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Mechanisms of mass transfer to small spheres
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Using laboratory experiments and numerical simulations, we examine the transfer of
soluble material from small, spherical particles sinking in homogeneous turbulence at
large Péclet number. A theoretical analysis predicts two distinct mechanisms of convective
mass transfer: strain due to turbulence and slip due to gravitational settling. Their relative
strength is parametrised by the sinking ratio, Sr = w0τη/a, where w0 is the quiescent
settling velocity, a is the particle radius and τη is the Kolmogorov time scale. This analysis
predicts that the topology of the concentration wake changes from a symmetric topology at
Sr � 1 to an asymmetric topology at Sr � 1 as the dominant mechanism of mass transfer
changes. Particle tracking flow visualisations of small spheres releasing dye in turbulence
confirm the existence of this change in mechanism at Sr = O(1). We complement these
experiments with numerical simulations of the mass transfer from sinking particles. The
transfer rate predicted by the simulation is found to be in good agreement with literature
data for mass transfer to turbulent suspensions of solid particles and is consistent with
asymptotic expressions for mass transfer in uniform flow when Sr � 1. A decomposition
of the convective fluxes confirms the transition in the transfer mechanism. At Sr = O(1),
both mechanisms provide comparable contributions to the transfer rate. Cross-correlation
analysis reveals that particle-scale knowledge of both the recent strain and velocity history
is required to predict the instantaneous transfer rate. Turbulence-induced particle rotation
has a modest suppression effect upon convective transfer by sinking.

Key words: coupled diffusion and flow, particle/fluid flow, homogeneous turbulence

1. Introduction

When small, rigid particles are immersed in a turbulent fluid, diffusible material may
be transferred from their surface by convection and diffusion. Often, as is the case for
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solutes in liquids, the solute diffuses slowly, so that convection is the dominant mechanism
of mass transfer away from the particle. Also, the particle is often small in comparison
with the Kolmogorov length scale, the smallest dynamically active scale of the turbulence.
This phenomenon occurs in an abundance of engineered and natural processes: chemical
products are produced by crystallisation, dissolution, fermentation and heterogeneous
reactions in liquid–solid suspensions within stirred tanks and fluidised beds (Myerson
2002; Nienow 2006; Crowe et al. 2012); planktonic osmotrophs absorb nutrients
(Karp-Boss, Boss & Jumars 1996); pollutants leach from microplastics (Seidensticker
et al. 2017); bacteria encounter marine viruses (Guasto, Rusconi & Stocker 2012); and
breakdown products of marine snow are swept away (Alcolombri et al. 2021) as they
sink through turbulent ocean waters. In these processes, turbulence, inertia and gravity
may drive a convective flow around the particle which enhances mass transfer: gravity
may cause particles to sink or float (Harriott 1962), inertia may cause particles to slip
(Levins & Glastonbury 1972b) and turbulent eddies may convect material away by strain
(Batchelor 1980; Lawson & Ganapathisubramani 2021). In this paper we ask: for small
spherical particles sinking in a turbulent flow, what is the dominant mechanism of mass
transfer?

The relative importance of these mechanisms to convective mass transfer, and in some
cases their very existence, has been debated extensively in the context of stirred tank
reactors (Pangarkar et al. 2002; Pangarkar 2015). As reviewed by Pangarkar et al. (2002),
the proposed mechanisms of mass transfer to small particles fall under three categories:
slip velocity theory, penetration theory and Kolmogorov theory. In the slip velocity
theory, first proposed by Calderbank & Moo-Young (1961) and later developed by Harriott
(1962), the particle experiences a relative flow due to gravitational settling and its inertial
response to turbulent velocity fluctuations. A concentration boundary layer develops
whose thickness is controlled by the relative magnitude of diffusion and slip-driven flow
and material is swept away from the particle in a single wake. Semi-empirical expressions
have subsequently been developed for the particle Sherwood number Sh, a dimensionless
measure of the mass transfer rate. These expressions are generally of the form (Nienow
1992)

Sh = 1 + αReβwScγ , (1.1)

where Rew = wa/ν is the particle Reynolds number based on the (effective) slip velocity
w, radius a and kinematic viscosity ν, and Sc = ν/D is the Schmidt number. The exponents
β and γ are sometimes fixed to be 1/2 and 1/3, respectively, in order to be consistent with
the expected scaling of the concentration boundary layer from boundary layer theory and
empirical observations of mass transfer from steadily falling particles (Frössling 1938;
Ranz & Marshall 1952).

For neutrally buoyant particles, Harriott (1962) noted this slip velocity must vanish and
that mass transfer must be provided by an another mechanism. Harriott (1962) and later
Armenante & Kirwan (1989) therefore proposed refinements of penetration theory (Higbie
1935), in which mass transfer from the particle is limited by unsteady diffusion under
the action of eddies which periodically replenish the concentration boundary layer with
fresh fluid. This predicts a mass transfer rate of similar form to (1.1), but with a Reynolds
number Reε = a4/3ε1/3/ν redefined in terms of the energy dissipation rate ε. However,
the predicted exponents for small spherical particles (β = 3/4, γ = 1/2) are at variance
with the available experimental data (Armenante & Kirwan 1989). Furthermore, the role
of the convective flow due to slip (e.g. by sinking) is not incorporated.

An alternative approach for the near-neutrally-buoyant case is offered by Kolmogorov
theory (e.g. Calderbank & Moo-Young 1961; Levins & Glastonbury 1972a). In this, an
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effective slip velocity is introduced which is taken to grow with the magnitude of inertial
range velocity differences Δu ∼ (εa)1/3, where ε is the mean dissipation rate and Δu is the
characteristic velocity difference between two points in the flow separated by scale a. This
also results in a particle Reynolds number Reε based on the dissipation rate ε for use in
(1.1). Whilst the rationale for such a slip velocity is understandable for particles sized in the
inertial range, this velocity scale has also been applied to data of particles in the dissipation
range, where the rationale is questionable (Armenante & Kirwan 1989). Several other
authors (e.g. Levins & Glastonbury 1972b; Ohashi, Sugawara & Kikuchi 1981; Armenante
& Kirwan 1989) have also formulated an effective slip velocity (on dimensional grounds)
based upon the dissipation rate, particle size and viscosity, which is equivalent to the
Kolmogorov scaling argument. The specific mechanism of mass transfer is not elucidated
in these works and no physical interpretation is given to the effective slip velocity (as
emphasised by, for example, Levins & Glastonbury (1972b) and Armenante & Kirwan
(1989)).

Later, Batchelor (1980) introduced a theory of mass transfer to small, suspended solid
spheres. The Reynolds number of the motion in the neighbourhood of the particle,
associated with either the slip Rew or the turbulence Reε , is assumed to be small compared
with unity. This assumption implies that the particle Stokes number St ∼ Re3/2

ε � 1 is also
small. This allows the relative flow field to be prescribed as a superposition of a uniform
slip velocity, linear velocity gradient and a Stokes perturbation due to the presence of
the particle. The concentration boundary layer that develops is analysed with the use of
classic asymptotic methods (Leal 2012). Because the flow is turbulent, the components of
the linear gradient and slip velocity fluctuate in time. Batchelor then argues that at large
turbulent Péclet number Pe = a2τη/D = Re3/2

ε Sc, due to the convection-suppression effect
(Batchelor 1979), particle motion due to slip has a negligible effect on the mass transfer
rate because the particle rotates isotropically. This convection-suppression mechanism
has recently been confirmed in turbulent flows to suppress convective mass transfer by
velocity fluctuations occurring on a time scale more rapid than τηPe1/3 (Lawson &
Ganapathisubramani 2021). In the limit of Pe → ∞, Batchelor concluded that for small
spherical particles, the only component of the relative flow field which is persistent
upon averaging over time in the particle reference frame is an axisymmetric strain,
whose magnitude scales with 1/τη. In the limit of large turbulent Péclet number, this
axisymmetric straining flow drives a mass transfer rate like

Sh = 0.55Pe1/3 + O(1)

= 0.55Re1/2
ε Sc1/3 + O(1). (1.2)

In a reference frame following and rotating with the particle, the solution of concentration
boundary layer near the surface asymptotically approaches that of a spherical particle
in an axisymmetric extensional strain. This result places empirical correlations based
on Kolmogorov theory for small particles on firmer physical grounds, provided that the
mechanism of mass transfer due to an effective slip velocity is reinterpreted as mass
transfer by the (time-average) ambient straining field.

A striking implication of this analysis is that convection due to slip (e.g. by gravity or
inertia) is suppressed at large turbulent Péclet number. Batchelor (1980) remarks that the
‘strange consequence’ for sinking particles is that gentle stirring should initially decrease
the average mass transfer rate. Batchelor’s prediction (1.2) shows reasonable agreement
with available experimental data for nearly neutrally buoyant spheres, but conflicts with the
observed enhancement of mass transfer for particles where a significant density difference
exists (Harriott 1962; Levins & Glastonbury 1972b). The question therefore arises as to
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how to reconcile the mechanisms of slip and strain in a theory of particle-scale mass
transfer.

Recently, we have examined Batchelor’s scenario numerically for small, neutrally
buoyant spheroids in isotropic turbulence at large but finite turbulent Péclet number
(Lawson & Ganapathisubramani 2021). The motion of spherical and spheroidal tracer
particles is simulated in homogeneous, isotropic turbulence and the relative velocity field,
which is prescribed by the Lagrangian time history of the linear velocity gradient and
Stokes perturbation sampled by the tracer, is used to force the numerical solution of
the convection–diffusion equation in the vicinity of the particle. The mass transfer rate
predicted by these simulations is found to be in good quantitative agreement with available
experimental data for small, spherical particles in turbulence. The results confirm the
convection-suppression effect and demonstrate that the concentration boundary layer is
unresponsive to velocity fluctuations occurring on a time scale more rapid than τd ∼
τηPe1/3. The instantaneous mass transfer rate is shown to correlate most strongly with the
relative velocity field filtered on this time scale. The conceptual picture that emerges from
this analysis is that the instantaneous concentration field near the particle surface is close
to the steady-state solution of an equivalent particle subject to the same (time-filtered)
relative velocity field. In this interpretation, it is not necessary for slip to make negligible
contribution to the mass transfer rate, because a slip velocity may be persistent over shorter
times.

In this paper, we examine the mechanisms of mass transfer to small particles sinking in
turbulence. In § 2, we revisit the theoretical description given by Batchelor (1980) of small
spheres exchanging material in a turbulent flow and identify that at large but finite turbulent
Péclet number, the sinking ratio Sr = w0τη/a forms an important control parameter of
the mass transfer problem. We also examine qualitatively the properties of the scalar
wake in the limits of Sr � 1 and Sr � 1. In § 3, we present a set of flow visualisation
experiments designed to identify the mechanism of mass transfer to hydrodynamically
small, spherical particles as the sinking ratio is varied. These measurements allow us
to reconstruct the instantaneous concentration field in the vicinity of small particles
exchanging material with a turbulent flow. This is achieved by visualising the release
of dye from small, spherical ion-exchange beads in homogeneous turbulence using
shadowgraphic particle tracking and planar laser-induced fluorescence measurements. We
describe our methodology and data reduction in §§ 3.1 and 3.2, respectively, and present
particle-scale flow visualisations of mass transfer in § 3.3. Our observations confirm
that a change in the mechanism of mass transfer occurs when Sr = O(1). Based on
these experimental insights, we present an extension of our numerical model in § 4 to
incorporate the effect of gravity for heavy particles and examine the influence upon the
mass transfer rate. After providing a validation of the average transfer rate predicted by
our simulations in § 4.2, we quantify the mechanisms of mass transfer in §§ 4.3 and 4.4.
The results provide insight into reconciling the two mechanisms in particle-scale mass
transfer models. We provide a brief discussion and conclusions in § 5.

2. Theoretical background

In this section, we provide an analytical description of the mass transfer from a dilute
suspension of sinking particles. This forms the basis of our numerical model in § 4 and
formally identifies Sr as a control parameter in the mass transfer problem. Furthermore,
we identify qualitative properties of the scalar wake in the limits of Sr � 1 and Sr � 1 at
large but finite Pe. We base our approach on Batchelor (1980), which describes the relative
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flow field near the particle in terms of a fluctuating slip velocity, turbulent shear and Stokes
perturbation. The particle Reynolds number is assumed to be small, so that the Stokes flow
approximation is valid. Furthermore, gravitational acceleration is assumed to be strong in
comparison with the turbulence.

Let us consider the motion of a small spherical particle of radius a with position X (t)
and velocity Ẋ in an unsteady turbulent flow field u(x, t) under the action of gravitational
acceleration g = gez. The spatial coordinate of the laboratory frame is x and temporal
coordinate is t. When the particle Reynolds number is sufficiently small, the forces on the
particle are prescribed by Stokes flow, and the equation of motion is given by

Ẍ = 1
τp
(u(X , t)− Ẋ )+ β

Du
Dt

+ (1 − β)gez + Basset history and Saffman lift, (2.1)

where τp ≡ a2/(3βν) is the response time of the particle and β = 3ρf /(2ρp + ρf ) is the
density ratio parameter, in which ρp is the density of the particle and ρf is the density
of the fluid. The Stokes number St = τp/τη is the measure of the particle response time
in comparison with the time scale of the turbulence and implicitly defines the particle
size in comparison with the Kolmogorov scale as a/η = (3βSt)1/2. In the small-particle
limit St � 1, τp is a small parameter and, regardless of initial conditions, the slip velocity
w0(X , t) = u(X , t)− Ẋ exponentially relaxes towards (Ferry & Balachandar 2001)

w0(X , t) = (1 − β)

(
Du
Dt

− g
)
τp + O(τ 3/2

p ). (2.2)

Therefore, when the gravitational acceleration is much stronger than the material
acceleration due to turbulence (i.e. Du/Dt � g), the slip velocity is

w0 = (β − 1)gτp = w0ez (2.3)

to leading order in τp. This is simply the settling velocity in quiescent flow and becomes
independent of tracer position X and time t. The fluid acceleration is a small-scale quantity
which scales with the Kolmogorov scale aη = (ε3/ν)1/4 (Voth et al. 2002), so (2.3) is valid
for small Froude number Fr = aη/g � 1. This restricts the choice of Sr, St and the density
ratio β via the relationship

Sr = |1 − β|√
3β

St1/2

Fr
. (2.4)

Thus if we fix St and Fr to be much smaller than unity, the density ratio β essentially
controls the sinking ratio. These joint assumptions are restrictive but relevant to our
motivating examples. For instance, a quick calculation based on Karp-Boss et al. (1996)
shows that marine diatoms absorb nutrients in turbulent environments with St � 1 and
Fr � 1. Similarly, a common design requirement for bioreactors is for cells to be much
smaller than the Kolmogorov scale to avoid shear-induced damage (i.e. St � 1) (Nienow
2006), which typically results in small Froude numbers also.

The relative velocity field in the frame co-moving with the tracer w(r, t) = u(X +
r, t)− Ẋ is given as a superposition of the slip velocity, the ambient linear velocity
gradient surrounding the particle plus a perturbation due to the Stokes flow surrounding
the particle. This is

w(r, t) = w0 + G(X , t)r + w′(r, t), (2.5)

where Gij = ∂ui/∂xj is the velocity gradient tensor sampled at the particle position and
w′(r, t) is the Stokes perturbation due to the presence of the particle. For an infinitesimal
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particle, this Stokes perturbation is expressed as a function of the instantaneous slip
velocity w0, gradient G and the boundary condition at the particle surface |r| = a (Kim &
Karrila 1991).

As the particle translates, it is also free to rotate with angular velocity Ω = ω/2
prescribed by the ambient vorticity ω (Jeffery 1922). Therefore, in the coordinate system
y co-moving and co-rotating with the particle, we have r = Ry, where the orientation of
the body frame R evolves as

dR

dt
= [Ω]× R. (2.6)

The ambient velocity field v(y, t) in this co-rotating system is therefore

v(y, t) = RTw + ṘTr,

= v0 + Ey + v′(y, t), (2.7)

where we have introduced v0 = RTw0 as the settling velocity in the co-rotating frame,
E = RT(G − [Ω]×)R is the rate-of-strain tensor in this frame and v′(y, t) = RTw′ is the
Stokes perturbation in the rotating frame. We note that in this co-rotating frame, the fluid
is at rest at the particle surface |y| = a.

The convection–diffusion equation can now be written in dimensionless form,
normalising by the particle radius a and Kolmogorov timescale τη (Leal 2012; Lawson
& Ganapathisubramani 2021):

∂θ

∂t�
+ v� · ∇�θ = 1

Pe
∇2
� θ, (2.8)

where θ(y�, t) is the (dimensionless) concentration of the solute. Our convention
is that terms written with a superscript � (e.g. v� = vτη/a, y� = y/a) have been
non-dimensionalised with τη and a. The turbulent Péclet number is defined as Pe ≡
a2/Dτη for solute diffusion coefficient D. We distinguish this from the quiescent settling
Péclet number Pew ≡ aw0/D = PeSr. We consider a uniform concentration boundary
condition:

θ(y�, t) = 1 |y�| = 1
θ(y�, t) = 0 |y�| → ∞.

}
(2.9)

This corresponds to a uniform (dimensional) concentration at the particle surface C1 and
uniform concentration far from the particle C0 with θ = (C(y, t)− C0)/(C1 − C0). The
Sherwood number, the non-dimensional measure of the solute flux Q, is defined as

Sh = Q
4πrD(C1 − C0)

= − 1
4πPe

∫∫
|y�|=1

∇�θ · dS. (2.10)

Thus, Sh = 1 for a sphere with mass transfer by diffusion alone.
Let us examine the magnitude of the terms in the non-dimensionalised relative velocity

field:

v�(y�, t�) = v0τη

r︸︷︷︸
O(w0τη/a)

+ E�y�︸︷︷︸
O( y/a)

+v′�(y�, t�). (2.11)

The slip velocity has magnitude w0τη/a, although its orientation changes with time as
the particle rotates. Near the particle, the influence of the linear velocity gradient is O(1),
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(a) (b) (c)

Figure 1. Illustration of solute transfer from a small, spherical particle at large Péclet number under steady
(a) extensional axisymmetric strain, (b) compressive axisymmetric strain and (c) uniform flow.

and the Stokes perturbation is comparable to the sum of these terms. The sinking ratio
Sr ≡ w0τη/a therefore forms a natural control parameter of the problem, in addition to the
turbulent Péclet number, the Stokes number and density parameter.

Batchelor (1980) argued that in the limit of Pe → ∞, the solution of (2.8) near the
particle surface asymptotically approaches the solution of

ṽ� · ∇θ = 1
Pe

∇2θ, (2.12)

where

ṽ�(y�, t�) = 1
τf �

∫ 0

−τf �
v�(y�, t� + t′) dt′ (2.13)

is the relative velocity field averaged over a long time τf
�. This is justified on the basis

that the concentration boundary layer becomes insensitive to velocity fluctuations that
are more rapid than τηPe1/3 due to the convection-suppression effect (Batchelor 1979;
Lawson 2021). Taking the average in the limit τf

� → ∞, Batchelor (1980) concluded that
the average convective contribution due to slip in (2.11) vanishes, because the particle
orientation is isotropic in the large-time limit. Therefore, in Batchelor’s analysis, the
sinking ratio does not appear as a control parameter. However, for neutrally buoyant
spheroids, we have empirically shown shown that at large but finite Pe, the solution of
(2.8) is best approximated by (2.12) when the time scale is chosen τf

� ∼ Pe1/3 (Lawson
& Ganapathisubramani 2021). Under this hypothesis, it is therefore still possible for slip
to contribute to the convective mass transfer, because ṽ0� does not vanish when averaging
over a finite time interval.

Figures 1(a) and 1(b) illustrate the topology of the concentration field for solute transfer
from a spherical particle in steady, axisymmetric strain, i.e. Sr � 1. Solute is advected
away from the particle by convection due to strain in a thin, symmetric, line-like (figure 1a)
or sheet-like (figure 1b) wake, depending upon the direction of the strain along the
symmetry axis. On the other hand, under uniform slip Sr � 1 (figure 1c), solute streams
from the particle along a single, line-like wake. Therefore, the mechanism of the mass
transfer and the topology of the wake are predicted to be qualitatively different at Sr � 1
and Sr � 1.

3. Laboratory experiments

In this section, we present a set of flow visualisation experiments designed to identify
the mechanism of mass transfer to hydrodynamically small, spherical particles as the
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(a) (b)

Figure 2. (a) Photograph of experimental apparatus, illustrating: impeller-stirred mixing tank; high-speed
shadowgraph imaging arrangement including cameras, prisms and collimated backlight sources; and PLIF
laser, optics and sheet. (b) Visualisation of the concentration boundary layer and wake around fine
particles in turbulence, showing PLIF image (green channel) and shadowgraph image of particle (purple
channel). Supplementary movies 1 and 2 available at https://doi.org/10.1017/jfm.2022.998 show sample
PLIF/shadowgraph video sequences.

sinking ratio is varied. The basic principle is to load spherical ion-exchange beads with
a fluorescent anionic dye (fluorescein) which is released upon contact with a sodium
chloride solution. We then track the motion of particles in homogeneous turbulence
using high-speed shadowgraph imaging and visualise the dye release using planar
laser-induced fluorescence (PLIF). Resultant three-dimensional (3-D) reconstructions of
the concentration field are then analysed to statistically characterise the concentration wake
as a function of the sinking ratio.

3.1. Experimental methodology
Here, we describe our experimental set-up and our procedure for tracking particles
and reconstruct the concentration field surrounding the particle. Our experimental
set-up is illustrated in figure 2(a). It consists of three main components: a randomly
stirred mixing tank to generate homogeneous turbulence, dye-laden particles and a
combined shadowgraph and PLIF imaging set-up to track particles to obtain particle-scale
measurements of dye release. We now describe each.

3.1.1. Mixing tank
To generate homogeneous turbulence in our laboratory, we use the randomly stirred
mixing tank facility described in Lawson & Ganapathisubramani (2022). We provide a
brief description here. It consists of a 45 l capacity transparent poly(methyl methacrylate)
(PMMA) tank (internal dimensions 500 mm × 300 mm × 300 mm) with a removable lid
and 32 pitched-blade impellers, driven by independently controlled stepper motors. These
are spaced 75 mm apart on a 4 × 4 square grid and are mounted through the side-wall of
the tank. The lid of the tank is removable; the tank is filled with water to a level slightly
above the lid. Between experimental runs, the water was drained and refilled twice to
ensure the tank was clean and free of dye. The water temperature was not regulated and
varied between T = 20 and 21 ◦C. Based on this temperature measurement, we obtain the
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mass density ρf , kinematic viscosity ν and dynamic viscosityμ of the water from literature
data (Lide 2013).

To create unsteady forcing, we implement the ‘sunbathing’ algorithm of Variano &
Cowen (2008), which has been widely used in jet-stirred mixers (Variano & Cowen
2008; Bellani & Variano 2014; Carter et al. 2016; Pérez-Alvarado, Mydlarski & Gaskin
2016; Esteban, Shrimpton & Ganapathisubramani 2019). We drive the impellers at a
fixed rotation rate fI whilst randomly reversing the direction of motion. Each impeller
switches between spinning clockwise for a time τF and then anticlockwise for a time τR.
Following Variano & Cowen (2008), the durations of forward thrust τF ∼ N (μF, μF/3)
and reverse thrust τR ∼ N (μR, μR/3) are drawn from a normal distribution (clipped
at zero) with means μF, μR and standard deviations μF/3, μR/3. Following Lawson
& Ganapathisubramani (2022), we choose a source fraction φ = μF/(μF + μR) = 0.25
and a forcing period μF + μR = 32 s, which are chosen to optimise the intensity and
homogeneity of the turbulence.

We have previously characterised the turbulence generated in our mixing tank using
particle image velocimetry (PIV) (Lawson & Ganapathisubramani 2022). The mean
flow at the centre of the tank is weak, accounting for around 1 %–4 % of the total
kinetic energy in the 75 mm × 75 mm × 75 mm region near the geometric centre. Here,
the flow is dominated by nearly isotropic turbulent velocity fluctuations, which have
a characteristic magnitude u′ and are homogeneous to within the standard statistical
uncertainty (±2.2 %) of our PIV measurements. The mean dissipation rate ε at the centre
of the tank was obtained from fits of the second-order structure function. Additionally,
using the large-eddy PIV method (De Jong et al. 2009), we have found the spatial
distribution of the mean energy dissipation rate is homogeneous to within ±41 % of the
spatial average near the centre of the tank. The integral autocorrelation length scale in
this region is around 58–70 mm. We conclude that the recent Lagrangian history of the
particles observed in our measurement volume approximates that found in homogeneous,
isotropic turbulence.

3.1.2. Dye-laden particles
To create spherical dye-laden particles, we load sodium fluorescein dye (Sigma Aldrich)
onto commercially available anion-exchange resin beads (Dowex 1X2, Fischer Scientific).
The beads, which are supplied in Cl− form, undergo a reversible reaction as

RCl + NaFl � RFl + NaCl. (3.1)

In a typical procedure, we prepare 100 ml of a 0.2 M solution of sodium fluorescein to
which 15 g of ion-exchange beads is added under stirring. This loading of dye is close to
the capacity of the ion-exchange beads and the dye solution is visibly depleted afterwards.
We have observed that sodium fluorescein is not absorbed well onto resin beads in OH−
form.

Relevant physical properties of the dye-laden particles are presented in table 1.
The mean particle radius 〈a〉 and standard deviation σa were obtained by processing
microscope images taken at a resolution of 400 px mm−1 using a Hough-transform
circle-detection routine. Statistics were based upon samples of 381 (50–100 mesh), 1350
(100–200 mesh) and 5152 (200–400 mesh) particles. While the larger 50–100 mesh
particles exhibited little variation in size, the smallest 200–400 mesh particles had a
relatively large coefficient of variation σa/ 〈a〉 of around 24 %. Particle density was
measured in triplicate using a 5 ml pycnometric flask and an analytical balance with
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Exchanger 〈a〉 σa/ 〈a〉 ρp w0 Rew
(μm) (%) (kg m−3) (mm s−1)

Dowex 1X2 200–400 49.9 24 1199 1.07 0.11
Dowex 1X2 100–200 76.6 11 1201 2.45 0.37
Dowex 1X2 50–100 189.3 2 1192 10.81 4.08

Table 1. Properties of fluorescent dye-laden particles. Uncertainty in particle density is ±2 kg m−3. The
quiescent settling velocity w0 in water at 20 ◦C was calculated based on the particle density ρp and mean
radius 〈a〉 using (3.2).

10 mg resolution. The quiescent settling velocity in water at 20 ◦C was calculated from

w0 =
√

g 〈a〉
3CD

ρp − ρf

ρf
(3.2)

based on the empirical drag coefficient relation

CD = 24
Rew

(
1 + 0.1315Re0.82−0.05 log10 Rew

w

)
, (3.3)

which is applicable in the Reynolds number range Rew = 0.01–20 (Clift, Grace & Weber
1978).

3.1.3. Shadowgraph and PLIF imaging
The combined shadowgraph and PLIF imaging set-up is shown in figure 2(a). In this,
shadowgraph particle images are recorded by three Phantom v641 high-speed cameras,
whilst PLIF images are recorded by the central camera only using illumination provided
by a thin, continuous wave laser sheet. The shadowgraph and PLIF images are interleaved
by time-multiplexing: pulsed backlight illumination is provided every other frame, so that
frames recorded by the central camera alternate between PLIF and PLIF with shadows.
Figure 2(b) shows an example of a sequential shadowgraph/PLIF image pair: particle
shadows are visible over a wide depth of field, allowing for particle tracking, whilst dye
fluorescence is only observed in the plane of the laser sheet.

Three coplanar cameras are used for 3-D particle tracking. The central camera is
oriented normal to the laser sheet, whilst the side cameras view the flow near the centre
of the tank at ±30◦ to the sheet normal. A set of 3-D-printed prisms with 2.5 mm
thick acrylic windows allow the side cameras to view the flow without distortion across
the air–PMMA–water interface. The shadowgraph backlight is provided by pulsed blue
LEDs (Osram Golden DRAGON Plus), which are collimated by Sigma 105 mm lenses to
evenly illuminate a small 13.7 cm3 measurement volume at the centre of the tank. Particle
shadows are imaged using a Nikon f/2.8 200 mm Macro lens, which achieves an optical
magnification of almost 1 : 1. The spatial resolution in the PLIF measurement plane is
11.4 μm px−1. This illumination set-up means that the depth of field of the shadowgraph
image is set by the collimation of the backlight, whereas the depth of field of PLIF imaging
is set by the central camera’s aperture (f# = 5.6). To exclude the laser signal from the side
cameras, we use a narrower aperture (f# = 11) so that any reflected light or fluorescent
emission is very dim in comparison to the backlight.

Continuous-wave laser illumination is provided by a 1.1 W, Coherent Genesis MX laser
at 514 nm. This choice of excitation wavelength is suboptimal for sodium fluorescein,
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which has peak excitation at 494 nm, but provides satisfactory excitation of fluorescence.
The beam is formed into a narrow laser sheet by a −10 mm focal length cylindrical lens
and 350 mm spherical lens. The near-Gaussian beam quality (M2 = 1.06) allows us to
achieve a diffraction-limited beam waist of w ≈ 220 μm. Because the PLIF excitation
wavelength is close to the emission wavelength, we did not use a low-pass cut-off filter
to isolate the fluorescence emission. Instead, we minimise the transmission of specular
reflections from particles using a linear polariser on the central camera. Image acquisition
is synchronised across cameras at a frame rate fs with an exposure time of 250 μs, which
provided an acceptable compromise between motion blur and fluorescence signal intensity.
The backlight pulse is much shorter (≤35 μs) so that position uncertainty due to motion
blur of shadows is negligible. The frame rate was chosen to obtain a root-mean-square
particle displacement of around 5–13 px between shadowgraph frames.

Calibration of the camera arrangement was performed using a 12 mm × 16 mm
chessboard calibration target with 1 mm squares laser-printed at 1200 dpi onto
transparency film and transferred to a glass microscope slide. This was traversed across
the measurement volume using a translation stage at z = −10 to 10 mm at 2 mm intervals.
We then obtain a calibration using a standard pinhole camera model. Since the objective of
these measurements is to visualise rather than quantify the scalar field, we did not calibrate
fluorescence intensity against the dye concentration. However, we have confirmed with
spectrophotometric measurements that the equilibrium dye concentration at the particle
surface is O(μmol l−1), so that the fluorescence emission is in the linear regime.

3.2. Particle tracking and wake reconstruction
Table 2 summarises the experimental conditions tested. From our previous PIV
characterisation (Lawson & Ganapathisubramani 2022) and the particle properties in
table 1, we compute the particle Stokes number St, turbulent Péclet number Pe, sinking
ratio Sr and size relative to the Kolmogorov scale. Although the turbulent Péclet number is
not controlled for in our experiments, the values are well within the convection-dominated
regime (Pe � 1). It can be seen that the particles in our experiments are comparable to or
smaller than the smallest dynamically active motions of the turbulent flow. For all cases,
the characteristic turbulent acceleration aη = (ε3/ν)1/4 is at least one order of magnitude
smaller than the strength of gravitational acceleration, so slip due to turbulent acceleration
is negligible. Furthermore, for the two smallest classes of particles, St � 1. By varying
the turbulence intensity, we varied the sinking ratio Sr by an order of magnitude over the
range in which the transition in mass transfer mechanism is expected to occur. For each
condition, we obtained time series of 2738 (5000 at 2.4 kHz frame rate) shadowgraph and
PLIF images, corresponding to between 1.9 and 6.8 s of turbulent motion, equivalent to
approximately 1.3–3.2 integral time scales.

Lagrangian particle tracking was performed using an in-house code based on Lawson
et al. (2018). This implements a low-density, predictor–corrector particle tracking
algorithm following Ouellette, Xu & Bodenschatz (2006). The main difference is in
particle image registration. Shadowgraph images are first levelised against a white
image obtained from the 95th brightness percentile on a per-pixel basis. Subsequently,
particle centres are identified using a Hough circle transform. Existing particle tracks
are extrapolated linearly based on the last two frames and matched to the nearest
corresponding particle centres (within a search radius of 20 px) and satisfying a
triangulation tolerance (5 px). New tracks are initiated by triangulating unmatched
particles and are extrapolated using a nearest-neighbour interpolation of the particle
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Exchanger fI fs ε × 103 u′ × 103 St
〈a〉
η

aη
g

Pe Sr
Number of

reconstructions

(Hz) (Hz) (m2 s−3) (m s−1)

Dowex 1X2
200–400

1 400 0.015 11.0 3.7 × 10−3 0.20 0.001 23 5.49 682
2 800 0.21 29.0 1.4 × 10−2 0.38 0.006 86 1.49 830
4 1450 2.40 69.0 4.7 × 10−2 0.70 0.035 290 0.44 1147
6 2400 8.69 106.9 8.9 × 10−2 0.97 0.092 560 0.23 1214

Dowex 1X2
100–200

1 400 0.015 11.0 8.8 × 10−3 0.30 0.001 55 8.19 148
2 800 0.21 29.0 3.2 × 10−2 0.58 0.006 200 2.22 199
4 1450 2.40 69.0 1.1 × 10−1 1.08 0.035 690 0.65 359
6 2400 8.69 106.9 2.1 × 10−1 1.49 0.092 1300 0.34 1254

Dowex 1X2
50–100

2 800 0.21 29.0 2.0 × 10−1 1.44 0.006 1200 3.96 181
4 1450 2.40 69.0 6.7 × 10−1 2.67 0.035 4200 1.16 755
6 1450 8.69 106.9 1.3 × 100 3.68 0.092 8000 0.61 502

Table 2. Summary of experimental conditions.

velocity field, with a larger search tolerance. Tracks are terminated if a suitable match
is not found or if matching is ambiguous.

We apply Taylor’s frozen flow hypothesis to reconstruct the scalar field in the vicinity of
particles as they cross the laser sheet. In order to do this, we identify when particles cross
the laser sheet based on their position and a calibrated model of the laser sheet plane. This
plane is identified using the procedure illustrated in figure 3. When particles cross the laser
sheet, we observe a sharp increase in their brightness due to their fluorescence as well as
specular reflections, as shown in figure 3(a). We identify a set of crossing events based
on a threshold, which define a set of points known to lie upon the laser sheet plane, as
illustrated in figure 3(b). We use a robust fitting procedure to fit a plane to these points.

To reconstruct the 3-D scalar field, we identify the time t0 when a particle trajectory
X (t) crosses the laser sheet plane X (t0) · en + c = 0. The PLIF images I2D(S + s, t) are
then sampled in the vicinity of the projected position of the particle S = P(X ), where
s is the two-dimensional (2-D) image coordinate relative to the particle centre and P(x)
represents the projection operation from 3-D object space to the 2-D image space of the
camera. Images are sampled over ±5 frames around each crossing event. Combined with
the constraint that the fluorescence is emitted in the laser sheet plane, this allows us to
reconstruct 11 planar slices of the scalar field Ij(r) in the co-moving particle frame (2.5)
for each crossing event j.

3.3. Results
Some representative examples of 3-D reconstructions of the scalar field in the co-moving
particle frame are illustrated in the top row of figure 4. In these experiments, the particle
type (and therefore the sinking speed) is held constant, whilst the dissipation rate (i.e. the
characteristic rate of turbulent strain) is varied by changing the impeller speed. We observe
that when the sinking ratio Sr � 1 (as in figure 4a), particles tend to have a single wake
which is approximately aligned with the direction of sinking (r2 axis). This indicates that
slip is the dominant mechanism of convective mass transfer. We note, however, that the
wake is not perfectly aligned with the direction of gravitational acceleration. When Sr �
1, the typical wake topology changes. Instantaneously, we observe examples of sheet-like
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Figure 3. Identification of the laser sheet plane from particle trajectories. (a) An example of time-series
measurements of particle brightness, showing the identification of particles which cross the laser sheet. (b)
A 3-D reconstruction of the laser sheet plane (green), based on the position of identified crossings (black
circles) of particle trajectories. Particle trajectories have been coloured according to their brightness. The white
dotted line indicates the particle radius.
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Figure 4. Reconstructions of the instantaneous scalar field in a co-moving frame around sinking, 100–200
mesh particles embedded in homogeneous turbulence: (a) fI = 1 Hz, Sr = 8.19; (b,c) fI = 6 Hz, Sr = 0.34.
Upper panels show 3-D reconstructions of the scalar field. Lower panels show the 2-D projection of the
scalar field as the particle transits the laser sheet. Sample video sequences of cases (a) and (b,c) are shown
in supplementary movies 1 and 2, respectively. Gravitational acceleration is aligned with the −r2 direction
(particles sink in the direction of r2 decreasing).

(figure 4b) and line-like (figure 4c) distributions of dye around the particle, which indicate
that strain is the dominant mechanism of convective mass transfer. The bottom row of
figure 4 shows the reconstructions projected in the laser sheet plane, i.e. averaged over the
depth coordinate r3. In these, we see that sheet-like or line-like distributions of dye are
projected with two wakes, whereas only one wake is visible in the slip-dominated case.
As can be observed in supplementary movies 1 and 2, these asymmetric single-wake or
symmetric double-wake structures are common in these limiting cases.
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To characterise the average topology of the surrounding wake in the co-moving frame,
we evaluated the ensemble-average 2-D projection of the reconstructed scalar field

〈
Ij(r)

〉
z

for all crossing events j. This is shown in figure 5. We observe that, when the sinking
ratio is large (figure 5a–c), there is a clear signature of the concentration wake created by
gravitational slip. However, as the sinking ratio is decreased, the mean distribution of dye
around the particle becomes more isotropic. This effect is most pronounced at the smallest
sinking ratio (e.g. figure 5j,k). This demonstrates that the mass transfer cannot be explained
by gravitational settling alone when the sinking ratio is O(1) or smaller: turbulent shear,
acceleration and strain may all act to isotropise the mean distribution of scalar around the
particle. Evident in figure 5 is also an artefact of our imaging method: images are dimmer
on the right-hand side where a shadow has been cast by the particle. Due to the background
subtraction we apply, which subtracts the average intensity over the r1 direction, the signal
of the unshadowed portion of the laser sheet is also artificially increased.

To identify a change in the mechanism of mass transfer, we repeat our analysis in a
coordinate system aligned with the particle wake. To do this, we define a polar coordinate
system (r, θ) for the projected scalar field I2D(r, θ) = 〈I(r)〉z such that r1 = r cos θ, r2 =
r sin θ . We identify the angle θm,i at which I2D(2 〈a〉 , θ) is maximised, i.e. we identify the
instantaneous orientation of the wake at the radius shown in figure 5. We then evaluate
the average scalar field in this in a new, wake-aligned relative coordinate system (r, θ ′),
where θ ′ = θ − θm,i and r′

1 = r cos θ ′, r′
2 = r cos θ ′. The result is shown in figure 6. We

observe that, when the sinking ratio is large (e.g. figure 6a–f ), the average wake-aligned
field shows a single wake. However, when the sinking ratio is small (e.g. figure 6g,j,k), a
second concentration wake appears on the opposite side of the particle. This is consistent
with the expected distribution of scalar for particles with strain-dominated mass transfer
(see figures 9 and 4). A second wake structure is not observed on average for the
largest 50–100 mesh particles with Rew > 1, but this may be because our experiments
do reach sufficiently small Sr (compare e.g. figure 6h,i). Therefore, our laboratory flow
visualisations confirm a change in the mechanism of mass transfer for particles in the
Stokes regime (Rew < 1) as the sinking ratio is varied.

4. Numerical simulations

Our experiments have confirmed that a transition in the mechanism of mass transfer occurs
as the sinking ratio is varied. However, they do not allow us to quantify the relative
contributions of convection due to strain and slip. In this section, we extend the approach
developed in Lawson & Ganapathisubramani (2021) to simulate the mass transfer from
a dilute suspension of sinking particles by incorporating a slip velocity. This will allow
us to quantify in detail the relative roles of the two mechanisms. The basic idea is to
force (2.8) using the Lagrangian time history of the relative velocity field perceived
by sinking point-particles a in direct numerical simulation of homogeneous, isotropic
turbulence. The convection–diffusion problem is solved numerically on a boundary-fitted
domain in a reference frame co-moving and co-rotating with the particle. The grid
is sufficiently refined to resolve the development of the concentration boundary layer
near the particle surface. The domain is truncated far from the particle and the inflow
boundary condition there models incoming fluid as uncontaminated, so that the turbulence
effectively provides a continuous supply of fresh fluid. This method retains the advantage
of particle-resolved direct numerical simulation (Feng & Michaelides 2009; Deen et al.
2014) that the concentration boundary layer surrounding the particle is resolved, but
disregards larger-scale mixing and turbulent transport.
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Figure 5. Two-dimensional projections of the mean scalar field around sinking particles embedded in
homogeneous turbulence, evaluated in the laboratory-aligned co-moving frame: (a,d,g,j) 200–400 mesh (〈a〉 =
50 μm), ε = 15–8690 mm2 s−2; (b,e,h,k) 100–200 mesh (77 μm), ε = 15–8690 mm2 s−2; (c, f,i) 50–100 mesh
(190 μm), ε = 210–8690 mm2 s−2. The dashed white circle shows r = 2 〈a〉.

4.1. Numerical methodology
The numerical procedure to implement the model is similar to that of Lawson &
Ganapathisubramani (2021). We summarise the details here only briefly. The trajectories
of particles sinking in homogeneous, isotropic turbulence at Rλ = 433 are obtained from
the Johns Hopkins Turbulence Database (Li et al. 2008). Ensembles of 1000 Lagrangian
particles are uniformly seeded throughout the simulation domain at time t = 0 and their
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Figure 6. Two-dimensional projections of the mean scalar field around sinking particles embedded in
homogeneous turbulence, evaluated in the wake-aligned co-moving frame: (a,d,g,j) 200–400 mesh (〈a〉 =
50 μm), ε = 15–8690 mm2 s−2; (b,e,h,k) 100–200 mesh (77 μm), ε = 15–8690 mm2 s−2; (c, f,i) 50–100 mesh
(190 μm), ε = 210–8690 mm2 s−2. The dashed white circle shows r′ = 2 〈a〉.

trajectories are integrated as
Ẋ = u(X (t), t)+ w0, (4.1)

where the settling velocity is given by (2.3). Equation (4.1) is integrated over the duration
of the simulation Tsim = 10.056 using a second-order Runge–Kutta scheme with a time
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step Δt = 0.002 ≈ 0.047τη, corresponding to the time resolution of the database. The
velocity and velocity gradient are interpolated from the database at the tracer position
using a fourth-order Lagrange polynomial interpolation. This yields a time series of the
local velocity gradient G(X , ti) at i = 0 . . . 5028 times ti = iΔt. The orientation of the
body frame R(t) (2.6) is integrated from an initially random (isotropic) orientation using an
adaptive time step, third-order Runge–Kutta scheme using a piecewise, linear interpolation
to interpolate G(X , t). This provides time series of the particle–fluid relative velocity v0(t)
and gradient E(t) in the co-rotating frame.

We track the motion (4.1) of seven separate ensembles of spherical particles with the
same initial position but different sinking rates w0/uη = (a/η)Sr = 10−3–100. Although
w0/uη is small, the difference in sinking rate can build up into a large difference in
trajectory over time. From these we obtain the Lagrangian relative velocity history (2.11)
of two sizes of small spheres a/η = 10−2 and 10−1 at differing sinking ratio log10 Sr =
−1,−0.5, 0, 0.5, 1.

We then solve the convection diffusion problem (2.8) numerically using a modified
version of OpenFOAM scalarTransportFoam solver used in Lawson (2021) and Lawson &
Ganapathisubramani (2021). This implements a second-order finite-volume solver for θ ,
with a standard linear upwind Gaussian discretisation of the convective term in (2.8) and
linear Gaussian scheme for the diffusive term with explicit non-orthogonal correction to
maintain second-order accuracy. Convective forcing (2.11) is implemented by specifying
the relative velocity field as the superposition of Stokes flow solutions, obtained from
analytical expressions given in Kim & Karrila (1991). Equation (2.8) is discretised onto
a structured grid in spherical coordinates (r, ψ, φ) with 150 × 64 × 64 cells, where r is
the radial coordinate, ψ is the polar coordinate and φ the azimuthal. Cells are spaced
uniformly in the azimuthal direction φi = 0 . . . 2π and polar direction cosψi = −1 . . . 1.
To adequately resolve the thin concentration boundary layer, we employ a mesh refinement
Δri+1 = αri, where Δri = ri+1 − ri is the spacing between cells in the radial direction.
We choose α = 1.0724. Based on an estimated boundary layer thickness δ = Pe−1/3

w at
the largest Péclet number (Pew = 105,Pe = 104) tested, there are at least 32 cells within
a distance δ from the surface. We impose the Dirichlet boundary condition θ = 1 at the
particle surface r/a = 1 and the Neumann boundary condition on the outer surface r/a =
100 to approximate the zero-concentration boundary far from the particle. Time stepping
is performed using an implicit Euler scheme with a time step Δt� = 0.0236 from the initial
condition θ(y�, 0) = 0.

As in Lawson & Ganapathisubramani (2021), there is an initial transient in the
ensemble-average mass transfer rate 〈Sh〉 obtained from the simulation, which corresponds
to the diffusive growth of the concentration boundary layer. An example of this transient is
provided in Appendix A, where a stationary state can be observed by t� > 75. Averaging
over the time interval 75 < t� < T�sim, the deviation of the ensemble average 〈Sh〉 from
the time average

〈
Sh

〉
does not exceed 2 % and the statistical uncertainty in

〈
Sh

〉
is below

±0.5 % (based on a 95 % confidence interval).

4.2. Average mass transfer rate
We first examine the average mass transfer rate predicted by our numerical simulations.
Figure 7(a) shows the ensemble-average mass transfer rate to sinking particles of different
sizes as a function of the turbulent Péclet number Pe and sinking ratio Sr. We observe that
the average mass transfer rate is insensitive to the particle size relative to the Kolmogorov
scale (a/η = 10−2, 10−1), provided the sinking ratio Sr is held constant. The square
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Figure 7. Ensemble-average Sherwood number as a function of (a) turbulent Péclet number Pe and (b)
quiescent settling Péclet number Pew. The markers correspond to: simulations with a/η = 10−2 (◦) and
10−1 (×); experimental data of small spheres (�) with St < 0.1 and Sr < 0.12 from Armenante (1983). The
dashed line corresponds to the asymptotic expression (4.2) for small particles sinking in quiescent flow (Acrivos
& Goddard 1965).

markers in figure 7(a) show experimental measurements of the mass transfer rate to
small spheres in turbulence with St < 0.1 and Sr < 0.12 obtained from data tabulated in
Armenante (1983) and later reported in Armenante & Kirwan (1989). At small Sr = 0.1,
our numerical simulations are in good agreement with the experimental data. For fixed Pe,
a significant enhancement in convective mass transfer is seen as Sr is increased beyond
Sr ≈ 0.33.

Figure 7(b) shows the same simulation data as a function of the quiescent settling Péclet
number Pew. When convection due to sinking is strong in comparison with the turbulence
(i.e. Sr � 1), the data approach the high-Péclet-number asymptotic expression

Sh = 0.6245Pe1/3
w + 0.461 + O(Pe−1/3

w ) (4.2)

for small particles in uniform flow (Acrivos & Goddard 1965). By comparing data at
similar Pew but different Sr, we note that the general trend is for strong turbulence (i.e.
Sr < 1) to increase the mass transfer rate compared to sinking alone. However, at the
very largest Péclet numbers Pew ≥ 104, we observe a small but statistically significant
decrease (0.20 ± 0.035, or around 1.5 %) in

〈
Sh

〉
at Sr = 1 compared with Sr = 10. This

is consistent with the assertion of Batchelor (1980) that, for fixed Pew � 1, the effect of
turbulent stirring should initially decrease the average rate of mass transfer. Figures 7(a)
and 7(b) therefore demonstrate that Sr effectively interpolates between two regimes
of mass transfer: strain-dominated, where Sr � 1 and the mass transfer rate primarily
depends upon the turbulent strain rate; and slip-dominated, where Sr � 1 and convective
mass transfer is determined by the slip velocity.

This observation raises the possibility of finding an empirical function which smoothly
interpolates between these two limiting regimes. Motivated by the success of previous
empirical expressions of the form (1.1) with β = 1/2 and γ = 1/3 (Frössling 1938; Ranz
& Marshall 1952), we plot the normalised mass transfer rate (〈Sh〉 − 1)/Pe1/3 as a function
of the sinking ratio in figure 8. Although this normalisation does not incorporate the
anomalous Péclet number scaling we have observed due to the convection-suppression
effect (Lawson & Ganapathisubramani 2021), we find it provides a satisfactory collapse of
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Figure 8. Normalised mass transfer rate 〈Sh − 1〉 /Pe1/3 shown as a function of the sinking ratio Sr. Filled
markers correspond to numerical simulation data at fixed Pe, whereas open markers correspond to experimental
data at fixed Pew digitally extracted from Ohashi et al. (1981). The solid black line shows the best fit of our
simulation data to (4.3) over the range 102 ≤ Pe ≤ 104.

our data over 102 ≤ Pe ≤ 104. A fit to the data in this range of the form

Sh = 1 + Pe1/3

(
α′Sr + β ′)4/3

Sr + γ ′ (4.3)

with α′ = 0.62453/4 provides the asymptotic scaling (4.2) at large Sr accurate to leading
order in Pew. The coefficients β ′ = 1.293 and γ ′ = 3.269 are chosen by minimising the
sum of squares error in

〈
Sh

〉
. The fit to our numerical data in this range is good, with the

largest residual being 5.2 %.
Compensating for Péclet number in this manner, we are also able to directly compare

our numerical simulations with the experimental data of Ohashi et al. (1981), who
measured the mass transfer rate from freely suspended spherical particles sinking in
vertical turbulent pipe flow. In these experiments, three sizes of spherical ion-exchange
particles were injected into a vertical turbulent pipe flow containing a sodium hydroxide
electrolyte. The mass transfer was determined by the diffusion-limited exchange of
sodium/potassium cations, measured by atomic absorption analysis. The mass transfer
coefficient k = ShD/a was determined at fixed Sc = 368 for varying bulk upflow velocity
Ub, and therefore varying turbulent dissipation rate ε = 2fU3

b/Dp, where f is the Fanning
friction factor and Dp is the pipe diameter. The quiescent sinking Reynolds and Péclet
numbers span Rew = 5.5, 20, 42 and Pew = 1.0 × 103, 3.6 × 103, 7.7 × 103. We digitally
extracted the mass transfer coefficient k and bulk flow velocity Ub from their figure 1
and computed the quiescent sinking velocity of their ion-exchange particles using (3.2).
Following Ohashi et al. (1981), we obtained the friction factor from the Blasius correlation
f = 0.079(UbDp/ν)

−1/4. The quantitative agreement at the smallest Rew = 5.5 is good,
despite this being beyond the Stokes regime of our simulation. The quantitative agreement
at larger Reynolds numbers is fair, but shows the same trends. This is expected, given
the reported Reynolds-number dependence of mass transfer in uniform flow and the
well-established appearance of a wake recirculation zone at Rew ≈ 20 (Clift et al. 1978).
These observations provide further confidence in our numerical simulation approach and
confirm the existence of a transition in the mass transfer mechanism parametrised by Sr.
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(b)(a) (c)

Figure 9. Visualisation of the concentration boundary layer and wake around a spherical particle at Pe = 104

and a/η = 10−2 with (a) Sr = 0.1, (b) Sr = 1 and (c) Sr = 10. The visualisation shows the concentration field
around a particle at t� = 100, which was seeded at the same position at t� = 0 but subject to different sinking
rates.

4.3. Mechanism of mass transfer
Figure 9 presents a visualisation of the concentration boundary layer and wake around
a simulated particle as the sinking ratio is increased. When Sr = 0.1, fluid is swept
approximately along streamlines into two, nearly symmetric wakes. This closely resembles
the topology of the concentration field expected under steady, extensional strain. As the
sinking ratio is increased, the topology of the wake changes towards a single wake in a
near-uniform flow field. This closely resembles the topology of the concentration field
expected under steady, uniform flow driven by slip. We therefore qualitatively confirm the
existence of a transition in the dominant mass transfer mechanism between the small and
large Sr regimes.

To examine the transition in mass transfer mechanism quantitatively, we consider
a budget of the diffusive, convective and unsteady solute fluxes in a control volume
surrounding the particle. The flow field relative to the particle (2.7) can be decomposed
into linear contributions v = vε + vw from the relative slip due to gravity vw and strain vε
imposed by turbulent eddies. For a spherical shell control volume V = {y : a ≤ |y| ≤ r}
with variable outer radius r, we obtain the temporally averaged balance of convective and
diffusive solute fluxes from (2.8) as

A� + Q�ε + Q�w + Q�D − 4π〈Sh〉 = 0, (4.4)

where we have defined

A�(r�) =
∫

V

〈
∂θ

∂t�

〉
dy,

Q�ε(r
�) =

∫
|y�|=r�

〈vε�θ〉 · dS, Q�w(r
�) =

∫
|y�|=r�

〈vw�θ〉 · dS,

Q�D(r
�) = − 1

Pe

∫
|y�|=r�

∇�〈θ〉 · dS,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.5)

in conjunction with the boundary condition v = vw = vε = 0 on r = a. Numerically, this
is obtained through volume integrals of the convection–diffusion terms in (2.8), which is
solved using a conservative, finite-volume method. Thus, mass conservation is implicitly
satisfied. The terms in (4.4) can be understood as follows. The diffusive flux of material
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Figure 10. Decomposition of the scalar transport from a spherical particle as a function of control volume
radius r/a at a/η = 10−2. (a–c) Full breakdown of unsteady, diffusive and convective terms in (4.4) for
Pe = 104 and (a) Sr = 0.32, (b) Sr = 1.0 and (c) Sr = 3.2. The black dotted line indicates r = a + δD, where
Q�D(r)/4π

〈
Sh

〉 = 0.01. (d) Breakdown of convective terms only for Pe = 101–104 and Sr = 1.0. Markers
indicate the turbulent Péclet number, whilst colour indicates terms as in (a–c).

into V from the particle surface is 4π〈Sh〉. This must be balanced by the convective flux
due to slip Q�w and strain Q�ε , the diffusive flux Q�D at |y| = r or the time-average unsteady
accumulation A� of material within V . Because vw(y, t) = vw(−y, t) is even in y, only the
odd, parity-antisymmetric component of θ(y, t) contributes to the convective flux due to
slip (4.5). Likewise, since the strain component vε(y, t) = −vε(−y, t) is odd in y, only
the parity-symmetric, even component of θ(y, t) contributes to the convective flux due to
strain.

Figure 10(a–c) shows the balance of these terms (4.4) in the mass transport away
from a spherical particle at Pe = 104 and Sr = 0.32, 1.0 and 3.2. The sum of the
convective terms Q�C = Q�w + Q�ε is also shown. Near the particle, diffusion dominates
mass transfer; far from the particle, the diffusive flux Q�D vanishes by construction at the
boundary condition r/a = 100. We therefore define a diffusion thickness, δD, such that
Q�D(a + δD) = 0.01(4π

〈
Sh

〉
). This defines a measure of the thickness of the concentration

boundary layer, at the edge of which the diffusive flux of solute away from the particle
is negligible. We note that this is analogous to defining a 99 % thickness in terms of the
scalar gradient ∇�〈θ〉. Beyond this scale, convection dominates the mass transfer out of V
and the control volume is in equilibrium, i.e. the unsteady accumulation A� is negligible.
At very large r/a ≈ 58, the equilibrium approximation breaks down and the unsteady
accumulation of material accounts for over 10 % of the solute flux from the particle. This
is expected given the finite run-time of our simulation. Nonetheless, we are able to observe
a wide range of scales over which convection Q�C ≈ 4π

〈
Sh

〉
balances the diffusive flux

from the particle surface.
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Figure 11. (a) The variation of the concentration boundary layer thickness based on the diffusive flux thickness
δD and the 99 % thickness δ99 with turbulent Péclet number and sinking ratio. (b) The breakdown of fluxes due
to strain (Q�ε , dashed line), slip (Q�w, solid line) and unsteady accumulation (A�, dotted line) at the edge of the
concentration boundary layer r = a + δD, as a function of the sinking ratio Sr. Colours correspond to varying
turbulent Péclet number.

By comparing figure 10(a–c), we discern the effect of the sinking ratio upon the
mechanism of convective mass transfer away from the particle. At large turbulent Péclet
number, we identify a large range of scales over which convection dominates the mass
transfer away from the particle. The lower end of this range corresponds to the thickness
of the concentration boundary layer, δD, whilst the upper end of this range is limited by
the time needed for our simulation to reach equilibrium. Across this range, the balance
between the convective flux due to slip Q�w and strain Q�ε is not uniform. In all cases,
convection by strain dominates the solute flux away from the particle at large scales.
However, there exists a subrange of scales over which the relative contributions of
convection due to strain and slip are approximately constant. The lower extent of this range
corresponds to the diffusive thickness of the concentration boundary layer, δD, whereas the
upper extent of this range increases as the sinking rate Sr is increased.

The balance of convection and diffusion across scales also depends upon the turbulent
Péclet number, as shown in figure 10(d). As the turbulent Péclet number is increased,
the concentration boundary layer thins and we observe an increasing range of scales
over which convection dominates the mass transfer away from the particle. The relative
contributions of the convective fluxes exhibit a remarkable collapse beyond r/a ≈ 3 for
Sr = 1. Figure 11(a) shows the thickness of the concentration boundary layer in terms
of the conventional 99 % thickness δ99 and the diffusion layer thickness δD. We observe
that the two definitions provide comparable measures of the boundary layer thickness
and converge towards similar values at large Pe. The data are also in agreement with the
expected δ99 ∼ Pe−1/3 scaling at large Pe, although the range over which this scaling is
applicable is arguably only valid for Pe > 103 such that δ99/a � 1.

From our discussion so far, we have seen that the mechanism of convective solute
transport away from the particle depends upon scale. We have also seen that the diffusion
thickness δD serves as a measure of the thickness of the concentration boundary layer,
which lies within a region where convection is dominant and the relative contributions due
to slip and strain are approximately independent of r. It is therefore instructive to compare
the relative contribution of these convective fluxes within this range. Figure 11(b) shows
this balance at r = a + δD. By definition, diffusion accounts for 1 % of the normalised
flux at this location. As the turbulent Péclet number is increased, the relative contributions
of each of these mechanisms approaches an asymptotic value. As the sinking ratio is
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Figure 12. Standard deviation σSh of fluctuations in the local mass transfer rate Sh, relative to the mean, as
a function of the turbulent Péclet number and sinking ratio Sr. The open markers correspond to simulations
with a/η = 10−2 (◦) and 10−1 (×); the black filled markers show data for spherical particles at Sr = 0 from
Lawson & Ganapathisubramani (2021).

increased, there exists a transition in the mechanism of convective mass transfer at the edge
of the concentration boundary layer: at Sr = 0.1, virtually all mass transfer is attributable
to the turbulence; at Sr = 10, virtually all mass transfer occurs due to slip. Around
Sr ≈ 1, the contributions are comparable. This quantitatively demonstrates a change in
the mechanism of mass transfer at the scale of the particle from strain-dominated to
slip-dominated as the sinking ratio Sr is increased.

4.4. Fluctuations in the mass transfer rate
Thus far, we have examined only the average rate of mass transfer from the particle. We
now turn our attention to the fluctuations in the mass transfer rate and their correlation with
the convective forcing. Figure 12 shows the magnitude of the mass transfer fluctuations
with respect to the mean as a function of the turbulent Péclet number and sinking ratio.
At small sinking ratio Sr � 1, we observe first an increase in the magnitude of the
mass transfer fluctuations with increasing Pe, with a shallow peak around Pe ≈ 102–103,
followed by a decrease in fluctuation magnitude with increasing Pe. This is consistent with
the behaviour we have observed for neutrally buoyant spherical and spheroidal particles,
which arises from the convection-suppression effect (Lawson & Ganapathisubramani
2021). The relative magnitude of Sh fluctuations is slightly larger in the weakly sinking
case Sr = 0.1 compared with our previous data at Sr = 0; the difference is larger than
the statistical uncertainty in the data. As the sinking ratio is further increased, the relative
magnitude of the mass transfer fluctuations is decreased. Furthermore, the Pe dependence
is also changed. At the largest sinking rates Sr = 3.2, 10 we observe a monotonic
increase in the fluctuation magnitude with increasing Pe. However, the magnitude of these
fluctuations remains quite small (2 %–5 % of the mean) at the largest turbulent Péclet
numbers tested.

For sinking particles, turbulence introduces fluctuations in the solution of (2.8) through
two mechanisms. Firstly, fluctuations in strain E may directly cause fluctuations in the
mass transfer rate. Secondly, although the particle sinks at a constant rate w0 in the
laboratory frame, turbulence causes the particle to rotate with angular velocity Ω = ω/2.
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Figure 13. Cross-correlation function of the instantaneous mass transfer rate Sh(t + τ) against (a–c) local
strain magnitude E(t) and (d–f ) local rotation rate Ω⊥(t) at time t. Line colours correspond to different
turbulent Péclet numbers. The circular markers indicate the time lag τ at which the cross-correlation is
maximised.

Therefore, the slip velocity in the particle frame v0 also fluctuates in time, since v̇0 =
−w0RT(Ω × ez). The magnitude of these fluctuations is therefore determined by the rate
of rotation Ω⊥ = |Ω × ez| perpendicular to the direction of gravity. The two mechanisms
may have significant correlation with each other, since the strain rate E and vorticity
magnitude |ω| are strongly correlated in homogeneous turbulence (Zeff et al. 2003).
Indeed, in our data, we find that E and Ω⊥ are interdependent with product-moment
correlation coefficient REΩ ≈ 0.54.

In figure 13, we present the cross-correlation functions RE(τ ) and RΩ(τ) between the
instantaneous mass transfer rate Sh(t + τ) evaluated at a time lag τ relative to the strain
E(t) = |E| (figure 13a–c) and rotation rate Ω⊥(t) (figure 13d–f ). For Sr = 0.1, where the
average mass transfer rate is dominated by strain, we observe that the strain E is strongly,
positively correlated with the instantaneous transfer rate. There is also a weaker, positive
correlation with the rotation rate Ω⊥. As the turbulent Péclet number is increased, the
local transfer rate correlates less strongly with the local strain rate (and rotation rate)
and over a longer time scale. A similar behaviour can also be observed at Sr = 1. This
is an example of the convection-suppression effect, where the concentration boundary
layer becomes unresponsive to velocity fluctuations occurring on time scales faster than
O(τηPe1/3), in agreement with simulations of neutrally buoyant spheroids (Lawson &
Ganapathisubramani 2021).

On the other hand at Sr = 10, where the average mass transfer rate is dominated by slip,
fluctuations in the mass transfer rate are strongly, negatively correlated with the rotation
rateΩ⊥ and to a lesser extent the strain rate E. Furthermore, increasing the turbulent Péclet
number increases the strength of this effect and also increases the time scale over which
the mass transfer rate correlates with the rotation rate. We therefore conclude that particle
rotation by turbulence acts to decrease the mass transfer rate by slip. This is consistent
with Batchelor’s argument that, in the limit of high turbulent Péclet number, ‘the rotation
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of the particle and the ambient fluid has the effect of suppressing the convective transport
due to . . . streaming motions’ (Batchelor 1980). However, as we observe in figures 7(b)
and 12, the net effect upon the mean and fluctuations of the mass transfer rate is small
when Sr � 1.

Lawson & Ganapathisubramani (2021) showed that, for neutrally buoyant spheroids, the
instantaneous mass transfer rate is most strongly correlated with the velocity field ṽ (2.13)
filtered on a finite time scale τf ∼ τηPe1/3 due to the convection-suppression effect. To test
this hypothesis for sinking particles, we introduce the filtered, Lagrangian forcing terms

Ẽ(t) = 1
τf

∫ 0

−τf

E(t + τ) dτ and ṽ0(t) = 1
τf

∫ 0

−τf

v0(t + τ) dτ, (4.6a,b)

which specify the filtered relative velocity field in (2.13). We note that v0 only fluctuates in
the particle-aligned frame and is a constant in the laboratory frame, so fluctuations in v0
are induced by turbulent rotation of the particle. We then measure the multiple correlation
coefficient

R2 =
r2

Sh,Ẽ
+ r2

Sh,ṽ0
− 2rSh,ẼrSh,ṽ0rẼ,ṽ0

1 − r2
Ẽ,ṽ0

(4.7)

between the instantaneous mass transfer rate Sh and the magnitudes of the filtered strain
Ẽ = |Ẽ| and relative slip velocity ṽ0 = |ṽ0| as a function of the filter time scale. In (4.7),
ra,b are the ordinary product-moment correlation coefficients of the variables indicated
in the subscripts. Essentially, this measures the extent to which the linear model 〈Sh〉 +
a1(ṽ0 − 〈ṽ0〉)+ a2(Ẽ − 〈Ẽ〉) predicts variations in Sh due to variations in Ẽ and ṽ0. The
result is shown in figure 14. For Sr = 0.10, we observe a strong correlation rSh,Ẽ between
the filtered strain Ẽ and the instantaneous mass transfer rate, similar to neutrally buoyant
particles. As the turbulent Péclet number is increased, the time scale τf which maximises
the strength of this correlation also increases. The additional information from ṽ0 only
modestly improves the ability to predict fluctuations in Sh. However, as the sinking ratio
is increased, the strength of the correlation coefficient rSh,Ẽ decreases and fluctuations in
Ẽ become anti-correlated with Sh at Sr = 10, which is consistent with our observations in
figure 13 that turbulent rotation suppresses convection. In contrast, a much stronger joint
correlation is observed when both the filtered strain Ẽ and relative velocity ṽ0 are used to
predict Sh. The general trend is for the peak correlation to become weaker as the sinking
ratio is increased and as the turbulent Péclet number is increased. However, an exception
to this trend is seen at Sr = 10, where the correlation strength increases with Pe.

In figure 15, we identify the time scale τd = arg maxτf R which maximises the multiple
correlation coefficient R. We interpret this time scale as the response time of the
concentration boundary layer to velocity fluctuations. In figure 15(a), we observe that the
response time increases with increasing Pe approximately as Pe1/3 and decreases with
increasing Sr. This scaling is confirmed in figure 15(b), where we observe that the data
collapse well when τd is normalised by τηPe1/3. Therefore, our data are consistent with
Batchelor’s prediction of the convection-suppression effect in turbulent flows, provided
that the time scale for averaging the relative velocity field is chosen in proportion to
τηPe1/3
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Figure 14. Joint cross-correlation coefficient of the filtered velocity field with the instantaneous transfer rate
at sinking ratios of (a) Sr = 0.1, (b) Sr = 1 and (c) Sr = 10. The solid lines show the multiple correlation
coefficient R (4.7) for varying filter time scale τf . The dashed lines show the ordinary correlation coefficient
rSh,Ẽ between the instantaneous transfer rate and the filtered strain magnitude Ẽ.
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Figure 15. Identification of the response time scale τd of the concentration boundary layer to the fluctuating
velocity field. (a) Response time scale τd shown as a function of Pe for varying Sr. The black dashed line shows
the scaling τd ∼ Pe1/3. (b) Response time scale τd shown as a function of sinking ratio Sr, compensated for the
expected τd ∼ Pe1/3 scaling.

5. Conclusion

We have examined the mechanism of mass transfer from a dilute suspension of small,
sinking spheres using laboratory experiments and numerical simulations. Our starting
point is to revisit the theoretical treatment by Batchelor (1980) in the small-particle limit
with large but finite turbulent Péclet number. The problem is characterised by the turbulent
Péclet number Pe and the the sinking ratio Sr, which describes the relative magnitude of
the sinking speed to the shear velocity at the particle scale. This analysis predicts a shift in
the qualitative nature of the wake topology between strain-dominated flow Sr � 1, where
small particles exhibit a symmetric line- or sheet-like wake structure, and slip-dominated
flow Sr � 1, where solute streams along a single wake.

To validate this prediction experimentally, we conducted laboratory flow visualisation
experiments which measured the local release of dye from spherical ion-exchange resin
beads using a combined particle tracking and PLIF imaging technique. We are therefore
able to reconstruct the instantaneous, 3-D concentration of dye released by spherical
particles sinking in highly turbulent flows across a range of particle sizes and turbulence
intensity, for particle Reynolds numbers within and beyond the Stokes regime (0.11 ≤
Rew ≤ 4.1). Instantaneously and on average, when Sr � 1, we observe that dye is released
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in a single wake aligned with the direction of sinking, consistent with slip-dominated
mass transfer driven by sinking. However, when the sinking ratio Sr � 1, we observe
instantaneous examples of dye released in sheet-like or line-like topologies, consistent
with strain-dominated mass transfer driven by turbulence. On average, we observe an
increasingly symmetric concentration wake as the sinking ratio is made very small.
Furthermore, the average scalar field surrounding the particle is isotropised when the
strength of the turbulence becomes comparable to the rate of sinking (Sr = O(1)). These
flow visualisations qualitatively confirm a transition in the mechanism of mass transfer as
the sinking ratio is varied.

To quantify this transition in mass transfer mechanism, we conducted numerical
simulations of the mass transfer to small, sinking particles in the Stokes regime based
on the methodology of Lawson & Ganapathisubramani (2021). The average mass transfer
rate predicted by the simulations is validated against data for small particles in turbulence
with Sr � 1 and is shown to approach the known asymptotic expression (4.2) for a
spherical particle in uniform Stokes flow when Sr � 1. We quantify this transition in
transfer mechanism using a decomposition of convective fluxes of solute away from the
particle. When Sr = 0.1, almost all mass transfer is provided by turbulent strain, whereas
at Sr = 10, almost all mass transfer occurs due to slip. At Sr = 1 the contributions are
approximately equal. Cross-correlations between the mass transfer rate and convective
forcing evidence the suppression of convective mass transfer by unsteady fluctuations due
to the finite response time of the concentration boundary layer. For strain-dominated flow,
this effect is benign: the transfer rate simply becomes responsive to strain fluctuations on
longer time scales. For slip-dominated flow, we find that particle rotation by turbulence
suppresses convection and the strength of the effect increases with increasing turbulent
Péclet number. Therefore, our results support Batchelor’s prediction that the ‘strange
consequence’ of gentle stirring is to initially suppress mass transfer in the limit of very
large Pe. However, the size of the effect is modest even at Pe = 104 and this effect may not
be important in practice.

Our results have important implications for the prediction of solid–fluid mass transfer.
We have seen that the sinking ratio Sr defines the mass transfer mechanism and therefore
whether the dissipation rate or the slip velocity predominantly controls the mass transfer
rate. This should be an important consideration in the scale-up of, for example, stirred
tank reactors, where the particle size and settling velocity are often fixed, but the
turbulent dissipation rate varies upon scale-up. The concept of an effective slip velocity for
almost neutrally buoyant particles should also not be interpreted physically, because strain
provides the mechanism of mass transfer in this scenario. Moreover, in an inhomogeneous
turbulent flow, the local mechanism of mass transfer may depend upon the distribution
of the kinetic energy dissipation rate. Our cross-correlation analysis has revealed that
particle-scale knowledge of both the recent strain and velocity history is required to predict
the instantaneous mass transfer rate. Furthermore, between the two limiting regimes at
Sr = O(1), both mechanisms provide comparable contributions to the mass transfer. This
emphasises the need for particle-scale models which incorporate the local flow conditions.
In future work, we hope to model this process using the quasi-steady approximation of
Lawson & Ganapathisubramani (2021), which could be solved for an arbitrary strain–slip
combination using the technique outlined in Lawson (2021).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.998.
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Figure 16. The approach to a statistically stationary state. (a) Evolution of the ensemble-average Sherwood
number as a function of time t� at Pe = 104 and a/η = 10−2 for varying sinking velocities Sr. (b) Evolution
of the shell-average concentration profile θΩ(r, t) as a function of time, for the case with the longest initial
transient (Sr = 0.10,Pe = 104).
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Appendix. Approach to stationary state

In this appendix, we identify the time required for our numerical simulations to reach
a statistically steady state. Figure 16(a) shows an example of the initial transient in the
ensemble average mass transfer rate 〈Sh〉 for different sinking rates at Peε = 104 and
a/η = 10−2, which corresponds to the longest initial transient. The transient is decreased
by increasing the sinking rate and a statistically stationary state is reached after t� > 75.
The radially averaged concentration profile θΩ(r, t) is shown in figure 16(b) for the case
with the longest transient (Sr = 0.1,Pe = 104). For this extreme case, we observe the
mean concentration profile has also reached its equilibrium value by t� = 75.
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