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Abstract

Digital histopathology slides are scanned and viewed under different magnifications and
stored as images at different resolutions. Convolutional Neural Networks (CNNs) trained
on such images at a given scale fail to generalise to those at different scales. This inability is
often addressed by augmenting training data with re-scaled images, allowing a model with
sufficient capacity to learn the requisite patterns. Alternatively, designing CNN filters to
be scale-equivariant frees up model capacity to learn discriminative features. In this paper,
we propose the Scale-Equivariant UNet (SEUNet) for image segmentation by building on
scale-space theory. The SEUNet contains groups of filters that are linear combinations of
Gaussian basis filters, whose scale parameters are trainable but constrained to span disjoint
scales through the layers of the network. Extensive experiments on a nuclei segmentation
dataset and a tissue type segmentation dataset demonstrate that our method outperforms
other approaches, with much fewer trainable parameters.
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1. Introduction

Pathologists diagnosing biopsy samples view histopathology slices at different magnifications
by controlling the microscope’s objective revolver. Neural network based decision support
for digital pathology take as input digital images scanned from glass slides. Specimen
slides scanned at different medical institutions may use different objective magnifications to
digitalize specimen slides, resulting in whole slide images (WSI) being at different scales. For
example, images provided by the CRAG dataset Awan et al. (2017) are in 20× magnification;
For the DigestPath-2019 dataset Li et al. (2019), images are in 40× magnification. Models
such as Convolutional neural networks (CNNs) trained on images at a specific scale generally
can not generalise to other scales, which greatly restricts the applicability of computer-aided
diagnosis models.

CNNs have dominated the computer vision field since the proposal of the AlexNet
(Krizhevsky et al., 2012). The most widely adopted strategy to cope with scale variation in
unseen data is introducing scale augmentation during training CNNs, where training sam-
ples are randomly scaled before being fed into the network. Other attempts such as scale
selection (Girshick et al., 2014) and scale fusion (Kokkinos, 2015) also help to circumvent
scale changes. However, these methods lack explicit mechanisms to model scale informa-
tion. Some works such as Kanazawa et al. (2014); Marcos et al. (2018); Xu et al. (2014)
achieve scale equivariance by resizing the input or filter, but these methods are computa-
tionally expensive since they rely on tensor resizing and image interpolation. Other ways of
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generating filters of different sizes include Bekkers (2019); Sosnovik et al. (2020); Zhu et al.
(2022), parameterising filters by a trainable linear combination of a family of predefined,
fixed multi-scale basis functions (Hermite, Fourier, B-Splines). Such methods, however,
require that both the scale of basis functions and the size of filters should be fixed, once
the network has been initialised. The work presented in Pintea et al. (2021) shows that
hard-coding the scale hyper-parameters in the network can be restrictive, while learning the
scale parameter is especially beneficial when dealing with inputs at multiple resolutions.

In this paper, we introduce the Scale-Equivariant UNet (SEUNet), which demonstrates
superior generalisation performance on image datasets at different scales when compared
with the conventional CNN model and other scale-equivariant models. The main charac-
teristics of out work are as follows: 1) We parameterise convolutional filters with learnable
Gaussian derivative filters, instead of using a set of pre-calculated, fixed filter basis. 2) We
impose range constraints on learnable scale parameters to ensure coverage of multiple scales,
while allowing them to be tuned within disjoint intervals. This frees up model capacity to
find an optimal set of scale parameters that adapt to training samples by back-propagation.

2. Related Work

In recent years, group equivariance as an inductive bias for CNNs has influenced the design
of several architectures including scale-equivariant convolutional networks. Worrall and
Welling (2019) propose deep scale-space (DSS) based on the theory of scale-space and semi-
groups to model transformation properties of images under scale transformations, modelling
filter rescaling by dilation. However, the DSS is restricted only to integer scale factors, and
therefore does not cover a continuous range of scale variations. To extend DSS to arbitrary
scales, Sosnovik et al. (2021a,b) propose Discrete Scale Convolution (DISCO) wherein the
equivariance error between the non-integer scale factor with its two nearest integer scale
factors is minimised. In Scale-Equivariant Steerable Networks (SESN) (Sosnovik et al.,
2020), filters are parameterised by trainable linear combination of pre-calculated Hermite
basis functions. These are defined in the continuous scale domain and then projected on
pixel grids for a set of given scale factors. Although SESN and DISCO allow the use of
arbitrary scale factors, the best set of scale factors are dataset and network dependent and
need to be carefully chosen to maximise model performance.

Gaussian scale-space theory (Lindeberg, 1994) represents an image as a one-parameter
family of gradually smoothed signals, in which the fine scale details are successively sup-
pressed by convolving the image with a set of re-scaled Gaussian filters and Gaussian deriva-
tive filters. Lindeberg (2022) proposes a Gaussian derivative network in which every con-
volutional filter is constructed as a linear combination of Gaussian derivative filters. The
architecture presented in Lindeberg (2022) is only evaluated on image classification tasks,
for which global scale invariance is key to predictive accuracy. For image segmentation
tasks, the output map should scale in proportional to the input, making scale equivariance
a necessary property. Similarly, Pintea et al. (2021) learn linear combinations of N-th order
Gaussian derivative filters to create the N-Jet convolutional layer. Unlike Lindeberg (2022)
and Sosnovik et al. (2020) where the scale parameters (�) are fixed, the � and sizes of the
filters in the N-Jet layer are learned from the data; this frees the network architect from
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searching and setting scale-related parameters for datasets and networks. However, the� is
shared by all �lters in a layer, thus limiting the representational capacity of a N-Jet layer.

Our work extends Lindeberg (2022) from image classi�cation to image segmentation
with while also allowing the � of each layer to be learnable similar to Pintea et al. (2021).
Furthermore, we set the scale factors� to lie in disjoint ranges through the layers of the
network.

3. Methodology

Scale transformations and scale equivariance. The scaling operatorSs is de�ned on
a function (image) f thus:

(Ssf )(x) = f (s� 1x); s > 0: (1)

For � a family of feature mapping operators, scale equivariance means that the scaling
transformation should commute with the feature mapping operation according to

� 0(Ssf ) = Ss(�( f )) ; (2)

Where � 0 denotes some feature map operators within the same family � that operates on
the image re-scaled by factor ofs. We refer to cases withs > 1 as up-scalings and to cases
with s < 1 as down-scalings.

3.1. Parameterising convolutional �lters, layer by layer

The 1D Gaussian �lter at scale � is written as G(x; � ) = 1
�

p
2�

e� x 2

2� 2 which can be extended
to 2D isotropic Gaussian �lters as G(x; y; � ) = G(x; � )G(y; � ). Then the 2D Gaussian
derivatives can be de�ned by the product of the partial derivatives on x and on y:

Gi;j (x; y; � ) =
@i + j G(x; y; � )

@xi @yj
=

@i G(x; � )
@xi

@j G(y; � )
@yj

(3)

Filter construction. In conventional CNNs, a bank of �lters F l of size [Cl ; Cl � 1; h; w] is
used to map an input imagef 0 or feature map f l � 1 2 RCl � 1 � H � W into f l 2 RCl � H � W by
convolution. Here l � 1 is the layer index, (H; W ) and (h; w) denotes the size of the feature
map and the size of �lter, respectively. Padding is applied therefore the size of the feature
output remains the same as the input. We compute scale-space feature maps by convolving
with groups of �lters at di�erent scales, with each convolutional �lter a linear combination
of Gaussian derivative �lters:

F l
k (cl ; x; y; � l

k ; cl � 1) =
i + j � NX

i;j � 0

� l
i;j;c l ;cl � 1

Gi;j (x; y; � l
k ); (4)

where � l
i;j;c l ;cl � 1

2 R are learnable, and independent ofk which indexes scale settings within
a layer. We describe these next, �rst for the �rst layer from image to features, and then how
features are composed in subsequent layers. In detail, theCl channels inF l are divided into

 groups denoted byF l
k 2 R

C l
 � Cl � 1 � h� w , k 2 f 1; : : : ;  g. The �rst layer maps the input
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image f 0 into f 1 = F 1 ? f 0, f 1 2 R � C 1
 � H � W , by convolving with �lters F 1

k (c1; x; y; � 1
k ; c0)

at position (x; y), input channel c0 2 f r ; g; bg and output channel c1 2 f 1; � � � ; C1
 g. The

�rst dimension in f 1 represents the scale axis, with scales indexed byk.
Note that the subscript k of � l

k denotes that the scale parameter varies across groups in
the same convolutional layerl , for all l , but is shared across �lters in the same group. The
� l

i;j;c l ;cl � 1
in equation (4) does not have a group indexk in its subscript, as we share these

learnable weights between groups, in order to ensure that the convolution kernels generated
in di�erent groups are consistent in shape, and do not mix separated scale factors, thus
ensuring scale equivariance. When = 1, the F l degenerates to N-Jet convolutional �lter
in which the � is shared for the complete layer (Pintea et al., 2021). We visualise the
constructed multi-scale �lters in Appendix B.

Scale convolution in hidden layers. For layers l � 2 feature maps are divided

into  groups f l � 1 2 R �
C l � 1

 � H � W , each representing the response to a speci�c scale

in f l � 1
k 2 R

C l � 1
 � H � W . We again use equation (4) to construct groups of �lters F l =

[F l
1; � � � ; F l

 ]; F l
k 2 R

C l
 �

C l � 1
 � h� w to convolve with f l

k . After the �rst layer, we de�ne the
network architecture to have f l

k = F l
k ? f l � 1

k : in subsequent layers each group of �lters acts
only on a subset of scale-matched channels. This is in contrast to the �rst layer (l = 1)
where the �lters act on the entire image to generatef 1

k := ( f 1)k = F 1
k ? f 0, with all colour

channels contributing to the  scale-speci�c channels inf 1 indexed by k. We thus have the
learnable coe�cients � and � l

k range over channel indices

f � l
i;j;c l ;cl � 1

jc0 2 f r ; g; bg; cl = 1 ; : : : ;
Cl


g and f � l

k jk = 1 ; : : : ;  g: (5)

Thus, the propagation of information captured by composition of layer-wise convolutions
does not mix information from di�erent scales. The restriction on network connections to
scale-matched layer outputs is designed to maintain equivariance to input rescaling at layer
outputs under composition. Although acting F l

k on the entire f l can be another option,
an attempt in Sosnovik et al. (2020) shows that introducing inter-scale interaction also
introduces extra equivariance error, and leads to lower performance. We further tune the
successive scale factors� l

k to track the increase in the receptive �eld with depth.

3.2. Imposing range constraints on � l
k

The trainable parameters in equation (5) in the �lters include the scale parameters � l
k

learned during back-propagation. However, leaving them to be tuned completely freely
may lead to a problem: all � l

ks in the same layer may have the same value, which means
constructed �lters are redundant, limiting the scale diversity of �lters. As our original
intention is that the network can achieve scale equivariance by learning multi-scale convo-
lutional �lters, we introduce the following constraints to separate � l

k values to lie in disjoint
intervals.

� l
k (x) =

al
k � bl

k

2
tanh x +

al
k + bl

k

2
; al

k > b l
k ; b � 0 (6)

whereal
k and bl

k are hyper-parameters for the upper and lower bounds for� of �lters at the
l th layer and the kth group. x is a trainable real variable. By setting an appropriate set of
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al
k and bl

k : multi-scale �lters can be constructed as per equations (4). Once� l
k is known,

the following formula used in Pintea et al. (2021) is employed to determine the size� l
k of

�lters f l
k :

� l
k = 2

l
2� l

k

m
+ 1 ; � l

k > 0 (7)

This enables us to train the size of the receptive �eld. In the encoder path of the UNet
(layer 1-8), we gradually increase� , to increase receptive �eld size. This is in keeping with
Lindeberg (2022). In the decoder path (layer 11-18), we gradually decrease� . Layer 9-10
are the bottleneck layers. An ablation study with regard to the setting of � l

k can be found
in Appendix 5 which demonstrates the bene�t of imposing range constraints on� l

k .

3.3. Parallelising training by simultaneous optimisation of multiple loss
functions

As described in section 3.1, �lters in each layer are divided into groups and each group of
�lters operate only on an non-overlapping subset of feature maps with no inter-scale feature
interactions. Thus, features learned by these groups of �lters can be trained in a mutually
independent fashion. A penultimate convolution layer for feature fusion creates a score that
is passed to a softmax function, followed by the calculation of loss function. This, however,
mixes multi-scale information and destroys the scale equivariance of the features. Therefore,
to train all groups of �lters simultaneously while maintaining equivariance between multi-
scale features, we propose to minimise a weighted combination of multiple loss functions,
with each of them acting only on a single group of �lters. In detail, given the ground
truth y and feature mapf L � 1

k that is produced by �lters F L � 1
k in a L-layer network, a 1� 1

convolution with softmax activation is used to map f L � 1
k into a probability map ŷk for each

of C classes for every pixel in theH � W image. The loss function used to trainF L � 1
k is

the norm cross-entropy loss:

lk (y; ŷk ) = � ylog(ŷk ); y 2 f 0; 1gC� H � W ; ŷk 2 RC� H � W ; k = 1 ; : : : ; : (8)

The overall loss function is de�ned as:

L =
X

k=1

e� k lk (y; ŷk ); e� k =
� k + 1

P 
k=1 (� k + 1

 )
; where 0� � k � 1;

X

k=1

� k = 1 ;
X

k=1

e� k = 1 : (9)

� k is a weighting factor that assigned toFk to characterise the relative importance between
scales. It is quite plausible that the loss function is minimised by a dominating contribution
from a speci�c scale indexed byk, driving all other � k to zero, a phenomenon called com-
petitive exclusion. It is to maintain some contribution from features acquired at multiple
scales that we introduce the additive constant (1= ) in e� k . This constrains the trainable e� k

to be in the range [ 1
2 ;  +1

2 ]. In practice, we initialise � k to 1
 and use thesoftmax function

to normalise � k to guarantee
P 

k=1 � k = 1. Figure 1 shows the entire structure of the model
proposed here.

3.4. Final Prediction Generation

The SEUNet generates probability mapsŷk;n , k = 1 ; : : : ;  from learned �lters with di�erent
scales/sizes for each pixeln. For each pixeln, let ŷk;n;c be the probability of predicting class
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Figure 1: The architecture of the Scale-Equivariant UNet (SEUNet) model proposed here.
Each square node in the graph represents a convolution block that consists of two convo-
lutional layers. In each square node, �ve rectangles in di�erent colours denotes �ve groups
of �lters that are parameterised by di�erent � l

ks, but share the same� . All �lters with
the same colour form an independent sub-network, and all sub-networks have their own
prediction and loss functionsf lk j k 2 f 1; � � � ; 5gg. All sub-networks can be trained simul-
taneously in an end-to-end fashion by minimising the combined loss function.

c 2 C by classi�er indexed by scalek. Given an image with unknown scale information
and these  probability maps, we explore the following strategies to generate the �nal
segmentation map.

Arithmetic mean ensemble. For each pixeln the �nal segmentation map is obtained
from arg maxc(1= )

P
k ŷk;n;c .

Per-pixel prediction selection based on prediction con�dence. Let (k; n; c� ) =
arg maxc ŷk;n;c and (k; n; c0) = arg max c6= c� ŷk;n;c . Then � n;k := ( ŷk;n;c � � ŷk;n;c 0), the di�er-
ence between the largest and second-largest class probability is a measure of the predictive
con�dence of classi�er k. We choose the mostcon�dent prediction (k� = arg max k � n;k , so
c� = arg max c ŷk � ;n;c ) for pixel n as its �nal predicted label. We denote this strategy P Dist.

Per-pixel prediction ensemble based on prediction con�dence. To mitigate
against a concern of an incorrect prediction made with high con�dence, we propose PEns,
a per-Pixel ensemble strategy that weights multiple predictions based on their con�dence.
Thus multiple less con�dent predictions can compensate in test cases where the highest
con�dent prediction may be incorrect.

The detailed process of generating �nal prediction using PDist or P Ens strategies is
described in Appendix A.

4. Experiments and Results

4.1. Datasets

MoNuSeg dataset The MoNuSeg dataset (Kumar et al., 2019) is a multi-organ nucleus
segmentation dataset. The training set includes 37 images of size 1000� 1000 from 4 di�er-
ent organs (lung, prostate, kidney, and breast). The test set contains 14 images with more
than 7000 nucleus boundary annotations. All images are scaned at 40� magni�cation. A
400� 400 window slides through the images with a stride of 200 pixels to separate each
image into 16 tiles for training and testing.
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BCSS dataset The Breast Cancer Semantic Segmentation (BCSS) dataset (Amgad et al.,
2019) consists of 151 H&E stained whole-slide images and ground truth masks correspond-
ing to 151 histologically con�rmed breast cancer cases. Tissue types of the BCSS dataset
consists of 5 classes (i)tumour, (ii)stroma, (iii)inammatory in�ltration, (iv)necrosis and
(v)others. We set aside slides from 7 institutions to create our test set and used the re-
maining images for training. Shift and crop data augmentation, random horizontal and
vertical ip were adopted to enrich training samples. Finally, 3154 and 1222 pixel tiles of
size 512� 512 were cropped for training and testing, respectively.

4.2. Degree of equivariance

To quantitatively compare the degree to which our proposed method preserves scale equiv-
ariance relative to other scale-equivariant convolutional layers, we rescaleN test images
f i 7! Ss(f i ) by scale factor s, extract feature maps �( �) and � 0(�), and then calculate the
equivariance error:

� s =
1
N

NX

i =1

kSs�( f i ) � � 0(Ss(f i ))k2
2

kSs�( f i )k2
2

: (10)

where �( �) and � 0(�) denotes a sequence of convolutional operations with �lters parame-
terised by di�erent sets of � k .

4.3. Compared methods

We use the UNet architecture as a backbone and replace the conventional convolutional
layers with di�erent types of scale-equivariant convolution to generate 3 scale-equivariant
UNet variants (SESN: the UNet with SESN layers; DISCO: the UNet with DISCO layers;
SEUNet: the UNet with the proposed Gaussian derivative layers, the model generates
segmentation maps). For the UNet with conventional convolutional layers, the number of
�lters at each depth are 60, 120, 240, 480, 960. For a fair comparison, all of UNet variants
have the same number of scales (refers to the hyper-parameter ). for the SESN and DISCO
model, we set as 5 and scale factors asf 1; 2; 3; 4; 5g, therefore the size of �lters at each
scale isf 3; 5; 7; 9; 11g. For SESN model, we set the highest order of Hermite polynomial as
4 since it demonstrates the best performance. For the proposed models, we carefully set
the lower and the upper bound of � l

k to set the size of �lters (derived from equation (7))
of the �rst layer to be consistent with that of SESN and DISCO. The � range of each
layer is shown in Figure 3(a) and 3(b) (black dashed lines). We set the highest order of
the Gaussian derivative to be 1, since using higher order derivatives fails to provide better
performance. The colour normalisation method proposed in Vahadane et al. (2016) is used
to remove stain colour variation, before training. All models are trained on images at the
original scale, scale augmentation is not used in all of our experiments.

We implement the conventional UNet model and our proposed methods. The o�cially
released source code of SESN and DISCO layers is used in our experiments. All Models are
implemented in Pytorch Paszke et al. (2019) and trained on one NVIDIA RTX 8000 GPU
using the Adam optimiser Kingma and Ba (2014) with weight decay of 10� 4 to minimise
the cross-entropy loss. The training epoch is set as 70, and the initial learning rate for
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Test Scale 0.25 0.3 0.35 0.42 0.5 0.59 0.71 0.84 1

Pred
Head

1 30.25 34.04 37.12 43.99 52.49 57.71 59.87 58.98 57.17
2 30.39 34.39 37.68 43.75 49.78 56.32 60.25 59.94 58.28
3 26.62 30.76 34.06 40.36 46.62 53.58 59.02 59.78 58.20
4 22.56 26.27 29.21 34.47 40.58 49.14 56.56 58.97 57.82
5 21.81 24.55 27.10 31.73 36.85 44.16 53.27 57.89 58.13

Test Scale 1.19 1.41 1.68 2 2.38 2.83 3.36 4 mean

Pred
Head

1 51.90 43.62 34.72 27.41 23.66 21.23 19.89 19.13 39.60
2 54.08 46.32 37.86 30.50 25.42 22.28 20.76 19.97 40.47
3 54.95 47.82 39.62 32.96 27.99 23.64 21.76 20.93 39.92
4 54.70 48.94 41.68 35.70 31.63 27.66 24.16 22.33 38.96
5 54.62 49.11 41.31 35.87 32.26 29.25 26.63 24.64 38.19

Table 1: The mIoU score on the BCSS dataset (highest in bold). Head 1-5 denote 5
classi�ers appended to the 5 groups of �lters of increasing� at the last layer. The actual �
values are shown in Figure 3(a). The last column is the mean mIoU score over all scales.

the Adam optimiser is set as 0.015 and then changed according to the 1cycle learning rate
policy Smith and Topin (2019). The batch size is 20 for training models.

4.4. Results and Discussion

In this section, we report the overall segmentation performance of the three UNet architec-
tures followed by ablation studies to analyse the performance gain of our approach. For the
BCSS dataset, we use the mean Intersection over Union (mIoU) to measure segmentation
performance of models, while for the binary task in the MoNuSeg dataset, we report the
IoU score of the nuclei class. Examples of images, masks and segmentation maps generated
by models can be seen in Appendix D.

Evaluation regime. Since we aim to evaluate models' scale equivariance property, we
re-scale the test set by a series of scale factors between 0.25 and 4, with a relative scale
ratio of 4

p
2 between adjacent testing scales.

Scale speci�c predictions for SEUNet . Table 1 summarises the mIoU score of the
proposed method on re-scaled test images. Although we o�er 3 strategies to generate the
�nal segmentation maps from  predictions, we �rst check the performance of each group
of �lters. As seen in the table, the best prediction head shifts to the one with larger �
values, as the scale of images increase (although prediction head 2 gives best prediction for
scales between 0.25-0.35, the performance gap to the prediction head 1 is very small). This
is consistent with our intuition that to capture the same information from enlarged images,
�lter sizes should also increase.

Comparison with CNN baseline and other equivariant methods. Figure 2(a)
and 2(b) show the per-scale test performance of di�erent approaches on the BCSS and the
MoNuSeg datasets. The performance of all models are similar when the test scale is close
to the original training scale. However, as the test scale moves away from the training scale,
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Dataset Metric CNN SESN DISCO Arithm P Dist P Ens

MoNuSeg
IoU 54.94 57.29 59.77 59.96 59.93 59.98
E Err 0.64 0.57 0.39 0.26

BCSS
mIoU 34.48 35.36 40.51 40.51 42.10 42.43
E Err 0.74 0.72 0.61 0.54

Table 2: Experimental results of di�erent methods on MoNuSeg and BCSS dataset. EErr
denotes the equivariance error of feature maps generated by the last layer (before the �nal
prediction generation step).

(a) BCSS dataset (b) MoNuSeg dataset

Figure 2: Comparison of the Per-scale mIoU score between models.

the performance of the conventional CNN drops signi�cantly. Although the performance of
SESN, DISCO and the proposed method also drop as the test scale changes, these models
look more robust than the CNN. Table 2 compares models in terms of the averaged mIoU
scores over di�erent scales, the equivariance of feature map at the last layer, and the number
of trainable parameters. As observed from the table, the proposed SEUNet with di�erent
prediction ensemble/selection strategies outperforms all compared methods, particularly on
the BCSS dataset, while using fewer parameters. In terms of prediction strategy, simply
averaging the prediction demonstrates the worst performance (on the BCSS dataset). This
suggests that mixing features of all scales equally without considering the possibility that
scale-speci�c �lters have di�erent contributions to the prediction is not the optimal choice.
The proposed PDist strategy surpasses the arithmetic mean ensemble by 1.59 points on
the BCSS dataset. Moreover, the PEns further boosts the performance by 0.33 points,
when compared with the P Dist. This comparison validates the e�ectiveness of the PDist
and P Ens strategy. We report the equivariance error � s in Table 2 computed using the
�nal layer outputs of all three networks on both datasets. We note that lower equivariance
error correlates with better segmentation performance when tested on multi-scale images.

5. Ablation Study

In section 3.2, we propose to constrain the value of� l
k in some non-overlapping ranges, to

ensure that the constructed �lters capture relevant patterns at di�erent scales. Here, to ver-
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(a) � l
k is constrained (BCSS). (b) � l

k is constrained (MoNuSeg).

(c) � l
k is trained freely (BCSS). (d) � l

k is trained freely (MoNuSeg).

Figure 3: The � l
k values of �lters in di�erent layers. (a) and (b) The � l

k of models trained on
the BCSS and the MoNuSeg datasets under range constraints. (c) and (d) The� l

k of models
trained on the BCSS and the MoNuSeg datasets without imposing range constraints. The
black dashed lines in (a) and (b) show the range of� l

k of layers.

ify the e�ectiveness of imposing range constraints and to trace the origin of the performance
gain of the proposed method, we conduct the following two ablation experiments.

1) Fix � l
k values. Instead of constraining � l

k to the range of (al
k ; bl

k ) in equation (6),

we �x the � l
k to be al

k + bl
k

2 .
2) � l

k being trained freely.

MoNuSeg BCSS
Cons Fixed Free Cons Fixed Free

mIoU 59.98 58.36 57.40 42.43 41.45 39.02

Table 3: mIoU of SEUNets trained in di�erent � settings.
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Table 3 summarises the performance achieved by models trained under di�erent� l
k

settings. The mIoU score reported in the table is the mean of per-scale mIoU score obtained
by P Ens. As shown in the table, models trained with range constraint outperform models
with � l

k being �xed or trained completely freely, on both datasets. Figure 3 shows the� l
k

values of models trained under di�erent settings. As can be seen in Figure 3(c) and 3(d),
allowing � l

k to be trained freely results in the case that multiple � l
ks converge to the same

value. This is detrimental to the feature representation of the model since the same� l
k

means that the same scale of the generated �lters, thus the resultant feature map is also
the same (because the coe�cient� is shared between �lters in di�erent groups). Therefore,
features are redundant and are not scale equivariant. This is the reason why the model
trained without range constraint demonstrates the worst performance. The model trained
with �xed � l

k values performs slightly better than the freely trained one, since� l
ks are

non-overlapping, multi-scale �lters can be constructed to extract information from di�erent
scaled images. However, the manually selected� l

ks may not be the optimal choice that �ts
the dataset best. Moreover, the optimal set of� l

ks may vary from dataset to dataset. This
motivated our choice in equation (6) to train � l

ks to remain in disjoint intervals. As observed
from Figure 3(a) and 3(b), � l

ks trained under constraint deviate from �xed values. And
also, the learned� l

ks are quite di�erent on the BCSS and the MoNuSeg datasets. Another
bene�t of imposing range constraints on � l

k is to reduce the computational complexity of
the model. In our experiments, we observe that the model trained with range constraints
required only 1

3 the training time of the freely trained one. Because the �lter of smaller size
is less computationally intensive when performing convolution operations. For example, in
Figure 3(a) and 3(b), the maximum � l

k values are 4.5 and 9.99 (layer 10), respectively, and
the corresponding �lter sizes are 19 and 41 (calculated from equation (7)). Therefore, the
amount of computation required by the latter is � 4:65� that of the former when convolving
with an image.

6. Conclusion

In this paper, we propose a Scale-Equivariant UNet (SEUNet) to address the challenge
of generalising neural network segmentation on histopathology images to unseen scales.
Firstly, we parameterise multi-scale �lters by linearly combining groups of Gaussian deriva-
tive �lters. The constructed �lters are then used to learn scale-space representations that
have a built-in scale-equivariant property. We constrain �lter scales to be both trainable yet
cover disjoint ranges. This is useful for �nding dataset-adapted scale parameters. The ex-
tensive experimental results on two public datasets demonstrate that the proposed SEUNet
achieves state-of-the-art performance. However, since we learn the Gaussian derivatives
during training, these derivatives should be updated after each round of� l

k updating, which
is more computationally expensive than using a pre-calculated �lter basis. In the future,
more range constraints will be explored to enable improved performance.
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Appendix A. Pseudo-Code of Generating Final Prediction

We �rst calculate the prediction con�dence, the di�erence between the largest and the
second largest probability, then the weighting factor wk of prediction ŷk is determined by
the softmax function, giving larger weights to con�dent predictions.
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Algorithm 1: Per-pixel Prediction Selection/Ensemble based on Probability Distance.

Input: Probability vectors [ ŷ1; � � � ; ŷ ], ŷk 2 RC , k 2 f 1; � � � ;  g; C is the number of
classes.Strategy 2 f P Dist or P Ensg.

1 D = [ ] ; // Recording distance.
2 for k = 1 ; 2; :::;  do
3 pmax = max( ŷk )
4 pmax idx = arg max( ŷk )
5 ŷk;pmax idx = � 1
6 psecond max = max( ŷk )
7 D:append(pmax � psecond max )
8 ŷk;pmax idx = pmax

9 end
10 if Strategy==P Dist then
11 k = arg max D
12 ŷ = arg max

C
(ŷk )

13 end
14 if Strategy==P Ens then
15 for k = 1 ; 2; :::;  do
16 wk = eD kP 

k =1 eD k

17 end
18 ŷ = arg max

C
(wk ŷk )

19 end
Output: ŷ

Appendix B. Visualisation of Multi-Scale Filters

Given a set of scale parametersf � 1; � � � ; �  g and the number of scales , the �lter of each
scale can be constructed by:

Fk (x; y; � k ) =
i + j � NX

0� i; 0� j

� i;j
@i + j

@xi @yj
G(x; y; � k ); k 2 f 1; � � � ;  g (11)

Here we visualise the multi-scale �lters generated with a set of prede�ned� and randomly
initialised coe�cients ( � ). As shown in Figure 4, �lters are similar in shape but vary in
scale.

Appendix C. Visualising the Equivariance Error

To demonstrate the e�ectiveness of lowering equivariance error by convolving images with
multi-scale �lters, we convolve images at di�erent scales with  �lters, paring feature maps
and then calculate the equivariance error as:

� s;k;k 0 =
1
N

NX

i =1

kSs(Fk ? f i ) � Fk0 ? Ss(f i )k2
2

kSs(Fk ? f i )k2
2

; s 2 R+ ; k; k0 2 f 1; � � � ;  g (12)
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(a) � 1 = 0 :5 (b) � 2 = 1 (c) � 3 = 1 :5 (d) � 4 = 2 (e) � 5 = 2 :5

Figure 4: Constructed multi-scale �lters. From left to right, the e�ective size of the �lter
gradually enlarges as the� increases.

where f i is an image,Fk and Fk0 are �lters with scale parameters � k and � k0, Ss is a scaling
operation with factor s. Thus, given  �lters and two images at di�erent scales, we arrive
at a  �  equivariance error matrix. Where each element represents the equivariance error
between feature maps, which are obtained by convolving images of di�erent scales with
di�erent �lters. As shown in Figure 5, for the feature map pair that produces the maximal
matching, the ratio of scales between images is equal (or close) to the ratio of� ks between
�lters. For example, in Figure 5( p), the ratio between � s and the ratio between image scales
is the same ( 2

0:5 = 4
1). The same phenomenon can be observed from images re-scaled by

factors of 0.5 and 2 (Figure 5(e) and 5(l )). For images whose scales are not divisible, the
matching degree between feature maps obtained by convolving the �lter with the� ratio
closest to the image ratio is the highest. For example, in Figure 5(f ), the ratio between
images ( 1

0:59 � 1:69) is close to the ratio between� s (2:5
1:5 � 1:67). Thus, we experimentally

validated that the scale equivarance err can be reduced by convolving images at di�erent
scales with appropriate �lters whose scale is corresponded to the scale of images.

Appendix D. Visualisation of Model Prediction

To better understand the SEUNet, we visualise segmentation maps generated by the SE-
UNet and other compared models on input images at di�erent scales. As shown in Figure 6
and 7, the SEUNet can retain a relative decent prediction when compared with other meth-
ods.
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(a) s=0.25 (b) s=0.3 (c) s=0.35 (d) s=0.42

(e) s=0.5 (f ) s=0.59 (g) s=0.71 (h) s=0.84

(i) s=1.19 (j ) s=1.41 (k) s=1.68 (l) s=2.0

(m) s=2.38 (n) s=2.83 (o) s=3.36 (p) s=4.0

Figure 5: Scale equivariance error of feature maps. Each plot shows the equivariance errors
between feature maps of the original image and the re-scaled image. In the title of each
plot, s denotes the scale factor. The x-axis and the y-axis of each plot denote the � of the
filter that is used to convolve with the original image and the re-scaled image, respectively.
In each plot, the number on the grid denotes the equivariance error between feature maps
Ss(Fk ? f) and Fk0 ? Ss(f). The lowest equivariance error in each 5×5 error matrix is
highlighted by a red box.
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Figure 6: Visual comparison on the BCSS dataset. The mIoU score of each prediction
is reported below the segmentation map. The highest score is highlighted in bold. Each
column shows segmentation maps of a model on an image re-scaled by different scaling
factors (S = 1 denotes the original scale).
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