individual cells and these cells compete against each other resulting in the 

loss of the less-fit genotype.  

 

 

Figure 1-6: The clonal evolution of cancer. The diagram shows how a cell divides in different ecosystems and how some 
cells stop dividing and others continue dividing and evolve into cancer. Adapted from Greaves and Maley 2012.  

 

Later, Vogelstein and Fearon proposed their theory for the genetic basis of colorectal cancers and 

presented four processes required for the formation of a tumour (Fearon and Vogelstein, 1990). 

Ecosystem 4 
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The theory stated that there should be the activation of oncogenes and the inactivation of tumour 

suppressor genes. Other requirements were that there should be the presence of mutations in 4 

or 5 genes, the total accumulation of mutations is more important than the order of mutations 

and mutant tumour suppressor genes can have a phenotypic effect even at a heterozygous level.  

The expansion of clones can be caused by a ‘driver’ mutation that confers a cell with a growth 

advantage and have been positively selected for during the evolution of the cancer. For example, 

a driver mutation may provide advantage in their tissue ecosystem, for example by altering the 

cell’s phenotype resulting in increased cell proliferation (Greaves and Maley, 2012). Cells with 

driver mutations also have other ‘passenger’ mutations which are considered not to alter the 

cell’s phenotype (Stratton et al., 2009). Since there are many passenger mutations, these may be 

detected more frequently than the driver mutations. Next generation sequencing (NGS) has 

revolutionised our understanding of the evolution of cancer, allowing the detection of numerous 

mutations within cancers. However, bioinformatics approaches are needed to distinguish driver 

mutations from passenger mutations using statistical analysis and this approach can be supported 

by downstream functional assays to identify if these driver mutations alter a cell’s phenotype. 

Sequencing all the cells in a tumour can reveal the clonal architecture of the tumour. This 

information can also be used to identify the founder genotype involved in the clonal evolution of 

these neoplasms (Stratton, 2011).  

There are three fundamental forces which govern the evolution of cancer: mutation, drift and 

selection. Mutation and drift are stochastic processes whereas selection is deterministic 

(Sottoriva et al., 2017). Drift is the stochastic change in allele frequencies in a population of cells 

due to random birth and death events. Drift and selection can change the frequency of alleles in a 

population. Selection is when there is a new mutation that increases the ability of the cell to 

survive and reproduce and has escaped genetic drift. For example, this could alter the rate of cell 

proliferation due to a certain allelic change (Sottoriva et al., 2017) or immunoediting (Kim et al., 

2007).  

The Cancer Stem Cell theory suggests that a tumour is driven by a rare sub-population of cancer 

cells that act as stem cells, which reproduce themselves and sustain the cancer. Cancer stem cells 

were first identified in acute myeloid leukaemia (Bonnet and Dick, 1997), when it was identified 

that when AML stem cells were transplanted into mice, these cells were able to proliferate and 

differentiate and re-establish AML. The specific stem cells in this cancer type were those that 

expressed the CD34+ CD38- marker, which were able to produce tumour cells with a phenotype 

that were identical to the donor. Support for this theory was also seen in solid tumours such as 
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brain, breast, colon, prostate, pancreas, lung, liver, melanoma and ovarian cancers which are 

known to have a heterogeneous population of tumour cells (Wang et al., 2013). The 

establishment of this theory indicated that it might be possible to generate treatments which are 

tailored to kill cells with specific cancer stem cell traits (Dick, 2003).  The skin stem cell hypothesis 

is based on the fact that stem cells for the epidermal keratinocytes in the interfollicular epidermis 

basal layer are constantly regenerated in the basal layer and the cells leave the basal layer by 

differentiating upwards in the epidermis towards the stratum corneum.  The hair follicles are 

constantly in cycles of regeneration and rest which are driven by the stem cells in the bulge and a 

cluster of cells below the bulge known as the hair germ. The melanocyte stem cells are also 

distributed in the bulge and the hair germ (Hsu et al., 2014). They identified that in humans there 

is heterogeneity of clonogenic keratinocytes, and three types of clones are initiated, holoclones, 

meroclones and paraclones. All three of these proliferate however it was proposed that the 

holoclone-forming cell is similar to a stem cell and has long-term proliferation potential (Enzo et 

al., 2021). These holoclones were discovered when treating a child with junctional epidermolysis 

bullosa (JEB) via transgenic keratinocyte cultures which regenerated a fully functional epidermis 

for the child (Hirsch et al., 2017). In humans, the keratinocytes are constantly renewed to achieve 

homeostasis. Three hypotheses were proposed to explain this process of keratinocyte 

differentiation and homeostasis: asymmetric division, population asymmetry and population 

asymmetry with stem cells (Li et al., 2013). Using a 3D agent-based model of an epidermis and 

observing simulated growth and maintenance of the epidermis over three years suggested that 

the population asymmetry with stem cells hypothesis is most likely responsible for keratinocyte 

homeostasis in the epidermis (Li et al., 2013). There is a study which has investigated the reason 

that subsets of tumour-initiating stem cells escape cancer therapies. They identified that TGF- 

beta signalling in SCC stem cells can fuel heterogeneity in SCC stem cells which can result in drug 

resistance (Oshimori et al., 2015). 

 

1.5 Next Generation Sequencing (NGS)  

The invention of NGS and the decreasing cost of NGS over recent years has led to an increase in 

the number of studies reporting on DNA sequencing of cancers (Meyerson et al., 2010). The 

sequencing of cancers can help dissect the mutational landscape of these tumours to understand 

how these cancers originate and develop. Sequencing all the cells in a tumour can reveal the 

clonal architecture of the tumour. This information can also be used to identify the founder 

genotype involved in the clonal evolution of these neoplasms (Stratton, 2011). All regions of DNA, 
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including all those which code for proteins and the regions of DNA that do not code for proteins, 

are sequenced during whole genome sequencing (WGS) whereas the only the coding sequence of 

DNA is sequenced during whole exome sequencing (WES). Genes that are expressed by the cancer 

cell genome can be analysed using transcriptome sequencing (Stratton et al., 2009).  

There has also been the development of multiple sequencing platforms to undertake NGS (Quail 

et al., 2012). The foundation for this type of sequencing relies on the production of an NGS library. 

The preparation of a high-quality library is crucial to produce high-quality sequencing data. 

Illumina Inc. has been at the forefront of NGS and uses a “sequencing by synthesis” approach 

developed by Solexa. Initially, DNA is sheared into smaller fragment lengths which are then 

ligated to adapters (Bentley et al., 2008). These adapters enable DNA fragments to bind to a glass 

flow cell. The type of adapter can vary depending on the type of sequencing being conducted. For 

WES or targeted sequencing, probes or baits can be used to enrich coding regions or regions of 

interest. These adapter-ligated DNA fragments are then amplified and sequenced on a glass flow 

cell. Mass parallel sequencing produces data with high sequencing depth which increases 

reliability of results. High sequencing depth is particularly important in the sequencing of cancers 

and precancerous lesions for the identification of the rare variants in a single clone which could 

progress into a cancer. The sequencing data undergo quality control to identify true variants in 

the samples and the data is filtered to identify pathogenic variants. The variants can then be 

annotated using databases which predict the protein and biological function of a mutation 

(Karaoz et al., 2004). The reference human (haploid) genome is ~3.1 billion base pairs (3 Gb) and 

an exome is approximately 1-2% of the genome, with WES of the protein coding regions spanning 

around 50 Mb (Nakagawa and Fujita, 2018).  A high-quality WGS would have 30 - 50x read depth, 

so this would produce 90 – 150 Gb of data for a single sample (Nakagawa et al., 2015, Meyerson 

et al., 2010) .  

These second-generation parallel sequencing technologies have dominated the sequencing 

market for the last 10 years due to the ability to produce a large amount of data at a cheap rate. 

However, due to the de novo assembly of the genome, this can result in fragmented assemblies 

which can cause problems for resolving repetitive sequences in the genome (Schatz et al., 2010). 

A new approach, known as third-generation sequencing technology, was introduced to enable the 

sequencing of longer read lengths. Second-generation sequencing was dependent on PCR to make 

multiple copies of template DNA, whereas third generation sequencing directly sequences DNA 

molecules for analysis, reducing sequencing biases which can be introduced as a result of PCR. 

The time required for third generation sequencing, first technology was introduced by Pacific 
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Biosciences (PacBio, http://www.pacb.com/), is less than second-generation sequencing and is 

reduced from days to hours and can also be reduced to minutes for real-time applications (Lu et 

al., 2016). This single-molecule long-read sequencing platform also identifies highly repetitive 

regions, complex structural variation and can estimate the haplotype of an individual. However, 

this technology has a higher error rate than second-generation sequencing. The errors are 

dispersed throughout the genome and can be reduced via sequencing a single molecule template 

strand and the complement strand can be sequenced multiple times by using circular consensus 

sequencing (Larsen et al., 2014). This technology is relatively high cost and low throughput. PacBio 

most recent circular consensus called ‘Hi-Fi’ produces 20kbp read lengths with an error rate of 

0.1% (Wenger et al., 2019).  

Unlike, the sequencing technologies previously mentioned which function via polymerase-

mediated DNA synthesis, the nanopore based technologies sequence DNA by identifying changes 

in the ionic current across a membrane as a DNA molecule passes through a protein nanopore 

(Branton et al., 2008).  

A study which looked at the efficacy of nanopore sequencing showed that the technology was 

able to identify and phase two de-novo variants that were from the same paternal haplotype. 

However limitations to nanopore sequencing were that there were higher errors in single 

nucleotide variation-calling rates compared to short read sequencing (Bowden et al., 2019). 

Recently there has been improvements made to this technology which has brought in the 

development of the ultra-rapid nanopore genome sequencing platform (Goenka et al., 2022) 

which has been recorded to have a pipeline that is 50% faster than previous pipelines and is 

capable of providing accurate small and large variant information from the genome.  

A study aimed to compare short read Illumina sequencing with Oxford Nanopore Technology 

(ONT) sequencing and PacBio sequencing to identify which technology and methods are most 

reliable for detecting large scale variation in cancer genomes (Aganezov et al., 2020). The study 

showed that the structural variants identified in ONT and PacBio were more than 90% concordant 

with each other which shows that even though these technologies function differently their 

results show their reliability to identify true positives. Using these long-read technologies they 

also identified a large number of structural variants that were not identified via Illumina’s short-

read technology. This was also supported in another study which stated that long-read 

sequencing showed key disruption events in cancer such as understanding aberrant genomic 

structures (Sakamoto et al., 2021). It was also highlighted in a study that short-read technologies 

can complement long-read technologies by using short-read technologies to analyse allele-specific 

http://www.pacb.com/


 

45 
 

copy number variants via the detection of alterations in heterozygous germline single nucleotide 

polymorphisms (Aganezov et al., 2020). Another study supported this finding by suggesting that 

single nucleotide variants are more reproducible than small insertions and deletions when using 

short-read sequencing technologies (Pan et al., 2022).  

With these increases in speed and accuracy WGS is being considered a good alternative to other 

diagnostic practices. A study considered WGS to be a timely and more economical alternative to 

array Comparative Genomic Hybridisation technologies and WES in the detection of CNVs 

(Coutelier et al., 2022). WGS has also been reported to have a greater diagnostic yield than 

cytogenetic analysis in myeloid cancers (Duncavage et al., 2021).  

Long read sequencing is effective in identifying structural variations and haplotype phasing 

therefore it is considered useful for cancer genomes. The introduction of long-read sequencing 

also enabled gaps in the human genome to be completely sequenced which has included 

centromeric regions and the short arms of five chromosomes (Nurk et al., 2022). Cancer is caused 

by a variety of genomic aberrations and long-read sequencing can help elucidate transcriptome 

and epigenome statuses, fusion transcripts, transcript isoforms and DNA methylation phase 

information which can be missed using short-read technologies (Sakamoto et al., 2020). Short 

read sequencing posed limitations for sequencing repetitive regions, phasing alleles and 

distinguishing between homologous genomic regions therefore long read-sequencing enables 

these to be identified which can help understand disease pathogenesis (Mantere et al., 2019). 

Oxford Nanopore long-read sequencing generates the largest contiguous sequence but PacBio 

some of the most accurate long-read data (Logsdon et al., 2020). Therefore, both of these long-

read technologies complement each other. The introduction of this sequencing enables the full 

sequence of many reference genomes to be available so we can understand human genetic 

diversity, heritability, and mutational processes. This will ensure that we are not aligning 

sequences to a single reference genome to identify variation but long-read technologies will 

enable haplotype phasing so we can dissect genetic variation to completely resolve the correct 

human genome sequence for each individual.  

The limitations surrounding long-read sequencing is that for cancer genomes is that it requires 

micro-gram order DNA (Sakamoto et al., 2021) and this is not always available when sequencing 

tumour DNA. Short-read sequencing is possible with small volumes of DNA as the DNA is 

amplified unlike long-read DNA preparation. Scalability is another challenge for long-read 

sequencing as it is computationally intensive to produce assemblies for large genomes which 

requires long periods of time (Amarasinghe et al., 2020). This also impacts data generation, 
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storage, and integration. Error correction rates are improving however short-read sequencing is 

still outperforming the accuracy in long-read sequencing (Amarasinghe et al., 2020). Long-read 

transcriptomics provides information on transcript-level differential expression. However long-

read transcriptomics is in its infancy and provides low replication and modest read counts, 

therefore an increase in throughput and a decrease in price would enable this technology to be 

more effective in the future (Amarasinghe et al., 2020). 

There have been different approaches of experimental design used in various NGS studies to 

understand the evolution of cancer and tumour heterogeneity. Tumour multi-sampling is one 

method, which includes geographical sampling, when multiple samples are taken from a single 

tumour at the same point in time, or longitudinal sampling when a tumour sample is taken at 

different points in time (Campbell et al., 2010, Yachida et al., 2010). Single cell sequencing is 

another method of tracking the evolution of cancer cells as individual mutations within each cell 

can be identified, however this requires whole genome amplification which can introduce 

mutations which are not present in the tumour but occur as a result of the amplification (Yates 

and Campbell, 2012). Mathematical models have also been created and used in conjunction with 

NGS to help understand clonal expansion in normal or precancerous tissue samples (Lynch et al., 

2017). Using WGS on established cancers, it has additionally become possible to dissect the 

sequence of events for the development of a cancer (Jolly and Van Loo, 2018). 

Bottleneck sequencing, which is a type of next generation sequencing, is used to identify rare 

somatic mutations (Hoang et al., 2016). This type of sequencing uses a barcoded genomic library 

with a dilution step before amplification. The dilution causes a bottleneck effect as there is a 

random sampling of double stranded template DNA molecules. Normally, rare mutations would 

be masked (or hidden) by the abundance of the wildtype DNA at that site using conventional WGS 

or WES, but due to this dilution step these rare mutations become visible during sequencing. The 

library, using this approach, also enables the ‘Watson’ and ‘Crick’ strands of the DNA to be 

sequenced excessively, therefore if a rare mutation is identified repeatedly (across both 

Watson/Crick duplicate pairs), it is less likely to be due to artefact (Hoang et al., 2016).  

Somatic copy number alterations are also used to identify how cancers develop. Copy number is 

identified using single nucleotide polymorphism (SNP) arrays or via WGS or WES. WGS is 

expensive so WES is often used to predict copy number variants. Depth of coverage by measuring 

the number of reads aligned to a base is used to identify the copy number. The presence of highly 

repetitive sequences can result in limitations to using whole exome data for this purpose by 

decreasing the power to detect copy number variations (Kadalayil et al., 2015).  Copy number has 
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been analysed in exome data for cSCC tumour samples, with 25 of 40 samples showing copy 

number changes in at least two regions in one study (Inman et al., 2018). This finding was 

consistent with previous analyses (Hameetman et al., 2013, Sekulic et al., 2010, Salgado et al., 

2010, Purdie et al., 2009). The copy number data indicated that there were higher levels of 

chromosomal instability in moderately and poorly differentiated tumours compared to well 

differentiated tumours (Inman et al., 2018).  

RNA sequencing is another method used in cancer research, drug discovery, cancer diagnosis and 

prognosis. Two different approaches can be used in RNA sequencing studies; one method is 

transcriptome analysis which enables the identification of biologically important transcriptional 

pathways and the other method is to measure differential gene expression. Small RNAs, such as 

microRNAs (miRNAs), have been identified as non-coding regulators of biological pathways and 

regulate the expression of protein-coding regions post-transcriptionally (Wang et al., 2020b). RNA 

and miRNA sequencing have been conducted in the analysis of cSCC and actinic keratosis (AK) 

(Chitsazzadeh et al., 2016) which is a pre-cancerous lesion. While the mRNA matrix displayed a 

significant difference between normal skin and cSCC in at least one pairwise comparison, the 

miRNA matrix showed a better distinction between normal skin, cSCC and AK samples, which 

highlights that AKs have intermediate expression of all genes between normal skin and cSCC 

(Chitsazzadeh et al., 2016). RNA sequencing can also be used to identify mutations in cancers, 

with the limitation that the analysis is only limited to genes that are expressed.  

Epigenetic changes are changes that affect gene expression but do not change the DNA sequence. 

Gene transcription can be regulated by DNA methylation, especially in promoter regions of genes, 

and alterations of DNA methylation have been identified in tumours. Bisulfite sequencing is used 

to identify DNA methylation patterns in cancer (Li and Tollefsbol, 2011). Hypermethylation 

silences gene transcription and results in the loss of gene expression (Das and Singal, 2004). The 

hypermethylation of tumour suppressor genes can enable the initiation, promotion and 

progression of cancer. In melanoma, CDHN2A encodes a p16 cell cycle inhibitor protein and has 

been shown to be inactivated by promoter hypermethylation (Penta et al., 2018). Other tumour 

suppressor genes identified as hypermethylated in melanoma are RASSF1A, PTEN, TNFSF10D and 

COL1A2. Global hypomethylation was also identified in melanomas which showed the activation 

of retrotransposons (Penta et al., 2018). Retrotransposons are pieces of nucleic acid that can 

“copy and paste” themselves in different parts of the genome via an RNA intermediate (Boeke et 

al., 1985, Garfinkel et al., 1985). 
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Proteomics is another method used to analyse cancers and can be used identify a set of proteins 

whose level of expression is altered in the relevant cancer and within different subtypes of the 

same cancer. In a study of cSCC that included cancers which metastasized after surgery and 

samples which had not metastasized after surgery, it was noted that there was increased 

expression of ANXA5 and DDOST in primary skin SCCs which was associated with subsequent 

development of metastasis (Shapanis et al., 2020a). Similarly, proteomic profiling of primary 

melanoma samples has identified proteins which might be associated with metastasis (Shapanis 

et al., 2020b). Similar to studies looking at DNA sequence alterations and RNA expression, the use 

of proteomics can be used to identify potential biomarkers and key processes which are 

associated with metastasis.  

 

1.5.1 NGS Databases 

NGS of multiple samples can yield large amounts of data.  While this can provide vast amounts of 

information about the relevant disease that is being studied, the generation of large quantities of 

data has certain storage requirements so that all the data is stored, the data is kept securely on a 

long-term basis without any introduction of errors into the data, and so that appropriate access 

can be granted for use of the data by the global scientific community. While earlier sequencing 

studies often focussed (solely or mainly) on reporting their findings, it soon became apparent that 

the vast quantities of data being produced by the individual NGS studies could be added together 

to provide larger datasets and thus greater understanding of the relevant disease. There are many 

databases available online that store sequencing data for analysis, and this is also the case for 

data obtained from NGS studies on cancer.  

COSMIC (Catalogue of Somatic Mutations in Cancer) is the world’s largest database of mutations 

in cancer (Forbes et al., 2016). This dataset is manually curated by experts and contains clinical 

classification information for each cancer. The genetic variants contained in this database are 

from articles that have been published and have reported on the mutations which have now been 

deposited in the COSMIC database.  The genetic database contains full mutation information at 

nucleotide or protein level for each variant. The Genome-wide screen data contained in the 

COSMIC database is peer reviewed and contains data from other databases such as the 

International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA).  

The National Centre for Biotechnology Information (NCBI) has created the database of Genotype 

and Phenotype (dbGaP) for authors to deposit genotype and phenotype data which is protected 
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securely and can be accessed via submitting a request through a dbGaP authorized access portal. 

dbGaP contains data on many human diseases such as diabetic nephropathy, schizophrenia, 

psoriasis, etc. as well as on human cancer (Mailman et al., 2007).  The National Institutes of 

Health Data Access Committee (DAC) reviews the request and grants access to datasets so they 

can be downloaded from the dbGaP authorized access portal (Mailman et al., 2007). The 

European Genome-phenome Archive also contains genetic and phenotypic data which is not 

publicly available, and data can be accessed by contacting the DAC similarly to dbGaP 

(Lappalainen et al., 2015). The data available in dbGaP and EGA are in the format the author has 

chosen to submit to the database.  

The Genomic Data Commons (GDC) Portal contains publicly available exome data which has been 

funded by the National Cancer Institute such as TCGA data (Grossman et al., 2016). The exome 

data available has been analysed using different variant calling pipelines such as MuTect2, 

VarScan2 and Pindel and there has also been the development of the Multi-Centre Mutation 

Calling in Multiple Cancers (MC3) project (mc3.v0.2.8.PUBLIC.maf ) which is a harmonized set of 

mutation calls across all TCGA samples (Gao et al., 2019). The data available from the MC3 project 

is available in Mutation Annotation Format.  

Margaret Dayhoff was named ‘the mother and father of bioinformatics’ as she pioneered the 

application of computational methods in biochemistry (Gauthier et al., 2019). In 1978, a 

mathematical algorithm was developed for amino acid substitutions (Barker et al., 1978). With 

the developments in DNA sequencing, bioinformatics was used for DNA analysis and Unix-like 

operating systems were used to analyse this data. The mid 1980s saw the introduction of several 

scripting languages such as Perl and Python that were used in the production of bioinformatics 

programs (Fourment and Gillings, 2008). The 1990s led to the developments in non-scripting 

languages such as Fortran C, R and Java which are still used today to analyse genetic data 

(Gauthier et al., 2019). 

 

1.5.2 Driver genes  

A cancer driver gene is a gene that drives the development of cancer.  Cancer driver genes have 

been described in various ways by different authors, for example as “one whose mutations 

increase net cell growth under the specific microenvironmental conditions that exist in the cell in 

vivo (Tokheim et al., 2016), or as “genes (called ‘cancer driver genes’), the mutant forms of which 

affect the homeostatic development of a set of key cellular functions”(Martinez-Jimenez et al., 
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2020). By contrast, passenger mutations have been described as “having no effect on the 

neoplastic process” (Vogelstein et al., 2013), or “do not provide any proliferative benefit and do 

not have an effect on the cancer cell” (Stratton et al., 2009). Although the term driver or 

passenger refers to the biological effect of a particular mutation in cancer development, both 

terms have been used to describe specific mutations in genes, e.g., driver mutations/passenger 

mutations, and to describe genes which contain driver or passenger mutations, e.g. driver 

genes/passenger genes. Furthermore, the terms are often used as nouns “drivers” or 

“passengers” to signify either genes or mutations. 

Various bioinformatics approaches are used to distinguish drivers from passengers and functional 

assays are also used to determine whether the drivers identified via bioinformatics actually alter a 

cell’s phenotype. Different algorithms and statistical tests can be applied within the different 

bioinformatic programs to NGS data to distinguish driver mutations from passenger mutations. 

There is currently no gold standard method to identify driver genes in a dataset but there have 

been studies which have combined the use of various bioinformatic programs and/or allowed 

comparisons to be made between the performances of driver gene programs and the frameworks 

proposed (Tokheim et al., 2016, Bailey et al., 2018, Rheinbay et al., 2020). In one study, an 

analysis was conducted comparing eight driver gene programs (MutsigCV, ActiveDriver, MuSiC, 

OncodriveClust, OncodriveFM, OncodriveFML, Tumor Suppressor and Oncogenes (TUSON) and 

20/20+) for somatic variants in exome data for 7916 samples consisting of 34 cancer types 

(Tokheim et al., 2016). The analysis checked if there was overlap between the Cancer Gene 

Census (CGC) and driver genes from the various methods, the observed vs. theoretical p value, 

number of significant genes predicted, and the prediction of consistency based on independent 

partitions of the dataset. The methods with the strongest support for identifying a set of genes 

that were shared by other programs and that were also present in the CGC were 20/20+, TUSON, 

and MutsigCV. The top drop consistency metric (TDC 10 and TDC 100) which was developed by 

the authors, were used to identify the top k genes in a ranked list when the driver gene analysis 

was applied to randomly partitioned sections of the datasets. The most consistent set of genes 

during this analysis was identified using MuSiC, 20/20+ and TUSON. The observed and theoretical 

p values of the driver gene methods were compared, and the observed p values were lower than 

the theoretical p values for MuSiC, ActiveDriver, OncodriveClust, OncodriveFM, and 

OncodriveFML. The theoretical p values were lower than the observed p values for TUSON and 

MutsigCV  (Tokheim et al., 2016). When the theoretical p values are underestimated and are 

lower than expected this can affect the q value which is calculated using the Benjamini-Hochberg 
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multiple testing correction and is used to determine driver genes (q < 0.1). This can result in the 

overestimation of driver genes.  

Another study analysed the exomes of 9423 tumour samples and identified 299 driver genes 

(Bailey et al., 2018). The driver genes were detected in two phases, driver gene discovery and in 

silico mutation analysis. There were 8 different tools that were used to detect driver genes and 

these tools were based on mutation frequency (MuSiC2 and MutSig2CV), features of mutations 

(20/20+, CompositeDriver and OncodriveFML), clustering of mutations (OncodriveCLUST) and 

externally defined genomic regions (e-Driver and ActiveDriver). The in-silico mutation analysis was 

conducted with the use of sixteen tools which predicted the effect of the mutations identified by 

assessing the presence of clinically actionable mutations and how the mutation could affect 

protein structure and function. Potential driver genes were gathered from all the programs and a 

consensus score was calculated using the Gene Discovery Weighting Strategy. A Combined Tool 

Adjusted Total was used to score the in-silico mutation analysis tools.  

Various bioinformatics programs were used in the identification of drivers in the Pan Cancer 

Analysis of Whole Genomes study analysing non-coding somatic drivers in 2,658 cancer whole 

genomes (Rheinbay et al., 2020). This study consisted of 13 methods for driver discovery 

(ActiveDriverWGS, CompositeDriver, DriverPower, dndscv, ExInAtor, LARVA, MutSig tools, NBR, 

ncdDetect, ncDriver, OncodriveFML and regDriver). The p values were combined from all 

programs and analysed under a framework before applying the Benjamini-Hochberg correction. 

After identifying driver genes, then the individual mutations within the driver genes were 

investigated. Stringent filters were applied to detect driver mutations such as at least three 

mutations in candidate genes should be present in at least three patients. Other factors were also 

taken into consideration including the presence of structural variants, breakpoints, and gene 

expression.  

Although different approaches can be taken to discover potential driver genes, the power of the 

study is an important factor to consider (Lawrence et al., 2014). The background mutation rate 

can affect the ability to identify driver genes that are significantly mutated. Variation in the 

background mutation rate in cancer can be due to various factors such as the particular type of 

tumour, the environmental carcinogen that the organ/cells (from which the tumour arises) is/are 

exposed to, and the age and genetic background of the individual patients (Lawrence et al., 2014). 

Therefore, the identification of driver genes is particularly difficult in cancers which are caused by 

environmental carcinogens such as UV due to the high background mutation rate as a result of 

skin cancers arising more frequently in fairer-skinned, older individuals whose skin would have 
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received multiple exposures to UV during their lifetime. Therefore, cancers with high background 

rates require a sufficiently high-powered study with a large sample size to detect significantly 

mutated genes.  

 

1.5.3 Driver gene detection methods 

MutSig2CV is a program that identifies genes which are significantly mutated compared to the 

background mutation rate. The program applies a patient-specific mutation frequency and a gene 

specific background mutation rate to correct for variation in background mutation rates between 

individuals and genes (Lawrence et al., 2013). This model expects each base to be mutated by 

chance, however the probability of these mutations occurring by chance vary between patients 

and genes. Patient factors considered in this model are the overall mutation rate and the overall 

mutation spectrum (the type of mutation such as a transversion or transition). The overall 

mutation spectrum is considered in order to avoid mutation bias because there can be a high rate 

of C to T changes at CpG dinucleotide sites which can affect the measure of true selection 

(Greenman et al., 2006, Lawrence et al., 2013, Yang et al., 2003). The ‘CV’ in MutSig2CV 

represents ‘covariates’ and the covariates that are utilised in this program are gene expression 

levels, DNA replication time and chromatin state. The gene expression covariate was chosen 

because genes which are highly expressed in the germline were identified to have less mutations 

due to transcription coupled repair (Fousteri and Mullenders, 2008). The replication time is 

important because late replicating regions have been shown to have higher mutation rates which 

could be due to a decrease in the number of available free nucleotides (Stamatoyannopoulos et 

al., 2009). Repressive histone modifications such as H3K9me3 have been associated with single 

nucleotide variation in cancers, thus suggesting that chromatin state can also affect mutation rate 

(Schuster-Bockler and Lehner, 2012). The number of mutations in each individual is considered in 

order to calculate patient specific scores. Then the number of mutations in each tumour in 

different individuals are analysed to identify the gene specific scores. These are subsequently 

combined to predict the total number of mutations per gene. Further research has shown that 

applying a gene-specific method of measuring background mutation rate could be more reliable 

than not using this approach, but that this can lead to low sensitivity when used for small sample 

sizes (Wong et al., 2014).  

dN/dS is a program that measures selection for protein coding changes in the DNA (Greenman et 

al., 2006, Martincorena et al., 2015, Yang et al., 2003). The dN measures the number of 

nonsynonymous base changes and is compared to the dS which is the number of synonymous 
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base changes per codon. A nonsynonymous base alteration is a mutation in DNA which causes a 

change to the amino acid whereas a synonymous mutation does not alter the amino acid.  

In a gene under neutral drift, we would expect dN/dS to approximately equal 1, i.e., the number 

of nonsynonymous DNA changes is equal to the number of synonymous DNA changes. Positive 

selection is characterised as when the value of dN/dS is greater than 1 and suggests that there is 

selection for the new amino acid coding allele which increases the fitness of the cell. Negative 

selection is when dN/dS is less than 1 and is thought to result from the nonsynonymous variants 

decreasing the fitness of the cell, thus it generates fewer daughter cells per unit of time 

(Greenman et al., 2006). However, the use of dN/dS to identify positive and negative selection 

uses the assumption that most synonymous DNA changes are neutral (Martincorena et al., 2017).  

There are several limitations associated with the use of dN/dS for measuring selection and 

additional parameters must be considered (Lawrence et al., 2013). Driver gene mutations confer 

positive selection, so would be expected to be more frequent than the overall average 

background mutation rate in a cancer. If the background mutational frequency is underestimated, 

it can lead to an overrepresentation of significant findings, inadvertently suggesting that certain 

higher frequency mutated genes are drivers. The background mutation frequency could also be 

overestimated which can result in an underrepresentation of significant findings and thus not 

identifying potential driver genes. Mutation rate heterogeneity between cancer types can affect 

the reliability of using a simplistic background mutation rate, for example paediatric cancers have 

lower mutation frequencies compared to adult cancers which develop after prolonged exposures 

to UV or smoking (Lawrence et al., 2013). Heterogeneity in the mutation spectrum can also affect 

these simplistic models when applied to different cancers, for example the majority of mutations 

in skin cancers are C to T changes (Pleasance et al., 2010a) which differs from the C to A mutation 

signature identified in lung cancers secondary to tobacco (Pleasance et al., 2010b). There is also 

heterogeneity in DNA repair and mutation frequency across the genome, which can relate to gene 

expression levels, and the mutation rate is lower in genes which are expressed in the germline 

(Lawrence et al., 2013). The late replicating regions of the genome have also been identified as 

having higher mutation rates (Stamatoyannopoulos et al., 2009).  

Due to the limitations in these simplistic dN/dS models, there have been developments in the 

methods to measure selection in cancer genomes. As an alternative, the dNdScv R package has 

been developed (Martincorena et al., 2017). This package contains two different models for 

dN/dS. The dNdSloc model is the traditional dN/dS which measures the number of synonymous 

mutations in a single gene to infer the local mutation rate without information from other genes. 
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The dNdSloc model is used for larger datasets. Unlike MutSigCV which applies a gene specific 

background mutation rate, the dNdScv model combines the synonymous mutation rate in a single 

gene with the variable mutation rate across all genes. This statistical model can predict the 

variable mutation rate across the genome and the sample size will not affect the reliability of the 

model. MutSigCV relies on three covariates to determine mutation rate whereas dNdScv uses 

many covariates. The covariates include the first 20 principles of 169 chromatin marks from the 

Roadmap Epigenomics Project (Roadmap Epigenomics et al., 2015). The gene size, gene sequence 

and the impact of the substitution are accounted for in the model. The number of synonymous 

mutations per gene is modelled as a negative binomial distribution which is a Gamma-Poisson 

compound distribution and is used to estimate the background mutation rate to represent the 

uncertainty in mutation rate. The covariates are then used in the framework to decrease the 

unexplained variability.  

The dNdScv model also uses a full pentanucleotide model to correct for any bias in the analysis. 

The dN/dS of whole genomes have been calculated across cancer types and the trinucleotide and 

pentanucleotide models were compared and it showed that there was not a significant difference 

between dN/dS values except for melanoma; this was due to the C > T changes, induced by UV, in 

melanoma being affected by nucleotide context beyond the trinucleotide level (Pleasance et al., 

2010a).  

OncodriveCLUST is a program which aims to identify genes under positive selection (Tamborero et 

al., 2013) similar to dNdScv. This method is based on the principle that mutation probability is not 

the same across a gene sequence. It has been identified that clustering of mutations is a marker 

of positive selection. The OncodriveCLUST program measures the clustering of mutations in a 

gene and the background mutation rate is based on coding silent mutations which are under no 

selective pressure and represents the baseline clustering. OncodriveCLUST was compared with 

MutSig using TCGA dataset and genes were compared to the CGC (Tamborero et al., 2013). The 

analysis showed that OncodriveCLUST identified genes that were not present in MutSig and could 

have the possibility to identify novel cancer driver genes that were not present in the CGC.  

OncodriveCLUSTL, a later version of the mutation clustering program, has been identified as 

outperforming OncodriveCLUST and is based on an algorithm that measures the background 

mutation frequency according to a model created from the tri- and penta-nucleotide substitution 

frequency (Arnedo-Pac et al., 2019). The program detects genes from CGC in the dataset and 

identifies clusters of different sizes.  
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The aforementioned programs produce a list of genes based on different measures of driver gene 

status. MutSig2CV calculates driver genes based on mutation frequency whereas dNdScv, 

OncodriveCLUST and OncodriveCLUSTL are based on selection. The background mutation rate is 

modelled differently in each of the programs however both MutSig2CV and dNdScv use covariates 

to correct the background mutation rate. OncodriveCLUSTL and dNdScv corrects for context-

dependent mutation biases by applying a penta-nucleotide model.  

 

1.5.4 Examples of cancer driver genes 

The TP53 gene, a tumour suppressor gene,  has been identified as one of the most frequently 

altered gene in human cancers and p53 pathway inactivation occurs in the majority of cancers 

(Olivier et al., 2010). The p53 protein is a 53kDa protein and is a transcription factor initially 

thought to enhance the rate of transcription of six or seven known genes (Levine, 1997), however, 

this number has risen to 3661 known target genes (Fischer, 2017). One of the genes regulated by 

p53 is MDM2.  MDM2 protein is an E3 ubiquitin ligase and ubiquitinates p53 for proteasome 

degradation via the ubiquitin-dependent pathway (Moll and Petrenko, 2003). Therefore, p53 is 

negatively regulated by MDM2. In stressful cellular conditions there is an increase in p53 protein 

expression, and it is uncoupled from MDM2. The increase in p53 expression results in the 

regulation of p53 targets and protein-protein interactions (Vousden and Lu, 2002). This can lead 

to DNA repair, growth arrest, senescence, and apoptosis. 

P16-Ink4a is CDK inhibitor and is part of the INK4A family of inhibitors. This tumour suppressor 

gene inhibits the S phase of the cell cycle (Romagosa et al., 2011). P16-Ink4a expression also 

inhibits the phosphorylation of Rb and promotes binding of E2F1 which results in G1 cycle arrest 

(Serrano, 1997). This gene is also highly correlated with HPV infection in head and neck squamous 

cell carcinoma (Stephen et al., 2013). P16 expression was measured in a study looking at skin 

biopsies from cSCC, Bowen’s disease, BCC, seborrheic keratosis, and normal skin. P16 was 

overexpressed in 60% of cSCC samples and 50% of BCC samples. It was also identified that 68% of 

tumours located on sun exposed areas in comparison to non-sun exposed areas showed over 

expression (Conscience et al., 2006). 

The Notch signalling pathway is the one of the most activated signalling pathways in cancer (Yuan 

et al., 2015). It is activated when a ligand binds to a receptor; there are four receptors, Notch1 to 

4, and there are five ligands, delta-like ligand 1 (DLL1), delta-like ligand 3 (DLL3), delta-like ligand 4 

(DLL4), Jagged-1 (JAG1) and Jagged-2 (JAG2) (Capaccione and Pine, 2013). The role of Notch 
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signalling varies according to cancer type and can be considered an oncogene or a tumour 

suppressor gene (Fan et al., 2004). In mice, Notch1 deletion leads to tumour formation suggesting 

that Notch1 is a tumour suppressor gene in skin (Nicolas et al., 2003). Mice lacking Notch2 and 

Notch3 in their epidermis also develop skin cancers (Demehri et al., 2009).  

Missense gain of function mutations in all three RAS genes are found in 27% of all cancers (Hobbs 

et al., 2016). The three RAS genes are HRAS, KRAS and NRAS. KRAS is the most mutated RAS gene 

in human cancers and HRAS is the least mutated RAS gene. These oncogenes activate the 

downstream targets by binding to GTP. This binding then promotes non proliferating cells to enter 

the G1 phase of the cell cycle (Taylor and Shalloway, 1996). Mutations in RAS especially HRAS is 

most common in cutaneous squamous cell carcinoma (Su et al., 2012). 

 

1.6 Potential driver genes in skin cancer 

Skin cancer can arise from keratinocytes and melanocytes. Melanoma arises from melanocytes 

whereas cSCC and BCC arise from keratinocytes (Figure 1-7). AKs and Bowen’s disease are 

precancerous lesions which may develop into skin SCC (Albibas et al., 2017). It has previously been 

identified that between 0.025 – 20% of AKs progress to skin SCC (Callen et al., 1997, Marks et al., 

1988, Quaedvlieg et al., 2006, Glogau, 2000) and 3 – 5 % of Bowen’s disease in extragenital 

regions and 10% in genital regions progress skin squamous cell carcinoma (Cox et al., 1999).  

Most BCCs occur sporadically however they can also arise as a result of Gorlin syndrome (also 

known as basal cell nevus syndrome (BCNS)) where individuals have germline defects in PTCH1 

(Amakye et al., 2013, Epstein, 2008). It was found that BCNS patients have lower mutational loads 

and lower proportion of UV mutation signatures and fewer mutations in genes involved in DNA 

checkpoint repair and genome stability (Chiang et al., 2018). The genes most frequently mutated 

in BCNS in this study were TP53, FANCA and BRCA1. Potential driver genes have been identified in 

BCC using the InVEx program and a simple binomial distribution has been used to distinguish 

driver mutations from passenger mutations (Jayaraman et al., 2014). Bonilla et al., 2016 used 

MutSigCV for their BCC exome sequencing analysis (Bonilla et al., 2016). The genes identified as 

significantly mutated in these studies include TP53 and those identified in the Hedgehog pathway 

such as PTCH1, SMO and SUFU (Jayaraman et al., 2014, Bonilla et al., 2016).  

The most common program used to identify driver genes in skin SCC has been from the MutSig 

suite (Pickering et al., 2014, Inman et al., 2018, Chitsazzadeh et al., 2016, Li et al., 2015). Studies 

have also used IntOGen (Pickering et al., 2014, Cammareri et al., 2016) OncodriveCLUST and 
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OncodriveFM (Inman et al., 2018) and their own statistical methods (Pickering et al., 2014, Yilmaz 

et al., 2017). NGS analysis has identified that the most common genes which are significantly 

mutated in skin SCC are TP53, NOTCH1, NOTCH2 and CDKN2A (Albibas et al., 2017, Pickering et 

al., 2014, Li et al., 2015, Chitsazzadeh et al., 2016). 

Melanoma samples have been included in the large Pan Cancer Studies as previously described 

(Rheinbay et al., 2020) which have used a range of driver gene packages for analysis. BRAF, NRAS 

and PTEN genes are mutated in melanoma, TP53 and CDKN2A are also significantly mutated in 

melanoma similarly to skin SCC (Hodis et al., 2012). 

 

 

 

 

 

 

1.6.1 Studies in normal skin and precancerous lesions 

NGS has also been conducted in chronically sun-exposed ‘normal’ skin in a study that analysed 

234 biopsies of 0.79 – 4.71mm2 from eyelid skin that had been excised from four individuals and 

DNA then extracted to sequence the exons of 74 genes (Martincorena et al., 2015). That study 

identified that the genes which were significantly mutated in sun-exposed normal skin were 

NOTCH1, NOTCH2, FAT1, TP53 and noted that these genes are also frequently identified as driver 

genes for cSCC.  

Albibas et al., 2017 investigated gene mutations in p53 immuno-positive patches (PIPs) in 

chronically sun-exposed ‘normal’ skin. PIPs are clusters of cells that have accumulated nuclear p53 

protein, and thus can be detected immunohistochemically using an anti-p53 antibody, in chronic 

sun- (or UV-) exposed skin (Berg et al., 1996, Brash et al., 1996, Jonason et al., 1996, Kanjilal et al., 

1995, Rehman et al., 1994, Rehman et al., 1996, Ren et al., 1997, Rebel et al., 2005, Tabata et al., 

1999, Urano et al., 1995, Ziegler et al., 1994). These clusters represent keratinocytes that 

frequently harbour TP53 mutations that lead to clonal proliferation (Jonason et al., 1996), thus 

the mutated TP53 keratinocytes can gain a growth advantage over normal keratinocytes (Ziegler 

et al., 1994). In the Albibas et al. 2017 study, targeted sequencing was conducted on 18 genes 

Figure 1-7: Clinical images of skin cancers, showing BCC, cSCC and melanoma (left to right).  
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with the final analysis reporting on 15 PIPs ranging in size from 0.14–0.27 mm2. The study 

identified that PIPs contain mutations in multiple cancer related genes and although some 

mutations were clonal, there were also subclonal mutations. This finding supported the ‘Big Bang’ 

model of cancer where tumours grow as a single expansion where clonal and subclonal 

alterations occur early in tumour growth (Sottoriva et al., 2015).  

In another study, normal skin samples that would have been chronically sun-exposed were taken 

from ten patients with varying age ranges undergoing Mohs surgery for skin cancer (Lynch et al., 

2017). The 16mm2 epidermal samples were sequenced for 121 genes. This study showed that the 

distribution of clone sizes in the epidermis was so high that they were unlikely to have occurred 

by neutral drift according to the time frame of a lifespan. Mathematical modelling and 

computational simulation showed that the high distribution of clone sizes was likely due to 

secondary mutations occurring at clone boundaries, such as in clones containing NOTCH1 

mutations, providing a competitive advantage for these cells at the boundary. In addition, the 

study concluded that the fate of a mutant stem cell in this scenario depends on a combination of 

neutral drift, cell competition and spatial constraints.  

Normal skin samples were taken from different body sites and 2mm2 (1 x 2mm grid) samples for 

DNA extraction were collected to sequence 74 genes in another investigation (Fowler et al., 

2020). The dN/dS ratio was used to identify genes under selection, and 11 genes were identified 

under positive selection, including 5 novel genes and 6 genes previously identified in 

Martincorena et al., 2015 (NOTCH1, TP53, NOTCH2, NOTCH3, FAT1 and RBM10). The prevalence 

of mutant NOTCH1 and FAT1 in the normal skin was the same as those observed in cSCC and BCC, 

which suggests that mutations in these genes may be involved in colonising normal tissues and 

not driving tumour formation. This has led some researchers to question whether some of these 

mutated genes are truly driver genes because many of these clones do not give rise to cancer (for 

example the author of this thesis was asked this question during a presentation of work contained 

in this thesis), but an alternative view could be that colonisation of normal epidermis by mutant 

cells helps to drive subsequent skin tumour formation. In the same study, mutant TP53, NOTCH2 

and KMT2D were enriched more in skin SCC and BCC compared to normal skin (Fowler et al., 

2020). This study also identified that competitive selection is not uniform all over the body.  

Another approach that involved identifying mutations from a large collection of RNA sequences 

from the Genotype-Tissue Expression (GTex) project involving 6700 samples from 500 individuals 

spanning 29 normal tissues (since some mutations in DNA can be found in corresponding RNA) 

identified that the number of mutations in skin increased with age (Yizhak et al., 2019). That study 
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also identified that the increase in mutations was significantly higher for sun-exposed skin 

compared to non-sun exposed skin (Yizhak et al., 2019). 

In terms of later precancerous skin lesions, WES of AKs was conducted in the Albibas et al., 2017 

investigation, as well as in studies by Rodriguez-Paredes et al., 2018 and Chitsazzadeh et al., 2016, 

but the total number of AKs in which WES has been performed is limited to date. High mutational 

heterogeneity has been seen in AKs in each of these studies, and although methylation profiles of 

AKs and cSCCs has shown similar profiles and suggested that there are two corresponding 

subtypes of AK and cSCC (Rodriguez-Paredes et al., 2018) the exome data did not show any 

correlation between the methylation profile and the genomic profile to support the two subtypes 

of skin SCC at a mutation level.  The studies by Chitsazzadeh et al., 2016, Albibas et al., 2017 and 

(Rodriguez-Paredes et al., 2018) also identified that many similar genes were mutated in AKs and 

cSCCs and, separately in the Albibas et al., 2017 study, in Bowen’s and cSCCs.  Furthermore, the 

latter group showed many identical mutations in contiguous lesions where cSCCs had arisen from 

an adjacent AK or Bowen’s, thus proving genetically that AKs and Bowen’s can develop into cSCC 

(Albibas et al., 2017). There had also been previous studies which had conducted single gene 

analysis in Bowen’s disease (Lee et al., 2000) and AKs (Nelson et al., 1994) however the NGS 

studies have significantly moved the field forward in terms of understanding how mutated AKs 

are. 

As melanoma develops from melanocytes, the normal skin from 19 sites across 6 donors was 

collected to look for mutations within cutaneous melanocytes (Tang et al., 2020), in a manner 

similar to the above work on keratinocytes in chronically sun-exposed skin. The number of 

melanocytes is much lower than the number of keratinocytes in the epidermis, therefore 

epidermal cells were collected from the tissue samples and the cells were then cultured. Single 

cells were sorted for clonal expansion, then DNA and RNA were extracted. RNA sequencing was 

used for cell identification and DNA from the corresponding melanocytes demonstrated loss of 

function mutations in NF1, CBL and RASA2, which are part of the MAPK pathway (Tang et al., 

2020). The study also identified that the mutation burden of melanocytes from sun exposed 

normal skin varied by several magnitudes.  

A study sequenced 293 cancer genes in 150 areas of 37 primary melanomas and their adjacent 

precursor lesions (Shain et al., 2015b). The results showed that the mutation burden varied 

significantly according to the anatomical site of excision, age of the patient at diagnosis and the 

total amount of sun exposure. Patients with BRAF V600E mutations were more common in 

younger patients who had melanomas in intermittent sun damaged skin (Viros et al., 2008) 



 

60 
 

whereas patients with NRAS, BRAF V600K and K601E mutations occurred in older patients with 

chronically sun exposed skin (Long et al., 2011). This study identified that there were different 

mutation pathways for melanoma progression by comparing the precursor lesions and the 

primary melanoma. It was found that BRAF V600E mutation were identified in benign naevi 

whereas BRAF V600K, K601E and NRAS mutations were identified in melanoma in-situ or 

intermediate lesions which had already accumulated other mutations  (Shain et al., 2015b).  

Acquired melanocytic nevi can transform into melanoma and this has been suggested to have 

occurred in around 30% with a range of 4-72% of melanomas and that 70% of melanomas arise de 

novo (Pampena et al., 2017). Therefore, in one study, WES was conducted in 30 matched nevi and 

adjacent normal skin to look at genetic factors involved in development of melanocytic naevi 

(Stark et al., 2018). Mutually exclusive mutations in BRAF and NRAS were most commonly 

identified in the nevi, with mutations in BRAF approximately five times more common than NRAS 

mutations. Novel genes were identified as mutated in the nevi, in addition to well-known driver 

genes such as HDAC9, MYH11 and DCC (Stark et al., 2018). The study also identified that nevi 

could be clonal but also that some might not be and could be polyclonal instead. Although TERT 

promoter mutations are common in melanoma (Hayward et al., 2017, Horn et al., 2013, Huang et 

al., 2013), there were no common TERT mutations seen in the acquired nevi (Stark et al., 2018).  

WGS was conducted on 14 benign melanocytic nevi, including congenital and acquired nevi, in 

another study (Colebatch et al., 2019). All the nevi had mutations in genes which activated the 

MAPK pathway and had mutually exclusive mutations in BRAF or NRAS. Nevi with high mutational 

loads showed UV mutation signatures whereas nevi with low mutational loads did not. In this 

study, TERT promoter mutations were detected in nevi from 2 individuals, which suggests that 

these mutations can arise prior to the development of melanoma.  

 

1.7 Skin cancer prevention and treatments 

Different groups of people have varying risks for skin cancer and an individualised approach 

should be taken to prevent skin cancer. The National Institute of Clinical Excellence guidelines on 

sunlight and skin; risks and benefits (NICE, 2016) state that children particularly babies, people 

who tend to burn rather than tan, people with lighter skin, red hair, blue or green eyes, and/or 

have lots of freckles, people with many moles, immunosuppressed individuals or those who have 

a history of skin cancer should take extra care to avoid sun damage. People who work outside, 

have outdoor hobbies and those who take holidays with increased sun exposure are also at a 
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higher risk of skin cancer. Groups who have little or no exposure to sun for their own reasons, are 

housebound or confined to working indoors for long periods of time are at increased risk of 

vitamin D deficiency. Therefore, the guidelines promote that there are risks and benefits to sun 

exposure and a balance needs to be achieved in line with everyone’s own risk factors. Protection 

from the sun can be achieved by wearing suitable clothing, staying in the shade and applying 

sunscreen (Green et al., 2011). Vitamin D supplements should be taken by those who have 

minimal sun exposure.  

The first line of treatment for cSCC is surgical excision and a low risk cSCC is considered as having 

a horizontal diameter of less than 2cm and high risk cSCCs have a diameter of more than 2cm 

(Stratigos et al., 2015). Radiotherapy can be used to treat cSCC and a study has suggested that 

surgery and adjuvant radiotherapy provide the best treatment for skin SCC (Veness et al., 2005). 

In advanced/metastatic cSCC, immunotherapy with anti-PD-1 can be employed. First line 

treatment for most BCCs is surgery but radiotherapy can also be used (Peris et al., 2019). In some 

countries, locally advanced BCC can be treated by Vismodegib and Sonidegib, which are hedgehog 

pathway inhibitors targeting the oncogenic smoothened protein (SMO), and hedgehog pathway 

inhibitors are also approved for metastatic BCC (Peris et al., 2019). Patients with BCNS-BCC are 

more responsive to SMO inhibitors than sporadic BCC patients and have fewer functionally 

resistant SMO mutations (Chiang et al., 2018). In melanoma, the treatment can differ depending 

on the individual features of the tumour such as the location, the tumour stage, and the genetic 

profile. While the first line treatment for melanoma is surgery, other treatments can include 

palliative radiotherapy or photodynamic therapy for individual metastases, and chemotherapy, 

targeted therapy, or immunotherapy for disseminated metastases. The targeted therapy used in 

melanoma includes BRAF and MEK inhibitors for patients whose melanomas have BRAF mutations 

(Hamid et al., 2013), whereas immunotherapy includes PD-1 and CTLA-4 inhibitors (Ribas, 2012, 

Leach et al., 1996).  

While melanoma and cSCC are more likely to metastasise than BCC, there are lots of studies that 

have investigated treatment options for advanced/metastatic melanoma, but treatment options 

for advanced/metastatic cSCC are more limited. SCC also occurs in other organs, including head 

and neck (i.e., oropharyngeal), lung, oesophagus, etc., and those SCCs are often more likely to 

metastasise than cSCC, therefore it might be possible in the future to adopt treatment 

approaches that are developed to target common mutations that are present in SCCs arising in 

those organs. Related to this, some studies have revealed that several genes (including TP53, 

CDKN2A, NOTCH1) mutated in aggressive/metastatic cSCC are also mutated in head and neck SCC, 
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and that certain driver genes (e.g. TP53, CDKN2A, HRAS) in cSCC are shared with lung SCC 

(Pickering et al., 2014, Li et al., 2015). In addition, Chitsazzadeh et al., 2016 compared mRNA 

expression profiles of cSCC to SCC in other organs by using gene set enrichment analysis (GSEA) 

and identified that mRNA profile in skin SCC was most similar to oropharyngeal SCC but least 

similar to cervical SCC, which is predominantly virally driven by human papillomavirus. 

 

1.8 Mutation rate and UV exposure in skin 

NGS databases and publications which have reported on NGS mutations in skin cancers and 

chronically sun-exposed skin can provide information on the type and number of mutations 

identified in skin after prolonged UV exposure over many years. However, there have not been 

any studies identifying how many mutations are generated after a shorter duration of UV 

exposure (e.g., over several weeks). To do this, it would be necessary to develop a bioinformatics 

pipeline that would help analyse mutations in epidermal samples from patients who have 

received UV exposure over several weeks. To relate numbers and types of mutations to the doses 

of UV received, the UV doses would need to have been measured and documented.  NB-UVB is 

administered over several weeks as a treatment in psoriasis and the UV dose is recorded for each 

exposure during the course (Bhutani and Liao, 2010). Not only would a bioinformatics pipeline 

that could analyse the mutation burden from a NB-UVB course be useful to allow one to 

extrapolate from this the number of NB-UVB courses psoriasis patients could safely receive over 

their lifetime without being at significantly higher risk of skin cancer, but it might also be helpful 

to estimate the mutation burden from natural UVB and might also allow better understanding of 

skin cancer development in relation to UVB exposure. Although not part of this current thesis, 

skin biopsies from sun exposed and non-sun exposed areas have been collected by colleagues in 

Dermato-pharmacology, University of Southampton from patients before and after a course of 

NB-UVB treatment over the past 3 years and the plan is that they will be sequenced in the 

Wellcome Sanger Institute in Cambridge, and the bioinformatics pipeline generated in this thesis 

will be used to analyse that data in a future study.  
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1.9 Aims 

To generate a bioinformatic pipeline that could be used in a future study investigating the long-

term safety of NB-UVB treatment, this thesis will involve undertaking bioinformatics research on 

NGS data from skin cancers (cSCC, BCC and melanoma), other SCCs which could inform on 

common driver genes shared between those SCCs and cSCC, and on precancerous skin lesions and 

UV exposed normal skin. The initial work in the thesis will focus on cSCC to acquire the relevant 

bioinformatic skills and then the thesis will address the following aims: 

 

1. To delineate the mutation signatures and driver genes in cSCC 

 

2. To identify mutation signatures and driver genes in oropharyngeal SCC, lung SCC, 

oesophageal SCC, and cervical SCC, and to compare these between cSCC and the other 

SCC to examine for common driver genes.  

 

 

3. To determine whether common driver genes exist between cSCC, BCC and cutaneous 

melanoma, because each of these arise as a result of UV exposure, despite the former 

two cancers arising from keratinocytes and the latter arising from melanocytes.  

 

4. To compare the bioinformatics information from cSCC, BCC and melanoma with 

mutations identified by NGS in chronically sun-exposed normal and precancerous skin 

lesions to enable the production of a pipeline that would allow future analysis of skin 

samples from people who receive repeated UV exposure over several weeks (e.g., 

patients receiving NB-UVB treatment).  
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2. Methods 
  

2.1 Programming tools 

 

2.1.1 Iridis HPC 
 
Iridis is the University of Southampton high performance compute cluster. Iridis 4 was used for 

this analysis which was their fourth-generation cluster. Iridis was designed to provide a batch 

service for users to submit parallel jobs or they could use it to run a multiple resource intensive 

job. Iridis 5 is currently used by the University of Southampton, and it is four times more powerful 

than its predecessor. Iridis 5 has 3 login nodes with 40 cores and 384 GB of memory. 

 

Iridis uses the Linux operating system which provides access to bioinformatics tools. Linux 

operating system relays messages between programs and processes requests using the 

computer’s hardware so one process does not pre-empt another process (Finney, 2001). Linux 

also has the ability to suspend a process for a limited period of time. Therefore, these 

characteristics are beneficial when manipulating large-scale genomic data. Iridis was used in this 

analysis to access a bioinformatics program called Bedtools (version 2.21.0)(Quinlan and Hall, 

2010). The Bedtools program used the exome reference file to identify and extract all the variants 

in the exome from the whole genome mutation file. Bedtools functions with two input files: a 

reference file which contained all the exome chromosome co-ordinates (hg19 genome positions) 

and a whole genome mutation file.  

 
 

2.1.2 Python                                                        

 

Python is a programming language wildly used in genomic analysis (Jenkins, 2004). For local use 

the, Oncotator bioinformatics program  (Ramos et al., 2015) was available as a Python module 

which was used in this study and Oncotator required Python version 2.7. However, 

OncodriveCLUSTL, which is another bioinformatics program that was used in this analysis, 

required Python 3.5. The Miniconda installer 

(https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html) was used in this 

instance, as it included Python 3.5 and all the packages OncodriveCLUSTL depended on.  

https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html
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2.1.3 R statistics and packages                    

R (https://www.r-project.org/) is a language that is used for statistical programming and graphics. 

R version 3.5.1 was used to run Maftools (v2.4.15). Mutation Annotation Format (MAF) files are 

the file format required for analysis in Maftools, where they standardise the annotation of 

mutations. Oncotator was used for annotation and constructed these MAF files. Maftools was 

used to analyse and visualise mutation data. Mutation signatures for single base substitutions 

(SBS) was also identified using Maftools as well as manipulating the genomic data to identify the 

most frequently mutated genes in the dataset and the most common mutation changes. 

 

2.2 Bioinformatic tools 
 

2.2.1 Sigminer                                                                   

The double base substitution (DBS) mutation signatures were identified using Sigminer 1.0.16 

(Wang et al., 2021) as Maftools was only able to identify SBS mutation signatures. A DBS mutation 

signature shows the proportion of samples where two consecutive reference nucleotides are 

replaced by another two nucleotides such as adenine, thymine, guanine or cytosine. The 

mutational pattern was then categorised into one of the reference DBS mutation signatures 

(Alexandrov et al., 2020). This was important to calculate as UV is known to induce DBS 

mutations, via direct DNA damage at dipyrimidine sites (CC > TT) (Brash, 2015). 

Default settings were used with the addition of the ‘add_trans_bias’ command to consider 

transcriptional bias categories. This ensured that the double base substitutions that occur were as 

a result of DNA damage and not due transcription-coupled nucleotide excision repair in response 

to DNA damage (Haradhvala et al., 2016). The DBS matrix used was the one which had 78 DBS 

changes which was in line with the matrix used in the COSMIC database (Alexandrov et al., 2020).  

A Nonnegative matrix factorisation (NMF) library was loaded in Sigminer to enable the optimal 

number of mutation signatures to be estimated, using the Brunet et al., 2004 settings, and the 

default number of runs were two per each value in the range which was ‘2:5’. These values were 

used due to the tumour sample size and the cophenetic plot showed robustness of clusters above 

0.9 between the range of 2:5.  The range represents the possible number of DBS signatures which 

can be identified from the matrix. 

 

https://www.r-project.org/
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2.2.2 Oncotator                                                                 

Oncotator annotates mutation data and was specifically designed for cancer genome annotation 

(Ramos et al., 2015). It provides information such as the gene name and the functional effect of a 

point mutation, insertion and deletion. A local version of Oncotator was downloaded as a Python 

module (version 2.7) due to our large datasets. The annotation directory used was 

oncotator_v1_ds_April052016 which was the latest version of the annotation directory, and the 

genome version was hg19 which is the same as GrCh37.   

 

2.2.3 MutSig2CV                                                                

MutSig2CV v3.11 (Lawrence et al., 2013) was used to analyse somatic point mutations and to 

identify genes which have mutations that occur more than expected by chance with regards to 

the background cellular mutation rate. The MutSig2CV v3.11 package was downloaded and the 

script for downloading was gifted by Dr Mat Rose-Zerilli and is detailed in appendix 7.7. The 

download package included a reference folder.   

To enable MutSig2CV to function, a mutation table was required and in this case, it was the MAF 

file produced from the Oncotator output. Then a coverage table was required which contains 

information about the coverage achieved for each gene in each patient, since this information 

was not available for this analysis a reference coverage file from the program was available in the 

reference folder. The coverage was required because this provides information on how many 

reads were aligned to a base during DNA sequencing. A base change could have differing effects 

therefore the coverage can provide information on how certain a nonsynonymous change has 

occurred compared to a synonymous change by analysing the read depth. A covariates table is 

also used in the analysis and this contains the gene names, the expression level of the gene 

averaged across many cell lines in the Cancer Cell Line Encyclopedia (Barretina et al., 2012), the 

replication time of each gene and the chromatin compartment of each gene. This covariate 

information can affect the background mutation rate of each gene which enables the detection of 

significantly mutated genes against variable mutation rates.  

MutSig2CV uses three independent statistical tests to identify significantly mutated genes. 1) The 

abundance test infers if the gene is highly mutated relative to the background mutation rate. The 

program normalises the background mutation rate which can vary across patients, genes and 

sequence contexts which is accounted for in this analysis. The ‘context_and_effect’ reference files 

were used to calculate the abundance score. 2) The clustering of genes is also measured, as genes 

often harbour hotspots which are regions where there are frequent mutations. Therefore, this 
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enables the program to differentiate between genes which have a uniform distribution and those 

which have mutation localised to hotspots. Higher significance is given to genes with localised 

mutations. 3) The conservation test is used to identify the functional significance of a mutated 

base where higher significance is given to regions of the genome that are highly conserved in 

vertebrates. The ‘conservation’ reference files are used for this analysis.  

 

2.2.4 dNdScv                                                                       

The dNdScv the program was run to identify driver genes via selection using a maximum-

likelihood dN/dS method(Martincorena et al., 2017). The program identifies genes under positive 

selection by comparing the number of non-synonymous mutations to the number of synonymous 

mutations to compare protein altering mutations to those that do not alter protein structure.  

In large datasets, where there are many synonymous mutations, the dNdSloc model is used. This 

model uses the number of synonymous mutations in a gene to predict the local mutation rate 

without extracting information from other genes. In this study, the dNdScv model which was used 

combined dN/dS with a negative binomial regression with many covariates. The dNdScv model 

combined the local mutation rate with the variation in mutation rate across genes by using 

epigenetic covariates that included data from 63 cell lines and 10 different epigenetic marks to 

predict the background mutation rate.  

The genomic data file compatible for dNdScv was read into R and then dNdScv was run for the 

file. The ‘dndsout’ is the output after dN/dS is run which included a list of objects that show 

maximum likelihood estimates of the dN/dS ratios for each gene for missense, nonsense, essential 

splice site mutations, indels; the p and q values for missense, truncation, substitutions, indels and 

a global value which incorporates all the mutation types. Significant genes were then 

characterised as genes with a global q value less than 0.1. These genes which satisfied the criteria 

were then retain for further analysis.  

 

2.2.5 OncodriveCLUST and OncodriveCLUSTL        

The OncodriveCLUST program (Tamborero et al., 2013) is present within the Maftools package in 

R. This program identifies driver genes via spatial clustering of mutations. The parameters used to 

the run program were that the minimum mutations for any gene was set to five to be included in 

the analysis. First, the protein altering mutations were identified in the samples and those that 

are thought to be occurring more than chance are highlighted in the dataset. These positions 

were grouped to form clusters and scores were assigned. The scores were assigned according to 
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the number of mutations in each and the length of the gene enclosed within the cluster. Then a 

gene clustering score was calculated by producing the sum of the cluster scores found in a gene. 

Each gene cluster score was compared to the background mutation rate model. There were 

different measures of significance in this analysis such as Z score or a p value based on a Poisson 

model. The method chosen in this analysis was ‘combined’ which meant the lower of the two p 

values produced from the Z score and Poisson model was chosen and the genes were ranked 

according to this value.  

OncodriveCLUSTL (Arnedo-Pac et al., 2019) identifies driver genes using a sequence-based 

algorithm that identifies clustering in a genomic region. The coding regions of hg19 were 

downloaded from the bitbucket repository 

(https://bitbucket.org/bbglab/oncodriveclust/src/master/). The default settings were used except 

for concatenate which was changed to ‘TRUE’ for all samples. This was done so the program could 

detect clusters of two or more single nucleotide variants which span two exons. This was 

conducted by concatenating the genomic elements by connecting two exons by gluing their 

consecutive ends together. The program calculated mutation signatures based on mutation 

frequencies by identifying when the mutated base occurs compared to the reference base and 

compared this to the total number of substitutions. The input file and the file with the hg19 

reference coding regions were used to calculate a background mutation model and by default 

OncodriveCLUSTL calculated a relative mutation frequency using the methodology published by 

(Mularoni et al., 2016). The mutational probabilities were calculated from the reference genome 

and alternate single nucleotide variants were compared. Following this, the program then 

conducted clustering analysis and the mutational clustering was only conducted on the regions 

that were annotated in the hg19 reference of genomic coding regions which were referred to as 

genomic elements.  Then mutation clusters were scored according to the number of single 

nucleotide variants they contain to produce a cluster score. The genomic element score is the 

sum of the score of the clusters within the element. Analysis of simulated mutations was also 

conducted in OncodriveCLUSTL where mutations that were observed in a genomic element were 

simulated at random several times. These simulated mutations were then compared to the 

observed mutations to calculate clustering probabilities. There were three types of p values which 

were calculated: empirical, analytical, and top cluster. The empirical p values were calculated 

based on the fraction of iterations that had a simulated genomic element score that was greater 

than the observed genomic element score. The analytical p value was calculated by fitting the 

simulated genomic element score to a gaussian kernel density estimate distribution and then 

identifying the upper quartile of the observed genomic element score. The third p value was 

https://bitbucket.org/bbglab/oncodriveclust/src/master/
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calculated for the top cluster p value and this was when a simulated cluster score was fitted to a 

gaussian density estimate distribution and the upper quartile of the observed cluster scores were 

identified. All the p values were adjusted by the Benjamini-Hochberg method to produce q values. 

The analytical p and q values were used in the analysis in this thesis as per the results in the 

Arnedo-Pac et al., 2019 publication. 

 

2.3 Comprehensive Literature search 

 

2.3.1 Database resources used 

To determine the mutational landscape of SCCs and skin cancer, a comprehensive literature 

search was conducted to identify all publications containing whole exome, whole genome, or 

Next Generation Sequencing (NGS) targeted sequencing data using similar guidelines as outlined 

by PRISMA (Liberati et al., 2009). PUBMED (https://www.ncbi.nlm.nih.gov/pubmed/) is a free 

database which is maintained by the National Centre for Biotechnology Information (NCBI). It 

contains citations and abstracts from articles in the fields of medicine, dentistry, veterinary 

medicine, health sciences and preclinical sciences. The citations provide a record of articles before 

they are indexed with MeSH and added to MEDLINE. MeSH, which is an acronym for Medical 

Subject Headings, is the National Library of Medicine’s vocabulary thesaurus which is used by 

MEDLINE indexers in identifying and recording the subject content of a published article. These 

terms are organised in a hierarchical structure. Therefore, MEDLINE contains a controlled set of 

MeSH terms which can be personalised in a search enabling a more sensitive and specific 

literature search (https://www.nlm.nih.gov/bsd/pmresources.html).  

According to the MEDLINE Indexing Process: Determining Subject Content, the MEDLINE indexers 

read the title, introduction and summary/conclusions, and scan the materials and methods, 

results, abstract, keywords and bibliographic references to generate the MeSH terms for each 

article 

(https://www.nlm.nih.gov/bsd/disted/meshtutorial/principlesofmedlinesubjectindexing/theindex

ingprocess/index.html). During the indexing process, terms which mean the same thing but differ 

slightly in spelling are classified under one MeSH term, therefore ‘Bowen Disease’ and ‘Bowens 

Disease’ would be classified under the MeSH term ‘Bowen’s Disease’.  

 

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.nlm.nih.gov/bsd/pmresources.html
https://www.nlm.nih.gov/bsd/disted/meshtutorial/principlesofmedlinesubjectindexing/theindexingprocess/index.html
https://www.nlm.nih.gov/bsd/disted/meshtutorial/principlesofmedlinesubjectindexing/theindexingprocess/index.html
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2.3.2 Search Terms and searching techniques used 

MEDLINE Ovid was used to conduct the literature search. Each search term was searched as an 

individual word to identify if the term had any MESH terms. If the term did not have a 

corresponding MESH term, the search was conducted as free text. Free text searches known as 

multi-purpose searches, scan the title, abstract, unique identifier, keyword heading word, name 

of substance word, protocol supplementary concept word, rare disease supplementary concept 

word, subject heading word and synonyms (http://ospguides.ovid.com/OSPguides/medline.htm).  

A combination of search terms was designed to identify NGS data.  Papers were only selected 

post-2007 to ensure the search was only focused on NGS data and not mutations identified via 

Sanger Sequencing. The papers identified in this search were compared with those identified from 

the COSMIC database (See section 2.4.1 below) by using the unique identifiers also known as 

PUBMED ID (PMID) numbers. COSMIC (Catalogue of Somatic Mutations in Cancer) is the world’s 

largest human-curated database of mutations in cancer (Forbes et al., 2016). This search was 

conducted for skin SCC, lung SCC, oropharyngeal SCC, oesophageal SCC and cervical SCC to 

identify if there were any significant papers identified in the literature that were not present in 

COSMIC. The search was also conducted in skin melanoma and basal cell carcinoma. The search 

terms used are detailed in appendix 7.9.  

 

2.3.3 Collating results 

PMIDs from the literature search were collated and screened to ensure all exome or genome data 

available in the paper was included. The papers were annotated and links to external databases 

containing genome data were identified, data was downloaded from supplementary material and 

data was extracted from tables or figures in the paper. The data which was not available in papers 

was recorded and the email addresses of the lead author from those papers were noted. The 

email addresses were checked for each author to ensure it was correct and was changed if they 

had moved institution or another author was selected in any cases where the author was 

deceased. An email was sent requesting this data and if there was no response a further email 

was sent after at least two weeks and the study was discarded if there was no response after a 

month.  

 

http://ospguides.ovid.com/OSPguides/medline.htm
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2.3.4 Data Extraction 

In the cases of where results from the literature search was stored in external protected 

databases, the whole genome or exome data was downloaded from dbGaP and EGA database. In 

dbGaP, the data was available in the dbGaP portal after Data Access Committee approval and was 

downloaded using Aspera (https://www.ibm.com/products/aspera). A repository key was 

downloaded and was in the form of an NGC file. The repository key was then used to decrypt the 

data. For EGA downloads, Miniconda was used to download Python 3.8.3 so the download client 

would be compatible. The download client pyEGA3 was used to download data from EGA. Once 

the Data Access Committee approved the data access request, the data was available in the EGA 

portal.  

The data from supplementary material from papers were taken and processed in different ways 

according to the way the supplementary data was supplied. The supplementary material from the 

journal articles were in Excel format and contained the exome data or the exome data for each 

individual tumour was available in separate text files. The chromosome number, start position, 

end position, reference base, alternate base and sample identification was extracted from the 

different file types from these journal articles. The files were edited to ensure the chromosome 

numbers included X and Y chromosomes. Duplicate lines were also deleted using awk and data 

from each individual paper was processed separately in Oncotator.  

 

2.3.5 Cross-referencing submission to cancer mutation repositories 
 

The data from the literature search was compared to genomic data in the COSMIC 

database and only genomic data which was not in the COSMIC database was extracted 

from the literature search. This ensured there were no duplicate datasets. This was done 

for all exome or genome data from papers about each specific SCC. The data from GDC portal, 

COSMIC database and journal articles were concatenated together to produce a MAF file with all 

the data available for each individual cancer. 

 

 

 

 

 

https://www.ibm.com/products/aspera
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2.4 Cancer mutation data mining 

 

2.4.1 COSMIC 

The data in COSMIC is curated on a per sample basis so mutation or clinical data was only in the 

database if it had been provided by the author. The release used for analysis was v91 and was 

downloaded on 21st April 2020. The files downloaded were classification.csv, 

CosmicMutantExport.tsv.gz, CosmicCodingMuts.vcf.gz and CosmicNoncodingVariants.vcf.gz. 

Variants were aligned to Genome Reference Consortium Human Build 37 (GrCh37) because 

Oncotator (Ramos et al., 2015) was used to annotate the genome and this program required 

variants that are aligned to this build of the genome. The classification.csv file provided a record 

of the clinical information available from the samples in the database and an example of the 

information provided for a single comma-separated record (i.e. tumour from one patient) is 

presented in table 2-1.  

Table 2-1: COSMIC classification.csv information provided for a single record. NS represents ‘Not Specified’. Column 
headings in bold were used in the analysis of the genetic landscape of SCCs and skin cancer. 

Column Headings Example Input 

COSMIC_PHENOTYPE_ID COSO33166091 

SITE_PRIMARY skin 

SITE_SUBTYPE1 foot 

SITE_SUBTYPE2 sole 

SITE_SUBTYPE3 NS 

HISTOLOGY melanoma 

HIST_SUBTYPE1 nodular 

HIST_SUBTYPE2 arising_in_nevus 

HIST_SUBTYPE3 NS 

SITE_PRIMARY_COSMIC skin 

SITE_SUBTYPE1_COSMIC foot 

SITE_SUBTYPE2_COSMIC NS 

SITE_SUBTYPE3_COSMIC NS 

HISTOLOGY_COSMIC malignant_melanoma 

HIST_SUBTYPE1_COSMIC nodular 
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HIST_SUBTYPE2_COSMIC NS 

HIST_SUBTYPE3_COSMIC NS 

NCI_CODE C4225 

EFO http://www.ebi.ac.uk/efo/EFO_0008515 

 

The COSMIC mutation data was provided in a CosmicMutantExport.tsv.gz file, this contained all 

the coding point mutations from targeted and genome-wide screens. A genome-wide screen 

includes whole genome and whole exome data. The information provided for a single record (i.e., 

one mutation in one gene from one patient’s cancer) is presented in table 2-2. The 

‘GENOMIC_MUTATION_ID’ was also used as a common identifier between the 

CosmicMutantExport.tsv.gz file and the CosmicCodingMuts.vcf and CosmicNonCodingVariants.vcf 

files. The sample name was used as a second form of identification of each tumour and the 

mutation type description was used to organise variants according to their mutation type. The 

sample type heading was used to ensure the tumour types were only from primary and/or 

metastatic human tumour samples and not cultured cells.  

Table 2-2: COSMIC genome-wide screen data available for a single record. NS represents ‘Not Specified’. Column 
headings in bold were used in the analysis of the genetic landscape of SCCs and skin cancer. 

Column Headings Example Input 

Gene name FANCM 

Accession Number ENST00000267430.5 

Gene CDS length 6147 

HGNC ID 23168 

Sample name TCGA-D1-A17A-01 

ID_sample 1783523 

ID_tumour 1687522 

Primary site endometrium 

Site subtype 1 NS 

Site subtype 2 NS 

Site subtype 3 NS 

Primary histology carcinoma 

Histology subtype 1 endometrioid_carcinoma 
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Histology subtype 2 NS 

Histology subtype 3 NS 

Genome-wide screen y 

GENOMIC_MUTATION_ID COSV57504903 

LEGACY_MUTATION_ID COSM955832 

MUTATION_ID 24750322 

Mutation CDS c.5900G>T 

Mutation AA p.S1967I 

Mutation Description Substitution - Missense 

Mutation zygosity   

LOH   

GRCh 37 

Mutation genome position 14:45668030-45668030 

Mutation strand + 

SNP n 

Resistance Mutation - 

FATHMM prediction NEUTRAL 

FATHMM score 0.17953 

Mutation somatic status Confirmed somatic variant 

Pubmed_PMID   

ID_STUDY 419 

Sample Type fresh/frozen - NOS 

Tumour origin primary 

Age 59 

HGVSP ENSP00000267430. 

HGVSC   

HGVSG   

 

There was also a Variant Call Format (VCF) file of all coding and non-coding mutations in the 

current release with the file names CosmicCodingMuts.vcf and CosmicNonCodingVariants.vcf. 
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These VCF files were used to extract the mutations for all the tumour samples in this analysis from 

the COSMIC database. Table 2-3 shows the information that was available from the COSMIC VCF 

files. 

 

Table 2-3: An example of the input shown in CosmicCodingMuts.vcf and CosmicNonCodingVariants.vcf. Details are 
provided for specific columns. 

 

 
 

2.4.2 GDC portal 

The Genomic Data Commons (GDC) portal contains The Cancer Genome Atlas (TCGA) somatic 

mutation data which been called using different mutation calling pipelines such as Somatic Sniper, 

MuTect, Varscan and MuSE. The Somatic Sniper MAF files were downloaded from GDC portal to 

extract the sample names of the tumours which were present for each individual cancer type. This 

file was used because the mc3.v0.2.8.PUBLIC.maf file only contained sample IDs and did not have 

a description of which organ site the sample originated from. The MC3 pipeline was produced as 

part of the Multi-Center Mutation Calling in Multiple Cancers project (Ellrott et al., 2018). By 

combining seven variant calling pipelines: MuTect, MuSE, Radia, Somatic Sniper, Varscan-SNV, 

Varscan-Indel, Pindel and Indelocator; a mutation calling pipeline was produced that accounted 

for variance and batch effects (Ellrott et al., 2018). Once the sample identifiers were extracted 

from the Somatic Sniper file, the variants for those samples were identified in the MC3 MAF file. 

The variant information from these MAF files were extracted and then run through the Oncotator 

program which produced MAF files with cancer-specific annotations (Ramos et al., 2015).   
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2.4.3 Samples used 

To identify the genetic landscape of SCC and skin cancer, and to analyse mutations across skin 

cancers, data was extracted from multiple sources. A summary of the data sources, programs and 

processes conducted is shown in figure 2-1.  

 

 

 

Figure 2-1: Summary flowchart for extraction and processing of Next Generation Sequencing data. The 
flowchart outlines the data sources, programs and processes for analysis of somatic mutations in squamous 
cell carcinomas (SCCs) and skin cancer.  
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2.4.4 Data extraction 
 

In this analysis, data was collated from the three different sources, described above. Since both 

COSMIC and the MC3 files contained TCGA data, the files were collated, and duplicate samples 

were deleted. Variant calls detected from the MC3 file were used in the case of duplicates as this 

pipeline is the most recent analysis of the data (Ellrott et al., 2018). Once the duplicates were 

deleted, the files were annotated using Oncotator and a MC3/COSMIC MAF file was produced as 

shown in the ‘formatting and merging’ section of figure 2-1.  
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2.5 Skin cancer bioinformatic pipeline 

 2.5.1 Overview 

Mutation data for SCCs and skin cancer was extracted from the COSMIC database (See table 2-1, 

2-2 and figure 2-2). Figure 2-3 shows how this data was converted to a format compatible for 

Oncotator. The bash script for data extraction from the COSMIC database was created in 

collaboration with Dr Jane Gibson, lecturer in Cancer Bioinformatics and Genomics, University of 

Southampton, and the script detailing this critical step is in appendix 7.1.   

        COSMIC Classification Information                     COSMIC Mutation Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-2: Flow diagram for extraction of genomic data from COSMIC. Data was extracted from classification.csv, 
the clinical characteristics file and Cosmicmutationexport.tsv.gz containing all cancer mutation data to identify all 
cancer mutation data associated with SCCs. 

classification.csv  

 

All records with Primary 

Histology: carcinoma 

Histology subtype 1: 

squamous_cell_carcinoma 

File: SCC_sites.txt 

Cosmicmutationexport.tsv.gz 

 

All records with Primary 

Histology: carcinoma 

Histology subtype 1: 

squamous_cell_carcinoma 

File: SCC_mutations.txt 

 

If SCC_sites.txt are in column 8 (primary site column) of SCC_mutations.txt 

then output the mutations into separate files with variants for each 

squamous cell carcinoma primary site 

File: site_squamous_cell_carcinoma.txt 

Cosmicmutationexport.tsv 

Unzipped file 
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The script takes the COSMIC variant call format file (VCF) for coding and non-coding mutations 

and merges them to produce an all.vcf file of all the coding and non-coding mutations in the 

COSMIC database, which was then split by primary histology and histology subtype classification 

with duplicates removed.  

The CosmicMutantExport.tsv file contained all the mutation data for targeted and genome-wide 

screens and was filtered to only show mutations which were described in the relevant histological  

types’. The file was also filtered to ensure the mutations were aligned to the GRCh37 so the 

dataset only included mutations aligned to this version of the genome and only whole exome or 

whole genome data was included in the analysis. 

 The script was then used to list and count all the mutation descriptions which show the type of 

mutation at the amino acid level: substitution, deletion, insertion, complex, fusion or unknown; 

and then sorted according to their mutation type and only substitutions, deletions and insertions 

were included in our downstream analyses. All the output files produced were organised 

according to the body site the cancer originated. The end of these steps are represented the last 

stage of figure 2-2  
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Figure 2-3:  Flow diagram displaying how mutation data from COSMIC was converted to be 
compatible for Oncotator. Mutation data was cross-checked with COSMIC VCF file to identify 
all the reference and alternate alleles for insertions, deletions, and substitutions. 
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The variant information in each site_squamous_cell_carcinoma.txt file was filtered using the 

mutation description and the genomic mutation identifiers (COSV) as these were unique numbers 

for each mutation in the file. Three files were produced, one for substitution mutations, one for 

insertions and one for deletions mutations with their unique genomic mutation identifiers. The 

genomic identifers in each of these files were searched for in the all.vcf file and all the lines with 

the reference and alternate allele for each mutation was identified. This was repeated for the 

SCCs of each organ site to produce mutation data specific to each SCC and each mutation 

description. This step produced the three files which are shown in the green boxes in figure 2-3. 

To ensure the file was compatible to be run on Oncotator to produce a MAF file, the output files 

from the bash script were run through another list of commands. This was to ensure that file only 

included unique variants with chromosome number, chromosome start position, end position, 

reference base, alternate base and sample name. 

The insertion, substitution and deletion files were collated to create one single file with all the 

COSMIC mutation data for each specific cancer in the study. The file produced at the end of this 

section of the pipeline is represented in the final purple box in the flowchart in figure 2-3. These 

files were created for cSCC, oropharyngeal SCC, oesophageal SCC, lung SCC, cervical SCC, BCC and 

melanoma. 

 

2.5.2 Unifying somatic mutation annotation 

The COSMIC database contained data from multiple sources including TCGA data samples. When 

COSMIC data and MC3 samples were merged together, there were duplicate samples from the 

MC3 file present. If the same samples were identified in the COSMIC database and the MC3 file, 

the sample data from the COSMIC database was removed and the data from the MC3 file was 

used. The MC3 file was considered as better representation of the true variant call as the MC3 

pipeline was produced and optimised after comparing different variant calling pipelines such as 

MuTect2, VarScan2 and Pindel which is outlined in chapter 1, section 5.1. 

Any samples which showed variants from cell line or cell culture experiments were not included in 

the analysis to ensure that only variants from tissue samples remained. A list of sample identifiers, 

which included mutation information for tumours that were only present in the COSMIC 

database, were absent from the MC3 file and only originated from tissue samples, was produced. 

This file was used to extract all the variant information that was specific to this list of sample 

identifiers.  
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The variants from samples which were identified under the MC3 pipeline and the variants from 

samples which were unique to the COSMIC database, were joined together to produce a file with 

all the variants from the COSMIC database and the MC3 pipeline. This was done separately for 

each specific cancer type. The COSMIC variant information was extracted from the final file 

produced in figure 2-3. Therefore each cancer output file contained the chromosome number, 

start position, end position, reference base, alternate base and tumour barcode for each tumour 

that was unique to the COSMIC database for that specific tumour type.  

The script outlining this process is in chapter 7, section 4 in the appendix.  

 

2.5.3 Duplicate exclusion 

Each cancer output file was run through Oncotator to convert the output file into a MAF file. The 

MAF file was created for analysis in Maftools. When a MAF file is loaded into Maftools, duplicate 

entries are removed. In Maftools a duplicate entry is when the chromosome number, 

chromosome start position and the sample ID are the same. To check which duplicate values were 

removed in the program, duplicate values were removed from the files prior to using Oncotator 

and Maftools.  

Genomic data for each cancer was collated and the Linux operating system was used to remove 

duplicate entries. In the Linux operating system, a duplicate entry is considered a row which is 

identical to another row. Therefore, in this file, the chromosome number, start position, end 

position, reference allele, alternate allele and sample ID should be the same to be considered an 

identical entry. A file was created with just the chromosome number, start position and sample ID 

for each cohort to predict the number of duplicates that would be identified in Maftools before 

uploading the file into Maftools as a method of checking this R package. 

 

2.5.4 Power calculations 

 

To identify the power of the study that was being conducted, the power was calculated using 

http://www.tumorportal.org/advanced_power. This study aimed to be inclusive to ensure cancer 

driver genes could be identified. The larger the study, the more likely it would be to identify driver 

genes which are present in a small subset of samples.  

http://www.tumorportal.org/advanced_power
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The number of samples available for each cancer was used and the background mutation rate for 

each cancer type was calculated using published studies. The South et al., 2014 study for skin SCC 

and the Lawrence et al., 2014 study was used for oropharyngeal SCC, lung SCC, oesophageal SCC 

and cervical SCC.   

 

2.5.5 False positive genes 

Maftools was used to identify the most frequently mutated genes. To ensure the analysis did not 

include false positive results, false positive genes from two papers  (Lawrence et al., 2013, Repana 

et al., 2019) were compared. A list of false positive genes were collated from these two papers 

and then compared to COSMIC Cancer Gene Census list, if any genes were identified on this 

Cancer Gene Census list they were no longer considered false positives. The false positive gene list 

is in appendix 7.5.1. This list of false positive genes were also referred to when identifying driver 

genes and any genes which were considered false positives were not considered driver genes.  

 

2.5.6 Driver gene identification 

To identify significantly mutated genes, the MAF files were produced for each individual SCC and 

skin cancer so they could be run on MutSig2CV. The MAF files were reformatted for dNdScv, 

OncodriveCLUST and OncodriveCLUSTL and these files were run on these programs and the q 

values were compared to produce a list of potential driver genes. The process is outlined below is 

figure 2-4.  
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A gene was considered significant if it had a q value The potential driver genes identified in cSCC 

were compared to those identified in oropharyngeal SCC, lung, SCC, oesophageal SCC and cervical 

SCC. This was done to identify the similarities and differences between cSCC and SCCs at other 

organ sites. The potential driver genes identified in cSCC were also compared to those identified 

in BCC and melanoma to analyse the differences between cancers which originate from 

keratinocytes and cancers which originate from melanocytes. 

 

 

2.5.7 Data visualisation and analysis 

Maftools was used to produce the top frequently mutated genes and the most common base 

changes and the script to do this is shown in the appendix 7.5. A box and whisker plot was 

produced to show the most common base changes and an oncoplot was produced to show the 

most frequently mutated genes. The oncoplot showed the proportion of samples that had a 

mutation in a specific gene and the specific type of mutation that was identified in each gene. 

Nonsynonymous and silent mutations were identified using Maftools. A nonsynonymous 

mutation included mutations that were classed as frame-shift deletion, frame-shift insertion, in-

frame deletion, in-frame insertion, missense mutation, nonstop mutation and splice-site 

Figure 2-4: Flowchart outlining the process for identifying potential driver genes. The four programs used to 
were MutSig2CV, dNdScv, OncodriveCLUST and OncodriveCLUSTL.  
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mutation. A silent mutation included mutations that were classed as 3’ untranslated region, 5’ 

flanking region, 5’ untranslated region, de novo start in frame, de novo start out of frame, 

intergenic region, intron, RNA, silent, start codon deletion, start codon insertion, start codon 

single nucleotide polymorphism, stop codon deletion and long non-coding RNA.  

Mutation signatures were produced using Maftools (Mayakonda et al., 2018) and Sigminer (Wang 

et al., 2021). Maftools was used to identify single base substitution (SBS) mutation signatures and 

Sigminer was used to identify double base substitution (DBS) mutation signatures (Alexandrov et 

al., 2020).  

The SBS mutation signature shows the proportion of samples where the reference nucleotide is 

replaced by another nucleotide such as adenine, thymine, guanine or cytosine in a specific 

nucleotide context. The mutational pattern is then categorised into one of the reference SBS 

mutation signatures (Alexandrov et al., 2020). To identify the single base substitutions in 

Maftools, the hg19 genome was loaded into R as shown and a trinucleotide matrix was made 

using the MAF file. The trinucleotide matrix which represents the 96 possible mutated 

trinucleotides. The 96 possible trinucleotide changes are the six base changes which could occur 

(C>A, C>G, C>T, T>A, T>C, T>G) multiplied by the 16 different bases which could reside on either 

side of the base change due to the different combination of the four DNA bases (A, T, C, G).  

The Non-negative Matrix Factorisation (NMF) package is used as an unsupervised learning 

technique and pattern recognition (Gaujoux and Seoighe, 2010). In this case, it was used to 

identify mutation signatures from the MAF file. This program uses the trinucleotide matrix 

produced from the MAF file labelled as ‘laml.tnm’ and ran an NMF using Brunet et al’s. (Brunet et 

al., 2004) estimation of optimal factorisation rank. The default number of NMF runs were 5 per 

each value in the range which was 2:6. The range represents the possible number of SBS mutation 

signatures which can be identified from the trinucleotide matrix produced from the MAF file. The 

result of these runs were saved in the file ‘laml.sign’. A cophenetic plot of ‘laml.sign’ was then 

produced which was used to measure the robustness of the clusters produced when run at each 

value of the range.  

The NMF was run for each value in the range (2:6) and a cophenetic plot was produced which is 

shown below (figure 2-5). This is a measure of robustness of the clusters produced which is 

measured on Y axis and the X axis represents each value in the range, which are the possible 

number of mutation signatures that can be produced from the MAF file. The cophenetic plot was 
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used to identify the optimum number of SBS mutation signatures which can be produced for each 

MAF file.  

 

Figure 2-5: Cophenetic plot produced from the genetic data of basal cell carcinoma samples using Maftools. The 
genetic data was used to produce a trinucleotide matrix of the single base substitutions and the cophenetic plot was 
used to determine the optimum number of mutation signatures which are present in the dataset. The X axis represents 
the number of mutation signatures and the Y axis measures the robustness of the clusters. 

 

A ‘laml.sig’ file was created and used the ‘extractSignatures’ command to decompose the 

trinucleotide matrix (laml.tnm) into the optimum number of mutation signatures (n). The ‘n’ was 

chosen based on the cophenetic plot and optimum number of mutation signatures that can be 

produced from the trinucleotide matrix produced from the MAF file. The highest point on the y 

axis of the cophenetic plot which is the robustness of the clusters and the greatest number of 

mutation signatures that could be produced from the samples (x axis) was identified. A value was 

chosen for ‘n’ which related to the value on the x axis of the cophenetic plot.  

The screenshot (Figure 2-6) below shows R Studio and all the data files which were stored during 

the session to produce SBS mutation signatures. The ‘laml.sig’ represents the mutation signatures 

produced from the MAF file. The MAF file used in the example below is ‘lamlbcc’. The ‘laml.sign’ 

are the results of the NMF which was run on the MAF file to identify the optimum number of 
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mutation signatures which could be produced for this dataset. The laml.tnm represents the 

trinucleotide matrix which was produced from the MAF file (lamlbcc).  

 

Figure 2-6: A screenshot of the data files produced in R studio during mutation signature analysis using Maftools. The 
‘Data’ column shows the name of the file and the second column is a description of the type of file.  

 

The mutation signatures identified from the dataset were stored in a file which was compared to 

the COSMIC SBS mutation signatures (Alexandrov et al., 2020). The R terminal was used to 

present the mutation signatures, their predicted aetiologies and their cosine similarity to the 

mutation signatures in the COSMIC database. Another command 

(maftools::plotSignatures) was then used to plot the mutation signatures in a graphical 

format which is shown in figure 2-7.  
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Figure 2-7: Example of mutation signature plots produced using Maftools. The three graphs represent the three 
different mutation signatures extracted from the dataset. The text description above each graph represents the single 
base substitution mutation signature and a measure of its similarity to the COSMIC database and an aetiology is stated.  

 

Maftools produces figure 2-7 to represent mutation signatures which is shown above. The three 

graphs are the mutation signatures produced from the MAF file. The X axis of each graph 

represents the trinucleotide context of each base change and the Y axis represents the proportion 

of bases with the single base changes from the cohort of samples. The mutation signatures shown 

in the example below are most similar SBS7a, SBS7b and SBS5.  
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2.6 Validation of the somatic status of mutations 

 

The COSMIC database is a Catalogue of Somatic Mutations in Cancer, therefore the mutations 

identified in this study were considered somatic mutations from tumour samples. However, the 

evidence that these mutations were truly somatically acquired has not been verified for all 

variants (i.e., by paired sample analysis with matched germline DNA). Therefore, it is possible that 

this database could contain ‘non somatic variants’ impacting the validity of our data. The 

database has a somatic mutation status annotated, which identifies that a ‘variant of unknown 

origin’ is when a mutation is known to be somatic but the tumour was sequenced without a 

matched normal sample. Some mutations are labelled as ‘previously observed’ which is when the 

mutation has been reported as somatic previously but has not been identified in the current 

paper that the genomic data was from. Any mutations labelled as ‘confirmed somatic’ is when the 

mutation has been confirmed to be somatic in the experiment by sequencing both the tumour 

and a matched normal from the same patient. Therefore, the paired precision of sampling will 

ensure that the variant is somatic and not a germline mutation. There is expert manual curation 

conducted when producing this database and papers with incomplete data or insufficient quality 

are not fully curated but used as additional references for somatic mutations.  

All COSMIC variants were included in this study but to ensure the results of this study were 

reflective of only the confirmed somatic variants, the ‘mutation status’ of variants identified in 

COSMIC were recorded and this information is deposited in appendix 7.11.5. Any cancer cohorts 

which had less than 98% of variants that were considered as confirmed somatic variants were 

reanalysed. This value of 98% was chosen because it was above the 95% confidence interval for 

the false positive rate which has been used in other published studies using matched tumour 

normal paired samples (Shand et al., 2020, Anzar et al., 2019). There were also many studies used 

in this analysis which used different variant calling algorithms, therefore the false positive rate 

could vary between different sequencing platforms and variant calling algorithms (Quail et al., 

2012).   

There were limitations to using this 98% cut-off as variants in driver genes could be present in the 

2% of variants which are not confirmed somatic variants. Therefore, by including the 2% of 

variants that were not included in this analysis, could affect the significance of the driver genes 

during this reanalysis. In the reanalysis conducted in this study there have been no changes to the 

driver gene status but if the other cohorts were reanalysed there is the potential for there to be a 

change in driver gene status. To identify which driver genes could be affected in the other 
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cohorts, the unconfirmed somatic variants of each cohort were extracted and analysed. Variants 

were analysed separately for each SCC, BCC, and melanoma. The presence of variants in common 

driver genes that were shared between the SCCs, melanoma and BCC were screened which is 

shown in appendix 7.11.6. Any studies which had 98% of confirmed variants but included variants 

in shared driver genes that were not confirmed somatic variants were also reanalysed and the 

results of this analysis are also in appendix 7.11.5.  The appendix 7.11.5 shows a table of the 

driver genes which were significant in skin SCC and the cancers which were reanalysed and a 

comparison of their original p and q value after MutSig2CV analysis compared to their new p and 

q values after reanalysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

92 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

93 
 

3. Mutational landscape of cutaneous SCC 

 

3.1 Introduction 

Squamous cell cancer (SCC) can arise in internal organs as well as in the skin. As there are limited 

treatments for aggressive cutaneous SCC (cSCC), one important question is whether cSCC has 

similar somatic genetic changes to SCCs in other organs. One might expect SCCs in different 

organs to arise in a similar manner, however, the fact that different carcinogens cause them and 

the fact that they occur in different microenvironments, it is possible that genetic changes may 

differ between the SCCs in various organs. Using bioinformatics to compare the mutational 

landscape of cSCC with that of SCCs in internal organs would inform on whether cSCC has 

common mutations, including driver gene mutations, with those in other SCCs, and thus whether 

treatments effective for other internal SCCs might have the potential for use in treatment of 

aggressive cSCC.  

Whole exome and whole genome studies have been carried out in cSCC tumours (Inman et al., 

2018) and a meta-analysis has been conducted using the raw data from individual studies (Chang 

and Shain 2021). In a study published in Journal of Investigative Dermatology (South et al., 2014), 

20 cSCC tumours were exome sequenced and were used to identify that NOTCH1 mutations occur 

early during cutaneous squamous cell carcinoma carcinogenesis. This analysis provided a detailed 

mutation analysis of TP53, NOTCH1, NOTCH2, CDKN2A and members of the RAS family of genes. 

However, it was difficult to identify additional definitive driver genes in cSCC due to the high 

mutation burden of this cancer and the small sample size. This study suggested that NOTCH1 

mutations arise early in cSCC development as this gene was sequenced in over 170 cSCC samples 

and ten normal skin samples. Mutations in NOTCH1 were identified in normal skin samples 

adjacent to the cSCC tumours suggesting that NOTCH1 is present in normal skin and has potential 

for clonal expansion to further initiate tumour formation.  

The data from the South et al., 2014 study was included and re-analysed in a subsequent study 

where the cSCC sample size increased to a total of 40 cSCC tumours (Inman et al., 2018). In this 

analysis three bioinformatics programs were used to identify significantly mutated genes from 

whole exome sequencing data, namely MutSigCV, OncodriveFM and OncodriveCLUST. There were 

22 genes identified which were identified as significant by at least two bioinformatics programs in 

this study. Genes which had previously been identified, such as NOTCH1, NOTCH2, TP53 and 

CDKN2A, were also replicated in this analysis. However, this analysis also yielded novel 

significantly mutated genes including HRAS, MAP3K9, PTEN, SF3B1, VPS41 and WHSC1. The whole 
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exome sequencing data in this study was also used to identify mutation signatures in cSCC and a 

novel mutation signature in cSCC associated with Azathioprine exposure was identified.  

Mueller et al., 2019 used single base substitution mutation signature analysis to identify mutation 

patterns in metastatic cSCCs. In this study whole genome sequencing was conducted on 15 

metastatic cSCC tumours, and the results compared with analysis whole exome sequencing of 

primary cSCCs by Pickering et al., 2014, and showed that mutation signature 7 which is associated 

with UV is present in both primary and metastatic cSCC tumours. The whole genome sequencing 

identified that the mutational burden was 171-fold higher in non-coding regions of the genome 

compared to coding regions. This suggested that mutations in regulatory regions in the non-

coding part of the genome might be contributing to tumour progression and metastasis in this 

tumour. The Mueller et al., 2019 study also highlighted that non-coding mutations and mutation 

signature analysis can be used to distinguish metastatic cSCC from metastases derived from other 

cancers in cases where a primary tumour cannot be identified.  

Due to the high mutation burden of skin SCC, it can be difficult to distinguish driver mutations 

from passenger mutations using a small sample size, therefore, a meta-analysis was conducted 

(Chang and Shain, 2021) using published raw data from exome sequencing to identify cSCC driver 

genes. This study included tumours from individuals with xeroderma pigmentosum, recessive 

dystrophic epidermolysis bullosa, immunosuppressed patients and sporadic cSCCs. Four 

bioinformatics programs were used (OncoDriveFML, MutSig, dN/dS and LOFsigrank) to identify 

driver mutations. The analysis replicated previous documentation of TP53, NOTCH1, NOTCH2, 

CDKN2A and HRAS as driver genes. There were 12 novel genes identified in this analysis including 

EP300, PBRM1, USP28 and CHUK which were mutated in more than 10% of tumours. The raw 

data from ten studies were used to call bases with the Mutect2 pipeline which spanned 105 

samples. This study was considered the largest analysis of cSCC samples to date. However, this 

meta-analysis of whole exome samples did not include the whole genome data from the Mueller 

et al., 2019 study. The Mueller et al., 2019 study used the whole genome data to identify 

mutational signatures and did not use their samples to identify driver genes, whereas Chang and 

Shain (2021) identified driver genes in their analysis and did not run mutation signature analyses.  

The inclusion of underlying genetic conditions such as xeroderma pigmentosum and recessive 

dystrophic epidermolysis bullosa which increase the chances of a patient developing cSCC 

(Bradford et al., 2011, Pourreyron et al., 2007) in the above meta-analysis could mean that some 

of the driver genes identified may not be representative of the wider population, hindering its 

clinical applicability. In addition, as UV treatment of skin disease is unlikely to be given to patients 
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with xeroderma pigmentosum or recessive dystrophic epidermolysis bullosa, but is used in 

immunocompetent patients, including patients who later might become immunosuppressed (e.g. 

if they subsequently required an organ transplant), there is a need to undertake a comprehensive 

analysis of mutational signatures and driver genes in cSCCs from all immunocompetent and 

immunosuppressed patients where exome sequencing and/or whole genome sequencing data is 

publicly available in databases and/or in publications in the literature. The presence of cancer 

databases such as COSMIC can be utilised with independently curated data to ensure all cSCC data 

has been identified (Forbes et al., 2016).  

In this results chapter, the mutational landscape of cSCC will be dissected by extracting all whole 

genome and whole exome sequencing data from COSMIC database and a literature search. The 

collated genomic data will include sporadic cSCC samples which have no underlying genetic 

conditions to ensure the driver genes identified are pertinent to the general population, including 

those who go on “sun-holidays” and/or receive treatment with UV for skin disease. The analysis 

will be used to dissect any single base substitution mutation signatures and double base 

substitution mutation signatures which can be used to identify the mutational pattern within 

these skin SCC cohorts. The potential driver genes and mutation signatures from the analysis 

might also highlight specific regions of the genome that might lead to the identification of 

potential drug-targets and therapies in skin SCC.  

 

3.2 Methods 

To identify data relevant to skin SCC, the COSMIC database v91 

(https://cancer.sanger.ac.uk/cosmic) was utilised. The CosmicMutantExport.tsv.gz (containing a 

tab separated table of all COSMIC coding point mutations from targeted and genome wide 

screens) from the COSMIC database was downloaded and files with whole genome or exome data 

for skin SCC were produced as outlined in chapter 2.5. The file name for the skin SCC mutations 

was called skin_squamous_cell_carcinoma.txt.  

The Variant Call Format (VCF) file was downloaded from the COSMIC website for all coding and 

non-coding variants (VCF/CosmicCodingMuts.vcf.gz). The COSMIC ID was a common identifier in 

the VCF file and the CosmicMutantExport.tsv.gz files and unique to each mutation in the 

database. The COSMIC ID from the skin_squamous_cell_carcinoma.txt was then used to extract 

the reference and mutant bases from the VCF file for each of the skin SCC tumour samples 

contained in the skin_squamous_cell_carcinoma.txt file. The files were then separated into their 

mutation type (base substitutions, insertions, and deletions) and three different files were 

https://cancer.sanger.ac.uk/cosmic
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created. To ensure these three files were compatible for the Oncotator program, the data was 

organised as outlined in chapter 2.5. and the Oncotator program was used to annotate the 

variants in each file.  

A literature search was conducted to identify all whole genome and whole exome skin SCC data 

until 24th January 2020. The search terms used for skin SCC whole exome files which were 

identified from literature searches were downloaded from the supplementary data or from 

datasets sent through email and edited to ensure that the sample name, chromosome number, 

chromosome start position, end position, reference and alternate base were consistently mined 

from the files for each study. A whole genome dataset in Strelka VCF format was also downloaded 

from the EGA database and was done as outlined in chapter 2.3.4 (Mueller et al., 2019). For this 

Mueller et al., 2019 dataset from EGA, only exonic regions of the whole genome data were used 

for analysis. The chromosome number, start position and end position of the coding regions of 

the genome were obtained from Github (https://github.com/Shicheng-

Guo/AnnotationDatabase/blob/master/hg19/refGeneExtent.hg19.bed.gz) and the rows which 

were labelled as being an exon were extracted out of the file. The somatic mutations were 

identified in each sample from the Mueller et al., 2019 study and  Bedtools was used to only 

extract the coding regions from these cSCC VCF file. The University of Southampton computer 

cluster, Iridis was used to access bedtools and the bed files produced for each individual tumour 

were uploaded to the cluster using the script outlined in appendix 7.3.1.  

The Mueller et al., 2019 study and the other datasets obtained via the literature search for cSCC 

were processed through Oncotator for genome annotation to produce a MAF file. Then the 

COSMIC data and extra datasets were merged together.  

The cSCC MAF file was then loaded onto R to be analysed using the Maftools program. This 

program was used to identify the most common base changes in the skin SCC tumours, the top 25 

frequently mutated genes, single base substitution mutation signatures and to investigate which 

driver mutations co-occurred. The MAF file was also loaded onto another program on R called 

Sigminer which was used to identify double base substitution mutation signatures.  

Driver genes were identified using four different bioinformatics programs. The skin SCC MAF file 

was analysed using OncodriveCLUST in R to identify driver genes based on mutation clustering. 

The dNdScv package, which functions on R, was used to generate genes which were selected for 

in skin SCC tumour samples. The MAF file produced was edited so the format was compatible for 

the dNdScv package which is outlined in chapter 2.7.2. MutSig2CV was used to identify 

https://github.com/Shicheng-Guo/AnnotationDatabase/blob/master/hg19/refGeneExtent.hg19.bed.gz
https://github.com/Shicheng-Guo/AnnotationDatabase/blob/master/hg19/refGeneExtent.hg19.bed.gz
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significantly mutated genes which have a mutation rate higher than the background mutation 

rate. The OncodriveCLUSTL program was run using Python and due to the high mutation burden 

of skin SCC the settings used for OncodriveCLUSTL varied from the default (See code chunk 

below), i.e. the data was concatenated, the smooth window was increased from the default 11 to 

15, cluster window was increased from 11 to 15, simulation window was increased from 31 to 35 

and the simulation mode was changed to region restricted from the default which is mutation 

centred. The data was concatenated to ensure two exons in a transcript were joined to identify 

two or more clusters spanning different exons. By increasing the smooth window and cluster 

window, it enabled the unsupervised clustering OncodriveCLUSTL to detect larger clusters for 

observed and simulated windows however a large simulation window would spread out the 

simulated mutations decreasing the chance of detecting a cluster (Arnedo-Pac et al., 2019). 

Therefore, to increase the likelihood of detecting clusters in the samples, the smooth window 

(sw), cluster window(cw) and simulation window (simw) were all increased. The OncodriveCLUSTL 

code reflects these changes.  

oncodriveclustl –i /file 

location/ONCODRIVECLUSTL/SKIN/skinoncodriveinput.tsv.gz -r /file 

location/ONCODRIVECLUSTL/SKIN/cds.hg19.regions.gz -o /file 

location/ONCODRIVECLUSTL/SKIN/output_concat_nodefault -sw 15 -cw 

15 -simw 35 -sim region_restricted --concatenate 

Significance testing for the four driver gene programs: If the q value was less than 0.1 in any of the 

four bioinformatics programs, then the gene was considered as significantly mutated in that 

program.  Lists of genes with q values < 0.1 for each of the four programs were compared, and 

genes which were significant in MutSig2CV and at least one other program was classed as a driver 

gene. A summary of the data analysis pathway is outlined in figure 3-1.  
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3.3 Results 

The MEDLINE OVID search tool was used to identify whole genome and exome data for skin SCC 

in the literature search. The COSMIC database was also utilised to extract genomic data and 

compare with the records identified in MEDLINE. The flowchart in figure 3-2 shows how many 

records were identified for skin SCC via literature search and from the COSMIC database and how 

the literature search records were filtered and the reasons that any records were not included in 

the analysis. 

 

 

 

 

Figure 3-1: A flowchart outlining the processing of whole genome and whole exome data for cSCC. The Mutation 
Annotation Format (MAF) is the file format that was used in this analysis. This file type is compatible with the programs 
outlined.  
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Records identified through 

MEDLINE (n= 1674) 

Tumours identified through 
COSMIC (n= 67) 

Tumours after duplicates removed (n= 67) 

Titles and abstracts 

screened (n= 1674) 

Full text articles assessed 

for eligibility (n= 44) 

Articles excluded with reasons: 

Not cancer (n= 53) 

Not cSCC (n= 1037) 

Not WGS/WES (n= 404)  

Secondary data (n= 136) 

Text articles with WGS/ 

WES data (n= 8) 

Text articles included with 

WGS/WES data (n= 4) 

Tumours included in data analysis (n= 122) 

Articles excluded with reasons: 

Not WGS/WES (n= 22) 

Already in COSMIC (n= 5) 

Not cSCC (n= 4) 

Not human tissue (n= 5) 

 

 

 

Article excluded with reasons:  

Pre-cancerous lesion data (n=1) 

Data not in correct format 

(n=1) 

Authors did not provide 

WGS/WES data (n= 1) 

Duplicate dataset (n=1) 

 

Tumours included in analysis n=67 

Tumours included with 

WGS/WES data (n= 55) 

 

Figure 3-2: Flowchart representing studies identified in a literature search for skin SCC. Studies in the 
literature search were compared with those in the COSMIC database and duplicates were removed. 
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A Medline OVID search conducted for skin SCC with search terms specified in the appendix 7.9.1 

produced a total of 1674 studies. Initially the abstracts of these studies were inspected and 44 

studies were identified as containing WGS or WES data. There were 1630 studies which were 

discarded; 53 of these studies did not include cancer data, 1037 studies were not about skin SCC, 

404 studies did not contain WGS or WES data and 136 of the studies were reviews or did not 

contain primary data. The results of the COSMIC database were filtered as specified in appendix 

7.1. The 44 papers retained from the literature search were then read and a further 36 studies 

were removed. There were 36 studies that were not included in the analysis for the following 

reasons: 22 studies did not include WGS or WES data, five studies were present in the COSMIC 

database and were already included in the analysis, four studies did not include cSCC data and 

five studies included sequencing data for non-human tissue samples. From these eight studies 

that remained, it was identified that one study included WES for Actinic Keratosis, a pre-

cancerous lesion and was not included in the analysis.  Data was requested from the dbGaP 

database for one study and an SRA file was received. This file was not included in the analysis 

because it was not in the correct data format as a MAF file. An email request was sent to two 

authors in relation to their publications because their data was not publicly available in their 

papers and one author did not provide whole exome or whole genome data for analysis. One 

study’s data was included in another paper and was removed as a duplicate. Overall, from the 

literature search, four studies remained with whole exome data available for 42 tumour samples 

and whole genome sequencing data for 13 samples. In the COSMIC database 67 tumour samples 

with whole exome or whole genome sequencing data were identified. In total there were 122 

cSCC tumour samples with whole genome or whole exome data available for analysis. All the 

variants identified from the COSMIC database were confirmed somatic variants and data that was 

included in the analysis from the literature search were variants that were also confirmed somatic 

variants. 
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Figure 3-3: A bar graph showing the total number of mutations in each cSCC tumour sample. The blue coloured bars in 
the stacked bar chart represent silent mutations and the red coloured bars represent non-synonymous mutations.  

 

All samples in the skin SCC dataset had a mixture of nonsynonymous and silent mutations and 

most samples had more nonsynonymous changes than silent changes (figure 3-3). The sample 

with the highest number of mutations was CSCC_0014_M1 with 35,084 mutations. This sample 

also has the highest number of silent mutations (26,098). Many cSCC samples had less than 

10,000 mutations however there were 12 samples which had more than 10,000 mutations. The 

Silent 
 
Non-synonymous 
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sample with the lowest number of silent mutations was sample WD_04 (four mutations) and the 

sample with the lowest number of nonsynonymous mutations was MD03-Tumor (four mutations).  

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4: A. A box and whisker plot showing the percentage of bases in this cohort of 122 cSCC tumour 
samples. The different colours represent the different base changes. B.The relative contributions of the 
different base changes in each individual skin SCC sample. The proportion of mutations in each sample is 
measured as a percentage of the total number of mutations in that tumour and the different colours represent 
the different base changes as denoted in part A of the figure. 

A 
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The most common type of base change in the skin SCC dataset was C>T, with more than 75% of 

mutations in most of the skin SCC samples being C>T changes (figure 3-5). This base change also 

had the highest interquartile range showing that the number of C>T changes varied the most 

between samples. Conversely, T>G accounted for the smallest proportion of base changes in the 

dataset and had the smallest range suggesting that there was more limited variation in this base 

change across samples. The C>A change was the second most common change, with this 

alteration almost as frequent as C>T changes in some of the cSCCs.  
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Figure 3-5: Single base subsitution mutation signature plot for cSCC. The x axis represents the base change in its 
trinucleotide context* and the y axis represents the proportion of each base change in the skin SCC tumour sample 
cohort.The colour of the bars represents the specific base change described at the bottom of the graph. The mutation 
signature plot was created using Maftools in R. *Trinucleotide context from left to right for each base change, where N 
represents the base undergoing the change, is as follows; ANA, ANC, ANG, ANT, CNA, CNC, CNG, CNT, GNA, GNC, GNG, 
GNT, TNA, TNC, TNG, TNT. 

 

Best match: SBS40 [cosine-similarity: 0.67] 
Aetiology: Unknown 

Best match: SBS7b [cosine-similarity: 0.971] 
Aetiology: UV exposure  

Best match: SBS32 [cosine-similarity: 0.98] 
Aetiology: Prior treatment with azathioprine to induce 

immunosuppression  
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Maftools identified three single base substitution mutation signatures in the cSCC tumour 

samples. As expected, SBS7b mutation signature which is associated with UV exposure was 

detected (figure 3-5). This mutation signature contains a varying proportion of C to T base 

changes with the highest proportion of C to T change noted when a cytosine is between a thymine 

and cytosine base in the genome. Another mutation signature identified was SBS32, which 

comprised a mutational pattern with a varying proportion of C to T base changes, including the 

highest proportion of C to T changes when a cytosine base is between an adenine and thymine 

base in the genome. This SBS32 mutation signature is associated with the drug Azathioprine, 

which is used to induce immunosuppression in patients with organ transplants and/or for other 

diseases affecting the skin (e.g., eczema), bowel (Crohns), etc. The 122 cSCCs included in the 

analysis in this chapter included cSCC samples from Inman et al., 2018 where a proportion of their 

samples had come from patients who had been documented as having prior Azathioprine 

exposure. Another mutation signature identified in the current dataset was the SBS40 mutation 

signature, with a cosine similarity of 0.67; this mutation signature has no known aetiology.  
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Figure 3-6: The double base substitution mutation signature plots for cSCC. The x axis represents the base change in its 
dinucleotide context and the y axis represents the proportion of each base change in the skin SCC tumour sample 
cohort.The colour of the bars represents the specific base change corresponding to the horizontal bar at the top of the 
graph. The mutation signature plot was created using Sigminer in R. 

 

Sigminer identified two double base substitution mutation signatures in the skin SCC tumour 

samples (figure 3-6). The first mutation signature identified was DBS1 which is associated with UV 

exposure, with the highest proportion of base changes in this signature being CC to TT. The 

second mutation signature that was detected had a best match similarity of 0.324 to DBS9, which 

has an unknown aetiology.  

Best match: 
DBS1 

[similarity: 1] 
Aetiology: UV 

exposure 

Best match: DBS9 
[similarity: 0.324] 

Aetiology: 
Unknown 
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Analysis of the 122 cSCC samples identified numerous genes that were mutated in these tumours, 

with 97.54% of the cSCCs having a mutation in at least one of the top 25 frequently mutated 

genes. Most of the mutations were missense mutations (figure 3-7). As can be seen from the 

oncoplot of the top 25 frequently mutated genes (figure 3-7), there were numerous tumours with 

mutations present in many of these genes. Somatic mutations in MUC16 were most common and 

were seen in 75% of tumours. TP53 was the second most highly mutated gene, detected in 72% of 

Figure 3-7: Oncoplot with top 25 frequently mutated genes in cSCC tumours identifed in the literature search and 
COSMIC database. One or more of these genes was mutated in 119 of 122 samples (97.54%). The number of mutations 
identified in each tumour is presented as a bar chart at the top of the figure. Each coloured square represents the type of 
mutation that each tumour sample contains with respect to the corresponding gene. The bar chart on the right 
represents the number of samples which have a mutation in that gene and the colours represent the type of mutation in 
the gene. 
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tumours, and included a variety of different types of mutations. The proportion of samples which 

shared mutations in the top 25 frequently mutated genes ranged from 48% to 75%.  

 

Four bioinformatics programs were used to identify driver genes in skin SCC. In this analysis, a 

driver gene was characterised as significantly mutated in the MutSig2CV and at least one other of 

these bioinformatics programs. Using the MutSig2CV program, there were 37 genes with a q value 

less than 0.1 identified in the cSCC data (figure 3-8). There was a total of 426 genes which had a 

false discovery rate (q value) less than 0.1 produced from the OncodriveCLUST program using 

Maftools in R. There were 12 genes that had a q analytical value less than 0.1 in the 

OncodriveCLUSTL program. In the dNdScv program there were 18 genes with a global q value of 

less than 0.1. There were 12 genes which were significant in MutSig2CV and at least one other 

program (i.e., OncodriveCLUST, OncodriveCLUSTL and dNdScv). No genes were significant in all 

four programs. However, HRAS was significant in three programs, OncodriveCLUSTL, MutSig2CV 

and dNdScv, and the CDKN2A and TP53 genes were also significant in three programs: MutSig2CV, 

OncodriveCLUST and dNdScv. The NOTCH1 gene was significant in two programs, MutSig2CV and 

Figure 3-8: Venn diagram of the potential driver genes identified in cSCC using four different bioinformatics programs. 
The four different bioinformatics programs are labelled in different colours corresponding to the colour of the outline of the 
closed curves; OncodriveCLUSTL (red), MutSig2CV (blue), OncodriveCLUST (green), dNdScv (purple). The numbers of 
potential driver genes, based on a false discovery rate q value <0.1, are highlighted and the names of the specific genes 
identified by MutSig2CV and one other bioinformatics programe are included in the relevant overlapping sections of the 
Venn diagram. 
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dNdScv and it was also within the top 25 frequently mutated genes. TP53 was also present in the 

top 25 frequently mutated genes.  

 

Table 3-1: The top 25 genes that were only mutated in MutSig2CV for cSCC samples. Their status in the Cancer Gene 
Census is highlighted by tier number and N represents that the gene was not present in the Cancer Gene Census tier 1 
genes have strong documented evidence relevant to cancer and tier 2 genes strong indications to cancer but less 
documented evidence.  The mutation frequency column represents the frequency of cSCC samples which have a 
mutation in the associated gene. 

Gene p q 

Cancer Gene 
Census Tier 
Number 

Mutation 
frequency 

TP53 1E-16 1.8862E-12 1 72.00% 

NOTCH1 1.2977E-12 1.2239E-08 1 52.00% 

CDKN2A 1.9971E-11 1.0758E-07 1 25.00% 

NOTCH2 2.2814E-11 1.0758E-07 1 47.00% 

ZNF750 1.9396E-09 7.3169E-06 N 22.00% 

HRAS 3.8247E-09 1.2024E-05 1 16.00% 

MOGAT1 2.2206E-07 0.00059836 N 10.00% 

FAT1 3.596E-07 0.00084784 1 41.00% 

VPS52 5.0009E-06 0.00999101 N 5.00% 

COL4A4 5.2969E-06 0.00999101 N 46.00% 

CHUK 6.8488E-06 0.01174387 N 11.00% 

RPS18 9.0384E-06 0.01420691 N 5.00% 

C15orf23 1.1286E-05 0.0163751 N 15.00% 

MX2 2.6645E-05 0.03589798 N 16.00% 

KCND3 2.9804E-05 0.03747704 N 12.00% 

ITGA10 3.2813E-05 0.03868225 N 16.00% 

PRB2 4.376E-05 0.04641887 N 37.00% 

CDC27 4.4298E-05 0.04641887 N 16.00% 

RB1 4.7195E-05 0.04685208 1 15.00% 

FAM194A 5.3E-05 0.04998399 N 18.00% 

DNAJA2 5.5921E-05 0.05022803 N 7.00% 

TMBIM4 8.8798E-05 0.06882943 N 3.00% 

SLC15A1 9.0449E-05 0.06882943 N 17.00% 

AKAP2 9.1776E-05 0.06882943 N 24.00% 

RLF 9.2243E-05 0.06882943 N 20.00% 
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Figure 3-9: Oncoplot of driver genes identified in cSCC tumours using MutSig2CV, dNdScv, OncodriveCLUST and 
OncodriveCLUSTL. One of more of these genes were altered in 112 of 122 samples (91.8%). The number of mutations 
identified in each tumour is presented as a bar chart at the top of the figure. Each coloured square represents the type of 
mutation each sample contains with the corresponding gene. The bar chart on the right represents the number samples 
which have a mutation in that gene and the colours represent the type of mutation each of those samples have in the 
gene. 

The oncoplot of driver genes (figure 3-9) showed that these driver genes were mutated in 112 of 

122 samples. The most frequently mutated driver gene was TP53, but all tumours which did not 

have a mutation in TP53 contained mutations in one or more of the other driver genes. The least 

frequently mutated driver gene was TMEM222 which was mutated in only 9% of samples; all 

TMEM222 mutations were missense in these cSCCs. Similarly, mutations in HRAS were limited to 

missense mutations in the cSCCs containing HRAS mutations. All the other driver genes besides 

HRAS and TMEM222 contained more than one type of mutation. 
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Figure 3-10: Co-occurrence plot for cSCC driver genes for 122 tumour samples from COSMIC database and literature 
search. The squares shaded in green show that there is co-occurrence of genes. The squares shaded in yellow suggest 
that these genes are mutually exclusive. The dot represents that there is a level of significance with a p value of less than 
0.1 and the star represents that there is a level of significant with a p value of less than 0.05. 

 

A co-occurrence plot was produced (figure 3-10), which showed that if a skin SCC tumour sample 

has a mutation in TP53 then there is a significant chance that the tumour sample also has a 

mutation in CCDC28A, CDKN2A, PRB2, FAT1, and NOTCH2 with a p value of less than 0.05. The 

most significant co-occurrence with TP53 was FAT1 and NOTCH2. The co-occurrence of TP53 with 

NOTCH2 had p value of 0.000086 and the co-occurrence of TP53 with FAT1 had a p value of 

0.00020. The co-occurrence plot also showed that if a cSCC tumour sample has a mutation in 

TP53, there is a significant chance the sample also has a mutation in HRAS with a p value of less 
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than 0.1. Mutations in TP53 and CDC27 seemed mutually exclusive, although this was not 

statistically significant in this dataset. Another two genes in which mutations looked to be 

mutually exclusive in the co-occurrence plot were KIF4B and HRAS however this was also not 

statistically significant. Where tumour samples had a mutation in NOTCH1 then there was a 

significant chance that the tumour samples had a mutation in TMEM222, CHUK, KIF4B, FAT1 and 

NOTCH2, each with a p value of less than 0.05. Mutations in NOTCH1 also co-occurred with 

mutations in CHUK with a p value of less than 0.1. Tumours with mutations in both NOTCH1 and 

TP53 genes had co-occurring mutations in FAT1 and NOTCH2. Of note, NOTCH1, TP53, NOTCH2 

and FAT1 had also identified as significant driver genes in the MutSig2CV and dNdScv programs in 

figure 3-10 above.  

 

 

Figure 3-11: A power calculation graph showing the number of patients required to identify mutations in genes 
according to the estimated background mutation rate of skin SCC. The graph was produced on 
http://www.tumorportal.org/advanced_power. The vertical dotted line is showing an estimate of 122 patient samples 
and the horizontal  line is showing the a value for power that corresponds to the sample size.  

 

The background mutation rate for skin SCC was estimated to be 16 mutations per megabase (Mb). 

This background mutation rate was calculated using the South et al., 2014 study. The 

supplementary data was used to identify the total number of silent mutations in each of the 20 

cSCC tumour samples. The supplementary data also stated that the Agilent SureSelect Human All 

Exon 50Mb was used to capture exons for sequencing and there was 69% sequence coverage 

above 30X. The exon coverage was estimated to be 69% of 50Mb which was 34.5Mb therefore 

the total number of silent mutations were divided by 34.5 to identify the total number of 

mutations per Mb. The median mutations per Mb was then identified from the 20 cSCC samples 

and the figure of 16 mutations per Mb was used. The total mutation burden for cSCC was also 

http://www.tumorportal.org/
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estimated using the South et al., 2014 study and was estimated by using collating the total 

number of mutations for each cSCC divided by 34.5 and then identifying the median from the 

dataset which was 51 mutations per Mb. In this study, there was a total of 122 cSCC tumour 

samples retained for analysis. Based on the number of samples and the somatic mutation rate, 

there was 89% power to detect genes mutated in 20% of patients, 13% power to detect genes 

mutated in 10% of patients, 1% power to detect mutations in genes in 5% of patients, 0% power 

to detect mutations in genes for 3% of patients or less above the background mutation rate. The 

dashed line on figure 3-11 shows that using 122 samples there is 13% power to detect gene 

mutated in 10% of patients.  

 

3.4 Discussion 

This chapter identified driver genes in cSCC by using all the published whole genome and whole 

exome data available at present. Common cancer driver genes that had been identified in 

previous analyses were replicated in this study, including TP53, NOTCH1, NOTCH2, CDKN2A and 

HRAS. According to the power calculations there was 89% power to detect mutations in genes in 

20% of patients. Since the mutation burden of skin SCC is high, many studies are required to 

identify genes which are significantly mutated compared to the background mutation rate. The 

top 25 frequently mutated genes show that a high proportion of cSCC samples share mutations in 

those 25 genes further highlighting the high mutation burden of skin SCC.  

The mutation signature plots and the large proportion of C to T changes show that, as expected, 

UV is an important carcinogen which contributes to this high mutation burden. Other driver genes 

which were identified in this analysis such as FAT1 and CHUK were also classed as significantly 

mutated genes in other analyses of cSCC (Chang and Shain, 2021, Pickering et al., 2014, Inman et 

al., 2018). The Chang and Shain, 2021 study investigated the landscape of driver mutations in 

cutaneous squamous cell carcinoma and they conducted a meta-analysis with 105 tumours 

spanning 10 studies. There were six driver genes identified in this chapter that were the same as 

those identified in the Chang and Shain, 2021 study (TP53, NOTCH1, NOTCH2, CDKN2A, FAT1 and 

CHUK). The Chang and Shain 2021 study used MutSig and dN/dS which were the same programs 

that were used in this chapter, however they also used two other programs OncodriveFML 

(Mularoni et al., 2016) and LOFsigrank (Shain et al., 2015a) which could be the reasons there are 

discrepancies in the driver genes identified. The study also used raw sequencing data from 

different studies instead of MAF files which could also contribute to the differences in the 

analyses. Novel genes identified as driver genes in this analysis were CCDC28A, CDC27, KIF4B, 



 

114 
 

PRB2 and TMEM222. However, the program which was consistently used across a wide range of 

papers was MutSig2CV (South et al., 2014, Inman et al., 2018, Chitsazzadeh et al., 2016) therefore 

this analysis classed a mutated gene as a driver if it was significant in MutSig2CV and at least one 

other program.  

CCDC28A was mutated in 25% of skin SCC tumour samples in the current analysis and the protein 

has low expression in skin, and no expression in keratinocytes has been detected in The Human 

Protein Atlas (https://www.proteinatlas.org/ENSG00000024862-CCDC28A/tissue/skin) (Thul et al., 

2017). The function of this gene has not been determined but it has been associated with 

childhood acute leukaemia (Petit et al., 2012). CDC27 is a cell cycle protein and is part of the 

anaphase promoting complex in mitosis (Thornton et al., 2006). The protein has medium 

expression in keratinocytes (https://www.proteinatlas.org/ENSG00000004897-CDC27/tissue/skin) 

(Thul et al., 2017)and the gene was mutated in 16% of cSCC tumours analysed in this chapter. 

PRB2 is a human salivary glycoprotein (Azen et al., 1992) and there is no data available showing 

expression in skin in The Human Protein Atlas (Thul et al., 2017) but the gene was mutated in 37% 

of cSCCs in the current analysis. KIF4B is similar to CDC27 and is also involved in anaphase in 

mitosis. It is specifically involved in the spindle dynamics in anaphase and cytokinesis stages (Zhu 

et al., 2005). There is no record of KIF4B expression in skin however there has been evidence of 

amplification of this gene in Kidney renal clear call carcinoma (Chandrasekaran et al., 2015). 

TMEM222 has a low expression in skin and is only mutated in 9% of skin SCC tumours. It has been 

recently reported that TMEM222 has a role in brain development and is expressed in the parietal 

and occipital cortex, and that germline biallelic variants in this gene result in an autosomal 

recessive neurodevelopmental disorder (Polla et al., 2021). 

In the co-occurrence plot, mutations in CDC27 seemed to be mutually exclusive to mutations in 

TP53. However, this analysis did not have a p value of less than 0.1, therefore additional samples 

would need to be analysed to understand if mutations in these genes do occur exclusively. CDC27 

and TP53 are both cell cycle proteins however TP53 is an established tumour suppressor gene 

whereas CDC27 is a core component of the anaphase promoting complex/cyclosome (APC/C) 

(Kazemi-Sefat et al., 2021) and it has been suggested that it plays a tumour suppressor or 

oncogene role in different neoplasms (Pawar et al., 2010, Qiu et al., 2017). CDC27 RNA expression 

has been identified in different tumour types such as cervical SCC (Rajkumar et al., 2005), breast 

cancer (Talvinen et al., 2013), gastrointestinal cancers (Qiu et al., 2016), lung cancer (Bidkhori et 

al., 2013) and bladder cancer (Kim et al., 2016). In some of these cancer types elevated RNA 

expression of CDC27 can increase cell proliferation, upregulation of CDC27 can increase stemness 

https://www.proteinatlas.org/ENSG00000024862-CCDC28A/tissue/skin
https://www.proteinatlas.org/ENSG00000004897-CDC27/tissue/skin


 

115 
 

in cancer stem cells and downregulation of CDC27 can increase cancer cell survival. In squamous 

cell carcinoma of the cervix, CDC27 downregulation showed poor radio- response and treatment 

failure (Rajkumar et al., 2005). Furthermore, this study also showed that reduced expression of 

CDC27 in an irradiated cervical cancer cell line (SiHa cell line) promoted cell survival. These latter 

experiments suggest that CDC27 is radio-sensitive and in this squamous cell carcinoma, CDC27 is a 

tumour suppressor where reduced expression is increasing cell survival. Loss of function 

mutations in tumour suppressor genes and gain of function mutations in oncogenes promote 

tumorigenesis therefore to further understand the mechanism of CDC27 in skin SCCs, the 

mutation types identified in this cancer need to be further investigated. In the MutSig2CV analysis 

CDC27 had a q value less than 0.05 in both MutSig2CV and dNdScv, suggesting that it is strong 

driver gene in these programs. Future work could examine for protein expression of CDC27 in 

normal skin and cSCC tumours to identify if there is any differential expression between these two 

tissues to further support a role for this gene in skin cancer development.  

The whole exome and whole genome data in this study was analysed using different pipelines to 

call bases and tumour samples were also processed using different methods before DNA 

sequencing. These can affect the mutations identified in all the cSCC tumours. However, the 

variants were all annotated using the same annotation program to ensure any downstream 

analysis was consistent. To identify further novel driver genes or mutation signatures in cSCC the 

number of cSCC samples need to be increased to enable genes which are significantly mutated 

compared to the high background mutation rate to be identified.  

Different bioinformatics programmes identified different driver genes. This was due to the way 

these programs functioned and dNdScv focused on the dN/dS mutation rate whereas 

OncodriveCLUST and OncodriveCLUSTL focused on the mutation clustering. All potential driver 

genes had to be significant using MutSig2CV because this program compared the mutation rate of 

a gene to the background mutation rate and measures the clustering of gene mutations. The 

functional significance of mutations was also measured in this program. Therefore, MutSig2CV 

combines elements of dNdScv, OncodriveCLUST and OncodriveCLUSTL. The dNdScv program 

would produce a list of genes which are identified as driver genes based on the nonsynonymous 

mutation rate and considers a wider range of covariates to more accurately estimate the 

background mutation rate compared to MutSig2CV. However, the dNdScv would not be able to 

identify genes which are produced with regards to positional clustering patterns. OncodriveCLUST 

and OncodriveCLUSTL can be used to identify genes which are considered driver genes due to 

mutational clustering however would not be able to identify genes which are significantly 
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mutated due to the number of nonsynonymous mutations. Therefore, a combination of these 

programs would provide a realistic list of potential driver genes however the strength of each 

program to detect driver genes is subjective. By increasing the power of the study could enable 

the detection of more driver genes using these programs and genes which are present in all 

programs would have strong evidence of driver gene status. 
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4. Comparative analysis of genetic mutations in cutaneous SCC 

and SCCs at other organ sites 

 

4.1 Introduction 

SCCs arise in tissues lined with epithelium and the most common types of SCCs are skin SCC, 

oropharyngeal (also called “head and neck”) SCC, lung SCC, oesophageal SCC, and cervical SCC. 

There are different carcinogens which cause these cancers. The main carcinogen responsible for 

skin SCC is UV ((Armstrong and Kricker, 2001), (Narayanan et al., 2010). Human Papilloma Virus 

(HPV) contributes to the development of oropharyngeal and cervical SCC (Doorbar, 2006), 

(Leemans et al., 2011). HPV is also associated with an increased risk of skin squamous cell 

carcinoma and an association with oesophageal SCC has been identified, however the link of HPV 

with oesophageal SCC has not been firmly established (Iannacone et al., 2012, Ludmir et al., 

2015). Excessive smoking and alcohol intake is a common cause of HPV –negative oropharyngeal 

SCCs and oesophageal SCCs (Kobayashi et al., 2018). HPV-negative oropharyngeal SCC 

predominantly affects elderly males (Zumsteg et al., 2016) and oesophageal SCC is common in 

Asian populations (Torre et al., 2016).  

According to Cancer Research UK, there were 367,167 new cases of cancer diagnosed each year in 

the UK from 2015 to 2017 (CRUK).  Annually during this period there were 47,838 cases of lung 

cancer, 3,152 cervical cancer cases, 12,238 head and neck cancer, 9,209 oesophageal and 151,739 

cases of keratinocyte cancer (formerly called non-melanoma skin cancer). Approximately 25 – 

30% of all lung cancers are squamous cell carcinomas (Kenfield et al., 2008), therefore, there were 

approximately 14,351 cases of lung SCC.  Venables et al (2019) documented that there were 

44,672 skin SCCs in the UK in 2015, which shows that the largest number of SCC cases are skin SCC 

(Venables et al., 2019). It is unclear whether SCCs arise from similar or different somatic genetic 

events in these organs, and whether driver genes that are important in the growth of SCCs in the 

oropharyngeal region, lung, oesophagus, and cervix play a role in skin SCC development.  

Genes that are frequently mutated in skin SCCs include TP53, CDKN2A, NOTCH1, NOTCH2 (Li et al., 

2015). In oropharyngeal SCCs, differences have been reported in the genes mutated in HPV-

negative tumour samples and in HPV-positive tumour samples. For example, in HPV-positive 

oropharyngeal SCCs the most commonly mutated gene is PIK3CA and the most commonly altered 

pathway is the PI3K pathway whereas TP53 is the most commonly mutated gene in HPV-negative 

SCCs and with common alterations in genes involved in the cell cycle and PI3K pathways (Chung et 
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al., 2015). Genes which are frequently mutated in lung SCCs include TP53, GRM8, BAI3, ERBB4, 

RUNX1T1, KEAP1, FBXW7 and KRAS (Kan et al., 2010). In oesophageal SCC, an exome study of 113 

tumour-normal pairs reported that the genes frequently altered in 99% of cases were involved in 

cell cycle and apoptosis regulation, including TP53, CCND1, CDKN2A, NFE2L2 and RB1 (Gao et al., 

2014).  

Some studies have previously investigated the genomic relationship between SCCs at different 

sites (Campbell et al., 2018, Schwaederle et al., 2015) and the mRNA expression between SCCs at 

different sites (Chitsazzadeh et al., 2016). A study by Schwaederle and colleagues in 2015 

compared the exome sequences of 361 SCC samples (oropharyngeal, lung, cutaneous, 

gynaecological, gastrointestinal, unknown origin) and 277 non-SCC samples. The study compared 

all 361 SCC samples and identified that the most frequently altered genes in SCCs were TP53, 

PIK3CA, CDKN2A, SOX2 and CCND1.The study also investigated if SCC samples had particular set of 

genes which had an alteration frequency that was statistically different from the non-SCC 

samples. However, there were only 36 cutaneous SCC samples in the cohort, although the study 

did highlight that in the ‘subset of cutaneous SCCs, NOTCH1 alterations were found in 33% of 

cases, versus 10% in other types of SCCs’. A “PAN-CANCER” study by another group which 

analysed the copy number alterations (CNAs) in SCCs (lung, oropharyngeal, oesophageal and 

bladder cancers) showed that there were 5 clusters corresponding to the number of recurrent 

amplifications or deletions in each chromosome (Campbell et al., 2018). Each of these clusters 

included a mixture of SCCs from different organs which suggests that SCCs in these organs can 

have very similar molecular characteristics in relation to cancer development. A review paper 

(Dotto and Rustgi, 2016) identified that genes which distinguish SCCs are involved in squamous 

cell differentiation, including NOTCH1, TP63 and SOX2 and their interaction with EGFR and RAS 

pathways.  

To date, there has not been any comprehensive research study comparing the genomic profiles of 

skin SCCs and SCCs in other organs. Furthermore, identifying whether skin SCCs and SCCs of 

different organs have similar genetic abnormalities might support the use of targeted therapies in 

the different types of SCC, including skin SCC, and/or may improve cancer classification systems.  
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4.2 Methods 

Whole genome and exome data were extracted from the COSMIC database v91 

(https://cancer.sanger.ac.uk/cosmic) using the script documented in appendix 7.1. The format of 

the data was changed to ensure it was compatible for the genome annotation program, 

Oncotator as described in chapter 3. For oropharyngeal SCC, the mutation data from 

upper_aerodigestive_tract_squamous_cell_carcinoma.txt was used for the analysis. For 

oesophageal SCC, it was the oesophagus_squamous_cell_carcinoma.txt file. The mutation file that 

was used for lung SCC was lung_squamous_cell_carcinoma.txt and for cervical SCC it was 

cervix_squamous_cell_carcinoma.txt. The substitution, insertion and deletion mutation files were 

created for each type of squamous cell carcinoma and edited to be compatible for Oncotator as 

outlined in appendix 7.3. To ensure all genomic data were from human SCC samples scripts were 

created to identify and subsequently discard any genomic data from cell lines. Samples with a 

description of ‘short term’ were also identified and discarded because this described cells which 

had been sequenced after short-term culture.  

For the cervix_squamous_cell_carcinoma.txt file,  column 5 was extracted which was the sample 

name and column 35 which included a description of the tumour origin (cell-line). The next part of 

the script deleted duplicates to produce a file with all the sample names which have originated 

from cell lines. The same was done for samples which have originated from short-term cultures.  

This script was replicated for oropharyngeal SCC, lung SCC and oesophageal SCC.  

In oropharyngeal SCC, the sample name (column 5) and site subtype 2 column of the 

upper_aerodigestive_tract_squamous_cell_carcinoma.txt file was extracted and all the lines with 

‘lip’ were mined from the file. Duplicates were also removed to produce a file with all the sample 

names which had genomic data for squamous cell carcinomas that originated in the lip. The Linux 

script that which was used to do this is shown in appendix chapter 7, section 4. To ensure the 

oropharyngeal SCC tumour samples did not include skin SCC tumour samples, any samples from 

the lip were identified so they could be discarded in the analysis.  

For oropharyngeal SCC, the files with samples that originated from the lip and samples which 

were not human samples were collated to produce a single file. This file could be used to ensure 

these sample identifiers and their genomic data were removed from the COSMIC dataset before 

analysis.  

https://cancer.sanger.ac.uk/cosmic
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SCC tumour sample names were also downloaded from GDC portal 

(https://portal.gdc.cancer.gov/) and the mutation data for these samples were taken from the 

mc3.v0.2.8.PUBLIC.maf which is described in chapter 2, section 4.2 and chapter 2, section 5.2. The 

sample name, chromosome number, start position, end position, reference base and mutated 

base were used to produce a file compatible for Oncotator. The samples identified in GDC portal 

were compared with those from the COSMIC database to ensure there were no duplicates. Then 

the samples which had been identified as genetic data from cell lines were removed from the 

analysis. The genetic data which originated from the lip and cell line genomic data were removed 

from the oropharyngeal SCC analysis.   

The SCC genetic data from mc3.v0.2.8.PUBLIC.maf file was merged with the COSMIC SCC genetic 

data and annotated using Oncotator.  

Literature searches for SCCs were conducted to identify WGS and/or WES data for oropharyngeal, 

oesophageal, lung and cervical SCC. All literature was screened on MEDLINE OVID for 

oropharyngeal SCC and oesophageal SCC until 30th January 2020. The final literature search for 

lung SCC was 31st January 2020 and for cervical SCC, the search was completed on 1st February 

2020. The data from these literature searches were also annotated using Oncotator and collated 

with the SCC data from mc3.v0.2.8.PUBLIC.maf and COSMIC. The MAF files produced for each SCC 

were analysed using Maftools in R. The bioinformatics tools used to identify driver genes were 

MutSig2CV, dNdScv, OncodriveCLUST and OncodriveCLUSTL.  

 

4.3 Results 

The flowcharts in the following figures show the number of studies that were identified in the 

literature search for WGS and WES data for SCCs in the different organs. The flowcharts also show 

how many tumours were identified in the genetic databases, GDC portal and COSMIC for each 

SCC. Reasons for studies from the literature search not being included in the final analysis and 

reasons for tumour samples not being included in the final analysis are outlined in the flowcharts.  

 

 

 

 

https://portal.gdc.cancer.gov/
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4.3.1 Comprehensive literature review flowcharts 

Oropharyngeal SCC   
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MEDLINE (n= 1244) 

Tumours identified through 
COSMIC (n= 841) 

Tumours identified through 

GDC Portal (n= 504) 

Tumours after duplicates removed (n= 841) 

Titles and abstracts 

screened (n= 1244) 

Articles excluded with reasons: 

Not cancer (n= 118) 

Not oropharyngeal SCC (n= 92) 

Not WGS/WES (n= 690)  

Secondary data (n= 225) 

Not human tissue (n= 4) 

Not written in English (n= 2) 

 

Full text articles assessed 

for eligibility (n= 113) 

Text articles with WGS/ 

WES data (n= 15) 

Articles excluded with reasons: 

Not WGS/WES (n= 38) 

Already in COSMIC (n= 7) 

Not correct data format (n= 1) 

Not oropharyngeal SCC (n= 2) 

Not human tissue (n= 13) 

Secondary data (n= 30) 

GDC Portal duplicate (n= 1) 

Case Report/sampling bias (n= 

6) 

 

 

 

Article excluded with reasons: 

Authors did not provide 

WGS/WES data (n= 9) 

Tumour samples 

excluded with 

reasons: 

Not human tissue 

(n= 56) 

Not oropharyngeal 

SCC (n= 1) 

 

Text articles included with 

WGS/WES data (n= 6) 
Tumours included in analysis n=784 

Tumours included with 

WGS/WES data (n= 156) 

 
Tumours included in data analysis (n= 940) 

Figure 4-1 Flowchart of manuscripts selected for investigation of oropharyngeal SCC. The number of studies 
selected for analysis and the reasons for studies being excluded at different stages are specified.  
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Medline OVID search was conducted for oropharyngeal SCC with search terms specified in the 

appendix 7.9.2. The search was designed to identify studies which included WGS or WES data for 

oropharyngeal SCC and there were a total of 1244 search results (figure 4-1). The titles and 

abstracts of these studies were read, and 113 studies were identified as relevant to 

oropharyngeal SCC. There were 1131 studies which were removed, because 118 studies were not 

about cancer, 92 were not specific to oropharyngeal SCC, 690 studies did not include WGS or 

WES, 225 studies were reviews and not primary data, four studies included data which were not 

from human tissue samples and two studies were not written in English. The full text articles were 

read for the 113 studies and 15 of these studies included WGS or WES data. Of the 113 studies, 38 

studies were removed because they were not WGS OR WES data, seven studies were identified as 

already in the COSMIC database, one study was not in the correct data format (i.e.  the data was 

not in a MAF file and was not in format where it could be converted straightforwardly into a MAF 

file). In addition, two of the 113 studies were not oropharyngeal SCC studies, 13 studies included 

data which was not from human tissue samples, 30 studies were reviews which included 

secondary data, one study included data from GDC portal (thus was a duplicate) and six studies 

only included an individual sample and therefore were not included due to sampling bias. Of the 

15 studies which included WGS or WES data, 11 authors were contacted because their data was 

not available in the paper and nine authors chose not to share their data. Thus, from the Medline 

OVID search, supplementary data from four studies were used and two authors shared their data, 

therefore, six studies remained from the comprehensive literature search, and this included data 

from 156 tumour samples.  

There were 841 tumours that were identified from the COSMIC database and 504 tumours were 

identified in GDC portal. The tumour barcodes were merged, and duplicates were removed which 

resulted in 841 tumour samples. Then 56 tumour samples which were not from human tissue 

were removed and one sample was removed because it was not considered as oropharyngeal SCC 

because the sample originated from the lip. After the removal of these samples, 784 tumour 

samples remained which were merged with the 156 tumour samples from the comprehensive 

literature search. Thus, there were 940 tumour samples with WES data that were analysed for 

oropharyngeal SCC.  
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Lung SCC 
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Tumours identified 
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Tumours identified 

through GDC Portal       
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Tumours after duplicates removed (n= 736) 

Titles and abstracts 

screened (n= 952) 
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Not cancer (n= 2) 

Not lung SCC (n= 11)  

Not WGS/WES (n= 726)  

Secondary data (n= 155) 
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Full text articles 
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(n= 56) 
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3) 

Article excluded with reasons: 

Authors did not provide 

WGS/WES data (n= 4) 

Tumour samples 

excluded with 
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Tumours included with 
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Tumours included in data analysis (n= 883) 

Figure 4-2: Flowchart representing studies identified in literature search for lung SCC. The number of studies 
which have been discarded are specified and their corresponding reasons for removal are stated. 
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A Medline OVID search was performed for lung SCC with search terms specified in appendix 7.9.4. 

The aim of the search was to identify studies which included WGS or WES data for lung SCC. A 

total of 952 studies were identified via this OVID search (figure 4-2). After the abstracts for these 

studies were examined, it was ascertained that 56 of these studies were relevant to lung SCC. A 

total of 896 studies were removed at this first stage of filtering which included two studies 

because they were not about cancer, 11 studies were not specific to lung SCC, 726 studies did not 

include WGS or WES for lung SCC, 155 studies were reviews or did not have primary data and two 

studies included data for samples which were not from human tissue. The full text articles were 

screened in the remaining 56 studies and 50 of these studies were discarded. Three of these 56 

studies were already included in the analysis via the COSMIC database, 32 articles did not include 

WGS or WES data and two studies were not in the correct format for analysis and could not be 

converted into a MAF file or was not already in MAF format. Furthermore, there were six of the 

56 studies that did not include lung SCC WGS or WES data, two articles contained samples that 

were not human tissue, one study was not written in English, one study included secondary data 

and three articles were case reports or only had data on a single patient and was not included due 

to sampling bias. The six studies that were remained from the 56 publications included analysis of 

lung SCC WES or WGS data. However, the data was not available from four of the studies, so the 

data was requested from four authors by email but they did not provide the data for analysis. The 

other two text articles provided data in the supplementary data of their study, and this included 

150 tumour samples, which were then used in the analysis for lung SCC in the current study.  

Lung SCC tumour samples which had been whole genome or whole exome sequenced were 

identified in the COSMIC database and these 736 tumours were merged with 488 lung SCC 

tumour samples from GDC portal. After duplicate tumour sample barcodes were removed, 736 

tumour samples remained. Three of the 736 samples were not from human tissue and were 

discarded. The 733 lung SCC samples were merged with the 150 lung SCC tumour samples 

identified from the comprehensive literature search and a total of 883 lung SCC tumour samples 

were included in the analysis.  
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Oesophageal SCC 
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WES data (n= 14) 

Articles excluded with reasons: 

Not WGS/WES (n= 20) 

Already in COSMIC (n= 9) 

Not correct data format (n= 5)  

Not human tissue (n= 2) 

Secondary data (n= 6) 

GDC Portal (n= 2) 

Not written in English (n= 2) 

Case report/ sampling bias (n= 3) 

 
Article excluded with reasons: 

Authors did not provide WGS/WES 

data (n= 5) 

Tumour samples 

excluded with 

reasons: 

Not human tissue   

(n= 7) 

 

Text articles included 

with WGS/WES data (n= 

9) 

 
Tumours included with 

WGS/WES data (n= 366) 

 

Tumours included in analysis (n= 818) 

Tumours included in data analysis (n= 1184) 

Figure 4-3: Flowchart representing the number of studies selected for analysis of oesophageal SCC. The number 
of studies which have been discarded and their corresponding reason for removal are specified. 
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A Medline OVID search was undertaken to identify studies with WGS or WES data for oesophageal 

SCC with search terms specified in appendix 7.9.3 and gave a total of 473 search results (figure 4-

3). The title and abstracts of these papers were screened, and 63 papers were identified as being 

relevant to oesophageal SCC. The reason 410 studies were removed was because one paper did 

not have any association with cancer, seven papers were not specific to oesophageal SCC, 317 

papers did not include WGS or WES data, 82 papers were review articles or did not include 

primary data required for this analysis, two articles included data which were not from human 

tissue samples and one study was not written in English. Then the full text articles were assessed 

for the remaining 63 studies and 49 articles were discarded for the following reasons: 20 papers 

did not include WES or WGS data, nine studies were already included in the COSMIC database, 

five studies were not in the correct data format for analysis therefore could not be analysed as a 

MAF file, six articles included secondary data, two studies used data from GDC portal (thus would 

duplicate data obtained from GDC portal (as below)), two studies were not written in English and 

three articles were case reports or included data from a single individual and were not included 

due to sampling bias. The 14 studies which remained included WGS and WES data, however in 

five of these studies, the data was not available in the paper. The lead authors were contacted for 

those five studies, but none of the authors provided their WGS or WES data. The remaining nine 

studies included WES data in the supplementary material and included a total of 366 oesophageal 

SCC tumour samples. 

A search was conducted in the COSMIC database for WGS or WES data for oesophageal SCC 

samples and 642 samples were identified. The GDC Portal database also included WES data for 

183 oesophageal SCC tumour samples. The 642 tumour samples from COSMIC was merged with 

the 183 samples from GDC portal and after duplicates were removed 825 samples remained. 

Then, seven samples were discarded because these samples were from non-human tissue. The 

remaining samples from COSMIC and GDC portal comprised 818 oesophageal tumours. The 818 

tumour samples were merged with 366 tumour samples from the comprehensive literature 

search and a total of 1184 oesophageal tumours were included in the analysis.  
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Cervical SCC 

 

  

 

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Records identified through 

MEDLINE (n= 308) 

Tumours identified through 
COSMIC (n= 303) 

Tumours identified 

through GDC Portal (n= 

288) 

Tumours after duplicates removed (n= 304) 

Titles and abstracts screened 

(n= 308) 

Full text articles assessed for 

eligibility (n= 13) 

Articles excluded with 

reasons: 

Not cancer (n= 5) 

Not cervical SCC (n= 32) 

Not WGS/WES (n= 219)  

Secondary data (n= 39) 

 

Text articles with WGS/ WES 

data (n= 2) 

Text articles included with 

WGS/WES data (n= 2) 

 

Tumours included in data analysis (n= 472) 

Articles excluded with 

reasons: 

Not WGS/WES (n= 5) 

GDC Portal (n= 2) 

Not correct data format (n= 

2)  

Secondary data (n= 1) 

Sampling bias (n= 1) 

 

Tumours included with 

WGS/WES data (n= 168) 

 

Figure 4-4: Flowchart representing the number of studies selected for analysis of cervical SCC. The number of 
studies which have been discarded and their corresponding reason for removal are specified. 
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A Medline OVID search was conducted for cervical SCC to identify studies with WGS or WES data. 

The search terms are specified in appendix 7.9.5 and provided a total of 308 search results. The 

abstracts of these papers were analyzed and 13 papers were identified as being relevant to 

cervical SCC. The reason 295 studies were removed was because five papers did not have any 

association with cancer, 32 papers were not specific to cervical SCC, 219 papers did not include 

WGS, or WES data and 39 papers were review articles or did not include primary data required for 

this analysis. The whole text articles were screened for the 13 papers that were relevant to 

cervical SCC and 11 articles were removed for the following reasons: five articles did not include 

WGS or WES data, two studies used data from GDC portal, two studies were not in the correct 

format for analysis so did not fulfil the criteria to produce a MAF file, one study included 

secondary data and one study only had data for a single patient and was not used due to sampling 

bias. The two studies that contained WGS or WES data included a total of 168 tumour samples. 

The COSMIC database included WGS or WES data for 303 cervical SCC samples and GDC portal 

included WES data for 288 cervical SCC tumour samples. Cervical SCC tumour samples from the 

COSMIC database and GDC portal were merged and following removal of duplicates, 304 tumour 

samples remained. These 304 cervical SCC tumour samples were combined with 168 samples 

from the comprehensive literature search and the WES data for 472 cervical SCC tumours were 

subsequently analyzed.  
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4.4 Power calculations 

Based on a background somatic mutation rate for oropharyngeal SCC of four mutations per 

megabase (Lawrence et al., 2014) and 940 oropharyngeal tumour samples in the analyses, there 

was 100% power to detect genes mutated in 5% of patients, 76% power to detect genes mutated 

in 3% of patients, 24% power to detect genes mutated in 2% of patients and 1% power to detect 

genes mutated in 1% of patients (figure 4-5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the background somatic mutation rate for lung SCC was 10 mutations per megabase (Lawrence 

et al., 2014) and the current analysis included 883 lung SCC samples, there was 100% power to 

detect genes mutated in 10% of patients, 85% power to detect genes mutated in 5% of patients, 

 

 

 

 

 

 

 

 

Oropharyngeal 

SCC

Lung SCC 

Oesophageal 

SCC

Cervical SCC 

Figure 4-5: Graph representing the power of the study for whole genome and whole exome sequencing for 
oropharyngeal, lung, oesophageal and cervical SCC tumour samples identified from COSMIC database, GDC portal and 
a literature search. The x axis shows the number of patients and the y axis shows the power of the study. Each curve 
represents the percentage of patients in which a mutation can be detected. The vertical dotted line is showing an 
estimate of the number of  patient samples available  and the horizontal  line is showing the a value for power that 
corresponds to the sample size. 
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20% power to detect genes mutated in 3% of patients, 3% power to detect genes mutated in 2% 

of patients and 0% power to detect genes mutated in 1% of patients. 

The background somatic mutation rate for oesophageal SCC was four mutations per megabase 

(Lawrence et al., 2014) and there were 1184 oesophageal tumour samples, thus the current study 

had a 100% power to detect genes mutated in 5% of patients, 90% power to detect genes 

mutated in 3% of patients, 40% power to detect genes mutated in 2% of patients and 2% power 

to identify genes mutated in 1% of patients.  

As the background somatic mutation rate for cervical SCC was 2.5 mutations per megabase 

(Lawrence et al., 2014), the 472 cervical SCCs gave 100% power to detect genes mutated in 10% 

of patients, 96% power to detect genes mutated in 5% of patients, 47% power to detect mutated 

genes in 3% of patients, 12% power to identify genes mutated in 2% of patients and 1% power to 

detect genes mutated in 1% of patients. 
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4.5 Oropharyngeal SCC 

Silent and non-synonymous mutations in each tumour in Oropharyngeal SCC

 

Figure 4-6: The number of synonymous and nonsynonymous mutations in oropharyngeal SCC. The x axis represents 
each individual tumour identified on COSMIC, GDC portal and literature search.The y axis represents the total number of 
mutations. 

The oropharyngeal SCC tumours showed variation in the proportion of nonsynonymous and silent 

mutations within each sample (figure 4-6). The majority of oropharyngeal SCC tumour samples 

had less than 2000 mutations except sample HIPO-HNC1 which had the most (i.e., 4245) 

mutations. This sample also had the highest proportion of nonsynonymous mutations in the 

dataset, with 4157 nonsynonymous mutations. There were six samples which had no 

nonsynonymous mutations and only have synonymous mutations. 
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The largest number of base changes in oropharyngeal SCC were C>T mutations (figure 4-7). There 

were 90,335 C > T changes which was less than skin SCC which had 313,587 C >T changes. The 

median proportions of the remaining base changes in decreasing order were C>A, C>G, T>C, T>A 

and T>G changes. The highest interquartile ranges were seen for the C>T and C>A base changes 

indicating that there was more variation in these base changes in this dataset. The C>A and C>G 

base changes were positively skewed which implies that the dataset contained a larger range of 

base changes that were higher rather than lower than the median. The smallest number of base 

changes observed were T>G.  

As expected, there was an amount of variation in the proportions of base changes in each 

oropharyngeal SCC. Although the highest proportion of base changes in oropharyngeal SCC were 

C>T, there were some samples which did not have any C>T base changes. The large variation in 

the percentage mutations that were due to the various base changes indicated that there was 

high heterogeneity between samples.  

 

Figure 4-7: A. The percentage of base changes identified across 940 oropharyngeal SCC samples from COSMIC database, 
GDC portal and literature search. The box and whisker plot illustrates the range of variation represented by the whiskers and 
the box shows the median and inter-quartile range. The filled circles represent the outliers in the dataset. B. The relative 
contributions of the different base changes in each individual oropharyngeal SCC sample. The proportion of mutations in 
each sample is shown as a percentage and the different colours represent the different base changes. 
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Figure 4-8: Single base subsitution mutation signature plot for oropharyngeal SCC. The x axis represents the base 
change in its trinucleotide context* and the y axis represents the proportion of each base change in the skin SCC tumour 
sample cohort.The colour of the bars represents the specific base change described at the bottom of the graph. The 
mutation signature plot was created using Maftools in R. *Trinucleotide context from left to right for each base change, 
where N represents the base undergoing the change, is as follows; ANA, ANC, ANG, ANT, CNA, CNC, CNG, CNT, GNA, 
GNC, GNG, GNT, TNA, TNC, TNG, TNT. 

 

Best match: SBS2 [cosine-similarity: 0.718] 
Aetiology: APOBEC Cytidine Deaminase (C>T)  

Best match: SBS7b [cosine-similarity: 0.979] 
Aetiology: UV exposure  

Best match: SBS45 [cosine-similarity: 0.894 

Aetiology: Possible sequencing artefact 

Best match: SBS6 [cosine-similarity: 0.839] 
Aetiology:  Defective DNA mismatch repair 
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Maftools identified four single base mutation signatures associated with oropharyngeal SCC 

(figure 4-8). One of these was a mutation signature which had a cosine similarity of 0.718 to SBS2, 

which has been associated with APOBEC (apolipoprotein B mRNA-editing enzyme, catalytic 

polypeptide-like) cytidine deaminases. This enzyme is responsible for converting a cytosine to 

uracil during RNA editing, however, it can also induce base substitutions in tumour DNA by 

converting cytosine to uracil, which then becomes converted to thymine during replication of the 

DNA. APOBECs have mutational specificity for TC motifs therefore the mutation signature plots 

have peaks at C base changes that are adjacent to T bases (Roberts et al., 2013). Another single 

base mutation identified was SBS6 which is predicted to be an effect of defective DNA mismatch 

repair. SBS7b, which is associated with UV exposure, was also noted as a single base mutation 

signature, however 11 patients seem to have mainly contributed to this mutation signature, 

which suggested that SBS7b might be an artefact from the analysis or is a signature seen in only a 

minority of patients. Another mutation signature which had a similarity of 0.894 to SBS45, was 

identified as a possible sequencing artefact.  
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Figure 4-9: The double base substitution mutation signature plots for oropharyngeal SCC. The x axis represents the 
base change in its dinucleotide context and the y axis represents the proportion of each base change in the 
oropharyngeal  SCC tumour sample cohort.The colour of the bars represents the specific base change corresponding to 
the horizontal bar at the top of the graph. The mutation signature plot was created using Sigminer in R. 

 

The Sigminer program identified a double base substitution signature, DBS1, that is associated 

with UV in oropharyngeal SCC (figure 4-9). A mutation signature which was 0.97 similar to DBS2 

which is associated with smoking was also observed. A DBS4 signature which has an unknown 

aetiology was also extracted as a signature from the oropharyngeal SCC tumour samples.  

Best match: 
DBS1 

[similarity: 1] 
Aetiology: UV 

exposure 

Best match: 
DBS2 

[similarity: 
0.97] 

Aetiology: 
exposure to 

tobacco 
(smoking) 
mutagens 

Best match: 
DBS4 

[similarity: 
0.806] 

Aetiology: 
Unknown 



 

136 
 

 

Figure 4-10: Oncoplot with top 100 frequently mutated genes in oropharyngeal SCC tumours from GDC portal, 
COSMIC database and a literature search. One or more of these genes was mutated in 888 of 940 samples (94.47%). 
The number of mutations identified in each tumour is presented as a bar chart at the top of the figure. Each coloured 
square represents the type of mutation that each sample contains within the corresponding gene. The bar chart on the 
right represents the number of samples which contain a mutation in that gene and the colours represent the type of 
mutation in the gene. 
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An oncoplot showed that 94.47% of oropharyngeal SCC tumours had mutations in one or more of 

the top 100 frequently mutated genes. However, the proportion of samples which shared 

mutations in each individual gene varied. A mutation in TP53 was most common and was shared 

by 61% of oropharyngeal SCC samples (figure 4-10). The next most frequently mutated gene was 

MUC16 but a mutation in this gene was observed in only 19% of oropharyngeal SCCs. The 

oncoplot also shows that 10 genes had mutations which were shared by 11 – 19% of 

oropharyngeal SCC samples and that the remaining 89 genes of the top 100 frequently mutated 

genes had mutations which are shared by less than 11% of oropharyngeal SCCs.  

Most mutations in the top 100 frequently mutated genes in oropharyngeal SCCs were missense 

mutations, however, FAT1 and CDKN2A more commonly contained nonsense mutations than 

other types of mutations. The number of mutations in each oropharyngeal SCC varied, with most 

samples had less than 1000 mutations.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

138 
 

4.6 Lung SCC 

Synonymous and non-synonymous mutations in each tumour in Lung SCC

 

Figure 4-11: The number of silent and nonsynonymous mutations in lung SCC. The x axis represents each individual 
tumour identified on COSMIC, GDC portal and the literature search. The y axis represents the total number of mutations. 

The lung SCC tumour samples show that the majority of samples had more nonsynonymous 

mutations compared to silent mutations in their exomes (figure 4-11). The largest number of 

mutations were seen in sample WGC665 which had 2832 mutations, with 2627 of those 

mutations being silent. All the other samples in the lung SCC cohort exhibited less than 2000 

mutations, but there was high variation in the number of mutations, including non-synonymous 

and silent mutation, between samples.  
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The highest median number of base changes were C>A, however there were almost as many C>T 

as there were C>A base changes (figure 4-12). The interquartile range was larger for C>A 

compared to C>T changes showing that was more variation in C>A changes between samples. The 

proportion of samples which had C>G, T>C and T>A changes were similar, whereas T>G base 

change accounted for the lowest proportion of base changes that occurred in the lung SCC 

samples.  

In general, the proportions of mutations within each cancer sample did not show much variation 

across most samples (figure 4-12B).  

 

 

 

Figure 4-12: A. A box and whisker plot showing the percentage of different base changes in this cohort of 883 lung SCC 
tumour samples. The different colours represent the individual base changes. B.The relative contributions of the different 
base changes in each individual lung SCC sample from COSMIC database, GDC portal and literature search. The 
proportion of mutations in each sample is shown as a percentage of the total mutations and the different colours represent 
the various base changes. 
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Figure 4-13: Single base subsitution mutation signature plot for lung SCC. The x axis represents the base change in its 
trinucleotide context* and the y axis represents the proportion of each base change in the lung SCC tumour sample 
cohort.The colour of the bars represents the specific base change described at the bottom of the graph. The mutation 
signature plot was created using Maftools in R. *Trinucleotide context from left to right for each base change, where N 
represents the base undergoing the change, is as follows; ANA, ANC, ANG, ANT, CNA, CNC, CNG, CNT, GNA, GNC, GNG, 
GNT, TNA, TNC, TNG, TNT. 

 

Three single base substitution mutation signatures were identified in the lung SCC cohort using 

Maftools. The SBS4 mutation signature had a 0.971 cosine similarity to the mutation signature 

produced (figure 4-13). This signature is associated with tobacco smoking suggesting that these 

mutational patterns are a direct result of the tobacco carcinogen. Another mutation signature 

that was detected had 0.825 similarity to SBS5, which has an unknown aetiology. The SBS7a 

Best match: SBS7a [cosine-similarity: 0.754] 
Aetiology: UV exposure  

Best match: SBS5 [cosine-similarity: 0.825] 
Aetiology: Unknown  

Best match: SBS4 [cosine-similarity: 0.971] 
Aetiology: exposure to tobacco (smoking) mutagens 



 

141 
 

mutation signature associated with UV was identified as having a 0.754 similarity to a mutation 

signature produced by the lung SCC cohort.  

 

Figure 4-14: The double base substitution mutation signature plots for lung SCC. The x axis represents the base change 
in its dinucleotide context and the y axis represents the proportion of each base change in the lung SCC tumour sample 
cohort.The colour of the bars represents the specific base change corresponding to the horizontal bar at the top of the 
graph. The mutation signature plot was created using Sigminer in R. 

Three double base mutation signatures were detected in the lung SCC samples and the DBS2 

mutation signature, that is associated with cigarette smoking, had a 0.998 similarity to the 

mutation signature produced (figure 4-14). The DBS1 mutation signature which is associated with 

Best match: 
DBS2 

[similarity: 
0.998] 

Aetiology: 
exposure to 

tobacco 
(smoking) 
mutagens 

Best match: 
DBS6 

[similarity: 
0.742] 

Aetiology: 
Unknown 

Best match: 
DBS1 

[similarity: 
0.999] 

Aetiology: 
UV exposure 
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UV exposure was also identified as a signature in the lung SCC cohort. The analysis of the lung SCC 

exome data also produced a signature similar to DBS6 (0.742 cosine similarity) however an 

aetiology for this mutation signature has not yet been identified.  
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Figure 4-15: Oncoplot with top 100 frequently mutated genes for lung SCC tumours from COSMIC database, GDC 
portal and the literature search. One or more of these genes was altered in 843 of 883 (95.47%) samples. The number 
of mutations identified in each tumour is presented as a bar chart at the top of the figure. Each coloured square 
represents the type of mutation that each sample contains within the corresponding gene. The bar chart on the right 
represents the number of samples with a mutation in that gene and the colours represent the type of mutation within 
the various genes. 

In lung SCC, 95.47% of samples had a mutation in at least one of the top 100 frequently mutated 

genes (figure 4-15). The most frequently mutated gene across samples was TP53 which was 
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mutated in 71% of lung SCCc, with most samples having a missense mutation in the TP53 gene. 

The second most frequently mutated gene was CSMD3, mutated in 38% of tumour samples. The 

top eight most frequently mutated genes were mutated in 20% - 71% of tumour samples, with 

each of the remaining 92 of the top 100 mutated genes exhibiting mutations in less than a fifth of 

lung SCCs. In general, most mutations in the top 100 most frequently mutated genes were 

missense, but in some genes, including KMT2D, FAT1, PTEN, CDKN2A and NF1, a variety of 

different mutation types including frame shift deletion, frame shift insertion, multi-hit mutations, 

nonsense and splice site mutations was observed. The number of mutations within in each cSCC 

sample was less than 1000 mutations in most lung SCC samples.  
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4.7 Oesophageal SCC 

Synonymous and non-synonymous mutations in each tumour in Oesophageal SCC  

 

Figure 4-16: The number of synonymous and nonsynonymous mutations in oesophageal SCC. The x axis represents 
each individual tumour identified on COSMIC, GDC portal and the literature search. The y axis represents the total 
number of mutations. 

Most oesophageal SCCs had less than 1000 mutations per tumour, however, as figure 4-16 

demonstrates, eight tumour samples had more than 1000 mutations. The sample with the 

greatest number of mutations (sample ESCC-012T) had a total of 3039 mutations, all of which 

were nonsynonymous. Five samples had more silent mutations than nonsynonymous mutations.  
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The highest number of base changes in oesophageal SCC was C>T changes and there were 77,051 

of this base change but it also had the largest interquartile range in all oesophageal SCC samples 

(figure 4-17). The median proportions of C>A, C>G and T>C changes were lower than the C>T 

alterations but were similar to each other and each of these usually accounted for less than 25% 

of mutations. The lowest proportion of base changes in the oesophageal SCC samples was T>G 

changes and, while this change also showed the lowest interquartile range, there were several 

oesophageal SCCs which are outliers in terms of their proportions of T>G changes. 

 

Figure 4-17: A. The percentage of base changes identified across all the oesophageal SCC samples from COSMIC 
database, GDC portal and the literature search. The box and whisker plot shows the range of variation represented by the 
whiskers and the box shows the median and inter-quartile range. The filled circles represent the outliers in the dataset. 
B.The relative contributions of the different base changes in each individual oesophageal SCC sample. The proportion of 
mutations in each sample is depicted as a percentage and the different colours represent the different base changes. 
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Figure 4-18: Single base subsitution mutation signature plot for oesophageal SCC. The x axis represents the base 
change in its trinucleotide context* and the y axis represents the proportion of each base change in the oesophageal SCC 
cohort.The colour of the bars represents the specific base change described at the bottom of the graph. The mutation 
signature plot was created using Maftools in R. *Trinucleotide context from left to right for each base change, where N 
represents the base undergoing the change, is as follows; ANA, ANC, ANG, ANT, CNA, CNC, CNG, CNT, GNA, GNC, GNG, 
GNT, TNA, TNC, TNG, TNT. 

Best match: SBS13 [cosine-similarity: 0.696] 
Aetiology: APOBEC Cytidine Deaminase (C>G) 

Best match: SBS40 [cosine-similarity: 0.834] 
Aetiology: Unknown 

Best match: SBS1 [cosine-similarity: 0.907] 
Aetiology: spontaneous or enzymatic deamination of 5-

methylcytosine 
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The oesophageal SCC tumour samples showed three single base mutation signatures (figure 4-18). 

One of these mutation signatures had a 0.907 cosine similarity to SBS1, which is associated with 

spontaneous or enzymatic deamination of 5-methylcytosine to thymine. This deamination results 

in DNA mismatches in double stranded DNA resulting in guanine bases pairing with thymine. 

When this DNA mismatch is not replaced before DNA replication, the mismatch remains in the 

DNA and is replicated. Another single base mutation signature produced from the oesophageal 

SCC samples had a 0.834 cosine similarity to SBS40, which has an unknown aetiology. SBS13 was 

another single base substitution mutation signature that was identified and has a similar aetiology 

to SBS2 (which was present in oropharyngeal SCC (figure 4-8)). However, the APOBEC enzyme 

functions in a different way in SBS13 and results in a high proportion of a C to G base change. The 

base change is produced as a result of the error prone polymerases which are generated by base 

excision remove of the uracil base in RNA (Alexandrov et al., 2020).  
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Figure 4-19: The double base substitution mutation signature plots for oesophageal SCC. The x axis represents the 
base change in its dinucleotide context and the y axis shows the proportion of each base change in the oesophageal SCC 
cohort.The colour of the bars denotes the specific base change corresponding to the horizontal bar at the top of the 
graph. The mutation signature plot was created using Sigminer in R. 

Sigminer identified three double strand mutation signatures in the oesophageal SCC samples 

(figure 4-19). DBS11 is associated with SBS13 (Alexandrov et al., 2020) and is predicted to have 

this mutational pattern due to APOBEC mutagenesis. A mutation signature with a 0.627 similarity 

with DBS4 was identified, however, it is not associated with a known aetiology. The DBS2 

mutation signature associated with smoking was also identified in the oesophageal SCC cohort.  
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Best match: 
DBS4 [similarity: 
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Best match: 
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(smoking) 
mutagens 
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Figure 4-20: Oncoplot with top 100 frequently mutated genes for each oesophageal SCC tumours from COSMIC 
database, GDC portal and the literature search. At least one of these genes was mutated in 1141 of 1184 samples 
(96.37%). The number of mutations identified in each tumour is presented as a bar chart at the top of the figure. Each 
coloured square represents the type of mutation which each sample contains in the corresponding gene. The bar chart 
on the right represents the number of samples with a mutation in that gene and the colours represent the type of 
mutation within the gene. 
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In oesophageal SCC, 96.37% of samples had mutations in one or more genes that were in the top 

100 most frequently mutated genes. TP53 was the most frequently mutated gene, affecting 77% 

of samples, however, the second most frequently mutated gene was MUC16 which was mutated 

in only 16% of oesophageal SCCs (figure 4-20). As most of the 100 most frequently mutated genes 

were mutated in <16% of tumours, this suggested that most oesophageal SCCs might share a 

different combination of mutated genes. Most mutations in the top 100 most frequently genes 

were missense mutations except in the genes KMT2D, ZNF750, CDKN2A and RB1. Most samples 

with mutations in KMT2D, FAT1 and ZNF750 were nonsense mutations.  
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4.8 Cervical SCC 

 

 

Figure 4-21: A bar graph showing the total number of mutations in each cervical SCC tumour sample. The blue 
coloured bars in the stacked bar chart represent silent mutations and the red coloured bars represent non-synonymous 
mutations. 

 

Most cervical SCC samples had less than 2000 mutations. However, one sample (TCGA-2W-A8YY-

01) had 10691 nonsynonymous mutations and 9662 silent mutations, which was the highest 

number of mutations in a single tumour in the cervical SCC cohort. Conversely, there was one 

sample (SGCX-NOR-040_T) which had no nonsynonymous mutations and only one synonymous 

mutation.  
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The highest number of base changes in cervical SCC were C>T changes and there were 76,634 C>T 

base changes (figure 4-22). C>G changes were the next most frequent base change, with lower 

frequencies of C>A, T>G, T>A and T>G in descending order. In general, the proportion of the 

different base changes in each cervical SCC sample did not vary appreciably across samples, 

although there were four samples which had lower proportions of C>T changes and one sample 

with no C>T changes (figure 4-22B).  

Figure 4-22: A. A box and whisker plot showing the percentage of base changes in this cohort of 472 cervical SCC tumour 
samples. The different colours represent the different base changes and the boxes shows the median and inter-quartile 
ranges, whereas the whisker plot indicates the range. B.The relative contributions of the different base changes in each 
individual cervical SCC sample. The proportion of mutations in each sample is depicted as a percentage and the different 
colours represent the different base changes. 

A B 
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Figure 4-23: Single base subsitution mutation signature plot for cervical SCC. The x axis represents the base change in 
its trinucleotide context* and the y axis represents the proportion of each base change in the cervical SCC tumour 
sample cohort. The colour of the bars represents the specific base change described at the bottom of the graph. The 
mutation signature plot was created using Maftools in R. *Trinucleotide context from left to right for each base change, 
where N represents the base undergoing the change, is as follows; ANA, ANC, ANG, ANT, CNA, CNC, CNG, CNT, GNA, 
GNC, GNG, GNT, TNA, TNC, TNG, TNT. 

Maftools identified three single base substitution mutation signatures in the cervical SCC tumour 

samples (figure 4-23). One of these mutation signatures had a cosine similarity of 0.863 to SBS1, 

which was also identified in oesophageal SCC, is associated with deamination of 5-methylcytosine 

resulting in a higher proportion of samples with cytosine to thymine base change compared to 

other base changes. The SBS2 mutation signature, that had been identified in oropharyngeal SCC 

cohort, was additionally identified in the cervical SCC cohort with a cosine-similarity of 0.771. The 

third single base substitution mutation signature seen was 0.884 similar to SBS6, which has been 

Best match: SBS6 [cosine-similarity: 0.884] 
Aetiology: defective DNA mismatch repair 

Best match: SBS2 [cosine-similarity: 0.771] 
Aetiology: APOBEC Cytidine Deaminase (C>T) 

Best match: SBS1 [cosine-similarity: 0.863] 
Aetiology: spontaneous or enzymatic deamination of 5-

methylcytosine 
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associated with DNA mismatch repair according to previous research conducted in C. elegans 

(Meier et al., 2018).  

 

Figure 4-24: The double base substitution mutation signature plots for cervical SCC. The x axis shows the base change 
in its dinucleotide context and the y axis demonstrates the proportion of each base change in the cervical SCC tumour 
cohort.The colour of the bars represents the specific base change corresponding to the horizontal bar at the top of the 
graph. The mutation signature plot was created using Sigminer in R. 

The Sigminer program was used to identify double base substitution mutation signatures and 

showed three double base substitution mutation signatures in cervical SCCs (figure 4-24). DBS11, 

which is associated with APOBEC mutagenesis, was identified as being 0.89 similar to a mutation 

Best match: DBS11 
[similarity: 0.89] 

Aetiology: Possibly 
related to APOBEC 

mutagenesis 

Best match: DBS2 
[similarity: 0.729] 

Aetiology: exposure 
to tobacco 

(smoking) mutagens 

Best match: DBS4 
[similarity: 0.554] 

Aetiology: Unknown 
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signature produced in cervical SCC samples. The DBS2 signature, which is associated with tobacco 

smoking, was also shown to be present in the exomes of these tumour samples. The third 

signature categorised in the cervical SCC analysis by Sigminer was 0.554 similar to the DBS4 

mutation signature, which has no known aetiology.  
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Figure 4-25: Oncoplot of top 100 frequently mutated genes in cervical SCC tumours identifed in GDC portal, a 
literature search and COSMIC database. One or more of these genes was altered in 456 of 472 samples (96.61%). The 
number of mutations identified in each tumour is shown as a bar chart at the top of the figure. Each coloured square in 
the oncoplot represents the type of mutation in the corresponding gene. The bar chart on the right represents the 
number samples which have a mutation in that gene and the colours represent the type of mutation in the gene. 
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In cervical SCC tumour samples, the most frequently mutated gene was PIK3CA, which was 

mutated in 28% of samples (figure 4-25). The majority of these PIK3CA mutations were missense 

but a minority of samples had a multi-hit or splice site mutation. Within the top 100 most 

frequently mutated genes, one or more of these genes were mutated in 96.61% of samples. The 

most common mutation type seen in the samples was missense except in KMT2C, KMT2D, PTEN, 

FAT1, ARID1A, RB1 and HLA-B, in which a large proportion of samples contained nonsense or 

splice site mutations.  

 

4.9 Driver genes and comparison 

 

Figure 4-26: Box plot of the mutation burden of SCCs from different organ sites. Each point represents an individual 
sample. The x axis shows the name of the SCC cohort and the y axis represents the number of mutations. 
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The scatter plot in figure 4-26 shows that the mutation burden of skin SCC is the highest, and with 

the largest range, compared to the SCCs at the other organ sites. While most cervical SCCs, lung 

SCCs, oesophageal SCCs and oropharyngeal SCCs have less than 3000 mutations per tumour 

exome, in skin SCC samples this can range from 0 to 9000 mutations.  

 

 

 

Figure 4-27: Scatter plot which shows the best q values of genes identified as significantly mutated using the 
Mutsig2CV analysis comparing skin SCC with SCCs at four other internal sites. The x axis shows genes which were 
identified as significantly mutated from the MutSigCV analysis in all four internal organ SCCs, comprising 
oropharyngeal SCC, oesophageal SCC, lung SCC and cervical SCC. The y axis shows the q values for these genes 
identified in the skin SCC MutSigCV analysis.  
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MutSig2CV analysis has been used to identify possible driver genes in cancer, therefore 

MutSig2CV was conducted on the WES/WGS data from the five different types of SCC.  A scatter 

plot (figure 4-27) was generated to determine whether skin SCC had driver genes that were 

similar or different to the four other types of SCC. This scatter plot, which compared the 

significant q values for the genes in these tumour cohorts, showed that the genes which had been 

identified as significantly mutated (q value less than 0.1) in all the other SCCs as well as in skin SCC 

by the MutSig2CV analysis were RB1, FAT1, HRAS, NOTCH2, TP53, NOTCH1, CDKN2A and ZNF750. 

The gene which was the most significant in skin SCC and in other SCCs was TP53. NOTCH1, 

CDKN2A and ZNF750 also had low q values in skin SCC and other SCCs, but not as low as TP53. 

Several genes with significant q values in cSCC but non-significant q values in the other four SCC 

groups were noted, with MOGAT1 identified as the most significantly mutated gene in skin SCC in 

this category.  
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Table 4-1: Potential driver genes identified in SCCs from different organ sites. 

Cervical 
SCC 

Lung 
SCC 

Oesophageal 
SCC 

Oropharyngeal 
SCC 

Skin 

 SCC 

PIK3CA FAT1 PIK3CA CASP8 CDKN2A 

ERBB2 KEAP1 TP53 HRAS HRAS 

FBXW7 TP53 CDKN2A TP53 TP53 

MAPK1 CDKN2A CREBBP CDKN2A CCDC28A 

RB1 FBXW7 EP300 CTCF CDC27 

ARID1A NFE2L2 FAT1 EP300 CHUK 

B2M PABPC3 FAT2 EPHA2 FAT1 

ELF3 PIK3CA FBXW7 FAT1 KIF4B 

EP300 PTEN KEAP1 FBXW7 NOTCH1 

HLA-A RB1 KRAS NFE2L2 NOTCH2 

HLA-B ARID1A MUC6 NOTCH2 PRB2 

IFNGR1 DDX3X NFE2L2 PIK3CA TMEM222 

KRAS ELOVL5 NOTCH1 RAC1   

NF2 HGF NOTCH3 RIPK4   

NFE2L2 HRAS PTCH1 TMTC1   

PTEN IL17F PTEN ASXL1   

STK11 MST1 RB1 CYLD   

TP53 NBPF1 SMAD4 FOSL2   

ZNF750 NRAS ZNF717 HLA-A   

  SYNE1 ZNF750 HLA-B   

  USP13 ARID1A KEAP1   

  ZNF302 BAP1 MAPK1   

  ZNF814 C10orf76 MLH3   

    CHADL NEFH   

    ERBB2 PTEN   

    GPR32 RASA1   
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    IRF5 RB1   

    L3MBTL4 TGFBR2   

    MYL1 ZNF750   

    NBPF1     

    NEFH     

    NOTCH2     

    OR4L1     

    PARP4     

    RBPJ     

    RGL2     

    SYNJ1     

Footnote: Genes had a q value <0.1 in all four bioinformatics programs (yellow cells), MutSig2CV and two other 

bioinformatics programs (blue cells), or in Mutsig2CV and one other program (green cells). The genes are in 

alphabetical order as there are some genes which have a more significant q value in MutSigCV but are not mutated in 

the other programs such as dNdScv, OncodriveCLUST and OncodriveCLUSTL. 
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Next, all the genes which were identified as potential driver genes, according to a q value <0.1, in 

all five cohorts of SCCs using the four bioinformatics programs, MutSig2CV, dNdScv, 

OncodriveCLUST and OncodriveCLUSTL were compared (table 4-1). Some genes gave a q value 

<0.1 in four of these programs, whereas others gave a q value <0.1 in three or fewer programs. It 

is recognised that these four different programs use different approaches to identify driver genes, 

and that it would not be expected that all of these programs would identify the same driver 

genes.  However, MutSig2CV has been used frequently in the literature to identify driver genes, 

but it was thought that the identification of mutations by this program and an additional program 

would be more robust in designating a gene as highly likely to be a driver gene. Therefore, a gene 

was considered a driver gene if it was significant at q <0.1 in MutSig2CV and at least one other 

program.  

 

Table 4-2: Driver genes in skin SCC and SCCs at other organ sites.  

Cervical 
SCC Lung 

SCC 
Oesophageal 

SCC 
Oropharyngeal 

SCC 

Skin 

SCC 

PIK3CA FAT1 PIK3CA CASP8 CDKN2A 

ERBB2 KEAP1 TP53 HRAS HRAS 

FBXW7 TP53 CDKN2A TP53 TP53 

MAPK1 CDKN2A CREBBP CDKN2A CCDC28A 

RB1 FBXW7 EP300 CTCF CDC27 

ARID1A NFE2L2 FAT1 EP300 CHUK 

B2M PABPC3 FAT2 EPHA2 FAT1 

ELF3 PIK3CA FBXW7 FAT1 KIF4B 

EP300 PTEN KEAP1 FBXW7 NOTCH1 

HLA-A RB1 KRAS NFE2L2 NOTCH2 

HLA-B ARID1A MUC6 NOTCH2 PRB2 

IFNGR1 DDX3X NFE2L2 PIK3CA TMEM222 

KRAS ELOVL5 NOTCH1 RAC1   

NF2 HGF NOTCH3 RIPK4   

NFE2L2 HRAS PTCH1 TMTC1   

PTEN IL17F PTEN ASXL1   
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STK11 MST1 RB1 CYLD   

TP53 NBPF1 SMAD4 FOSL2   

ZNF750 NRAS ZNF717 HLA-A   

  SYNE1 ZNF750 HLA-B   

  USP13 ARID1A KEAP1   

  ZNF302 BAP1 MAPK1   

  ZNF814 C10orf76 MLH3   

    CHADL NEFH   

    ERBB2 PTEN   

    GPR32 RASA1   

    IRF5 RB1   

    L3MBTL4 TGFBR2   

    MYL1 ZNF750   

    NBPF1     

    NEFH     

    NOTCH2     

    OR4L1     

    PARP4     

    RBPJ     

    RGL2     

    SYNJ1     

 

Table 4-2 shows that driver genes which were unique to skin SCC comprised CCDC28A, CDC27, 

CHUK, KIF4B, PRB2 and TMEM222. TP53 was a driver gene that was shared between all the SCC 

groups. Two genes, CDNK2A and FAT1, were seen as driver genes in skin SCC and three other 

Footnote: Genes designated as driver genes had a q value <0.1 in MutSig2CV and in one of three other bioinformatics 

programs (dNdScv, OncodriveCLUST and OncodriveCLUSTL). Identical driver genes in skin SCC and in one or more SCCs 

of other internal organs (cervical, lung, oesophageal, oropharyngeal) are highlighted by identical coloured cells in the 

table. The genes are in alphabetical order as there are some genes which have a more significant q value in MutSigCV 

but are not mutated in the other programs such as dNdScv, OncodriveCLUST and OncodriveCLUSTL. 
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types of SCC, oropharyngeal, oesophageal and lung SCC. Another two genes, NOTCH2 and HRAS 

were driver genes in skin SCC and SCCs of two other organ sites: NOTCH2 in skin SCC, 

oropharyngeal SCC, and oesophageal SCC and HRAS in skin SCC, oropharyngeal SCC, and lung SCC. 

One gene, NOTCH1, was only shared as a driver gene between skin SCC and SCC of another organ, 

i.e., oesophageal SCC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TP53 was identified as a driver gene in all five SCCs. The mutation rate varied between SCCs with 

oesophageal SCC having the highest TP53 mutation rate of 76.94% and cervical SCC with the 

lowest TP53 mutation rate of 6.57%. All five types of SCCs contained mutations in all three 

domains of the protein (figure 4-28). Many mutations in TP53 were missense mutations which 

Oropharyngeal SCC Skin SCC 
Lung SCC 

Oesophageal 

SCC 

Cervical SCC 

Figure 4-28: Schematic representation of the TP53 protein and the types of mutations in the SCCs from skin, 
oropharynx, lung, oesophagus and cervix. This figure was produced from the TP53 mRNA transcript numbers specified by 
NM 000546 and the TP53 protein’s amino acid numbers are stated on the X axis. The respective protein domains have 
been labelled and were extracted from the Pfam database. The type of mutations are represented by the colours of the 
circles on the lollipop and show which regions of the protein the gene mutation is affecting. The number of mutations in 
each region of the gene is represented by the height of the lollipop. 
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were clustered in the P53 domain of the protein in all the SCCs from the different organs. The skin 

SCC tumour samples had nonsense mutations and a missense mutation in the P53 TAD domain 

whereas tumour samples in the other SCCs show tumour samples with frame shift deletions in 

this part of the protein. Missense and nonsense mutations were noted in the P53 tetramer 

domain in skin and cervical SCCs but there were more types of mutations seen in this domain in 

oropharyngeal, oesophageal and lung SCCs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

FAT1 was a driver gene in skin SCC, oropharyngeal SCC, lung SCC and oesophageal SCC, with skin 

SCCs having the highest mutation rate (40.98%) and oesophageal SCC having the lowest mutation 

rate (8.36%) in this gene (Figure 4-29). All four SCCs had mutations in the cadherin repeat domain 

of FAT1, with lots of these being missense or nonsense mutations.  None of the SCCs had 

mutations in the LamG domain of the FAT1 protein, but oesophageal SCC and skin SCC had 

mutations in the EGF-like repeat 1 domain of the FAT1 protein.  

Skin SCC Oropharyngeal SCC 

Lung SCC Oesophageal SCC 

Figure 4-29: Schematic representation of the FAT1 protein and the categories of mutations in SCCs from skin, 
oropharynx, lung and oesophagus. The figure uses the FAT1 mRNA transcript numbers specified by NM 005245, with 
the FAT1 protein’s amino acid numbers is shown beneath each graphic. The respective protein domains have been 
labelled as per the Pfam database. The type of mutations are represented by the colours of the circles on the lollipop 
and show which regions of the protein the gene mutation is affecting. The number of mutations in each region of the 
gene is represented by the height of the lollipop. 
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HRAS and NOTCH2 were identified as driver genes in skin SCC and two other SCC tumour types 

(Figure 4-30). As expected, most HRAS mutations were at codons 12 and 13 at the start of the 

HNK Ras-like domain, as well as in codon 61, but some mutations were detected at other exonic 

sites. Most HRAS mutations were missense mutations in skin, oropharyngeal and lung SCCs 

Skin SCC Oropharyngeal SCC Lung SCC 

Skin SCC Oropharyngeal SCC Oesophageal SCC 

Figure 4-30: Schematic representation of the HRAS and NOTCH2 proteins and the categories of mutations in SCCs 
from skin, oropharynx and lung (HRAS) and skin, oropharynx and oesophagus (NOTCH2). The lollipop plots were 
produced using the transcript numbers specified by NM 001130442 for HRAS and NM 024408 for NOTCH2 and the 
amino acid numbers are presented beneath each schematic representation. The respective protein domains have 
been labelled according to the Pfam database. The types of mutation are represented by the colours of the circles on 
the lollipop and show which region of the protein each gene mutation is affecting. The number of mutations in each 
region of the gene is represented by the height of the lollipop. 
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NOTCH2 mutations were more common in skin SCC (mutation rate 46.72%) than in oropharyngeal 

and oesophageal SCCs. NOTCH2 mutations were generally scattered across the exonic regions in 

each of these three types of SCC, with many of the NOTCH2 mutations distributed along the ANK 

domain in all three SCCs.  

 

 

 

 

 

 

 

 

 

 

 

NOTCH1 was identified as a driver gene in cSCC and oesophageal SCC (figure 4-31). The mutation 

rate of NOTCH1 in skin SCC was 52.14% which was much higher than the NOTCH1 mutation rate in 

oesophageal SCC. In general, mutations were scattered throughout the NOTCH1 gene in both 

these cancer types, with a number of these mutations in the ANK domains in cSCC and 

oesophageal SCC. There were no mutations in the DUF3454 and EGF CA domain in both SCC 

tumour types.  

Looking at identical mutations seen in skin SCC and SCCs of the other organs in relation to these 

six genes (TP53, FAT1, CDKN2A, HRAS, NOTCH2 and NOTCH1) (table 4-3), identical mutations were 

frequently shared between oesophageal SCC and skin SCC (n=33 identical mutations detected in 

both types of SCC). However, there were 1184 oesophageal SCCs, 940 lung SCCs, 883 

oropharyngeal SCCs and 472 cervical SCCs in this study, and the corresponding identical mutations 

(not accounting for how many mutations were present at each of these sites within each tumour 

type) when comparing skin SCC and other types of SCC amounted to 33 for skin versus 

Skin SCC Oesophageal SCC 

Figure 4-31: Schematic representation of NOTCH1 protein demonstrating the mutation profile in skin and oesophageal 
SCCs. The transcript numbers specified by NM 017617 were used to generate the figures and the amino acid numbers are 
inserted below each figure. The respective protein domains have been labelled as per the Pfam database. The type of 
mutations are represented by the colours of the circles on the lollipop and show which regions of the protein the gene 
mutations affect. The number of mutations in each region of the gene is represented by the height of the lollipop. 
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oesophageal, 19 for skin versus lung, 21 for skin versus oropharyngeal and 3 for skin versus 

cervical.  This indicates that the proportion of identical mutations between skin and other SCC 

types were largely similar for oesophageal, lung and oropharyngeal  SCC. 

Table 4-3: Mutations shared between driver genes in skin SCC and SCCs at other organ sites. 

Gene Mutation 
Skin 
SCC 

Oropharyngeal 
SCC 

Lung 
SCC 

Oesophageal 
SCC 

Cervical 
SCC 

TP53 c.1024C>T Y* Y Y Y   

  c.1045G>T Y Y Y     

  c.159G>A Y Y   Y   

  c.272G>A Y Y   Y   

  c.310C>T Y Y Y Y   

  c.373A>C Y   Y     

  c.380C>T Y Y   Y   

  c.413C>T Y     Y   

  c.437G>A Y   Y Y   

  c.476C>T Y Y Y Y Y 

  c.517G>A Y Y Y Y   

  c.527G>T Y Y Y Y   

  c.625_626delAG Y     Y   

  c.69G>A Y     Y Y 

  c.713G>A Y     Y   

  c.796G>A Y Y Y Y   

  c.808T>A Y   Y Y   

  c.815T>G Y   Y     

  c.824G>T Y Y   Y   

  c.833C>T Y Y Y Y   

  c.836G>A Y   Y Y   

  c.856G>A Y Y Y Y   

  c.949C>T Y   Y Y   
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  c.98delC Y   Y Y   

  c.991C>T Y Y Y Y Y 

CDKN2A c.176G>A Y Y Y Y   

  c.18C>T Y Y       

FAT1 c.10198C>T Y Y       

  c.2653C>T Y Y   Y   

  c.2844G>A Y     Y   

  c.3286C>T Y   Y Y   

  c.440C>T Y Y       

  c.4879C>T Y Y   Y   

  c.8176C>T Y Y       

NOTCH1 c.1363G>A Y     Y   

  c.1367G>A Y     Y   

  c.4579C>T Y     Y   

  c.5308C>T Y     Y   

NOTCH2 c.4403C>T Y     Y   

  c.938G>A Y     Y   

* Y = yes (i.e., mutation is present), blank cells = mutation not present. 
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4.10 Discussion 

The results of this analysis identified a number of significantly mutated genes which were unique 

to cSCC and which were not mutated in SCCs from the other four internal organs.  In addition, the 

analysis identified several driver genes which were the same in skin SCCs as those identified in 

SCCs at other organ sites. The comprehensive literature search, COSMIC database and GDC portal 

showed that the largest amount of WGS or WES data was available for oesophageal SCC and then 

for lung, oropharyngeal and cervix in descending order, with the lowest amount of WGS or WES 

data available for skin SCC.  

Some mutation signatures were shared between the SCCs of the different organs, whereas some 

mutation signatures were unique to cSCC. There were a high proportion of C to T changes across 

SCCs at various organ sites except in lung SCC where the highest number of changes were C to A. 

This C to A change is associated with tobacco smoking which is the main contributor to the 

development of lung SCC. The high proportion of C to T changes in cSCC was reflected in the 

mutation signatures produced. SBS7b and DBS1 were identified as mutation signatures in cSCC 

and are associated with UV exposure, which also aligns with the high proportion of C to T and CC 

to TT base changes that were observed in skin SCC. In lung SCC, mutation signatures SBS4 and 

DBS2 which are associated with exposure to tobacco smoking mutagens were also seen.  

However, mutation signatures associated with UV exposure were noted in SCCs in other organ 

sites. In oropharyngeal SCC two mutation signatures which had a cosine similarity of 0.979 with 

SBS7b and 1 with DBS1 were identified. As SCCs of the lips had been excluded from this 

oropharyngeal cohort, and most people do not generally have their mouth wide open when 

sunbathing or during routine sunshine exposure, this suggests that SBS7b might arise via another 

mechanism other than UV. There were 11 oropharyngeal samples in the analysis which had the 

largest contribution to this mutation signature, therefore further study was conducted to identify 

the exact primary site of these oropharyngeal SCCs to further understand the reason for this 

mutation signature.  

The 11 samples were removed and further reanalysed which produced all the original mutation 

signatures, SBS2, SBS6 and SBS45, except SBS7b. Which suggests that there are no new mutation 

signatures identified in the oropharyngeal SCC samples in reanalysis and the SBS7b is originating 

from the 11 samples. In lung SCC, a mutation signature which had a cosine similarity of 0.754 to 

SBS7a and a signature which had a similarity of 1 to DBS1 were observed. Both mutation 

signatures are associated with UV, but it is extremely unlikely that these SCCs arose in the lung as 
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a result of UV, so this provides additional support for these signatures arising via another 

pathogenetic mechanism in some cases.   

In appendix 7.12, the 11 samples which displayed this UV signature were investigated further. 

Here it is highlighted that some of the samples originated from different data sources such as 

COSMIC, GDC/MC3 and published literature searches. The samples also had different mutation 

burdens which varied from 1 mutation to 4157 mutations. The sample with the highest mutation 

burden originated from the skin of face (B5T_B5N). This suggests that this sample was mislabelled 

and considered as an oropharyngeal sample but should have been considered as a skin sample. 

Another sample from the same journal article (Ren et al., 2017) also originated from the left ear 

which has been mislabelled as oropharyngeal SCC. This suggests that in other samples, 

mislabelled of samples could have been a contributing factor to the production of a UV signature 

in this analysis. The mean mutation burden for oropharyngeal SCC was approximately 204 

mutations and the median mutation burden was 61 and the majority of the 11 samples did not 

have mutation burdens that were similar to the median or mean.  

During the sequencing of these samples, there could have been index hopping which is when a 

certain number of sequencing reads are incorrectly assigned from one sample to a different 

sample in a pool (Guenay-Greunke et al., 2021). The remaining samples originated from different 

sites of the oropharynx which further suggests this UV signature could also be a result of a 

sequencing artefact. The Pan Cancer study that looked at the mutation signatures of several 

cancers (Alexandrov et al., 2020) also showed a low number of samples which displayed mutation 

signatures 7a and 7b in their Head and Neck SCC samples. TCGA samples which were included in 

the Alexandrov et al., 2020 study were also used in this study which could also be one of the 

reasons for a UV signature being displayed in oropharyngeal SCC in these samples. 

The COSMIC database was also a source of these 11 samples, COSMIC database is manually 

curated therefore human error of misclassification of samples could also be contributing to this 

UV signature. The Maftools program uses the samples to extract mutation signatures and then 

compares them to known mutation signatures. Therefore, the algorithm which produces the UV-

based mutation signature has based this predominantly on these 11 samples instead of 

identifying a signature which is present in most of the oropharyngeal samples which is producing 

a bias in the algorithm. Therefore, technical issues in producing the mutation signature 

computationally could also be contributing to the SBS7b mutation signature in oropharyngeal 

SCC.  
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Since this analysis used secondary data from multiple studies, it is most likely that the reason for 

these 11 samples contributing to this UV signature is due to misclassification as correctly 

identified by the examiners of this PhD thesis. This is evidenced in appendix 7.12 as a sample 

considered to be oropharyngeal SCC originated from the skin of the face. Therefore, this is a 

limitation of using secondary data as misclassification could occur during the curation process in 

the genomic database which can then produce results which are not reflective of the disease 

cohort. 

Driver genes were compared between skin SCC and SCCs at other organ sites. The driver genes 

were identified using four different bioinformatics programs which were run using three different 

computational languages, R, Python and Linux. The MutSig2CV program was previously used to 

identify driver genes in SCCs by Campbell et al., 2018. A similar approach was initially taken in the 

current study to identify how similar cSCCs were to SCCs at other organ sites, and this identified a 

set of driver genes unique to skin SCC. The MOGAT1 gene was identified as the most significant 

driver gene unique to cSCC in this MutSig2CV analysis. The MOGAT1 gene codes for an enzyme 

that is involved in triglyceride synthesis and storage (Hayashi et al., 2014). There is limited 

information on the expression of MOGAT1 in skin, but the Digital Aging Atlas suggests that 

“differential expression with age was identified in MOGAT1 in skin” (https://ageing-

map.org/atlas/change/DAA4292/) and that MOGAT1 expression in skin decreases with age (Glass 

et al., 2013) (https://ageing-

map.org/atlas/results/?lid=100152&sort=identifier&species%5B%5D=9606&l=tissue&page=56), 

therefore further research will be required to examine whether MOGAT1 is indeed a strong driver 

gene for skin SCC. However, other driver genes such as CHUK which were identified as unique to 

skin SCC in this current analysis have been identified as driver gene in cSCC in the literature using 

different bioinformatics programs LOFsigrank (Shain et al., 2015a) and OncodriveFML (Mularoni 

et al., 2016, Chang and Shain, 2021). The CCDC28A, CDC27, KIF4B, PRB2 and TMEM222 genes that 

were highlighted by MutSig2CV as potential driver genes unique to skin SCC (figure 4-27) were 

also identified as significant in other bioinformatics programs in this analysis (see table 4-2).  

The MutSig2CV analysis showed genes which were shared between SCCs of other organ sites and 

cSCC. RB1 and ZNF750 had a q value less than 0.05 for skin SCC however these genes were not 

identified as significant in cSCC in other bioinformatics programs and therefore were not classed 

as potential driver genes. In skin SCC, there were no mutated genes which were identified as 

significant in all four bioinformatics programs (MutSig2CV, dNdScv, OncodriveCLUST and 

OncodriveCLUSTL) that were employed in the current study. Admittedly, the skin SCC sample size 

https://ageing-map.org/atlas/change/DAA4292/
https://ageing-map.org/atlas/change/DAA4292/
https://ageing-map.org/atlas/results/?lid=100152&sort=identifier&species%5B%5D=9606&l=tissue&page=56
https://ageing-map.org/atlas/results/?lid=100152&sort=identifier&species%5B%5D=9606&l=tissue&page=56
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was the lowest of all five different types of SCC, therefore this could have affected the ability for 

driver genes to be detected in the skin SCC cohort. In the MutSig2CV analysis eight driver genes 

were shared between all SCCs: TP53, NOTCH1, NOTCH2, FAT1, HRAS, CDKN2A, RB1 and ZNF750.  

In the final part of the analysis, a gene was only classed as a driver if it was significant in 

MutSig2CV and one other program. TP53 was the only driver gene that was shared between all 

five different types of SCCs. TP53 was also the only driver gene that was shared with cervical SCC, 

albeit at a lower frequency because most cervical SCC arises from human papilloma virus (HPV), 

and the E6 protein in HPV types that cause cervical cancer targets the p53 protein for 

degradation, thus releasing the requirement for TP53 mutation in this cancer (Crook et al., 1991).  

Five driver genes were shared between cSCC and oropharyngeal SCC and, separately, between 

cSCC and oesophageal SCC, whereas four driver genes were shared between skin SCC and lung 

SCC and only one driver gene was shared between skin SCC and cervical SCC. Part of the reason 

for the low numbers of shared driver genes between skin SCC and SCCs of the other organs is 

likely to be the limitations due to the lower number of skin SCCs with WES and WGS.  

To further understand how similar skin SCC is to SCCs at other organ sites, it will be important to 

perform this type of analysis with larger numbers of skin SCCs (and ideally more cervical SCCs) to 

increase the power of the study.  However, this study shows that there are similarities in the 

driver genes identified for skin SCCs and SCCs at other organ sites which might prove useful in 

future years if targeted therapies which address the altered signalling in the relevant cellular 

pathways are produces for SCCs of other organs, because these could then be trialled for 

treatment of aggressive skin SCCs. Furthermore, as the bioinformatics programs used to identify 

driver genes in this study showed that there is potential for more genes to be shared between 

cSCC and SCCs at other organ sites, higher powered studies are likely to be helpful in identifying 

additional driver genes that are shared across these different SCC types.  
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5. Genomic landscape of skin cancer, precancerous skin lesions 

and normal skin 

 

5.1 Introduction 
To identify the mutagenicity of NB-UVB in normal skin, driver genes and mutation signatures for 

skin cancer can be identified and compared with precancerous lesions and normal skin to 

highlight potentially pathogenic variants if these appear in normal skin following NB-UVB 

exposure. In the initial part of this chapter, there will be an investigation into the genomic 

landscape of two types of skin cancer types, BCC, and melanoma, to allow comparison of all three 

common types of skin cancer, namely BCC, cSCC and melanoma. The cSCC and BCC tumours arise 

from keratinocytes whereas melanomas originate from melanocytes. Although, there have been 

studies which have identified driver genes in cSCC, BCC and cutaneous melanoma, there has been 

limited comparison of these three types of skin cancer despite the fact that all of them arise in 

skin and mainly as a result of UV exposure  (South et al., 2014, Chitsazzadeh et al., 2016, Inman et 

al., 2018, Mueller et al., 2019, Chang and Shain, 2021, Hodis et al., 2012, Jayaraman et al., 2014).  

Actinic keratosis is a cSCC premalignancy and studies have shown that up to two thirds of cSCCs 

may develop from an AK, however, fewer than 0.6% of AKs progress to a cSCC (Thomson et al., 

2021). Although many dermatologists consider that BCCs probably arise de novo, and not from 

any specific precancerous clinical lesion (Madan et al., 2010), Criscione and colleagues reported 

that 36% of BCCs diagnosed in their study arose in lesions that had been previously diagnosed 

clinically as AKs and that the risk of progression of AK to primary BCC was 0.48% at 1 year and 

1.56% at 4 years (Criscione et al., 2009). There have been studies which have reported on the 

genetic changes identified using next generation sequencing, including the Thomson et al., 2021, 

Albibas et al., 2018 and Chitsazzadeh et al., 2016 papers, in which genetic changes identified in 

AKs were also compared with cSCCs. The Albibas et al., 2018 paper additionally compared p53 

immunopositive patches (PIPs) in chronically sun exposed skin with AKs and cSCCs and 

commented on genetic alterations in Bowen’s disease (seen from targeted next generation 

sequencing) with cSCCs.  

In addition to the study by Albibas et al., 2018, a few other studies have used targeted next 

generation sequencing to look for mutations in chronically sun exposed skin.  In the Martincorena 

et al., 2015 study, targeted sequencing was conducted in chronically sun exposed normal skin 

from the eyelid of four individuals. The eyelid skin was split into 234 biopsy samples which were 

0.79-4.71mm2 and the proportion of samples which had mutations in 12 genes that are frequently 
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mutated in skin cancers were compared between the eyelid skin, melanoma, BCC and cSCC. In the 

Lynch et al., 2017 investigation, normal skin samples with an area of 4 x 4mm were obtained from 

10 individuals undergoing Mohs surgery and targeted sequencing identified gene mutations in 

multiple genes, including several genes that had been shown to be mutated in cSCC and genes 

that were “known drivers of epithelial malignancy”. In the Fowler et al., 2020 study, targeted 

sequencing was conducted on 2 x 2mm normal skin samples in 28 individuals, again 

demonstrating multiple mutated genes as well as 11 genes under positive selection / driver genes 

in normal skin  (Fowler et al., 2020).  

Therefore, this chapter aimed to (i) characterise WES/WGS data in melanoma and BCC to allow 

comparison of the driver genes in the three common types of skin cancer (i.e., BCC, SCC and 

melanoma), and (ii) examine WES/WGS and targeted next generation sequencing data in 

publications on AKs, normal skin and melanocytic naevi and evaluate for the presence of skin 

cancer driver genes in normal skin and these potentially precancerous lesions.  
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5.2 Methods 
Whole genome and exome data were extracted from the COSMIC database using the script 

explained in appendix chapter 7, section 1 and literature searches were conducted to identify 

sources of whole genome and whole exome data for skin melanoma. Melanoma data was also 

extracted from GDC portal as outlined in chapter 7, section 4. BCC samples were used from the 

Bonilla et al., 2016 paper. 

The bash script in chapter 7, section 1 from the appendix was edited for melanoma to extract all 

genetic information classified with a primary histology of ‘malignant melanoma’. The format of 

the data was changed to ensure it was compatible for the genome annotation program, 

Oncotator.. To ensure all genomic data were from human samples, any genomic data from cell 

lines or samples which were from cultured cells were discarded. This was done by extracting 

column five (which was the sample name) and column 35 (which included a description of the 

tumour origin, e.g. cell-line) from the mutation data in skin_cutaneous_melanoma.txt, and then 

duplicate variant information was discarded. 

Sample names which were described as originating from the mucosal region were discarded to 

ensure that mucosal melanoma samples were not included in the analysis. In the 

skin_cutaneous_melanoma.txt file, column five was extracted with the sample names and column 

nine with site subtype 1 ‘mucosal’ was extracted, then duplicate sample names were removed. 

Acral lentiginous melanoma is on the palms, soles, and nails (Bradford et al., 2009). This study did 

not include samples which were classified as acral lentiginous because this type of melanomas is 

not thought to be caused by UV (Hayward et al., 2017, Newell et al., 2020).  The melanoma data 

included in this study were likely to reflect UV-induced melanomas.  The COSMIC classification.csv 

file (described in chapter 2.4.1) showed that there were only cases of acral lentiginous melanoma 

classified in the foot in the COSMIC database. These samples of acral lentiginous melanoma in the 

foot were removed from the melanoma cohort of samples. The other histological types such as 

superficial spreading, nodular, lentigo maligna of melanoma were included in the analysis.  

Melanoma tumour sample names were also downloaded from GDC portal and the mutation data 

for these samples were taken from the mc3.v0.2.8.PUBLIC.maf. The samples identified in GDC 

portal were compared with those from the COSMIC database to ensure there were no duplicates.   

Literature searches for melanomas were conducted to identify WGS or WES data for BCC and 

melanoma. All literature was screened on MEDLINE OVID for BCC until 8th February 2020 and for 

melanoma until 19th May 2020. The data from these literature searches were also annotated 
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using Oncotator and collated with the melanoma data from mc3.v0.2.8.PUBLIC.maf and COSMIC. 

The MAF files produced for each skin cancer were analysed using Maftools in R. The 

bioinformatics tools used to identify driver genes were MutSig2CV, dNdScv, OncodriveCLUST and 

OncodriveCLUSTL.  

The cSCC data was compared with AK WES data, which was identified in the literature search, 

which had which was the same as the one conducted in chapter 3, section 2, any data that was AK 

data from that search was saved for future analyses (see search terms in appendix 7.9.1). The AK 

WES data in Thomson et al., 2021, Albibas et al., 2018 and Chitsazzadeh et al., 2016 was examined 

to identify if there were any cSCC driver genes present in the AK genomic dataset and any AK 

samples with mutations in the driver genes were recorded.  

The number of AK samples with mutations in cSCC driver genes was recorded in R using ggplot2. 

The number of mutations in skin cancer driver genes in known publications with targeted 

sequencing data of normal skin was also recorded and compared using R version 3.5.1. The 

melanoma driver genes identified in melanocytic naevi and normal melanocytes were presented 

in a table and displayed in R version 3.5.1.   

5.3 Results 

Medline OVID searches were conducted for BCC and melanoma as highlighted in appendix 7.9.6 

and 7.9.7. The flowcharts in this chapter show the number of studies that were identified in the 

literature search and the genetic databases: GDC portal and COSMIC. These studies were collated 

and analysed using a variety of graphs, such as oncoplots to identify the most frequently mutated 

genes in BCC and melanoma.  
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5.3.1 BCC   
 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Records identified through 

MEDLINE (n= 290) 

Tumours identified through 
COSMIC (n= 58) 

Tumours after duplicates removed (n= 58) 

Titles and abstracts 

screened (n= 290) 

Full text articles assessed 

for eligibility (n= 14) 

Articles excluded with reasons: 

Not cancer (n= 6) 

Not BCC (n= 72) 

Not WGS/WES (n= 189)  

Secondary data (n= 9) 
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WES data (n= 1) 

Text articles included with 

WGS/WES data (n= 1) 

Tumours included in data analysis (n= 131) 

Article excluded with reasons:  

Not BCC samples (n=3) 

Already in COSMIC (n=1) 
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in MEDLINE 
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Figure 4-32: Flowchart representing WGS/WES studies identified from a literature search and WGS/WES 
search of the COSMIC database for BCC. Studies in the literature search were compared with those in the 
COSMIC database and duplicates were removed. 

 

Figure 4-33: Flowchart representing WGS/WES studies identified from a literature search and WGS/WES 
search of the COSMIC database for BCC. Studies in the literature search were compared with those in the 
COSMIC database and duplicates were removed. 

Figure 5-1: Flowchart representing WGS/WES studies identified from a literature search and WGS/WES 
search of the COSMIC database for BCC. Studies in the literature search were compared with those in the 
COSMIC database and duplicates were removed. 

 

Figure 4-34: Flowchart representing WGS/WES studies identified from a literature search and WGS/WES 
search of the COSMIC database for BCC. Studies in the literature search were compared with those in the 
COSMIC database and duplicates were removed. 
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A Medline OVID search was conducted for BCC with search terms specified in the appendix 7.9.6 

and ascertained a total of 290 studies (figure 5-1). The titles and abstracts were inspected for the 

290 studies and 276 studies were removed. Of the 276 studies that were removed, six studies 

were not related to cancer, 72 studies were not specifically about BCC, 189 studies did not include 

WES or WGS data and nine studies contained secondary data. The publications on the 14 

remaining studies were then examined in detail. Thirteen of these 14 studies were removed, 

including three where the samples in the study were not BCC, one study which had data 

deposited in the COSMIC database, seven articles that did not include WES or WGS data and two 

studies where the lead authors were emailed but did not provide their WES or WGS data. The one 

remaining study from the literature search contained WES data for 131 BCC samples. There were 

58 BCC samples identified in the COSMIC database, however, the WES data for these samples had 

been included and re-analysed in the single study remaining from the literature search. Therefore, 

the samples identified in the COSMIC database were removed and the 131 samples from the 

study extracted from the literature search were analysed.  
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Figure 5-2: A. A box and whisker plot showing the percentage of base changes in the cohort of 131 BCC samples. The 
different colours represent the different base changes. B.The relative contributions of the different base changes in 
each individual BCC sample. The proportion of mutations in each sample is measured as a percentage of the total 
number of mutations in that BCC and the different colours represent the different base changes as signified in part A of 
this figure. 

 

The BCC samples showed a total of 18,742 C to T base changes (figure 5-2). While the majority of 

BCCs had a much lower proportion of other base alterations, there were 12 BCCs where the 

combination of the other base changes amounted to >25% of the total base alterations, including 

two samples which had less than 50% of mutations that were a C to T base change. There was 

also one sample which had 50% of mutations that was a T to C base change.  

B 

 

B 

A 

 

A 
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Figure 5-3: Single base subsitution mutation signature plot for BCC. The x axis represents the base change in its 
trinucleotide context* and the y axis represents the proportion of each base change in the BCC tumour cohort.The colour 
of the bars represents the specific base change described at the bottom of the graph. The mutation signature plot was 
created using Maftools in R. *Trinucleotide context from left to right for each base change, where N represents the base 
undergoing the change, is as follows; ANA, ANC, ANG, ANT, CNA, CNC, CNG, CNT, GNA, GNC, GNG, GNT, TNA, TNC, TNG, 
TNT. 

 

 

There were three SBS mutation signatures identified from this cohort of BCC samples (figure 5-3). 

The signatures 7a and 7b, with a high cosine similarity of 0.928 to SBS7a and 0.976 to SBS7b, were 

Best match: SBS7a [cosine-similarity: 0.928] 
Aetiology: UV exposure 

Best match: SBS7b [cosine-similarity: 0.976] 
Aetiology: UV exposure 

Best match: SBS5 [cosine-similarity: 0.738] 
Aetiology: Unknown 
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identified which are both associated with UV exposure. The SBS5 mutation signature was also 

identified, however, it has an unknown aetiology.  

 

 

Figure 5-4: The double base substitution mutation signature plots for BCC. The x axis represents the base change in its 
dinucleotide context and the y axis represents the proportion of each base change in the BCC tumour sample cohort.The 
colour of the bars represents the specific base change corresponding to the horizontal bar at the top of the graph. The 
mutation signature plot was created using Sigminer in R. 

 

There were four double base mutation signatures that were identified in BCC samples (figure 5-4). 

Three of the mutation signatures had a similarity that was most like DBS1 which is associated with 

UV exposure. The similarity of these DBS signatures to DBS1 ranged from 0.986 to 0.999. The 
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exposure 
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fourth double base mutation signature identified in the BCC samples was most similar to DBS6 

with a similarity of 0.435. DBS6 has an unknown aetiology.  

 

 

Figure 5-5:Oncoplot with top 25 frequently mutated genes in BCC tumours identifed in the literature search and 
COSMIC database. One or more of these genes was mutated in 124 of 131 samples (94.66%). The number of mutations 
identified in each tumour is presented as a bar chart at the top of the figure. Each coloured square represents the type of 
mutation that each sample contains within the corresponding gene. The bar chart on the right represents the number 
samples which have a mutation in that gene and the colours represent the type of mutation in the gene. 

At least one of the top 25 frequently mutated genes in BCC was mutated in 124 of 131 samples 

showing that 94.66% of samples share mutations in these genes (figure 5-5). The highest number 

of nonsynonymous mutations in an individual sample was 4443 mutations. Mutations in the 

MUC16 gene is shared across the highest proportion of samples, i.e., 103 of 131 (79%) BCCs. The 

second most frequently mutated gene was PTCH1, with 65% of BCCs containing mutations in this 
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gene. Missense mutations were the most common type of mutation in most of the top 25 most 

frequently mutated genes but the PTCH1 gene had a much lower proportion of missense 

mutations and contained a mixture of missense, nonsense, frameshift insertion, splice site, 

frameshift deletion and multi-hit mutations. 

 

 

Figure 5-6: Venn-diagram of the potential driver genes identified in BCC using four different bioinformatics programs. 
The four different bioinformatics programs are labelled in different colours corresponding to the outline of the closed 
curves; OncodriveCLUSTL (red), MutSig2CV (blue), OncodriveCLUST (green), dNdScv (purple). The numbers of potential 
driver genes, based on a false discovery rate q value <0.1, are highlighted and the names of specific genes identified by 
MutSig2CV and one other bioinformatics programe are included included in the relevant overlapping sections of the 
Venn diagram. 

The four programs used to identify potential driver genes were OncodriveCLUSTL, MutSig2CV, 

OncodriveCLUST, and dNdScv. The largest number of potential driver genes were identified using 

the OncodriveCLUST program as there were 335 genes with an analytical q value of less 0.1. 

However, in this analysis a driver gene was defined as a gene which has been identified as 

significantly mutated using the MutSig2CV program and one other program. Using this approach, 

22 genes were considered driver genes in BCC (figure 5-6). The TP53 gene was significant at q<0.1 

in all four programs. There were several genes that were significant at this level in three 

programs; these comprised MYH9 and WDFY3 in MutSig2CV, OncodriveCLUSTL and 

OncodriveCLUST, the SMO gene in dNdScv, OncodriveCLUSTL and MutSig2CV, and the PAK2 and 

PTCH1 genes in MutSig2CV, dNdScv and OncodriveCLUST.  
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5.3.2 Melanoma           
 

 

 

 

         
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Records identified through 

MEDLINE (n= 1738) 

Tumours identified through 
COSMIC (n= 973) 

Tumours identified through 

GDC Portal (n= 464) 

Tumours after duplicates removed (n= 971) 

Titles and abstracts 

screened (n= 1738) 

Full text articles assessed 

for eligibility (n= 89) 

Articles excluded with reasons: 

Not melanoma (n= 5) 

Not WGS/WES (n= 1574)  

Secondary data (n= 31) 

Not human tissue (n= 39) 

 

Text articles with WGS/ 

WES data (n= 14) 

Text articles included with 

WGS/WES data (n= 6) 

Tumours included in data analysis (n= 1157) 

Articles excluded with reasons: 

Not WGS/WES (n= 20) 

Already in COSMIC (n= 9) 

No sequencing data (n= 1) 

Not melanoma (n= 13) 

Not human tissue (n=8) 

Secondary data (n= 14) 

In ICGC database (n=1) 

Case Report/sampling bias (n= 1) 

Familial melanoma (n=7) 

Data aligned to hg18 (n=1) 

 

 

 

 

 

Article excluded with reasons: 

Not correct data format (n= 2) 

Acral melanoma (n=1) 

Authors did not provide 

WGS/WES data (n= 5) 

Tumour samples 

excluded with 

reasons: 

Mucosal 

melanoma (n= 14) 

Melanoma in foot 

(n= 2) 

Melanoma cell line 

(n=37) 

Melanoma cell 

culture (n=3) 

 

Tumours included in analysis (n=915) 

Tumours included with 

WGS/WES data (n= 242) 

 

Figure 5-7: Flowchart detailing studies identified in the literature search, COSMIC and GDC Portal 
databases for melanoma. Studies in the literature search were compared with those in GDC portal and 
COSMIC databases and duplicates were removed. 

 

 

Figure 4-35: Flowchart detailing studies identified in the literature search, COSMIC and GDC Portal 
databases for melanoma. Studies in the literature search were compared with those in GDC portal and 
COSMIC databases and duplicates were removed. 
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A Medline OVID search was conducted for melanoma with search terms specified in the appendix 

7.9.7 and ascertained a total of 1738 studies (figure 5-7). The titles and abstracts were inspected 

for the 1738 studies and 1649 studies were removed from the analysis for the following reasons: 

1574 studies did not include WGS or WES data, five articles were not about melanoma, 31 studies 

included secondary data and 39 studies included data which were not from human samples. The 

remaining 89 studies were analysed and 75 studies were excluded. Of these 75 studies, 20 did not 

include WGS or WES data, 14 included secondary data, 13 were not about melanoma, nine 

included data deposited in the COSMIC database, eight were on non-human tissue samples, seven 

included familial melanoma cases, one did not include sequencing data, another article’s data was 

in the ICGC (international cancer genome consortium) database which is a controlled access 

database that was not included in this analysis, one contained a single sample thus leading to 

potential sampling bias and in one study the sequencing data was aligned to the hg18 genome 

build. The 14 remaining studies were analysed further, and the lead authors were emailed to 

request data, however five authors did not provide WGS or WES data, one study included data on 

acral melanoma, and two studies did not have data available in MAF format. The remaining six 

articles included WGS or WES data for 242 samples. WGS or WES data for melanoma samples 

from COSMIC and GDC portal were also extracted. Duplicate samples were removed and any 

melanoma samples which were described as mucosal melanoma, melanoma which arose from 

the foot, melanoma which had been cultured from cells and cell lines were removed from the 

analysis. There 915 samples remaining with WGS or WES data for melanoma from GDC and 

COSMIC databases were joined with the 242 samples identified from the literature search to 

produce a file with 1157 human melanoma samples.  
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Figure 5-8: A. A box and whisker plot showing the percentage of bases in this cohort of 1157 skin melanoma samples. 
The box and whiskers shows the median and inter-quartile range and the total range respectively and the different 
colours represent the different base changes. B.The relative contributions of the different base changes in each 
individual melanoma sample. The proportion of mutations in each sample is depicted as a percentage of the total 
mutations and the different colours represent the base changes as delineated in part A of the figure. 

The largest proportion of base changes were C to T whereas the T to G base change was least 

common (figure 5-8). Despite C to T alterations being most frequent, some melanomas contained 

predominantly T to A changes, whereas other melanomas had mainly C to A alterations, and some 

other samples exhibited a mixture of base changes, representing the heterogeneity of this cancer 

type (figure 5-8B). 
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Figure 5-9: Single base subsitution mutation signature plot for cutaneous melanoma. The x axis represents the base 
change in its trinucleotide context* and the y axis represents the proportion of each base change in the melanoma 
sample cohort.The colour of the bars represents the specific base change described at the bottom of the graph. The 
mutation signature plot was created using Maftools in R. *Trinucleotide context from left to right for each base change, 
where N represents the base undergoing the change, is as follows; ANA, ANC, ANG, ANT, CNA, CNC, CNG, CNT, GNA, 
GNC, GNG, GNT, TNA, TNC, TNG, TNT. 

 

The melanoma samples showed three single base substitution mutation signatures (figure 5-9). 

One mutation signature had a cosine similarity of 0.96 to SBS45 which shows a high proportion of 

C to A base changes and is considered a possible sequencing artefact as a result of oxidative 

damage to the guanine resulting in 8-oxoguanine being introduced during DNA (Costello et al., 

2013). Another mutation signature had a cosine similarity of 0.926 to SBS7a which is associated 

with UV. This signature reflects the high proportion of C to T base changes in the melanoma 

samples. A third mutation signature identified in the melanoma samples had a 0.944 cosine 

similarity to SBS11, which is associated with exposure to alkylating agents and could have 

occurred as a result of treatment with chemotherapeutic agents (e.g. dacarbazine, temozolomide) 

(Alexandrov et al., 2020).  

Best match: SBS11 [cosine-similarity: 0.944] 
Aetiology: exposure to alkylating agents 

Best match: SBS7a [cosine-similarity: 0.926] 
Aetiology: UV exposure 

Best match: SBS45 [cosine-similarity: 0.96] 
Aetiology: Possible sequencing artefact 
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Figure 5-10: Double base substitution mutation signature plots for cutaneous melanoma. The x axis represents the 
base change in its dinucleotide context and the y axis represents the proportion of each base change in the melanoma 
sample cohort.The colour of the bars represents the specific base change corresponding to the horizontal bar at the top 
of the graph. The mutation signature plot was created using Sigminer in R. 

Three double base substitution mutation signatures were detected in the melanoma samples 

using Sigminer (figure 5-10). The first mutation signature has a similarity of 0.999 to DBS1 which is 

due to UV exposure and had been similarly identified in BCC and cSCC (in this chapter and chapter 

3 respectively). However, in melanoma there was also a signature identified with a 0.245 

similarity to DBS11, which is related to APOBEC mutagenesis and was not seen in cSCC or BCC. 

The melanoma tumour samples also contained a mutation signature which had a 0.251 similarity 
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to DBS9 (which has no known aetiology) that was also identified in the cSCC tumour samples 

(where it had 0.324 similarity to DBS9).  

 

Figure 5-11: Oncoplot of top 25 frequently mutated genes in melanoma tumours identifed from the literature search, 
COSMIC and GDC portal databases. At least one of these genes was mutated in 1024 of 1157 samples (88.5%). The 
number of mutations identified in each tumour is presented as a bar chart at the top of the figure. Each coloured square 
represents the type of mutation that each sample contains within the corresponding gene. The bar chart on the right 
represents the number of samples which have a mutation in that gene, with the colours representing the type of 
mutation in the respective gene. 

 

The oncoplot of the top 25 most frequently mutated genes in melanoma (figure 5-11) indicates 

that MUC16 was mutated in 50% of melanoma samples and BRAF was the next most mutated 

gene, affecting 47% of tumours. The tumour with the highest number of nonsynonymous 

mutations contained 15,015 mutations. The proportion of mutations shared by each of the 

samples in the 25 most frequently mutated genes ranged from 21% of samples to 50% of samples, 

with the most common mutation type shared by all the top 25 frequently mutated genes being a 

missense mutation. One or more of the top 25 frequently mutated genes was mutated in 88.5% 

of the 1157 melanoma samples. 
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Figure 5-12: Venn-diagram of the potential driver genes identified in skin melanoma using four different 
bioinformatics programs. The four different bioinformatics programs are labelled in different colours corresponding to 
the outline of the closed curves. OncodriveCLUSTL (red), MutSig2CV (blue), OncodriveCLUST (green), dNdScv (purple). 
The numbers of potential driver genes, based on a false discovery rate q value <0.1, are highlighted are highlighted and, 
where possible, the names of the specific genes identified by MutSig2CV and one other bioinformatics programe are 
included in the relevant overlapping sections of the Venn diagram. 

 

In the melanoma samples, the highest number of genes with a q value of less than 0.1 was 

recognised using the OncodriveCLUSTL program (figure 5-12). There were 35 genes which were 

significant at q<0.1 in all four programs (OncodriveCLUST, MutSig2CV, OncodriveCLUST and 

dNdScv). The lowest number of significant genes with a q value of less than 0.1 were identified 

using the dNdScv program (i.e. 387 genes). Like previous work in this thesis, a gene was 

considered a driver gene if it had a q value of less than 0.1 in MutSig2CV and at least one other 

program. There were 367 driver genes identified this way in the melanoma samples (appendix 

7.11.3), which was the highest number of driver genes identified in all three skin cancers 

investigated in this thesis. Notably, the total number of melanoma samples in the analysis was 

much higher than the number of BCC and cSCC samples available for analysis in this thesis, which 

is likely to be the reason why more driver genes were detected in cutaneous melanoma.  
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5.4 Comparison of skin cancers 
 

As stated earlier in this thesis, UV exposure is the main cause of skin cancer, including for 

melanoma, BCC and cSCC, and the data on the single base substitution and double base 

substitution mutations seen in this project supports this view.  However, melanoma develops 

from melanocytes, whereas BCC and cSCC arise from keratinocytes, and even though BCCs and 

cSCC arise from the same type of cell, there are considerable differences in their clinical 

behaviour, with cSCC more likely to metastasise than BCC.  Therefore, a comparison was 

conducted in relation to the results of the WES and WGS data for cSCC, BCC and melanoma, 

focusing on common signalling pathways affected by the mutations and on driver genes.   

 

 

Figure 5-13: The signalling pathways affected in cSCC. The fraction of genes that are mutated in the relevant signalling 
pathway is shown on the left and the number of samples which show mutations in these genes is on the right.  
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In cSCC, 82 out of 85 genes in the RTK-RAS pathway were mutated in the overall cohort, with 

mutations in this pathway present in 109 out of a total of 122 samples (figure 5-13). The NOTCH 

pathway was affected in 110 cSCCs, however mutations affecting this pathway (in 66 of 71 genes) 

were proportionally slightly less common that those involving the RTK-RAS pathway. The WNT 

pathway had mutations in 65 of 68 WNT pathway related genes with 101 cSCC samples containing 

mutations affecting this. Other pathways that were highlighted as being altered due to mutations 

in relevant genes in the cSCCs included the Hippo, PI3K, MYC, TGF-Beta, TP53 and NRF2 pathways.  

 

Figure 5-14: Oncoplot of the RTK-RAS pathway in cSCC. The left of the plot shows the genes which have been mutated 
in the pathway. Tumor suppressor genes are depicted in red font, and oncogenes in blue font. Each coloured square 
represents a sample which has a mutation in the corresponding gene on the left. 

In genes affecting the RTK-RAS pathway, the oncogene ROS1 was mutated by the greatest 

number of cSCC samples (figure 5-14). The ROS1 gene encodes for the receptor tyrosine kinase 

(RTK) which can activate the RAS pathway and cause cell proliferation (Drosten et al., 2010). There 

were cSCC samples which did not have mutations in ROS1 but had mutations in other oncogenes 

and tumour suppressor genes within the RTK-RAS pathway. The most frequently mutated tumour 

suppressor gene in the RTK-RAS pathway was NF1 which, in its wildtype form, converts active 

RAS-GTP to inactive RAS-GDP thus negatively regulating RAS signalling (Weiss et al., 1999).  
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Figure 5-15: Oncoplot of the WNT pathway in cSCC. The left of the plot shows the genes which have been mutated in 
the pathway, with tumor suppressor genes highlighted in red font and oncogenes in blue font. Each coloured square 
represents a sample which has a mutation in the corresponding gene on the left. 

Genes within the WNT signalling pathway were frequently mutated in cSCC, and the gene most 

mutated in this pathway was the APC TSG (mutated in 32 cSCCs, figure 5-15). The APC gene 

encodes for the APC protein which associates with many other proteins, including beta catenin 

which controls Wnt target gene expression (Li et al., 2012). and cell proliferation; the binding of 

APC with beta catenin encourages degradation of beta catenin (Eklof Spink et al., 2001). The 

oncogene which was most often mutated in the cSCC samples was LRP6, and there were also 10 

samples which contained mutations in both APC and LRP6. The LRP6 protein is a co-receptor with 

LRP5 and is responsible for transducing signals thought the WNT pathway. The skin SCC samples 

contained mutations in more oncogenes than tumour suppressor gene in the WNT pathway as 

samples share mutations in 23 tumour suppressor gene and 38 oncogenes (figure 5-15).  
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Figure 5-16: Oncoplot of the NOTCH pathway in cSCC. The left of the plot shows the genes which have been mutated in 
the pathway; TSGs are in red, and oncogenes are in blue font. Each coloured square represents a sample which has a 
mutation in the corresponding gene on the left. TSG = tumour suppressor gene. 

The nine most highly mutated genes in the NOTCH pathway were tumour suppressor genes 

(figure 5-16). Of note, NOTCH1 and NOTCH2 were the top two mutated genes in the oncoplot of 

the NOTCH pathway in cSCC and were also identified as driver genes in cSCC in this project (see 

figure 3-10). There have been studies which consider NOTCH1 as an oncogene and a tumour 

suppressor gene, however, in skin, NOTCH1 has been identified as a tumour suppressor gene 

(Lobry et al., 2011). In support of this, deletion of NOTCH1 in a murine study resulted in increased 

epidermal proliferation and subsequent development of skin tumours (Nicolas et al., 2003). A 

cluster of samples which did not have mutations in NOTCH1, had mutations in either NOTCH2, 

SPEN or NOTCH3. There were only three oncogenes which were mutated in the NOTCH pathway, 

namely KDM5A, HDAC1 and ARRDC1. 
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Figure 5-17: The signalling pathways affected in BCC. The fraction of genes that are mutated in the relevant signalling 
pathway is shown on the left and the number of samples which show mutations in those genes is on the right.  

 

Like cSCC, mutations in BCC affected the RTK-RAS, WNT and NOTCH pathways (figure 5-17). The 

RTK-RAS pathway was impacted in 113 out of 131 BCC tumour samples, with81 of 85 genes in the 

RTK-RAS pathway mutated in BCC. The WNT pathway was affected in 94 BCC samples with 64 of 

68 genes mutated in this pathway and the NOTCH pathway in 105 BCCs with the overall group of 

BCCs containing mutations in 63 of 71 genes from this pathway. The other pathways which 

contained mutations in relevant genes in BCC included the Hippo, PI3K, MYC, TGF-Beta, TP53 and 

NRF2 pathways, which were also affected in the cSCC samples (see figure 5-13).  
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Figure 5-18: Oncoplot of the RTK-RAS pathway in BCC. The left of the plot shows the genes which have been mutated in 
the pathway. Tumor suppressor genes are in red, and oncogenes are in blue font. Each coloured square represents a 
sample which has a mutation in the corresponding gene on the left. 

The two most mutated genes in the RTK-RAS pathway in BCC were the ROS1 and ERBB4 

oncogenes, which was like that seen in cSCC in relation to this pathway (figure 5-18). 

Furthermore, as was seen with cSCC, most of the genes in the RTK-RAS pathway in BCC were 

oncogenes. There were four tumour suppressor genes which were affected in BCC tumour 

samples in the RTK-RAS pathway, i.e. NF1, CBL, RASA1 and ERF. Overall, the data showed that 

there was an amount of heterogeneity in BCCs in relation to the RTK-RAS pathway, with some 

tumours containing mutations in several/multiple genes whereas other BCCs had mutations in 

only one or a few of the genes related to this pathway.  
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Figure 5-19: Oncoplot of the WNT pathway in BCC. The left of the plot shows the genes which have been mutated in the 
pathway. Tumor suppressor genes are in red, and oncogenes are in blue font. Each coloured square represents a sample 
which has a mutation in the corresponding gene on the left. 

APC was the most commonly mutated gene in the WNT pathway in BCC samples, although this 

was only in a proportion of BCCs (i.e. 23 tumours), which was similar to cSCC (figure 5-19). 

However, the second most mutated gene in this pathway in BCC samples was the tumour 

suppressor gene AMER1, in contrast to skin SCC where the second most mutated gene in this 

pathway was LRP6. AMER1 is an inhibitor of the WNT pathway and induces beta catenin 

degradation (Tanneberger et al., 2011), therefore, mutations in this gene can result in 

uncontrolled cell proliferation. There are more oncogenes (37 oncogenes) mutated in the WNT 

pathway compared to tumour suppressor genes (24 tumour suppressor genes) in BCC tumour 

samples.  
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Figure 5-20: Oncoplot of the NOTCH pathway in BCC. The left of the plot shows the genes which have been mutated in 
the pathway. Tumor suppressor genes are in red, and oncogenes are in blue font. Each coloured square represents a 
sample which has a mutation in the corresponding gene on the left. 

 

In relation to the NOTCH signalling pathway, the NOTCH2 gene was most frequently mutated in 

the BCC samples, but mutations of NOTCH2, NOTCH3 or NOTCH1 were seen in over half of the 

cases, and in some tumours two or three of these genes were mutated (figure 5-20). NOTCH 

signalling has been linked to epidermal cell differentiation in BCC and it has been reported that 

NOTCH1, NOTCH2 and NOTCH3 had their highest level of transcription in the basal layer of skin, 

that is the part of the epidermis where proliferation normally occurs (Thelu et al., 2002). The 10 

most highly mutated genes in the NOTCH pathway were tumour suppressor genes, whereas there 

were only three oncogenes (KDM5A, HDAC1 and NRARP) mutated in BCC samples in the NOTCH 

pathway.  
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Figure 5-21: The signalling pathways affected in melanoma. The fraction of genes that are mutated in the relevant 
signalling pathway is shown as the bar graph on the left and the number of samples which show mutations in those 
genes is on the right of the figure.  

 

Interestingly, the signalling pathways that were involved by mutations in the keratinocyte cancers 

(cSCC and BCC) were also involved in melanoma, with most of the genes in the RTK-RAS, NOTCH 

and WNT pathways mutated (figure 5-21). However, in melanoma, the RTK-RAS pathway was 

affected in most cases (1035 of 1157 tumours) whereas the NOTCH and WNT were affected in 

only 607 and 592 of 1157 melanomas respectively. Although the Hippo, PI3K, MYC, TGF-Beta, 

TP53 and NRF2 pathways were also affected in some melanomas, the proportion of melanomas 

with mutations in TP53 (247/1157, figure 5-21) was lower than that seen in cSCC (96/122, figure 

5- 13) and BCC (72/131, figure 5-17).  
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Figure 5-22: Oncoplot of the RTK-RAS pathway in melanoma. The left of the plot shows the genes which have been 
mutated in the pathway. Tumor suppressor genes are in red, and oncogenes are in blue font. Each coloured square 
represents a sample which has a mutation in the corresponding gene on the left. 

Genes affecting the RTK-RAS pathway were the most frequently mutated in the melanoma 

samples (figures 5-21 and 5-22). The most mutated gene in this pathway in melanoma was the 

BRAF gene. Mutations in BRAF increase BRAF kinase activity and increases phosphorylation and 

activates ERK (Yaeger and Corcoran, 2019), thus therapeutic agents have been developed to treat 

melanoma patients with a BRAF mutation (mainly the v600 mutation) (Munoz-Couselo et al., 

2015). Many melanomas which did not have mutations in the BRAF oncogene had mutations in 

ROS1 or NRAS oncogenes. The MAPK signalling pathway is activated by RAS proteins such as 
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NRAS. This RAS activity is controlled by GTPase-activating proteins such as neurofibromin 1 (NF1), 

which protein converts RAS to its inactive GDP-bound state (Weiss et al., 1999). Perhaps not 

surprisingly, the most frequently mutated tumour suppressor gene in this pathway in melanoma 

was NF1 

 

Figure 5-23: Oncoplot of the WNT pathway in melanoma. The left of the plot shows the genes which have been 
mutated in the pathway. Tumor suppressor genes are in red, and oncogenes are in blue font. Each coloured square 
represents a sample which has a mutation in the corresponding gene on the left. 

The APC gene was the most mutated gene in the WNT pathway in melanoma, but only in 9% of 

melanomas (figure 5-23), which is a lower proportion of tumours where APC was mutated than in 

cSCC and BCC. Although the CHD8 gene was the next most frequently mutated in the WNT 
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pathway in melanoma, in general there were a limited number of tumours with clusters of 

mutations in any particular gene and most of the tumours exhibited a lot of heterogeneity with 

respect to mutations in the genes relevant to the WNT pathway. Mutations were frequently 

observed in oncogenes and tumour suppressor genes affecting this pathway in cutaneous 

melanoma. 

 

Figure 5-24: Oncoplot of the NOTCH pathway in melanoma. The left of the plot shows the genes which have been 
mutated in the pathway. Tumor suppressor genes are in red, and oncogenes are in blue font. Each coloured square 
represents a sample which has a mutation in the corresponding gene on the left. 
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The most mutated gene in the NOTCH pathway is the tumour suppressor gene NOTCH4 which is 

the nineth most mutated gene in skin SCC and BCC. Large clusters of samples in melanoma which 

do not have mutations in NOTCH4, have mutations in other tumour suppressor genes in the 

NOTCH pathway such as CNTN6, SPEN, CREBBP, NCOR1, NCOR2 and NOTCH3. There are only 

three oncogenes mutated in this pathway for melanoma samples, KDM5A, ARRDC1 and HDAC1. 

NOTCH4 has shown expression in melanoma cells and triggered a switch from a mesenchymal-like 

phenotype to an epithelial phenotype and reduced invasive, migratory, and proliferative signalling 

(Bonyadi Rad et al., 2016). There has also been evidence to suggest that NOTCH4 exhibited the 

most significant correlation to HEY1 expression in head and neck squamous cell carcinoma 

(Fukusumi et al., 2018). HEY1 tumour suppressor gene is also mutated in a low proportion of 

melanomas in figure 5-24.  

 

 

 

Figure 5-25: Venn diagram of the driver genes identified in the three most common types of skin cancer. The driver 
genes or number of driver genes  identified in each type of skin cancer are shown and the specific driver genes which are 
common between skin cancers are shown in the intersecting circles. 

 

Next, a comparison of the driver genes in the three most common types of skin cancer (BCC, cSCC 

and melanoma) was conducted.  The only driver gene which was common to all three skin cancer 

types was TP53 (figure 5-25). There was a much higher number of driver genes identified in the 
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melanoma samples (as documented earlier in this chapter). The CDKN2A gene was noted as a 

driver gene in both melanoma and cSCC, whereas the PPP6C gene was a driver gene in melanoma 

and BCC. In addition to TP53, two other driver genes were common to cSCC and BCC; these were 

CDC27 and TMEM222. Although BCC and cSCC arise from keratinocytes, the fact that only three 

driver genes were common to both these types of skin cancer and a greater number of driver 

genes were not shared between cSCC and BCC, could be seen as part of the reason why these two 

types of keratinocyte cancer behave different clinically.  The limited number of driver genes that 

were common to melanoma and the other two types of skin cancer was not surprising because 

they arise from different cell types in the epidermis and the clinical behaviour of melanoma is 

generally more aggressive than that of keratinocyte cancers. 
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Figure 5-26: Oncoplot of skin cancer driver genes that were common to at least two of the three different type of skin 
cancers, i.e. cSCC, BCC and melanoma.. The number of mutations identified in each tumour across all genes (i.e. not 
restricted to these driver genes) is presented as a bar chart at the top of type of cancer. Each coloured square represents 
the type of mutation within the corresponding gene. The bar chart on the right represents the number samples which 
have a mutation in that gene and the colours represent the type of mutation in the gene. 
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In 99 of 122 cSCCs, there were mutations in driver genes that were also identified as driver genes 

in BCC and/or melanoma. For BCC, mutations in driver genes that overlapped with cSCC and/or 

melanoma were seen in 82 of 131 samples and for melanoma the driver genes that were common 

to this tumour and BCC and/or cSCC were mutated in 293 of 1157 samples. While the TP53 gene 

was identified as a driver gene in cSCC, BCC and melanoma, and there was some variation in the 

proportion of the types of mutations (missense, nonsense, multi-hit, etc.) between these 

tumours, the main difference was that the mutation rate of TP53 was highest in cSCC, 

intermediate in BCC and lowest in melanoma (figure 5-26). TMEM222 was a driver gene in cSCC 

and BCC and was mutated in 9% of both these cancer types (all of which were missense), but the 

CDC27 gene which was a driver gene in cSCC and BCC was mutated slightly more in cSCC than 

BCC.  CDKN2A was mutated in 25% of samples in skin SCC and 8% of samples in melanoma was a 

driver gene common to both these cancers.  The PPP6C gene, identified as a driver gene in BCC 

and melanoma, was mutated in 14% of BCCs with all of these missense mutations, PPP6C was 

mutated in a lower proportion of melanomas (i.e., 7%) with some other types of mutations as well 

as missense. While the mutations in each of the above driver genes often affected different bases 

and/or codons within and across the different skin cancer types, some of the mutations occurred 

at identical codons, resulting in identical amino acid alterations, in two or more of the different 

types of skin cancer (table 5-1).  
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Table 5-1: Table showing mutations within same codons of individual genes that were identified as driver genes for 
cSCC and/or BCC and/or cutaneous melanoma. 

Gene 
Mutation 
in DNA 

Amino acid 
change in 
protein cSCC BCC Melanoma 

TP53 c.380C>T p.S127F Y Y Y 

TP53 c.476C>T p.A159V Y Y Y 

TP53 c.535C>T p.H179Y Y Y Y 

TP53 c.586C>T p.R196* Y Y Y 

TP53 c.637C>T p.R213* Y Y Y 

TP53 c.722C>T p.S241F Y Y Y 

TP53 c.743G>A p.R248Q Y Y Y 

TP53 c.832C>T p.P278S Y Y Y 

TP53 c.833C>T p.P278L Y Y Y 

TP53 c.844C>T p.R282W Y Y Y 

TP53 c.856G>A p.E286K Y Y Y 

TP53 c.949C>T p.Q317* Y Y Y 

TP53 c.991C>T p.Q331* Y Y Y 

TP53 c.1024C>T p.R342* Y Y Y 

CDKN2A c.109G>T p.E37* Y   Y 

CDKN2A c.152C>T p.A51V Y   Y 

CDKN2A c.176G>A p.W59* Y   Y 

CDKN2A c.177G>A p.W59* Y   Y 

CDKN2A c.188C>T p.P63L Y   Y 

CDKN2A c.189C>T p.P63P Y   Y 

CDKN2A c.18C>T p.A6A Y   Y 

CDKN2A c.19C>T p.R7* Y   Y 

CDKN2A c.52G>T p.E18* Y   Y 

CDKN2A c.85C>T p.R29* Y   Y 

CDKN2A c.97G>A p.D33N Y   Y 

TMEM222 c.17G>A p.G6E Y Y   

CDC27 c.213C>A p.C71* Y Y   

CDC27 c.332G>A p.G111D Y Y   

CDC27 c.821C>A p.A274D Y Y   

CDC27 c.2072C>T p.S691L Y Y   

PPP6C c.775C>T p.P259S   Y Y 

PPP6C c.790C>T p.R264C   Y Y 

PPP6C c.809C>T p.S270L   Y Y 

PPP6C c.912C>T p.F304F   Y Y 

PPP6C c.913C>T p.L305F   Y Y 
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The sites of mutations for these driver genes in the different types of skin cancer were examined 

using “lollipop plots”, as this allowed visual comparison of the sites and types of mutations in 

these genes in the different skin cancer groups (figures 5-27 to 5-31).  

 

 

 

 

 

 

 

 

The mutations in TP53 gene were scattered across the different protein domains in each of the 

three types of skin cancer (figure 5-27). Most of the mutations were missense, with nonsense 

mutations the second most frequent, in the three skin cancer categories. Based on the 

comparison of the lollipop plots, there were no major differences in the site or type of mutation 

between cSCC, BCC and melanoma that would suggest that the TP53 gene was likely to behave 

differently as a driver gene in any of the three types of skin cancer.   
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Figure 5-27: Schematic representation of the TP53 protein and the mutations identified in different types of 
skin cancer. This has been produced from the transcript numbers specified by NM number 000546 and the 
amino acid numbers are stated below each schematic representation. The respective protein domains have been 
labelled as extracted from the Pfam database. The type of mutation are represented by the colours of the circles 
on the lollipop and show which regions of the protein the gene mutation is affecting. The number of mutations in 
each region of the gene is represented by the height of the lollipop. 

 

Figure 4-37: Schematic representation of the TP53 protein and the mutations identified in different types of 
skin cancer. This has been produced from the transcript numbers specified by NM number 000546 and the 
amino acid numbers are stated below each schematic representation. The respective protein domains have been 
labelled as extracted from the Pfam database. The type of mutation are represented by the colours of the circles 
on the lollipop and show which regions of the protein the gene mutation is affecting. The number of mutations in 
each region of the gene is represented by the height of the lollipop. 
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Most of the mutations in CDKN2A were scattered along the first half of the p16 protein from the 

N-terminus, including in the ANK and Ank_5 domains, in cSCC and in melanoma (figure 5-28). The 

mutations in cSCC were nonsense or missense whereas in melanoma there were frame-shift 

deletions, frame-shift insertions, in-frame insertions, and in-frame deletions.  
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Figure 4-38: 
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Figure 5-28: Lollipop plot of CDKN2A demonstrating site and type of mutations in skin SCC and melanoma. Figure 
was produced from transcript NM 001195132 and the amino acid numbers are shown below the schematic. The 
respective protein domains have been labelled as per the Pfam database. The type of mutations are represented by the 
colours of the circles on the lollipop and show which regions of the protein the gene mutation affects. The number of 
mutations in each region of the gene is represented by the height of the lollipop. 
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CDC27 was more frequently mutated in cSCC (15.57%) than in BCC (10.69%). Although the 

mutations were scattered across the gene, the TPR domains were also affected more commonly 

in cSCC than in BCC. 
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Figure 4-39: 

Schematic 

representation of the 

CDC27 protein and 

the mutations 

identified in cSCC and 

BCC. Schematic 

produced from 

transcript NM 

001114091. The 

amino acid numbers 

of the protein are 

stated beneath the 

protein and the 

respective protein 

domains labelled 

according to data 

extracted from the 

Pfam database. The 

type of mutations are 

represented by the 

colours of the circles 

on the lollipop and 

show which regions of 

the protein are 

affected by the 

respective gene 

mutations. The 

number of mutations 

in each region of the 

gene is represented 

by the height of the 

lollipop.BCC 

Skin SCC 

 

Skin SCC 

Skin SCC 

 

Skin SCC 

Figure 5-29: Schematic representation of the CDC27 protein and the mutations identified in cSCC and BCC. Schematic 
produced from transcript NM 001114091. The amino acid numbers of the protein are stated beneath the protein and the 
respective protein domains labelled according to data extracted from the Pfam database. The type of mutations are 
represented by the colours of the circles on the lollipop and show which regions of the protein are affected by the 
respective gene mutations. The number of mutations in each region of the gene is represented by the height of the 
lollipop. 

 

Figure 4-40: Schematic representation of the CDC27 protein and the mutations identified in cSCC and BCC. Schematic 
produced from transcript NM 001114091. The amino acid numbers of the protein are stated beneath the protein and the 
respective protein domains labelled according to data extracted from the Pfam database. The type of mutations are 
represented by the colours of the circles on the lollipop and show which regions of the protein are affected by the 
respective gene mutations. The number of mutations in each region of the gene is represented by the height of the 
lollipop. 
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The TMEM222 was mutated in 9% of cSCCs and in a similar percentage of BCCs. All mutations in 

this gene in both types of keratinocyte cancer were missense, with several of these at the N-

terminal region, and some occasionally in the DUF778 domain of the protein (figure 5-30).  

 

 

 

 

 

 

 

 

 

 

 

BCC 

 

Figure 

4-41: 

Repres

entatio

n of 

the 

TMEM

222 

protein 

and 

mutati

ons 

identifi

ed in 

cSCC 

and 

BCC. 

Transcr

ipt NM 

032125 

was 

employ

ed for 

the 

schema

tic 

represe

ntation

, with 

the 

amino 

acid 

numbe

rs 

Skin SCC 

 

Figure 4-42: 

Representation of 

the TMEM222 

protein and 

mutations 

identified in cSCC 

and BCC. Transcript 

NM 032125 was 

employed for the 

schematic 

representation, 

with the amino 

acid numbers 

written beneath 

the protein. The 

respective protein 

domains have been 

labelled as per the 

Pfam database. 
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Figure 5-30: Representation of the TMEM222 protein and mutations identified in cSCC and BCC. 
Transcript NM 032125 was employed for the schematic representation, with the amino acid numbers 
written beneath the protein. The respective protein domains have been labelled as per the Pfam 
database. The type of mutation (all of which were missense) is represented by the green coloured circles 
on the lollipops and demonstrate the regions of the protein affected by the mutations. The number of 
mutations at each site are represented by the height of the lollipop. 
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Mutations in PPP6C were scattered more across the protein in melanoma than in BCC (figure 5-

31). Whereas all the mutations in this gene were missense in BCC, and the majority of mutations 

in the gene were missense in melaoma, there were some nonsense and splice site mutations in 

melanoma also.  All the mutations in BCC and most of the mutations in melanoma affected the 

PTZ00239 domain of the PPP6C protein, but some mutations in melanoma modified the MPP P2A 

PP4 PP6 domain. 
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Figure 5-31: Schematic of the PPP6C protein and the mutations in BCC and melanoma. This was produced from 
transcript NM 001123355 and shows the amino acid numbers underneath the protein. The protein domains have been 
labelled according to the Pfam database and the type of mutation are indicated by the colours of the circles on the 
lollipop.   The number of mutations is represented by the height of the lollipop and the site of the lollipops shows the sites 
of the protein affected by the respective mutation. 
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While the vast majority of BCC, cSCC and melanoma skin cancers are treated by surgical excision, 

it is worth looking at whether the mutations identified in the overall WES and WGS data for these 

skin cancers would offer opportunities for drug treatment of the more limited numbers of skin 

cancers that could not be adequately excised clinically.  Using the Drug Gene Interaction database 

allows one to estimate whether certain mutated genes might be treatable by medical agents, i.e. 

termed “druggable”. Therefore the “druggable” effects of the mutations in these cancers were 

assessed using all genes which had variants. 

 

 

 

Figure 5-32: Graphs representing the drug-gene interactions of genes which are mutated in skin cancer. The x axis 
represents the number of genes which have mutations in the druggable pathways and the most commonly mutated 
genes in each pathway are shown in the graph. The drug information has been compiled from the Drug Gene Interaction 
database.  

 

Figure 5-32 shows the “druggable” gene categories for the mutations in cSCC, BCC and melanoma 

(Griffith et al., 2013). The graphs show up to the top five genes which are in each druggable gene 

categories. The MUC16 gene is mutated in skin SCC and BCC and MUC17 gene is mutated in skin 

SCC and melanoma and has been identified as a druggable part of the genome. ABCA13 has been 

identified as only in skin SCC and BCC and has been categorised as a transporter druggable gene 

category. APOB is a transporter that has been mutated in skin SCC and melanoma. In BCC clinically 

actionable genes include LRP1B, PTCH1 and TP53 which is similar to skin SCC which includes 

LRP1B and TP53. The least number of genes are involved in the tyrosine kinase druggable 

pathway in BCC and melanoma. 
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5.5 Potential pre-malignant skin lesions and chronically sun-exposed skin 
To understand which UV-induced mutations (including sun-induced mutations) in human skin 

might lead to the subsequent development of skin cancer, it is useful to compare the driver gene 

mutations in cSCC, BCC and melanoma with the mutations that have been reported in potential 

pre-malignant skin lesions and in chronically sun-exposed skin.  While this type of comparison 

does not mean that the presence of mutated driver genes in skin will lead to skin cancer 

development, the observation of a mutated driver gene in UV-exposed skin, potential pre-

malignant lesions and skin cancers suggests that this type of gene mutation in UV-exposed skin 

may be more deleterious than a mutation in a gene that is not seen as a driver gene in skin 

cancer.  This, in turn, might allow one to assess how much risk is associated with repeated 

exposure to NB-UVB (and/or to natural sunshine) by focussing on the number of mutated driver 

genes that arise in the skin following repeated UV exposure. Therefore, studies in the literature 

on next-generation sequencing of potential pre-malignant lesions were obtained using search 

terms as shown in appendix 7.9.1 for actinic keratoses (AKs) and data from known studies for 

melanocytic naevi and chronically UV-exposed skin were identified. Then cSCC, BCC and 

melanoma WES and WGS analyses was used to check for the presence of mutated driver genes 

(as identified in this thesis) in those potential pre-malignant lesions and of chronically UV-exposed 

skin samples. 

 

5.5.1 Actinic Keratosis 
 
Studies which reported on WES of AKs were ascertained from the published literature; searches 

were performed up to 24th January 2020. The publications that were identified as containing WES 

data on AKs comprised of seven samples from Chitsazzadeh et al., 2016 and five samples from 

Albibas et al., 2018. A larger study of AKs was identified while the AK analysis was being 

conducted and 30 samples from Thomson et al., 2021 was included, which in total contained 42 

AKs that had undergone WES investigations, and which provided WES data on 42 AKs. No studies 

were identified which included WGS information on AKs. 
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Figure 5-33: The cSCC driver genes which were mutated in actinic keratosis (AK) WES data that was obtained from 
Chitsazzadeh et al., 2016, Albibas et al., 2018 and Thomson et al., 2021 studies. The graph shows the number of AK 
samples which have mutations in the respective cSCC driver genes. 

Due to the limited number of AK samples, driver genes in AKs were not investigated using the four 

bioinformatics programs (i.e. MutSig2CV, OncodriveCLUST, OncodriveCLUSTL and dNdScv) as had 

been undertaken for the different types of SCCs and other types of skin cancer earlier in this 

thesis.  Instead, the AK data was examined to determine whether the AKs showed mutations in 

the driver genes that had been identified in cSCCs (figures 3-10 and 5-25), because of the previous 

genetic evidence that cSCCs can arise from AKs (Albibas et al., 2018). All the 12 cSCC driver genes 

were noted to be mutated in this cohort of AKs, with variation in the frequency of the individual 

driver genes that were mutated in the AKs (figure 5-33).  The TP53 gene was mutated in the 

greatest number of AK samples and TMEM222 is mutated in the least amount of AK samples. The 

top five most mutated driver genes in AKs were TP53, FAT1, NOTCH1, NOTCH2 and KIF4B. The top 

five most mutated cSCC driver genes which were mutated in AKs were mutated in 15 to 31 

samples.  
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5.5.2 Melanocytic naevi 
 
Although many melanocytic naevi (commonly known as “moles”) are benign and never develop 

into a melanoma (Tsao et al., 2003), some melanomas arise from pre-existing melanocytic naevi 

(Pampena et al., 2017). Therefore, known published literature was identified which reported on 

WES of melanocytic naevi. One publication with WES on melanocytic naevi, which contained 30 

samples, was identified (Stark et al., 2018). The WES data on melanocytic naevi was examined to 

identify whether the driver genes that had been identified in cutaneous melanoma in this thesis 

were mutated in the melanocytic naevi. 
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Table 5-2 List of melanoma driver genes identified in melanocytic naevi. The table shows the number of samples which 
have mutations in these driver genes. 

Melanoma driver 
genes 

Number 
of 
samples 
mutated 
(Stark et 
al., 
2018) 

Melanoma driver 
genes 

Number 
of 
samples 
mutated 
(Stark et 
al., 
2018) 

Melanoma driver 
genes 

Number 
of 
samples 
mutated 
(Stark et 
al., 
2018) 

BRAF 16 GRM3 3 KLF12 2 

MYH7 16 ITSN1 3 LEPR 2 

ACTC1 11 KIAA2022 3 LHCGR 2 

HYDIN 10 MYH1 3 LRP2 2 

XIRP2 10 MYH2 3 MYBPC1 2 

PTPRB 9 MYLK 3 OR52J3 2 

PCDH15 8 MYOM3 3 PCDHA4 2 

PTPRT 8 NLRP11 3 PDE4DIP 2 

TRRAP 7 NLRP4 3 PDE8B 2 

EPHA7 6 NLRP5 3 PDZD2 2 

APOB 5 PDE7B 3 PHKA1 2 

BRWD1 5 PDE9A 3 PLCH1 2 

C6 5 SCN10A 3 PPP1R13L 2 

DNAH6 5 SCN1A 3 SALL1 2 

DSG3 5 SEC23B 3 SETD5 2 

LAMA2 5 SH3RF2 3 SI 2 

THSD7B 5 SNCAIP 3 SLC15A2 2 

CNTNAP2 4 TIGIT 3 SNX31 2 

DCC 4 VCAN 3 SPAG17 2 

DSG4 4 ADAMTS18 2 STAB2 2 

KALRN 4 ADCYAP1R1 2 TMC5 2 

KCNQ5 4 BMP5 2 TRHDE 2 

MXRA5 4 C1orf168 2 UGT1A3 2 

NEBL 4 CAPN6 2 USP29 2 

NFASC 4 CD1C 2 ZFX 2 

NLRP13 4 CD300E 2 ACSBG1 1 

PAK7 4 CDH2 2 ADAM22 1 

PCDH18 4 CEACAM6 2 ADAM7 1 

PLCE1 4 CHD6 2 ADH1A 1 

ZNF536 4 COL17A1 2 ALPK2 1 

ALPPL2 3 COL5A2 2 ANKRA2 1 

BCLAF1 3 CYP7B1 2 ANO4 1 

BMPER 3 DNAH2 2 AP1M1 1 

CBL 3 FCRL5 2 ARHGAP21 1 

CNTN5 3 FMO3 2 ARMC4 1 

CSMD3 3 GPR179 2 ASTN1 1 

DNAH3 3 GRIN3A 2 C2CD3 1 

ERC2 3 KCNH5 2 C9 1 
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Melanoma 
driver genes 

Number 
of 
samples 
mutated 
(Stark et 
al., 2018) 

Melanoma 
driver genes 

Number 
of 
samples 
mutated 
(Stark et 
al., 2018) 

Melanoma 
driver genes 

Number 
of 
samples 
mutated 
(Stark et 
al., 2018) 

CD22 1 MTR 1 TMEM156 1 

CDH6 1 MYO9A 1 TP63 1 

CDH7 1 MYOCD 1 TSKS 1 

CEACAM5 1 N4BP2 1 TTC3 1 

CEP63 1 NLRP8 1 TUBA3C 1 

CHGB 1 NLRP9 1 UGT2B4 1 

COL3A1 1 NRAS 1 WDR76 1 

COL7A1 1 NRXN3 1 ZNF365 1 

CRB1 1 OR13C8 1 ZNF385D 1 

DCAKD 1 OR4D5 1 ZNF667 1 

DDX17 1 OR51S1 1 ZNF804A 1 

DMBT1 1 OR8D2 1     

DMXL2 1 OTC 1     

EFEMP1 1 PAH 1     

FGD6 1 PCDHA12 1     

FILIP1 1 PCDHA2 1     

GM2A 1 PCDHB7 1     

GML 1 PDE11A 1     

GRID2 1 PLCB4 1     

IL2RA 1 PMFBP1 1     

ITGB3 1 POLN 1     

ITGB6 1 PROL1 1     

ITPR2 1 PTEN 1     

KCNQ3 1 PTPRH 1     

KDSR 1 RAC1 1     

KHDRBS1 1 RHAG 1     

KIAA1109 1 RPRD2 1     

KIF2C 1 RQCD1 1     

KIF5A 1 SELP 1     

KLHL20 1 SEMG2 1     

KRT26 1 SETD2 1     

KRTAP5-10 1 SLC16A9 1     

LGR6 1 SLC46A3 1     

LIPI 1 SLC9A4 1     

MAGI1 1 SRGAP3 1     

MKX 1 SUN5 1     

MME 1 TDRD1 1     

MPP7 1 TEX15 1     
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Table 5-2 shows that 201 of the melanoma driver genes identified in chapter 5, section3.2, were 

mutated in the melanocytic naevi. There were five melanoma driver genes which were mutated in 

10 or more samples of melanocytic naevi. The BRAF gene was the melanoma driver gene that was 

mutated in the largest number of melanocytic naevi (i.e., 16 naevi). There were 100 melanoma 

driver genes which were each mutated only once in the cohort of melanocytic naevi.  

  

5.5.3 Normal skin 

 
Over recent years, some studies that used next generation sequencing to look for genetic 

mutations in chronically sun-exposed skin have been reported.  Therefore, known studies for all 

relevant publications that reported on next generation sequencing in skin were identified.  Three 

studies which had investigated normal skin in an unbiased way were identified, including 

Martincorena et al., 2015, Lynch et al., 2017 and Fowler et al., 2021; the study by Albibas et al., 

2018 had focussed on p53 immunopositive patches, rather than on entire skin samples. None of 

the studies had undertaken WES or WGS on normal skin, but the studies by Martincorena et al., 

2015 and Fowler et al., 2021 conducted targeted sequencing for 74 genes and Lynch et al., 2017 

had conducted targeted sequencing on 121 genes. The skin samples in Martincorena et al., 2015 

were from the eyelid skin of four individuals and spanned 0.8 – 4.7mm2. The skin samples from 

Lynch et al., 2017 were from the head and neck region of 10 individuals and the skin samples from 

Fowler et al., 2021 were from different body sites of 35 patients. While it is accepted that WES or 

WGS data is preferable to targeted sequencing, it was considered that it would be better to use 

the data from these three normal skin studies rather than excluding all normal skin data from this 

thesis.  As normal skin contains keratinocytes and melanocytes, the data was examined to see 

whether driver genes from cSCC, BCC and melanoma were mutated in chronically sun-exposed 

skin. 
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Figure 5-34: Three graphs showing the cSCC driver genes which were mutated in 0.8 – 4.7mm2 sections of normal skin 
from the Martincorena et al., 2015, 16mm2 sections of normal skin from Lynch et al., 2017 and 2mm2 sections of 
normal skin from Fowler et al., 2021 studies. The graphs show the total number of mutations identified in each of these 
cSCC driver genes that were identified in normal skin.  

The cSCC driver gene that was most frequently mutated across all three cohorts of normal skin 

was NOTCH1 (figure 5-34). In addition to NOTCH1, the TP53, NOTCH2, FAT1 and HRAS cSCC driver 

genes were mutated in normal skin in all three cohorts. HRAS was less commonly mutated than 

NOTCH1, FAT1, TP53 and NOTCH2 across all these cohorts. While the CDKN2A gene was mutated 

infrequently in the Martincorena et al., 2015 and Fowler et al., 2021 studies, CDKN2A gene 

capture failed across all samples in the Lynch et al., 2017 study and so this gene was excluded 

from the analysis in the Lynch et al., 2017 paper. The CHUK cSCC driver gene was only mutated in 

the Lynch et al., 2017 study, however, this gene was not included in the targeted sequencing 

conducted in Martincorena et al., 2015 and Fowler et al., 2021. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-35: BCC driver genes which were mutated in 0.8 – 4.7mm2 sections of normal skin from the Martincorena et al., 
2015, 16mm2 sections of normal skin from Lynch et al., 2017 and 2mm2 sections of normal skin from Fowler et al., 2021 
studies. The graphs show the total number of mutations identified in each of these BCC  driver genes that were identified in 
normal skin.  

 

 

Figure 4-45: The melanoma driver genes which were mutated in 0.8 – 4.7mm2 sections of normal skin from the 
Martincorena et al., 2015, 16mm2 sections of normal skin from Lynch et al., 2017 and 2mm2 sections of normal skin from 
Fowler et al., 2021 studies. The graphs show the total number of mutations identified in each of these melanoma  driver 
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TP53 was the most commonly mutated BCC driver gene in all three cohorts of normal skin (figure 

5-35). In addition to TP53, the PTCH1 gene which was a BCC driver gene was also mutated in all 

three normal skin groups. The ERBB2 and SMO BCC driver genes were mutated less frequently in 

the Martincorena et al., 2015 and Fowler et al., 2021 samples and were not sequenced in Lynch et 

al., 2017.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The next generation targeted sequencing data from the normal skin samples was next examined 

for mutations in melanoma driver genes. Admittedly, melanocytes constitute only a small fraction 

of the cells in the epidermis, so it is not possible to know whether the driver gene mutations in 

the Martincorena et al., 2015, Lynch et al., 2017 and Fowler et al., 2021 studies were present in 

the melanocytes, but it was thought sensible to look for the presence of these melanoma driver 

genes, nonetheless.  Multiple melanoma driver genes were noted to be mutated in normal skin 

(figure 5-36). TP53 which was a driver gene in melanoma, as well as in cSCC and BCC, was 

mutated in all three normal skin studies. The APOB melanoma driver gene was more frequently 

mutated than TP53 in the Martincorena et al., 2015 and Fowler et al., 2021 data, whereas in the 

Lynch et al., 2017 study, the DMD gene is more commonly mutated than TP53. While NF1 was 

mutated fairly frequently in the Martincorena et al., 2015 and Fowler et al., 2021 papers, BRAF 

and NRAS mutations were much less common in these cohorts. 

Figure 5-36: The melanoma driver genes which were mutated in 0.8 – 4.7mm2 sections of normal skin from the 
Martincorena et al., 2015, 16mm2 sections of normal skin from Lynch et al., 2017 and 2mm2 sections of normal skin from 
Fowler et al., 2021 studies. The graphs show the total number of mutations identified in each of these melanoma  driver 
genes that were identified in normal skin.  

 

 

Figure 4-47: The melanoma driver genes which were mutated in 0.8 – 4.7mm2 sections of normal skin from the 
Martincorena et al., 2015, 16mm2 sections of normal skin from Lynch et al., 2017 and 2mm2 sections of normal skin from 
Fowler et al., 2021 studies. The graphs show the total number of mutations identified in each of these melanoma  driver 
genes that were identified in normal skin.  
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Figure 5-37: The top 25 most frequently mutated melanoma driver genes in all the melanocytes from the Tang et al., 
2020 study. The bars represent the number of mutations from all the melanocytes in the top 25 most mutated 
melanoma driver genes. 

 

As stated earlier, the vast majority of cells in the epidermis are keratinocytes, making it difficult to 

know whether melanoma driver genes that were seen to be mutated in whole epidermis studies 

were mutated in keratinocytes or melanocytes.  Fortunately, Tang et al., 2020 conducted a study 

where they isolated melanocytes from skin of people aged 63 to 85 years old and then cultured 

the melanocytes to expand the number of cells from each melanocyte in order to investigate for 

mutations.  Admittedly, the culture of the melanocytes might have allowed the introduction of 

additional mutations during cell division, although the authors did compare their results with 

those from cultures of neonatal melanocytes which would not have been exposed to UV in vivo, 

and concluded that the mutations detected in the adult skin were likely to have arisen in vivo 

rather than in vitro (Tang et al., 2020). There were 322 melanoma driver genes which were 

mutated in the melanocytes from the Tang et al., 2020 study. Figure 5-37 shows the 25 melanoma 

driver genes with the most mutations. The two most commonly mutated driver genes (PTPRT and 

HYDIN) in these melanocytes were also identified as mutated driver genes in melanocytic naevi 

samples in table 5-2. The PTPRT gene was also mutated in normal skin  the Martincorena et al., 

2015 and Fowler et al., 2021 studies shown in figure 5-36.  
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5.6 Proposed adjunct to future pipeline for assessment of carcinogenicity of 

repeated UV exposure during phototherapy for skin disease 

 
It is unclear at this stage whether skin that receives repeated UV exposure over a short-term 

period, for example during a course of NB-UVB for skin disease or during a “sun-holiday” where 

people travel to a sunny climate to sunbathe, will contain many (or a few or no) de novo 

mutations because to date no studies have been conducted to investigate for this.  However, it is 

hoped that the identification of driver genes in the three common types of skin cancers and in 

potentially pre-malignant lesions and normal skin in this thesis may help to delineate whether 

mutations from repeated UV exposure over a short-term period are likely to be carcinogenic, that 

is whether they are present in driver genes rather than in other genes, including passenger genes.  

Therefore, figure 5-38 and the accompanying list of genes in table 5-2 and appendix 7.11.3 and 

7.11.4 highlights multiple genes that have been identified as driver genes in skin cancer, and 

whether they have been previously shown to be mutated in normal skin and potentially pre-

malignant lesions, so that these can be used as an assistance for future studies investigating 

mutations arising from repeated UV exposure during phototherapy and/or as a result of a “sun-

holiday”.  
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7.11.3 

Figure 5-38: Driver genes which have been identified as mutated in sun-exposed skin, precancerous lesions and skin 
cancers in this thesis. The driver genes have been listed separately in a flowchart style set of pathways according to 
whether they are likely to be relevant to development of cSCC, BCC and melanoma. 
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5.7 Discussion 
 
The comparison between the three most common types of skin cancer in this chapter highlights 

that the highest number of skin cancer samples which have undergone WGS, and WES are 

melanomas. Fewer BCCs and cSCCs have been investigated using WES and WGS. This is probably 

the main reason why more driver genes were identified in melanoma, especially as cSCCs and 

BCCs have a higher mutation burden than cutaneous melanoma (Jayaraman et al., 2014, Pickering 

et al., 2014). As would be expected from the fact that skin is frequently exposed to UV during 

normal daily living and UV has been reported to be associated with the development of skin 

cancer in epidemiological studies (D'Orazio et al., 2013), the mutations in BCC and melanoma in 

this chapter (as well as the mutations in cSCC in chapter 3) were mainly C>T alterations.  Related 

to this, the single base substitution mutation signatures and double base substitution mutation 

signatures in BCC, melanoma and cSCC suggested that UV was likely to play a considerable role in 

the development of each of these different types of skin cancer.   

However, there was some variation in the mutation signatures in the three types of skin cancer. 

The SBS7b mutation signature was identified in cSCC and BCC, whereas melanoma and BCC 

shared the SBS7a mutation signature. While one could argue that this might simply have been due 

to the limited number of samples of BCC and cSCC that had been studied using WES and/or WGS, 

the fact that the SBS7a but not the SBS7b mutation signature was seen in melanoma whereas the 

SBS7b mutation signature was seen in keratinocyte cancers could suggest that the mutational 

effects of UV differ according to the cell type receiving UV exposure.  Indeed, the presence of 

SBS7a and SBS7b in BCC but not in melanoma nor in cSCC could also suggest that BCC is caused by 

a combination of UV signatures, but future research will be necessary to determine whether this 

is the case. All three types of skin cancer shared the DBS1 mutation signature associated with UV 

which suggests that UV can cause these double base changes in cSCC, BCC and melanoma.  

The only driver gene that common to all three types of skin cancer was TP53. This is not surprising 

because TP53 has been reported to be mutated in many different types of cancer (Olivier et al., 

2010). However, only a small number of driver genes were common to cSCC and BCC and/or to 

cSCC and melanoma and/or to BCC and melanoma. While this might have partially resulted from 

the limited number of cSCCs and BCCs included in the analysis (as above), this lack of common 

driver genes might also explain why the three types of skin cancer behave differently in the 

clinical setting.  The risk of metastasis is more frequent in melanoma than in keratinocyte cancer, 

and is higher in cSCC than in BCC (Nguyen, 2004), which may result from variations in the 

numbers or types of driver genes that are mutated in these different cancer types.  Despite the 
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lower numbers of cSCCs and BCCs that could be included in the comparison with melanoma in this 

chapter, a number of driver genes that were detected were unique to cSCC and, separately, to 

BCC.  It is unlikely that all of these driver genes in cSCC and BCC were false positives because they 

had to have a q value <0.1 in MutSig2CV and at least one of the three other bioinformatic 

programs (dNdScv, OncodriveCLUSTL, OncodriveCLUST) to be classified as a driver gene, thus it 

seems likely that they were “true” driver genes in these cancers.  Consequently, the fact that they 

did not appear in the list of driver genes in melanoma, which included 1157 tumour samples, 

suggests that they do not function as driver genes in cutaneous melanoma and that genuine 

differences exist in the driver genes that lead to the development of keratinocyte cancer and 

melanoma in skin. 

Admittedly, CDKN2A gene was seen as a driver gene in cSCC and melanoma, however this is a 

common cancer gene, reported as a driver gene in other cancer types and is not unique to skin 

cancer (Bailey et al., 2018). There were certain mutations which were present in this gene in cSCC 

and melanoma, but future research similar to the analyses in this thesis would need to be 

conducted to see whether these mutations within CDKN2A are unique to skin cancer or are seen 

in many types of cancer. The PPP6C gene was identified as a driver gene in BCC and melanoma, 

affecting 14% of BCCs and 7% of melanomas, but does not seem to have been reported in the 

published literature as mutated in many other types of cancer. High expression of PPP6C has been 

associated with poorer survival in glioblastoma multiforme (Leone et al., 2012) whereas 

expression of PPP6C protein has been noted as a favourable prognostic marker in renal cancer 

(https://www.proteinatlas.org/ENSG00000119414-PPP6C/pathology).  

MUC16 was identified as one of the most frequently mutated genes in melanoma and BCC. When 

identifying most frequently mutated genes, genes were only excluded if they were not in the 

Cancer Gene Census. MUC16 was only identified as frequently mutated gene in melanoma and 

BCC and was not considered a driver gene in these cancers.   

Mucins are characterised by their tandem repeat regions and the number of tandem repeats 

differ depending on the Mucin gene (Haridas et al., 2014). The number of repeats in the tandem 

repeat region of MUC16 can give rise to different isoforms of MUC16 which can result in 

functional heterogeneity (Haridas et al., 2014). It is unclear whether (all) MUC16 mutations 

identified by sequencing in BCC and melanoma are factually correct, because of a study which 

investigated the DNA sequence of MUC2 and MUC6 and its repetitive nature (Svensson et al., 

2018). This latter study identified difficulty in sequencing repetitive regions using short read 

sequencing and resolved the DNA sequence of these two genes via long read sequencing. Due to 

https://www.proteinatlas.org/ENSG00000119414-PPP6C/pathology
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long-read sequencing recently being used to sequence cancer genomes, it is highly likely that 

Illumina short-read sequencing was used in the BCC and melanoma analyses and MUC16 has large 

repeat regions, so it is possible that the high mutation frequency of this gene in melanoma and 

BCC could be due sequencing artefacts (Slatko et al., 2018). This high mutation frequency of 

MUC16 could be the reason that it was not identified as a cancer driver gene as it may be 

identified as frequently mutated but is not mutated higher than expected due to chance using the 

MutSig2CV algorithm. MUC16 could also have more synonymous mutations compared to non-

synonymous which is why it is not identified as a driver gene using dNdScv algorithm. 

OncodriveCLUST and OncodriveCLUSTL considers genes as driver genes if they have clustered 

mutation, the results showed that MUC16 was a significant driver gene for melanoma and BCC 

using this algorithm. This suggests that MUC16 has clustered mutations in BCC and melanoma. 

This study only considered a gene as a driver gene if it was significant in MutSig2CV and one other 

program and MUC16 was not identified as significant in MutSig2CV so was not considered a 

cancer driver gene for either BCC or melanoma. 

The use of short-read sequencing can result in errors to alignment in repetitive regions, therefore 

this could be the reason for the clustering of mutations and the reason why MUC16 was 

considered a driver gene using the OncodriveCLUST and OncodriveCLUSTL programs. The use of 

long-read sequencing would ensure these repeat regions are sequenced correctly as there would 

no longer be misalignment of short-reads to this region. Long-read sequencing would also enable 

the clarification of the mutation frequency of MUC16. 

MUC16 is however, commonly expressed in ovarian cancers and is associated with disease 

progression (Aithal et al., 2018, Thomas et al., 2021). There has also been a study which 

investigated the association of MUC16 with tumour mutation burden and its prognostic effect on 

cutaneous melanoma (Wang et al., 2020a). It was suggested that MUC16 appeared to be a useful 

predictive marker of tumour mutation burden and patient survival in melanoma.  

The BCC samples that were used in this study were from the Bonilla et al., 2016 study which 

identified seven significantly mutated genes using MutSig2CV: TP53, PTCH1, PTPN14, MYCN, 

RPL22, SMO and PPIAL4G as significantly mutated genes. Six of these genes were considered 

cancer driver genes in BCC however RPL22 was not. The Bonilla study does not provide 

information on the most frequently mutated genes in BCC; therefore this thesis provides further 

information about genes which are frequently mutated in this cancer type. A gene could be 

frequently mutated due to its genetic characteristics such as repeat regions and the gene could 

have many mutations that do not have a large pathogenic effect on the protein structure so is not 
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identified as a driver gene in these cancers but is still considered as frequently mutated. 

Therefore, further research needs to be conducted to elucidate the pathogenicity of all the 

frequently mutated genes identified these cancers.  

Several the genes mutated in cSCC, BCC and melanoma affected similar signalling pathways, 

including the RTK-RAS, NOTCH and WNT pathways. While this might suggest some common 

mechanisms in the development of the three types of skin cancer, it is worth bearing in mind that 

the use of BRAF inhibitors, which affects the RTK-RAS pathway, has been beneficial for treatment 

of melanoma but has also been shown to be associated with development of cSCC (Wu et al., 

2017). This indicates that one needs to be cautious in avoiding overinterpreting the involvement 

of similar signalling pathways in the different forms of skin cancer, because it is unclear whether 

alterations (including minor differences in alterations) in these signalling pathways could have 

considerably different effects in melanocyte and keratinocytes, and indeed at different stages 

along the development pathways for melanoma, BCC and cSCC. 

As stated above, melanoma was the skin cancer that was most commonly sequenced using WES 

and WGS, therefore combining the data from all of those studies meant that there was more 

power to detect driver genes in melanoma in this thesis than in cSCC and BCC. This highlights a 

need for more cSCC and BCC tumour samples to be sequenced in the future to validate the results 

of the driver genes identified in keratinocyte cancers in this thesis and to allow more robust 

investigations for and comparisons of driver genes common to cSCC, BCC and melanoma. As can 

be seen from the data on normal skin, limited data exists on the mutations that exist in 

chronically sun-exposed skin and a much greater number of samples of normal skin will need to 

be investigated in the future to determine the extent of cancer driver gene mutations and their 

function in contributing to the early stages of skin tumorigenesis.  
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6. Discussion 

This thesis was ultimately involved with identifying driver genes in the three most common types 

of skin cancer (BCC, cSCC and cutaneous melanoma), and to determine whether mutations in 

those driver genes have been reported in normal skin and potentially pre-malignant skin lesions, 

in order to assist future studies that would assess the likely carcinogenicity of phototherapy and 

short-term repeated exposures to strong summer sunshine (e.g., during a “sun-holiday”).  In the 

skin cancer work and potentially precancerous skin lesions, WES and WGS data were analysed 

because this was considered the strongest way to take an unbiased scientific approach to identify 

driver genes.  As WES and WGS data was not available for normal skin, it was accepted that the 

use of targeted next generation sequencing would allow some insight into the presence of driver 

genes in chronically sun-exposed skin. 

However, another important question that was addressed along the way, while learning the 

relevant bioinformatic skill, was whether cSCC contained similar driver genes to SCCs in other 

organs.  This is because similarities in the driver genes in cSCC and SCCs of other organ types 

might have the potential to improve our understanding of the biology of cSCC (by extrapolating 

from what is known about these driver genes in the other SCCs) and the possibility of allowing 

future treatments for SCCs of other organs to be considered in aggressive cases of cSCC (or in 

clinical trials on treatment of aggressive / metastatic cSCCs). While chapter 3 was mainly about 

learning the bioinformatic skills and methodology, it allowed the author to use those skills to 

examine cSCCs in detail, thus providing an initial platform from which to build the rest of the work 

in the thesis. 

Combining the data and results from chapter 3 with the data in chapter 4 showed the similarities 

and differences between cSCC, oropharyngeal SCC, oesophageal SCC, lung SCC and cervical SCC. 

When the top 100 frequently altered genes were compared between the SCCs, 27 genes 

containing mutations were common between all five types of SCCs. However, the genes which 

were altered in all five types of SCCs differed in the proportion of samples which had mutations in 

these genes within each type of SCC. For example, ABCA13 was mutated in a proportion of each 

of the five different categories of SCCs, but 61% of cSCC samples had mutations in this gene 

whereas it was mutated in 6% of oropharyngeal SCCs, 11% of lung SCCs, 5% of oesophageal SCCs 

and 5% in cervical SCCs. This is just one example of many to suggest that cSCC contains some 

similarities in its genetic mutations to SCCs of internal organs, yet is also quite different to the 

other SCCs.  
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While at first glance, some of the DNA base changes that were identified in the comparative 

analysis between the five different types of SCCs may look broadly similar, the DNA base changes 

did also vary somewhat between the different SCCs. This is most probably due to the different 

carcinogens which cause the different types of SCCs, for example cSCCs had the highest 

proportion of C to T changes which were likely due to UV exposure (Brash, 2015) but also had C to 

A changes due to smoking, whereas in lung SCCs, the highest proportion of changes were C to A 

changes because smoking is the biggest cause of this cancer (Alexandrov et al., 2016). There were 

differing proportions of C to T changes in each of the internal categories of SCCs but this was 

conceivably as a result of spontaneous deamination of methylated cytosine residues which varies 

in tissues due to the differing rates of replicative turnover (Alexandrov et al., 2015, Blokzijl et al., 

2016).  

The mutation signatures similarly reflected the varying carcinogenic exposures which contribute 

to the development of each of the individual cancers, including the SCCs in chapter 4 and the 

three types of skin cancers analysed in chapters 3 and 5. Formerly, the single base substitution 

signature 7 (SBS7) related to UV as the carcinogen (Alexandrov et al., 2013, Inman et al., 2018), 

but more recent analysis of signature 7 in melanoma and all of the mutation signatures in a larger 

number of cancers identified four subtypes of signature 7, namely SBS7a, SBS7b, SBS7c and SBS7d 

(Hayward et al., 2017, Alexandrov et al., 2020). However, for the different skin cancers, there was 

variation in which cancers exhibited mutation signatures 7a and 7b in this thesis. UVB and UVA 

can form cyclobutane pyrimidine dimers (CPDs) (Rochette et al., 2003), therefore the different 

SBS7 signatures could reflect the mutational patterns caused by differing wavelengths of UV. Yet, 

this interpretation may be an over-simplification, because a study in mice that has been published 

as a preprint suggested that UVA may result in another type of single base substitution signature, 

called SBS51 (Hennessey et al., 2019).  There is evidence that cSCC is as a result of long-term sun 

exposure (Kivisaari and Kahari, 2013), melanoma is a result of intermittent sun exposure (Oliveria 

et al., 2006) whereas BCC is a mixture of both of these exposures (Kricker et al., 1995) which could 

also be a reason for these mutation signatures (Savoye et al., 2018). As a result of these exposure 

differences, it may not only be the UV wavelength but also the frequency of UV exposure, the 

dose of UV that is received, the ratio of UVB and UVA (which can differ according to the season) 

(Nishimura et al., 2021) as well as the time interval between exposures (during which differential 

repair of the CPD and pyrimidine-pyrimidone (6-4) photoproduct (6-4PP) photoproducts might 

have occurred) (Mitchell, 1988) that influences the type of SBS7 mutation signature, but further 

research will be necessary to evaluate this. Admittedly, the presence of sequencing artefacts or 

the algorithm used to produce the mutation signatures could be possible reasons that slightly 
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different UV-related single base substitution mutation signatures were identified in the three 

different types of skin cancer in the current study.  

With relevance to identifying the driver genes in BCC, cSCC and cutaneous melanoma), and 

determining whether mutations in those driver genes had been reported in normal skin and 

potentially pre-cancerous skin lesions, the study did highlight quite several driver genes in the 

overall group of skin cancers.  This is useful data for future studies investigating whether UV 

exposure of normal skin results in the development of mutations in many or all of these types of 

driver genes in cells within the epidermis, including in the relevant cells from which skin cancer 

develops (i.e., keratinocytes for BCC and cSCC, melanocytes for melanoma).  In addition, this data 

is likely to be helpful in determining whether several mutations that arise in normal skin following 

UV exposure are benign or passenger type mutations or whether they are driver genes that 

increase the risk of developing skin cancer.  The current study has demonstrated that mutations in 

some of the relevant driver genes have been identified to date by employing the results from the 

skin cancer driver gene data for comparison with targeted next generation sequencing data on 

normal skin (particularly chronically sun-exposed skin) that exists in the public domain. 

However, it is accepted that the project conducted for this aim of the thesis had some limitations.  

One of these limitations is that the power to detect significant driver genes varied within the 

three different types of skin cancer due to the varying sample numbers. The highest power to 

detect driver genes was in cutaneous melanoma due to the larger sample size, but the numbers of 

cSCCs and BCCs for which data on WES and WGS were available was much more limited. 

Therefore, a larger sample size in the future could detect more driver genes, which would 

strengthen the data obtained in the current thesis, as well as allowing one to identify more 

similarities or differences between these three skin tumour types.  Since the WES and WGS data 

was obtained from a combination of the COSMIC database, GDC portal and literature searchers, 

and there were varying sequencing platforms used to generate the whole exome and whole 

genome data, this may have given rise to some variation in base calls in the samples which could 

also partially have affected the results. The preparation of the samples was also likely to have 

been different in the various studies (including whether the tumours were put in formalin for 

fixation and for how long), and the different studies contained different sized samples and 

contents, including numbers of primary and metastatic tumours, and probably different 

combinations of less aggressive and more aggressive primary tumours which could have meant 

that mutations in different genes would have been identified. There were also cSCC samples from 

patients that had received azathioprine in organ transplant individuals (Inman et al., 2018) and 
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vemurafenib (BRAF inhibitor) (Li et al., 2015) who subsequently developed cSCC, which  would 

have influenced the data in terms of the genes that were mutated in cSCC cohort. There would 

also have been many other possible unknown influences on the types of mutations and genes 

mutated in the different types of skin cancer (as well as the different types of SCCs in chapter 4), 

which may have included other types of medication (Kaae et al., 2010, Ioannidis et al., 2014) 

(including those that may not yet be known to affect type of mutation and/or DNA repair 

processes), variation in the age of the patients (Viros et al., 2008, Bauer et al., 2011), their general 

health, their gut and skin microbiomes (Grice and Segre, 2011, Wong and Yu, 2019) alcohol intake, 

tobacco smoking, environmental pollutants, etc.   

In addition, the data used to compare samples in the current study was whole genome or whole 

exome data that was in a MAF format, therefore the method used to filter variants may not have 

been the same across all of the samples which introduces further variation in the data. Related to 

this, the fact that not all the whole genome and whole exome data identified in the MEDLINE 

literature search was used because there were data from studies which were not available in a 

MAF format and cases in which the author was unable to share the data due to ethical reasons (or 

authors who chose not to share their data), would have introduced additional limitations . While 

the current study used data that was available in public domains such as COSMIC and GDC portal 

for analysis, the study also showed that there were protected data in databases such as dbGaP 

and EGA which required authorisation to access, so in cases where authorisation was not granted, 

or it was not possible to get authorisation, data would have been missed from the analysis. While 

the study tried to be as inclusive as possible in order to increase the sample size for the analysis, 

the downside of variation in the sequencing platforms and the variant calling could also result in 

an amount of “noise” in the dataset. On a positive note, since all of the data was processed 

through Oncotator in the current project, the genome was annotated the same way across all 

samples. 

Additionally, in the case of skin cancer, while there were some details available on the public 

databases (such as the age of the individual), there were no details about the skin type of the 

individual, which would likely have influenced the data (e.g. number of mutations and possibly 

types of mutations because there is lots of evidence associating skin cancer with a fairer skin type 

(Bradford, 2009) and with MC1R gene variants (Tagliabue et al., 2015, Tagliabue et al., 2018), 

which may affect skin cancer development via pigmentary and non-pigmentary 

mechanisms)(Robinson and Healy, 2002, Robinson et al., 2010). This information would prove 

useful to compare the mutation burden according to skin type and polymorphisms in genes that 
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affect skin pigmentation (Valverde et al., 1995, Lamason et al., 2005, Sulem et al., 2007, Crawford 

et al., 2017), but much greater numbers of cSCC and BCCs, and possibly melanomas, would be 

needed in order to look for associations of various driver genes with these parameters.  In 

addition, it might be possible that some genes might act as driver genes in certain skin types or 

certain genetic backgrounds but not in others, especially in the case of melanoma because these 

pigmentation genes are commonly expressed in melanocytes. This might have relevance during 

the development of skin cancer and/or at later stages when a skin cancer has developed, because 

in the case of melanoma clinical differences are seen in the colours of melanomas, including the 

loss of pigment in amelanotic melanoma (Thomas et al., 2014).  

The approach used in this thesis concentrated on the genetic mutations in the cancers that were 

investigated, and the bioinformatics programs identified certain genes as driver genes in skin 

cancers, but more research needs to be conducted to identify the effect of these mutations at the 

transcriptional and protein levels in the affected cells and tumour. As mentioned earlier, this 

study focused on the whole genome and whole exome analysis, however, there could be copy 

number changes, epigenetic, or transcriptomic alterations in the skin cancers from UV affecting 

non-exonic areas of the genome.   Indeed, the fact that the protein coding region of genome is 

only about 1% of the genome (Frazer, 2012), stresses the need for further analysis to be 

conducted into the non-coding regions of the genome and how these regions could affect skin 

tumorigenesis. Furthermore, in relation to the exonic regions, the analysis also only looked at 

mutations in genes, but there could have been homozygous loss of alleles at various sites in the 

genome and exome, with wild type sequence identified in the date being due to contamination by 

normal tissue, including infiltration of the tumour with immune cells (Lai et al., 2021). This could 

mean that alterations at some of the driver gene loci were more common than appreciated, but 

in the absence of analysing the copy number data it is not possible to know whether this was the 

case.  

The examiners of this PhD thesis correctly identified that the mutations in this analysis from the 

COSMIC database may not have true somatic status as the database included mutations from 

studies which did not include matched germline DNA from blood or saliva. The cohorts that were 

affected were lung SCC, oropharyngeal SCC, oesophageal SCC, cervical SCC and melanoma.  

Initially, any cancer cohorts which had less than 98% of variants that were considered as 

confirmed somatic variants were reanalysed and the reasons for this are outlined in chapter 2, 

section 6. In appendix 7.11.6, the unconfirmed variants were further investigated for each cancer 

cohort. It identified that TP53 was the only driver gene that was shared between skin SCC and 
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cervical SCC and all the TP53 variants in cervical SCC were confirmed somatic variants. Therefore, 

reanalysis was only conducted for lung SCC, oropharyngeal SCC, oesophageal SCC and melanoma. 

Further detail of this reanalysis is outlined in chapter 2, section 6.  

The results in appendix 7.11.5 show that the MutSig2CV results after only including confirmed 

somatic variants. This program was used as a gene was only considered a driver gene if it was 

significant in MutSig2CV and one other driver gene program. In lung SCC, HRAS has a q value 

which has increased in significance by 10-fold in the reanalysis and in melanoma the q value for 

CDKN2A has also become less significant by 10-fold. These results are more reflective of how 

significantly mutated these genes are within their cancer cohorts as the reanalysis only included 

confirmed somatic variants. Most importantly, there were also no new novel driver genes 

identified in the reanalysis suggesting that the original analysis produced equivalent results to the 

re-analysis including only confirmed somatic variants. 

In the COSMIC database, a confirmed somatic mutation is considered a mutation which is present 

in a tumour sample that is absent in a matched normal sample. There are limitations associated 

with using the matched normal sample as DNA from blood as this is also considered to contain 

somatic mutations as these have been found to accumulate at a low rate with increasing age 

(Welch et al., 2012, Jaiswal et al., 2014, Genovese et al., 2014, Xie et al., 2014, McKerrell et al., 

2015). In the Martincorena et al., 2015 study, instead of using a single matched normal sample, 

they cut normal eyelid skin and compared these normal samples to each other. The use of 

multiple normal samples provided an extremely high coverage of matched normal sample for 

each site which enabled the detection of true somatic variants, this also enabled the removal of 

sequencing artefacts that are produced as a result of errors from alignment of short reads to a 

repetitive genomic sequence, base call errors and sequencing errors produced as a result of 

library preparation.  

Another limitation in this study, is that the data used are from multiple studies which use 

different variant callers. The sequencing platforms used would have been different and the 

samples would have been handled by different people. The TCGA samples were called using the 

same variant caller whereas the samples from COSMIC and the external databases used different 

variant callers and may have used different read depth cut off values during analysis of bases. 

Therefore, the reliability of the data could vary across studies.  
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6.1 Future work 
Regarding the future studies that would assess the likely carcinogenicity of phototherapy, 6mm 

punch biopsies have been taken by a clinician in our department from the non-psoriatic skin of 

the buttock and arm of psoriasis patients before and after a course of NB-UVB treatment. Twenty 

patients were recruited, although some of these did not give skin biopsies after the UV course, 

and the buttock and arm samples were fixed in PAXgene tissue FIX and then stabilised in PAXgene 

stabilizer. The samples were cut in half and one half was sent for paraffin embedding and stored 

at -20°C. The other half of the sample was snap-frozen in liquid nitrogen and then stored at -80°C. 

Questionnaires about pigmentation and previous sun exposure were completed by the patients 

and the UV doses for the course of treatment have been recorded. Pre- and post-UV skin samples 

have been taken from 16 patients and have been sent to the Wellcome Sanger Institute for gene 

sequencing. Blood was also collected from all patients to distinguish somatic mutations from 

germline mutations.  

Samples from chronically sun-exposed skin that were approximately 1 – 2cm away from skin 

cancers that were excised have also been collected from 10 patients and handled in the same 

manner as the skin biopsies from psoriatic patients. The skin samples which have been collected 

from the 16 patients pre-UV and post UV will be sequenced using nanorate sequencing (NanoSeq) 

which has the potential to detect somatic mutations in single DNA molecules (Abascal et al., 

2021). Nanorate sequencing uses a duplex sequencing protocol where both strands of DNA are 

sequenced, thus removing the chance of mutations due to sequencing errors being included in 

individual reads and PCR errors which might be present in one of the two strands (Abascal et al., 

2021). Conversely, bottleneck sequencing will not be used because of concerns that it could 

introduce errors that would be misinterpreted as UV-induced mutations (Hoang et al., 2016). 

Nanorate sequencing is considered better than whole exome or targeted sequencing as it 

identifies somatic mutations independently of the requirement for clonality that can be required 

for whole exome or targeted sequencing of precancerous and cancerous lesions. The NanoSeq 

libraries are also able to be produced from as little as 1ng of DNA, therefore are capable of 

sequencing small tissue sections from the 6mm punch skin biopsies.  

The results from the skin cancer analysis in the current thesis will hopefully assist researchers in 

analysing whether any mutations identified in normal skin following a course of NB-UVB are likely 

to increase the risk of future development of skin cancer. The table of variants and the “proposed 

adjunct to future pipeline for assessment of carcinogenicity of repeated UV exposure during 

phototherapy for skin disease” in chapter 5 can be used as a database of potentially pathogenic 

genes and variants that have been identified in precancerous lesions and skin cancers. Therefore, 
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these genes and variants could be compared with the variants identified in the normal skin of 

psoriatic patients after UV treatment to contribute to understanding how harmful a course of NB-

UVB treatment is. This in turn may allow estimation of how many courses of NB-UVB a patient 

could safely have over the course of their lifetime without significantly increasing their risk of 

developing skin cancer in future years. 

The clinical impact of the UV study will largely depend on how many or how few mutations are 

identified in the post-UV skin samples compared to the pre-UV skin samples. It will also tell us 

whether a single NB-UVB course causes a few or lots of mutations in the skin, something we 

currently don’t know. Modelling this data in relation to the data from the chronically sun-exposed 

skin samples in the separate group of patients with skin cancer could allow the identification of 

whether a patient could theoretically safely have only a few or, alternatively, lots of NB-UVB 

courses over their lifetime. However, this project also has the potential to help us understand why 

people develop keratinocyte cancers at a later stage of life. The current assumption is that it takes 

multiple UV exposures over life to allow sufficient numbers of mutations in keratinocytes to form 

a keratinocyte cancer, but this may be incorrect because another factor such as survival of 

competing mutated clones in the epidermis may be more relevant once a limited number of 

mutations arise in a cell (Murai et al., 2018).  Moreover, it is hoped that the results of this study 

will advance the understanding of early cancer development in general. 

In addition to the usefulness of the data in this thesis to the NB-UVB study as mentioned above, 

the data in this thesis in combination with the NB-UVB NanoSeq data is also likely to be helpful to 

allows researchers to begin to understand clonal evolution in sun-exposed skin.  A recent study 

compared 450 individual matched sun-exposed and non-sun-exposed normal human skin samples 

(Wei et al., 2021) and looked at the number of clonal mutations in the skin samples. There were 

hotspots associated with sun exposure in TP53, NOTCH1 and GRM3. They then compared the 

normal skin from patients with cSCC and identified that UV induced mutations were mutations 

that had previously been reported in cSCC.  A comparison of the results from that study and from 

other clonal mutations studies on sun-exposed skin  (Martincorena et al., 2015, Albibas et al., 

2017, Lynch et al., 2017, Fowler et al., 2021) with the aforementioned NanoSeq of the NB-UVB 

exposed skin, and chronically exposed skin adjacent to skin cancers, would allow one to compare 

mutations that were detected in epidermal clones in those studies against those NanoSeq 

mutations that have not been identified in any epidermal clones to date.  This type of comparison 

could form a basis upon which researchers can then begin to unpick why certain mutations that 

likely affect protein function offer no clonal advantage in the epidermis whereas other mutations 
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in the same or different genes can lead to the development of clones and, in a number of cases, 

to skin cancer. 

A similar study to that conducted by Wei et al., 2021 could be carried out in the clinic using the 

driver genes identified in this thesis.  Clinicians could measure the number of clonal mutations in 

skin before and after a course of NB-UVB, and this could be repeated after each subsequent 

course of NB-UVB in biopsies sampled in areas adjacent to the original biopsies to provide insight 

into whether similar or greater numbers of mutated clones arise after the later courses of NB-

UVB, thus  informing on how safe or harmful the NB-UVB is. If whole genome sequencing were 

conducted on the skin biopsies in this type of future study, it would enable clinicians to identify 

the mutation burden and clonal mutations affecting non-coding and coding regions of the 

genome, including in  upstream promoter regions, regulatory regions or epigenetic changes which 

might increase expression of cancer driver genes. 

A similar approach could also be used in the clinic to look at patients with chronically sun-exposed 

skin by taking a skin biopsy and analysing their current mutation burden. They could also be 

screened to identify if they have specific pathogenic mutations in cancer driver genes or if the 

mutation burden is high in the cancer driver genes. However, the mutation burden in different 

body sites also varies (Fowler et al., 2020) therefore, it would be important that if biopsies are 

taken from different body sites, the background mutation rate is considered and standardised 

appropriately.  While at the present time, it is unlikely that this type of study would be able to 

predict that a particular individual is more or less likely to develop skin cancer in the future, 

undertaking this type of study on large numbers of people who are followed as a cohort to see 

who develops skin cancer would subsequently allow the identification of biomarkers (e.g. 

mutation burden, numbers and/or types of driver genes mutated, etc.) that could be used to 

predict risk of skin cancer.  That information might also allow clinicians to target messages about 

limiting future sun exposure to people who are most at risk of developing skin cancer. 

The results presented in this thesis have identified a number of driver genes in skin SCC, BCC and 

melanoma. The importance of new mutations that may be seen in the post-UV skin samples using 

nanorate sequencing could be ranked using the driver genes identified in this thesis and could 

help clarify whether patients develop mutations in driver genes for keratinocyte cancer or 

melanoma from a single course of UV therapy. However, due to the power of the studies included 

in the bioinformatic analyses in this thesis, it is possible that all the driver genes for keratinocyte 

cancer and melanoma may not have been identified in this thesis, therefore this is a limitation in 

the use of the data from this thesis in future work. In addition, this thesis also only investigated 
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the effect of coding regions of the genome and the mutations identified in the post-UV samples 

might have mutations in the non-coding regions of the genome, thus this is another limitation of 

this thesis. However, the mutation burden of the driver genes pre and post-UV could be used to 

measure the effect of UV in normal skin and if there are lots of mutations in these driver genes, it 

would raise some concerns that too many courses of NB-UVB over a patient’s lifetime would likely 

lead to skin cancer development. Conversely, if the driver genes are infrequently mutated 

following a course of NB-UVB, this could suggest that NB-UVB is relatively safe as a treatment. 

This thesis has also identified individual mutations which have been identified in cancers and the 

information from the NB-UVB samples will also help identify mutations which are associated with 

UV. Therefore, this will also enable the stratification of pathogenic mutations which are 

associated with UV and those which are not. 
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7. Appendix 
 

7.1 SCC bash script 
#!/bin/bash 

 

## now uses array to do look up, not relying on paste, outputs "not in vcf" if not found 

## also using both coding and noncoding vcfs for look up 

## also searching for site matched in column 8 of CosmicMutantExport.tsv/SCC_mutations.txt - to 

avoid counting twice if site matches multiple columns 

 

#Download and gunzip files from COSMIC b37 v91 

#classification.csv 

#CosmicMutantExport.tsv 

#CosmicCodingMuts.vcf 

#CosmicNonCodingVariants.vcf 

 

#combine coding and noncoding vcf file bodies 

grep -v "#" CosmicCodingMuts.vcf > Coding 

grep -v "#" CosmicNonCodingVariants.vcf > NonCoding 

cat Coding NonCoding > all.vcf 

rm Coding NonCoding 

 

#get unique list of primary sites in SCC 

awk 'BEGIN{FS=",";OFS="\t"}{if($7 == "squamous_cell_carcinoma" && $6 == "carcinoma") print 

$2}' classification.csv | sort | uniq > SCC_sites.txt 

 

#get mutation list with header- only those from genome wide screens and with genomic location 

on b37. If histology subtype 1 is ‘squamous cell carcinoma’ and primary histology is ‘carcinoma’ 

and genome wide screen is ‘y’ and GRCh is ‘37’ then print and make file SCC_mutations.txt. 

head -1 CosmicMutantExport.tsv > SCC_mutations.txt 

awk 'BEGIN{FS=OFS="\t"}{if($13 == "squamous_cell_carcinoma" && $12 == "carcinoma" && $16 

== "y" && $25 == "37") print $0}' CosmicMutantExport.tsv > SCC_mutations.txt 

 



 

242 
 

#list and count mutation types. Print ‘mutation description’ in SCC_ mutations.txt and sort them. 

echo "All sites SSC mutation types:" 

awk 'BEGIN{FS="\t"}{print $22}' SCC_mutations.txt | sort | uniq -c 

 

#loop sites, extract mutations, and output sub, ins, and del and save in separate files  

cat SCC_sites.txt | while read site; do 

 

#list and count mutation types per site 

echo "${site}:" 

awk -v site=$site 'BEGIN{FS=OFS="\t"}{if($8 == site) print $0}' SCC_mutations.txt > 

${site}_squamous_cell_carcinoma.txt 

awk 'BEGIN{FS="\t"}{print $20}' ${site}_squamous_cell_carcinoma.txt | sort | uniq -c 

 

#output simple substitutions. If mutation description is ‘substitution’ then print sample name, 

genomic mutation id (C0SV), mutation cds, mutation AA, mutation description, mutation zygosity, 

LOH, GrCh, Mutation genome position and Mutation strand, sample name to make 

site_cosmic_ids_patient.sub. Find all the lines with COSMIC ID in all.vcf sort cosmic ID column 3 

making site_vcf_details.sub 

awk 'BEGIN{FS=OFS="\t"}{if($22 ~ "Substitution") print $17}' ${site}_squamous_cell_carcinoma.txt 

> ${site}_cosmic_ids.sub 

awk 'BEGIN{FS=OFS="\t"}{if($22 ~ "Substitution") print 

$5,$17,$20,$21,$22,$23,$24,$25,$26,$27,$5}' ${site}_squamous_cell_carcinoma.txt | sort -k2,2 > 

${site}_cosmic_ids_patient.sub 

fgrep -w -f ${site}_cosmic_ids.sub all.vcf | sort -k3,3 > ${site}_vcf_details.sub 

 

#match up vcf details with array. Read in both site_vcf_details.sub and 

site_cosmic_ids_patient.sub as tab delimited files, read in the vcf file as an array indexed by 

column 3 (the cosmic ID) in vcf_details.sub, then loop through each line of the patient file and 

match column 2 (the cosmic ID) in cosmic_ids_patient.sub with the cosmic IDs in the array. When 

they match output the patient file columns followed by the vcf file columns (all in the same row), 

else print out “not in vcf”. Then make files all_details.sub. 

awk 'BEGIN{FS=OFS="\t"} NR==FNR{a[$3]=$0;next}{print $0,a[$2]?a[$2]:"not in vcf"}' 

${site}_vcf_details.sub ${site}_cosmic_ids_patient.sub > ${site}_all_details.sub 

 

#extract location - print 6 columns wanted up front. Read in site_all_details.sub as a tab delimited 

file. Split column 9 (19:52249948-52249948) by the : and save the two part in an array called a. 

(so a[1]=19 and a[2]=52249948-52249948). The split a[2] further this time by the – character and 
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save in an array called b. (so b[1]=52249948, and b[2]=52249948). Now print these parts as 

separate column (chromosome, startbasepair, endbasepair) followed by other columns of interest 

eg, columns 15,16,1,2,3, etc. 

awk 'BEGIN{FS=OFS="\t"}{split($9,a,":");split(a[2],b,"-"); print 

a[1],b[1],b[2],$15,$16,$1,$2,$3,$4,$5,$19}' ${site}_all_details.sub > ${site}.sub 

 

echo "Check all sub found:" 

grep "not in vcf" ${site}_all_details.sub 

wc -l ${site}_*.sub 

 

#output simple deletions 

 

awk 'BEGIN{FS=OFS="\t"}{if($22 ~ "Deletion") print $17}' ${site}_squamous_cell_carcinoma.txt > 

${site}_cosmic_ids.del 

awk 'BEGIN{FS=OFS="\t"}{if($22 ~ "Deletion") print $5,$17,$20,$21,$22,$23,$24,$25,$26,$27,$5}' 

${site}_squamous_cell_carcinoma.txt | sort -k2,2 > ${site}_cosmic_ids_patient.del 

fgrep -w -f ${site}_cosmic_ids.del all.vcf | sort -k3,3 > ${site}_vcf_details.del 

 

#match up vcf details with array 

awk 'BEGIN{FS=OFS="\t"} NR==FNR{a[$3]=$0;next}{print $0,a[$2]?a[$2]:"not in vcf"}' 

${site}_vcf_details.del ${site}_cosmic_ids_patient.del > ${site}_all_details.del 

 

#extract location - print 6 columns wanted up front 

awk 'BEGIN{FS=OFS="\t"}{split($9,a,":");split(a[2],b,"-"); print a[1],b[1],b[2],substr($15,2),"-

",$1,$2,$3,$4,$5,$19}' ${site}_all_details.del > ${site}.del 

 

echo "Check all del found:" 

grep "not in vcf" ${site}_all_details.del 

wc -l ${site}_*.del 

 

#output simple insertions 

awk 'BEGIN{FS=OFS="\t"}{if($22 ~ "Insertion") print $17}' ${site}_squamous_cell_carcinoma.txt > 

${site}_cosmic_ids.ins 
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awk 'BEGIN{FS=OFS="\t"}{if($22 ~ "Insertion") print $5,$17,$20,$21,$22,$23,$24,$25,$26,$27,$5}' 

${site}_squamous_cell_carcinoma.txt | sort -k2,2 > ${site}_cosmic_ids_patient.ins 

fgrep -w -f ${site}_cosmic_ids.ins all.vcf | sort -k3,3 > ${site}_vcf_details.ins 

 

#match up vcf details with array 

awk 'BEGIN{FS=OFS="\t"} NR==FNR{a[$3]=$0;next}{print $0,a[$2]?a[$2]:"not in vcf"}' 

${site}_vcf_details.ins ${site}_cosmic_ids_patient.ins > ${site}_all_details.ins 

 

#extract location - print 6 columns wanted up front 

awk 'BEGIN{FS=OFS="\t"}{split($9,a,":");split(a[2],b,"-"); print a[1],b[1],b[2],"-

",substr($16,2),$1,$2,$3,$4,$5,$19}' ${site}_all_details.ins > ${site}.ins 

 

echo "Check all ins found:" 

grep "not in vcf" ${site}_all_details.ins 

wc -l ${site}_*.ins 

done 

 

##### NOTES ##### 

# 1. *tsv and *vcf - b37 cosmic v91 (07th April 2020) 

 

7.2 Melanoma bash script 
#!/bin/bash 

 

## 2nd version of this script - previously not outputting all muts vcf details so matching up on 

Cosmic id wrong 

## now uses array to do look up, not relying on paste, outputs "not in vcf" if not found 

## also using both coding and noncoving vcfs for look up 

## also searching for site matched in column 8 of CosmicMutantExport.tsv/SCC_mutations.txt - to 

avoid counting twice if site matches multiple columns 

 

#Download and gunzip files from COSMIC b37 v88 

#classification.csv 

#CosmicMutantExport.tsv 
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#CosmicCodingMuts.vcf 

#CosmicNonCodingVariants.vcf 

 

#combine coding and noncoding vcf file bodies 

grep -v "#" CosmicCodingMuts.vcf > Coding 

grep -v "#" CosmicNonCodingVariants.vcf > NonCoding 

cat Coding NonCoding > all.vcf 

rm Coding NonCoding 

 

#get unique list of primary sites in SCC 

awk 'BEGIN{FS=",";OFS="\t"}{if($6 == "malignant_melanoma") print $2}' classification.csv | sort | 

uniq > cutmelanoma_sites.txt 

 

#get mutation list with header- only those from genome wide screens and with genomic location 

on b37 

head -1 CosmicMutantExport.tsv > cutmelanoma_mutations.txt 

awk 'BEGIN{FS=OFS="\t"}{if($12 == "malignant_melanoma" && $16 == "y" && $25 == "37") print 

$0}' CosmicMutantExport.tsv > cutmelanoma_mutations.txt 

 

#list and count mutation types 

echo "All sites cutaneous melanoma mutation types:" 

awk 'BEGIN{FS="\t"}{print $22}' cutmelanoma_mutations.txt | sort | uniq -c 

 

#loop sites, extract mutations, and output sub, ins, and del and save in separate files  

cat cutmelanoma_sites.txt | while read site; do 

 

#list and count mutation types per site 

echo "${site}:" 

awk -v site=$site 'BEGIN{FS=OFS="\t"}{if($8 == site) print $0}' cutmelanoma_mutations.txt > 

${site}_cutaneous_melanoma.txt 

awk 'BEGIN{FS="\t"}{print $20}' ${site}_cutaneous_melanoma.txt | sort | uniq -c 
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#output simple subsutitutions 

awk 'BEGIN{FS=OFS="\t"}{if($22 ~ "Substitution") print $17}' ${site}_cutaneous_melanoma.txt > 

${site}_cosmic_ids.sub 

awk 'BEGIN{FS=OFS="\t"}{if($22 ~ "Substitution") print 

$5,$17,$20,$21,$22,$23,$24,$25,$26,$27,$5}' ${site}_cutaneous_melanoma.txt | sort -k2,2 > 

${site}_cosmic_ids_patient.sub 

fgrep -w -f ${site}_cosmic_ids.sub all.vcf | sort -k3,3 > ${site}_vcf_details.sub 

 

#match up vcf details with array 

awk 'BEGIN{FS=OFS="\t"} NR==FNR{a[$3]=$0;next}{print $0,a[$2]?a[$2]:"not in vcf"}' 

${site}_vcf_details.sub ${site}_cosmic_ids_patient.sub > ${site}_all_details.sub 

 

#extract location - print 6 columns wanted up front 

awk 'BEGIN{FS=OFS="\t"}{split($9,a,":");split(a[2],b,"-"); print 

a[1],b[1],b[2],$15,$16,$1,$2,$3,$4,$5,$19}' ${site}_all_details.sub > ${site}.sub 

 

echo "Check all sub found:" 

grep "not in vcf" ${site}_all_details.sub 

wc -l ${site}_*.sub 

 

#output simple deletions 

 

awk 'BEGIN{FS=OFS="\t"}{if($22 ~ "Deletion") print $17}' ${site}_cutaneous_melanoma.txt > 

${site}_cosmic_ids.del 

awk 'BEGIN{FS=OFS="\t"}{if($22 ~ "Deletion") print $5,$17,$20,$21,$22,$23,$24,$25,$26,$27,$5}' 

${site}_cutaneous_melanoma.txt | sort -k2,2 > ${site}_cosmic_ids_patient.del 

fgrep -w -f ${site}_cosmic_ids.del all.vcf | sort -k3,3 > ${site}_vcf_details.del 

 

#match up vcf details with array 

awk 'BEGIN{FS=OFS="\t"} NR==FNR{a[$3]=$0;next}{print $0,a[$2]?a[$2]:"not in vcf"}' 

${site}_vcf_details.del ${site}_cosmic_ids_patient.del > ${site}_all_details.del 

 

#extract location - print 6 columns wanted up front 
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awk 'BEGIN{FS=OFS="\t"}{split($9,a,":");split(a[2],b,"-"); print a[1],b[1],b[2],substr($15,2),"-

",$1,$2,$3,$4,$5,$19}' ${site}_all_details.del > ${site}.del 

 

echo "Check all del found:" 

grep "not in vcf" ${site}_all_details.del 

wc -l ${site}_*.del 

 

#output simple insertions 

awk 'BEGIN{FS=OFS="\t"}{if($22 ~ "Insertion") print $17}' ${site}_cutaneous_melanoma.txt > 

${site}_cosmic_ids.ins 

awk 'BEGIN{FS=OFS="\t"}{if($22 ~ "Insertion") print $5,$17,$20,$21,$22,$23,$24,$25,$26,$27,$5}' 

${site}_cutaneous_melanoma.txt | sort -k2,2 > ${site}_cosmic_ids_patient.ins 

fgrep -w -f ${site}_cosmic_ids.ins all.vcf | sort -k3,3 > ${site}_vcf_details.ins 

 

#match up vcf details with array 

awk 'BEGIN{FS=OFS="\t"} NR==FNR{a[$3]=$0;next}{print $0,a[$2]?a[$2]:"not in vcf"}' 

${site}_vcf_details.ins ${site}_cosmic_ids_patient.ins > ${site}_all_details.ins 

 

#extract location - print 6 columns wanted up front 

awk 'BEGIN{FS=OFS="\t"}{split($9,a,":");split(a[2],b,"-"); print a[1],b[1],b[2],"-

",substr($16,2),$1,$2,$3,$4,$5,$19}' ${site}_all_details.ins > ${site}.ins 

 

echo "Check all ins found:" 

grep "not in vcf" ${site}_all_details.ins 

wc -l ${site}_*.ins 

done 

 

##### NOTES ##### 

# 1. *tsv and *vcf - b37 cosmic v91 (20th April 2020) 

7.3 Script for formatting COSMIC  and literature search data in Linux for Oncotator 

compatibility 

7.3.1 Skin SCC 
COSMIC formatting 
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cut -f1,2,3,4,5,6 *.ins > skininsonc.txt 

cut -f1,2,3,4,5,6 *.sub > skinsubonc.txt 

cut -f1,2,3,4,5,6 *.del > skindelonc.txt 

cat skininsonc.txt | sed -e 's/^/chr/' > skininsoncchr.txt 

cat skinsubonc.txt | sed -e 's/^/chr/' > skinsuboncchr.txt 

cat skindelonc.txt | sed -e 's/^/chr/' > skindeloncchr.txt 

cat skininsoncchr.txt | sed -e 's/chr23/chrX/g'|sed -e 's/chr24/chrY/g' > skininsoncchrxy.txt 

cat skinsuboncchr.txt | sed -e 's/chr23/chrX/g'|sed -e 's/chr24/chrY/g' > skinsuboncchrxy.txt 

cat skindeloncchr.txt | sed -e 's/chr23/chrX/g'|sed -e 's/chr24/chrY/g' > skindeloncchrxy.txt 

wc -l skininsocchr.txt 

wc -l skininsoncchrxy.txt 

awk '!seen[$0]++' skininsoncchrxy.txt > nodupskininsonc.txt 

wc -l nodupskininsonc.txt  

awk '!seen[$0]++' skindeloncchrxy.txt > nodupskindelonc.txt 

awk '!seen[$0]++' skinsuboncchrxy.txt > nodupskinsubonc.txt 

wc -l nodupskinsubonc.txt 

wc -l skinsuboncchrxy.txt 

head nodupskinsubonc.txt  

cat nodupskinsubonc.txt nodupskindelonc.txt nodupskininsonc.txt > mayskininput.txt 

head mayskininput.txt  

grep -Ev $'^\t|\t\t|\t$' nodupskininsonc.txt > nospaceskininsonc.txt 

wc -l nospaceskininsonc.txt 

grep -Ev $'^\t|\t\t|\t$' nodupskinsubonc.txt > nospaceskinsubonc.txt 

wc -l nospaceskinsubonc.txt  

wc -l nodupskinsubonc.txt  

grep -Ev $'^\t|\t\t|\t$' nodupskindelonc.txt > nospaceskindelonc.txt 

cat nospaceskin*.txt > nospaceskinjuly.txt 

wc -l nospaceskinjuly.txt 

cat 2headerskininput.txt nospaceskinjuly.txt > nospaceskinfinaljuly1.txt 

EGA data formatting 

gunzip refGeneExtent.hg19.bed.gz 
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grep ‘exon’ refGeneExtent.hg19.bed > query_exons.bed 

#The script below shows how the refGeneExtent.hg19.bed.gz file was decompressed, and the 

second line of the script represents how the exons were extracted from the reference genome 

file. 

grep 'SOMATIC' CSCC_0014_M1.strelka.filtered.vcf > CSCC_0014_M1_somatic.vcf 

#There were 13 Strelka VCF files containing whole genome information for each skin SCC tumour. 

Each file was prepared individually and first the somatic mutations were extracted from each 

Strelka VCF file using the command shown. 

cut -f1,2 CSCC_0014_M1_somatic.vcf > chr_startpos.txt 

sed 1,3d chr_startpos.txt > noheader_chr_startpos.txt 

 

cut -f3 CSCC_0014_M1_somatic.vcf > id.txt 

sed 1,3d id.txt > noheader_id.txt 

sed 's/\./CSCC_0014_M1/g' noheader_id.txt > idtest.txt 

cut -f4,5 CSCC_0014_M1_somatic.vcf > ref_alt.txt 

sed 1,3d ref_alt.txt > noheader_ref_alt.txt 

#Then the chromosome number and position were extracted from column one and two of the 

Strelka VCF file which had been filtered for somatic mutations and a new file ‘pos_somatic.txt’ file 

was made. The second line of the script below shows that the first three lines of the 

‘pos_somatic.txt’ file was removed from the file to remove the column headings and a new file 

was made ‘noheader_pos.txt’. The tumour identifier (column three), reference and alternate base 

(column four and five) were extracted from the somatic VCF file for each individual tumour and 

individual files were made. The first three lines were removed from these files to ensure the 

column headings were not included in the files. The script summarising this is shown. 

cut -f2 CSCC_0014_M1_somatic.vcf > pos_somatic.txt 

sed 1,3d pos_somatic.txt > noheader_pos.txt 
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#Column two of the somatic VCF file was also extracted on its own to represent the end position 

of each mutation. The first three lines containing the column headings were also removed as 

shown in the script. 

paste noheader_chr_startpos.txt noheader_pos.txt noheader_ref_alt.txt idtest.txt >  

0014_M1_input_final.txt 

#The four files with the chromosome number, start position, end position, reference base, 

alternate base and the tumour identifier were joined together to produce a file with four columns 

for each individual skin SCC tumour (0014_M1_input_final.txt) which is shown in the script.. 

cat 0014_M1_input_final.txt |sed -e 's/^/chr/'> 0014_M1_input_final_chr.txt 

sed 's/\./-/g' 0014_M1_input_final_chr.txt > CSCC_0014_M1_input_final_chr.txt 

#Then the characters ‘chr’ were added to the beginning of each row to represent the 

chromosome number. Each row which contained a ‘.’ to represent a nucleotide base that was not 

present was converted to a ‘-‘ so the file would be compatible for Oncotator. A new file was 

created ‘CSCC_0014_M1_input_final_chr.txt’ file which contained both changes. The commands 

and files produced are shown as in script 

cut -f1,2,3 CSCC_0014_M1_input_final_chr_.txt > CSCC_0014_M1.bed 

#Next the first three columns from the ‘CSCC_0014_M1_input_final_chr.txt’ file, which contained 

the chromosome number, start position and end position, were extracted from the file to produce 

a CSCC_0014_M1.bed. The file was converted from a text file into a BED file so it could be used in 

bedtools (version 2.21.0)(Quinlan and Hall, 2010). The script summarising this is shown. 

scp /Volumes/“My Passport”/Bed_files/CSCC_0014_M1.bed 
username@iridis4_a.soton.ac.uk:/home/username 

scp /Volumes/“My Passport”/Bed_files/query_exons.bed 
username@iridis4_a.soton.ac.uk:/home/username 

#The University of Southampton computer cluster, Iridis was used to access bedtools and the bed 

files produced for each individual tumour were uploaded to the cluster using the script shown 

below. The reference file with all the exon coding regions (query_exons.bed) were also uploaded 

to Iridis.  

ssh -Y username@iridis4_a.soton.ac.uk 

mailto:username@iridis4_a.soton.ac.uk:/home/username


 

251 
 

module load bedtools/2.21.0 

#The command was used to log into Iridis and then the second command was used to load 

bedtools. 

bedtools intersect -a query_exons.bed -b 0014_M1.bed > CSCC_0014_M1_exons.bed 

#The command used bedtools and the reference file with the exon chromosome co-ordinates 

(query_exons.bed) to identify all the exonic regions in the whole genome bed file of an individual 

skin SCC tumour from the Mueller et al., 2019 study. Bedtools then produced a file with all the 

genome co-ordinates which reside in exons which is shown in the command below as 

‘CSCCC_0014_M1_exons.bed’.  

scp username@iridis4_a.soton.ac.uk:/home/username/CSCC_0014_M1_exons.bed 

/Users/username/Documents 

#The file with all the chromosome co-ordinates that reside in exons was then downloaded from 

the Iridis computer cluster to the local computer using the command shown here. 

fgrep -w -f CSCC_0014_M1_exons.bed CSCC_0014_M1_input_final_chr.txt > 

CSCC_0014_M1_exon_variants.txt 

cat oncotatorheader.txt CSCC_0004_M1_exon_variants.txt > 

CSCC_0004_M1_exon_variants_final.txt 

#The exonic chromosome co-ordinates that were unique to each individual skin SCC tumour file 

was then extracted from the file which was created previously with all the whole genome data for 

each individual skin SCC (CSCC_0014_M1_input_final_chr.txt). A new file was produced showing 

the variants for the coding regions and this is summarised in the first command shown below. The 

second command showed a file with column headings collated with the 

‘CSCC_0014_M1_exon_variants.txt’ file. This column headings file was to ensure the file was 

compatible for Oncotator. 

oncotator -v --db-dir /file location/oncotator_v1_ds_April052016 /file location/ 

0014_M1_exon_variants_final.txt CSCC_0014_M1_exon_variants_final_output.tsv hg19 

#The file was then run through Oncotator, shown in the command using default settings, to 

ensure all the exonic variants were annotated to produce MAF files. This process was completed 

for each of the 13 Strelka VCF files.  
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7.3.2 Oropharyngeal SCC 
cut -f1,2,3,4,5,6 *.ins > upperaerodigestivetractinsonc.txt 

cut -f1,2,3,4,5,6 *.sub > upperaerodigestivetractsubonc.txt 

cut -f1,2,3,4,5,6 *.del > upperaerodigestivetractdelonc.txt 

cat upperaerodigestivetractinsonc.txt | sed -e 's/^/chr/' > upperaerodigestivetractinsoncchr.txt 

cat upperaerodigestivetractsubonc.txt | sed -e 's/^/chr/' > upperaerodigestivetractsuboncchr.txt 

cat upperaerodigestivetractdelonc.txt | sed -e 's/^/chr/' > upperaerodigestivetractdeloncchr.txt 

cat upperaerodigestivetractinsoncchr.txt | sed -e 's/chr23/chrX/g'|sed -e 's/chr24/chrY/g' > 

upperaerodigestivetractinsoncchrxy.txt 

cat upperaerodigestivetractsuboncchr.txt | sed -e 's/chr23/chrX/g'|sed -e 's/chr24/chrY/g' > 

upperaerodigestivetractsuboncchrxy.txt 

cat upperaerodigestivetractdeloncchr.txt | sed -e 's/chr23/chrX/g'|sed -e 's/chr24/chrY/g' > 

upperaerodigestivetractdeloncchrxy.txt 

wc -l upperaerodigestivetractinsocchr.txt 

wc -l upperaerodigestivetractinsoncchrxy.txt 

awk '!seen[$0]++' upperaerodigestivetractinsoncchrxy.txt > 

nodupupperaerodigestivetractinsonc.txt 

wc -l nodupupperaerodigestivetractinsonc.txt 

awk '!seen[$0]++' upperaerodigestivetractdeloncchrxy.txt > 

nodupupperaerodigestivetractdelonc.txt 

awk '!seen[$0]++' upperaerodigestivetractsuboncchrxy.txt > 

nodupupperaerodigestivetractsubonc.txt 

wc -l nodupupperaerodigestivetractsubonc.txt 

wc -l upperaerodigestivetractsuboncchrxy.txt 

head nodupupperaerodigestivetractsubonc.txt 

grep -Ev $'^\t|\t\t|\t$' nodupupperaerodigestivetractinsonc.txt > 

nospaceupperaerodigestivetractinsonc.txt 

wc -l nospaceupperaerodigestivetractinsonc.txt 

grep -Ev $'^\t|\t\t|\t$' nodupupperaerodigestivetractsubonc.txt > 

nospaceupperaerodigestivetractsubonc.txt 

wc -l nospaceupperaerodigestivetractsubonc.txt  

wc -l nodupupperaerodigestivetractsubonc.txt  
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grep -Ev $'^\t|\t\t|\t$' nodupupperaerodigestivetractdelonc.txt > 

nospaceupperaerodigestivetractdelonc.txt 

cat nospaceupperaerodigestivetract*.txt > nospaceupperaerodigestivetractmay.txt 

wc -l nospaceupperaerodigestivetractmay.txt  

cat 2headerupperaerodigestivetractinput.txt nospaceupperaerodigestivetractmay.txt > 

nospaceupperaerodigestivetractfinal_v91.txt 

wc -l nospaceupperaerodigestivetractfinal_v91.txt  

7.3.3 Oesophageal SCC 
cut -f1,2,3,4,5,6 *.ins > oesophagusinsonc.txt 

cut -f1,2,3,4,5,6 *.sub > oesophagussubonc.txt 

cut -f1,2,3,4,5,6 *.del > oesophagusdelonc.txt 

cat oesophagusinsonc.txt | sed -e 's/^/chr/' > oesophagusinsoncchr.txt 

cat oesophagussubonc.txt | sed -e 's/^/chr/' > oesophagussuboncchr.txt 

cat oesophagusdelonc.txt | sed -e 's/^/chr/' > oesophagusdeloncchr.txt 

cat oesophagusinsoncchr.txt | sed -e 's/chr23/chrX/g'|sed -e 's/chr24/chrY/g' > 

oesophagusinsoncchrxy.txt 

cat oesophagussuboncchr.txt | sed -e 's/chr23/chrX/g'|sed -e 's/chr24/chrY/g' > 

oesophagussuboncchrxy.txt 

cat oesophagusdeloncchr.txt | sed -e 's/chr23/chrX/g'|sed -e 's/chr24/chrY/g' > 

oesophagusdeloncchrxy.txt 

wc -l oesophagusinsocchr.txt 

wc -l oesophagusinsoncchrxy.txt 

awk '!seen[$0]++' oesophagusinsoncchrxy.txt > nodupoesophagusinsonc.txt 

wc -l nodupoesophagusinsonc.txt 

awk '!seen[$0]++' oesophagusdeloncchrxy.txt > nodupoesophagusdelonc.txt 

awk '!seen[$0]++' oesophagussuboncchrxy.txt > nodupoesophagussubonc.txt 

wc -l nodupoesophagussubonc.txt 

wc -l oesophagussuboncchrxy.txt 

head nodupoesophagussubonc.txt 

grep -Ev $'^\t|\t\t|\t$' nodupoesophagusinsonc.txt > nospaceoesophagusinsonc.txt 

wc -l nospaceoesophagusinsonc.txt 

grep -Ev $'^\t|\t\t|\t$' nodupoesophagussubonc.txt > nospaceoesophagussubonc.txt 

wc -l nospaceoesophagussubonc.txt  
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wc -l nodupoesophagussubonc.txt  

grep -Ev $'^\t|\t\t|\t$' nodupoesophagusdelonc.txt > nospaceoesophagusdelonc.txt 

cat nospaceoesophagus*.txt > nospaceoesophagusmay.txt 

wc -l nospaceoesophagusmay.txt  

cat 2headeroesophagusinput.txt nospaceoesophagusmay.txt > nospaceoesophagusfinal_v91.txt 

wc -l nospaceoesophagusfinal_v91.txt  

 

7.3.4 Lung SCC 
cut -f1,2,3,4,5,6 *.ins > lunginsonc.txt 

cut -f1,2,3,4,5,6 *.sub > lungsubonc.txt 

cut -f1,2,3,4,5,6 *.del > lungdelonc.txt 

cat lunginsonc.txt | sed -e 's/^/chr/' > lunginsoncchr.txt 

cat lungsubonc.txt | sed -e 's/^/chr/' > lungsuboncchr.txt 

cat lungdelonc.txt | sed -e 's/^/chr/' > lungdeloncchr.txt 

cat lunginsoncchr.txt | sed -e 's/chr23/chrX/g'|sed -e 's/chr24/chrY/g' > lunginsoncchrxy.txt 

cat lungsuboncchr.txt | sed -e 's/chr23/chrX/g'|sed -e 's/chr24/chrY/g' > lungsuboncchrxy.txt 

cat lungdeloncchr.txt | sed -e 's/chr23/chrX/g'|sed -e 's/chr24/chrY/g' > lungdeloncchrxy.txt 

wc -l lunginsocchr.txt 

wc -l lunginsoncchrxy.txt 

awk '!seen[$0]++' lunginsoncchrxy.txt > noduplunginsonc.txt 

wc -l noduplunginsonc.txt 

awk '!seen[$0]++' lungdeloncchrxy.txt > noduplungdelonc.txt 

awk '!seen[$0]++' lungsuboncchrxy.txt > noduplungsubonc.txt 

wc -l noduplungsubonc.txt 

wc -l lungsuboncchrxy.txt 

head noduplungsubonc.txt 

grep -Ev $'^\t|\t\t|\t$' noduplunginsonc.txt > nospacelunginsonc.txt 

wc -l nospacelunginsonc.txt 

grep -Ev $'^\t|\t\t|\t$' noduplungsubonc.txt > nospacelungsubonc.txt 

wc -l nospacelungsubonc.txt  

wc -l noduplungsubonc.txt  
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grep -Ev $'^\t|\t\t|\t$' noduplungdelonc.txt > nospacelungdelonc.txt 

cat nospacelung*.txt > nospacelungmay.txt 

wc -l nospacelungmay.txt  

cat 2headerlunginput.txt nospacelungmay.txt > nospacelungfinal_v91.txt 

wc -l nospacelungfinal_v91.txt  

 

7.3.5 Cervical SCC 
cut -f1,2,3,4,5,6 *.ins > cervixinsonc.txt 

cut -f1,2,3,4,5,6 *.sub > cervixsubonc.txt 

cut -f1,2,3,4,5,6 *.del > cervixdelonc.txt 

cat cervixinsonc.txt | sed -e 's/^/chr/' > cervixinsoncchr.txt 

cat cervixsubonc.txt | sed -e 's/^/chr/' > cervixsuboncchr.txt 

cat cervixdelonc.txt | sed -e 's/^/chr/' > cervixdeloncchr.txt 

cat cervixinsoncchr.txt | sed -e 's/chr23/chrX/g'|sed -e 's/chr24/chrY/g' > cervixinsoncchrxy.txt 

cat cervixsuboncchr.txt | sed -e 's/chr23/chrX/g'|sed -e 's/chr24/chrY/g' > cervixsuboncchrxy.txt 

cat cervixdeloncchr.txt | sed -e 's/chr23/chrX/g'|sed -e 's/chr24/chrY/g' > cervixdeloncchrxy.txt 

wc -l cervixinsocchr.txt 

wc -l cervixinsoncchrxy.txt 

awk '!seen[$0]++' cervixinsoncchrxy.txt > nodupcervixinsonc.txt 

wc -l nodupcervixinsonc.txt 

awk '!seen[$0]++' cervixdeloncchrxy.txt > nodupcervixdelonc.txt 

awk '!seen[$0]++' cervixsuboncchrxy.txt > nodupcervixsubonc.txt 

wc -l nodupcervixsubonc.txt 

wc -l cervixsuboncchrxy.txt 

head nodupcervixsubonc.txt 

grep -Ev $'^\t|\t\t|\t$' nodupcervixinsonc.txt > nospacecervixinsonc.txt 

wc -l nospacecervixinsonc.txt 

grep -Ev $'^\t|\t\t|\t$' nodupcervixsubonc.txt > nospacecervixsubonc.txt 

wc -l nospacecervixsubonc.txt  

wc -l nodupcervixsubonc.txt  

grep -Ev $'^\t|\t\t|\t$' nodupcervixdelonc.txt > nospacecervixdelonc.txt 
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cat nospacecervix*.txt > nospacecervixmay.txt 

wc -l nospacecervixmay.txt  

cat 2headercervixinput.txt nospacecervixmay.txt > nospacecervixfinal_v91.txt 

wc -l nospacecervixfinal_v91.txt  

7.3.6 Melanoma 
cut -f1,2,3,4,5,6 *.ins > melanomaskininsonc.txt 

cut -f1,2,3,4,5,6 *.sub > melanomaskinsubonc.txt 

cut -f1,2,3,4,5,6 *.del > melanomaskindelonc.txt 

cat melanomaskininsonc.txt | sed -e 's/^/chr/' > melanomaskininsoncchr.txt 

cat melanomaskinsubonc.txt | sed -e 's/^/chr/' > melanomaskinsuboncchr.txt 

cat melanomaskindelonc.txt | sed -e 's/^/chr/' > melanomaskindeloncchr.txt 

cat melanomaskininsoncchr.txt | sed -e 's/chr23/chrX/g'|sed -e 's/chr24/chrY/g' > 

melanomaskininsoncchrxy.txt 

cat melanomaskinsuboncchr.txt | sed -e 's/chr23/chrX/g'|sed -e 's/chr24/chrY/g' > 

melanomaskinsuboncchrxy.txt 

cat melanomaskindeloncchr.txt | sed -e 's/chr23/chrX/g'|sed -e 's/chr24/chrY/g' > 

melanomaskindeloncchrxy.txt 

wc -l melanomaskininsocchr.txt 

wc -l melanomaskininsoncchrxy.txt 

awk '!seen[$0]++' melanomaskininsoncchrxy.txt > nodupmelanomaskininsonc.txt 

wc -l nodupmelanomaskininsonc.txt 

awk '!seen[$0]++' melanomaskindeloncchrxy.txt > nodupmelanomaskindelonc.txt 

awk '!seen[$0]++' melanomaskinsuboncchrxy.txt > nodupmelanomaskinsubonc.txt 

wc -l nodupmelanomaskinsubonc.txt 

wc -l melanomaskinsuboncchrxy.txt 

head nodupmelanomaskinsubonc.txt 

grep -Ev $'^\t|\t\t|\t$' nodupmelanomaskininsonc.txt > nospacemelanomaskininsonc.txt 

wc -l nospacemelanomaskininsonc.txt 

grep -Ev $'^\t|\t\t|\t$' nodupmelanomaskinsubonc.txt > nospacemelanomaskinsubonc.txt 

wc -l nospacemelanomaskinsubonc.txt  

wc -l nodupmelanomaskinsubonc.txt  

grep -Ev $'^\t|\t\t|\t$' nodupmelanomaskindelonc.txt > nospacemelanomaskindelonc.txt 
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cat nospacemelanomaskin*.txt > nospacemelanomaskinmay.txt 

wc -l nospacemelanomaskinmay.txt  

cat 2headermelanomaskininput.txt nospacemelanomaskinmay.txt > 

nospacemelanomaskinfinal_v91.txt 

wc -l nospacemelanomaskinfinal_v91.txt  

7.4 Script for GDC Portal/ MC3 data and COSMIC data preparation and merging  

7.4.1 Oropharyngeal SCC 
EXTRACT BARCODES FROM GDC 

cut -f16 TCGA.HNSC.somaticsniper.3f73f93c-a372-4097-bdff-77ca9760c6d3.DR-10.0.somatic.maf  

> gdc_upperaerodigestivetract_barcodes.txt 

#Extract the tumour barcode column from GDC cervical cancer MAF file 

 

awk '!seen[$0]++' gdc_upperaerodigestivetract_barcodes.txt > 

nodup_gdc_upperaerodigestivetract_barcodes.txt 

#Delete all duplicates from the cervical cancer tumour barcode file 

 

wc -l nodup_gdc_upperaerodigestivetract_barcodes.txt 

#Count the number of lines in tumour barcode file 

 

sed 1,5d nodup_gdc_upperaerodigestivetract_barcodes.txt > 

noheader_gdc_upperaerodigestivetract_barcodes.txt 

#delete header of tumour barcode file 

 

EXTRACT GDC BARCODES FROM MC3 FILE 

fgrep -w -f noheader_gdc_upperaerodigestivetract_barcodes.txt mc3.v0.2.8.PUBLIC.maf > 

mc3_upperaerodigestivetract_variants.txt 

#Extract all the cervical cancer barcodes from the public MAF file 

 

wc -l mc3_upperaerodigestivetract_variants.txt 

#Count the number of lines in mc3 cervical cancer file 

 

cut -f5,6,7 mc3_upperaerodigestivetract_variants.txt > 

chr_mc3_upperaerodigestivetract_variants.txt 

#Cut columns with chromosome number, start position, end position  
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cut -f11 mc3_upperaerodigestivetract_variants.txt > 

ref_mc3_upperaerodigestivetract_variants.txt 

#Cut column with reference allele 

 

cut -f13 mc3_upperaerodigestivetract_variants.txt > 

alt_mc3_upperaerodigestivetract_variants.txt 

#Cut column with alternate allele 

 

cut -f16 mc3_upperaerodigestivetract_variants.txt > mc3_upperaerodigestivetract_barcodes.txt 

#Cut column with tumour barcode 

 

cat mc3_upperaerodigestivetract_barcodes.txt | sed 's/.\{13\}$//' > 

2mc3_upperaerodigestivetract_barcodes.txt 

#Delete last 13 characters of each line to shorten each tumour barcode so matches with 

identifiers in COSMIC 

 

paste chr_mc3_upperaerodigestivetract_variants.txt 

ref_mc3_upperaerodigestivetract_variants.txt alt_mc3_upperaerodigestivetract_variants.txt 

2mc3_upperaerodigestivetract_barcodes.txt > FINAL_mc3_upperaerodigestivetract_variants.txt 

#Paste together chromosome number, start position, end position, reference allele, alternate 

allele and tumour barcode 

 

sed '1d' FINAL_mc3_upperaerodigestivetract_variants.txt > 

FINAL2_mc3_upperaerodigestivetract_variants.txt 

#Delete the header of the variant file 

 

cat FINAL2_mc3_upperaerodigestivetract_variants.txt | sed -e 's/^/chr/' > 

FINAL3_mc3_upperaerodigestivetract_variants.txt 

#Add 'Chr' to start of every line 

 

COSMIC AND GDC FILE 

cut -f6 nospaceupperaerodigestivetractfinal_v91.txt > upperaerodigestivetract_cosmic_ids.txt 

#Cut barcode column from COSMIC cervical cancer  
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awk '!seen[$0]++' 2mc3_upperaerodigestivetract_barcodes.txt > nodupmc3barcodes.txt 

#Delete all duplicates 

 

awk '!seen[$0]++' upperaerodigestivetract_cosmic_ids.txt > 

nodupupperaerodigestivetract_cosmic_ids.txt 

#Delete all duplicates 

 

grep -v -f nodupmc3barcodes.txt nodupupperaerodigestivetract_cosmic_ids.txt > 

upperaerodigestivetract_cosmic_only_barcodes.txt 

#Take lines from a mc3 barcodes and remove them from cosmic ids to make a new file with ids 

which are not present in mc3 barcodes 

 

wc -l upperaerodigestivetract_cosmic_only_barcodes.txt 

#Count the number of lines  

 

cat upper_aerodigestive_tract_squamous_cell_carcinoma.txt | awk '$35 == "cell-line"' | cut -f5,35 

| awk '!seen[$0]++' > upperaero_cellline.txt 

cat upper_aerodigestive_tract_squamous_cell_carcinoma.txt | awk '$35 == "short-term"'| cut -

f5,35 | awk '!seen[$0]++' > upperaero_culture.txt 

cat upperaero_cellline.txt upperaero_culture.txt | cut -f1 > upperaero_celllineculture_ids.txt 

cut -f5,10 upper_aerodigestive_tract_squamous_cell_carcinoma.txt | grep 'lip'| awk '!seen[$0]++' 

> upperaero_lip_subtype2.txt 

cut -f1 upperaero_lip_subtype2.txt > upperaero_lip_subtype2ids.txt 

cat upperaero_lip_subtype2ids.txt upperaero_celllineculture_ids.txt > 

upperaero_celllineculture_lip_ids.txt 

#Tumour barcodes for data which is cell line or from the lip 

grep -v -f upperaero_celllineculture_lip_ids.txt 

upperaerodigestivetract_cosmic_only_barcodes.txt > 

upperaerodigestivetract_tissue_cosmic_only_barcodes.txt  

#find all the tumour barcodes which are only from tissues 

wc -l upperaerodigestivetract_tissue_cosmic_only_barcodes.txt  

#count the number of lines 

2run.sh file: 
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#!/bin/bash 

 

rm output.txt 

 

while read id; do 

 echo "searching for $id"   

 if [ -z "$id" ] 

 then 

  echo "Empty line in $1" 

 else  

  grep "\s$id\b" $2 >> output.txt 

 fi 

done < $1 

<END of Script> 

 

sh 2run.sh upperaerodigestivetract_tissue_cosmic_only_barcodes.txt 

nospaceupperaerodigestivetractfinal_v91.txt 

Result: Output.txt 

#Take all the lines with cosmic only barcodes and match it no the cosmic upperaerodigestivetract 

file to output all variants of interest 

 

MERGE GDC AND COSMIC VARIANTS 

cat 2headerupperaerodigestivetractinput.txt FINAL3_mc3_upperaerodigestivetract_variants.txt 

output.txt > final_upperaerodigestivetract_mc3_cosmic.txt 

#Add mc3 variants to cosmic variants 

 

wc -l final_upperaerodigestivetract_mc3_cosmic.txt  

#Count the number of lines  
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awk '!seen[$0]++' final_upperaerodigestivetract_mc3_cosmic.txt > 

2final_upperaerodigestivetract_mc3_cosmic.txt 

#Delete all duplicates 

 

wc -l final_upperaerodigestivetract_mc3_cosmic.txt  

#Count the number of lines  

 

wc -l 2final_upperaerodigestivetract_mc3_cosmic.txt 

#Count the number of lines   

 

7.4.2 Oesophageal SCC 
 

EXTRACT BARCODES FROM GDC 

cut -f16 TCGA.ESCA.somaticsniper.56890408-24a5-4b5a-b822-aaf872c057b8.DR-

10.0.somatic.maf  > gdc_oesophagus_barcodes.txt 

#Extract the tumour barcode column from GDC cervical cancer MAF file 

 

awk '!seen[$0]++' gdc_oesophagus_barcodes.txt > nodup_gdc_oesophagus_barcodes.txt 

#Delete all duplicates from the cervical cancer tumour barcode file 

 

wc -l nodup_gdc_oesophagus_barcodes.txt 

#Count the number of lines in tumour barcode file 

 

sed 1,5d nodup_gdc_oesophagus_barcodes.txt > noheader_gdc_oesophagus_barcodes.txt 

#delete header of tumour barcode file 

 

EXTRACT GDC BARCODES FROM MC3 FILE 

fgrep -w -f noheader_gdc_oesophagus_barcodes.txt mc3.v0.2.8.PUBLIC.maf > 

mc3_oesophagus_variants.txt 

#Extract all the cervical cancer barcodes from the public MAF file 
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wc -l mc3_oesophagus_variants.txt 

#Count the number of lines in mc3 cervical cancer file 

 

cut -f5,6,7 mc3_oesophagus_variants.txt > chr_mc3_oesophagus_variants.txt 

#Cut columns with chromosome number, start position, end position  

 

cut -f11 mc3_oesophagus_variants.txt > ref_mc3_oesophagus_variants.txt 

#Cut column with reference allele 

 

cut -f13 mc3_oesophagus_variants.txt > alt_mc3_oesophagus_variants.txt 

#Cut column with alternate allele 

 

cut -f16 mc3_oesophagus_variants.txt > mc3_oesophagus_barcodes.txt 

#Cut column with tumour barcode 

 

cat mc3_oesophagus_barcodes.txt | sed 's/.\{13\}$//' > 2mc3_oesophagus_barcodes.txt 

#Delete last 13 characters of each line to shorten each tumour barcode so matches with 

identifiers in COSMIC 

 

paste chr_mc3_oesophagus_variants.txt ref_mc3_oesophagus_variants.txt 

alt_mc3_oesophagus_variants.txt 2mc3_oesophagus_barcodes.txt > 

FINAL_mc3_oesophagus_variants.txt 

#Paste together chromosome number, start position, end position, reference allele, alternate 

allele and tumour barcode 

 

sed '1d' FINAL_mc3_oesophagus_variants.txt > FINAL2_mc3_oesophagus_variants.txt 

#Delete the header of the variant file 

 

cat FINAL2_mc3_oesophagus_variants.txt | sed -e 's/^/chr/' > 

FINAL3_mc3_oesophagus_variants.txt 

#Add 'Chr' to start of every line 

 

COSMIC AND GDC FILE 
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cut -f6 nospaceoesophagusfinal_v91.txt > oesophagus_cosmic_ids.txt 

#Cut barcode column from COSMIC cervical cancer  

 

awk '!seen[$0]++' 2mc3_oesophagus_barcodes.txt > nodupmc3barcodes.txt 

#Delete all duplicates 

 

awk '!seen[$0]++' oesophagus_cosmic_ids.txt > nodupoesophagus_cosmic_ids.txt 

#Delete all duplicates 

 

grep -v -f nodupmc3barcodes.txt nodupoesophagus_cosmic_ids.txt > 

oesophagus_cosmic_only_barcodes.txt 

#Take lines from a mc3 barcodes and remove them from cosmic ids to make a new file with ids 

which are not present in mc3 barcodes 

 

wc -l oesophagus_cosmic_only_barcodes.txt 

#Count the number of lines  

 

grep -v -f oesophagus_celllineculture_ids.txt oesophagus_cosmic_only_barcodes.txt > 

oesophagus_tissue_cosmic_only_barcodes.txt  

 

wc -l oesophagus_tissue_cosmic_only_barcodes.txt  

2run.sh file: 

#!/bin/bash 

 

rm output.txt 

 

while read id; do 

 echo "searching for $id"   

 if [ -z "$id" ] 

 then 
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  echo "Empty line in $1" 

 else  

  grep "\s$id\b" $2 >> output.txt 

 fi 

done < $1 

<END of Script> 

sh 2run.sh oesophagus_tissue_cosmic_only_barcodes.txt nospaceoesophagusfinal_v91.txt 

 

#Result: output.txt 

#Take all the lines with cosmic only barcodes and match it no the cosmic oesophagus file to 

output all variants of interest 

 

MERGE GDC AND COSMIC VARIANTS 

 

cat 2headeroesophagusinput.txt FINAL3_mc3_oesophagus_variants.txt output.txt > 

final_oesophagus_mc3_cosmic.txt 

#Add mc3 variants to cosmic variants 

 

wc -l final_oesophagus_mc3_cosmic.txt  

#Count the number of lines  

 

awk '!seen[$0]++' final_oesophagus_mc3_cosmic.txt > 2final_oesophagus_mc3_cosmic.txt 

#Delete all duplicates 

 

wc -l final_oesophagus_mc3_cosmic.txt  

#Count the number of lines  

 

wc -l 2final_oesophagus_mc3_cosmic.txt 

#Count the number of lines   
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7.4.3 Lung SCC 
 

EXTRACT BARCODES FROM GDC 

 

cut -f16 TCGA.LUSC.somaticsniper.153233d7-0731-4252-a835-ecd067c5ae71.DR-

10.0.somatic.maf > gdc_lung_barcodes.txt 

#Extract the tumour barcode column from GDC cervical cancer MAF file 

 

awk '!seen[$0]++' gdc_lung_barcodes.txt > nodup_gdc_lung_barcodes.txt 

#Delete all duplicates from the cervical cancer tumour barcode file 

 

wc -l nodup_gdc_lung_barcodes.txt 

#Count the number of lines in tumour barcode file 

 

sed 1,5d nodup_gdc_lung_barcodes.txt > noheader_gdc_lung_barcodes.txt 

#delete header of tumour barcode file 

 

EXTRACT GDC BARCODES FROM MC3 FILE 

 

fgrep -w -f noheader_gdc_lung_barcodes.txt mc3.v0.2.8.PUBLIC.maf > mc3_lung_variants.txt 

#Extract all the cervical cancer barcodes from the public MAF file 

 

wc -l mc3_lung_variants.txt 

#Count the number of lines in mc3 cervical cancer file 

 

cut -f5,6,7 mc3_lung_variants.txt > chr_mc3_lung_variants.txt 

#Cut columns with chromosome number, start position, end position  

 

cut -f11 mc3_lung_variants.txt > ref_mc3_lung_variants.txt 

#Cut column with reference allele 
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cut -f13 mc3_lung_variants.txt > alt_mc3_lung_variants.txt 

#Cut column with alternate allele 

 

cut -f16 mc3_lung_variants.txt > mc3_lung_barcodes.txt 

#Cut column with tumour barcode 

 

cat mc3_lung_barcodes.txt | sed 's/.\{13\}$//' > 2mc3_lung_barcodes.txt 

#Delete last 13 characters of each line to shorten each tumour barcode so matches with 

identifiers in COSMIC 

 

paste chr_mc3_lung_variants.txt ref_mc3_lung_variants.txt alt_mc3_lung_variants.txt 

2mc3_lung_barcodes.txt > FINAL_mc3_lung_variants.txt 

#Paste together chromosome number, start position, end position, reference allele, alternate 

allele and tumour barcode 

 

sed '1d' FINAL_mc3_lung_variants.txt > FINAL2_mc3_lung_variants.txt 

#Delete the header of the variant file 

 

cat FINAL2_mc3_lung_variants.txt | sed -e 's/^/chr/' > FINAL3_mc3_lung_variants.txt 

#Add 'Chr' to start of every line 

 

COSMIC AND GDC FILE 

cut -f6 nospacelungfinal_v91.txt > lung_cosmic_ids.txt 

#Cut barcode column from COSMIC cervical cancer  

 

awk '!seen[$0]++' 2mc3_lung_barcodes.txt > nodupmc3barcodes.txt 

#Delete all duplicates 

 

awk '!seen[$0]++' lung_cosmic_ids.txt > noduplung_cosmic_ids.txt 

#Delete all duplicates 

 

grep -v -f nodupmc3barcodes.txt noduplung_cosmic_ids.txt > lung_cosmic_only_barcodes.txt 
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#Remove mc3 barcodes from COSMIC ids to make a new file with ids which are unique to COSMIC 

and not present in mc3 barcodes 

 

wc -l lung_cosmic_only_barcodes.txt 

#Count the number of lines  

 

grep -v -f lung_celllineculture_ids.txt lung_cosmic_only_barcodes.txt > 

lung_tissue_cosmic_only_barcodes.txt  

 

wc -l lung_tissue_cosmic_only_barcodes.txt  

 

fgrep -w -f lung_tissue_cosmic_only_barcodes.txt nospacelungfinal_v91.txt > 

cosmic_only_lung_variants.txt 

#Take all the lines with cosmic only barcodes and match it no the cosmic lung file to output all 

variants of interest 

 

MERGE GDC AND COSMIC VARIANTS 

cat 2headerlunginput.txt FINAL3_mc3_lung_variants.txt cosmic_only_lung_variants.txt > 

final_lung_mc3_cosmic.txt 

#Add mc3 variants to cosmic variants 

 

wc -l final_lung_mc3_cosmic.txt  

#Count the number of lines  

 

awk '!seen[$0]++' final_lung_mc3_cosmic.txt > 2final_lung_mc3_cosmic.txt 

#Delete all duplicates 

 

wc -l final_lung_mc3_cosmic.txt  

#Count the number of lines  

 

wc -l 2final_lung_mc3_cosmic.txt 

#Count the number of lines   
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7.4.4 Cervical SCC 
EXTRACT BARCODES FROM GDC 

cut -f16 TCGA.CESC.somaticsniper.45747e1f-7a37-4d82-b722-ae76fe5a0fcf.DR-10.0.somatic.maf 

> gdc_cervix_barcodes.txt 

#Extract the tumour barcode column from GDC cervical cancer MAF file 

 

awk '!seen[$0]++' gdc_cervix_barcodes.txt > nodup_gdc_cervix_barcodes.txt 

#Delete all duplicates from the cervical cancer tumour barcode file 

 

wc -l nodup_gdc_cervix_barcodes.txt 

#Count the number of lines in tumour barcode file 

 

sed 1,5d nodup_gdc_cervix_barcodes.txt > noheader_gdc_cervix_barcodes.txt 

#delete header of tumour barcode file 

 

EXTRACT GDC BARCODES FROM MC3 FILE 

 

fgrep -w -f noheader_gdc_cervix_barcodes.txt mc3.v0.2.8.PUBLIC.maf > mc3_cervix_variants.txt 

#Extract all the cervical cancer barcodes from the public MAF file 

 

wc -l mc3_cervix_variants.txt 

#Count the number of lines in mc3 cervical cancer file 

 

cut -f5,6,7 mc3_cervix_variants.txt > chr_mc3_cervix_variants.txt 

#Cut columns with chromosome number, start position, end position  

 

cut -f11 mc3_cervix_variants.txt > ref_mc3_cervix_variants.txt 

#Cut column with reference allele 

 

cut -f13 mc3_cervix_variants.txt > alt_mc3_cervix_variants.txt 

#Cut column with alternate allele 
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cut -f16 mc3_cervix_variants.txt > mc3_cervix_barcodes.txt 

#Cut column with tumour barcode 

 

cat mc3_cervix_barcodes.txt | sed 's/.\{13\}$//' > 2mc3_cervix_barcodes.txt 

#Delete last 13 characters of each line to shorten each tumour barcode so matches with 

identifiers in COSMIC 

 

paste chr_mc3_cervix_variants.txt ref_mc3_cervix_variants.txt alt_mc3_cervix_variants.txt 

2mc3_cervix_barcodes.txt > FINAL_mc3_cervix_variants.txt 

#Paste together chromosome number, start position, end position, reference allele, alternate 

allele and tumour barcode 

 

sed '1d' FINAL_mc3_cervix_variants.txt > FINAL2_mc3_cervix_variants.txt 

#Delete the header of the variant file 

 

cat FINAL2_mc3_cervix_variants.txt | sed -e 's/^/chr/' > FINAL3_mc3_cervix_variants.txt 

#Add 'Chr' to start of every line 

 

COSMIC AND GDC FILE 

 

cut -f6 nospacecervixfinal_v91.txt > cervix_cosmic_ids.txt 

#Cut barcode column from COSMIC cervical cancer  

 

awk '!seen[$0]++' 2mc3_cervix_barcodes.txt > nodupmc3barcodes.txt 

#Delete all duplicates 

 

awk '!seen[$0]++' cervix_cosmic_ids.txt > nodupcervix_cosmic_ids.txt 

#Delete all duplicates 

 

grep -v -f nodupmc3barcodes.txt nodupcervix_cosmic_ids.txt > cervix_cosmic_only_barcodes.txt 

#Take lines from a mc3 barcodes and remove them from cosmic ids to make a new file with ids 

which are not present in mc3 barcodes 
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wc -l cervix_cosmic_only_barcodes.txt 

#Count the number of lines  

 

cat cervix_squamous_cell_carcinoma.txt | awk '$35 == "cell-line"' | cut -f5,35 | awk '!seen[$0]++' 

> cervix_cellline.txt 

cat cervix_squamous_cell_carcinoma.txt | awk '$35 == "short-term"'| cut -f5,35 | awk 

'!seen[$0]++'> cervix_culture.txt 

# For the cervix_squamous_cell_carcinoma.txt file,  column 5 was extracted which was the sample 

name and column 35 which included a description of the tumour origin (cell-line). The next part of 

the script deleted duplicates to produce a file with all the sample names which have originated 

from cell lines. The same was done for samples which have originated from short-term cultures.  

cat cervix_cellline.txt cervix_culture.txt | cut -f1 > cervix_celllineculture_ids.txt 

# The next part of the script then collates both files with sample names for genomic data which 

has originated from cells and not tumour samples to produce a file with this information.  

 

grep -v -f cervix_celllineculture_ids.txt cervix_cosmic_only_barcodes.txt > 

cervix_tissue_cosmic_only_barcodes.txt  

#Remove cell line and cultured cell samples 

wc -l cervix_tissue_cosmic_only_barcodes.txt  

#count number of lines 

fgrep -w -f cervix_cosmic_only_barcodes.txt nospacecervixfinal_v91.txt > 

cosmic_only_cervix_variants.txt 

#Take all the lines with cosmic only barcodes and match it no the cosmic cervix file to output all 

variants of interest 

 

MERGE GDC AND COSMIC VARIANTS 

cat 2headercervixinput.txt FINAL3_mc3_cervix_variants.txt cosmic_only_cervix_variants.txt > 

final_cervix_mc3_cosmic.txt 

#Add mc3 variants to cosmic variants 

 

wc -l final_cervix_mc3_cosmic.txt  

#Count the number of lines  
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awk '!seen[$0]++' final_cervix_mc3_cosmic.txt > 2final_cervix_mc3_cosmic.txt 

#Delete all duplicates 

 

wc -l final_cervix_mc3_cosmic.txt  

#Count the number of lines  

 

wc -l 2final_cervix_mc3_cosmic.txt 

#Count the number of lines   

7.4.5 Melanoma 
 

EXTRACT BARCODES FROM GDC 

 

cut -f16 TCGA.SKCM.somaticsniper.b8ef7b54-adb8-4751-93bd-c26349be4252.DR-

10.0.somatic.maf  > gdc_melanoma_barcodes.txt 

#Extract the tumour barcode column from GDC cervical cancer MAF file 

 

awk '!seen[$0]++' gdc_melanoma_barcodes.txt > nodup_gdc_melanoma_barcodes.txt 

#Delete all duplicates from the cervical cancer tumour barcode file 

 

wc -l nodup_gdc_melanoma_barcodes.txt 

#Count the number of lines in tumour barcode file 

 

sed 1,5d nodup_gdc_melanoma_barcodes.txt > noheader_gdc_melanoma_barcodes.txt 

#delete header of tumour barcode file 

 

EXTRACT GDC BARCODES FROM MC3 FILE 

 

fgrep -w -f noheader_gdc_melanoma_barcodes.txt mc3.v0.2.8.PUBLIC.maf > 

mc3_melanoma_variants.txt 

#Extract all the cervical cancer barcodes from the public MAF file 
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wc -l mc3_melanoma_variants.txt 

#Count the number of lines in mc3 cervical cancer file 

 

cut -f5,6,7 mc3_melanoma_variants.txt > chr_mc3_melanoma_variants.txt 

#Cut columns with chromosome number, start position, end position  

 

cut -f11 mc3_melanoma_variants.txt > ref_mc3_melanoma_variants.txt 

#Cut column with reference allele 

 

cut -f13 mc3_melanoma_variants.txt > alt_mc3_melanoma_variants.txt 

#Cut column with alternate allele 

 

cut -f16 mc3_melanoma_variants.txt > mc3_melanoma_barcodes.txt 

#Cut column with tumour barcode 

 

cat mc3_melanoma_barcodes.txt | sed 's/.\{13\}$//' > 2mc3_melanoma_barcodes.txt 

#Delete last 13 characters of each line to shorten each tumour barcode so matches with 

identifiers in COSMIC 

 

paste chr_mc3_melanoma_variants.txt ref_mc3_melanoma_variants.txt 

alt_mc3_melanoma_variants.txt 2mc3_melanoma_barcodes.txt > 

FINAL_mc3_melanoma_variants.txt 

#Paste together chromosome number, start position, end position, reference allele, alternate 

allele and tumour barcode 

 

sed '1d' FINAL_mc3_melanoma_variants.txt > FINAL2_mc3_melanoma_variants.txt 

#Delete the header of the variant file 

 

cat FINAL2_mc3_melanoma_variants.txt | sed -e 's/^/chr/' > FINAL3_mc3_melanoma_variants.txt 

#Add 'Chr' to start of every line 

 

COSMIC AND GDC FILE 
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cut -f6 nospacemelanomaskinfinal_v91.txt > melanoma_cosmic_ids.txt 

#Cut barcode column from COSMIC cervical cancer  

 

awk '!seen[$0]++' 2mc3_melanoma_barcodes.txt > nodupmc3barcodes.txt 

#Delete all duplicates 

 

awk '!seen[$0]++' melanoma_cosmic_ids.txt > nodupmelanoma_cosmic_ids.txt 

#Delete all duplicates 

 

grep -v -f nodupmc3barcodes.txt nodupmelanoma_cosmic_ids.txt > 

melanoma_cosmic_only_barcodes.txt 

#Take lines from a mc3 barcodes and remove them from cosmic ids to make a new file with ids 

which are not present in mc3 barcodes 

 

wc -l melanoma_cosmic_only_barcodes.txt 

#Count the number of lines  

cat skin_cutaneous_melanoma.txt | awk '$35 == "cell-line"' | cut -f5,35 | awk '!seen[$0]++' > 

melanoma_cellline.txt 

cat skin_cutaneous_melanoma.txt | awk '$35 == "short-term"'| cut -f5,35 | awk '!seen[$0]++' > 

melanoma_culture.txt 

cat melanoma_cellline.txt melanoma_culture.txt > melanoma_cell_culture.txt 

cut -f1 melanoma_cell_culture.txt > melanoma_celllineculture_ids.txt 

#Identify the cell line and cultured samples from COSMIC melanoma time and then combine 

samples into one file and extract melanoma sample identifers. 

cut -f5,9 skin_cutaneous_melanoma.txt | grep 'mucosal'| awk '!seen[$0]++' > 

melanoma_mucosal_subtype1.txt 

cut -f1 melanoma_mucosal_subtype1.txt > melanoma_mucosal_subtype1ids.txt 

# In the second part of this script, the column with the sample names for mucosal melanoma 

were mined to produce a new file, melanoma_mucosal_subtype1ids.txt. 

cut -f5,9 skin_cutaneous_melanoma.txt | grep 'foot'| awk '!seen[$0]++' > 

melanoma_foot_subtype1.txt 

cut -f1 melanoma_foot_subtype1.txt > melanoma_foot_subtype1ids.txt 
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#The commands were used to remove any melanoma samples which originated from the foot 

region. Column five of the skin_cutaneous_melanoma.txt file included the sample names and 

column nine of the file included the site subtype 1 of where the genetic information has 

originated from. All samples which were described as originating from site subtype 1 ‘foot’ were 

extracted and placed in a new file ‘melanoma_foot_subtype1.txt’. Then all the sample names that 

originated from the foot were extracted from the melanoma_foot_subtype1.txt file to produce a 

new file ‘melanoma_foot_subtype1ids.txt’.   

cat melanoma_mucosal_subtype1ids.txt melanoma_foot_subtype1ids.txt 

melanoma_celllineculture_ids.txt | awk '!seen[$0]++' > 

melanoma_celllineculture_mucosal_foot_ids.txt 

#The next script then collates both files with sample names for genomic data which has originated 

from cell lines, cultured cells, melanomas from the foot and mucosal melanomas. All duplicate 

samples were then removed and a new file ‘melanoma_celllineculture_mucosal_foot_ids.txt’ was 

produced.  

grep -v -f melanoma_celllineculture_mucosal_foot_ids.txt melanoma_cosmic_only_barcodes.txt > 

melanoma_tissue_cosmic_only_barcodes.txt  

#A file with all the melanoma sample names which were only present in the COSMIC database 

and were not in GDC portal was produced called ‘melanoma_cosmic_only_barcodes.txt’. The 

commands below show that all the melanoma sample names which originated from cell lines, cell 

culture, mucosal melanoma and melanoma from the foot were removed from the 

melanoma_cosmic_only_barcodes.txt file. A new file was then produced called 

melanoma_tissue_cosmic_only_barcodes.txt. 

 

wc -l melanoma_tissue_cosmic_only_barcodes.txt  

#count the number of lines in file 

sh 2run.sh melanoma_tissue_cosmic_only_barcodes.txt nospacemelanomaskinfinal_v91.txt 

 

#Result: output.txt 

#Take all the lines with cosmic only barcodes and match it no the cosmic melanoma file to output 

all variants of interest 

 

MERGE GDC AND COSMIC VARIANTS 

 

cat 2headermelanomaskininput.txt FINAL3_mc3_melanoma_variants.txt output.txt > 

final_melanoma_mc3_cosmic.txt 

#Add mc3 variants to cosmic variants 

 

wc -l final_melanoma_mc3_cosmic.txt  
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#Count the number of lines  

 

awk '!seen[$0]++' final_melanoma_mc3_cosmic.txt > 2final_melanoma_mc3_cosmic.txt 

#Delete all duplicates 

 

wc -l final_melanoma_mc3_cosmic.txt  

#Count the number of lines  

 

wc -l 2final_melanoma_mc3_cosmic.txt 

#Count the number of lines   

 

 

7.5 Script for Maftools using R version 3.5.1 
 

7.5.1 List of false positive genes 

ABCC9 CSMD2 GUCY1A2 OR2W3 SCN9A OR2T4 

ACAN CUBN HERC2 OR4C46 SLC4A10 CNTNAP4 

ADAMTS20 DCLK1 HRNR OR4C6 SLITRK6 PARK2 

ADAMTSL3 DMD HSPA1L OR4L1 SPTA1 
 

ADGRL2 DNAH11 IQGAP2 OR5L2 SRCAP 
 

AMPH DNAH5 LAMA2 OR5T1 ST6GAL2 
 

ASH1L DNAH7 LAMA4 OR6A2 TG 
 

ASTN2 DOCK4 LRP2 OR6K3 THBS2 
 

ASXL3 DPP6 LRRIQ1 OTOGL THSD7B 
 

ATXN1 DTNA MAGI2 OTUD7A TMTC2 
 

BNC2 DYNC1I1 MGAM PAIP1 TRIO 
 

BRINP3 DYSF MGAT3 PCDH17 TRPA1 
 

CACHD1 EP400 MUC6 PCDH18 TRPS1 
 

CALCR EPHA6 MXRA5 PCLO TTN 
 

CASZ1 EPHB1 MYOM2 PCSK5 TXNIP 
 

CDC27 ESRRG NALCN PDZD2 WAC 
 

CEP170 EXOC2 NEB PEG3 WDFY3 
 

CHD7 EYA4 NRXN1 PLEC ZBTB20 
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CNTN1 FBN2 NTRK2 PTCHD4 ZNF292 
 

CNTN5 FLG OR10A7 PXDN BAGE2 
 

CNTNAP5 FLT1 OR10G9 RAG1 TPTE 
 

COL14A1 FOXQ1 OR10R2 RANBP6 RYR3 
 

COL25A1 FREM2 OR2L13 RYR2 MUC5B 
 

CPS1 GPC6 OR2M4 SACS OR2G6 
 

CSMD1 GRIA3 OR2T33 SCN5A OR4M2 
 

 

7.5.2 Skin SCC 
library(maftools) 

 

devtools::install_github(repo = "PoisonAlien/TCGAmutations") 

library(TCGAmutations) 

TCGAmutations::tcga_load(study = "SKCM") 

 

#read in file 

lamlskin = read.maf(maf = "skin_final_april2021.tsv") 

#plot summary 

plotmafSummary(maf = lamlskin, rmOutlier = TRUE, addStat = 'median', dashboard = TRUE, 

titvRaw = FALSE) 

OncogenicPathways(maf = lamlskin) 

 

#read in genes to ignore 

genestoignore <- c(readLines("false_pos_genes_20190410.txt")) 

 

#Oncoplot 

oncoplot(maf = lamlskin, top = 38, genesToIgnore = genestoignore, sampleOrder = 

lamlskin@variants.per.sample$Tumor_Sample_Barcode) 

 

#Lollipop plot 

lollipopPlot(maf = lamlskin, gene = 'CDKN2A', AACol = 'Protein_Change', showMutationRate = 

TRUE) 
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lollipopPlot(maf = lamlskin, gene = 'CDKN2A', AACol = 'Protein_Change', showMutationRate = 

TRUE, showDomainLabel = FALSE) 

 

lollipopPlot(maf = lamlskin, gene = 'FAT1', AACol = 'Protein_Change', showMutationRate = TRUE, 

showDomainLabel = FALSE) 

 

lollipopPlot(maf = lamlskin, gene = 'HRAS', AACol = 'Protein_Change', showMutationRate = TRUE, 

showDomainLabel = FALSE) 

 

lollipopPlot(maf = lamlskin, gene = 'NOTCH1', AACol = 'Protein_Change', showMutationRate = 

TRUE, showDomainLabel = FALSE) 

 

lollipopPlot(maf = lamlskin, gene = 'NOTCH2', AACol = 'Protein_Change', showMutationRate = 

TRUE, showDomainLabel = FALSE) 

 

lollipopPlot(maf = lamlskin, gene = 'TP53', AACol = 'Protein_Change', showMutationRate = TRUE, 

showDomainLabel = FALSE) 

 

lollipopPlot(maf = lamlskin, gene = 'CDC27', AACol = 'Protein_Change', showMutationRate = TRUE, 

showDomainLabel = FALSE) 

lollipopPlot(maf = lamlskin, gene = 'TMEM222', AACol = 'Protein_Change', showMutationRate = 

TRUE, showDomainLabel = FALSE) 

oncoplot(maf = lamlskin, genes = 

c("CDC27","TP53","CDKN2A","FAT1","HRAS","NOTCH1","NOTCH2","CCDC28A", "CHUK", "KIF4B", 

"PRB2", "TMEM222"), sampleOrder = lamlskin@variants.per.sample$Tumor_Sample_Barcode) 

 

 

somaticInteractions(maf = lamlskin, genes = 

c("CDC27","TP53","CDKN2A","FAT1","HRAS","NOTCH1","NOTCH2","CCDC28A", "CHUK", "KIF4B", 

"PRB2", "TMEM222"), font = 0.6, nShiftSymbols = 2, showSum = FALSE, pvalue = c(0.05, 0.1)) 

 

#Oncogenic pathways 

OncogenicPathways(maf = lamlskin) 

PlotOncogenicPathways(maf = lamlskin, pathways = "RTK-RAS") 

PlotOncogenicPathways(maf = lamlskin, pathways = "NOTCH") 
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PlotOncogenicPathways(maf = lamlskin, pathways = "WNT") 

dgi = drugInteractions(maf = lamlskin, fontSize = 0.75) 

 

#Mutation types 

laml.titv = titv(maf = lamlskin, plot = FALSE, useSyn = TRUE) 

#plot titv summary 

plotTiTv(res = laml.titv) 

 

#OncodriveCLUST 

laml.sig = oncodrive(maf = lamlskin, AACol = 'Protein_Change', minMut = 5, pvalMethod = 

'combined') 

 

plotOncodrive(res = laml.sig, fdrCutOff = 0.1, useFraction = TRUE) 

 

write.table(laml.sig, "skin_oncodrive_300321.txt") 

 

7.5.3 Oropharyngeal SCC 
library(maftools) 

 

devtools::install_github(repo = "PoisonAlien/TCGAmutations") 

library(TCGAmutations) 

TCGAmutations::tcga_load(study = "SKCM") 

 

#read in file 

lamlorophar = read.maf(maf = "OROPHARYNGEAL_SCC_FINAL_v91_gdc_extra_sept.txt") 

 

#plot summary 

plotmafSummary(maf = lamlorophar, rmOutlier = TRUE, addStat = 'median', dashboard = TRUE, 

titvRaw = FALSE) 

 

#read in genes to ignore 

genestoignore <- c(readLines("false_pos_genes_20190410.txt")) 
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slotNames(lamlorophar) 

View (lamlorophar@variants.per.sample) 

#oncoplot for top 100 most frequently mutated genes 

oncoplot(maf = lamlorophar, top = 126, fontSize = 6, genesToIgnore = genestoignore, 

sampleOrder = lamlorophar@variants.per.sample$Tumor_Sample_Barcode) 

 

oncoplot(maf = lamlorophar, top = 32, fontSize = 8, genesToIgnore = genestoignore, sampleOrder 

= lamlorophar@variants.per.sample$Tumor_Sample_Barcode) 

 

if (!requireNamespace("BiocManager", quietly = TRUE)) 

  install.packages("BiocManager") 

 

BiocManager::install("BSgenome.Hsapiens.UCSC.hg19") 

 

library(BSgenome.Hsapiens.UCSC.hg19, quietly = TRUE) 

laml.tnm = trinucleotideMatrix(maf = lamlorophar, prefix = 'chr', add = TRUE, ref_genome = 

"BSgenome.Hsapiens.UCSC.hg19") 

plotApobecDiff(tnm = laml.tnm, maf = lamlorophar) 

library('NMF') 

laml.sign = extractSignatures(mat = laml.tnm, nTry = 6, plotBestFitRes = FALSE) 

 

plotApobecDiff(tnm = laml.tnm, maf = lamlorophar, pVal = 0.2) 

plotSignatures(laml.sign, title_size = 1.4) 

 

#Mutation types 

laml.titv = titv(maf = lamlorophar, plot = FALSE, useSyn = TRUE) 

#plot titv summary 

plotTiTv(res = laml.titv) 
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laml.sig = oncodrive(maf = lamlorophar, AACol = 'Protein_Change', minMut = 5, pvalMethod = 

'combined') 

 

plotOncodrive(res = laml.sig, fdrCutOff = 0.1, useFraction = TRUE) 

write.table(laml.sig, "oropharyngeal_oncodrive.txt") 

 

 

 

laml.v3.cosm = compareSignatures(nmfRes = laml.sig, sig_db = "SBS") 

 

 

lollipopPlot(maf = lamlorophar, gene = 'FAT1', AACol = 'Protein_Change', showMutationRate = 

TRUE, showDomainLabel = FALSE) 

 

lollipopPlot(maf = lamlorophar, gene = 'HRAS', AACol = 'Protein_Change', showMutationRate = 

TRUE, showDomainLabel = FALSE) 

 

lollipopPlot(maf = lamlorophar, gene = 'TP53', AACol = 'Protein_Change', showMutationRate = 

TRUE, showDomainLabel = FALSE) 

 

lollipopPlot(maf = lamlorophar, gene = 'NOTCH2', AACol = 'Protein_Change', showMutationRate = 

TRUE, showDomainLabel = FALSE) 

 

7.5.4 Oesophageal SCC 
library(maftools) 

 

devtools::install_github(repo = "PoisonAlien/TCGAmutations") 

library(TCGAmutations) 

TCGAmutations::tcga_load(study = "SKCM") 

 

#read in file 

lamloeso = read.maf(maf = "oesophagus_GDC_Cosmicv91_extra_sept2020.txt") 
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#plot summary 

plotmafSummary(maf = lamloeso, rmOutlier = TRUE, addStat = 'median', dashboard = TRUE, 

titvRaw = FALSE) 

 

#read in genes to ignore 

genestoignore <- c(readLines("false_pos_genes_20190410.txt")) 

 

slotNames(lamloeso) 

View (lamloeso@variants.per.sample) 

#oncoplot for top 100 most frequently mutated genes 

oncoplot(maf = lamloeso, top = 125, fontSize = 6, genesToIgnore = genestoignore, sampleOrder = 

lamloeso@variants.per.sample$Tumor_Sample_Barcode) 

 

oncoplot(maf = lamloeso, top = 33, fontSize = 8, genesToIgnore = genestoignore, sampleOrder = 

lamloeso@variants.per.sample$Tumor_Sample_Barcode) 

 

if (!requireNamespace("BiocManager", quietly = TRUE)) 

  install.packages("BiocManager") 

 

BiocManager::install("BSgenome.Hsapiens.UCSC.hg19") 

 

library(BSgenome.Hsapiens.UCSC.hg19, quietly = TRUE) 

laml.tnm = trinucleotideMatrix(maf = lamloeso, prefix = 'chr', add = TRUE, ref_genome = 

"BSgenome.Hsapiens.UCSC.hg19") 

plotApobecDiff(tnm = laml.tnm, maf = lamloeso) 

library('NMF') 

laml.sign = extractSignatures(mat = laml.tnm, nTry = 6, plotBestFitRes = FALSE) 

 

plotApobecDiff(tnm = laml.tnm, maf = lamloeso, pVal = 0.2) 

plotSignatures(laml.sign, title_size = 1.4) 

 

#Mutation types 
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laml.titv = titv(maf = lamloeso, plot = FALSE, useSyn = TRUE) 

#plot titv summary 

plotTiTv(res = laml.titv) 

 

laml.sig = oncodrive(maf = lamloeso, AACol = 'Protein_Change', minMut = 5, pvalMethod = 

'combined') 

 

plotOncodrive(res = laml.sig, fdrCutOff = 0.1, useFraction = TRUE) 

 

write.table(laml.sig, "oesophageal_oncodrive.txt") 

 

lollipopPlot(maf = lamloeso, gene = 'FAT1', AACol = 'Protein_Change', showMutationRate = TRUE, 

showDomainLabel = FALSE) 

 

lollipopPlot(maf = lamloeso, gene = 'NOTCH1', AACol = 'Protein_Change', showMutationRate = 

TRUE, showDomainLabel = FALSE) 

 

lollipopPlot(maf = lamloeso, gene = 'NOTCH2', AACol = 'Protein_Change', showMutationRate = 

TRUE, showDomainLabel = FALSE) 

 

lollipopPlot(maf = lamloeso, gene = 'TP53', AACol = 'Protein_Change', showMutationRate = TRUE, 

showDomainLabel = FALSE) 

 

 

7.5.5 Lung SCC 
library(maftools) 

 

devtools::install_github(repo = "PoisonAlien/TCGAmutations") 

library(TCGAmutations) 

TCGAmutations::tcga_load(study = "SKCM") 

 

#read in file 

lamllung = read.maf(maf = "LUNG_SCC_FINAL_v91_gdc_extra.txt") 
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#plot summary 

plotmafSummary(maf = lamllung, rmOutlier = TRUE, addStat = 'median', dashboard = TRUE, 

titvRaw = FALSE) 

 

#read in genes to ignore 

genestoignore <- c(readLines("false_pos_genes_20190410.txt")) 

 

slotNames(lamllung) 

View (lamllung@variants.per.sample) 

#oncoplot for top 100 most frequently mutated genes 

oncoplot(maf = lamllung, top = 128, fontSize = 6, genesToIgnore = genestoignore, sampleOrder = 

lamllung@variants.per.sample$Tumor_Sample_Barcode) 

 

oncoplot(maf = lamllung, top = 35, fontSize = 8, genesToIgnore = genestoignore, sampleOrder = 

lamllung@variants.per.sample$Tumor_Sample_Barcode) 

 

if (!requireNamespace("BiocManager", quietly = TRUE)) 

  install.packages("BiocManager") 

 

BiocManager::install("BSgenome.Hsapiens.UCSC.hg19") 

 

library(BSgenome.Hsapiens.UCSC.hg19, quietly = TRUE) 

laml.tnm = trinucleotideMatrix(maf = lamllung, prefix = 'chr', add = TRUE, ref_genome = 

"BSgenome.Hsapiens.UCSC.hg19") 

plotApobecDiff(tnm = laml.tnm, maf = lamllung) 

library('NMF') 

laml.sign = extractSignatures(mat = laml.tnm, nTry = 6, plotBestFitRes = FALSE) 

 

plotApobecDiff(tnm = laml.tnm, maf = lamllung, pVal = 0.2) 

plotSignatures(laml.sign, title_size = 1.4) 
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#Mutation types 

laml.titv = titv(maf = lamllung, plot = FALSE, useSyn = TRUE) 

#plot titv summary 

plotTiTv(res = laml.titv) 

 

 

 

laml.sig = oncodrive(maf = lamllung, AACol = 'Protein_Change', minMut = 5, pvalMethod = 

'poisson') 

 

plotOncodrive(res = laml.sig, fdrCutOff = 0.1, useFraction = TRUE) 

write.table(laml.sig, "lung_oncodrive.txt") 

 

 

lollipopPlot(maf = lamllung, gene = 'FAT1', AACol = 'Protein_Change', showMutationRate = TRUE, 

showDomainLabel = FALSE) 

 

lollipopPlot(maf = lamllung, gene = 'HRAS', AACol = 'Protein_Change', showMutationRate = TRUE, 

showDomainLabel = FALSE) 

 

lollipopPlot(maf = lamllung, gene = 'TP53', AACol = 'Protein_Change', showMutationRate = TRUE, 

showDomainLabel = FALSE) 

 

7.5.6 Cervical SCC 
library(maftools) 

 

devtools::install_github(repo = "PoisonAlien/TCGAmutations") 

library(TCGAmutations) 

TCGAmutations::tcga_load(study = "SKCM") 

 

#read in file 

lamlcervix = read.maf(maf = "CERVIX_SCC_FINAL_v91_gdc_extra.txt") 
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#plot summary 

plotmafSummary(maf = lamlcervix, rmOutlier = TRUE, addStat = 'median', dashboard = TRUE, 

titvRaw = FALSE) 

 

#read in genes to ignore 

genestoignore <- c(readLines("false_pos_genes_20190410.txt")) 

 

slotNames(lamlcervix) 

View (lamlcervix@variants.per.sample) 

#oncoplot for top 100 most frequently mutated genes 

oncoplot(maf = lamlcervix, top = 122, fontSize = 6, genesToIgnore = genestoignore, sampleOrder = 

lamlcervix@variants.per.sample$Tumor_Sample_Barcode) 

 

oncoplot(maf = lamlcervix, top = 36, fontSize = 8, genesToIgnore = genestoignore, sampleOrder = 

lamlcervix@variants.per.sample$Tumor_Sample_Barcode) 

 

if (!requireNamespace("BiocManager", quietly = TRUE)) 

  install.packages("BiocManager") 

 

BiocManager::install("BSgenome.Hsapiens.UCSC.hg19") 

 

library(BSgenome.Hsapiens.UCSC.hg19, quietly = TRUE) 

laml.tnm = trinucleotideMatrix(maf = lamlcervix, prefix = 'chr', add = TRUE, ref_genome = 

"BSgenome.Hsapiens.UCSC.hg19") 

plotApobecDiff(tnm = laml.tnm, maf = lamlcervix) 

library('NMF') 

laml.sign = extractSignatures(mat = laml.tnm, nTry = 6, plotBestFitRes = FALSE) 

 

plotApobecDiff(tnm = laml.tnm, maf = laml, pVal = 0.2) 

plotSignatures(laml.sign, title_size = 1.4) 
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#Mutation types 

laml.titv = titv(maf = lamlcervix, plot = FALSE, useSyn = TRUE) 

#plot titv summary 

plotTiTv(res = laml.titv) 

 

 

laml.sig = oncodrive(maf = lamlcervix, AACol = 'Protein_Change', minMut = 5, pvalMethod = 

'combined') 

 

plotOncodrive(res = laml.sig, fdrCutOff = 0.1, useFraction = TRUE) 

write.table(laml.sig, "cervix_oncodrive") 

 

 

lollipopPlot(maf = lamlcervix, gene = 'TP53', AACol = 'Protein_Change', showMutationRate = 

TRUE, showDomainLabel = FALSE) 

 

7.5.7 Basal Cell Carcinoma 
library(maftools) 

 

devtools::install_github(repo = "PoisonAlien/TCGAmutations") 

library(TCGAmutations) 

TCGAmutations::tcga_load(study = "SKCM") 

 

#read in file 

lamlbcc = read.maf(maf = "26950094_bcc_Output.tsv") 

 

#plot summary 

plotmafSummary(maf = lamlbcc, rmOutlier = TRUE, addStat = 'median', dashboard = TRUE, 

titvRaw = FALSE) 

 

#read in genes to ignore 

genestoignore <- c(readLines("false_pos_genes_20190410.txt")) 
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#oncoplot for top 100 most frequently mutated genes 

oncoplot(maf = lamlbcc, top = 130, fontSize = 0.5, genesToIgnore = genestoignore, sampleOrder = 

lamlbcc@variants.per.sample$Tumor_Sample_Barcode) 

 

oncoplot(maf = lamlbcc, top = 33, genesToIgnore = genestoignore, sampleOrder = 

lamlbcc@variants.per.sample$Tumor_Sample_Barcode) 

 

#Mutation types 

laml.titv = titv(maf = lamlbcc, plot = FALSE, useSyn = TRUE) 

#plot titv summary 

plotTiTv(res = laml.titv) 

 

laml.sig = oncodrive(maf = lamlbcc, AACol = 'Protein_Change', minMut = 5, pvalMethod = 

'combined') 

 

plotOncodrive(res = laml.sig, fdrCutOff = 0.1, useFraction = TRUE) 

 

write.table(laml.sig, "bcc_oncodrive.txt") 

 

 

 

library(maftools) 

 

devtools::install_github(repo = "PoisonAlien/TCGAmutations") 

library(TCGAmutations) 

TCGAmutations::tcga_load(study = "SKCM") 

 

 

7.5.8 Melanoma 
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#read in file 

lamloeso = read.maf(maf = "melanoma_GDC_Cosmicv91Outputoct2020.tsv") 

lamlmela = read.maf(maf = "final_melanoma_gdc_cosmic_2021.tsv") 

lamlmela = read.maf(maf = "melanoma_final_may2021_new.tsv") 

lamlmela = read.maf(maf = "melanoma_GDC_COSMIC_EXTRA_JUN2021_final5.tsv") 

 

oncoplot(maf = lamlmela, genes = c("TP53","CDKN2A","PPP6C"), sampleOrder = 

lamlmela@variants.per.sample$Tumor_Sample_Barcode) 

 

lollipopPlot(maf = lamlmela, gene='C3', AACol = 'Protein_Change', showMutationRate = TRUE, 

showDomainLabel = FALSE) 

 

 

lollipopPlot(maf = lamlmela, gene = 'CDKN2A', AACol = 'Protein_Change', showMutationRate = 

TRUE, showDomainLabel = FALSE) 

 

lollipopPlot(maf = lamlmela, gene = 'ERBB2', AACol = 'Protein_Change', showMutationRate = 

TRUE, showDomainLabel = FALSE) 

 

lollipopPlot(maf = lamlmela, gene = 'EYA1', AACol = 'Protein_Change', showMutationRate = TRUE, 

showDomainLabel = FALSE) 

 

lollipopPlot(maf = lamlmela, gene = 'PPP6C', AACol = 'Protein_Change', showMutationRate = 

TRUE, showDomainLabel = FALSE) 

 

lollipopPlot(maf = lamlmela, gene = 'HRAS', AACol = 'Protein_Change', showMutationRate = TRUE, 

showDomainLabel = FALSE) 

 

lollipopPlot(maf = lamlmela, gene = 'TP53', AACol = 'Protein_Change', showMutationRate = TRUE, 

showDomainLabel = FALSE) 

 

lollipopPlot(maf = lamlmela, gene = 'NOTCH2', AACol = 'Protein_Change', showMutationRate = 

TRUE, showDomainLabel = FALSE) 

 



 

289 
 

 

oncoplot(maf = lamlmela, genes = 

c("CDKN2A","TP53","ERBB2","EYA1","PPP6C","NOTCH2","C3","HRAS"), sampleOrder = 

lamlmela@variants.per.sample$Tumor_Sample_Barcode) 

 

oncoplot(maf = lamlmela, pathways = "auto", gene_mar = 8, fontSize = 0.6) 

 

 

 

OncogenicPathways(maf = lamlmela) 

PlotOncogenicPathways(maf = lamlmela, pathways = "RTK-RAS") 

PlotOncogenicPathways(maf = lamlmela, pathways = "NOTCH") 

PlotOncogenicPathways(maf = lamlmela, pathways = "WNT") 

 

7.6 Script for producing mutation signatures 

7.6.1 Single base substitution mutation signatures produced using Maftools in R version 

3.5.1 
 

BiocManager::install("BSgenome.Hsapiens.UCSC.hg19") 

library(BSgenome.Hsapiens.UCSC.hg19, quietly = TRUE) 

laml.tnm = trinucleotideMatrix(maf = lamlcervix, prefix = 'chr', add = TRUE, ref_genome = 

"BSgenome.Hsapiens.UCSC.hg19") 

plotApobecDiff(tnm = laml.tnm, maf = lamlcervix) 

library('NMF') 

laml.sign = estimateSignatures(mat = laml.tnm, nTry = 6) 

plotCophenetic(res = laml.sign) 

laml.sig = extractSignatures(mat = laml.tnm, n = 3) 

 

laml.og30.cosm = compareSignatures(nmfRes = laml.sig, sig_db = "legacy") 

 

laml.v3.cosm = compareSignatures(nmfRes = laml.sig, sig_db = "SBS") 

 

maftools::plotSignatures(nmfRes = laml.sig, title_size = 0.8, sig_db = "SBS") 
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install.packages('pheatmap') 

library('pheatmap') 

pheatmap::pheatmap(mat = laml.og30.cosm$cosine_similarities, cluster_rows = FALSE, main = 

"cosine similarity against validated signatures") 

 

laml.se = signatureEnrichment(maf = lamlcervix, sig_res = laml.sig) 

 

 

plotEnrichmentResults(enrich_res = laml.se, pVal = 0.05) 

 

library(BSgenome.Hsapiens.UCSC.hg19, quietly = TRUE) 

laml.tnm = trinucleotideMatrix(maf = lamllung, prefix = 'chr', add = TRUE, ref_genome = 

"BSgenome.Hsapiens.UCSC.hg19") 

plotApobecDiff(tnm = laml.tnm, maf = lamllung) 

library('NMF') 

laml.sign = estimateSignatures(mat = laml.tnm, nTry = 6) 

plotCophenetic(res = laml.sign) 

laml.sig = extractSignatures(mat = laml.tnm, n = 5) 

 

laml.og30.cosm = compareSignatures(nmfRes = laml.sig, sig_db = "legacy") 

 

laml.v3.cosm = compareSignatures(nmfRes = laml.sig, sig_db = "SBS") 

 

maftools::plotSignatures(nmfRes = laml.sig, title_size = 0.8, sig_db = "SBS") 

 

install.packages('pheatmap') 

library('pheatmap') 

pheatmap::pheatmap(mat = laml.og30.cosm$cosine_similarities, cluster_rows = FALSE, main = 

"cosine similarity against validated signatures") 

 

laml.se = signatureEnrichment(maf = lamllung, sig_res = laml.sig) 
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plotEnrichmentResults(enrich_res = laml.se, pVal = 0.05) 

 

library(BSgenome.Hsapiens.UCSC.hg19, quietly = TRUE) 

laml.tnm = trinucleotideMatrix(maf = lamlorophar, prefix = 'chr', add = TRUE, ref_genome = 

"BSgenome.Hsapiens.UCSC.hg19") 

plotApobecDiff(tnm = laml.tnm, maf = lamlorophar) 

library('NMF') 

laml.sign = estimateSignatures(mat = laml.tnm, nTry = 6) 

plotCophenetic(res = laml.sign) 

laml.sig = extractSignatures(mat = laml.tnm, n = 4) 

 

laml.og30.cosm = compareSignatures(nmfRes = laml.sig, sig_db = "legacy") 

 

laml.v3.cosm = compareSignatures(nmfRes = laml.sig, sig_db = "SBS") 

 

samplesforsignatures <- laml.sig$contributions 

write.csv(samplesforsignatures, file = "oropharyngeal_signature_samples.csv") 

 

 

maftools::plotSignatures(nmfRes = laml.sig, title_size = 0.8, sig_db = "SBS") 

 

install.packages('pheatmap') 

library('pheatmap') 

pheatmap::pheatmap(mat = laml.og30.cosm$cosine_similarities, cluster_rows = FALSE, main = 

"cosine similarity against validated signatures") 

 

laml.se = signatureEnrichment(maf = lamlorophar, sig_res = laml.sig) 

 

 

plotEnrichmentResults(enrich_res = laml.se, pVal = 0.05) 
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library(BSgenome.Hsapiens.UCSC.hg19, quietly = TRUE) 

laml.tnm = trinucleotideMatrix(maf = lamloeso, prefix = 'chr', add = TRUE, ref_genome = 

"BSgenome.Hsapiens.UCSC.hg19") 

plotApobecDiff(tnm = laml.tnm, maf = lamloeso) 

library('NMF') 

laml.sign = estimateSignatures(mat = laml.tnm, nTry = 6) 

plotCophenetic(res = laml.sign) 

laml.sig = extractSignatures(mat = laml.tnm, n = 3) 

 

laml.og30.cosm = compareSignatures(nmfRes = laml.sig, sig_db = "legacy") 

 

laml.v3.cosm = compareSignatures(nmfRes = laml.sig, sig_db = "SBS") 

 

maftools::plotSignatures(nmfRes = laml.sig, title_size = 0.8, sig_db = "SBS") 

 

install.packages('pheatmap') 

library('pheatmap') 

pheatmap::pheatmap(mat = laml.og30.cosm$cosine_similarities, cluster_rows = FALSE, main = 

"cosine similarity against validated signatures") 

 

laml.se = signatureEnrichment(maf = lamloeso, sig_res = laml.sig) 

 

 

plotEnrichmentResults(enrich_res = laml.se, pVal = 0.05) 

 

library(BSgenome.Hsapiens.UCSC.hg19, quietly = TRUE) 

laml.tnm = trinucleotideMatrix(maf = lamlbcc, prefix = 'chr', add = TRUE, ref_genome = 

"BSgenome.Hsapiens.UCSC.hg19") 

plotApobecDiff(tnm = laml.tnm, maf = lamlbcc) 

library('NMF') 

laml.sign = estimateSignatures(mat = laml.tnm, nTry = 6) 



 

293 
 

plotCophenetic(res = laml.sign) 

laml.sig = extractSignatures(mat = laml.tnm, n = 3) 

 

laml.og30.cosm = compareSignatures(nmfRes = laml.sig, sig_db = "legacy") 

 

laml.v3.cosm = compareSignatures(nmfRes = laml.sig, sig_db = "SBS") 

 

maftools::plotSignatures(nmfRes = laml.sig, title_size = 0.8, sig_db = "SBS") 

 

install.packages('pheatmap') 

library('pheatmap') 

pheatmap::pheatmap(mat = laml.og30.cosm$cosine_similarities, cluster_rows = FALSE, main = 

"cosine similarity against validated signatures") 

 

laml.se = signatureEnrichment(maf = lamlbcc, sig_res = laml.sig) 

 

 

plotEnrichmentResults(enrich_res = laml.se, pVal = 0.05) 

 

library(BSgenome.Hsapiens.UCSC.hg19, quietly = TRUE) 

laml.tnm = trinucleotideMatrix(maf = lamlskin, prefix = 'chr', add = TRUE, ref_genome = 

"BSgenome.Hsapiens.UCSC.hg19") 

plotApobecDiff(tnm = laml.tnm, maf = lamlskin) 

library('NMF') 

laml.sign = estimateSignatures(mat = laml.tnm, nTry = 6) 

plotCophenetic(res = laml.sign) 

laml.sig = extractSignatures(mat = laml.tnm, n = 3) 

 

laml.og30.cosm = compareSignatures(nmfRes = laml.sig, sig_db = "legacy") 

 

laml.v3.cosm = compareSignatures(nmfRes = laml.sig, sig_db = "SBS") 
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maftools::plotSignatures(nmfRes = laml.sig, title_size = 0.8, sig_db = "SBS") 

 

install.packages('pheatmap') 

library('pheatmap') 

pheatmap::pheatmap(mat = laml.og30.cosm$cosine_similarities, cluster_rows = FALSE, main = 

"cosine similarity against validated signatures") 

 

laml.se = signatureEnrichment(maf = lamlbcc, sig_res = laml.sig) 

 

 

plotEnrichmentResults(enrich_res = laml.se, pVal = 0.05) 

 

7.6.2 Double base substitution mutation signatures using Sigminer in R version 3.5.1  
 

install.packages("sigminer", dependencies = TRUE) 

library("sigminer") 

library(maftools) 

laml <- read_maf(maf='CERVIX_SCC_FINAL_v91_gdc_extra.txt') 

head(laml@data) 

slotNames(laml) 

 

mt_tally_DBS <- sig_tally( 

  laml, 

  ref_genome = "BSgenome.Hsapiens.UCSC.hg19", 

  useSyn = TRUE, 

  mode = "DBS", 

  add_trans_bias = TRUE 

) 

 

 

str(mt_tally_DBS$all_matrices, max.level = 1) 
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library('NMF') 

mt_est <- sig_estimate(mt_tally_DBS$all_matrices$DBS_78, 

                       range = 2:5, 

                       nrun = 2, 

                       use_random = TRUE, 

                       cores = 4, 

                       pConstant = 1e-13, 

                       verbose = TRUE 

) 

 

 

show_sig_number_survey(mt_est$survey, right_y = NULL) 

 

 

 

mt_sig<- sig_extract(mt_tally_DBS$all_matrices$DBS_78, 

                     n_sig = 3, 

                     nrun = 10, 

                     cores = 4, 

                     pConstant = 1e-13 

 

) 

 

sim_v3 <- get_sig_similarity(mt_sig, sig_db = "DBS") 

 

 

 

show_sig_profile(mt_sig, mode = "DBS", paint_axis_text = FALSE, x_label_angle = 90) 

 

show_sig_profile(mt_sig, mode = "DBS", style = "cosmic", x_label_angle = 90) 
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show_cosmic_sig_profile(sig_index = c(11, 2, 4), style = "cosmic", sig_db = "DBS") 

#>  

 

 

 

laml <- read_maf(maf='LUNG_SCC_FINAL_v91_gdc_extra.txt') 

head(laml@data) 

slotNames(laml) 

 

mt_tally_DBS <- sig_tally( 

  laml, 

  ref_genome = "BSgenome.Hsapiens.UCSC.hg19", 

  useSyn = TRUE, 

  mode = "DBS", 

  add_trans_bias = TRUE 

) 

 

 

str(mt_tally_DBS$all_matrices, max.level = 1) 

 

library('NMF') 

mt_est <- sig_estimate(mt_tally_DBS$all_matrices$DBS_78, 

                       range = 2:5, 

                       nrun = 2, 

                       use_random = TRUE, 

                       cores = 4, 

                       pConstant = 1e-13, 

                       verbose = TRUE 

) 
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show_sig_number_survey(mt_est$survey, right_y = NULL) 

 

 

 

mt_sig<- sig_extract(mt_tally_DBS$all_matrices$DBS_78, 

                     n_sig = 3, 

                     nrun = 10, 

                     cores = 4, 

                     pConstant = 1e-13 

                      

) 

 

sim_v3 <- get_sig_similarity(mt_sig, sig_db = "DBS") 

 

 

 

show_sig_profile(mt_sig, mode = "DBS", paint_axis_text = FALSE, x_label_angle = 90) 

 

show_sig_profile(mt_sig, mode = "DBS", style = "cosmic", x_label_angle = 90) 

 

 

show_cosmic_sig_profile(sig_index = c(2, 6, 1), style = "cosmic", sig_db = "DBS") 

#>  

 

 

 

laml <- read_maf(maf='OROPHARYNGEAL_SCC_FINAL_v91_gdc_extra_sept.txt') 

head(laml@data) 

slotNames(laml) 
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mt_tally_DBS <- sig_tally( 

  laml, 

  ref_genome = "BSgenome.Hsapiens.UCSC.hg19", 

  useSyn = TRUE, 

  mode = "DBS", 

  add_trans_bias = TRUE 

) 

 

 

str(mt_tally_DBS$all_matrices, max.level = 1) 

 

library('NMF') 

mt_est <- sig_estimate(mt_tally_DBS$all_matrices$DBS_78, 

                       range = 2:5, 

                       nrun = 2, 

                       use_random = TRUE, 

                       cores = 4, 

                       pConstant = 1e-13, 

                       verbose = TRUE 

) 

 

 

show_sig_number_survey(mt_est$survey, right_y = NULL) 

 

 

 

mt_sig<- sig_extract(mt_tally_DBS$all_matrices$DBS_78, 

                     n_sig = 3, 

                     nrun = 10, 

                     cores = 4, 

                     pConstant = 1e-13 
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) 

 

sim_v3 <- get_sig_similarity(mt_sig, sig_db = "DBS") 

 

 

 

show_sig_profile(mt_sig, mode = "DBS", paint_axis_text = FALSE, x_label_angle = 90) 

 

show_sig_profile(mt_sig, mode = "DBS", style = "cosmic", x_label_angle = 90) 

 

 

show_cosmic_sig_profile(sig_index = c(1, 2, 4), style = "cosmic", sig_db = "DBS") 

#>  

 

 

laml <- read_maf(maf='oesophagus_GDC_Cosmicv91_extra_sept2020.txt') 

head(laml@data) 

slotNames(laml) 

 

mt_tally_DBS <- sig_tally( 

  laml, 

  ref_genome = "BSgenome.Hsapiens.UCSC.hg19", 

  useSyn = TRUE, 

  mode = "DBS", 

  add_trans_bias = TRUE 

) 

 

 

str(mt_tally_DBS$all_matrices, max.level = 1) 
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library('NMF') 

mt_est <- sig_estimate(mt_tally_DBS$all_matrices$DBS_78, 

                       range = 2:5, 

                       nrun = 2, 

                       use_random = TRUE, 

                       cores = 4, 

                       pConstant = 1e-13, 

                       verbose = TRUE 

) 

 

 

show_sig_number_survey(mt_est$survey, right_y = NULL) 

 

 

 

mt_sig<- sig_extract(mt_tally_DBS$all_matrices$DBS_78, 

                     n_sig = 3, 

                     nrun = 10, 

                     cores = 4, 

                     pConstant = 1e-13 

                      

) 

 

sim_v3 <- get_sig_similarity(mt_sig, sig_db = "DBS") 

 

 

 

show_sig_profile(mt_sig, mode = "DBS", paint_axis_text = FALSE, x_label_angle = 90) 

 

show_sig_profile(mt_sig, mode = "DBS", style = "cosmic", x_label_angle = 90) 
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show_cosmic_sig_profile(sig_index = c(11, 4, 2), style = "cosmic", sig_db = "DBS") 

#>  

 

 

laml <- read_maf(maf='26950094_bcc_Output.tsv') 

head(laml@data) 

slotNames(laml) 

 

mt_tally_DBS <- sig_tally( 

  laml, 

  ref_genome = "BSgenome.Hsapiens.UCSC.hg19", 

  useSyn = TRUE, 

  mode = "DBS", 

  add_trans_bias = TRUE 

) 

 

 

str(mt_tally_DBS$all_matrices, max.level = 1) 

 

library('NMF') 

mt_est <- sig_estimate(mt_tally_DBS$all_matrices$DBS_78, 

                       range = 2:5, 

                       nrun = 2, 

                       use_random = TRUE, 

                       cores = 4, 

                       pConstant = 1e-13, 

                       verbose = TRUE 

) 
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show_sig_number_survey(mt_est$survey, right_y = NULL) 

 

 

 

mt_sig<- sig_extract(mt_tally_DBS$all_matrices$DBS_78, 

                     n_sig = 4, 

                     nrun = 10, 

                     cores = 4, 

                     pConstant = 1e-13 

                      

) 

 

sim_v3 <- get_sig_similarity(mt_sig, sig_db = "DBS") 

 

 

 

show_sig_profile(mt_sig, mode = "DBS", paint_axis_text = FALSE, x_label_angle = 90) 

 

show_sig_profile(mt_sig, mode = "DBS", style = "cosmic", x_label_angle = 90) 

 

 

show_cosmic_sig_profile(sig_index = c(1, 6), style = "cosmic", sig_db = "DBS") 

#>  

 

 

 

 

laml <- read_maf(maf='skin_final_oct2020.tsv') 

head(laml@data) 

slotNames(laml) 
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mt_tally_DBS <- sig_tally( 

  laml, 

  ref_genome = "BSgenome.Hsapiens.UCSC.hg19", 

  useSyn = TRUE, 

  mode = "DBS", 

  add_trans_bias = TRUE 

) 

 

 

str(mt_tally_DBS$all_matrices, max.level = 1) 

 

library('NMF') 

mt_est <- sig_estimate(mt_tally_DBS$all_matrices$DBS_78, 

                       range = 2:5, 

                       nrun = 2, 

                       use_random = TRUE, 

                       cores = 4, 

                       pConstant = 1e-13, 

                       verbose = TRUE 

) 

 

 

show_sig_number_survey(mt_est$survey, right_y = NULL) 

 

 

 

mt_sig<- sig_extract(mt_tally_DBS$all_matrices$DBS_78, 

                     n_sig = 2, 

                     nrun = 10, 

                     cores = 4, 

                     pConstant = 1e-13 
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) 

 

sim_v3 <- get_sig_similarity(mt_sig, sig_db = "DBS") 

 

 

 

show_sig_profile(mt_sig, mode = "DBS", paint_axis_text = FALSE, x_label_angle = 90) 

 

show_sig_profile(mt_sig, mode = "DBS", style = "cosmic", x_label_angle = 90) 

 

 

show_cosmic_sig_profile(sig_index = c(1, 6), style = "cosmic", sig_db = "DBS") 

#>  

 

 

 

laml <- read_maf(maf='skin_final_april2021.tsv') 

head(laml@data) 

slotNames(laml) 

 

mt_tally_DBS <- sig_tally( 

  laml, 

  ref_genome = "BSgenome.Hsapiens.UCSC.hg19", 

  useSyn = TRUE, 

  mode = "DBS", 

  add_trans_bias = TRUE 

) 

 

 

str(mt_tally_DBS$all_matrices, max.level = 1) 
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library('NMF') 

mt_est <- sig_estimate(mt_tally_DBS$all_matrices$DBS_78, 

                       range = 2:5, 

                       nrun = 2, 

                       use_random = TRUE, 

                       cores = 4, 

                       pConstant = 1e-13, 

                       verbose = TRUE 

) 

 

 

show_sig_number_survey(mt_est$survey, right_y = NULL) 

 

 

 

mt_sig<- sig_extract(mt_tally_DBS$all_matrices$DBS_78, 

                     n_sig = 2, 

                     nrun = 10, 

                     cores = 4, 

                     pConstant = 1e-13 

                      

) 

 

sim_v3 <- get_sig_similarity(mt_sig, sig_db = "DBS") 

 

 

 

show_sig_profile(mt_sig, mode = "DBS", paint_axis_text = FALSE, x_label_angle = 90) 

 

show_sig_profile(mt_sig, mode = "DBS", style = "cosmic", x_label_angle = 90) 
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show_cosmic_sig_profile(sig_index = c(1, 6), style = "cosmic", sig_db = "DBS") 

#>  

7.7 MutSig2CV 
MutSig2CV installation 

download from here:  

https://www.google.com/url?q=https%3A%2F%2Fsoftware.broadinstitute.org%2Fcancer%2Fcga%

2Fsites%2Fdefault%2Ffiles%2Fdata%2Ftools%2Fmutsig%2FMutSig2CV.tar.gz&sa=D&sntz=1&usg=

AFQjCNHGsvWELJJd5q_8O7r75HK1zFregA 

Extract the .tar.gz to Downloads (10.1GB directory) 

TO INSTALL: 

At this time, MutSig is available for 64 bit Linux systems only.  MutSig 

requires the MATLAB R2013a runtime to be installed. This runtime environment  

should be universally compatible with any recent Linux distribution; we have  

successfully tested it on on 64 bit CentOS 5, RHEL 6, and Debian 8.2.  

 

Users must download and install the runtime environment from here:  

  

http://www.mathworks.com/supportfiles/MCR_Runtime/R2013a/MCR_R2013a_glnxa64_installer

.zip 

Installation instructions can be found here:  

http://www.mathworks.com/help/compiler/install-the-matlab-runtime.html 

matlab runtime installation notes: 

$cd Downsload/MCR_2013a 

$sudo ./install 

$sudo gedit /etc/ld.so.conf.d/randomLibs.conf 
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Copy this into the randomLibs.conf file that opens in gedit: 

/usr/local/MATLAB/MATLAB_Compiler_Runtime/v81/runtime/glnxa64:/usr/local/MATLAB/MATL

AB_Compiler_Runtime/v81/bin/glnxa64:/usr/local/MATLAB/MATLAB_Compiler_Runtime/v81/sys

/os/glnxa64:/usr/local/MATLAB/MATLAB_Compiler_Runtime/v81/sys/java/jre/glnxa64/jre/lib/am

d64/native_threads:/usr/local/MATLAB/MATLAB_Compiler_Runtime/v81/sys/java/jre/glnxa64/jr

e/lib/amd64/server:/usr/local/MATLAB/MATLAB_Compiler_Runtime/v81/sys/java/jre/glnxa64/jr

e/lib/amd64    Next, set the XAPPLRESDIR environment variable to the following value:  

/usr/local/MATLAB/MATLAB_Compiler_Runtime/v81/X11/app-defaults 

 

Save the gedit file. 

 

$sudo ldconfig 

$export 

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/MATLAB/MATLAB_Compiler_Runtime/v81/run

time/glnxa64:/usr/local/MATLAB/MATLAB_Compiler_Runtime/v81/bin/glnxa64:/usr/local/MATL

AB/MATLAB_Compiler_Runtime/v81/sys/os/glnxa64:/usr/local/MATLAB/MATLAB_Compiler_Runt

ime/v81/sys/java/jre/glnxa64/jre/lib/amd64/native_threads:/usr/local/MATLAB/MATLAB_Compil

er_Runtime/v81/sys/java/jre/glnxa64/jre/lib/amd64/server:/usr/local/MATLAB/MATLAB_Compil

er_Runtime/v81/sys/java/jre/glnxa64/jre/lib/amd64 

$export XAPPLRESDIR=/usr/local/MATLAB/MATLAB_Compiler_Runtime/v81/X11/app-defaults  

Once the runtime is successfully installed, you must add it to your 

LD_LIBRARY_PATH.  You will likely want to add the following lines to your 

.bashrc/.cshrc, so that the MATLAB runtime is always on your path. 

For a bash shell: 

$sudo nano ~/.bashrc 

paste in these lines into ./bashrc and save file. 

mcr_root=/usr/local/MATLAB/MATLAB_Compiler_Runtime/v81 
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export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$mcr_root/bin/glnxa64/ 

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$mcr_root/sys/java/jre/glnxa64/jre/lib/amd64 

export 

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$mcr_root/sys/java/jre/glnxa64/jre/lib/amd64/server 

export 

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$mcr_root/sys/java/jre/glnxa64/jre/lib/amd64/native_th

reads 

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$mcr_root/sys/os/glnxa64 

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$mcr_root/bin/glnxa64 

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$mcr_root/runtime/glnxa64 

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$mcr_root/lib 

log out of ubuntu and log back in. 

If all is well, running test/MCR_test from the mutsig2cv root directory should 

output the runtime installation path.  If you receive the following error: 

test/MCR_test: error while loading shared libraries: libmwlaunchermain.so: 

cannot open shared object file: No such file or directory 

you have likely not updated your LD_LIBRARY_PATH correctly. 

 

###error here: 

mjrz@mjrz-Vig800S:~/Downloads/mutsig2cv$ test/MCR_test 

bash: test/MCR_test: No such file or directory 

####error stop 

Attempted to run MutSig2CV: 

move the following files to the /home/mjrz/Downloads/mutsig2cv directory: 

LUSC.coverage.txt 

LUSC.maf 
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gene.coveriates.txt 

create a new directory: /home/mjrz/Downloads/mutsig2cv/LUSC - this is where the results will be 

saved to. 

mjrz@mjrz-Vig800S:~/Downloads/mutsig2cv$ nohup ./MutSig2CV LUSC.maf ./LUSC/ 

7.8 dNdScv 
dndscv 

cervix <- read.delim("cervixdndscvfinal1sept.txt") 

cervix$chr = gsub("chr","",as.vector(cervix$chr)) 

dndsout = dndscv(cervix) 

sel_cv = dndsout$sel_cv 

write.csv(sel_cv, "2cervix_selcv.csv") 

print(head(sel_cv), digits = 3) 

signif_genes = sel_cv[sel_cv$qglobal_cv<0.1, c("gene_name","qglobal_cv")] 

rownames(signif_genes) = NULL 

print(signif_genes) 

write.table(signif_genes, "cervix_signifgenes.txt") 

 

library(dndscv) 

lung <- read.delim("nospacefinallung1.txt") 

lung$chr = gsub("chr","",as.vector(lung$chr)) 

dndsout = dndscv(lung) 

sel_cv = dndsout$sel_cv 

write.csv(sel_cv, "2lung_selcv.csv") 

print(head(sel_cv), digits = 3) 

signif_genes = sel_cv[sel_cv$qglobal_cv<0.1, c("gene_name","qglobal_cv")] 

rownames(signif_genes) = NULL 

print(signif_genes) 

write.table(signif_genes, "lung_dndscv2.txt") 

 

 

oesophagus <- read.delim("nospaceoesofinal1.txt") 
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oesophagus$chr = gsub("chr","",as.vector(oesophagus$chr)) 

dndsout = dndscv(oesophagus) 

sel_cv = dndsout$sel_cv 

write.csv(sel_cv, "2oeso_selcv.csv") 

print(head(sel_cv), digits = 3) 

signif_genes = sel_cv[sel_cv$qglobal_cv<0.1, c("gene_name","qglobal_cv")] 

rownames(signif_genes) = NULL 

print(signif_genes) 

write.table(signif_genes, "oesophagus_dndscv2.txt") 

 

library("dndscv") 

hnscc <- read.delim("nospaceoropharyngealfinal1.txt") 

hnscc$chr = gsub("chr","",as.vector(hnscc$chr)) 

dndsout = dndscv(hnscc) 

sel_cv = dndsout$sel_cv 

write.csv(sel_cv, "2hnscc_selcv.csv") 

print(head(sel_cv), digits = 3) 

signif_genes = sel_cv[sel_cv$qglobal_cv<0.1, c("gene_name","qglobal_cv")] 

rownames(signif_genes) = NULL 

print(signif_genes) 

write.table(signif_genes, "hnscc_dndscv2.txt") 

 

 

 

library("dndscv") 

skin <- read.delim("FINAL_skin_dndscv.txt") 

skin$chr = gsub("chr","",as.vector(skin$chr)) 

dndsout = dndscv(skin) 

sel_cv = dndsout$sel_cv 

write.csv(sel_cv, "2skin_selcv.csv") 

print(head(sel_cv), digits = 3) 
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signif_genes = sel_cv[sel_cv$qglobal_cv<0.1, c("gene_name","qglobal_cv")] 

rownames(signif_genes) = NULL 

print(signif_genes) 

write.table(signif_genes, "skin_dndscv2.txt") 

 

 

library("dndscv") 

skin <- read.delim("skin_final_april2021_dndscv.txt") 

skin$chr = gsub("chr","",as.vector(skin$chr)) 

dndsout = dndscv(skin) 

sel_cv = dndsout$sel_cv 

write.csv(sel_cv, "2skin_selcv_april2021.csv") 

print(head(sel_cv), digits = 3) 

signif_genes = sel_cv[sel_cv$qglobal_cv<0.1, c("gene_name","qglobal_cv")] 

rownames(signif_genes) = NULL 

print(signif_genes) 

write.table(signif_genes, "skin_dndscv2_april2021.txt") 

 

library("dndscv") 

skin <- read.delim("dndscvfinal_header_melanoma.txt") 

skin$chr = gsub("chr","",as.vector(skin$chr)) 

dndsout = dndscv(skin) 

sel_cv = dndsout$sel_cv 

write.csv(sel_cv, "2skin_selcv_melanoma_may2021.csv") 

print(head(sel_cv), digits = 3) 

signif_genes = sel_cv[sel_cv$qglobal_cv<0.1, c("gene_name","qglobal_cv")] 

rownames(signif_genes) = NULL 

print(signif_genes) 

write.table(signif_genes, "skin_dndscv2_melanoma_may2021.txt") 

 

library("dndscv") 
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skin <- read.delim("dndscvfinal_header_bcc.txt") 

skin$chr = gsub("chr","",as.vector(skin$chr)) 

dndsout = dndscv(skin) 

sel_cv = dndsout$sel_cv 

write.csv(sel_cv, "2skin_selcv_bcc_may2021.csv") 

print(head(sel_cv), digits = 3) 

signif_genes = sel_cv[sel_cv$qglobal_cv<0.1, c("gene_name","qglobal_cv")] 

rownames(signif_genes) = NULL 

print(signif_genes) 

write.table(signif_genes, "skin_dndscv2_bcc_may2021.txt") 

 

library("dndscv") 

skin <- read.delim("dndscv_melanoma_jun21_header.txt") 

skin$chr = gsub("chr","",as.vector(skin$chr)) 

dndsout = dndscv(skin) 

sel_cv = dndsout$sel_cv 

write.csv(sel_cv, "2skin_selcv_melanoma_june2021.csv") 

print(head(sel_cv), digits = 3) 

signif_genes = sel_cv[sel_cv$qglobal_cv<0.1, c("gene_name","qglobal_cv")] 

rownames(signif_genes) = NULL 

print(signif_genes) 

write.table(signif_genes, "skin_dndscv2_melanoma_jun2021.txt") 

 

7.9 Literature Search Terms 
Medline OVID was used to conduct the literature search. 

7.9.1 Skin search terms 
1. carcinoma, squamous cell/ or bowen's disease/  

2. limit 1 to yr="2007 -Current"  

3. Keratosis, Actinic/  

4. limit 3 to yr="2007 -Current"  

5. (squamous adj3 (cancer* or carcinoma* or tumor* or tumour*)).mp.  
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6. limit 5 to yr="2007 -Current"  

7. SCC.mp.  

8. limit 7 to yr="2007 -Current"  

9. 2 or 4 or 6 or 8  

10. skin/ or epidermis/ or hair follicle/  

11. limit 10 to yr="2007 -Current"  

12. cutaneous.mp.  

13. limit 12 to yr="2007 -Current"  

14. (skin or epiderm*).mp. [mp=title, abstract, original title, name of substance word, subject 

heading word, keyword heading word, protocol supplementary concept word, rare disease 

supplementary concept word, unique identifier, synonyms]  

15. limit 14 to yr="2007 -Current"  

16. 11 or 13 or 15  

17. whole genome sequencing/ or whole exome sequencing/  

18. limit 17 to yr="2007 -Current"  

19. Genomics/  

20. limit 19 to yr="2007 -Current"  

21. DNA/  

22. limit 21 to yr="2007 -Current"  

23. (exome* or genom* or DNA or Deoxyribonucleic or mutation* or genetic*).mp. [mp=title, 

abstract, original title, name of substance word, subject heading word, keyword heading word, 

protocol supplementary concept word, rare disease supplementary concept word, unique 

identifier, synonyms]  

24. limit 23 to yr="2007 -Current"  

25. 18 or 20 or 22 or 24  

26. Mutation/  

27. limit 26 to yr="2007 -Current"  

28. Selection, Genetic/  

29. limit 28 to yr="2007 -Current"  

30. Genetic Variation/  

31. limit 30 to yr="2007 -Current"  

32. (target* sequenc* or mutation* or spectrum* or selection* or gen* driver*).mp. [mp=title, 

abstract, original title, name of substance word, subject heading word, keyword heading word, 
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protocol supplementary concept word, rare disease supplementary concept word, unique 

identifier, synonyms]  

33. limit 32 to yr="2007 -Current"  

34. 27 or 29 or 31 or 33 

 

7.9.2 Oropharyngeal SCC search terms 
 

1. carcinoma, squamous cell/  

2. limit 1 to yr="2007 -Current"  

3. (squamous adj3 (cancer* or carcinoma* or tumor* or tumour*)).mp.  

4. limit 3 to yr="2007 -Current"  

5. SCC.mp.  

6. limit 5 to yr="2007 -Current"  

7. 2 or 4 or 6  

8. pharynx/ or hypopharynx/ or nasopharynx/ or oropharynx/  

9. limit 8 to yr="2007 -Current"  

10. (head and neck).mp.  

11. limit 10 to yr="2007 -Current"  

12. oral cavit*.mp.  

13. limit 12 to yr="2007 -Current"  

14. 9 or 11 or 13  

15. whole genome sequencing/ or whole exome sequencing/  

16. limit 15 to yr="2007 -Current"  

17. Genomics/  

18. limit 17 to yr="2007 -Current"  

19. DNA/  

20. limit 19 to yr="2007 -Current"  

21. (exome* or genom* or DNA or Deoxyribonucleic or mutation* or genetic*).mp. [mp=title, 

abstract, original title, name of substance word, subject heading word, floating sub-heading word, 

keyword heading word, protocol supplementary concept word, rare disease supplementary 

concept word, unique identifier, synonyms]  

22. limit 21 to yr="2007 -Current"  

23. 16 or 18 or 20 or 22  
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24. Mutation/  

25. limit 24 to yr="2007 -Current"  

26. Selection, Genetic/  

27. limit 26 to yr="2007 -Current"  

28. Genetic Variation/  

29. limit 28 to yr="2007 -Current"  

30. (target* sequenc* or mutation* or spectrum* or selection* or gen* driver*).mp. [mp=title, 

abstract, original title, name of substance word, subject heading word, floating sub-heading word, 

keyword heading word, protocol supplementary concept word, rare disease supplementary 

concept word, unique identifier, synonyms]  

31. limit 30 to yr="2007 -Current"  

32. 25 or 27 or 29 or 31  

33. 7 and 14 and 23 and 32 

 

7.9.3 Oesophageal SCC search terms 
1. carcinoma, squamous cell/  

2. limit 1 to yr="2007 -Current"  

3. (squamous adj3 (cancer* or carcinoma* or tumor* or tumour*)).mp.  

4. limit 3 to yr="2007 -Current"  

5. SCC.mp.  

6. limit 5 to yr="2007 -Current"  

7. 2 or 4 or 6  

8. Esophagus/  

9. limit 8 to yr="2007 -Current"  

10. Esophageal.mp.  

11. limit 10 to yr="2007 -Current"  

12. oesophag*.mp.  

13. limit 12 to yr="2007 -Current"  

14. 9 or 11 or 13  

15. whole genome sequencing/ or whole exome sequencing/  

16. limit 15 to yr="2007 -Current"  

17. Genomics/  
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18. limit 17 to yr="2007 -Current"  

19. DNA/  

20. limit 19 to yr="2007 -Current"  

21. (exome* or genom* or DNA or Deoxyribonucleic or mutation* or genetic*).mp. [mp=title, 

abstract, original title, name of substance word, subject heading word, floating sub-heading word, 

keyword heading word, protocol supplementary concept word, rare disease supplementary 

concept word, unique identifier, synonyms]  

22. limit 21 to yr="2007 -Current"  

23. 16 or 18 or 20 or 22  

24. Mutation/  

25. limit 24 to yr="2007 -Current"  

26. Selection, Genetic/  

27. limit 26 to yr="2007 -Current"  

28. Genetic Variation/  

29. limit 28 to yr="2007 -Current"  

30. (target* sequenc* or mutation* or spectrum* or selection* or gen* driver*).mp. [mp=title, 

abstract, original title, name of substance word, subject heading word, floating sub-heading word, 

keyword heading word, protocol supplementary concept word, rare disease supplementary 

concept word, unique identifier, synonyms]  

31. limit 30 to yr="2007 -Current"  

32. 25 or 27 or 29 or 31  

33. 7 and 14 and 23 and 32 

 

7.9.4 Lung SCC search terms 
1. carcinoma, squamous cell/  

2. limit 1 to yr="2007 -Current"  

3. (squamous adj3 (cancer* or carcinoma* or tumor* or tumour*)).mp.  

4. limit 3 to yr="2007 -Current"  

5. SCC.mp.  

6. limit 5 to yr="2007 -Current"  

7. 2 or 4 or 6  

8. respiratory system/ or lung/ or bronchi/ or bronchioles/ or pulmonary alveoli/ or respiratory 

mucosa/ or trachea/  

9. limit 8 to yr="2007 -Current"  
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10. Carcinoma, Non-Small-Cell Lung/  

11. limit 10 to yr="2007 -Current"  

12. NSCLC.mp.  

13. limit 12 to yr="2007 -Current"  

14. respiratory.mp.  

15. limit 14 to yr="2007 -Current"  

16. bronchus.mp.  

17. limit 16 to yr="2007 -Current"  

18. bronchial.mp.  

19. limit 18 to yr="2007 -Current"  

20. 9 or 11 or 13 or 15 or 17 or 19  

21. whole genome sequencing/ or whole exome sequencing/  

22. limit 21 to yr="2007 -Current"  

23. Genomics/  

24. limit 23 to yr="2007 -Current"  

25. DNA/  

26. limit 25 to yr="2007 -Current"  

27. (exome* or genom* or DNA or Deoxyribonucleic or mutation* or genetic*).mp. [mp=title, 

abstract, original title, name of substance word, subject heading word, floating sub-heading word, 

keyword heading word, protocol supplementary concept word, rare disease supplementary 

concept word, unique identifier, synonyms]  

28. limit 27 to yr="2007 -Current"  

29. 22 or 24 or 26 or 28  

30. Mutation/  

31. limit 30 to yr="2007 -Current"  

32. Selection, Genetic/  

33. limit 32 to yr="2007 -Current"  

34. Genetic Variation/  

35. limit 34 to yr="2007 -Current"  

36. (target* sequenc* or mutation* or spectrum* or selection* or gen* driver*).mp. [mp=title, 

abstract, original title, name of substance word, subject heading word, floating sub-heading word, 

keyword heading word, protocol supplementary concept word, rare disease supplementary 

concept word, unique identifier, synonyms]  
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37. limit 36 to yr="2007 -Current"  

38. 31 or 33 or 35 or 37  

39. 7 and 20 and 29 and 38 

 

7.9.5 Cervical SCC search terms 
1. carcinoma, squamous cell/  

2. limit 1 to yr="2007 -Current"  

3. (squamous adj3 (cancer* or carcinoma* or tumor* or tumour*)).mp.  

4. limit 3 to yr="2007 -Current"  

5. SCC.mp.  

6. limit 5 to yr="2007 -Current"  

7. 2 or 4 or 6  

8. CERVICAL INTRAEPITHELIAL NEOPLASIA/  

9. limit 8 to yr="2007 -Current"  

10. cervical.mp.  

11. limit 10 to yr="2007 -Current"  

12. cervix.mp.  

13. limit 12 to yr="2007 -Current"  

14. 9 or 11 or 13  

15. whole genome sequencing/ or whole exome sequencing/  

16. limit 15 to yr="2007 -Current"  

17. Genomics/  

18. limit 17 to yr="2007 -Current"  

19. DNA/  

20. limit 19 to yr="2007 -Current"  

21. (exome* or genom* or DNA or Deoxyribonucleic or mutation* or genetic*).mp. [mp=title, 

abstract, original title, name of substance word, subject heading word, floating sub-heading word, 

keyword heading word, protocol supplementary concept word, rare disease supplementary 

concept word, unique identifier, synonyms]  

22. limit 21 to yr="2007 -Current"  

23. 16 or 18 or 20 or 22  

24. Mutation/  
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25. limit 24 to yr="2007 -Current"  

26. Selection, Genetic/  

27. limit 26 to yr="2007 -Current"  

28. Genetic Variation/  

29. limit 28 to yr="2007 -Current"  

30. (target* sequenc* or mutation* or spectrum* or selection* or gen* driver*).mp. [mp=title, 

abstract, original title, name of substance word, subject heading word, floating sub-heading word, 

keyword heading word, protocol supplementary concept word, rare disease supplementary 

concept word, unique identifier, synonyms]  

31. limit 30 to yr="2007 -Current"  

32. 25 or 27 or 29 or 31  

33. 7 and 14 and 23 and 32 

 

7.9.6 Basal cell carcinoma search terms 
1. Carcinoma, Basal Cell/  

2. limit 1 to yr="2007 -Current"  

3. BCC.mp.  

4. limit 3 to yr="2007 -Current"  

5. (basal adj3 (cancer* or carcinoma* or tumor* or tumour*)).mp.  

6. limit 5 to yr="2007 -Current"  

7. rodent ulcer*.mp.  

8. limit 7 to yr="2007 -Current"  

9. 2 or 4 or 6 or 8  

10. skin/ or epidermis/ or hair follicle/  

11. limit 10 to yr="2007 -Current"  

12. cutaneous.mp.  

13. limit 12 to yr="2007 -Current"  

14. (skin or epiderm*).mp. [mp=title, abstract, original title, name of substance word, subject 

heading word, floating sub-heading word, keyword heading word, organism supplementary 

concept word, protocol supplementary concept word, rare disease supplementary concept word, 

unique identifier, synonyms]  

15. limit 14 to yr="2007 -Current"  

16. 11 or 13 or 15  
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17. whole genome sequencing/ or whole exome sequencing/  

18. limit 17 to yr="2007 -Current"  

19. Genomics/  

20. limit 19 to yr="2007 -Current"  

21. DNA/  

22. limit 21 to yr="2007 -Current"  

23. (exome* or genom* or DNA or Deoxyribonucleic or mutation* or genetic*).mp. [mp=title, 

abstract, original title, name of substance word, subject heading word, floating sub-heading word, 

keyword heading word, organism supplementary concept word, protocol supplementary concept 

word, rare disease supplementary concept word, unique identifier, synonyms]  

24. limit 23 to yr="2007 -Current"  

25. 18 or 20 or 22 or 24  

26. Mutation/  

27. limit 26 to yr="2007 -Current"  

28. Selection, Genetic/  

29. limit 28 to yr="2007 -Current"  

30. Genetic Variation/  

31. limit 30 to yr="2007 -Current"  

32. (target* sequenc* or mutation* or spectrum* or selection* or gen* driver*).mp. [mp=title, 

abstract, original title, name of substance word, subject heading word, floating sub-heading word, 

keyword heading word, organism supplementary concept word, protocol supplementary concept 

word, rare disease supplementary concept word, unique identifier, synonyms]  

33. limit 32 to yr="2007 -Current"  

34. 27 or 29 or 31 or 33  

35. 9 and 16 and 25 and 34  

36. basal cell papilloma*.mp.  

37. 35 not 36  

38. limit 37 to (case reports or practice guideline or published erratum or "review")  

39. 37 not 38 

7.9.7 Melanoma search terms 
1. Melanoma/  

2. limit 1 to yr="2007 -Current"  

3. melanocytic neoplasia.mp.  
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4. limit 3 to yr="2007 -Current"  

5. 2 or 4  

6. skin/ or epidermis/ or hair follicle/  

7. limit 6 to yr="2007 -Current"  

8. cutaneous.mp.  

9. limit 8 to yr="2007 -Current"  

10. (skin or epiderm*).mp. [mp=title, abstract, original title, name of substance word, subject 

heading word, floating sub-heading word, keyword heading word, organism supplementary 

concept word, protocol supplementary concept word, rare disease supplementary concept word, 

unique identifier, synonyms]  

11. limit 10 to yr="2007 -Current"  

12. 7 or 9 or 11  

13. whole genome sequencing/ or whole exome sequencing/  

14. limit 13 to yr="2007 -Current"  

15. Genomics/  

16. limit 15 to yr="2007 -Current"  

17. DNA/  

18. limit 17 to yr="2007 -Current"  

19. (exome* or genom* or DNA or Deoxyribonucleic or mutation* or genetic*).mp. [mp=title, 

abstract, original title, name of substance word, subject heading word, floating sub-heading word, 

keyword heading word, organism supplementary concept word, protocol supplementary concept 

word, rare disease supplementary concept word, unique identifier, synonyms]  

20. limit 19 to yr="2007 -Current"  

21. 14 or 16 or 18 or 20  

22. Mutation/  

23. limit 22 to yr="2007 -Current"  

24. Selection, Genetic/  

25. limit 24 to yr="2007 -Current"  

26. Genetic Variation/  

27. limit 26 to yr="2007 -Current"  

28. (target* sequenc* or mutation* or spectrum* or selection* or gen* driver*).mp. [mp=title, 

abstract, original title, name of substance word, subject heading word, floating sub-heading word, 

keyword heading word, organism supplementary concept word, protocol supplementary concept 

word, rare disease supplementary concept word, unique identifier, synonyms]  
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29. limit 28 to yr="2007 -Current"  

30. 23 or 25 or 27 or 29  

31. 5 and 12 and 21 and 30  

32. limit 31 to (case reports or practice guideline or published erratum or "review")  

33. 31 not 32 

7.10 Sources of tumour samples 

Type of Cancer 
Source 
(PMIDs) 

Number of 
Samples 

Skin SCC COSMIC 67 

Skin SCC 27574101 7 

Skin SCC 27906449 14 

Skin SCC 30202019 21 

Skin SCC 30684551 13 

Oropharyngeal SCC 23304554 2 

Oropharyngeal SCC 26790612 19 

Oropharyngeal SCC 29423084 8 

Oropharyngeal SCC 30046007 19 

Oropharyngeal SCC 30308005 22 

Oropharyngeal SCC 31135957 86 

Oropharyngeal SCC COSMIC 281 

Oropharyngeal SCC GDC/mc3 503 

Lung SCC 26943773 37 

Lung SCC 30992440 113 

Lung SCC COSMIC 253 

Lung SCC GDC/mc3 480 

Oesophageal SCC COSMIC 635 

Oesophageal SCC GDC/mc3 183 

Oesophageal SCC 24670651 88 

Oesophageal SCC 26619400 2 

Oesophageal SCC 27058444 67 

Oesophageal SCC 28365443 66 

Oesophageal SCC 28608921 56 

Oesophageal SCC 29358502 23 

Oesophageal SCC 30012096 9 

Oesophageal SCC 30975989 39 

Oesophageal SCC 31289612 16 

Cervical SCC 24390348 114 

Cervical SCC 31624127 54 

Cervical SCC COSMIC 16 

Cervical SCC GDC/mc3 288 

BCC 26950094 131 

Melanoma COSMIC 915 

Melanoma 29991680 53 

Melanoma 29170503 24 

Melanoma 28193624 25 

Melanoma 27095580 10 

Melanoma 26359337 110 

Melanoma 25268584 20 

Total Skin SCC   122 
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Total Oropharyngeal 
SCC   940 

Total lung SCC   883 

Total oesophageal SCC   1184 

Total cervical SCC   472 

Total BCC   131 

Total melanoma   1157 

 

7.11 Driver genes 

7.11.1 Skin SCC driver genes 

Driver 
Gene Cancer 

CCDC28A 
Skin 
SCC 

CDC27 
Skin 
SCC 

CDKN2A 
Skin 
SCC 

CHUK 
Skin 
SCC 

FAT1 
Skin 
SCC 

HRAS 
Skin 
SCC 

KIF4B 
Skin 
SCC 

NOTCH1 
Skin 
SCC 

NOTCH2 
Skin 
SCC 

PRB2 
Skin 
SCC 

TMEM222 
Skin 
SCC 

TP53 
Skin 
SCC 

 

7.11.2 BCC driver genes 

Driver 
Gene Cancer 

ACTB BCC 

ARHGAP35 BCC 

C3 BCC 

CDC27 BCC 

ERBB2 BCC 

EYA1 BCC 

GLB1 BCC 

LATS1 BCC 
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MYCN BCC 

MYH9 BCC 

PAK2 BCC 

PPIAL4G BCC 

PPM1D BCC 

PPP6C BCC 

PTCH1 BCC 

PTPN14 BCC 

RIOK1 BCC 

SMO BCC 

TANC1 BCC 

TMEM222 BCC 

TP53 BCC 

WDFY3 BCC 

 

7.11.3 Melanoma driver genes 

Driver 
Gene Cancer 

Driver 
Gene Cancer 

Driver 
Gene Cancer 

ABCB1 Melanoma CD22 Melanoma EIF3D Melanoma 

ACOT6 Melanoma CD300E Melanoma ENPP2 Melanoma 

ACSBG1 Melanoma CDH2 Melanoma EPHA7 Melanoma 

ACTC1 Melanoma CDH6 Melanoma EPRS Melanoma 

ADAM22 Melanoma CDH7 Melanoma ERC2 Melanoma 

ADAM7 Melanoma CDH9 Melanoma ESRRG Melanoma 

ADAMTS18 Melanoma CDHR5 Melanoma EZH2 Melanoma 

ADCYAP1R1 Melanoma CDKN2A Melanoma FAM107B Melanoma 

ADH1A Melanoma CEACAM5 Melanoma FAM131B Melanoma 

AHI1 Melanoma CEACAM6 Melanoma FAM83B Melanoma 

AKR1C4 Melanoma CEP55 Melanoma FBXW7 Melanoma 

ALDH5A1 Melanoma CEP63 Melanoma FCRL5 Melanoma 

ALPK2 Melanoma CHD6 Melanoma FGD6 Melanoma 

ALPPL2 Melanoma CHGB Melanoma FILIP1 Melanoma 

AMBN Melanoma CNTN5 Melanoma FMO3 Melanoma 

AMBP Melanoma CNTNAP2 Melanoma FOXP1 Melanoma 

AMICA1 Melanoma COL17A1 Melanoma GLT8D2 Melanoma 

ANKRA2 Melanoma COL3A1 Melanoma GM2A Melanoma 

ANO4 Melanoma COL5A2 Melanoma GML Melanoma 

AP1M1 Melanoma COL7A1 Melanoma GNA11 Melanoma 

APC Melanoma CPN1 Melanoma GNAI2 Melanoma 

APOB Melanoma CR2 Melanoma GPA33 Melanoma 

ARHGAP21 Melanoma CRB1 Melanoma GPR133 Melanoma 

ARHGEF6 Melanoma CSMD3 Melanoma GPR179 Melanoma 

ARID1A Melanoma CTNNB1 Melanoma GRID2 Melanoma 

ARID2 Melanoma CUBN Melanoma GRIN3A Melanoma 

ARMC4 Melanoma CXCR2 Melanoma GRM3 Melanoma 

ASTN1 Melanoma CYP3A7 Melanoma GSDMC Melanoma 
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B2M Melanoma CYP7B1 Melanoma GTPBP4 Melanoma 

BAI3 Melanoma DCAKD Melanoma GUCY2C Melanoma 

BCLAF1 Melanoma DCC Melanoma GZMA Melanoma 

BMP3 Melanoma DDX17 Melanoma HNF4G Melanoma 

BMP5 Melanoma DDX3X Melanoma HYDIN Melanoma 

BMPER Melanoma DDX4 Melanoma IDH1 Melanoma 

BRAF Melanoma DGKI Melanoma IL1R1 Melanoma 

BRD7 Melanoma DHX57 Melanoma IL2RA Melanoma 

BRWD1 Melanoma DMBT1 Melanoma ITGA2 Melanoma 

C10orf12 Melanoma DMD Melanoma ITGA5 Melanoma 

C16orf71 Melanoma DMXL2 Melanoma ITGAD Melanoma 

C1orf168 Melanoma DNAH2 Melanoma ITGB3 Melanoma 

C1orf210 Melanoma DNAH3 Melanoma ITGB6 Melanoma 

C2CD3 Melanoma DNAH6 Melanoma ITM2A Melanoma 

C6 Melanoma DNAJC27 Melanoma ITPR2 Melanoma 

C6orf165 Melanoma DNMT3L Melanoma ITSN1 Melanoma 

C9 Melanoma DPYD Melanoma KALRN Melanoma 

CAPN6 Melanoma DSG3 Melanoma KBTBD8 Melanoma 

CBL Melanoma DSG4 Melanoma KCNB2 Melanoma 

CCDC11 Melanoma EBF2 Melanoma KCNH5 Melanoma 

CD1C Melanoma EFEMP1 Melanoma KCNQ3 Melanoma 

 

Driver 
Gene Cancer 

Driver 
Gene Cancer 

Driver 
Gene Cancer 

KCNQ5 Melanoma MYOM3 Melanoma PLCE1 Melanoma 

KCNT2 Melanoma N4BP2 Melanoma PLCH1 Melanoma 

KDR Melanoma NEBL Melanoma PMFBP1 Melanoma 

KDSR Melanoma NF1 Melanoma POLN Melanoma 

KERA Melanoma NFASC Melanoma PPP1R13L Melanoma 

KHDRBS1 Melanoma NLRP11 Melanoma PPP6C Melanoma 

KIAA1109 Melanoma NLRP13 Melanoma PRG4 Melanoma 

KIAA1199 Melanoma NLRP4 Melanoma PRKACA Melanoma 

KIAA2022 Melanoma NLRP5 Melanoma PROL1 Melanoma 

KIF2B Melanoma NLRP8 Melanoma PRRG3 Melanoma 

KIF2C Melanoma NLRP9 Melanoma PSG5 Melanoma 

KIF3A Melanoma NPHP1 Melanoma PTEN Melanoma 

KIF5A Melanoma NRAS Melanoma PTPRB Melanoma 

KIT Melanoma NRXN3 Melanoma PTPRH Melanoma 

KLF12 Melanoma NSUN6 Melanoma PTPRO Melanoma 

KLHL20 Melanoma OR11H1 Melanoma PTPRT Melanoma 

KLHL4 Melanoma OR13C8 Melanoma PZP Melanoma 

KRAS Melanoma OR1A1 Melanoma RAC1 Melanoma 

KRT1 Melanoma OR4C3 Melanoma RASA2 Melanoma 

KRT26 Melanoma OR4D5 Melanoma RB1 Melanoma 

KRTAP10-
8 Melanoma OR4N4 Melanoma RGS1 Melanoma 
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KRTAP5-
10 Melanoma OR51S1 Melanoma RGS7 Melanoma 

LAMA2 Melanoma OR52J3 Melanoma RHAG Melanoma 

LAMC2 Melanoma OR7D2 Melanoma RPL5 Melanoma 

LEPR Melanoma OR8D2 Melanoma RPRD2 Melanoma 

LGR6 Melanoma OR8K5 Melanoma RQCD1 Melanoma 

LHCGR Melanoma OSBP Melanoma SAG Melanoma 

LIPI Melanoma OSMR Melanoma SALL1 Melanoma 

LRP2 Melanoma OTC Melanoma SCAND3 Melanoma 

MAGEC1 Melanoma PAH Melanoma SCN10A Melanoma 

MAGI1 Melanoma PAK7 Melanoma SCN1A Melanoma 

MAN1A2 Melanoma PAPPA2 Melanoma SCUBE1 Melanoma 

MAP2K1 Melanoma PCDH15 Melanoma SEC23B Melanoma 

MFN1 Melanoma PCDH18 Melanoma SELP Melanoma 

MKX Melanoma PCDHA12 Melanoma SEMG2 Melanoma 

MME Melanoma PCDHA2 Melanoma SERPINA10 Melanoma 

MPP7 Melanoma PCDHA4 Melanoma SETD2 Melanoma 

MST4 Melanoma PCDHB7 Melanoma SETD5 Melanoma 

MTR Melanoma PDE11A Melanoma SF3B1 Melanoma 

MXRA5 Melanoma PDE1A Melanoma SH3RF2 Melanoma 

MYBPC1 Melanoma PDE4DIP Melanoma SI Melanoma 

MYH1 Melanoma PDE7B Melanoma SIGLEC7 Melanoma 

MYH2 Melanoma PDE8B Melanoma SIGLEC8 Melanoma 

MYH7 Melanoma PDE9A Melanoma SIKE1 Melanoma 

MYLK Melanoma PDZD2 Melanoma SLC12A5 Melanoma 

MYO9A Melanoma PEG3 Melanoma SLC15A2 Melanoma 

MYOCD Melanoma PHKA1 Melanoma SLC16A9 Melanoma 

MYOF Melanoma PIK3CA Melanoma SLC25A16 Melanoma 

MYOM2 Melanoma PLCB4 Melanoma SLC27A5 Melanoma 

 

Driver 
Gene Cancer 

Driver 
Gene Cancer 

SLC28A2 Melanoma USP29 Melanoma 

SLC46A3 Melanoma USP36 Melanoma 

SLC9A4 Melanoma USP9X Melanoma 

SLTM Melanoma VCAN Melanoma 

SMARCA1 Melanoma VNN2 Melanoma 

SMC1B Melanoma WDR76 Melanoma 

SNCAIP Melanoma XIRP2 Melanoma 

SNX31 Melanoma ZBTB17 Melanoma 

SORBS1 Melanoma ZFX Melanoma 

SPAG16 Melanoma ZNF229 Melanoma 

SPAG17 Melanoma ZNF318 Melanoma 

SPATA19 Melanoma ZNF334 Melanoma 

SPPL2A Melanoma ZNF365 Melanoma 

SRGAP3 Melanoma ZNF385D Melanoma 
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STAB2 Melanoma ZNF484 Melanoma 

STAT4 Melanoma ZNF536 Melanoma 

STK36 Melanoma ZNF585B Melanoma 

SUN3 Melanoma ZNF667 Melanoma 

SUN5 Melanoma ZNF684 Melanoma 

TAOK1 Melanoma ZNF737 Melanoma 

TDRD1 Melanoma ZNF750 Melanoma 

TEX15 Melanoma ZNF780B Melanoma 

THSD7B Melanoma ZNF804A Melanoma 

TIGIT Melanoma ZP2 Melanoma 

TM4SF5 Melanoma     

TMC5 Melanoma     

TMEM156 Melanoma     

TMPO Melanoma     

TP53 Melanoma     

TP63 Melanoma     

TPTE Melanoma     

TPX2 Melanoma     

TREX2 Melanoma     

TRHDE Melanoma     

TRRAP Melanoma     

TSHZ2 Melanoma     

TSKS Melanoma     

TTC3 Melanoma     

TUBA3C Melanoma     

TUBAL3 Melanoma     

TUFM Melanoma     

TULP1 Melanoma     

TUSC3 Melanoma     

UBE2J2 Melanoma     

UBR7 Melanoma     

UGT1A10 Melanoma     

UGT1A3 Melanoma     

UGT1A5 Melanoma     

UGT2B4 Melanoma     

 

 

7.11.4 Melanoma driver genes in normal melanocytes 

Melanoma 
driver 
genes 

Number 
of 
mutations 
(Tang et 
al., 2020) 

Melanoma 
driver 
genes 

Number 
of 
mutations 
(Tang et 
al., 2020) 

Melanoma 
driver 
genes 

Number 
of 
mutations 
(Tang et 
al., 2020) 

PTPRT 34 DNAH3 11 MAGI1 7 
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HYDIN 32 KCNH5 11 MYOM2 7 

PCDH15 29 KCNT2 11 NLRP11 7 

DNAH2 23 PEG3 11 NLRP13 7 

CSMD3 21 CDH9 10 PCDHB7 7 

PAPPA2 21 COL5A2 10 SAG 7 

PTPRB 21 DSG4 10 TTC3 7 

THSD7B 21 GPR179 10 ZNF780B 7 

ADAMTS18 19 GRID2 10 ALPK2 6 

DNAH6 19 ITSN1 10 CBL 6 

PLCB4 18 LAMA2 10 CDH2 6 

MYH2 17 NLRP8 10 DHX57 6 

CNTNAP2 16 PDE1A 10 FAM131B 6 

COL7A1 16 PDZD2 10 FAM83B 6 

MXRA5 16 PLCE1 10 ITPR2 6 

NEBL 16 SCN1A 10 LEPR 6 

APOB 15 SLC15A2 10 LHCGR 6 

ARMC4 15 TPTE 10 MTR 6 

ASTN1 15 ZNF536 10 SH3RF2 6 

CRB1 15 ANO4 9 SIGLEC7 6 

KALRN 15 BAI3 9 SLC12A5 6 

MYH1 15 BMPER 9 SLC9A4 6 

MYLK 15 C1orf168 9 SUN5 6 

SCN10A 15 CDH7 9 VCAN 6 

SRGAP3 15 DMBT1 9 ABCB1 5 

MME 14 KIAA2022 9 AKR1C4 5 

MYOCD 14 MYBPC1 9 ARHGAP21 5 

SPAG17 14 PAH 9 BMP5 5 

TP63 14 PCDHA2 9 C9 5 

XIRP2 14 PDE7B 9 CD1C 5 

ERC2 13 SLC16A9 9 CHD6 5 

KCNQ3 13 ADCYAP1R1 8 DDX4 5 

PLCH1 13 DGKI 8 EBF2 5 

CDH6 12 EPHA7 8 ESRRG 5 

CNTN5 12 FCRL5 8 GLT8D2 5 

DCC 12 FOXP1 8 GTPBP4 5 

DSG3 12 KCNB2 8 IL1R1 5 

KDR 12 NLRP5 8 KBTBD8 5 

LRP2 12 PAK7 8 KRT1 5 

MYOM3 12 PDE4DIP 8 MYH7 5 

PTPRO 12 PMFBP1 8 MYO9A 5 

RGS7 12 TSHZ2 8 NFASC 5 

SI 12 ACTC1 7 NLRP4 5 

STAB2 12 CUBN 7 NRXN3 5 

STK36 12 DPYD 7 SALL1 5 

ZNF365 12 GRIN3A 7 SETD2 5 

ADAM7 11 ITGAD 7 SNCAIP 5 
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Melanoma 
driver 
genes 

Number 
of 
mutations 
(Tang et 
al., 2020) 

Melanom
a driver 
genes 

Number 
of 
mutations 
(Tang et 
al., 2020) 

Melanoma 
driver 
genes 

Number 
of 
mutations 
(Tang et 
al., 2020) 

USP36 5 CYP7B1 3 DCAKD 2 

ALDH5A1 4 EIF3D 3 DMD 2 

ARID1A 4 FBXW7 3 ENPP2 2 

ARID2 4 GPR133 3 EPRS 2 

BRAF 4 GSDMC 3 FGD6 2 

C2CD3 4 GZMA 3 ITGB3 2 

CD22 4 HNF4G 3 KDSR 2 

CD300E 4 KCNQ5 3 KIF2C 2 

CXCR2 4 KERA 3 KLHL4 2 

EZH2 4 KHDRBS1 3 KRAS 2 

FILIP1 4 KIAA1199 3 LAMC2 2 

FMO3 4 KIF2B 3 MAP2K1 2 

GPA33 4 KRT26 3 MKX 2 

GRM3 4 MYOF 3 MST4 2 

GUCY2C 4 NLRP9 3 NRAS 2 

IL2RA 4 OR51S1 3 NSUN6 2 

ITGA5 4 OR8D2 3 OR11H1 2 

ITGB6 4 OSMR 3 OR52J3 2 

ITM2A 4 OTC 3 OR7D2 2 

KIAA1109 4 PCDH18 3 OR8K5 2 

KIF3A 4 PCDHA12 3 PDE8B 2 

KIF5A 4 PCDHA4 3 PSG5 2 

LGR6 4 PRG4 3 PTPRH 2 

MPP7 4 PRKACA 3 RB1 2 

NF1 4 RASA2 3 SLC46A3 2 

OR13C8 4 RGS1 3 SPAG16 2 

OR4D5 4 RPRD2 3 STAT4 2 

OSBP 4 RQCD1 3 TPX2 2 

PDE11A 4 SELP 3 TUBA3C 2 

PHKA1 4 
SERPINA1
0 3 TUBAL3 2 

PROL1 4 SETD5 3 TULP1 2 

PRRG3 4 SIGLEC8 3 USP29 2 

PZP 4 SNX31 3 ZFX 2 

RHAG 4 SPATA19 3 ACOT6 1 

SORBS1 4 TRHDE 3 ADH1A 1 

C6 11 KLF12 7 TDRD1 5 

COL3A1 11 MAGEC1 7 TSKS 5 
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TEX15 4 ZBTB17 3 BMP3 1 

TIGIT 4 ZNF385D 3 BRD7 1 

TMC5 4 ZNF737 3 C10orf12 1 

TRRAP 4 ZNF804A 3 C1orf210 1 

UGT2B4 4 AHI1 2 CDKN2A 1 

ZNF334 4 ANKRA2 2 CEP63 1 

ZP2 4 AP1M1 2 CPN1 1 

ADAM22 3 BCLAF1 2 CR2 1 

ALPPL2 3 C16orf71 2 CYP3A7 1 

AMBN 3 C6orf165 2 DDX17 1 

ARHGEF6 3 CAPN6 2 DDX3X 1 

BRWD1 3 CEACAM6 2 DNAJC27 1 

CEACAM5 3 CEP55 2 FAM107B 1 

CTNNB1 3 COL17A1 2 GNA11 1 

Melanoma driver 
genes 

Number 
of 
mutations 
(Tang et 
al., 2020) 

IDH1 1 

ITGA2 1 

KRTAP10-8 1 

MAN1A2 1 

MFN1 1 

NPHP1 1 

PDE9A 1 

PIK3CA 1 

POLN 1 

PPP6C 1 

SCUBE1 1 

SEC23B 1 

SEMG2 1 

SF3B1 1 

SLC25A16 1 

SLC28A2 1 

SMC1B 1 

TMEM156 1 

TMPO 1 

TP53 1 

TREX2 1 

TUFM 1 

TUSC3 1 

USP9X 1 

VNN2 1 

ZNF229 1 
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ZNF585B 1 

ZNF750 1 

  

7.11.5 Validation results 
 

 

Cancer 

Confirme
d 
somatic 
variant 

Reporte
d in 
another 
cancer 
sample 
as 
somatic 

Variant 
of 
unknow
n origin Total 

Confirme
d 
somatic 
variant 

Reporte
d in 
another 
cancer 
sample 
as 
somatic 

Variant 
of 
unknow
n origin 

Melanoma 2118056 11064 32345 
216146

5 98% 1% 1% 

Oesophageal 
SCC 283262 937 4862 289061 98% 0% 2% 

Oropharynge
al SCC 417126 173290 121510 711926 59% 24% 17% 

Lung SCC 669837 19230 115408 804475 83% 2% 14% 

Cervical SCC 238805 1339 3052 243196 98% 1% 1% 

 BCC 219052  0  0 219052  100%  0%  0% 

cSCC 428317 0 0 428317 100% 0% 0% 

 
These analyses were repeated for using an edited script from appendix 7.1. The bold command 

below shows the specific line of the script that was altered to ensure only confirmed variants 

were extracted from the COSMIC database. The script shows that column 32 of the file contained 

the somatic mutation status. 

#get mutation list with header- only those from genome wide screens and with genomic location 

on b37. If histology subtype 1 is ‘squamous cell carcinoma’ and primary histology is ‘carcinoma’ 

and genome wide screen is ‘y’ and GRCh is ‘37’ then print and make file SCC_mutations.txt. 

head -1 CosmicMutantExport.tsv > SCC_mutations.txt 

awk 'BEGIN{FS=OFS="\t"}{if($13 == "squamous_cell_carcinoma" && $12 == "carcinoma" && $16 

== "y" && $25 == "37" && $32 == “Confirmed somatic variant”) print $0}' 

CosmicMutantExport.tsv > SCC_mutations.txt 

 

The rest of the analysis was repeated as outlined in the methods of the thesis and MutSig2CV was 

also run on the samples to identify if any of the driver genes which were common to skin SCC 

were still significant after MutSig2CV analysis and if any novel driver genes were identified. This 



 

332 
 

would ensure that there was a reliable comparison between skin SCC samples and other SCCs. The 

appendix 7.11.5 shows a table of the driver genes which were significant in skin SCC and the 

cancers which were reanalysed and a comparison of their original p and q value after MutSig2CV 

analysis compared to their new p and q values after reanalysis. 

 
 
 

Cancer Gene 
Original p 
value in 
Mutsig2CV 

Original q 
value in 
MutSig2CV 

p value in 
MutSig2CV 
after reanalysis 
in 

q value in 
MutSig2CV 
after 
reanalysis 

Lung SCC TP53 1.00E-16 6.98E-13 1.00E-16 9.43E-13 

Lung SCC CDKN2A 3.33E-16 1.57E-12 1.00E-16 9.43E-13 

Lung SCC FAT1 1.71E-14 4.61E-11 1.99E-14 5.35E-11 

Lung SCC HRAS 3.68E-06 
0.00257249

7 
3.24E-07 0.00035896 

Oropharyngea
l SCC 

TP53 1.00E-16 3.77E-13 1.00E-16 3.77E-13 

Oropharyngea
l SCC 

CDKN2A 1.00E-16 3.77E-13 1.00E-16 3.77E-13 

Oropharyngea
l SCC 

FAT1 6.66E-16 1.79E-12 6.66E-16 1.79E-12 

Oropharyngea
l SCC 

HRAS 1.78E-07 
0.00014556

8 
1.78E-07 0.000145568 

Oropharyngea
l SCC 

NOTCH
2 

2.20E-05 0.0111915 2.20E-05 0.0111915 

Oesophageal 
SCC 

TP53 
1E-16 4.18821E-13 1E-16 4.18821E-13 

Oesophageal 
SCC 

CDKN2A 
1E-16 4.18821E-13 1E-16 4.18821E-13 

Oesophageal 
SCC 

FAT1 
4.88498E-15 1.02378E-11 4.88498E-15 1.02378E-11 

Oesophageal 
SCC 

NOTCH
1 1E-16 4.18821E-13 1E-16 4.18821E-13 

Oesophageal 
SCC 

NOTCH
2 

0.00023714
9 

0.0746207
7 0.000237149 0.07462077 

Melanoma 
TP53 

1E-16 
3.14367E-

13 1E-16 3.49017E-13 

Melanoma CDKN2A 
1E-16 

3.14367E-
13 1.22125E-15 2.87939E-12 
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Melanoma PPP6C 
1E-16 

3.14367E-
13 1E-16 3.49017E-13 

 
 
 
 

7.11.6 Driver gene somatic variant status 

This table shows the shared driver genes between the SCCs and skin cancers. The tables 

summarise their somatic status within their cohorts.  

Cervical SCC Lung SCC Oesophageal SCC 
Oropharyngeal 
SCC Skin SCC 

  

CDKN2A- all 
true somatic 
variants  

CDKN2A - 12 
variants reported 
in other cancer as 
somatic = 12/650 = 
1.84% of variants 
not confirmed 

CDKN2A - all 
true somatic 
variants 

CDKN2A - all 
true somatic 
variants 

  
HRAS - all true 
somatic variants   

HRAS- all true 
somatic variants 

HRAS - all 
true somatic 
variants 

TP53 - all true 
somatic variants 

TP53 - all true 
somatic variants 

TP53 - all true 
somatic variants 

TP53 - all true 
somatic variants 

TP53 - all 
true somatic 
variants 

  
FAT1 - all true 
somatic variants 

FAT1 - all true 
somatic variants 

FAT1 - all true 
somatic variants 

FAT1 - all 
true somatic 
variants 

    
NOTCH1 - all true 
somatic variants   

NOTCH1 - all 
true somatic 
variants all 
true somatic 
variants 

    
NOTCH2 - all true 
somatic variants 

NOTCH2 - all 
true somatic 
variants 

NOTCH2 - all 
true somatic 
variants 
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Skin SCC BCC Melanoma 

TP53 - all true somatic 
variants 

TP53 - all true 
somatic variants TP53 - all true somatic variants 

CDKN2A - all true 
somatic variants   

CDKN2A - 132 variants reported as 
somatic in other cancer, 72 variants 
unknown origin = 204/1378 = 14.8% of 
variants not confirmed 

  
PPP6C - all true 
somatic variants 

PPP6C - 32 variants reported as somatic in 
other cancer, 4 variants unknown origin = 
36/347 = 10.4% of variants not confirmed 

CDC27 - all true somatic 
variants 

CDC27 - all true 
somatic variants   

TMEM222 - all true 
somatic variants 

TMEM222 - all 
true somatic 
variants   
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7.12 Oropharyngeal SCC mutation signature analysis 

 

 

 
 
 
 
 
 
 
 
 
 

Cancer type 
Sample 
Name 

Number of 
mutations Source (PMID) Details 

Oropharyngeal 
SCC HNPTS_16 1 COSMIC 

Upper aerodigestive tract; 
Head neck (Carcinoma; 
Squamous cell carcinoma) 

Oropharyngeal 
SCC UPHN7B 2 

Literature 
search – 
30046007 

Oral cavity squamous cell 
carcinomas 

Oropharyngeal 
SCC 2014037004 2 

Literature 
search – 
30308005 

Oral cavity squamous cell 
carcinoma 

Oropharyngeal 
SCC HN19PT 3 COSMIC 

Upper aerodigestive tract; 
Pharynx; Oropharynx 
(Carcinoma; Squamous 
cell carcinoma) 

Oropharyngeal 
SCC 

TCGA-CV-
A468-01 321 GDC/mc3 

Tumour location – Upper 
aerodigestive tract; Head 
neck (Carcinoma; 
Squamous cell carcinoma) 

Oropharyngeal 
SCC 41T 587 COSMIC 

Mouth; Gingiva 
(Carcinoma; Squamous 
cell carcinoma) 

Oropharyngeal 
SCC B8T_B8N 870 

Literature 
search – 
29423084 right parotid gland 

Oropharyngeal 
SCC 

TCGA-D6-
6516-01 1442 GDC/mc3 

Upper aerodigestive tract; 
Head neck (Carcinoma; 
Squamous cell carcinoma) 

Oropharyngeal 
SCC B2T_B2N 1726 

Literature 
search – 
29423084 left ear 

Oropharyngeal 
SCC 

TCGA-CV-
7568-01 1810 GDC/mc3 

Upper aerodigestive tract; 
Head neck (Carcinoma; 
Squamous cell carcinoma) 

Oropharyngeal 
SCC B5T_B5N 4157 

Literature 
search – 
29423084 Skin of face 
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