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Abstract

Knowledge of local mechanical behavior of wood is especially important as sil-
vicultural practices are modified to allow wood to compete as a relevant material
in high technology applications. Challenges associated with identification of local
mechanical behavior have resulted in simplified test geometries designed to deter-
mine one or two constitutive parameters. The objective of this work was to design
and simulate an entire experiment developed to simultaneously identify the early-
wood and latewood orthotropic stiffnesses in loblolly pine in a single specimen and
load geometry. The virtual experiment was capable of evaluating optimal orthotropy
orientation for reduced identification errors and indicating most favorable choices
for data smoothing filters and identification methodology. Additionally, certain ring
spacing and latewood percentageswere shown to produce large errors, but those com-
binations are unlikely to occur naturally. The simulation was able to identify Q11,
Q22, and Q66 with approximately ±10% error; the Q12 error was larger with more
scatter. The methodology presented here contributes to the best practices available
for heterogeneous stiffness identification.
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1 INTRODUCTION

During the past two decades a major switch in the lumber industry has been occurring in the United States, from human visual

grading to automated visual grading1. This change has opened an opportunity to tighten the variability of lumber grading and

potentially improve estimates of the structural properties of the lumber being graded by using untapped visual data in the grading

systems. One hurdle to fully taking advantage of this opportunity is an understanding of the stiffness variability within the

heterogeneous nature of wood. Methods still need to be developed to simply assess the impact of earlywood (EW) and latewood
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(LW) percentage on overall stiffness of graded material. We believe that the Virtual Fields Method (VFM), using a single

specimen and under a specific load geometry, can provide material property input information to make this assessment. The use

of one test method to determine longitudinal, transverse, and shear stiffnesses of EW and LW rings would aid in understanding

the impact of silvicultural practices on structural lumber properties. The test procedure being simulated in this paper uses VFM

as a method of documenting the natural variations in longitudinal, transverse, and shear stiffnesses that occur in loblolly pine

both within a tree and between trees.

Wood is a heterogeneous material at many scales whose physical and mechanical properties vary within the tree from pith to

bark, along the length of the bole, and from one geographic location to another2–14. Much of the measured variation of wood

properties and how external factors influence those properties can be explained bywhen and how thewoodymaterial is produced.

In its first years of growth, a tree produces juvenile wood, a zone of wood extending outward from the pith; wood characteristics

produced from year to year in each successive growth ring change markedly2–13. During a transition period from 5 to 20 years of

age, wood characteristics gradually become more constant. This material with relatively constant properties is known as mature

wood.

Dimension lumber cut from the juvenile wood core may have only 50% to 70% of the strength and stiffness of lumber cut from

mature wood, depending upon the grade and species5,15.With increased use of intensivemanagement practices, such as irrigation

and fertilizer application, historical differences between EW and LW properties have been altered5. Another aspect of intensive

management is the increase in amount of EW in proportion to LW. Decreasing LW properties and increases in proportions of

EW have been related to stiffness and strength changes6,15. However, the ability to predict performance of structural-sized timber

based on current small clear specimens is lacking16. Clear wood specimens are those without obvious imperfections or defects.

Understanding the impacts of wood density, grain angle, microfibril angle (MFA) and modulus of elasticity (MOE) on the

mechanical properties of wood is part of ongoing research. Eberhardt et al.17 provided several experimental parameters used

in this work, though that work was on longleaf pine. Information provided was fraction of LW, generally near 50%, ring width

(varying from 1mm tomore than 5mm) and themanner that these parameters vary radially and longitudinally. Property variation

has been observed from pith to bark2 and has been attributed to the juvenile material at the log center. Schimleck et al.3 measured

the density from pith to bark and found gradually decreasing density peaks and increasing MFA. Within each tree, Burdon et

al.4 and Xavier et al.18 characterized the variation of properties from pith to bark and along position in the stem.

Attempts have beenmade to look directly at the properties of EW and LW samples. These differences have been examinedwith

meso-sized specimens10–13,19–21 and at the micro-scale with fiber testing7–9. Farruggia and Perré22 examined microtensile tests

under a microscope to determine modulus and Poisson ratio in EW and LW of spruce. Jernkvist and Thuvander23 used a dog-

bone shaped Norway spruce specimen in tension (radial direction) along with digital image correlation (DIC) to identify EW and

LW constitutive parameters. Using power spectrum analysis, Watanabe et al.24 examined EW transverse and radial moduli of
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several softwoods. Gindl and Schöberl25 used nanoindentation to identify elastic modulus in Norway spruce cell walls. Pereira et

al.26 performed radial-tangential tensile tests on specimens and identified EW and LWmoduli and corresponding Poisson ratios.

Kuo and Wang27 used DIC and a longitudinal tensile specimen to identify EW and LW moduli of Japanese cedar Cryptomeria

japonica. Relating the properties from these efforts to macro-scale behavior is a challenge because (1) heterogeneity requires

large sample sets, (2) only one or two properties are determined for a given specimen, and (3) specimen preparation is time

consuming and may affect mechanical properties.

Moreover, shear properties of wood are very difficult to measure because of its relatively low shear strength. Often special-

ized load configurations are incorporated, such as the Arcan geometry28. Pereira et al.29 used ring-oriented tensile tests and

DIC to identify the homogeneous orthotropic elastic constants. Müller et al.28 used a modified Arcan geometry and electronic

speckle pattern interferometry to identify homogeneous shear modulus in Norway spruce. Zhang and Yang30 used a modified

specimen with the Iosipescu geometry to identify the homogeneous shear modulus and shear strength. Krüger et al.31 developed

a shear frame geometry for measuring shear properties of wood. Iosipescu tests were used in32 to identify the complete set of

homogenized orthotropic stiffness components from off-axis Pinus pinaster Ait. samples, using the grid method and the VFM

for inverse identification.

Advances in optical measurement techniques offer methods for determining the heterogeneous properties of materials. An

early example of heterogeneousmaterial investigation using optics is Choi et al.33, who examined yellow pine under compressive

stress using DIC. Hassel et al.34 used DIC to examine 40 mm cubes of Norway spruce to show shear strain heterogeneity across

rings and found that shear modulus was closely related to density. Milch et al.35,36 used finite element models (FEM), DIC and

different specimen geometries to determine the elastic-plastic tensile, compressive, and shear behavior of Norway spruce and

European beech woods. Their identification used a modified FEM-updating scheme. Modén and Berglund37 have also used DIC

to measure the variation of MOE in the radial direction of Norway spruce. Recent work by Henriques et al.38, which employed

DIC, demonstrated the challenges when identifying homogenized orthotropic elastic properties of wood. Different amounts of

EW and LW material within specimens dramatically affected the elastic properties identified. Furthermore, they used multiple

ring orientations for more accurate identifications.

Most importantly for this work, improvements in camera resolution have led to significant advances in image analysis that,

in turn, encouraged researchers to incorporate this rich data source in their work. The Grid Method (GM) is a full-field optical

technique with high resolution that takes advantage of improved camera technology and is suitable for measurement of small

displacements, especially those in the linear elastic regime39–41. Dang et al.42 examined the creep and moisture recovery strains,

i.e., very small strains, in both EW and LW using the grid method.

The objective of this work is to design a test methodology capable of determining all four of the in-plane orthotropic elastic

moduli for both EW and LWmaterial (eight moduli in total) with a single specimen in one test and to evaluate the methodology
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with simulated experiments. As such, it is an extension of earlier work32 where homogenized properties only were considered.

Successful completion includes the determination of optimal test parameters and assessment of accuracy and resolution. The

material properties chosen for this investigation are from loblolly pine, a shortleaf southern pine variety, that has significant

economic importance to the sawn lumber and paper industries. The stiffness gradients between EW and LW used in this effort

are meant to challenge the stiffness identification methodology.

2 MATERIALS

This work focuses on the simulated identification of loblolly pine EW and LW stiffnesses. Two different materials, whose

properties are listed in Table 1, were modeled to represent approximate near pith and near bark behavior. Both materials used

the same EW properties, but dramatically different LW properties. The El∕Er ratio was 13 for near pith and 27 for near bark.

The magnitudes and ratios for the material properties were consolidated from10,13,43.

Most identifications will be performed in terms of Qij where:

Q11 =
El

1 − �lr�rl

Q22 =
Er

1 − �lr�rl

Q12 =
�lrEr

1 − �lr�rl
=

�rlEl
1 − �lr�rl

Q66 = Glr

where r, l refer to radial and longitudinal directions of the wood. Each of these moduli will be identified for the EW and LW

portions of the examination region.

We will also examine identification in terms of orthotropic polar invariants, Ii, related to Qij by Eq. (1). A thorough review

of polar invariants is given by Vannucci44.
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The amount of EW and LW varies from pith to bark, and growth differences can occur even within the small specimen

examination region. These variations are characterized by the ratio of EW to LW, the spacing between growth rings and the

orientation of the growth rings. To investigate these variations, three values of LW percentage (LWP), 50%, 25% and 17%, and
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three ring spacings, 2 mm, 4 mm, and 6 mm, were modeled. A representation of these nine modeling conditions for a 35o ring

orientation is shown in Figure 1. Therefore, 18 different material models were examined, 2 stiffness combinations × 3 LWP

× 3 ring spacings, for each growth ring orientation. To examine the relationship between ring orientation angle and stiffness,

identification simulations examined results for orientations from 0o to 175o in 5o increments. A schematic showing the manner

in which the specimens are oriented and cut from the wood bolt is shown in Figure 2.

3 TEST SETUP

The unnotched Iosipescu test geometry was selected for this investigation as it has been successfully used45,46 for the identifica-

tion of orthotropic stiffnesses for other materials and for wood18,32. Rossi and Pierron47 found that identification is improved if

the aspect ratio of the specimen is similar to that of the CCD array of the camera. Therefore, specimen geometry used here was

76 mm wide, 20 mm high, and 2.3 mm thick; the active area of the specimen was the center 30 mm. Ansys 9.0 R© was used to

model the entire specimen with square PLANE42 plane stress elements (0.05 mm each side) creating 608,000 elements. Figure

3 shows a schematic of the unnotched Iosipescu geometry and specimen dimensions. The left grip was stationary and the right

grip underwent a uniform vertical displacement; neither grip was allowed to rotate. For the FEA model, the bottom left corner

of the specimen was fixed in u, v. The right grip was displaced with force F such that each of the four locations in contact with

the moving grip had uniform vertical displacement.

Applied load levels were prescribed according the Tsai-Hill 2D Yield Criterion, given in Eq. (2). The quality of identification

strongly depends on the strain signal-to-noise ratio and the Tsai-Hill criterion provides a scaling to generate large strain levels

while constraining the maximum applied load in order to avoid damage or fracture of the test specimen. This enables a realistic

comparison between different configurations. Such scaling was also employed in previous work45,48,49. It should be noted that

this criterion assumes a homogeneous material. Strength, moduli and Poisson ratio values for loblolly pine were taken from the

Wood Handbook50. Moduli and Poisson ratio were used in a homogeneous, orthotropic FEA model to determine �i, i = 1, 2, 6

for Eq. (2). Subscripts 1, 2, 6 align to specimen geometry in Voigt contracted notation. Orientation of orthotropic properties was

varied from 0o to 175o in 5o increments. As expected, FEA model produced very large stresses at the contact points; therefore

the FEA stresses were cutoff at the 95th percentile and used in Eq. (2). Applied load (F in Figure 3) was adjusted so that the

stresses remained within the Tsai-Hill failure surface; applied loads for the heterogeneous simulations for each orientation are

shown in Figure 4.
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( �2
YT

)2
− �1�2
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+
(�6
S
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where:
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XT = 90.4MPa : tensile strength parallel to the grain (longitudinal)

YT = 4.7MPa : tensile strength perpendicular to the grain (radial)

S = 8.5MPa : shear strength (longitudinal-radial)

El = 13.5 GPa : modulus parallel to the grain (longitudinal)

Er = 1.53 GPa : modulus perpendicular to the grain (radial)

�lr = 0.33 : Poisson ratio (longitudinal-radial)

Glr = 1.11 GPa : shear modulus (longitudinal-radial)

Heterogeneous stiffness identification is challenged when the material has a small stiffness variation in a small distance,

e.g., the transition from LW to EW, because strain measurement is blurred between the two material phases. Therefore, the

grid method40,51 was selected for the determination of full-field strains capable of sufficient accuracy and resolution needed in

stiffness identification. Two virtual grids were examined: (1) 10 lines/mm × 10 lines/mm and (2) 30 lines/mm × 30 lines/mm,

both 50% black/white. By performing correlation in the frequency domain, the grid method is able to achieve higher resolution

than possible with conventional DIC, but is restricted to in-plane displacements. To examine the errors associated with DIC

identification, a DIC simulation was performed for the optimal parameters found in the grid simulations in which only in-plane

displacements were incorporated.

Our selection of the grid method as the full-field optical technique was based on previous work, see Xavier et al.,32, and our

own successful efforts to transfer 10 lines/mm grids on wood specimens. The only unique step for wood in the transfer process,

which differs from Piro and Grédiac52, involved drying the specimen to encourage adhesion of the compliant adhesive. Recent

advances in precision printing have made 30 lines/mm a higher resolution alternative, though we have not received these higher

density grids yet. However, the practical application of this work does not rely specifically on the ability to transfer the grid on

the specimen, but on a full-field optical technique with similar resolution.

The simulated test procedure described herein will provide a virtual experimental framework using the VFM to optimize

experimental parameters for the identification of heterogeneous material stiffnesses. The following section will provide details

on the general form of VFM and then specialize the methodology for application to orthotropic and heterogeneous materials.
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4 VIRTUAL FIELDS METHOD

VFM was developed from the Principle of Virtual Work (PVW)53 and, for a plane stress problem, can be written as:

∫
S

(

�1"
∗
1 + �2"

∗
2 + �6"

∗
6
)

dS = ∫
)S

Tiu
∗
i dl, (3)

where S is the area of 2-D domain, �i are stresses (with Voigt notation) within S, u∗i are continuous and piecewise differentiable

virtual displacements, "∗i are virtual strains associated with u∗i , Ti are tractions on )S, and )S is the boundary of S over which

non-zero tractions Ti exist.

Identification of moduli requires the introduction of an appropriate constitutive relation. By restricting the simulations to

linear elastic behavior, the anisotropic constitutive relationship, in contracted notation, is:
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where 1, 2 refer to orientation of axes (x1, x2) in Figure 3. For orthotropic wood behavior, both Q16 = Q26 = 0 when alignment

of the growth ring orientation with either the x1 or x2 axis occurs, but are nonzero for all other orientations. TheQij are assumed

constants and can be placed outside the integral.

Assuming that theQE
ij for EW andQL

ij for LW are homogeneous in the examination region S, we can segment S into separate

regions, SE, SL, where E and L refer to EW and LW, respectively, and write:

QE
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(5)

Eq. (5) contains 12 unknowns, QE
ij and Q

L
ij . In application, the integrals are converted to discrete summations, "i are deter-

mined from the grid method and Ti is the applied load as specified in the FEA model. Pierron and Grédiac53 have shown that

special virtual fields, u∗i , can be chosen so that only a single integral term remains on the left side of Eq. (5) and the virtual fields
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can be chosen so the remaining integral term sums to 1. Each integral term is selected until all 12 QE
ij and Q

L
ij are identified.

Moreover, it is possible to select them to minimize the influence of strain measurement noise54.

The practical use of Eq. (5) relies on planar deformations of a flat wood specimen, a well-modeled fixture that reproduces

numerical boundary conditions, accurate full-field strain measurements, precise load measurement, and a well-defined segmen-

tation of EW and LW. Knowledge of the load distribution is not required, since the load is integrated over the height of the

specimen, 20 mm. Pereira et al.,26 successfully used segmentation of EW and LW to evaluate properties. Our lab has significant

experience in processing wood to produce flat specimens; growth defects and other physical flaws are avoided in preparation.

Even so, a few specimens will warp, usually caused by compression or tension wood when residual stresses are released and

would be excluded. Experiment deformations can be used to verify boundary conditions, both on the fixed end and vertically

displaced end. Deviations from boundary conditions may involve load fixture alterations or modification of the numerical model.

Here, these special optimized virtual fields are expanded over a basis of finite elements, using 4-node quadrilateral isopara-

metric elements with, for the initial simulation, 24 elements along x1 and 18 elements along x2, for a total of 432 elements. As

the virtual elements do not approximate the actual fields, virtual field mesh density is not analogous to finite element mesh den-

sity. This will be examined in the Results Section. ‘Rule of Thumb’ among VFM practitioners for homogeneous identification

is to have twice as many interior nodes as unknowns, but a similar understanding does not exist for heterogeneous applications.

For the initial simulations, higher than typical mesh density was used to ensure there were enough virtual DOFs to solve the

problem. We note that it is not a requirement that each virtual fields element contains a single material type, i.e. EW or LW.

Instead, the specific material phase is needed for each measured strain location so that the integrals in Eq. (5) can be calculated

successfully.

The different VFM mesh densities are illustrated in Figure 5. Density shown in Figure 5d was used for all initial analyses.

Figures 5a, b, and c were examined in subsequent analyses. Figure 5a is the minimum density explored; that mesh contains only

9 interior nodes and, therefore, was only used for the orthotropic and invariant analyses. Figures 5b, c, and d all used square

elements. While square elements are not required, in this work, they provided a systematic method to decrease node density.

The number of unknowns in Eq. (5) can be reduced to 8 moduli with a priori knowledge of ring orientation and with the

assumption of an orthotropic material. For this special case, Eq. (5) can be simplified to:
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We will also investigate another form of PVW where the elastic moduli are given in terms of polar invariants. Previously,

Grédiac55 used stiffness invariants to examine plate bending stiffnesses. Hosten56 found that identification of invariants can

improve measurement resolution. For an orthotropic material, with known principal material directions, the PVW in terms of

stiffness invariants is given by Eq. (7).
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(7)

Three expressions of the PVW, Eqs 5, 6, and 7, will be employed in this work. Our purpose for exploring each of these

equations is to examine each of their potential for accurate identification of material parameters. Eq. (5) is the most general form

and does not require knowledge of ring orientation. Eq. (6) reduces the number of unknowns, from 12 to 8moduli parameters, but

requires a priori knowledge of ring orientation. For the size of examination region employed here, 3 cm × 2 cm, ring orientation
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would likely be quite uniform in actual specimens. Eq. (7) also has 8 unknowns, but the polar invariants description allows the

relative magnitude of the unknowns to be more similar than those for the other two equations.

As the number of unknowns increases, measurement noise makes solution of these equations non-trivial. Avril et al.54 devel-

oped a method to minimize the effect of measurement noise on orthotropic Qij identification; Considine et al.57 extended this

method for anisotropic materials. We have extended this method to heterogeneous materials in this work.

Numerical use of these PVW equations is accomplished by using discrete summations for the integral expressions. Strains

will be determined simulating a grid measurement process that provides simulated displacements that will be numerically

differentiated to give strains.

5 SIMULATION

A flow chart of the simulation procedure is given in Figure 6. First, a homogeneous FEA model was created and solved in

ANSYS R© (Academic Research, Release 9.0) using PLANE42 elements, a plane stress 4-node isoparametric quadrilateral ele-

ment. Uniform size elements (0.05 mm × 0.05 mm) were used throughout. The FEA model had 608,000 elements and analyzed

the entire Iosipescu geometry. A convergence analysis of both the homogeneous FEA model and heterogeneous FEA model

(described in Section 6) was used to determine element size. Given the material properties from Table 1, selecting either near

pith or near bark, and the specific orientation (�); the numerical model provided the stresses within the material for the entire

specimen. These stresses were used with Eq. (2) to determine the maximum allowable F for each �, represented in Figure 4.

Subsequently, a heterogeneous FEA was performed using the already specified � and F , and including additional parameters

ofQij for both EW and LW (specifying either near bark or near pith using properties from Table 1), ring spacing and LWP. The

FEAmesh was the same as that used for the homogeneous analysis with additional specifications for the location of EW and LW

rings and their orientation. Figure 1 shows the nine different ring spacings and LWP for � = 35o orientation. Using the FEA u

and v displacements within the center 30 mm × 20 mm region of the specimen (240,000 elements), the shaded region of Figure

3, synthetic grid images with 10 lines/mm were created using the procedure described by Rossi and Pierron47 with camera

parameters listed in Table 2. Once an optimum orientation was selected, synthetic grid images of 30 lines/mm and synthetic

DIC images were also created. Gaussian noise (with standard deviation of 0.4% corresponding to 16 gray levels) was added to

each image; 50 images were averaged for both grid and DIC analyses, one averaged image for the undeformed state and another

averaged image for the deformed state. Image averaging was used because it is commonly performed in actual experiments to

reduce random noise. In practice, depending on the elasticity of thematerial, fixture, load frame, capture rate, and other variables,

image averaging involves 50-100 images. Devivier58 showed that the benefit of averaging more than 50 images is minimal.
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Because we are adding random noise to the images, eventually image averaging would produce an image very similar to a

non-polluted image. In this simulation, the effect of noise was sufficiently mitigated to approach the identification values for a

non-polluted image after the average of about 5000 images.

Analyses of grid images were performed with Matlab code in theGridMethod toolbox that is described in Refs59,60. Results

from the grid analysis are the full-field displacements that were numerically differentiated to provide strains, "1, "2, and "6. For

simulations that included smoothing, smoothing was applied to displacements. These strains, along with the EW and LW ring

locations, are used in Eqs. (5), (6), and (7) and provide stiffness or invariant identification. Ten replications were performed for

each set of parameters. The entire procedure was controlled by a Matlab R© script, including external execution of ANSYS R©,

and the routines for simulated grid images and their analyses.

A summary of the simulation parameters is given in Table 3. A total of 36 homogeneous and 684 heterogeneous FEA models

were used to create these simulations. Additional simulations were performed after determination of optimum ring orientation

and will be described in Section 6.

Rossi and Pierron47 made an observation regarding the importance of retaining data in different regions of the specimen.

The process used to determine displacements from grid images is not able to provide data near the boundaries, where one grid

pitch of data is lost because the triangular window used 2N − 1 pixels to determine phase (where N is the number of pixels

per grid period). Data near the left and right boundaries are not as critical because the data can be discarded without impacting

identification, but data at the top and bottom boundaries are important as those boundaries contain high magnitude strains due

to bending. In this work, which is specific to the camera parameters, the top and bottom 20-21 rows of data contained spurious

displacement data after processing of the simulated grid images. Therefore, to ensure that spurious data were not included in

the identification, 25 rows (top and bottom) were populated with linearly extrapolated data from the adjacent 75 rows of data.

Though not shown here, Rossi and Pierron47 demonstrated the importance of this data ‘padding’ for a homogeneous material

in a similar loading geometry. We systematically realized reduced identification errors with this padding and incorporated this

procedure for the entire simulation.

TheVFMprocedure employed used optimized piecewise linear virtual fields. This procedure begins with an initial estimate for

Qk
ij . We employed a random number generator to fill this initial estimate with values on the same order of magnitude as expected

results, either 1-20 GPa or 100-900 MPa, depending on the parameter. Usually convergence, determined by very small absolute

changes in Qk
ij , occurred in 6-8 iterations. However, near challenging orientations, e.g. 0

o, 90o, and 175o, some simulations did

not converge. This behavior is not unexpected, because Qk
16 and Q

k
26 are quite small in these orientations and shear interaction

is not activated within the specimen.

The error metric used to determine the optimum angle was developed recognizing that anisotropic identification is influ-

enced by material orientation. Often, a form of RMS error is used as an error metric, but the magnitude disparity of the Qij
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would require some normalization or weighting of the parameters for reasonable comparison. At � =0o and 90o all of the exact

(reference) Q16 and Q26 = 0 and would require special metrics.

Based on a 2-D coordinate system rotation for Q, i.e. Q = f (�)

[Q̄] = [T ]−1[Q][T ]−T (8)

where:

[T ] =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

cos2 � sin2 � 2 sin � cos �

sin2 � cos2 � −2 sin � cos �

−cos � sin � cos � sin � cos2 � − sin2 �

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(9)

Given Q in Eq. (8), Q̄ was calculated and compared with the Qref by integrating the difference between them as seen in the

shaded regions in Figure 7. Q̄ref was calculated from the input �; QVFM was from the identification process. The percentage of

this difference area compared to the area enclosed by Qref was defined as the error metric, Earea and is given by Eq. (10).

Earea =

2�

∫
0

|

|

QVFM
11 (�) −Qref

|

|

d�

2�

∫
0

Qrefd�

× 100 (10)

Synthetic grid images with 10 lines/mmwere used to select the orientation and processing parameters, discussed in Section 6,

that produced the smallest identification errors per the metricEarea. Using the preferred orientation, three additional simulations

were performed:

1. Grid images at 10 lines/mm examined with a 5 MP camera

2. Grid images at 30 lines/mm examined with a 20 MP camera

3. Simulated DIC images examined with a 20 MP camera

The DIC simulation procedure differed slightly from that of the grid method and thus deserves a dedicated description. A

random speckle image was created with the MatchID R© 61 2D v2020.2.2 speckle generator module using a 10 pixel dot size.

Images were deformed with the same process as that used for the grid images47. The same level of noise was added (0.4%) and

10 image replications were created for each scenario. MatchID was used to determine local displacements, using a subset size of

21 pixels, step size of 10 pixels, an approximated NSSD correlation criterion, affine shape function, bicubic spline interpolation

with a Gaussian 5 pixel kernel image prefiltering. Strains were calculated by numerical differentiation, using Matlab R© gradient

function of DIC displacements.
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The simulation procedure provided in Figure 6 describes several steps leading to and including the creation of the synthetic

images. Each step is a potential source of error that will impact the identified stiffnesses determined from the virtual Iosipescu

experiments. The following section will systematically examine the error produced in the proposed simulation procedure in

order to properly attribute error sources for the final material parameters.

6 RESULTS AND DISCUSSION

The objective of this work is to propose a test methodology capable of determining all four of the in-plane orthotropic elastic

moduli for both EW and LWmaterial (8 moduli in total) with a single specimen in one test. This section will examine the effect

of image generation, camera resolution, grid density, data filtering and constitutive relations on the errors associated with the

identification of stiffness parameters from virtual Iosipescu experiments.

6.1 Simulated Grid Error Analysis

The first step in the simulation was to create simulated grid images from the FEA data and to process those images to produce

displacements and, upon differentiation, strains.

A visual example of the errors created in each process is shown in Figure 8 where the strains are shown for the center 30

mm active area of the specimen for a 30o orientation, a ring spacing of 4 mm, and LWP = 50%. Each column in Figure 8

depicts contours of a strain component using the common color scale shown at the bottom. The rows indicate the contours

computed using the various simulation methodologies. The first and second rows, the FEA model strains and the grid strains

with no artificial noise, respectively, are visually similar, with some reduced strain gradients in the grid strains. The third row

shows the strains from the simulated grid images with noise and without smoothing in which the strains are almost completely

obscured. In the last row, smoothing was employed to the simulated grid images to visually recover the strain signal and is

included to demonstrate that the noisy images contain the relevant data. Because smoothing filters are rectilinear, their effect

on identification will vary with the grain orientation, �. Therefore, all the initial analysis performed identifications using the

simulated grid images with noise and without smoothing data as depicted in the third row. The particular smoothing filter used

to produce the last row of strain contours was a 0.54 mm × 0.54 mm filter. The specific type of filter will be discussed later in

this section. The beneficial possibilities associated with smoothing were examined after selection of optimal ring orientation.

More discussion of these processes follows.

The creation of the virtual grid images introduces a small amount of systematic error that is represented in Figure 9. The

errors at the top and bottom portions of the analysis region are important because those areas of high strain provide a large signal

for the identification. Furthermore, the transition region between EW and LW includes additional errors. The errors shown here
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are created by a digital (FE data) signal to analog (virtual grid image) signal to digital (analysis of grid images and calculation

of strains) signal conversion. The FE plots represent 240K data points and the grid strains represent almost 20×106 data points.

6.2 Identification from Exact FEA Data

Parameter identification was performed with the FEA strain data to quantify the contribution of the FEA and the VFM procedure

to the overall identification error. Earea, as determined from Eq. (10), is shown for both simulated materials in Figures 10a and

10b. For each �, nine simulations were performed according to the different ring spacing and LWP values for both near pith

and near bark materials. The markers are located at the median value for those simulations, and the error bars correspond to the

entire range. Median Earea was less than 1% in almost all scenarios. The errors associated with FEA and VFM procedure are

negligible and provide confidence that the VFM process is correctly utilizing the strain data to identify the moduli.

6.3 Systematic Error from Noise-Free Images

One example of the strains is the second row in Figure 8 labeled ‘Grid’; these grid images have not been polluted with noise.

Figures 11a and 11b give errors associated with each material. The markers represent the median error, and the bars indicate the

full range of error for the nine simulations. These errors are much larger than the errors associated with the exact FEA data. They

were expected and the result of processing analog data, i.e., the grid images, even though the displacements used to produce those

images are ‘exact’ FEA data. Recall that the FEA strain data were based upon 0.05 mm square elements, or 20 elements/mm,

and the simulated grid used 10 lines/mm. Additionally, the FEA model calculated strains based upon element shape functions,

while the grid analysis employed Fourier transforms to calculate displacements and finite difference to determine strains. The

finite difference calculation added spatial ‘blurring.’ The blurring occurs in the region of large nonlinear displacement gradients

that cannot be captured accurately by finite difference calculations. The difference between the FEA strains and grid strains is

shown in Figure 9, specifically the subtraction of the second row from the first row in Figure 8. These contours show that the

differences were largest near the upper and lower boundaries, the regions most important to stiffness identification. Furthermore,

the grid strains at ring boundaries showed significant error and alternated between negative and positive errors, depending on

whether the finite difference calculations used for strains were going from EW to LW or LW to EW. Errors at ring boundaries

were further evidence of the spatial blurring caused by strain calculation.

In most cases, identification error was smaller for EW regions than for LW as the strains are larger. Optimum angles for

reduced identification error were those below 75o. Errors in the 15o to 55o range of orientation are around 10%. The magnitude

of this error represents the systematic error associated with analysis of ‘perfect’ grid images. These values provide a minimum

error for the simulation based on an anisotropic VFM analysis with unfiltered displacements.
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6.4 Identification Error with Noise Addition

Figure 12 shows the results for the simulations with the addition of random Gaussian noise. In these figures, the markers and

error bars represent the median and full range of 90 simulations, i.e. nine ring spacing and LWP combinations with 10 different

random noise additions for each condition. The right axis in these figures denotes the number of non-converged simulations.

The primary reason that simulations may not converge is insufficient signal-to-noise ratio. Some non-converging simulations

were expected for anisotropic identification because Q16 and Q26 are zero or near zero at � near 0, 90 and 175o.

Using Earea, the optimum angle of orientation for reduced identification error is near 35o for each material. This result is

especially important - materials with dramatically different orthotropy ratios have a similar optimum orientation for identifica-

tion. Although this orientation is affected by many parameters, this result reduces experimental complexity, i.e. near pith and

near bark specimens can be cut with the same ring orientation. The EW identification error was very similar to that in Figure

11, while the LW error was substantially larger. Important for this work was that the range of EW identification error was small

near 35o. When the stiffnesses are similar, as for near pith material, the LW identification error and error range were reduced.

Noise addition to the grid images increased errors for all orientations, but much more near 150o, which seemed like a potential

optimum orientation in Figures 11a and 11b. Some simulations did not converge, as noted by the right vertical axis; even with

small errors of simulations that did converge, the increased possibility of non-convergence of a significant number of simulations

eliminated those orientations from consideration. For orientations near 150o the applied load was small (Figure 4) that, in

turn, produced small strains. The magnitude of the noise addition was the same for all orientations and so the effect was more

detrimental for those orientations that had smaller strain magnitudes. Additionally, the apparent reduced error represents only

slightly more than half of the simulations, because many did not converge near 150o.

The asymmetry of Figure 12 is attributed to the asymmetry of both load (Fig 4) and Q16 and Q26. The load is not symmetric

because of the yield criterion employed (Eq. (2)). When � is near 90o bending stresses create large �1 in the low strength, YT ,

direction and a smaller load is required to prevent failure. Q16 and Q26 are also not symmetric because the transformation (Eq.

(8)) involves odd powers of cos � and sin �. In this case, both of these stiffnesses are < 0 for � < 90 and > 0 for � > 90.

The optimum angle for identification was selected as 35o because of reduced Earea and higher applied load (Figure 4). This

angle is similar to that given by Rossi and Pierron47 for homogeneous fiber composites. Further analysis to determine parameters

that lead to the smallest identification errors will focus on the ring orientation of 35o.

6.5 Filtering, VFMMesh Choices, Camera, Grid Density

Rossi and Pierron47 encouraged caution when using smoothing filters in optimization algorithms because optimized configura-

tions for low noise and no smoothing had similar identification errors to those with high noise and smoothing. However, now
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that an optimum orientation has been defined, a smoothing filter can be employed. Here, different window sizes of a Savitzky-

Golay filter were investigated to determine those that produced the smallest identification errors. The Matlab R© filter is called

the smoothdata function. A Savitzky-Golay filter smooths the data over a specified window size using a quadratic polynomial

and is commonly used when the data have large gradients that need to be preserved. Another advantage with this type of filter is

that no data are lost near the boundaries. The polynomial is fit throughout the specified window and interpolated to the sampling

locations. After analysis of the noisy virtual grid images, the filter was applied to the displacement data. Smoothed displacement

data were differentiated with first-order finite differences to produce strain, i.e., the strain data were not smoothed directly.

Three variations of VFM identification were introduced earlier: Eq. (5) (anisotropic), Eq. (6) (orthotropic), and Eq. (7) (invari-

ant). Eq. (5) does not require a priori knowledge of ring orientation and may be helpful when some variation of ring orientation

is evident in the inspection region, but requires the identification of 12 parameters. Eq. (6) requires the identification of four

fewer parameters, 8 instead of 12, but a priori knowledge of ring orientation is required. Finally, Eq. (7) also requires knowledge

of ring orientation, but ratios of parameters are smaller than for orthotropic identification.

Figure 13 shows identification errors for different constitutive equations, filter sizes and VFM meshes. Orthotropic (labeled

‘Ortho’) and Invariant (labeled ‘Invar’) identification produces smaller errors than Anisotropic (labeled ‘Aniso’) identifica-

tion.The filter size is given inmm; theVFMmeshes correspond to those listed in Figure 5. All data are for the 35o ring orientation,

and the data are arranged from smallest sum of median error, sum of EW and LW errors, moving from left to right. All the com-

binations of constitutive equations, VFM meshes and filter sizes were examined, but only the combinations with the smallest

errors are shown. Complete listing of filter sizes and meshes is provided in Table 4. Only small differences are apparent between

the near bark and near pith materials; both had best identification for the orthotropic constitutive relation (Eq. (6)) and a 1.08

mm filter size. For near bark, the 8×6 mesh produced the smallest error; for near pith, the 12×9 produced the smallest error.

Coarse VFM meshes tend to smooth noisy data. This is the consequence of the selection of optimized virtual fields, which tend

to highlight the contribution of larger strains so that when the mesh is too fine, noisy areas tend to be highlighted more.

As mentioned earlier, we also examined the effect of increased grid density (30 lines/mm), reduced camera resolution (5 MP),

and the use of DIC. Figure 14 shows errors associated with best combination of constitutive equations, VFMmeshes, filter sizes

and cameras for these different choices. For DIC, near bark had no simulations converge for RS = 4 and LW = 6, so the data

represent 80 simulations. The smallest errors were produced with the virtual 20 MP camera and the grid method at 30 lines/mm,

as expected.

6.6 Effect of Ring Spacing and EW/LW Ratio

Combinations of ring spacings and EW/LW ratios, as shown in Figure 1, do not appear with equal likelihood in nature. It is

important that the simulations are able to perform identifications for the common ring spacing and EW/LW combinations. The
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four best combinations (the lowest sum of median EW error and median LW error) are shown in greater detail in Figure 16, for

10 lines/mm grid. Results were similar for 30 lines/mm, though the errors were lower. The markers represent the median error

of ten simulations.

Near bark identification error was largest for 2 mm ring spacing for both EW and LW. The 2 mm ring spacing represents a

scenario that would likely only be encountered in suppressed growth trees. The other six ring spacing/LWP combinations have

errors near 5%. The orthotropic identification had slightly lower errors than the invariant identification for the same filter size,

1.08 mm. Conversely, with a coarser mesh, 5×5, the invariant identification had lower errors. For near bark, the mesh size had

a larger effect than identification method.

Near pith identification error had a different behavior than near bark. EW identification error was low for all identification

procedures, filter sizes and VFM meshes, but LW identification error was higher for the 2 mm ring spacing, similar to those for

the near bark material. The larger filter size, 1.08 mm, had slightly smaller errors than the 0.54 mm filter size. The orthotropic

identification method had smaller errors than the invariant method. The 1.08 mm filter produced the smallest errors for both

near pith and near bark.

6.7 Qij Error

To this point we have used a global error metric, Earea, to select the best combinations of VFM identification, filter size, VFM

mesh, camera resolution, and grid density. Our goal is to develop a process that the errors associated with stiffness identification

are known a priori.

Figure 17 shows the individual Qij errors for the combinations that provided the smallest Earea. Both figures have the same

vertical axis to provide an easier comparison; though it should be noted that a few errors lie outside this range. The 30 lines/mm

grid had both smaller errors and error ranges than the 10 lines/mm grid. Since some of the strain errors were produced at ring

transitions, as shown in Figure 9, the reduced filter size (0.54 mm) likely helped reduce those errors.

As expected, the ring orientation and Iosipescu specimen geometry tended to produce better identification for some Qij than

others; namely, Q11 and Q66 had the smallest identification errors and Q12 had the largest, confirming results in Rossi and

Pierron47. For Q12 EW was generally over-identified and LW was under-identified. Errors associated with Q22 identification

were similar for near bark and near pith for both EW and LW and showed over-identification.

Some of the ring spacing and LWP values in Table 3 are less likely to naturally occur than others, but were included in this

work to examine the robustness of the methodology. Tables 5 and 6 provide error metrics, i.e. accuracy, for two materials, near

bark and near pith for ring spacing at 6 mm and a 25% LWP.

The FEA rows list the error metrics for FEA data as direct input to VFM identification. These rows represent the systematic

error associated with the FEA model and VFM identification. Some portion of the FEA error can be attributed to the elements
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at the EW/LW ring boundaries that contain both EW and LW materials; in these regions FEA is not exact. Based on this

information, the minimum error possible for Qk
12 is near 2% for near bark and 1% for near pith, because the FEA data was used

on input data for all other simulations. All of the error metrics associated with FEA are below 1%.

The second row in each table ‘Grid’ with no noise provides the systematic error associated with the processing and identifi-

cation of the virtual grids. Qk
11 error for near bark and near pith were alternated between over- and under-identification; having

the largest magnitude the EW and LW Q11 have a large contribution to specimen equilibrium, so the alternating error appears

to be a compensation. A similar effect occurred for Q66, the next easiest parameter to identify.

The third row in each table ‘Grid’ with noise addition represents the median error metrics for 10 simulations; 10 different

random noise matrices were used to pollute the ‘Grid, no noise’ images. While the ring orientation and VFMmesh produced the

smallest values for the EE
area + E

L
area, the noise addition created different errors across the moduli; i.e. noise increased stiffness

error in some cases and reduced the error in other cases. In particular, the reduction of EL
area was strongly associated with QL

11

error improvement, even at the sacrifice of QL
22 and Q

L
66

The final three rows in each portion of the table provide a measure of the error improvement associated with the selection of

orthotropic identification, VFM mesh, filter size and 30 lines/mm grid. These errors demonstrate the importance of simulations

for specification of analysis parameters. The fourth row is the analysis of a no noise image without filtering, while the fifth row

is the same image with filtering. Filtering reduced errors for most Qij , with exceptions of near bark QLW
22 and QLW

12 and near

pith QLW
22 . Therefore, combining both near bark and near pith scenarios, smoothing improved identification in 13 of 16 Qij in

no noise images. Generally, filtering of no noise data is expected to reduce accuracy. For this example, filtering of displacement

data appears to have ‘smeared’ high signal-to-noise data into nearby regions thereby increasing their signal-to-noise ratio. The

orientation of the principal material directions, the rectilinear filter, variation of high and low stiffness materials, and other

parameters create an experiment that makes it challenging to attribute systematic noise without considering the complete analysis

procedure.

The final row provides the errors associated with the best combination of VFM mesh, filter and identification. In all cases,

as compared with the fifth row (no noise images) the errors have changed signs. In some cases, near bark QEW
12 and near pith

QLW
66 , the absolute value of the error decreased; in the other cases the absolute values of the errors were very similar. Only three

errors (of 16) were above 10%; 10 of 16 were below 5%. Therefore, we have confidence that the procedure can provide accurate

stiffness for both types of stiffness ratios with this configuration (20 MP camera).

Table 7 lists the COVs of the simulations for the same materials as listed in Tables 5 and 6. Values for FEA and Grid, no

noise are not listed because those simulations contain no random error, only systematic error. The COVs provide a metric for

resolution of the measurementa nd indicate that the random error was low. The final row gives the COVs for the best parameter

selection; all COVs in those rows were below 4%.
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These results show both good accuracy and resolution for the identifications of the materials considered. In practice, the

accuracies and resolutions given in Tables 5, 6, and 7 can be used to explain variation of experimental identifications. Addition

of noise had a much larger effect on accuracy than precision. Therefore, experimental methods that can increase signal-to-noise

ratios will increase accuracy. As expected, increased camera resolution had the greatest effect on accuracy.

6.8 Status and Other Possibilities

The objective of this work was to design a test methodology capable of determining all four orthotropic stiffness components for

EW and LW (8 values in total) with a single specimen in one test, and to evaluate the methodology with simulated experiments.

We have selected optimal experiment parameters, e.g., camera resolution and ring orientation, and analysis parameters, e.g.,

filter size, VFM mesh, grid density, and have a systematic error associated with each stiffness as shown in the fifth rows of

Tables 5 and 6.

We believe that the errors determined here are reasonable and motivate the ongoing experimental work. Initial simulations

were performed with a 5MP camera, and the errors in those simulations indicated that experiments would not be successful.

Technology continues to improve; higher resolution cameras are only one example. Other optical techniques, such as speckle

pattern interferometry, with higher spatial resolution than the grid (10 and 30 lines/mm) used here, will provide even more

accurate results.

While some challenges in the actual experiment remain, e.g., segmentation of EW and LW, some opportunities also exist. For

example, a single load was used for strain measurement. At a 35o grain orientation, that load was about 145 N. In practice, several

images would be taken as the load is increased to 145 N that would provide a much larger dataset than employed here. This would

be equivalent to image averaging in the elastic regime, but perhaps with more images. While performing the experiment it is

usually straightforward to monitor nonlinear load-displacement behavior; we have incorporated a conservative failure estimate

for a naturally occurring material with a large variation of behavior. Therefore, it is quite possible that higher loads could be

used for identification. A systematic drop in stiffness with increased load can be used to determine onset of nonlinear behavior

and be used to maximize the amount of linear elastic data.

The largest errors in these simulations were generally associated with 2 mm ring spacing. This ring density was included to

examine the limits of identification and not meant to illustrate an important case. In fact, this high ring density is unlikely to

occur in plantation managed silviculture that was the primary motivation of this work.
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7 CONCLUSION

This work used virtual experiments to provide optimum parameters for heterogeneous stiffness identification in loblolly pine,

a two phase material composed of a less stiff EW phase and a stiffer LW phase. The ability to determine the full orthotropic

stiffness tensor components for both EW and LW in a single specimen has not been accomplished; however, the results of these

simulations indicate that such an identification is possible and can be performed with reasonable accuracy and precision.

Using a relevant failure theory with homogeneous strengths and stiffnesses, the optimum angle for ring orientation was deter-

mined to be near 35o. Different VFM identification formulations were examined, and the orthotropic and invariant constitutive

forms produced smaller errors than the more general anisotropic form.

At the optimum angle, the effects of data smoothing and VFM mesh densities were examined. Using the ideal combination

of identification formulation, filter and VFM mesh, most inaccuracies associated with Q11, Q22, and Q66 were ±10% with the

Q12 error higher. Error precision was less than 4%.

Besides providing error estimates for future experimental work, the current effort provides a general methodology for hetero-

geneous stiffness identification of other wood species. The optimal parameters found here are likely not the optimal parameters

for wood with different stiffnesses, orthotropy ratios and strengths than those simulated here. The simulations presented here

provide the framework to help others optimize their experiments in a like manner.
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TABLE 1 Material longitudinal-radial paremeters used in simulations.

Near Pith Near Bark Near Pith &
Near Bark

Latewood Latewood Earlywood
El (GPa) 5.69 11.38 4.14
Er (GPa) 0.44 0.88 0.15
�lr 0.30 0.30 0.30
Glr (GPa) 0.86 1.72 0.76
Q11 (GPa) 5.73 11.46 4.15
Q22 (GPa) 0.44 0.88 0.15
Q12 (GPa) 0.13 0.26 0.05
Q66 (GPa) 0.86 1.72 0.76
I1 (GPa) 1.17 2.34 0.91
I2 (GPa) 0.80 1.61 0.55
I3 (GPa) 0.31 0.62 0.15
I4 (GPa) 0.66 1.32 0.50

TABLE 2 Camera parameters and variables used to produce synthetic grid images

Pixels 20 MP (also 5 MP)
Resolution 12 bit
Sensor Size 5472 × 3648 (20 MP) and 1360 × 1024 (5 MP)
Sensor Format 2/3
Noise 0.4% amplitude
u FEA horizontal displacement
v FEA vertical displacement
Lx Horizontal length of specimen, 30 mm
Ly Vertical height of specimen, 20 mm
Npx Number of horizontal pixels in camera, 5472 (1360 for 5 MP)
Npy Number of vertical pixels in camera, 3648 (1024 for 5 MP)
N grid pitch in pixels, 20
Imax maximum gray level intensity, 3900
Imin minimum gray level intensity, 150
Res Resampling, Res x Res, in pixels
minimum pitch minimum grid size, 0.1 mm
pixels/mm 182.4 (45.3 for 5 MP)

TABLE 3 Simulation parameters

Parameter # Values
Orientation, � 36 0,5,10,… ,175 degrees
Material type 2 Near pith, near bark
Ring Spacing 3 2, 4, 6 mm
Latewood % (LWP) 3 17%, 25% or 50%
Replications 10
Total Number of Simulations 6840
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TABLE 4 Constitutive equations, smoothing filter sizes and VFM meshes examined; meshes are shown in Fig 5 b-e

Q Formulations Anisotropic, Orthotropic, Invariant
Smoothing filter sizes (mm × mm):(pix × pix) 0 (no smoothing), 0.14:25, 0.27:50, 0.54:100, 1.08:200
VFM meshes 5 × 5, 8 × 6, 12 × 9, 24 × 18
Total combinations examined 3 × 4 × 4 = 48

TABLE 5 Median Qk
ij errors (%) for near bark for ring spacing at 6 mm and 25% LWP with ring orientation at 35o.

Earlywood
Data VFM Filter Grid Noise ID Replicates Earea Q11 Q22 Q12 Q66
Source Mesh (mm) (l/mm)
FEA 24×18 N/A N/A N Aniso 0 0.40 -0.36 0.13 -1.95 -0.57
Grid 24×18 N/A 10 N Aniso 0 7.32 -12.33 6.33 -16.99 -2.39
Grid 24×18 N/A 10 Y Aniso 10 15.81 6.51 35.08 79.53 7.31
Grid 12×9 N/A 30 N Ortho 0 2.69 -3.90 5.00 39.90 5.50
Grid 12×9 0.54 30 N Ortho 0 1.73 -2.50 1.90 -4.50 2.90
Grid 12×9 0.54 30 Y Ortho 10 2.15 3.12 -2.51 2.35 -3.36

Latewood
FEA 24×18 N/A N/A N Aniso 0 0.24 0.41 -0.30 0.04 0.08
Grid 24×18 N/A 10 N Aniso 0 7.45 8.45 -7.90 29.27 3.49
Grid 24×18 N/A 10 Y Aniso 10 5.42 -4.59 -24.87 24.88 0.00
Grid 12×9 N/A 30 N Ortho 0 6.94 7.10 10.70 14.50 4.30
Grid 12×9 0.54 30 N Ortho 0 4.20 3.70 16.50 19.20 0.70
Grid 12×9 0.54 30 Y Ortho 10 5.35 -4.89 -16.79 -23.12 -1.85

TABLE 6 Median Qk
ij errors (%) for near pith for ring spacing at 6 mm and 25% LWP with ring orientation at 35o.

Earlywood
Data VFM Filter Grid Noise ID Replicates Earea Q11 Q22 Q12 Q66
Source Mesh (mm) (l/mm)
FEA 24×18 N/A N/A N Aniso 0 0.07 -0.03 -0.14 -0.13 -0.08
Grid 24×18 N/A 10 N Aniso 0 2.87 0.42 -1.15 24.75 4.19
Grid 24×18 N/A 10 Y Aniso 10 92.95 -92.82 -93.42 -93.09 -92.75
Grid 12×9 N/A 30 N Ortho 0 3.03 1.90 5.30 12.00 7.20
Grid 12×9 0.54 30 N Ortho 0 2.48 1.70 4.10 2.50 5.50
Grid 12×9 0.54 30 Y Ortho 10 2.92 -2.08 -4.60 -5.16 -6.08

Latewood
FEA 24×18 N/A N/A N Aniso 0 0.47 -0.57 0.97 -0.71 -0.46
Grid 24×18 N/A 10 N Aniso 0 6.52 -7.39 -0.91 -26.88 -2.63
Grid 24×18 N/A 10 Y Aniso 10 48.18 40.99 -55.46 118.75 -2.04
Grid 12×9 N/A 30 N Ortho 0 2.87 -3.40 6.80 39.90 -4.10
Grid 12×9 0.54 30 N Ortho 0 3.26 -3.80 9.00 35.20 -3.70
Grid 12×9 0.54 30 Y Ortho 10 3.94 4.80 -9.46 -36.75 3.20
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TABLE 7 COV(Qk
ij) for near bark and near pith for ring spacing at 6 mm and 25% LWP with ring orientation at 35o. FEA

and Grid, no noise data are values for single data set; Grid, noise and Grid, noise, smoothed values are the medians of 10
simulations. First row used anistropic identification, a 24 × 18 VFM mesh, no filtering and a 10 lines/mm grid; final row used
orthotropic identification, a 12 × 9 VFM mesh, a 0.54 mm filter, and 30 lines/mm grid.

Near Bark COV (%)
Earlywood Latewood

Q11 Q22 Q12 Q66 Q11 Q22 Q12 Q66
Grid, noise 10.11 5.48 48.01 11.37 17.67 17.33 41.33 20.84
Grid, noise, smoothed 1.13 0.46 3.33 0.78 1.48 0.44 3.46 1.28

Near Pith COV (%)
Grid, noise 21.55 19.74 20.73 21.74 13.80 12.07 36.02 5.64
Grid, noise, smoothed 0.50 0.37 3.24 0.38 1.04 0.34 2.98 0.98

FIGURE 1 Example ring spacing and LW/EW ratios for � = 35o. Only center examination region is shown and has dimensions
30 mm wide × 20 mm high.
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FIGURE 2 Schematic of orientation of the specimens within the bolt. Longitudinal (l) and radial (r) directions are shown on the
bolt. ’N’ and ’S’ denote north and south respectively and are used for additional specimen specificity, but not used in this work.
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FIGURE 3 Schematic of unnotched Iosipescu geometry. Center, shaded region indicates grid inspection area. Angle � rep-
resents ring orientation and is aligned with the axes of material orthotropy, x, y. Model was 2.3 mm thick. F is applied
force.

FIGURE 4 Load applied for each orientation; � given in Figure 3
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(a) 5 x 5 (b) 8 x 6

(c) 12 x 9 (d) 24 x 18

FIGURE 5 VFM meshes examined in this work.
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Homogeneous FEA

Inputs:
a) �, orientation of orthotropic
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Determine
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displacements

Create synthetic
grid images:
undeformed
& deformed
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FIGURE 6 Flowchart of simulation procedure.
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FIGURE 7 Integral error example. Orientation angle � = 155o. Shaded areas represent error. For this example, EW error =
9.2% and LW error = 14.7%
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FIGURE 8 Strains produced during simulation processes. In this example, � = 30o, ring spacing = 4 mm, and LWP = 50%.
Smoothing window for final row was 0.54 × 0.54 mm.

Δ"1 Δ"2 Δ"6

FIGURE 9 Difference of FEA strains and grid strains without noise addition, using the first two rows of Figure 8.
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(a) Near bark FEA results. (b) Near pith FEA results.

FIGURE 10 Earea for FEA data. Markers are at the median value and error bars denote data range. EW and LW data are offset
from each for visualization.

(a) Near bark results for simulated grid images without noise addition. (b) Near pith results for simulated grid images without noise addition.

FIGURE 11 Earea using simulated grid images with no noise. Markers represent median value and error bars represent data
range. EW and LW data are offset from each for visualization.

(a) Near bark results for simulated grid images with noise addition. (b) Near pith results for simulated grid images with noise addition.

FIGURE 12 Earea for grid images with noise addition. Markers represent median value and error bars represent data range.
Second (right) vertical axis denotes simulations without convergence. EW and LW data are offset from each for visualization.
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(a) Near bark results with filtering. (b) Near pith results with filtering.

FIGURE 13 Comparison of Earea at � = 35o for different Q formulations, VFM meshes (Figure 5) and Savitsky-Golay size
filters (mm). Markers represent median value and error bars represent data range. Abbreviations: Ortho - Orthotropic, Invar -
Invariant, Aniso - Anisotropic. EW and LW data are offset from each for visualization.

(a) Near bark Qij error at � = 35o . The DIC median LW error is 96% (marker not shown on this scale).
(b) Near pith Qij error at � = 35o . The 5 MP camera maximum LW error is 92%; the DIC maximum LW error
is 238% (upper whiskers not shown on this scale).

FIGURE 14 IndividualQij error at � = 35o. Markers represent median value and error bars represent data range.⧫ = LW, •=
EW.

FIGURE 15 Legend for following figures.

(a) Near bark, normalized stiffness error. (b) Near pith, integral normalized stiffness error.

FIGURE 16 Integral normalized stiffness error at � = 35o for different Q formulations, VFM meshes and Savitsky-Golay size
filters. Figure 15 contains the legend.
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(a) Near bark Qij error at � = 35o . (b) Near pith Qij error at � = 35o .

FIGURE 17 Individual Qij error at � = 35o; ⧫ = LW, •= EW. Figure 15 contains the legend.
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