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Abstract With the advancing of location-detection technologies and the increasing popularity of mobile phones and other

location-aware devices, trajectory data is continuously growing. While large-scale trajectories provide opportunities for various

applications, the locations in trajectories pose a threat to individual privacy. Recently, there has been an interesting debate on

the reidentifiability of individuals in the Science magazine. The main finding of Sánchez et al. is exactly opposite to that of De

Montjoye et al., which raises the first question: “what is the true situation of the privacy preservation for trajectories in terms

of reidentification?” Furthermore, it is known that anonymization typically causes a decline of data utility, and anonymization

mechanisms need to consider the trade-off between privacy and utility. This raises the second question: “what is the true

situation of the utility of anonymized trajectories?” To answer these two questions, we conduct a systematic experimental

study, using three real-life trajectory datasets, five existing anonymization mechanisms (i.e., identifier anonymization, grid-

based anonymization, dummy trajectories, k-anonymity and ε-differential privacy), and two practical applications (i.e., travel

time estimation and window range queries). Our findings reveal the true situation of the privacy preservation for trajectories in
terms of reidentification and the true situation of the utility of anonymized trajectories, and essentially close the debate

between De Montjoye et al. and Sánchez et al. To the best of our knowledge, this study is among the first systematic evaluation

and analysis of anonymized trajectories on the individual privacy in terms of unicity and on the utility in terms of practical

applications.
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1 Introduction

With the advancing of location-detection technolo-

gies (e.g., global positioning systems, cellular net-

works, Wi-Fi and radio frequency identification) and

the increasing popularity of mobile phones and other

location-aware devices (e.g., smart-phones, on-board

diagnostics, personal navigation devices and wearable

smart devices), the trajectory data left by moving ob-

jects and daily collected is continuously growing [1–7].

Large-scale trajectories have provided opportunities to

fundamentally transform the ways of disease fighting

(e.g., COVID-19 pandemic tracking) and urban com-

puting (e.g., traffic analysis and route planning) [1, 2, 7].

The location information in trajectories poses a

threat to the privacy of individuals, and it belongs to

the privacy and rights stated by General Data Protec-

tion Regulation (GDPR) 1○, which was considered as

the most important law in data privacy regulation in



the past 20 years [8]. For example, a doctor’s location

can be derived through the correlation of the fine-grain

location data with publicly available information [9],

and the location data can reveal the habits and sexual

preference of individuals that can be abused for unau-

thorized advertisements [10]. Even worse, personal in-

formation is available publicly and globally, as pointed

out in GDPR, and the need for data publishing and pri-

vacy protection co-exists in various situations [11]. Ef-

forts have also been made to develop anonymization

mechanisms for protecting the privacy of trajectories

over the past few decades [11,12], such as simple identi-

fier anonymization [13], grid-based generalization [12,14],

dummy trajectories [12,15], k-anonymity [10,16,17] and

differential privacy [18–20].

Recently, there has been an interesting debate

on the reidentifiability of individuals in the Science

magazine [2, 3, 21]. De Montjoye et al. [2] studied the

credit card records of three months for 1.1 million

users in 10 000 shops, and claimed that “four spatio-

temporal points are enough to uniquely reidentify 90%

of individuals”, where credit card records are essen-

tially treated as trajectories, reidentification is mea-

sured by unicity [1], and simple identifier anonymiza-

tion and grid-based generalization are used as the

anonymization mechanisms. This confirms the finding

of their earlier work [1], “four spatio-temporal points are

enough to uniquely identify 95% of the individuals”,

which studies the human mobility data of 15 months

for 0.5 million individuals, where the location of an in-

dividual is specified hourly, and has a spatial resolution

equal to that given by the carrier’s antennas. Xiao et

al. [22] studied two large sets of taxi trajectories in Shen-

zhen and Shanghai in China, and further found that

“four spatio-temporal points are sufficient to uniquely

identify vehicles, achieving an accuracy of 95.35%”, by

using grid-based generalization to simulate the basic

privacy protection methods.

Sánchez et al. [21] claimed that “anonymization can

be performed by techniques well established in the

literature”. They commented and pointed out that

there are several limitations in the study of [2], e.g.,

the implemented anonymization strategies to coarsen

the data are unreferenced and fall short of sufficiently

protecting privacy, and the grid-based generalization

uses fixed range values. To address these concerns,

they chose a synthetically generated version of a pub-

licly available patient discharge dataset 2○ with spatio-

temporal features, which includes nearly four million

patients admitted to California hospitals in 2009, used

more sophisticated k-anonymization to group records

with similar census and spatio-temporal features, and

found zero reidentifications of individuals. The finding

successfully justifies their new claim.

The main finding of Sánchez et al. [21] is exactly op-

posite to that of De Montjoye et al. [3]. Hence, De Mon-

tjoye et al. [3] further gave a response and argued that

“Sánchez’s textbook k-anonymization example does not

prove, or even suggest, that location and other big-data

datasets can be anonymized and of general use”, due

to “a fundamental misunderstanding of the size and di-

mensionality of modern big-data datasets and how they

are being used”. By presenting more analyses and ev-

idence, they claimed that “deidentification should not

be considered a useful basis for policy”, which corre-

sponds to the finding of their earlier study [2].

Question 1. “What is the true situation of the pri-

vacy preservation for trajectories in terms of reidenti-

fication?” To the best of our knowledge, a systematic

evaluation and analysis for trajectories on the individ-

ual privacy in terms of unicity is still on its way, though

there exist a number of surveys on the anonymization

mechanisms of trajectories [11,12,23–26].

However, anonymization typically causes a decline

of data utility [25,27], and anonymization mechanisms

need to consider the trade-off between privacy protec-

tion and data utility. Indeed, Sánchez et al. [21] already

pointed out that anonymized data should also retain its

utility for data publishing, and adopt information loss

to evaluate the utility of anonymized trajectory data.

Question 2. “What is the true situation of the

utility of anonymized trajectories?” This is as im-

portant as the privacy in order to achieve a trade-off

between privacy protection and data utility. To the

best of our knowledge, most existing studies evaluate

the utility of anonymization mechanisms independently

except [23] that evaluates the utility with the quality

loss, and there exist no systematic utility evaluations

of anonymized trajectories in terms of practical appli-

cations. Moreover, various criteria to evaluate the uti-

lity, e.g., information loss based [21,23,28,29] and appli-

cation oriented [10,27,30,31], application oriented crite-

ria, are more direct or convincing to reflect the utility

of anonymized data, such as window range queries [10]

and software classification and defect prediction [27,30].

Contributions. To this end, we provide a system-

atic evaluation and analysis on the privacy and uti-

lity of existing anonymization mechanisms for trajec-



tory data publishing. Note that although a number

of studies [32–34] have evaluated anonymization mecha-

nisms on various and heterogeneous data types, most of

them focus on the performance of anonymization mech-

anisms, which is different from our purpose, and do not

discuss trajectory data.

We conduct a systematic evaluation, using three

real-life trajectory datasets [5, 6], five anonymization

mechanisms (i.e., identifier anonymization [13], grid

based anonymization [14], dummy trajectories [35], k-

anonymity [10] and ε-differential privacy [31]), and two

practical applications (i.e., travel time estimation [36,37]

and window range queries [38]). We find that reidentifi-

cation privacy in terms of unicity is not well protected

by the classic anonymization methods such as iden-

tifier anonymization [13], grid-based anonymization [14]

and dummy trajectories [35], but is well preserved by

k-anonymity [10] and ε-differential privacy [31]. This

somehow confirms Sánchez et al.’s finding [21], and the

anonymization mechanisms used by De Montjoye et al.

in [2, 3] indeed have limitations and their finding on

reidentification is indeed overestimated. This answers

question 1 on the true situation of the trajectory pri-

vacy in terms of reidentification, and we also hope that

this study closes the debate between De Montjoye et

al. [2, 3] and Sánchez et al. [21].

We also find that the utility is determined by

both anonymization mechanisms and concrete appli-

cation algorithms for trajectory data. Furthermore,

no anonymization mechanisms, maybe except identifier

anonymization, for trajectory data, successfully satisfy

all the needs of practical applications. These give an

answer to question 2 on the true situation of the utility

of anonymized trajectories.

Organizations. The rest of the paper is organized

as follows. Section 2 reviews existing anonymization

mechanisms for trajectory data, Section 3 introduces

the measurements for privacy and utility, and Section 4

reports and analyzes the experimental findings, fol-

lowed by conclusions in Section 5.

2 Anonymization Mechanisms

Many applications explicitly or implicitly make use

of the trajectories of moving objects, which has raised

the problem of individual privacy protection. Ac-

cordingly, various anonymization methods for trajec-

tory publishing have been proposed to protect per-

sonally identifiable information such that a trajec-

tory is regarded as a record of an individual moving

object [10,12,31,35,39,40]. In this section, we first intro-

duce basic concepts on trajectories, and then give a

brief introduction of these anonymization mechanisms.

Data Points. A data point is defined as a triple

P (x, y, t), which represents that a moving object is lo-

cated at longitude x and latitude y at time t. Note

that data points can be viewed as points in the x-y-t

3D Euclidean space.

Trajectories. A trajectory T (P0, . . . , Pn) is a se-

quence of points in a monotonically increasing order of

their associated time values (i.e., Pi.t < Pj .t for any

0 6 i < j 6 n). Intuitively, a trajectory is the path (or

track) that a moving object follows through the space

as a function of time [5, 6].

Trajectory Data. A trajectory dataset D typically

consists of a set of trajectories such that each trajectory

is associated with a unique identifier representing an in-

dividual moving object, and its sensitive information is

the locations.

2.1 Identifier Anonymization

The simplest anonymization could be identifier

anonymization, which means a dataset that is lack of

names, home addresses, phone numbers, or other obvi-

ous identifiers (such as required, for instance, under the

U.S. personally identifiable information (PII) “specific-

types” approach) [13]. Many datasets are published with

this mechanism due to its ease of usage, though it is

known unsafe, such as the GAIA data opening program

released by DiDi 3○, Kaggle for an online community

of data scientists and machine learners 4○, and Geolife

GPS trajectory data collected by Microsoft Research

Asia 5○. Hence, we choose identifier anonymization as

a representative method in our analysis.

2.2 Grid-Based Generalization

Generalization essentially means replacing one or

multiple specific values with a more general one, such as

coarsening the data by dividing the map as the Voronoi

diagram [1], and clustering-based generalization [41].

The basic idea of grid-based generalization is to par-

tition the data space into grids such that all points



falling into the same grid are uniformly represented by

the grid. This mechanism is common and designed to

anonymize user trajectories for privacy-preserving data

mining [12,14], and we hence choose grid-based generali-

zation as a representative method for anonymizing the

spatial-temporal resolutions of trajectory data in our

analysis.

Example 1. Fig.1 is an example of grid-based gen-

eration [14], in which a trajectory (P1, P2, ..., P8) with

eight points is fit in a 2D space that is partitioned into

six grids denoted as G1, G2, ..., G6. Then the tra-

jectory is transformed into a new format (G4, G5, G2)

w.r.t. time intervals P1.t–P3.t, P4.t–P6.t and P7.t–P8.t.
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Fig.1. Example of grid-based generation [14].

2.3 Dummy Trajectories

Dummy trajectories generate fake trajectories,

called dummies, to preserve the location of moving

objects [12, 15]. Different ways, i.e., classic random and

rotation pattern schemes [35] and up-to-date deep gen-

erative models [42], can generate fake trajectories. Ob-

serving that moving behaviors of users usually follow

certain patterns, which adversaries may exploit to dis-

tinguish true trajectories from dummies, an approach

is proposed to generate intersecting dummy trajec-

tories following certain moving patterns and to de-

crease the disclosure of individual user trajectories [35].

Two schemes, namely, random and rotation pattern

schemes, are designed to generate dummies that ex-

hibit long-term user movement patterns [35]. Random

pattern scheme demonstrates that even after a long

term observation, it is difficult for adversaries to iden-

tify true user trajectories since dummies also exhibit

long-term, consistent movement patterns. The rotation

pattern scheme generated dummy trajectories that have

the same motion pattern with the original trajectory.

Indeed [35] alleviates the privacy threat in a long run,

and hence, we choose the rotation one as a representa-

tive method in our analysis.

Example 2. Fig.2 is an example of the rotation pat-

tern scheme [35] for the original trajectory T . Fig.2(a)

shows the result of T rotating 120◦ around the third

point of T and Fig.2(b) shows the result of T rotating

80◦ around the second point of T .

θ=120°
θ=80°

(b)(a)

Fig.2. Example of the rotation pattern scheme [35].

2.4 K-Anonymity

K-anonymity is proposed to protect individual pri-

vacy such that each record is indistinguishable with at

least other k− 1 records w.r.t. the quasi-identifier, i.e.,

each equivalence class contains at least k records [16].

However, a k-anonymized equivalence class suffers from

a homogeneity attack if all records in the class have

less than k values for the sensitive attribute (e.g., dis-

ease and salary). To address this issue, l-diversity [43]

and t-closeness [44] are proposed to ensure that 1) an

equivalence class has at least l values for the sensitive

attribute and 2) the distance between the distribution

of a sensitive attribute and the distributions of all at-

tributes is no more than a threshold t, respectively.

(k, δ)-anonymity is introduced to anonymize trajectory

data by extending k-anonymity with the spatial uncer-

tainty δ > 0 [10, 45]. It contains two steps: it first groups

k closest trajectories into clusters, and then moves the

original trajectories to cylinders with a radius of δ using

the space translation. However, it is proved that [10,45]

can offer trajectory k-anonymity only when δ = 0 [46].

As k-anonymity offers the better utility compared with

its variants l-diversity and t-closeness, we choose the

k-anonymity method NWA [10] by setting δ = 0 as a

representative method in our analysis.

Example 3. Fig.3 is an instance of k-anonymity [10].

Two trajectories are to be combined and the radius of

the volume of trajectory is δ. The blue area represents



the volume of T1, the red area represents the volume of

T2, τc is the track created by T1 and T2, and the gray

area represents the anonymity set whose radius is δ/2.

Finally, we get the black anonymity trajectory.
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Fig.3. Example of k-anonymity [10].

2.5 Differential Privacy

Differential privacy is proposed in [47], which has

become a popular privacy model and has been used

in real applications such as Google 6○ and US Census

Bureau 7○. Differential privacy requires that any com-

putation on an underlying database is insensitive to the

removal and addition of an individual record. That is,

it provides a strong individual privacy guarantee.

ε-Differential Privacy. A random algorithm A sat-

isfies ε-differential privacy if for any two neighboring

datasets D1 and D2 differing at most one record, and

any output O,

P (A(D1) = O) 6 exp(ε)× P (A(D2) = O),

where P denotes the probability and ε is the positive

privacy budget that is believed that the smaller it is,

the stronger the privacy guarantee is. The Laplace

mechanism [48] and the exponential mechanism [49] are

commonly adopted to achieve differential privacy, built

on the l1-norm sensitivity, defined as follows.

l1-Norm Sensitivity. For any function f(D) →
Rd, its l1-norm sensitivity is the maximum l1-norm of

f(D1)−f(D2), where D1 and D2 are any two neighbor-

ing datasets differing at most one record, and is defined

as follows:

∆f = max
D1,D2

‖f(D1)− f(D2)‖ .

Sequential and parallel compositions are two

important composition properties for differential

privacy [31,50].

Sequential Composition. If differential privacy is

provided in each isolation, then it is also ensured on

their sequential connection, where the final ε is the sum

of all involved privacy budgets.

Parallel Composition. If differential privacy is pro-

vided on each disjoint set, then it is also ensured on

their union, where the finally ε is the worst of all in-

volved privacy budgets.

Differential privacy is firstly introduced for trajec-

tory data in [51], which relies on the assumption that

trajectories contain a lot of identical prefixes. This does

not really hold in many applications as pointed out

in [31]. The method in [31] removes the assumption,

and is composed of two key components: 1) differen-

tially private location generalization, which uses an ex-

ponential mechanism to probabilistically partition the

location universe into groups at each time point and

replaces all the locations belonging to the same group

with their centroid, and 2) differentially private release

for generalized trajectories, which generates new trajec-

tories over the generalized location domains and pub-

lishes their noisy counts based on the Laplace mecha-

nism that share the same Laplace mechanism as [20,52].

As this method shows better performance, we choose it

as a representative method in our analysis.

Example 4. Fig. 4 is an example of ε-differential

privacy [31]. The original locations in every time of

(t1, t2, t3) are transformed into locations P11, P12, P21,

P22, P31 and P32 and then we get the generalized tra-

jectories, i.e., (P11, P21, P31) w.r.t. T2. Next, a Laplace

mechanism is applied to add noises to the counts of

generalized trajectories (Table 1). Finally, we release

the number of noisy trajectories.

3 Measuring Privacy and Utility

In this section, we introduce the measurements for

privacy and utility. Following [1–3], we adopt unic-

ity as the metric for measuring the privacy, and we

evaluate the utility in terms of two classic applica-

tions: travel time estimation [53,54] and window range

queries [6, 55,56].

6○https://github.com/tensorflow/privacy, Aug. 2022.
7○https://onthemap.ces.census.gov, Aug. 2022.
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Fig.4. Example of differential privacy [31].

Table 1. Private Release of Generated Trajectories [31]

Generalized Original Number of Real Number of Noisy

Trajectory Trajectory Trajectories Trajectories

P11, P21, P31 T2 1 0

P11, P21, P32 Null 0 1

P11, P22, P31 Null 0 0

P11, P22, P32 T5, T7 2 3

P12, P21, P31 T4, T6 2 4

P11, P21, P32 T1, T3 2 1

P12, P22, P31 Null 0 1

P11, P22, P32 T8 1 2

3.1 Measuring Privacy

We first introduce unicity, which is used to eva-

luate the privacy risk in terms of the reidentification

of anonymized trajectory data.

Unicity [1]. Unicity, denoted as µ, is the ratio of the

number of reidentified (unique) trajectories NU and the

number of total trajectories NT :

unicity (µ) =
NU

NT
.

Given a positive integer q, we randomly choose q val-

ues {k1, . . . , kq} from [1, n], and we say that a trajectory

T in D is unique if there exist no other trajectories T ′
in D such that T .Pk1

= T ′.Pk1
, . . ., T .Pkp = T ′.Pkp .

That is, a unique trajectory does not have the same

locations at the p chosen time points as all the other

trajectories. Unicity essentially reveals the possibility

of identifying the entire trajectory of a moving object,

and p quantifies the amount of information one would

need, on average, to reidentify a specific moving object.

A larger unicity means a higher possibility to reidentify

an object. Considering unicity µ = 0.9 with p = 2, if

we only know two points in trajectory T , then we have

a probability of 90% to identify or recover all the points

of trajectory T by searching trajectories that contain

the same two points. When there exists exactly one

such trajectory in D, we know exactly the entire trace

of the moving object. In this situation, we also say that

the moving object (or trajectory) is reidentified.

Remark. For the purpose of unicity evaluation, the

trajectory dataset D is also preprocessed by data in-

terpolations such that 1) all trajectories in D have the

same number of points, and 2) for any two trajectories

T and T ′ in D, T .Pi.t = T ′.Pi.t for all i ∈ [1, n].

3.2 Measuring Utility

We then introduce travel time estimation and win-

dow range queries, which are used to evaluate the utility

of anonymized trajectory data.

3.2.1 Travel Time Estimation

Travel time is the total time for a vehicle to travel

from one point to another over a specified route [57,58].

Travel time estimation is to estimate the travel time

w.r.t. an origin, a destination and departure time

from the historical trips [37]. Travel time estimation

has valuable commercial usages for urban computing

such as route planning for drivers and passengers [53]

and ride-sharing service [59].

SER, MRE, and MAE. Following [36, 58, 60], we

adopt successful estimated ratio (SER), mean relative

error (MRE) and mean absolute error (MAE) to eva-

luate the quality of travel time estimation, which are

defined as follows:

SER =
|itr ∩ ite|
|ite|

,

MRE =

∑i=n
i=1

|eti−rti|
eti

n
, and

MAE =

∑i=n
i=1 |eti − rti|

n
,

where ite and itr are the trips of the testing data and

the training data, respectively, n is the number of esti-



mated trips, eti and rti are the estimated time and the

real time of trip i, respectively, and a trip is a segment

of a trajectory, i.e., a section from the start state to the

stop state of a moving object. Here, the larger the SER

is, the better the accuracy of the travel time estimation

is, and the smaller the MAE and MRE are, the more

accurate the travel time estimation is.

We adopt the trajectory-based simple concatena-

tion (TSC) approach [36] and the temporal speed refe-

rence by region (TEMP+R) approach [37] for travel time

estimation, which are referenced and used as base-

lines in many studies [57,61]. Note that 1) any travel

time estimation approach, such as deep learning based

approaches [57,61,62], can essentially be used here, and

2) we use both raw and map-matched trajectories, i.e.,

TSC has a map-matching process while TEMP+R uses

the raw trajectories. We next briefly introduce these

two approaches.

TSC Approach [36]. Given a set D of trajectories,

TSC partitions D into the training data and the test-

ing data, where only those trajectories with more than

1 000 points are chosen. It first calculates the travel

time of the training data, and then uses the travel time

of the training data to estimate the travel time of the

testing data. More specifically, TSC selects the fifth

day as the testing data and the first four days as the

training data, where the five days fall in the middle of

the entire time range. It segments the long trajectories

into smaller trips. Here the moving object is consi-

dered in a stop state when its speed is smaller than 1

m/s lasting for more than 120 s following [63]. Second,

for fitting the input requirement of k-anonymity [10], it

uses interpolations to unify the training data such that

the start and the end time points of different trajecto-

ries are the same. The time interval between any two

neighbouring points of a trajectory must be the same (6

s for Ucar, 6 s for Taxi, and 10 s for Truck for our experi-

ments in Section 4). Third, it anonymizes the training

data, where the map-matching method [64] is also imple-

mented for trips. The result of map-matching is a table

with attributes (road ID, time slot, travel time), and a

day is divided into 48 time slots with 30 minutes each.

Fourth, it calculates the real travel time of trips of the

testing data using the map-matching results. Fifth, it

estimates the travel time in the testing data by aligning

the two tables generated by the training and the test-

ing data, and by comparing the records with the same

road ID and time slot. Finally, MAE, MRE and MR

are calculated.

TEMP+R Approach [37]. Given a set D of trajec-

tories, TEMP+R also partitions D into the training

data and the testing data, and segments trajectories

into trips along the same lines as TSC. Trip ti is a

neighbor of trip t in the testing data if the origin and

the destination of ti are spatially close to the origin and

the destination of t, respectively, measured in terms of

the Euclidean distance. In order to quickly retrieve the

neighboring trips, it employs a grid partition of a city

(e.g., 50 m × 50 m grids). Let N(t) be the neighbors

of trip t whose Euclidean distances are in the nearest

τ grids. It estimates the travel time of trip t using its

neighboring trips as follows:

TravelT ime(t) =
1

|N(t)|
∑

ti∈N(t)

ti ×
AV G(ti)

AV G(t)
,

where AV G(ti) denotes the average speed of all trips

whose start time point falls into the same time slot as

trip ti (for example, using a daily pattern with one hour

as the basic unit, we have 24 time slots per day), and

AV G(t) denotes the average speed of trip t.

Note that the calculations of SER using TSC and

TEMP+R are different as TSC has a map-matching

procedure. 1) For TSC, ite is the set of trips in the

testing data, itr is the set of trips in the training data

that are successfully map-matched, and itr ∩ ite is the

set of successfully estimated trips when aligning the two

tables generated by the training data and the testing

data. 2) For TEMP+R, ite is the set of trips in the

testing data, itr is the set of trips in the training data,

and itr ∩ ite is the set of successfully estimated trips

in the neighbouring trips of the testing data from the

training data.

3.2.2 Window Range Queries

Spatio-temporal queries are fundamental operations

for trajectory data [6, 38,55,56,65], among which we

choose window range queries to evaluate the utility of

anonymized trajectory data. Window range queries are

in particular useful for vehicle flow monitoring that ex-

plores the traffic flow information to help make bet-

ter travel decisions, alleviate traffic congestion, and im-

prove the urban planning [66], and have been commonly

used for the utility evaluation [10,31].

Given a cube (x1, x2, y1, y2, t1, t2), a window range

query (W-RQ) finds all the trajectories with at least one

point p = (x, y, t) such that x1 6 x 6 x2, y1 6 y 6 y2

and t1 6 t 6 t2
[31,55,65]. Such a W-RQ answers the

question about how many trajectories pass through the

region (x1, x2, y1, y2) during the time period [t1, t2].



F1 Measure. Following [38], we adopt the F1 mea-

sure to evaluate the quality of window range queries

such that the higher it is, the better the quality is.

Given a W-RQ Q, its F1 is defined as follows:

F1 (Q) =
2× precision (Q)× recall (Q)

precision (Q) + recall (Q)
,

such that the precision and the recall are computed as

follows:

precision (Q) = |Ro ∩Ra|/|Ro|,
recall (Q) = |Ro ∩Ra|/|Ra|,

where Ro and Ra denote the two sets of trajecto-

ries returned from the original trajectory data and the

anonymized data, respectively.

4 Experiments and Analyses

In this section, we evaluate the unicity and utility

with five anonymization methods, and present our find-

ings and analyses. As data cleaning has few impacts on

the unicity and utility, we use the original datasets for

our experiments.

4.1 Experimental Settings

4.1.1 Datasets

We use three real-life datasets reflecting the tra-

jectories in cities [5, 6], shown in Table 2. 1) Ucar is

a dataset containing trajectories from a Chinese car

rental company located in Beijing, China. 2) Taxi

is a dataset containing taxi trajectories in Beijing,

China. 3) Truck is a dataset containing truck trajec-

tories mainly in Nanning, China. These datasets have

various sampling rates, ranging from one point per six

seconds to one point per 60 seconds. The trajectories

of Ucar and Taxi are mostly located in city centers, and

those of Truck sometimes move in a group and have a

wide spatial distribution. The latitude and the longi-

tude accuracies of all datasets are kept with six decimal

numbers.

4.1.2 Anonymization Mechanism Implementation

We implement five anonymization mechanisms.

1) Identifier Anonymization. We simply randomly

generate a pseudo identifier for each trajectory.

2) Grid-Based Anonymization. We set different

spatial-temporal resolutions for the trajectory datasets.

The entire spatial area is divided into different squares

along the latitude and the longitude, and the spatial

resolution means the side length of squares, varying

from 20 m to 10 000 m. A temporal resolution divides

the whole time period into time bins with a time inter-

val (temporal resolutions), where the start time of the

first time bin is 0:0 of the first day.

3) Dummy Trajectories. Following [35], dummy tra-

jectories are generated as follows. For each trajectory,

we first find the point locating in the middle time of the

trajectory, and then we rotate the trajectory around the

point anticlockwise with varying angles that fall in {5◦,
10◦, 15◦, 20◦, 25◦, 30◦, 45◦, 90◦, 135◦, 180◦}.

4) K-Anonymity. We adopt the (k, δ)-anonymity

approach [10] that consists of three steps. i) All train-

ing datasets are pre-processed using interpolations such

that the time intervals between any two neighboring

points are exactly 6 s for Ucar, 60 s for Taxi, and 10 s

for Truck, and all the trajectories in a training dataset

have the same start and end time. ii) The processed

training datasets are then clustered. First, a list of

pivot trajectories that are acted as the cluster centers

are selected, where the first one is the farthest trajec-

tory from the average trajectory of the entire dataset,

and the remaining pivot trajectories are the farthest

trajectories from previous chosen pivot ones. Second, a

pivot trajectory together with its k − 1 nearest neigh-

boring trajectories forms a cluster (k ∈ {2, 4, 6, 8, 10}).
A constraint is enforced for each cluster whose radius

is not larger than a threshold max radius, which is ini-

tially set to 0.5% of the semi-diagonal of the spatial

minimal bounding box of the datasets. If a cluster can-

not be created around a new pivot, it is not used as

a pivot, but as a member of some other clusters. If a

trajectory cannot be added to any cluster, it is simply

Table 2. Three Real-Life Trajectory Datasets

Dataset [5, 6] Number of Sampling Rate Number of Latitude Longitude

Trajectories (points/s) Points
Min. Max. Min. Max.

Ucar 2 023 6 48 936 975 39.680 40.252 116.007 116.738

Taxi 8 715 60 76 543 949 39.680 40.252 116.007 116.738

Truck 675 10, 30, 60 12 886 273 22.552 23.259 107.636 108.939



trashed. This process may lead to many trash trajec-

tories such that the clustering process is restarted by

multiplying max radius with 1.5. This process repeats

until the number of the trashed trajectories is smaller

than max trash. iii) Finally, a k-anonymized aggregate

trajectory is formed for each cluster by setting the loca-

tions of all points at the same time to their arithmetic

means. Note that the (k, δ)-anonymity approach can

offer trajectory k-anonymity only when δ=0 [46], and

hence we always set δ = 0 in our tests.

5) Differential Privacy. We adopt the ε-differential

privacy approach [31], which consists of three steps. i)

All training datasets are firstly pre-processed using in-

terpolations such that the time intervals between two

neighboring are exactly 3 600 s for Ucar, Taxi and

Truck, and all the trajectories have the same start and

end time. The interval here is much larger than k-

anonymity, as the computation of ε-differential privacy

is much more expensive. ii) This second step is called

differentially private location generalization, which uses

an exponential mechanism to probabilistically parti-

tion the location universe Γ into groups at each time

point and replaces all the locations belonging to the

same group with their centroid. To improve the ef-

ficiency, the total number of partition candidates is

reduced from m|Γ| to ϕ + 1 + |Γ|, where m is the

expected number of partitions and Γ is the original

location domain (ϕ =
[
|Γ|
10

]
). This makes the expo-

nential scheme become feasible in practice. First, it

uses the k-means algorithms to partition the original

trajectories into m groups based on their pairwise Eu-

clidean distances (k ∈ {20, 40, 60, 80, 100}). Second, it

produces another set of partition candidates τ , which

consists of ϕ partitions producing the next ϕ greatest

utilities, of which each adds a distinct trajectory near-

est to the centroid, and a total of |Γ| k-means parti-

tions based on the datasets, of which each removes a

distinct trajectory from D. When conducting the ex-

ponential mechanism, the probability of choosing each

partition p ∈ τ is
exp(

ε1
2∆U U(D,p))∑

p∈τ exp(
ε1

2∆U U(D,p))
, where ε1 = 0.001

is the privacy budget of the exponential mechanism, U

is the utility function such that U =
minp∈τ (AvgDist(p))

AvgDist(p) ,

where AvgDist is the average of the mean distances

between all pair of points at every time point in a clus-

ter and ∆U is the sensitivity of the utility function

(equal to 1). iii) This step is called differentially pri-

vate release for generalized trajectories, which generates

new trajectories over the generalized location domains,

and publishes their noisy counts based on the Laplace

mechanism. We add Laplace noise Lap(1/ε2), where

ε2 ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.2}, to the real count of tra-

jectories.

As shown in [31], this approach holds the following.

Theorem 1. The approach in [31] satisfies ε-

differential privacy, where ε = |Γ| × ε1 + ε2, and |Γ|
is the number of trajectories.

4.2 Experimental Results

In this subsection, we report the findings of individ-

ual privacy in terms of unicity, and utility in terms of

two classic applications. Each test is repeated over five

times, and the average is reported.

4.2.1 Privacy Tests with Unicity

We find that 1) for identifier anonymization and

dummy trajectories with the rotation pattern scheme,

the unicity is always kept to 1, 2) for (k, δ)-anonymity,

the unicity is always 0 (which can be easily inferred

from the definition of k-anonymity), and the unicity

remains close to 0 even if we keep the trashed trajec-

tories as 2 for k ∈ {2, 4, 6, 8, 10, 20, 40, 60, 80, 100}, and

3) for differential privacy, the unicity is always close

to 0. These imply that the individual privacy is not

well preserved by identifier anonymization and dummy

trajectories, but is well preserved for k-anonymity and

differential privacy. Next, we only report the unicity

for grid-based generalization.

Exp-1: Impact of the Number of Points. In this test,

to evaluate the impact of the number of points m, we fix

the spatial resolution x = 1 km and the temporal reso-

lution y = 1 h, and vary the number of points m from

1 to 10. The unicity results are reported in Fig.5(a).

The results show that the unicity µ is high, i.e., 1.0

for Ucar, 0.92 for Taxi and 0.68 for Truck when m = 4,

respectively. This means that knowing four random

spatio-temporal points is enough to uniquely reidentify

most of the individual objects and to uncover their en-

tire records. Further, the unicity increases with the

increment of m. This is obvious as it becomes more

difficult to find trajectories with more knowing points.

When m = 1, the unicity of Truck is higher than that

of Ucar and Taxi. This is because truck trajectories

are sparser. We also find that the unicity of Truck is

smaller when m > 3 because trucks often move together

in groups. While four points are enough to uniquely rei-

dentify all considered trajectories for Ucar (µ > 0.99),

eight points are needed for Taxi (µ > 0.99) and Truck

(µ > 0.80). Hence, the individual privacy is not well

preserved.
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Fig.5. Unicity µ w.r.t. grid-based generalization. (a) w.r.t. number of points. (b) w.r.t. number of trajectories.

Exp-2: Impact of the Number of Trajectories. In

this test, we use the same setting as Exp-1, fix

the number of points m = 4, and set the num-

ber of trajectories n to {500, 1 000, 1 500, 2 000, 2 023}
for Ucar, {2 000, 4 000, 6 000, 8 000, 8 715} for Taxi, and

{150, 300, 450, 600, 675} for Truck, respectively. The

results are reported in Fig.5(b).

These results show that the unicity decreases with

the increment of the number of trajectories on all

datasets. This is because when the number of trajec-

tories increases, there are more possibilities to find the

trajectories sharing p points, which obviously leads to

the decrease of µ. However, the unicity µ remains high,

and the individual privacy is still not well preserved.

Exp-3: Impact of Spatial and Temporal Resolutions.

In this test, we use the same setting as Exp-2 on the en-

tire datasets, and vary the spatial resolution (the length

of square sides) from 20 m to 10 000 m and the tem-

poral resolution from 20 s to 100 000 s. We also test

the unicity with very low spatial (4 000 m) and tempo-

ral (12 800 s) resolutions. The results are reported in

Figs.6 and 7.

The results show that the unicity decreases with the

decrement of both spatial and temporal resolutions on

all datasets. To explain this phenomenon, we calculate

the entropies of the anonymized datasets with different

resolutions shown in Fig.8, which has been used to in-

dicate the difficulty of predicting the user locations [67].

Let Ni be the number of points that user u located in

area L during a time period, andM be the total number

of his/her appearances, and then user u appears at loca-

tion L with a probability pr = Ni/M . The entropy E is

defined as follows: E =
∑i=n

i=1 p log2 p, where n is the to-

tal number of points. The results show that the entropy

decreases with the decrement of spatial and temporal

resolutions. A large entropy indicates a low degree of

location concentration, which leads to a larger unicity

as it becomes more difficult for trajectories to share
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Fig.6. Contour map of unicity µ w.r.t. spatial and temporal resolutions. (a) Ucar. (b) Taxi. (c) Truck.



common points. This also explains why the unicity of

Truck, Taxi and Ucar in general obeys an increasing or-

der, as their entropies obey a decreasing order. Fig.7

further shows that data generalization is not enough to

protect the privacy of individuals even with very low

spatial and temporal resolutions. Although the unic-

ity decreases with the decrement of the resolutions, it

decreases slowly along the spatial and temporal axes.

Furthermore, this decrease can be easily eliminated by

collecting a few more points.
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Fig.7. Unicity µ with very low spatial and temporal resolutions
(4 000 m × 12 800 s).

4.2.2 Utility Tests with Travel Time Estimation

As explained in Subsection 3.2, map-matching [64] is

a key step for the TSC approach [36] for travel time es-

timation. However, the successful map-matching ratios

for grid-based generalization and ε-differential privacy

are almost 0, as road searches are restricted within 200

m in map-matching, and larger distances are normally

unnecessary, which otherwise makes the computation

costs unacceptable [64]. For grid-based generalization,

each grid is treated as a point, and hence TEMP+R

fails for travel time estimation [37]; and ε-differential pri-

vacy involves grouping on each time point, and hence

the time interval between two neighboring points needs

to be large to make its computation practical. How-

ever, large time intervals typically make TEMP+R [37]

fail for travel time estimation. Hence, we only re-

port travel time estimation for identifier anonymiza-

tion, dummy trajectories with rotation pattern scheme

and k-anonymity, where we choose to omit the trashed

trajectories as they have few impacts on the evaluation.

One issue is how to distinguish the proper set of trips for

estimation. It is reported that passengers wait around

five minutes for pickup [68]. Hence, we choose longer

trips whose total travel time is more than 10 minutes.

The average travel time of the resulting training data

on (Ucar, Taxi, Truck) is (48.4, 24.8, 20) minutes, and

that of the resulting testing data on (Ucar, Taxi, Truck)

is (36.9, 34.2, 25.4) minutes, respectively.

Exp-4: Successful Estimated Ratio Test. In this

test, we evaluate the successful estimated ratios of

the travel time estimation for identifier anonymization,

dummy trajectories and k-anonymity using methods

TSC and TEMP+R respectively with τ set to 5 (i.e.,

the five nearest grids). More specifically, we evaluate

the impact of the rotation angle θ for dummy trajecto-

ries by varying its values to {0◦, 5◦, 10◦, 15◦, 20◦, 25◦,

30◦, 45◦, 90◦, 135◦, 180◦}, respectively, and the im-

pact of k for k-anonymity by varying its values to

{1, 2, 4, 6, 8, 10}, respectively. Note that for the case of

dummy trajectories with θ = 0◦ or k-anonymity with
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k = 1, it is essentially identifier anonymization. The

results are reported in Figs.9(a), 10(a) and 11(a).
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In Figs.9(a), 10(a) and 11(a), for identifier anonym-

ization, i.e., the left most points marked with ∗ (θ = 0◦
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MAE.

or k = 1), the results show that SER using TSC is

(0.26, 0.19, 0.05) on (Ucar, Taxi, Truck) and SER using

TEMP+R is (0.20, 0.30, 0.60) on (Ucar, Taxi, Truck),

respectively. TEMP+R also shows better performance

than TSC. Note that identifier anonymization obviously

has no impact on the SER of travel time estimation.

For dummy trajectories, the results show that the

average SER of TSC decreases by (65%, 60%, 41%) on

(Ucar, Taxi, Truck), but that of TEMP+R slightly in-

creases by (6%, 6%, 2%) on (Ucar, Taxi, Truck). For

TSC, its map-matching procedure becomes more in-

accurate for dummy trajectories, which leads to the

decrease of its SER. For TEMP+R, there is no map-

matching, and its neighboring trips sharing spatially

close origins and destinations benefit from the gridding.

These results also tell us that dummy trajectories have

a significant impact on the SER of TSC, but not that

of TEMP+R.

For k-anonymity, in Figs.9(a), 10(a) and 11(a), the

results show that the average SER of TSC decreases

by (80%, 81%, 83%) on (Ucar, Taxi, Truck), and that

of TEMP+R decreases by (97%, 93%, 77%) on (Ucar,

Taxi, Truck), respectively. The map-matching proce-

dure of TSC and the neighboring trips sharing spatially

close origins and destinations of TEMP+R both be-

come more inaccurate for k-anonymity, which leads to

the decrease of their SER. These results also tell us

that k-anonymity has a significant impact on the SER

of both TSC and TEMP+R.

Exp-5: Mean Relative Error Test. In this test, we

evaluate the mean relative errors of travel time esti-

mation for identifier anonymization, dummy trajecto-

ries and k-anonymity using TSC and TEMP+R, using

the same setting as Exp-4. The results are reported in

Figs.9(b), 10(b) and 11(b). From these three figures,

we set the following findings.

For identifier anonymization (the left most points

marked with ∗), the results show that the MRE us-

ing TSC is (0.16, 0.18, 0.14) on (Ucar, Taxi, Truck)

and the MRE using TEMP+R is (0.20, 0.10, 0.06) on

(Ucar, Taxi, Truck), respectively. Note that identifier

anonymization obviously has no impact on the MRE of

travel time estimation.

For dummy trajectories, the results show that

the average MRE of TSC significantly increases by

(274%, 228%, 148%) on (Ucar, Taxi, Truck), and that

of TEMP+R increases by (11%, 19%, 37%) on (Ucar,

Taxi, Truck), respectively. TEMP+R also shows better

performance than TSC mainly due to the extra errors

introduced by map-matching in TSC. These results also

tell us that dummy trajectories have a significant im-

pact on the MRE of TSC.



For k-anonymity, the results show that the ave-

rage MRE of TSC increases by (175%, 115%, 562%) on

(Ucar, Taxi, Truck), and that of TEMP+R increases

by (145%, 233%, 236%) on (Ucar, Taxi, Truck), respec-

tively. This is mainly because the trips in the train-

ing set become much smaller and more inaccurate after

k-anonymity. These results tell us that k-anonymity

has significant impacts on the MRE of both TSC and

TEMP+R.

Exp-6: Mean Absolute Error Test. In this test, we

evaluate the mean absolute errors of travel time estima-

tion for identifier anonymization, dummy trajectories

and k-anonymity using methods TSC and TEMP+R,

using the same setting as Exp-4. The results are re-

ported in Figs.9(c), 10(c) and 11(c).

For identifier anonymization (the left most points

marked with ∗), the results show that the MAE us-

ing TSC is (3.05, 2.70, 2.12) minutes on (Ucar, Taxi,

Truck) and the MAE using TEMP+R is (3.67, 1.47,

1.00) minutes on (Ucar, Taxi, Truck), respectively. Note

that identifier anonymization obviously has no impact

on the MAE of travel time estimation.

For dummy trajectories, the results show that

the average MAE of TSC significantly increases by

(215%, 212%, 138%) on (Ucar, Taxi, Truck), and that of

TEMP+R increases by (8%, 17%, 32%) on (Ucar, Taxi,

Truck), respectively. TEMP+R also shows better per-

formance than TSC mainly due to the extra errors in-

troduced by map-matching in TSC. These results also

tell us that dummy trajectories have a significant im-

pact on the MAE of TSC.

For k-anonymity, the results show that the ave-

rage MAE of TSC increases by (129%, 100%, 495%) on

(Ucar, Taxi, Truck), and that of TEMP+R increases

by (212%, 233%, 246%) on (Ucar, Taxi, Truck), respec-

tively. These results tell us that k-anonymity has signif-

icant impacts on the MAE of both TSC and TEMP+R.

4.2.3 Utility Tests with Window Range Queries

It is easy to know that the F1 scores of window

range queries are always 1 for identifier anonymization.

Here we only report the results for grid-based generali-

zation, dummy trajectory anonymization, k-anonymity

and ε-differential privacy.

The cube (x1, x2, y1, y2, t1, t2) for window range

queries is set as follows. 1) Following [66], its half

time period halfT = (t2 − t1)/2 is chosen as one hour

and three hours, and its half length halfL of latitudes

(x2 − x1)/2 and longitudes (y2 − y1)/2 is identical and

chosen as {2 km, 4 km, 6 km, 8 km, 10 km}, respec-

tively. 2) For each dataset, we also select five places as

the centres of the cubes. For Ucar and Taxi, the centres

are Beijing Railway Station, Beijing West Railway Sta-

tion, Tian’anmen Square, Beijing Olympic Forest Park

and China Central Television. For Truck, the centres

are Nanning Railway Station, Nanning South Railway

Station, Nanning Bridge, Guangxi Province Govern-

ment and Nanning Government. 3) Finally, we set the

time at the centres of the cubes as 12 o’clock at noon

on the fourth day. The average F1 scores of the five

places for each half time period and each half length on

each dataset are reported.

Exp-7: Grid-Based Generalization. In this test, we

evaluate the impacts of spatial and temporal resolutions

for grid-based generalization, the half time period and

the half length of the cubes for window range queries.

We fix the temporal resolution to 1 h, and vary the spa-

tial resolution to 2 km, 4 km and 6 km, respectively, to

test the impacts of spatial resolutions. Besides, we fix

the spatial resolution to 1 km, and vary the temporal

resolution to 1 h, 3 h and 6 h, respectively, to test the

impacts of temporal resolutions. The impacts of the

cubes are also tested by varying the half time period

and the half length as introduced above. The results

are reported in Tables 3–5.

The results show that the F1 scores decrease with

the decrement of both spatial and temporal resolutions,

as the positions in the trajectories of individual objects

become more inaccurate for lower resolutions such that

the trajectories originally passing through the cubes

may not pass through the cubes any more, and the

F1 scores increase with the increment of both the half

time period and the half length, as large cubes are more

tolerant to the inaccuracy of the positions in the tra-

jectories of individual objects, giving the same set of

anonymized trajectories. Further, the spatial and the

temporal resolutions have significant impacts on the F1

scores, compared with the cubes. The F1 scores even

become 0 when the spatial and temporal resolutions are

1 h and 6 km, respectively, as the cubes are small and

the positions in the trajectories are very inaccurate.

These also tell us that given a window range query,

we need to properly choose the spatial and temporal

resolutions in order to reach a high utility (e.g., high

F1 scores). For instance, when given a query cube with

halfT = 1 h and halfL = 2 km, the spatial and tem-

poral resolutions need to satisfy (1 h, 6 4 km) or (6 3

h, 1 km) for Ucar and Taxi, and (1 h, 6 2 km) or (6 6

h, 1 km) for Truck, respectively, to reach an F1 score



Table 3. F1 Scores of Window Range Queries for Grid-Based Generalization (UCar)

halfT (h) halfL (km) Resolution

(1 h, 2 km) (1 h, 4 km) (1 h, 6 km) (1 h, 1 km) (3 h, 1 km) (6 h, 1 km)

1 2 0.91 0.83 0.00 0.96 0.83 0.66

4 0.96 0.91 0.81 0.97 0.86 0.73

6 0.98 0.95 0.95 0.99 0.89 0.79

8 0.99 0.95 0.92 0.99 0.92 0.83

10 0.99 0.98 0.96 0.99 0.86 0.93

3 2 0.93 0.86 0.00 0.97 0.90 0.88

4 0.97 0.94 0.86 0.98 0.93 0.91

6 0.99 0.97 0.97 0.99 0.95 0.94

8 0.99 0.97 0.96 1.00 0.97 0.96

10 0.99 0.99 0.98 1.00 0.97 0.96

Table 4. F1 Scores of Window Range Queries for Grid-Based Generalization (Taxi)

halfT (h) halfL (km) Resolution

(1 h, 2 km) (1 h, 4 km) (1 h, 6 km) (1 h, 1 km) (3 h, 1 km) (6 h, 1 km)

1 2 0.92 0.83 0.00 0.96 0.84 0.65

4 0.96 0.90 0.84 0.97 0.88 0.74

6 0.98 0.95 0.94 0.98 0.91 0.81

8 0.98 0.95 0.92 0.99 0.93 0.85

10 0.98 0.98 0.96 0.99 0.95 0.88

3 2 0.95 0.87 0.00 0.97 0.89 0.89

4 0.98 0.95 0.89 0.99 0.93 0.93

6 0.99 0.97 0.97 0.99 0.95 0.95

8 0.99 0.97 0.96 0.99 0.96 0.96

10 0.99 0.99 0.98 0.99 0.97 0.97

Table 5. F1 Scores of Window Range Queries for Grid-Based Generalization (Truck)

halfT (h) halfL (km) Resolution

(1 h, 2 km) (1 h, 4 km) (1 h, 6 km) (1 h, 1 km) (3 h, 1 km) (6 h, 1 km)

1 2 0.88 0.59 0.00 0.96 0.90 0.90

4 0.91 0.81 0.77 0.97 0.93 0.93

6 0.92 0.84 0.80 0.95 0.91 0.91

8 0.93 0.89 0.81 0.98 0.94 0.94

10 0.96 0.94 0.90 0.98 0.95 0.95

3 2 0.88 0.59 0.00 0.96 0.90 0.90

4 0.91 0.81 0.77 0.97 0.91 0.93

6 0.92 0.84 0.80 0.95 0.91 0.91

8 0.93 0.89 0.81 0.98 0.94 0.94

10 0.96 0.94 0.90 0.98 0.95 0.95

greater than 0.80.

Exp-8: Dummy Trajectories. In this test, we eva-

luate the impacts of rotation angles for dummy trajec-

tories, the half time period and the half length of the

cubes for window range queries. We vary the rotation

angle θ to {5◦, 10◦, 15◦, 20◦, 25◦, 30◦, 45◦, 90◦, 135◦,

180◦}, respectively, to evaluate the impacts of rotation

angles. The impacts of cubes are also tested by vary-

ing the half time period and the half length following

Exp-7. The results are reported in Tables 6–8.

The results show that the F1 scores decrease signifi-

cantly with the increment of rotation angles, as the po-

sitions in the trajectories of individual objects become

more inaccurate for larger rotation angles such that the

trajectories originally passing through the cubes may

not pass through the cubes any more. The same im-

pacts of the cubes as Exp-7 are also confirmed, i.e., the

F1 scores increase with the increment of both the half

time period and the half length.

These also tell us that given a window range query,

we need to properly choose the rotation angles in or-

der to reach a high utility. For instance, when given a



Table 6. F1 Scores of Window Range Queries for Dummy Trajectories (UCar)

halfT (h) halfL (km) θ (◦)

5 10 15 20 25 30 45 90 135 180

1 2 0.87 0.70 0.59 0.50 0.44 0.40 0.30 0.19 0.17 0.15

4 0.91 0.82 0.74 0.68 0.63 0.60 0.49 0.33 0.28 0.26

6 0.96 0.89 0.83 0.78 0.74 0.71 0.62 0.45 0.38 0.35

8 0.97 0.93 0.89 0.84 0.80 0.77 0.69 0.54 0.47 0.44

10 0.98 0.96 0.93 0.90 0.86 0.83 0.76 0.61 0.55 0.52

3 2 0.88 0.74 0.66 0.59 0.54 0.49 0.40 0.28 0.26 0.23

4 0.93 0.87 0.80 0.75 0.71 0.68 0.60 0.45 0.41 0.39

6 0.97 0.92 0.88 0.83 0.80 0.77 0.71 0.57 0.52 0.49

8 0.99 0.96 0.93 0.89 0.86 0.83 0.78 0.66 0.60 0.58

10 0.99 0.98 0.96 0.93 0.91 0.88 0.83 0.73 0.68 0.65

Table 7. F1 Scores of Window Range Queries for Dummy Trajectories (Taxi)

halfT (h) halfL (km) θ (◦)

5 10 15 20 25 30 45 90 135 180

1 2 0.85 0.71 0.63 0.57 0.53 0.48 0.41 0.31 0.28 0.27

4 0.92 0.84 0.77 0.72 0.69 0.65 0.57 0.45 0.41 0.39

6 0.96 0.90 0.85 0.81 0.78 0.75 0.68 0.56 0.52 0.50

8 0.98 0.94 0.90 0.87 0.84 0.82 0.76 0.65 0.60 0.59

10 0.98 0.97 0.94 0.91 0.89 0.87 0.82 0.71 0.67 0.66

3 2 0.87 0.75 0.68 0.63 0.59 0.55 0.54 0.43 0.40 0.39

4 0.93 0.86 0.81 0.77 0.74 0.71 0.68 0.57 0.55 0.54

6 0.97 0.93 0.88 0.85 0.82 0.79 0.76 0.67 0.64 0.63

8 0.98 0.96 0.93 0.89 0.87 0.85 0.82 0.74 0.72 0.70

10 0.99 0.98 0.96 0.93 0.91 0.89 0.86 0.80 0.77 0.76

Table 8. F1 Scores of Window Range Queries for Dummy Trajectories (Truck)

halfT (h) halfL (km) θ (◦)

5 10 15 20 25 30 45 90 135 180

1 2 0.69 0.68 0.63 0.58 0.52 0.48 0.40 0.32 0.28 0.25

4 0.74 0.70 0.65 0.61 0.59 0.56 0.57 0.41 0.37 0.33

6 0.76 0.72 0.69 0.66 0.63 0.61 0.56 0.49 0.45 0.43

8 0.77 0.74 0.71 0.69 0.66 0.65 0.60 0.53 0.50 0.50

10 0.80 0.78 0.77 0.75 0.73 0.72 0.68 0.59 0.56 0.54

3 2 0.76 0.69 0.63 0.59 0.53 0.48 0.42 0.30 0.28 0.26

4 0.80 0.74 0.70 0.66 0.63 0.60 0.54 0.42 0.39 0.36

6 0.80 0.77 0.73 0.70 0.68 0.66 0.60 0.52 0.48 0.47

8 0.81 0.78 0.76 0.73 0.71 0.69 0.65 0.58 0.55 0.54

10 0.83 0.82 0.81 0.79 0.78 0.76 0.73 0.64 0.61 0.60

query cube with halfT = 1 h and halfL = 2 km, the

rotation angles need to be no larger than 5◦ for Ucar

and Taxi, to reach an F1 score greater than 0.80, and

there may even have no choice to reach such a high F1

score for Truck.

Exp-9: k-Anonymity. In this test, we evaluate the

impacts of parameter k for k-anonymity, the half time

period and the half length of the cubes for window

range queries. We vary k to {2, 4, 6, 8, 10}, respectively,

to evaluate its impacts. The impacts of the cube are

also tested by varying the half time period and the half

length following Exp-7. The results are reported in Ta-

bles 9–11.

The results show that the F1 scores decrease with

the increment of k, as the positions in the trajecto-

ries of individual objects become more inaccurate for

larger k values such that the trajectories originally pass-

ing through the cubes may not pass through them any

more. The same impacts of the cubes as Exp-7 are also

confirmed, i.e., the F1 scores increase with the incre-

ment of both the half time period and the half length.



Table 9. F1 Scores of Window Range Queries for k-Anonymity
(UCar)

halfT (h) halfL (km) k

2 4 6 8 10

1 2 0.36 0.24 0.20 0.20 0.15

4 0.55 0.42 0.36 0.35 0.33

6 0.64 0.50 0.50 0.47 0.47

8 0.68 0.59 0.57 0.55 0.54

10 0.70 0.64 0.62 0.60 0.60

3 2 0.50 0.39 0.35 0.34 0.31

4 0.69 0.58 0.56 0.53 0.52

6 0.79 0.71 0.69 0.67 0.66

8 0.83 0.78 0.76 0.75 0.74

10 0.85 0.82 0.80 0.80 0.79

Table 10. F1 Scores of Window Range Queries for k-Anonymity
(Taxi)

halfT (h) halfL (km) k

2 4 6 8 10

1 2 0.52 0.41 0.34 0.32 0.27

4 0.71 0.61 0.56 0.54 0.51

6 0.81 0.74 0.71 0.69 0.68

8 0.87 0.82 0.80 0.78 0.77

10 0.91 0.86 0.84 0.84 0.82

3 2 0.63 0.50 0.44 0.40 0.36

4 0.78 0.68 0.64 0.61 0.58

6 0.85 0.79 0.76 0.75 0.72

8 0.90 0.85 0.83 0.82 0.80

10 0.92 0.89 0.87 0.86 0.85

Table 11. F1 Scores of Window Range Queries for k-Anonymity
(Truck)

halfT (h) halfL (km) k

2 4 6 8 10

1 2 0.71 0.48 0.39 0.39 0.40

4 0.82 0.69 0.62 0.63 0.60

6 0.89 0.83 0.77 0.75 0.74

8 0.92 0.86 0.84 0.85 0.84

10 0.94 0.93 0.91 0.91 0.91

3 2 0.73 0.52 0.44 0.43 0.42

4 0.84 0.74 0.64 0.65 0.63

6 0.90 0.84 0.79 0.78 0.77

8 0.93 0.88 0.86 0.86 0.85

10 0.95 0.94 0.92 0.91 0.91

These also tell us that given a window range query,

we need to properly choose k in order to reach a high

utility. For instance, when given a cube with halfT = 1

h and halfL = 6 km, k needs to be 2 for Taxi and no

more than 4 for Truck, to reach an F1 score greater

than 0.80, and there may even have no choice to reach

such a high F1 score for Ucar.

Exp-10: ε-Differential Privacy. In this test, we eva-

luate the impacts of the key parameter k used for par-

titioning for ε-differential privacy, the half time pe-

riod and the half length of the cubes for window range

queries. We vary k to {20, 40, 60, 80, 100}, respectively,

to evaluate its impacts. The impacts of the cubes are

also tested by varying the half time period and the

half length following Exp-7. Note that we calculate the

mean probability of a trajectory based on the probabi-

lities of the ϕ + 1 + |Γ| groups, which is used to com-

pute the weighted F1 scores for window range queries.

In our tests, the mean probability is always close to

1, and the F1 scores for all cases are close to 1. Com-

pared with k-anonymity that clusters trajectories, the

ε-differential privacy approach [31] clusters locations at

each time, which significantly improves the chances of

trajectories originally passing through the cubes to pass

through the cubes again. This also brings ε-differential

privacy the capability to accurately support window

range queries.

4.3 Summarization and Analyses

In this subsection, we summarize the findings on

the individual privacy of anonymization mechanisms in

terms of unicity, and the utility in terms of travel time

estimation and window range queries, where Table 12

summarizes the main findings of experimental results.

4.3.1 Privacy with Unicity

For the identifier anonymization [13] and dummy

trajectories [35] with the rotation pattern scheme, unic-

ity µ is always kept to 1 on all tested datasets, as these

two mechanisms essentially have no impact on the unic-

ity.

For grid-based generalization [14], unicity µ varies

from 0.3 to 1.0, and is affected by the number of points,

the number of trajectories, and the spatial and tem-

poral resolutions. Moreover, the unicity decrease can

be easily eliminated by collecting a few more points,

i.e., larger p. Essentially, four points are enough to

uniquely reidentify all considered trajectories for Ucar

(µ > 0.99), and eight points are needed for Taxi (µ >

0.99) and Truck (µ > 0.80) respectively.

For k-anonymity [10], the unicity µ is always 0,

which can be easily inferred from the definition of k-

anonymity, and the unicity remains close to 0 even if



Table 12. Summary of Experimental Results

Method Dataset [5, 6] Privacy (Unicity) [1] Utility

Travel Time Estimation Window Range

TSC [36] TEMP+R [37] Queries [38]

Identifier [13] Ucar × X X X

Taxi × X X X

Truck × X X X

Grid-based [14] Ucar × × × #

Taxi × × × #

Truck × × × #

Dummy [35] Ucar × × X #

Taxi × × X #

Truck × × X #

K-anonymity [10] Ucar X × × #

Taxi X × × #

Truck X × × #

Differential [31] Ucar X ⊗ ⊗ X

Taxi X ⊗ ⊗ X

Truck X ⊗ ⊗ X

Note: Here Xand × represent “success” and “failure”, respectively, # means “partially success” that proper choices are needed to
reach a good utility and may not have opportunities to reach, and ⊗ means the method fails partially due to the limitations of tested
methods.

we keep the trashed trajectories as 2, a parameter that

may have impacts on the unicity.

For ε-differential privacy [31], the unicity is always

close to 0, mainly because it has a grouping procedure

of locations such that each location group uses its cen-

troid to represent all its locations.

These imply that the reidentification privacy in

terms of unicity is not well protected by identifier

anonymization, dummy trajectories and grid-based

generalization, but is well preserved by k-anonymity

and differential privacy. This is in particular consistent

with the findings of both De Montjoye et al. [2, 3] based

on identifier anonymization and grid-based generali-

zation and Sánchez et al. [21] based on k-anonymity.

Our findings also confirm that well-established exist-

ing anonymization mechanisms (e.g., k-anonymity and

differential privacy) can effectively protect individual

privacy in terms of reidentification attacks.

This is somehow similar to Sánchez et al.’s

finding [21], and the anonymization mechanisms used

in De Montjoye et al. [2, 3] indeed have limitations and

their finding on reidentification is indeed overestimated.

This answers question 1 on the true situation of the pri-

vacy preservation for trajectories in terms of reidentifi-

cation, and we also hopefully close the debate between

De Montjoye et al. [2, 3] and Sánchez et al. [21] through

our systematic evaluation.

However, we should remember that there are more

than reidentification attacks and multi-source data may

be used for attackers [11, 12,23–26], and hence there is a

long way to go for the privacy preservation of trajecto-

ries in the general sense.

4.3.2 Utility with Travel Time Estimation

For identifier anonymization [13], it obviously has no

impact on travel time estimation.

For grid-based generalization [14], both TSC [36] and

TEMP+R [37] fail for travel time estimation.

For dummy trajectories [35], 1) the successful esti-

mated ratios of TSC decrease by (65%, 60%, 41%) on

(Ucar, Taxi, Truck) on average, and its errors (mean

relative errors and mean absolute errors) of TSC in-

crease by (245%, 220%, 143%) on (Ucar, Taxi, Truck)

on average, and 2) the successful estimated ratios of

TEMP+R increase by (6%, 6%, 2%) on (Ucar, Taxi,

Truck), and its errors (mean relative errors and mean

absolute errors) of TSC increase by (9.5%, 18%, 34.5%)

on (Ucar, Taxi, Truck) on average. That is, TSC fails for

estimating the travel time, but TEMP+R is successful

for estimating the travel time.

For k-anonymity [10], 1) the successful estimated ra-

tios of TSC and TEMP+R decrease by (80%, 81%, 83%)

and (97%, 93%, 77%) on (Ucar, Taxi, Truck) on ave-

rage, respectively, and 2) their errors (mean rela-

tive errors and mean absolute errors) increase by

(157%, 107.5%, 528.5%) and (178.5%, 233%, 241%) on



(Ucar, Taxi, Truck) on average, respectively. That is,

TSC and TEMP+R fail for estimating the travel time.

For ε-differential privacy [31], both TSC and

TEMP+R fail for estimating the travel time majorly

because during the trajectory grouping involved in the

ε-differential privacy, we coarsen input trajectories to

make computation practical.

4.3.3 Utility with Window Range Queries

For identifier anonymization [13], it obviously has no

impact on window range queries.

For grid-based generalization [14], the sizes of query

cubes and spatial and temporal resolutions all have im-

pacts on the accuracy of window range queries. Given

a window range query, we need to properly choose the

spatial and temporal resolutions in order to reach a high

utility (e.g., high F1 scores). For instance, when given

a query cube with halfT = 1 h and halfL = 2 km,

the spatial and temporal resolutions need to satisfy (1

h, 6 4 km) or (6 3 h, 1 km) for Ucar and Taxi, and (1

h, 6 2 km) or (6 6 h, 1 km) for Truck, respectively, to

reach an F1 score greater than 0.80.

For dummy trajectories [35], the sizes of query cubes

and rotation angles all have impacts on the accuracy of

window range queries. Given a window range query, we

need to properly choose the rotation angles in order to

reach a high utility. For instance, when given a query

cube with halfT = 1 h and halfL = 2 km, the rotation

angles need to be no larger than 5◦ for Ucar and Taxi,

to reach a F1 score greater than 0.80, and there may

even have no choice to reach such a high F1 score for

Truck.

For k-anonymity [10], the sizes of query cubes and

k all have impacts on the accuracy of window range

queries. Given a window range query, we need to prop-

erly choose k values in order to reach a high utility. For

instance, when given a query cube with halfT = 1 h

and halfL = 6 km, k needs to be 2 for Taxi and no

more than 4 for Truck, to reach an F1 score greater

than 0.80, and there may even have no choice to reach

such a high F1 score for Ucar.

For ε-differential privacy [31], the F1 scores of win-

dow range queries for all cases are close to 1. This also

brings ε-differential privacy the capability to accurately

support window range queries.

From the privacy evaluation with unicity and uti-

lity using practical applications (i.e., travel time es-

timation and window range queries), we find the fol-

lowings. 1) There are no anonymization mechanisms,

maybe except identifier anonymization, for the trajec-

tory data that successfully satisfy all the needs of prac-

tical applications. 2) For grid-based anonymization,

dummy trajectories and k-anonymity, the utility of win-

dow range queries appears to be partially successful by

carefully adjusting the corresponding settings. How-

ever, the sizes of query cubes may not be fixed in prac-

tice, which significantly limits their de facto utility. 3)

Except ε-differential privacy for window range queries,

no anonymization mechanisms for trajectory data can

successfully achieve a good trade-off between privacy

and utility.

While the privacy is typically only determined by

anonymization mechanisms, the utility is determined

by both anonymization mechanisms and concrete ap-

plication algorithms for trajectory data that are typi-

cally developed independently. Further, different appli-

cations may have different privacy and utility require-

ments. These make it hard to reach a trade-off be-

tween privacy and utility. We argue that efforts remain

needed for designing better application algorithms that

are more tolerable to anonymization mechanisms and

better anonymization mechanisms that have less im-

pacts on utility. These give an answer to question 2 on

the true situation of the utility of anonymized trajec-

tories.

5 Conclusions

We systematically evaluated the individual privacy

in terms of unicity and the utility in terms of practi-

cal applications of the anonymized trajectory data. We

confirmed Sánchez et al.’s finding [21], as k-anonymity

and ε-differential privacy preserve well the reidentifi-

cation privacy of trajectory data. This revealed the

true situation of the privacy preservation for trajecto-

ries in terms of reidentification, and essentially closed

the debate between De Montjoye et al. [2, 3] and Sánchez

et al. [21]. We also found that the utility of existing

anonymization mechanisms is not optimistic (especially

when both privacy and utility are considered), and

there is a long way to go for the privacy preservation

for trajectories in the general sense. This revealed the

true situation of the utility of anonymized trajectories.

Finally, we argued that efforts remain needed for

designing better application algorithms that are more

tolerable to anonymization mechanisms and better

anonymization mechanisms (such as deep generative

models to generate fake trajectories) that have less im-

pacts on utility in the future.
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