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The environmentally friendly alternative to conventional Portland cement concrete is geopolymer concrete. In addition, rising
carbon taxes on carbon emissions and energy-intensive materials like cement and lime impact the cost of industrial by-products
due to their pozzolanic nature. This research evaluates the compressive strength and flexural strength of geopolymer concrete,
and the compressive strength of geopolymer mortar. Geopolymer mortar data were used for strength assessment using an
analytical approach, and geopolymer concrete data were utilized for strength and sustainability performance. Using artificial
neural networks (ANN), multi-linear regression (MPR) analysis, and swarm-assisted linear regression compressive strength models
were created based on experimental datasets of geopolymer mortar mixes with variable precursors, alkali-activator
percentages, Si/Al, and Na/Al ratios. The strength and sustainability performances of geopolymer concrete blends with various
precursors were assessed by considering cost-efficiency, energy efficiency, and eco-efficiency. The work's originality comes from
enhancing sustainable high-performance concrete without overestimating or underestimating precursors. Extensive experimental
work was done in the current study to determine the best mix of geopolymer concrete by varying silica fume, ground granulated
blast furnace slag (GGBS), and rice husk ash (RHA). A scanning electron microscopic study was conducted to understand the
geopolymer matrix's microstructure further. A comprehensive discussion section is presented to explain the potential role of RHA.
The replacement of conventional concrete in all its current uses may be made possible by this sustainable high-performance
concrete made with RHA.
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This study compared geopolymer mixtures' strength and sustainability performances with various dosages of precursor content.
Moreover, there is a rising need for novel materials with low CO2 emissions associated with their manufacture for various
applications. Therefore, geopolymer concrete might be used as a replacement for OPC, but this only happens once a reliable raw
material supply chain and a product delivery system are in place.
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Abstract 16 

Geopolymer concrete is a sustainable substitute for traditional Portland cement concrete. In addition, 17 

rising carbon taxes on carbon emissions and energy-intensive materials like cement and lime impact 18 

the cost of industrial by-products due to their pozzolanic nature. This research evaluates the 19 

compressive strength and flexural strength of geopolymer concrete, and the compressive strength of 20 

geopolymer mortar. Geopolymer mortar data were used for the strength assessment employing an 21 

analytical approach, and geopolymer concrete data were utilized for the strength and sustainability 22 

performances. Using artificial neural networks (ANN), multi-linear regression (MPR) analysis, and 23 

swarm-assisted linear regression compressive strength models were created based on experimental 24 

datasets of geopolymer mortar mixes with variable precursors, alkali-activator percentages, Si/Al, and 25 

Na/Al ratios. The strength and sustainability performances of geopolymer concrete blends with various 26 

precursors were assessed by considering cost-efficiency, energy efficiency, and eco-efficiency. The 27 

work's originality comes from enhancing sustainable high-performance concrete without 28 

overestimating or underestimating precursors. Extensive experimental work was done in the current 29 

study to determine the best mix of geopolymer concrete by varying silica fume, ground granulated 30 

blast furnace slag (GGBS), and rice husk ash (RHA). A scanning electron microscopic study was 31 

conducted to understand the geopolymer matrix's microstructure further. A comprehensive discussion 32 

section is presented to explain the potential role of RHA. The replacement of conventional concrete in 33 

all its current uses may be made possible by this sustainable high-performance concrete made with 34 

RHA. 35 
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1 Introduction 36 

Ordinary Portland cement (OPC) with the standard grade was the starting point for the evolution of 37 

concrete. OPC was widely used in the 1900s for building, offers sufficient strength for widespread use, 38 

and is the most acceptable substitute for lime mortars (Hall, 1976). The amount of OPC in the concrete 39 

is crucial for achieving strength, and in most cases, less than 350 kg/m3 of OPC is used (Nazari et al. 40 

2019). Eventually, due to the necessity for increased strength in buildings, pozzolanic additives have 41 

been used since 1960 in the mix percentage to sustain load capacities ranging from 50 MPa to 90 MPa 42 

(Dinkar et al. 2008). Pozzolanic additives, which have been used for high-rise buildings, bridges, and 43 

heavy-duty structures, are nothing more than industrial by-products that are finer and richer in silica 44 

and alumina elements (Dembovska et al. 2017; Bumanis et al. 2020). Other hand, manufacturing 45 

process of OPC involves higher energy consumption and CO2 emission. So, green materials without 46 

carbon footprint are much needed in the current construction industry (Mohanty et al. 2002; Liew et 47 

al. 2017). 48 

Geopolymers have drawn interest from the civil engineering community since the 1990s because of 49 

their potential and minimal carbon footprint. Because of their strength and temperature resistance 50 

qualities, geopolymers formed of such alkaline activated forms have been shown to be ideal building 51 

materials (Singh et al. 2015). Numerous researchers have used pozzolanic precursors and potassium 52 

hydroxide activating liquids to produce alkaline systems. In reaction, they produced phases of hydrated 53 

calcium silicate (C-S-H) (Bondar et al. 2011; Azad and Samarakoon, 2021). Using silicon and 54 

aluminum-rich minerals, such as clay with kaolinite mineral, activated by alkaline aqueous systems, 55 

Davidovits, a French scientist, produced an alkali-activated material (Davidovits, 1994). Similar to 56 

how polymeric materials are made, geopolymers are substances made by condensation 57 

polymerization.  Amran et al. (2020) assessed the environmental effects of the manufacture of 58 

geopolymer concrete in 2011 by contrasting its life cycle with that of OPC. Alkali-activated concrete 59 

was demonstrated to be more environmentally friendly than regular OPC (Amran et al. 2020; McLellan 60 

et al. 2011). 61 

Alkali-activated substances are even less aggressive than OPC because there is less CO2 released into 62 

the environment. According to a survey, cement made using geopolymers performs better than 63 

conventional OPC in reducing CO2 by 26–45% (Turner and Collins, 2013). Additionally, a solution 64 

containing a mixture of sodium silicates (Na2SiO3) gel and sodium hydroxide (NaOH) pallets was 65 

utilized to prepare the activator solution employed in the geopolymerization process (Rajamma et al. 66 

2012). The chemical constituents Si, Al, and Ca rich components make up most of the alkaline 67 

activated materials. Fly ash, rice husk ash (RHA), and ground granulated blast furnace slag (GGBS) 68 

are a few of the pozzolanic materials that are frequently used (Bernal et al. 2012; Wang et al. 2020; 69 

Singh, 2021). According to the most recent research, employing just one kind of activating binders, 70 

like sodium silicate, in concrete is thought to be the most extravagant element. Therefore, it was advised 71 

to establish a unique approach, and the activators should be prepared from carefully chosen less 72 

aggressive ingredients (Chen et al. 2021). Geopolymerization is strongly influenced by chemical 73 

components like Si and Al in the geopolymers. Studies linking these elements to strength attributes are 74 

insufficient due to the challenges in determining them (Ryu et al. 2013; Divvala, 2021). On the other 75 

hand, other factors, including the amount of the precursor, its kind, its structural shape, its surface area, 76 

the gradation of the fine aggregates, the presence of alkali-activators, and the temperature, all affect 77 

the strength characteristics (Vora and Dave, 2013; Luan et al. 2021). Numerous studies have 78 

constructed appropriate interrelations and projected strength behavior based on these qualities (Luan 79 

et al. 2021; Joseph and Mathew, 2012). Ma et al. (2018) and Kashani et al. (2019) examined the impact 80 

of precursor type on the strength behavior of geopolymer concrete. At the same time, Kong and 81 

Sanjayan (2010) have reported a link between temperature and alkali-activators characteristics. 82 
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According to previous literature, the ratio of Na2SiO3 to NaOH and the alkali-activators molarity 83 

contributes the geopolymer concrete's strength (Madheswaran et al. 2013). In general, concrete cured 84 

at increased temperatures exhibits stronger behavior than ambient concrete, which is principally 85 

attributable to the alkali-activators effective dilution of the Si and Al ions. Therefore, when a precursor 86 

is added to the geopolymer blends, numerous chemical reactions known as geopolymerization occur, 87 

which adds to the blends' increased strength. Undeniably, the chemical reaction that results from the 88 

interaction of alkali-activators and precursors is greatly influenced by variables like curing time, 89 

humidity, and a few other elements (Al Bakrian et al. 2011; Oderji et al. 2017). Due to the lack of 90 

adequate, pertinent data, it has also been discovered from previous studies that few researchers have 91 

documented meaningful information on the impact of these characteristics on strength fluctuations. It 92 

makes sense to say that choosing precursors based on Si/Al and Na/Al, which are connected to 93 

chemical reactions, is advantageous (Liu et al. 2020; Wang et al. 2021; Liu et al. 2022). However, not 94 

many studies look at the underlying connections between these parts. 95 

Understanding the function of precursors in geopolymerization is the aim of the current article. This 96 

study investigates the use of artificial neural network (ANN) principles for predicting the compressive 97 

strength of geopolymer mortars based on experimental data with different precursor dosages. By 98 

anticipating the most suitable mixture and preventing over/under-dose of precursors, the study's 99 

findings will significantly aid in reducing project costs. The sustainability performance of the 100 

geopolymer mixes is also highlighted in this research, which is vital for the efficient and sustainable 101 

design of geopolymer-based civil engineering infrastructure. 102 

2 Research Significance 103 

Using locally accessible materials instead of expensive ones, the potential replacement of RHA in 104 

geopolymer concrete could lower the cost of geopolymer concrete production. As a result, the primary 105 

goal of the current study is to investigate if it is possible to produce sustainable geopolymer concrete 106 

using locally accessible rice husk ash obtained from the brick kiln, which will be utilized as a partial 107 

substitute for traditional precursors. This study evaluates the strength properties and microstructural 108 

growth of geopolymer concrete made of GGBS, RHA, and silica fume. This study's initial phase 109 

examined the impact of substituting GGBS and silica fume for a portion of the RHA on the compressive 110 

strength of the geopolymer concrete. The compressive strength of the geopolymer mortars was 111 

evaluated in the second step utilizing soft computing methods. To identify the geopolymer concrete 112 

mix with the highest sustainable performance, cost-efficiency, energy-efficiency, and eco-efficiency 113 

were also calculated for all the mixes. 114 

Managing agricultural by-products has become necessary in recent years to prevent accumulation and 115 

maintain a clean, safe environment. Unfortunately, RHA is one of these by-products that is harmful to 116 

both the environment and human health. Today, there is a severe issue with agricultural waste because 117 

of the rapid rise of urbanization and industrialization. Due to these constraints, cutting-edge and 118 

unconventional research on waste reuse in the building sector is becoming increasingly important. 119 

3 Potential Thrust of RHA as Building Material 120 

India has a wide variety of cultural traditions with 1.4 billion people (Kaygusuz, 2012). India's 121 

economy relies heavily on agriculture, with a contribution of greater than 15% gross domestic 122 

product.  The main food supply for the Indian subcontinent is the rice farming system, which is 123 

practiced over roughly 44 million hectares of land in India. According to the average harvest index of 124 

0.45, India produces 127 MT of leftovers annually (Dutta et al. 2022). Figure 1 shows the agricultural 125 

biomass share from various crops (Jain et al. 2018). Farmers are forced to dispose of the leftovers 126 
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because of various socioeconomic, organizational, technical, and commercial issues, which trigger 127 

various ecological problems. Each year, India produces 683 million tons of residue, with around 2/3 of 128 

that amount coming from cereal crop residues and the remaining from other crops that yield surplus 129 

residue (Dutta et al. 2022; Jain et al. 2018; Srivastav et al. 2021). An excess of 178 million tons remains 130 

after recycling over 500 million tons in various sectors, including industrial, residential, and livestock 131 

feed (Sangeet and Kumar, 2020). The preference for paddy in Asia is a major factor in the continent's 132 

greater residue-burning rates than other continents. India's residue-burning rates are also much higher 133 

than those of Pakistan and China (mainland), at 93% higher and 30% higher, respectively (Dutta et al. 134 

2022). Figure 2 illustrates the top five nations CO2eq emissions burning crop residues. 135 

In addition to having a high content of amorphous silica, the rice husk has a considerable calorific 136 

value. The use of rice husk residue to generate electricity and high-value manufacturing has recently 137 

increased among numerous Asian rice millers and companies. An estimated 800 kWh of electricity can 138 

be produced from one ton of rice husk. The power conversion advancements include flash thermal 139 

decomposition, enzymatic hydrolysis, ethanol digestion, co-firing, gasifier, and hydrocarbon 140 

production, burning fuel heating, direct combustion electricity production (gas turbine, steam 141 

generator, energy storage), gasifier and electrical production, and biogas and electrical production. In 142 

the modern day, only two of these technology solutions heating and burning fuel electricity production 143 

commonly used. Burning fuel heating can use traditional boilers and hot water turbines. Both boilers 144 

that generate steam for energy and brick kilns that self-burn clay bricks to consolidate them use rice 145 

husks as a fuel. Over 10% of the world's burnt clay brick production is produced in India, the second-146 

largest producer in the world. More than 0.1 million brick kilns, which generate around 150-200 billion 147 

bricks annually, are said to exist in India (Guttikunda et al. 2014). Industrial brick kilns that burn waste 148 

rice husk from agriculture produce much leftover rice when they use the fuel between the columns of 149 

the kilns to fire shroud RHA (Jittin et al. 2020). Figure 3 displays the RHA from field collection to 150 

laboratory preparation. 151 

 152 

Figure 1. Agricultural biomass residues share in India. 153 
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 154 

Figure 2. CO2 emissions burning crop residues. 155 

One of the waste-to-energy methods is the use of rice husks from agricultural waste. However, issues 156 

must be addressed before RHA is also disposed of in landfills and aquatic bodies, which pollutes the 157 

environment because it is not properly treated. Therefore, using rice husk as fuel cannot be referred to 158 

as "green material" if RHA from diverse sectors is not utilized well. Pre-processed RHA has 159 

demonstrated potential in recent years as an additional binding component for concrete slabs, 160 

modified concrete, and geopolymer concrete (Sarkar et al. 2021; Mahdi et al. 2022). Pre-practical 161 

processing's applicability is nevertheless limited by how time and energy-intensive it has become. 162 

Utilizing waste RHA without Pre-processing will help to promote cost-effective and environmentally 163 

responsible waste management. Furthermore, RHA, which was used in earlier experiments, contains 164 

crystalline silica, which is less reactive. Due to the extended burning in the brick kilns, the RHA from 165 

burned brick kilns has a significant amorphous silica concentration of 90-97%, which is a necessary 166 

component for the manufacturing of geopolymer concrete (Almalkawi et al. 2019). Therefore, it would 167 

be ideal to research using RHA from a brick kiln in the manufacture of geopolymer concrete for a 168 

variety of civil engineering applications in order to attain sustainability in infrastructure development. 169 

Figure 4 depicts the schematic view of the role of RHA in sustainable construction. 170 
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 172 

Figure 3. Rice husk and RHA at brick kiln. 173 

 174 

Figure 4. Schematic view of the role of RHA in sustainable construction. 175 

 176 

4 Materials and Methods 177 

Geopolymer mortar specimens were prepared for undertaking compressive strength tests and micro-178 

structural analysis. Further, the compressive strength of geopolymer mortars prediction models was 179 

developed using ANN concepts and experimental datasets. Another series, geopolymer concrete 180 

specimens were prepared to evaluate the compressive strength behavior with varying precursor 181 

proportions. Further, sustainability evaluation was performed for 1 m3 geopolymer concrete. 182 

In order to create the geopolymer mortar specimens, the aluminosilicate source materials, such as RHA, 183 

silica fume, and GGBS, were used. Both silica fume and GGBS, with surface areas of 16.5 and 0.52 184 

kg/m2, were purchased from the neighborhood market. GGBS and silica fume have specific gravity of 185 

2.85 and 2.4, respectively. Rice husk was utilized as a fuel in the brick factory, where RHA was 186 

gathered. It has a specific gravity and surface area of 0.99 and 0.036 kg/m2, respectively. RHA was a 187 

more readily available material at a lower cost than GGBS and silica fume. Figure 5 shows the raw 188 

materials' microstructural graphs. The procedures used for burning, processing, and grinding affect the 189 

microstructure of RHA (Endale et al. 2022). As a result, RHA particles are often amorphous, have 190 

micro-fragments with porous structures, and are extensively distributed (Figure 5a) (Endale et al. 191 

2022). Table 1 lists the chemical composition of the binding materials. 192 
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  193 

 194 

Figure 5. SEM micrographs a) RHA, b) silica fume, and c) GGBS. 195 

The sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) gel were utilized for alkali-activation. 196 

Commercial-grade NaOH came in pellet form, was 99% pure and Na2SiO3 gel has a specific gravity 197 

of 1.53 gm/cc and 42% solid content. 198 

Table 1. Chemical composition of binders. 199 

4.1 Sample Preparation and Testing 200 

Geopolymer mortar specimens were prepared based on the ratio of Na2SiO3/NaOH was 2.5 when three 201 

distinct molar concentrations of NaOH, including 8 (M), 11 (M), and 14 (M), were combined with the 202 

solution of Na2SiO3. Due to the lack of codal regulations governing the geopolymer mortar mixes, 203 

several trial mixes were made and tested before selecting the best geopolymer mortar mix (Yedula and 204 

Karthiyaini, 2020). The precursor to sand ratio was kept as 1:3. (by weight). Additionally, the alkali-205 

Description 
Chemical Composition (%) 

SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O LOI 

GGBS 40 13.5 1.8 39.2 3.6 0.2 --- --- 

Silica Fume 96 0.8 1.3 0.4 0.3 --- 1.0 --- 

RHA 95.7 0.5 0.9 0.8 0.6 0.1 0.1 1.2 
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activator was varied as 16%, 18%, and 20% (by weight) to understand the effect of alkali-activator 206 

content on strength characteristics. Before adding the predetermined amount of alkali-activator and 207 

properly mixing it, the sand and precursor were dried and mixed homogeneously. The blended mix 208 

was cast in the cube of each dimension 70.6 mm. After one day of casting, the mixed geopolymer 209 

mortar specimens were taken out of the mold and left to ambient curing until testing. A conventional 210 

Vicat equipment was used to test the setting of geopolymer mortar specimens according to IS: 4031 211 

(part 5). To measure the compressive strength at 28 days, an average of three specimens for every mix 212 

were tested under a compression testing apparatus, in accordance with IS 516:1959 (Sathawane et al. 213 

2013), cubes measuring each side 150 mm were used to estimate compressive strength findings after 214 

28 days of curing at room temperature. The specimens were put through their paces under a 200-ton 215 

capacity compression testing apparatus. 216 

Another series of geopolymer concrete specimens were prepared based on the 10 M of NaOH solution 217 

and Na2SiO3/NaOH with 2.5. During the current experiment, M40-grade geopolymer concrete was 218 

used. The mix proportions for M40 geopolymer concrete employing GGBS and silica fume were 219 

previously suggested by research (Das et al. 2020). In addition to the RHA concentration, silica fume 220 

and GGBS were changed in the binder. Table 2 displays the precise intended material quantities in 221 

accordance with replacement levels. The prepared concrete was immediately assessed for workability 222 

using the compression factor test in accordance with IS 1199-1959 (Laskar and Talukadar, 2017). For 223 

the compressive strength test, 150 mm-square cubes were cast. The mold was filled with three concrete 224 

layers, each measuring around 5 cm thick. Each mold was fully compacted using a vibrating table 225 

without dispersion or extreme laitance. The concrete in the mold was next troweled to an equal finish. 226 

For flexural strength test, 500 × 100 × 100 mm size prisms were cast (Das et al. 2020). Figure 6 227 

indicates the geopolymer concrete sample preparation and testing for the compression and flexural 228 

strengths. 229 

Table 2. Material proportions per 1m3 geopolymer concrete. 230 

Mix Symbol Coarse 

Aggregate 

Fine 

Aggregate 

RHA GGBS Silica Fume NaOH Na2SiO3 

M1 1150 200 0 416 0 57 143 

M2 1150 200 0 374.4 41.6 57 143 

M3 1150 200 0 332.8 83.2 57 143 

M4 1150 200 0 291.2 124.8 57 143 

M5 1150 200 0 249.6 166.4 57 143 

M6 1150 200 20.8 374.4 20.8 57 143 

M7 1150 200 41.6 332.8 41.6 57 143 

M8 1150 200 62.4 219.2 62.4 57 143 

M9 1150 200 83.2 249.6 83.2 57 143 
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 231 

Figure 6. Geopolymer concrete samples and testing. 232 

4.2 Dataset Preparation 233 

Based on the geopolymer mortar testing results, data were created to forecast the geopolymer mortars' 234 

28-day compressive strength. A dataset with 81 test samples is created (Table 3). The output variable 235 

in the dataset is the compressive strength of geopolymer mortar (O1). The input variables are RHA 236 

content (I1) GGBS content (I2), silica fume content (I3), the molarity of NaOH (I4), alkali activator 237 

content (I5), Na/Al (I6), and Si/Al (I7). 238 

Table 3. Variation range of input and output variables. 239 

Statistics 
Input Variables Output Variable 

I1 I2 I3 I4 I5 I6 I7 O1 

Grand mean 6 78 17 11 18 2.25 32.52 44.1 

Minimum 0 60 0 8 16 0.71 14.68 22.35 

Maximum 20 100 40 14 20 7.59 60.38 63.5 

Standard Deviation 7 13 12 2 2 1.44 13.52 8.1 

Variance 53 175 141 6 3 2.08 182.9 65.54 

The histogram plots of the input and output variables, as seen in Figure 7, also illustrate this change. 240 

The experimental dataset was trained to create multiple regression for the estimation method. The 241 

model's generalizability was then tested using the randomized 30% of the data. The original data must 242 

be standardized before being entered into the regression model. The normalization process converts all 243 

the variables to the same scale, simplifying and strengthening the regression model. Figure 8 shows 244 

the normalized importance of the input variables. 245 
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246 

247 

 248 

Figure 7. Histograms of input and output variables. 249 

 250 
Figure 8. Normalized importance of input variables. 251 
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4.3 Principles of ANN  252 

Because ANN models can frequently describe complicated systems with illogical or challenging 253 

behavioral principles or underlying processes, they are increasingly employed for predicting or 254 

simulating highly complex engineering variables. ANN is a non-linear modeling technique that can 255 

process many inputs (independent variables) to produce dependent output variables. For a variety of 256 

purposes, there are numerous varieties of neural networks in practice (Montavon et al. 2018). A popular 257 

ANN configuration that has been extensively employed in the discipline of civil engineering is linear 258 

regressions (Manzoor et al. 2021; Nagaraju et al. 2021). This study assesses the effectiveness of neural 259 

networks for calculating the compressive strength of geopolymer mortars. The current study's ANN 260 

model's structure is presented in Figure 9. The input, output, and middle (hidden) layers are the three 261 

primary levels of neurons that make up a neural network. Each neuron can have a different number of 262 

inputs and outputs (leading to the subsequent overlay or out of the network). A neuron computes its 263 

result using the weighted sum of its inputs based on a kernel function (Kohlbrenner et al. 2020). 264 

 265 

Figure 9. Structure of ANN model. 266 

In this investigation, a network with seven input variables (RHA content, GGBS content, silica fume 267 

content, the molarity of NaOH, alkali solution %, Na/Al, and Si/Al), one output, and hidden layer with 268 

three processing neurons was used. For straightforward regression analysis, each input variable's 269 

normalized or filtered values are introduced into the network by the modules in the input neurons. 270 

Then, these values are distributed to every unit in the hidden layer and compounded by a "weight" 271 

factor, usually unique for each network and whose size denotes the importance of specific connections. 272 

4.4 Multiple Polynomial Regression Analysis 273 

A technique for examining linear correlations between predictor variables and multiple independent 274 

variables is multiple regression analysis. Since the independent variables influence the predictor 275 

variables in a regression analysis, data points can be established once the dependent variable's validity 276 

is confirmed. Each parameter's constant and extrapolation parameters are computed to explain how the 277 

variables relate to one another. Equation (1) represents the standard multiple regression equation: 278 

M = x + y1n1 + y2n2 + y3n3 + … + ynnn + e                                             (1) 279 
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where n1, n2, ..., nn are the input variables, m is the predicted variable, and x and y are constant and 280 

coefficients, respectively. Moreover, e represents error. Using the correlation factor, R2, the method 281 

measures the reliability of the link between the predicted and input variables. 282 

A predicted variable, intersection, and square terms make up the polynomial regression equation. This 283 

study makes an effort to evaluate the precision of the compressive strength of geopolymer 284 

mortars when applied to a response surface approach. 285 

4.5 Swarm-Assisted Regression Analysis 286 

To predict the compressive strength of the geopolymer mortars in this study, nature-inspired particle 287 

swarm optimization (PSO) algorithm was used. The developed PSO model predicts compressive 288 

strength by considering input variables. The developed model uses the PSO algorithm to optimize the 289 

output variable by considering weight factors and damping coefficients. To get a global solution, the 290 

novel PSO model's performance is examined by varying inertia weight and damping factors. In general, 291 

executing PSO involves initializing the swarm particles with random location and zero velocity. 292 

Further, evaluate the objective of the particles, followed by determining personal and global best. 293 

The PSO algorithm is effective, especially for predicting variables in the engineering domain (Xue, 294 

2018; Nagaraju and Prasad, 2020; Nagaraju et al. 2021). The algorithm works based on the principle 295 

of random food (particle) search by the fishes (iterations) in the pond (source). There are two sets to 296 

be considered for evaluating the model using PSO. These are input variables (set of experimental test 297 

data) and output variables. The chosen variables should be dependent and proportional for effective 298 

results. The input variables in the study were precursors contents (RHA, GGBS, and silica fume), 299 

molarity, alkali solution, Na/Al, and Si/Al. These input variables have been chosen in the previous 300 

studies to estimate soils (Dao et al. 2019; Nagaraju et al. 2020). In PSO, varying inertia weights can 301 

achieve the best convergent predictions. Further, to enhance the estimation models, damping factors 302 

play a vital role (Zaji and Bonakdari, 2014). 303 

5 Results and Discussion 304 

5.1 Compressive and Flexural Strengths of Geopolymer Concrete 305 

Depending on the precursor contents, data were gathered after all cube tests were finished and 306 

compressive strengths of geopolymer concrete were compared. The information matched the three 307 

tested cubes' average compressive strengths. Table 4 displays the 7-day and 28-day compressive 308 

strength of geopolymer concrete with various concentrations of precursors (GGBS, silica fume, and 309 

RHA). M5, M6, M7, and M8 mixes had the highest compressive strengths, measuring 51.4 MPa, 50.8 310 

MPa, 52.4 MPa, and 54.7, respectively at 28-day curing period. The mixes M1, M2, M3 and M9 had 311 

the lowest strengths, measuring 41.4 MPa, 44.5 MPa, 47.3 MPa and 47.5 MPa, respectively at 28-day 312 

curing period. From Figure 10, it can be seen that early strengths were observed in the geopolymer 313 

concrete mixes blended with silica fume and GGBS than the mixes consist of RHA. This could be due 314 

to the higher surface area of silica fume and GGBS contributes effective earlier reactions than the 315 

blends having RHA content. 316 

 317 

 318 

 319 
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Table 4. Compressive strength of geopolymer concrete with varying precursors. 320 

Mix 

Designation 
Na/Al Si/Al 

Compressive Strength (MPa) at Different Curing Periods 

7 days 
Standard 

deviation of 7-day 

mixes 

28 days 
Standard 

deviation of 28-

day mixes 

M1 1.34 2.59 27.9 0.4 41.4 0.3 

M2 1.35 2.91 32.9 1.5 44.5 1 

M3 1.36 3.23 35.6 1.3 47.3 0.6 

M4 1.66 3.77 37.9 1.5 49.5 0.4 

M5 1.38 3.90 38.5 1.1 51.4 1.1 

M6 1.41 3.08 37.6 1.2 50.8 1.1 

M7 1.49 3.63 38.2 0.6 52.4 0.8 

M8 1.99 4.68 41.6 0.5 54.7 1.3 

M9 1.69 4.95 34.2 0.2 47.5 0.7 

  321 
Figure 10. Compressive strength of geopolymer concrete mixes 322 

Despite its polymerization reaction, which used amorphous silicon to produce strong Na-Al-Si, and 323 

abundant alumina in GGBS, geopolymer concrete mixtures generally had a higher compressive 324 

strength. Nevertheless, the polymerization stopped after the 15% RHA content (i.e., M9 mix). Strength 325 

increased with the addition of RHA because of the relatively higher Si/Al ratio and better fineness of 326 
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RHA compared to GGBS, which increased the high surface area and enhanced reactions (Venkatesan 327 

and Pazhani, 2016). While the difference in solubility between GGBS and RHA was primarily 328 

responsible for the lower strength values exceeding 15% RHA, other factors also played a role (Mehta 329 

and Siddique, 2018). Additionally, more unreactive particles may serve as rigid fillers that cause 330 

microcracks in the matrix, leading to lower compressive strength results (Wang et al. 2022). 331 

Figure 11 illustrates the variation of flexural strength with the precursor content. After 28 days, GGBS-332 

based geopolymer concrete (Mix#1) showed flexural strengths of 4.85 MPa. Flexural strength 333 

increases as silica fume content in the GGBS-based geopolymer concrete mixture rises. The specimens 334 

blended with RHA had lower flexural strengths at the specified curing time. However, the silica fume 335 

and GGBS blended geopolymer concrete mixes had significantly increased strengths with adding silica 336 

fume and GGBS. This might result from the RHA mix's low density owing to lower specific gravity 337 

RHA, which results in a weak link and failure between the mortar paste and aggregates (Abu Bakar et 338 

al. 2011; Hakeem et al. 2022). 339 

 340 
Figure 11. Flexural strength of geopolymer concrete mixes at 28 days 341 

5.2 Micro-Structural Analysis 342 

Figures 12a to 12h depict the findings of the microstructures of geopolymer concrete mixes (Mix#1, 343 

Mix#3 to Mix#9) with varied precursor contents. As displayed in Fig. 12 (a), the SEM micrographs 344 

taken in geopolymer concrete with GGBS alone revealed the uneven shape with traces of sharp needles. 345 

A geopolymer matrix was developed because the alkali-activator and Al in the GGBS reacted 346 

chemically. Additionally, adding silica fume (rich in Si) to the geopolymer blend creates a dense 347 

network responsible for the higher strengths of geopolymer concrete (Figures 12b and 12c). 348 

Additionally, the morphological study of this sample revealed adequate cohesion and a solid interface. 349 

The Mix#7 SEM micrograph in Figure 12(f) is amorphously organized in spherical flakes with sharp 350 

RHA needles. The enhanced mechanical strength of Mix#7 may be attributable to the leaching of Al 351 

and Si in the mixture caused by the reaction between the amorphous SiO2 in the RHA powder and the 352 

Al2O3 in the GGBS, the alkaline activator. C-S-H and A-S-H gels can be seen in the Mix#8, primarily 353 

produced by activating the 15% RHA and its subsequent interaction with the 15% GGBS. Calcium 354 

alumina-silicate hydrate gel was created due to the mixture's high calcium and alumina-silicate content 355 
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(C-A-S-H). In order to modify the setting behavior of geopolymer gel, GGBS obtained more 356 

magnesium and contributed to a specific binding product. 357 

Based on this sample's morphological appearance, a superior interface was observed in the blends of 358 

Mix#8 and Mix#9. However, SEM micrograph in Fig. 12(h) show the partially reacted and unreacted 359 

RHA particles. Instead of serving as a filler in the mixture, the unreacted particles cause the matrix's 360 

strength to get stronger over time. Increased amounts of unreacted particles, especially light-weight 361 

RHA particles, have a detrimental effect on strength development. 362 

 363 

364 

 365 
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 366 

Figure 12. SEM micrographs; a) Mix#1, b) Mix#3, c) Mix#4, d) Mix#5, e) Mix#6, f) Mix#7, g) 367 

Mix#8, and h) Mix#9. 368 

5.3 Geopolymers Strength Assessment Using Machine Learning Approaches 369 

5.3.1 ANN Analysis 370 

This study presented Neural forecasting models with one hidden layer, one output layer, and seven 371 

input layers. In general, connection weight adjustment is the process of the model's training. The output 372 

weights were initially randomly selected and changed during the training phase. The mean square error 373 

(MSE) between the ANN output and the actual results was used to calculate the overall training outputs. 374 

The number of epochs is crucial for finding an ideal ANN structure with the highest accuracy. Ten 375 

thousand epochs are employed in this study's training method; this amount was decided upon after 376 

doing trial-and-error experiments and striking a balance between the pace of error elimination and 377 

computation time. Consequently, 21,000 simulations were performed, each equivalent to one hidden 378 

layer. Table 5 displays the specific ANN parameters that were employed in this study. 379 

The coefficient of determination (R2) was used in this study as the main determinant of the ANN 380 

models' accuracy. The prediction accuracy between anticipated and actual values was used to evaluate 381 

the ANN outcomes. The fitter, the model's suggested regression models, were, the closer the R2 values 382 

were to 1. The fitting models in the testing portion of the data were chosen as the primary criterion to 383 

assess the ANN model's effectiveness in making predictions. The R2 inaccuracy for ANN testing is 384 

displayed in Table 6. 385 

The model's performance and forecast outcomes are reported in Table 6 and Figure 13, respectively. It 386 

is generally advised to use both R2 and RMSE simultaneously when choosing the appropriate network 387 

architectures for the geopolymer mortar compressive strength network because the actual and predicted 388 

data series demonstrate a high correlation coefficient (R2=0.932) of evaluation while there are quite a 389 

few prediction errors. 390 

 391 

 392 

 393 

 394 

 395 

In review



 

 
17 

Table 5. Parameters used in the ANN model 396 

ANN Model Information 

Input 

layer 

Covariates 

I1 RHA (%) 

I2 GGBS (%) 

I3 Silica fume (%) 

I4 Molarity (M) 

I5 Alkali solution (%) 

I6 Na/Al 

I7 Si/Al 

Number of units 7 

Rescaling method for covariates Standardized 

Hidden 

layer(s) 

Number of hidden layers 1 

Number of units in hidden Layer 1 2 

Activation function Hyperbolic tangent 

Output 

layer 

Dependent 

variables 
O1 

Compressive strength 

of the geopolymer 

mortars for 28days 

curing (N/mm2) 

Number of units 1 

Rescaling method for scale 

Dependents 
Standardized 

Activation function Identity 

Error function Sum of squares 

Table 6. Testing performance of model. 397 

Summary of Model 

Training 

Sum of squares error 1.518 

Relative error 0.048 

Stopping rule used 1 consecutive step(s) with no 

decrease in error 

Training time 0:00:00.01 

Testing 
Sum of squares error 0.803 

Relative error 0.184 
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 398 

Figure 13. Actual and predicted geopolymer mortar strengths (N/mm2). 399 

5.3.2 Multiple Regression Analysis 400 

For the multiple polynomial regression analysis in this study, StatAdvisor was employed. The 401 

influential variables were included as inputs using a stepwise regression procedure. GGBS content (I2), 402 

silica fume content (I3), the molarity of NaOH (I4), alkali activator content (I5), Na/Al (I6), and Si/Al 403 

(I7) are the input variables. The validity of the generated model was assessed using R2 and the Durbin-404 

Watson test. The output shows the outcomes of building a multivariate regression model to describe 405 

the link between the individual input and output factors. The estimated model's equation is given by: 406 

O1 = -41.2336 + 0.282229*I2 - 0.0844276*I3 + 2.57246*I4 + 1.85992*I5 - 2.99877*I6 + 0.300017*I7 407 

             (2) 408 

The P-value in the Anova test is less than 0.05, indicating a statistically positive relationship between 409 

the dependent at the 95.0% level of certainty. Tables 7 and 8 regarding regression analysis information 410 

were interpreted using the F-test and t-test at a 95% level of certainty. According to Table 7, the P 411 

value is extremely low, suggesting that, at minimum, one of the model's components is substantial with 412 

a level of certainty of 1P, practically 100%. Table 8 summarizes the T-static and P-values of the model. 413 

Table 7. ANOVA analysis of multi variable regression model. 414 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

Model 4882.42 6 813.737 166.78 0.0000 

Residual 361.056 74 4.87914   

Total (Corr.) 5243.48 80    

 415 

 416 

 417 

y = 0.9839x + 1.5996

R² = 0.9328
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Table 8. Multi-variable regression model statistics. 418 

Parameter Estimate Standard Error T Statistic P-value 

Constant -41.23 5.38 -7.65 0.00 

I2 0.28 0.03 7.34 0.00 

I3 -0.08 0.05 -1.58 0.11 

I4 2.57 0.11 22.65 0.00 

I5 1.85 0.15 11.82 0.00 

I6 -2.99 0.36 -8.11 0.00 

I7 0.30 0.05 5.76 0.00 

Table 9. Correlation matrix for coefficient estimates. 419 

Constant 
Constant I1 I2 I3 I4 I5 I6 

1.00 -0.68 -0.65 -0.43 -0.63 0.54 -0.50 

I1 -0.68 1.00 0.45 0.18 0.11 -0.39 0.02 

I2 -0.65 0.45 1.00 0.10 0.06 -0.21 0.67 

I3 -0.43 0.18 0.10 1.00 0.13 -0.47 0.26 

I4 -0.63 0.11 0.06 0.13 1.00 -0.29 0.16 

I5 0.54 -0.39 -0.21 -0.47 -0.29 1.00 -0.56 

I6 -0.50 0.02 0.67 0.26 0.16 -0.56 1.00 

According to the R-Squared statistic, the fitted model accounts for 93.11% of the output variability 420 

(O1). The corrected R-squared value is 92.55%, making it better suited for comparing models with 421 

various amounts of independent variables. According to the estimate's standard error, the residuals' 422 

standard deviation is 2.20. This value can be utilized by choosing the predictions option from the text 423 

menu to create prediction limits for brand-new observations. The average value of the residuals is the 424 

mean absolute error (MAE), which is 1.77. Based on the order in which the residuals appear in a data 425 

file, the Durbin-Watson (DW) statistic evaluates the residuals to see if there is any meaningful link. At 426 

the 95.0% confidence level, there is a hint of potential serial correlation because the P-value is smaller 427 

than 0.05. See if any patterns emerge by plotting the residuals versus row order. Table 9 indicates the 428 

correlation matrix of the input variables. If the model may be simplified, it should be noted that I2's P-429 

value, which is the highest among the independent variables, is 0.11. That term is not statistically 430 

significant at the 95.0% or higher confidence level because the P-value is greater than or equal to 0.05. 431 

5.3.3 Swarm-Assisted Regression Analysis 432 

An optimization technique was utilized to determine the strength of geopolymer mortars to understand 433 

better the variables influencing the strength gain in these materials. The compressive strength of the 434 

geopolymer mortars is evaluated using the particle swarm optimization (PSO) algorithm. According to 435 
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the objective function considered in this study, firstly, test data with seven variables such as RHA 436 

content (I1) GGBS content (I2), silica fume content (I3), the molarity of NaOH (I4), alkali activator 437 

content (I5), Na/Al (I6), and Si/Al (I7) were selected. They were mutating in the random iteration 438 

process. After ‘n’ number of iterations, the particle best fits with the global solution. The particle 439 

velocity and position changed with the selection of the objective function. In this study, the 440 

compressive strength (N/mm2) prediction of geopolymer mortars is according to equation 3. 441 

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑒𝑠𝑡) = 𝑛1. 𝐼1 + 𝑛2. 𝐼2 + 𝑛3. 𝐼3 + 𝑛4. 𝐼4 + 𝑛5. 𝐼5 + 𝑛6. 𝐼6 + 𝑛7. 𝐼7      (3) 442 

In equation (3), n1, n2, n3, n4, n5, n6, and n7 are weighted coefficients for the effective search of particle 443 

position and velocity. Moreover, for the better performance of the particle search, additional inertia 444 

weight is considered as ‘a’. The functional equation with additional inertial weight is expressed in 445 

equation (4). 446 

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑒𝑠𝑡) = 𝑎 +  𝑛1. 𝐼1 + 𝑛2. 𝐼2 + 𝑛3. 𝐼3 + 𝑛4. 𝐼4 + 𝑛5. 𝐼5 + 𝑛6. 𝐼6 + 𝑛7. 𝐼7 (4)   447 

From the prediction results, the following equations were formulated for the prediction of compressive 448 

strength of geopolymer mortars with varying inertia weights of 0.3, 0.6, and 0.85, respectively. 449 

𝐶𝑆(𝑒𝑠𝑡) = −0.272. 𝐼1 +  0.011. 𝐼2 –  0.369. 𝐼3 +  2.507. 𝐼4 + 1.803. 𝐼5 − 2.551. 𝐼6 + 0.257. 𝐼7 −450 

12.515              451 

 (5)                                                                                                                                                                                      452 

𝐶𝑆(𝑒𝑠𝑡) = −0.272. 𝐼1 +  0.012. 𝐼2 +  0.3699. 𝐼3 + 2.506. 𝐼4 + 1.802. 𝐼5 − 2.545. 𝐼6 + 0.256. 𝐼7 −453 

12.489                (6)                                                                                                                                                                                          454 

𝐶𝑆(𝑒𝑠𝑡) = −0.0282. 𝐼1 –  0.0271. 𝐼2 –  0.340. 𝐼3 +  2.536. 𝐼4 + 2.516. 𝐼5 − 3.3382. 𝐼6 +455 

0.697. 𝐼7 − 36.436                       (7)                                                                                                                                             456 

The equations (5), (6), and (7) were the best trails of the respective inertia weights varying 0.3, 0.6, 457 

and 0.85. Among them, the best estimation was obtained for the 0.3 and 0.6 inertia weights with an 458 

error of 4.43% (Figure 14). Swarm-assisted particle multi-linear regression model is a reliable approach 459 

for predicting compressive strength of geopolymer mortars with efficiency. 460 

 461 

Figure 14. Actual and predicted values of compressive strength of geopolymer mortars with W=0.6. 462 
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In addition, for enhancing the function of the model, the addition of the damping factor could be 463 

helpful. In this study, worst case prediction was found with an inertial weight of 0.85 having an error 464 

of 74% (Figure 15). Keeping in this view, the damping coefficient is applied to the worst case and 465 

improved the prediction model with 95% convergent results.  466 

 467 

Figure 15. Actual and predicted values of compressive strength of geopolymer mortars with W=0.85. 468 

Similarly, using damping factors, other inertia weights with higher error values can also be enhanced. 469 

Prediction models developed using PSO are desirable for estimation of compressive strength of 470 

geopolymer mortars, also they are very closer to experimental values (Figure 16). The model's present 471 

performance indices are R2 = 0.942, 0.92, and 0.88, with inertia weights of 0.3, 0.6, and 0.85, 472 

respectively. The inertia weight 0.85 case model improves with an R2 value of 0.954 when the damping 473 

coefficient is added. The close results of performance measures in the training and testing phases 474 

confirm the models' excellent reliability. 475 

 476 

Figure 16. Actual and predicted values of compressive strength of geopolymer mortars with 477 

W=0.85; and wdamp=0.99. 478 

6 Sustainability Assessment of Geopolymer Concrete 479 

In the literature, various mix proportions for geopolymer concrete have been described (Li et al. 2019). 480 

The ratios of the mixture determine how the finished concrete performs mechanically, is durable, costs 481 

more money, uses energy, and produces emissions. The mix of proportional variables that can impact 482 

sustainability indices, including cost efficiency, eco-efficiency, and energy efficiency, are described in 483 

this section. In terms of energy and emissions, the binder's type and quantity can considerably influence 484 

it. To evaluate the performance based on sustainability, the geopolymer concrete's cost-efficiency is 485 
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significant. In comparison to other materials, RHA's material cost was insignificant. It should be noted 486 

that using RHA at varying percentages in the mix could change the compressive strength of the 487 

geopolymer concrete. Using RHA in geopolymer concrete would also result in a cost reduction for the 488 

geopolymer concrete. Based on the compressive strength-to-cost ratio, the cost-effectiveness of the 489 

RHA blended geopolymer concrete was calculated (Kanagaraj et al. 2022). As previously noted, the 490 

materials utilized in this inquiry were acquired from local vendors. The cost of each material was 491 

computed and expressed in Indian rupees (INR) in accordance with the most recent delivery record. It 492 

was determined what the material costs would be for producing different mixtures of geopolymer 493 

concrete. Figure 17 provides the cost-effectiveness of each combination (M1 to M9). Compared to 494 

other mixes combined with silica fume and GGBS, geopolymer concrete using RHA as a blend is more 495 

cost-effective, particularly Mix8. 496 

 497 

Figure 17. Cost efficiency of geopolymer concrete mixes with varying precursors. 498 

Energy efficiency measures how much energy is consumed while making concrete. It starts with 499 

creating the raw materials for concrete and ends with placing the concrete. According to estimates by 500 

Alsalman et al. (2021), the energy needed to produce components of concrete like coarse aggregate, 501 

GGBS, silica fume, NaOH, and Na2SiO3 is 0.083, 0.857, 0.036, 20.5, and 5.371 GJ/t, respectively. 502 

The energy necessary for producing geopolymer concrete is determined using the energy index factor. 503 

Only the materials utilized in the current experiment is considered for calculating energy factor values. 504 

Because RHA is one of the waste materials and fine aggregates is river sand, so, the energy index 505 

component for RHA and fine aggregate is not considered in the current analysis. 2.318 GJ/m3 and 506 

2.222 GJ/m3 is estimated to be the total energy needed to produce 1 m3 of RHA blended geopolymer 507 

concrete mix#7 and mix#8, compared to 2.251 GJ/m3 for mix#5 of geopolymer concrete that has been 508 

combined with silica fume and GGBS. In particular, geopolymer concrete blended with silica fume 509 

content (Mix5 -40% silica fume) exhibits lower energy efficiency than the geopolymer concrete 510 

blended with RHA (Mix7 and Mix9). However, considering both cost efficiency and eco-efficiency, 511 

RHA mixes are more sustainable than geopolymer concrete blended with silica fume. Figure 18 512 

demonstrates the energy needed to produce different mixtures of geopolymer concrete. 513 
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 514 

Figure 18. Energy efficiency with varying precursors. 515 

Because of increased energy use, as was discussed in the preceding section (such as petroleum goods, 516 

coal, explosives, etc.), more CO2 is emitted into the environment (Shahbaz et al. 2015). Concrete made 517 

of regular Portland cement emits more carbon dioxide than geopolymer concrete, which is a more 518 

environmentally friendly option (Kanagaraj et al. 2022). In coarse aggregate manufacturing, CO2 519 

emissions are predicted to be 0.0048 t-CO2/t, while producing one ton of OPCC generates 0.84 t-CO2/t 520 

(Alsalman et al. 2021). A ton of alkali activators, such as NaOH and Na2SiO3, is projected to emit 521 

1.915 and 1.222 t-CO2/t, respectively. Following CO2 emissions are projected as a result of the analysis. 522 

According to different precursor percentage estimates, the total CO2 emissions for manufacturing 1 m3 523 

of geopolymer concrete are depicted in Figure 19. Compared to all the mixes in this investigation, 15% 524 

RHA in the geopolymer blend (i.e., Mix8) emits less CO2. Based on the overall indices, Mix8 can be 525 

considered a sustainable high-performance material. 526 

 527 

Figure 19. Carbon emissions with varying precursors. 528 
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7 Conclusions 529 

This study compared the strength and sustainability performances of geopolymer mixtures with various 530 

dosages of precursor content. The following conclusions were drawn from the foregoing research: 531 

• There is a rising need for novel materials with low CO2 emissions associated with their 532 

manufacture for various applications. Therefore, geopolymer concrete might be used as a 533 

replacement for OPC, but this only happens once a potential precursor selection. 534 

• At 28 days after curing, materials containing 5%, 10%, and 15% RHA added to silica fume and 535 

GGBS geopolymer blends showed enhanced compressive strength. However, when the RHA 536 

content increased more than 15%, the compressive strength decreased. 537 

• The leaching of Al and Si in the combination generated by the reaction between the amorphous 538 

SiO2 in the RHA powder and the Al2O3 in the GGBS, the alkaline activator, was evident in the 539 

microstructural features of the geopolymer blends with RHA composite. 540 

• In the structure of the binder matrix, C-S-H and A-S-H form strong adhesion zones between 541 

the newly generated phases and unreacted particles. 542 

• The strength behavior of geopolymer mortars may reliably be predicted using ANN, MPR, and 543 

swarm-assisted regression models. Compared to the MPR and ANN model's R2 value of 0.925 544 

and 0.932, the PSO model performs better with a high R2 value of 0.954. 545 

• According to the sustainability findings, geopolymer concrete mixes containing 15% and 20% 546 

RHA performed better than those containing GGBS and silica fume. It has been proven that 547 

such mixtures can be recommended for structural elements, the construction of buildings, or as 548 

a sustainable alternative to materials with a high carbon footprint. 549 

• For setting the precursor content, the study advises relying on sustainability indicators and 550 

strength attributes. This approach improves the potential selection of geopolymer concrete 551 

mixes, prevents the overdosage of precursor content, and, in the end, reduces the project's 552 

overall cost. 553 

8 Recommendations 554 

In geopolymer concrete, rice husk ash showed exceptional performance with improved strength, 555 

microstructural, and sustainability performance. Using other agricultural by-products, including 556 

bagasse ash and corncob ash in geopolymer concrete, should be the subject of future study. 557 

Additionally, durability studies are required to understand how concrete performs in various 558 

environments. Finally, in order to estimate the compressive strength more accurately, soft computing 559 

models with additional input variables like surface area and specific gravity should be developed. 560 
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