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Human brain development starts in the embryonic period. Maternal preconception nutrition and nutrient availability to the embryo
may influence brain development at this critical period following conception and early cellular differentiation, thereby affecting
offspring neurodevelopmental and behavioural disorder risk. However, studying this is challenging due to difficulties in
characterizing preconception nutritional status and few studies have objective neurodevelopmental imaging measures in children.
We investigated the associations of maternal preconception circulating blood nutrient-related biomarker mixtures (~15 weeks
before conception) with child behavioural symptoms (Child Behaviour Checklist (CBCL), aged 3 years) within the Singapore
Preconception Study of Long-Term Maternal and Child Outcomes (S-PRESTO) study. The CBCL preschool form evaluates child
behaviours based on syndrome scales and Diagnostic and Statistical Manual of Mental Disorders (DSM) oriented scales. These scales
consist of internalizing problems, externalizing problems, anxiety problems, pervasive developmental problems, oppositional
defiant, etc. We applied data-driven clustering and a method for modelling mixtures (Bayesian kernel machine regression, BKMR) to
account for complex, non-linear dependencies between 67 biomarkers. We used effect decomposition analyses to explore the
potential mediating role of neonatal (week 1) brain microstructure, specifically orientation dispersion indices (ODI) of 49 cortical and
subcortical grey matter regions. We found that higher levels of a nutrient cluster including thiamine, thiamine monophosphate
(TMP), pyridoxal phosphate, pyridoxic acid, and pyridoxal were associated with a higher CBCL score for internalizing problems
(posterior inclusion probability (PIP)= 0.768). Specifically, thiamine independently influenced CBCL (Conditional PIP= 0.775).
Higher maternal preconception thiamine level was also associated with a lower right subthalamic nucleus ODI (P-value= 0.01)
while a lower right subthalamic nucleus ODI was associated with higher CBCL scores for multiple domains (P-value < 0.05). One
potential mechanism is the suboptimal metabolism of free thiamine to active vitamin B1, but additional follow-up and replication
studies in other cohorts are needed.
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INTRODUCTION
The most common behavioural problems in childhood and
adolescence include anxiety, aggressive behaviour, attention

deficit hyperactive disorder (ADHD), and pervasive developmental
problems including autism spectrum disorder (ASD) [1, 2]. Such
behavioural problems can be generally classified as internalizing
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disorders such as anxiety and externalizing disorders such as
aggressive behaviour [1]. A previous study found 12.2% and 4.9%
of Singaporean primary school children (6–12 years) had
experienced internalizing and externalizing problems, respectively
[3], which is comparable to global prevalence estimates [4]. Child
and adolescent behavioural problems have far-reaching impacts
on adult life, including poorer academic outcomes, work
incapacity, drug use, and other addictive behaviours [2, 5].
Child and adolescent behavioural problems are influenced by

various factors, including genetics [6, 7], maternal education [8],
maternal depression [9], parenting [1], and adverse socio-economic
environment [1]. Maternal nutritional status before pregnancy has
been linked with pregnancy and child health outcomes [10], and
nutritional supplements are commonly recommended to promote
better pregnancy outcomes [11]. However, it is unclear whether
and how preconception nutrient status may influence foetal and
offspring brain development and ultimately child behaviours.
Mechanisms underlying neurodevelopmental disorders involve
variations in brain anatomy, functioning, and connectivity [12, 13].
Magnetic resonance imaging (MRI) studies suggest differential
brain structural characteristics, detectable even as early as the first
two years of life, may underlie neurodevelopmental disorders
[14–16] Importantly, human brain development such as dendritic
morphology starts in the embryonic period [17, 18], making it
essential to understand the role of modifiable environmental
exposures during this critical period. In particular, maternal
preconception nutrition and fetal nutrient availability may
influence brain development around the time of conception and
early cellular differentiation [19], thereby affecting offspring
neurodevelopmental outcomes such as behavioural disorders.
However, due to the challenges of prospectively following women
who are not yet pregnant, few studies have investigated the
associations of preconception biomarkers, alone or in combination,
with child neurodevelopmental outcomes [20]. Importantly, exist-
ing studies finding associations have not been able to evaluate the
role of potential mechanisms such as via changes in offspring brain
microstructure. Consequently, many findings are circumstantial,
e.g., correlations to pregnancy or postnatal diet or maternal
underlying health status, and do not necessarily propose potential
causal exposures or periods for intervention.
Notably, past studies have relied on self-reported preconception

supplement use or only considered objective biomarkers during
pregnancy, which may be influenced by changes to diet and
metabolism during pregnancy or be too late to capture the early
peri-conceptional period. Moreover, studies have focused on
biomarkers in isolation without respecting their interdependencies
due to dietary patterns and/or related metabolic pathways. To
address this, we leveraged a prospective, pregnancy and child cohort
to investigate the relationships between preconception nutrition-
related biomarkers and child behavioural symptoms using novel
approaches to account for biomarker clustering and interdepen-
dence. To strengthen inference, we further explored the role of
neonatal brain microstructure in mediating such associations.

MATERIALS AND METHODS
Data Source
This study was conducted within the Singapore PREconception Study of
long-Term maternal and child Outcomes (S-PRESTO) cohort [21]. In brief,
between February 2015 and October 2017, S-PRESTO recruited 1032 non-
pregnant women aged 18 to 45 years (mean= 31, standard deviation
(SD)= 3.7) of Chinese, Malay or Indian ethnicity who intended to conceive
and deliver in Singapore. Participants were followed for up to 3
preconception visits and censored at 12 months if they did not conceive.
During the preconception visits, baseline characteristics such as educational
levels/attainment, household income, and medical history were assessed
using interviewer-administered questionnaires, and self-administered mood
questionnaires were also completed. Importantly, fasting blood samples
were collected at the first preconception visit.

A total of 475 women successfully conceived, among whom 373 single-
ton children were born in the cohort. Women and their children were
followed up after delivery to collect data on standardized anthropometric
measurements, brain magnetic resonance imaging, and neurodevelop-
mental outcomes. Figure 1 shows the flowchart and sample sizes for
maternal blood biomarkers, neonatal brain MRI, and child behaviour
assessment. Written informed consent was obtained from all participants.
Ethical approval was obtained from the SingHealth Centralised Institutional
Review Board (reference 2014/692/D) [21].

Maternal biomarkers. Circulating maternal levels of 72 biomarkers were
measured using fasting blood samples collected during the first
preconception visit (n= 973). Seventy of the biomarkers were measured
using a well-validated mass spectrometry platform (BEVITAL platforms B, C,
D, and H, https://bevital.no/) in EDTA plasma samples, which quantifies
amino acids, vitamins, acylcarnitines and other metabolites. The remaining
two biomarkers, cobalamin (vitamins B12) and folate (vitamin B9), were
measured using a chemiluminescent immunoassay (Beckman platform) in
EDTA plasma samples.
Zero values were reported for more than 80% of the women for five

preconception biomarkers: nicotinic acid, pyridoxine, vitamin D2,
cotinine, and hydroxycotinine. Nicotinic acid, pyridoxine, and vitamin
D2 are forms of vitamin B3, vitamin B6 and vitamin D, respectively, which
exist in other forms that are measured in the platform used. Cotinine and
hydroxycotinine are metabolites of nicotine and low levels of these
metabolites are due to a low smoking rate among women in Singapore
and our cohort [22]. We excluded these biomarkers from our analysis.
The remaining 67 biomarkers included 46 metabolites, 12 micronutrients,
and 9 essential amino acids (EAAs). Raw values were natural log-
transformed after adding one and results are reported per SD unit of the
natural log-transformed data.
We identified 11 clusters for the 67 preconception biomarkers using

K-means clustering, which minimizes the within-cluster sum of squares
(Supplementary Table 1) [23]. Since metabolites and micronutrients may
represent different underlying constructs, for example, long-term
metabolism and short-term dietary patterns, respectively, we performed
a sensitivity analysis accounting for the two categories of biomarkers
separately: (1) metabolites; (2) micronutrients/EAAs. We identified eight
clusters for preconception metabolites and seven clusters for preconcep-
tion micronutrients and EAAs (Supplementary Table 1).

Child behaviour checklist. The parent-reported CBCL preschool form was
administered at age 3 years and responses were received from 223
children (mean= 3.1 years, SD= 0.1 years). The CBCL preschool form

Fig. 1 Flowchart for study samples from the Singapore Precon-
ception Study of Long-Term Maternal and Child Outcomes (S-
PRESTO) prospective study. Each box in the flowchart indicates the
sample sizes for data collected at various time points and the
number of participants being excluded.

J. Huang et al.

2

Translational Psychiatry           (2023) 13:38 

https://bevital.no/


evaluates child behaviours based on syndrome scales and Diagnostic and
Statistical Manual of Mental Disorders (DSM) oriented scales. Syndrome
scales consist of internalizing problems (emotionally reactive, anxious/
depressed, somatic complaints, withdrawn) and externalizing problems
(attention problems and aggressive behaviour), sleeping problems, and
total problems. DSM-oriented scales consist of ADHD, affective problems,
anxiety problems, pervasive developmental problems, and oppositional
defiant. Raw scores were natural log-transformed after adding one, and
results are reported per SD unit of the natural log-transformed scores. A
higher CBCL score indicates greater problems on each scale.

Neonatal brain magnetic resonance imaging. Neonatal brain MRI was
performed in 115 infants within the first week after birth using a 3-Tesla
scanner (Magnetom Skyra, Siemens Healthineers, Erlangen, Germany).
Multishell diffusion-weighted sequence was acquired. A total of 109 infants
with mean absolute motion smaller than 3mm (average mean absolute
motion of 0.95mm and an interquartile range of 0.69–1.03mm) were
included in our analysis. Diffusion images were preprocessed using FMRIB’s
Diffusion Toolbox, FSL v6.0.4, and fitted to the Neurite Orientation
Dispersion and Density Imaging (NODDI) model using the NODDI MATLAB
Toolbox v1.05 [24]. Neuroimaging parameters are presented in Supple-
mentary Table 2. NODDI uses a multi-segmental model of the cellular and
extracellular compartments of each voxel, and provides a more biologically
specific representation of brain development [25]. In our analysis, we used
the orientation dispersion index (ODI) estimated from the NODDI model to
indicate the angular distribution of neurites (range from 0 to 1). ODIs of 49
cortical and subcortical grey matter regions were extracted using
segmentation masks from the developing human connectome project
(dHCP, v1.1) pipeline [26]. A higher value of ODI indicates a higher degree
of dendritic complexity [24]. Dendritic spines are the main gateway of
excitatory synaptic transmission in the brain. Hence, a higher degree of
dendritic complexity will facilitate information transfer between brain
regions [27]. Conversely, a lower ODI, which indicates a lower degree of
dendritic complexity, may signify impairment of information transfer
between brain regions, a probable mechanism underlying neurodevelop-
mental disorders such as ASD [18].

Statistical analysis
Preconception maternal biomarkers and offspring CBCL scores. Among the
mother-child dyads with both biomarker and CBCL data, we excluded two
dyads of mixed ethnicity. Given that biomarkers do not act independently,
we applied a mixture method (Bayesian kernel machine regression, BKMR)
to account for the complex interaction between biomarkers under
investigation in this study [28]. In brief, BKMR uses a kernel machine
representation to model a high-dimensional exposure-outcome response
surface by assuming that individuals with similar exposure profiles have
similar health risks [28]. To reduce the number of model inputs amongst
highly correlated exposures, BKMR incorporates Bayesian variable selec-
tion. Variable selection was implemented using a Markov chain Monte
Carlo (MCMC) algorithm and posterior inclusion probabilities (PIPs) were
estimated using a Bayesian model-averaging method. In this study, we
considered each of the 15 CBCL scores separately and performed the main
analysis for Biomarkers→CBCL, and sensitivity analyses for Metaboli-
tes→CBCL and Micronutrients/EAAs→CBCL. For each analysis, we per-
formed 60,000 MCMC iterations with 12 independent chains with a burn-in
of 30,000 MCMC iterations. Within each iteration, we assumed that each
biomarker within a cluster was equally likely to be included in the model
and only one biomarker from a cluster was selected into the model at a
time. The variable selection parameter was estimated as the probability
density function from the prior distribution. We tested gamma, uniform,
and inverse uniform prior distributions. Effective sample sizes for the
MCMC sampler were small and potential scale reduction factors were large
for both gamma and uniform distributions, indicating MCMC samples were
highly correlated and the estimates were not robust. Therefore, we chose
inverse uniform distribution for variable selection parameter estimation.
Given that correlated biomarkers and/or biomarker clusters may act on the
same biological pathways, we applied a hierarchical variable selection
approach which first estimates the Posterior Inclusion Probability (PIP) for
each biomarker cluster (Cluster PIP), and then the PIPs among biomarkers
within each cluster, given that the cluster was selected into the model
(Conditional PIP). In this way, Cluster PIPs and Conditional PIPs indicate the
proportions of all models in which the particular clusters or the biomarker
within a cluster were being selected. We reported suggestive associations
with a threshold of Cluster PIP > 0.5 and Conditional PIP > 0.5 and

highlighted more plausible associations using a threshold of Cluster
PIP > 0.75 and Conditional PIP > 0.5. We also filtered the candidate
associations with MCMC effective sample size greater than 100 and a
potential scale reduction factor smaller than 1.1 to ensure the reliability of
our analysis. A potential scale reduction factor of 1.1 indicates that
increasing the number of iterations to infinity can reduce the interval
width of the estimate by 10% [29].
For interpretability, we used the models to estimate effects as the

difference in the mean outcome (CBCL measure) when a single exposure
was set to a level corresponding to the 75th percentile (observed in the
study) as compared to when it is set to the 25th percentile, while all other
model exposures were set to their observed median values [28]. As a
comparison, we also performed standard multivariable linear regression.
We performed linear regression using samples with complete data and
using inverse probability weighting (IPW) to account for potential biases
associated with loss to follow-up. The missingness model for IPW was
based on mother’s highest educational level, household income,
maternal age, and maternal preconception body-mass index, given that
distributions of these covariates differed between the sub-sample with
both biomarker and CBCL data and those without such data (Supple-
mentary Table 3).
To investigate whether ethnicity and socio-economic status (SES) may

modify these associations, we performed BKMR and linear regressions
stratified by (1) maternal ethnicity (Chinese vs Malay; Indian was not
included due to a small sample size); (2) mother’s highest educational
level (University degree or above v.s. Polytechnic or below); and (3)
household income (Higher household income group (6–10 decile) vs
Lower household income group (1–6 decile)).

Preconception maternal biomarker and neonatal brain MRI measures. We
further explored the role of neonatal brain MRI measures in the candidate
biomarker-CBCL associations. Since the number of biomarkers was greater
than the sample size available for this analysis, we were unable to fit BKMR
models for this analysis. We investigated biomarker-ODI associations and
ODI-CBCL associations using linear regression. We first investigated the
associations of thiamine and thiamine monophosphate (TMP) with ODI of
49 cortical and subcortical grey matter regions. Thiamine and TMP were
selected because they were the most promising findings in the main
biomarker-CBCL analysis. The findings with a raw p-value smaller than 0.05
in the biomarker-ODI association analysis were selected for the ODI-CBCL
association analysis. We presented both raw p-values and false discovery
rate (FDR) in each stage of the analysis. In addition, we performed
regression-based causal effect decomposition analyses [30] to evaluate the
potential mediating role of MRI measures in the thiamine-CBCL associa-
tions. This approach computes the pure and total (including interaction)
direct effects, and pure and total (including mediated-interaction) indirect
effects [30]. This allows us to explore both mediation and interaction
simultaneously. Because this exploratory analysis was underpowered due
to the nature of mediation analyses and the necessity of having complete
data on biomarkers, ODI, and CBCL, we focused on the 95% CI and present
uncorrected p-values. We estimated the proportion mediated as total
natural indirect effect divided by total effect, and the corresponding 95%
CI was estimated using the delta method [31].

Covariates. To increase the precision of estimates and take account of
potential confounders, we adjusted for covariates associated with the
exposure and/or the outcome, including child sex, age at CBCL assessment,
maternal ethnicity, mother’s highest education, household income,
maternal age at preconception visit, nulliparity, maternal preconception
body-mass index (BMI), and gestational age at birth in Model 1. Household
income was categorized into deciles based on resident employed
households in Singapore, ranging from the lowest (Below S$1622 per
month) to the highest (S$16,601 or above per month) household income
group. We used the 10 levels of household income as a continuous
variable in our non-stratified analyses. In the SES-stratified analysis, we
stratified household income into a lower household income group (levels
1–6) and a higher household income group (levels 6–10). Household
income level 6 was included in both subgroups otherwise we would not be
able to perform BKMR in at least one subgroup due to the small sample
size. Among mothers who had had livebirths, household income was
classified as level 6 (S$7424–S$9082) in 25%, levels 1–6 (Below S$9083 per
month) in 60%, and levels 6–10 (S$7424 or above per month) in 65%.
Although preconception nutritional status may influence maternal mental
health, a bidirectional relationship between nutrition and mental health
and a mediating pathway of maternal depressive symptoms inversely
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affecting child cognitive function via unhealthy nutrition have been
reported [32]. It has been more clearly shown that more depressed and
anxious mothers differentially report child behavioural problems [33, 34].
Therefore, we additionally adjusted for maternal preconception mental
health score in Model 2. Maternal preconception mental health score was
derived from Beck Depression Inventory (BDI-2), Edinburgh Postnatal
Depression Scale (EPDS), and State-Trait Anxiety Inventory (STAI) using
principal component analysis (PCA). The first principal component (PC)
from PCA explained 98% of the variance across all three inventories and
was used to indicate maternal mental health. A higher score indicates
worse mental health.

Statistical analysis software. All analyses were performed using R 4.1.3.
BKMR analyses were performed using the bkmr package and regression-
based causal effect decomposition analyses were performed using the
regmedint package. All tests were two-sided tests.

RESULTS
Descriptive analysis
Of the 373 women who successfully conceived and remained in
our cohort at the time of delivery, 322 had data on preconception
biomarkers, 109 had data from neonatal MRI scans, and 223 had
CBCL assessment at age 3 years. In our main analysis, 196 mother-
child dyads had available data on both preconception biomarkers
and CBCL assessment. Table 1 showed that mother-child dyads
with and without preconception biomarkers and CBCL assessment
were similar with respect to most characteristics. We also
compared the participants with biomarker and CBCL data for
the analysis to those who successfully conceived but were lost to
follow-up (Supplementary Table 3). Those who had available data

on biomarkers and CBCL assessment reported a higher household
income level. Compared to those initially recruited but did not
conceive within 12 months or lost to follow-up, those with
available data for this analysis were younger and had a higher
educational level, higher household income, a lower BMI, and
better preconception mental health status (Supplementary Table
3). These factors were adjusted for in the downstream association
analyses. Supplementary Table 4 shows that the medians and
interquartile ranges for biomarkers under investigation were
similar between the full sample and the sub-sample available for
BKMR analysis and mediation analysis.

Maternal biomarkers and offspring CBCL scores
Table 2 shows the associations with a Cluster PIP greater than 0.75
in our fully adjusted model (Model 2). Flavin monophosphate had
the highest Conditional PIP for the positive association of
Biomarker Cluster 8 (riboflavin and flavin monophosphate) with
internalizing problems (Cluster PIP= 0.828, Conditional PIP=
0.624) and thiamine had the highest Conditional PIP for the
positive association of Biomarker Cluster 9 (thiamine, TMP,
pyridoxal phosphate, pyridoxic acid, and pyridoxal) with inter-
nalizing problems (Cluster PIP= 0.768, Conditional PIP= 0.775).
The above Cluster PIPs indicate that Biomarker Clusters 8 and 9
were selected in 82.8% and 76.8% of the MCMC iterations,
respectively. The above Conditional PIPs indicate that flavin
monophosphate was selected in 62.4% of the MCMC iterations
where Biomarker Cluster 8 was selected, and thiamine was
selected in 77.5% of the MCMC iterations where Biomarker Cluster
9 was selected. Figure 2 shows linear positive associations of

Table 1. Comparisons of characteristics between the participants with and without biomarker and CBCL data (among those who had given
livebirth).

Covariate Category Livebirth without biomarker
and CBCL data

Livebirth with biomarker and
CBCL data

P-valuea

N % Mean SD N % Mean SD

Overall 177 196

Child sex Girl 79 44.6% 89 45.4% 1

Boy 93 52.5% 107 54.6%

Maternal ethnicity Chinese 139 78.5% 146 74.5% 0.129

Indian 10 5.6% 16 8.2%

Malay 21 11.9% 32 16.3%

Mixed ethnicity 7 4.0% 2 1.0%

Mother’s highest
educational level

University degree
or above

125 70.6% 143 73.0% 0.699

Polytechnic or below 52 29.4% 53 27.0%

Household incomeb 145 5.8 2.1 163 6.3 2.1 0.037

Maternal age at preconception
visit (years)

177 30.2 3.2 196 30.7 3.3 0.142

Estimated number of weeks
before gestation

166 21.9 17.2 185 15.6 15.9 4.2 × 10–4

Maternal preconception BMI
(kg/m2)

175 23.2 4.5 194 22.8 4.0 0.402

Nulliparity No 64 36.2% 76 38.8% 0.710

Yes 112 63.3% 120 61.2%

Gestational age at birth (weeks) 177 38.9 1.3 196 38.8 1.4 0.333

Maternal mental health score 123 54.3 14.2 136 52.8 13.7 0.400

BMI body-mass index, CBCL Child Behaviour Checklist, SD standard deviation.
aP-values for differences comparing the participants who had given livebirth with biomarker and CBCL data and those who had given livebirth but without
biomarker and CBCL data were estimated from chi-squared test for categorical characteristics and from t-test for continuous characteristics.
bHousehold income was categorized into levels 1–10 indicating the lowest to the highest household income group based on the SPRESTO cohort. We used
the 10 levels of household income as a continuous variable in our analyses.
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preconception flavin monophosphate and thiamine with inter-
nalizing problems. This is consistent in the direction of effect with
the finding from linear regression with complete data (Table 2) as
well as linear regression with IPW (Supplementary Table 5). We
estimated from the linear regression with complete data that per
SD higher log-transformed flavin monophosphate level (equiva-
lent to 36% higher in absolute flavin monophosphate level) was
associated with 0.177 SD higher in the CBCL score for internalizing
problems (equivalent to 16% higher in raw CBCL score). Similarly,
per SD higher log-transformed thiamine level (equivalent to 40%
higher in absolute thiamine level) was associated with 0.312 SD
higher in the CBCL score for internalizing problems (equivalent to
28% higher in raw CBCL score). Suggestive associations with a
Cluster PIP greater than 0.5 (but smaller than 0.75) and a
Conditional PIP <0.5 for one biomarker in the corresponding
cluster are reported in Supplementary Table 5. Biomarker Cluster 8
was positively associated with total problems (Cluster PIP= 0.631),
somatic complaints (Cluster PIP= 0.583), and anxiety problems
(Cluster PIP= 0.557). Biomarker Cluster 9 was positively associated
with somatic complaints (Cluster PIP= 0.741), anxiety/depression
(Cluster PIP= 0.587), affective problems (Cluster PIP= 0.529), and
total problems (Cluster PIP= 0.529). Biomarker Cluster 6
(dimethylglycine, choline, methyl methacrylate (MMA)) was
inversely associated with internalizing problems (Cluster PIP=
0.619), anxiety/depression (Cluster PIP= 0.604), anxiety problems
(Cluster PIP= 0.544), and total problems (Cluster PIP= 0.519).
The sensitivity analysis considering only metabolites also

showed a suggestive association between preconception TMP
and internalizing problems (Cluster PIP= 0.696, Conditional
PIP= 0.683; Supplementary Table 6), while the sensitivity
analysis considering only micronutrients and EAAs showed a
suggestive association between preconception thiamine and
internalizing problems (Cluster PIP= 0.719, Conditional PIP=
0.870; Supplementary Table 7). In addition, associations were
found for both TMP and thiamine with pervasive developmental
problems (TMP: Cluster PIP= 0.893, Conditional PIP= 0.833,
Supplementary Table 6; thiamine: Cluster PIP= 0.946, Condi-
tional PIP= 0.958, Supplementary Table 7).
Supplementary Table 8 shows the results of the ethnicity- and

SES-stratified analyses for Biomarker Clusters 6, 8, and 9 with
internalizing problems as these were key findings in the main
analysis. Ethnicity- and SES-stratified analyses using linear regres-
sion showed that thiamine and TMP were associated with
internalizing problems in the higher household income group
(βthiamine= 0.361, Pthiamine= 0.001; βTMP= 0.327, PTMP= 0.014 in
Model 2; Supplementary Table 8) but not in the lower household
income group (βthiamine= 0.172, Pthiamine= 0.166; βTMP= 0.082,
PTMP= 0.355 in Model 2; Supplementary Table 8). Ethnicity- and
SES-stratified BKMR accounting for all biomarkers simultaneously
was not performed due to the small sample size adjusting for
Model 2 covariates. Nevertheless, in Model 1, Biomarker Cluster 9
was associated with internalizing problems in the higher house-
hold income group (Cluster PIP= 0.818, Conditional PIP for
TMP= 0.893; Supplementary Table 8 and Supplementary Fig. 1)
but not in the lower household income group (Cluster PIP= 0.339,
Conditional PIP for TMP= 0.306; Supplementary Table 8 and
Supplementary Fig. 1). Supplementary Tables 9–12 show the
additional results for ethnicity- and SES-stratified analyses using
the BKMR model.

Preconception maternal biomarker and MRI measures
A higher preconception thiamine level was nominally inversely
associated with neonatal right subthalamic nucleus ODI (N= 56,
P-value= 0.010, FDR= 0.972, Supplementary Table 13, Supplemen-
tary Figs. 2 and 3). Neonatal right subthalamic nucleus ODI was
inversely associated with multiple CBCL scores (N= 37, Supplemen-
tary Table 14), including attention problems (P-value= 0.001,
FDR= 0.008), ADHD (P-value= 0.005, FDR= 0.041), andTa
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externalizing problems (P-value= 0.012, FDR= 0.062). Causal med-
iation analyses showed that preconception thiamine was nominally
associated with CBCL total problems (N= 63, β= 0.551, P= 0.038,
95% CI 0.030–1.072 for total effect). However, pure (P= 0.856) and
total (P= 0.909) natural indirect effects via neonatal right sub-
thalamic nucleus ODI for this association were not significant
(Supplementary Table 15 and Supplementary Fig. 4). We estimated
that the proportion mediated via neonatal right subthalamic nucleus
ODI was 1.8% (95% CI −29% to 33%). No major differences have
been found between pure and total natural indirect effects,
suggesting mediated interaction was not likely.

DISCUSSION
In this study, for the first time, we have identified associations of
maternal preconception circulating biomarkers with child beha-
vioural symptoms scores at age 3 years. In a fully adjusted model,

we found that Biomarker Cluster 9 (thiamine, TMP, pyridoxal
phosphate, pyridoxic acid, and pyridoxal) was positively asso-
ciated with internalizing problems and thiamine was driving the
cluster association. While investigating metabolites separately
from micronutrients and EAAs, associations of thiamine and TMP
with internalizing problems remained, albeit with lower Cluster
PIPs. Both thiamine and TMP were also consistently associated
with pervasive developmental problems in the sensitivity analyses.
In general, we found evidence of a link between maternal
preconception thiamine-pathway-related biomarkers and child
behaviours. In the SES-stratified analysis, these associations
remained only in the high household income group.
Our findings of higher preconception free thiamine and TMP levels

associated with internalizing problems were heavily influenced by
higher scores on the somatic complaints and anxiety/depression
scales, and pervasive developmental problems, which are mainly
characterized by delays in the development of socialization and

Fig. 2 Exposure-outcome relationships using Bayesian kernel machine regression (BKMR) for biomarker clusters and Child Behaviour
Checklist (CBCL) scores (Model 2, N= 109). Biomarker levels and CBCL scores were in standard deviation unit. Grey areas indicate 95%
credible interval (PIP: posterior inclusion probability). a The association of Biomarker Cluster 8 with internalizing problems. b The association
of Biomarker Cluster 9 with internalizing problems.
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communication skills. This is not consistent with clinical knowledge,
where both prenatal and infantile thiamine deficiency has been
widely reported to be associated with undesirable child development
outcomes, including impairment in language and communication
skills [35–37]. Thiamine deficiency is typically viewed as a health
problem due to poor diets in low- and middle-income countries and
excessive alcohol consumption in high-income countries [38], which
have a low prevalence in our population and preconception cohort.
However, the true risk of insufficiency and/or suboptimal status of
thiamine in women of reproductive age is not well understood [39].
Nevertheless, high-carbohydrate diets and consumption of sugar-
sweetened beverages increase the demand for thiamine dipho-
sphate (TDP), which is the active form of vitamin B1 (accounting for
~80% of the total thiamine content) and an essential cofactor for
carbohydrate metabolism [40, 41]. In blood, TDP predominantly
presents in erythrocytes, while free thiamine and TMP are found
primarily in plasma [41]. Biomarkers were measured using plasma
samples in our cohort and only free thiamine and TMP were available
for this study. Compared to healthy Japanese women of the same
age range [42], preconception levels of free thiamine and TMP were
lower in our cohort (Supplementary Table 4). This may be due to
different dietary patterns between Japan and Singapore since free
thiamine and TMP levels in plasma are sensitive to recent intake.
Thiamine status, instead, is indicated by erythrocyte TDP or the
functional assessment of erythrocyte transketolase (ETK) activity [41].
Nevertheless, consensus about case definitions for thiamine
deficiency has not been achieved and various thresholds had been
used in previous studies [41]. High intakes of caffeine, for example
from coffee and tea, also interfere with thiamine absorption [43].
Given that high-carbohydrate diets and consumption of sugar-
sweetened beverages, coffee, and tea is popular in Singapore [44],
demand for TDP may be generally high and thiamine absorption
may be suboptimal in the population. This may lead to the
functionally suboptimal status of thiamine. On the other hand, given
that free thiamine is phosphorylated into TDP once absorbed, a
higher preconception free thiamine may be a result of suboptimal
phosphorylation inhibiting the synthesis of TDP [45]. In both cases,
our observation may suggest that functionally suboptimal TDP is
associated with internalizing problems and pervasive developmental
problems. ETK activity coefficient is computed as the ratio of
stimulated ETK activity to basal ETK activity and indicates the
availability of TDP [46]. However, ETK activity coefficient is not
available in our study. Further investigation focusing on the
functional suboptimal status of TDP is warranted.
In our exploratory analysis with brain MRI measures, thiamine was

inversely associated with neonatal right subthalamic nucleus ODI,
while neonatal right subthalamic nucleus ODI was inversely
associated with multiple CBCL scores. Subthalamic hypo-activity has
been reported in children with ASD symptoms [47]. This suggests that
a potential mediating effect via neonatal ODI may exist for the
positive associations of thiamine and internalizing problems and
pervasive developmental problems, both of which are related to
autism [48, 49]. Formal mediation analyses found that a small amount
of the total effect of preconception thiamine on CBCL total problems
were mediated by right subthalamic nucleus ODI (Supplementary
Table 15). Due to the smaller sample sizes, these estimates were
imprecise and did not pass our threshold for multiple testing.
The different timing of sample collection for biomarker

measurement and behavioural symptom assessment may con-
tribute to differences between our findings and those from
previous studies. No previous study has looked at preconception
measures, which may be critical to neurodevelopment. Due to large
changes in plasma volume expansion and metabolism, concentra-
tions measured during pregnancy may not reflect periconceptional
levels. Previous studies have reported that lower maternal folate
level during early pregnancy (<18 weeks gestation) was associated
with childhood hyperactivity and peer problems [50] and with
CBCL internalizing but not externalizing at age ~3 years [51]. In our

analysis, Biomarker Cluster 4 (betaine, cobalamin, folate, trimethy-
lamine N-oxide, vitamin D3) was suggestively associated with
internalizing problems (Cluster PIP= 0.529) but none of the
biomarkers in the cluster had been selected in more than 50% of
the models (Conditional PIP < 0.5). This may suggest a critical
window for folate during pregnancy rather than preconception.
Maternal supplement use and dietary patterns are usually

assessed using questionnaires in epidemiologic studies [52, 53].
Such assessment is vulnerable to recall bias and social-desirability
bias [54]. In addition, questions about the frequency of supple-
ment use are often based on broad definitions, such as
multivitamins [53]. Thus, misclassification may occur and precise
intake could not be estimated. Objective measures of circulating
micronutrients or metabolites are almost exclusively studied
during pregnancy and not preconception itself [20]. During the
very early stage of pregnancy, the embryo gets nutrients from
fluids in the reproductive tract and endometrium [55, 56]. Thus,
maternal circulating preconception biomarkers could indicate not
only mother’s intake and metabolism of dietary constituents [57],
but also fetal nutrient availability at conception and very early
stage of pregnancy [58]. Thus in our study, investigation of
circulating preconception biomarkers could be used as an
indicator for both maternal nutritional status and fetal nutrient
availability [57, 58], and may provide insight into the critical
window for dietary interventions. This is not studied in most birth
cohorts where participants were usually enroled either sometime
after conception or at birth. In addition, existing studies on
maternal biomarkers and offspring health outcomes mostly
interrogated biomarkers individually or as a latent factor of
multiple biomarkers [59, 60]. However, nutrients and metabolites
do not act independently. We accounted for the complex
interactions between biomarkers by applying K-means clustering
and BKMR, which takes advantage of the kernel machine to
characterise the exposure profile of multiple biomarkers and
incorporate a Bayesian variable selection. This helps unravel the
relevance of dietary constituents and potential biological pathway,
as well as improve statistical power. Nevertheless, several
limitations in our study should also be noted.
First, analyses in this study had small sample sizes and a relatively

large number of biomarkers, which could decrease the efficiency of
MCMC resampling. Therefore, we only consider findings with an
MCMC effective sample size greater than 100 and a potential scale
reduction factor smaller than 1.1. We also performed multiple
additional analyses to evaluate the consistency of our findings.
Second, BKMR analysis was not available for some subgroups in the
stratified analyses due to the limited sample size. For those
subgroups where both BKMR and linear regression were performed,
larger Cluster and Conditional PIPs from BKMR corresponded to a
smaller P-value from linear regression. Nevertheless, these results
should be interpreted with caution. Third, sex-specific effects and
critical windows may exist; however, we are not able to investigate
this given the small sample size. Fourth, measurements of the
erythrocyte TDP or functional assay of biological activity of thiamine
(i.e., ETK activity) were not available. These could help examine if
our conjecture of the functionally suboptimal status of TDP is true.
Nevertheless, our findings suggest that monitoring functional
biomarkers of thiamine may be more informative. Last but not
least, child behavioural symptoms based on a parent-reported
questionnaire may be biased by factors associated with a parent’s
background. However, evaluation by investigators or clinicians is
limited by the time they could spend on each child, thus it may not
capture the daily behaviours of the child.

CONCLUSION
In this study, we addressed a critical gap in the existing literature by
investigating the associations of maternal circulating preconception
biomarkers with parent-reported child behaviours to circumvent the
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confounding by pregnancy changes. By using clustering and
mixture methods to account for the complex interaction between
biomarkers, we identified associations of higher maternal precon-
ception plasma thiamine and TMP with internalizing problems and
pervasive developmental problems, suggesting that functional
thiamine metabolism could be important in women planning for
pregnancy. We further formally evaluated the extent to which
neonatal brain microstructure mediated observed relationships. We
did not find precise evidence for mediation via neonatal ODI at our
given thresholds, further studies investigating other potential
mediating mechanisms are needed.
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