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1 Introduction

Recently, significant progress has been made in understanding the structure of scattering
amplitudes in anti-de-Sitter space by analysing the dual conformal field theory. Many
studies in this direction have been made in a number of papers, analysing both tree and
loop diagrams in AdS. A number of techniques have been employed but the most important
tool in all these developments has been to impose consistency of the operator product
expansion of the boundary CFT.

Many investigations have focussed on the example of type IIB string theory on
AdS5×S5, dual to N = 4 super Yang-Mills theory. The interesting physical quantities
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of this theory can be studied in a double expansion in 1/N and λ−
1
2 around the supergrav-

ity limit, N � λ � 0. The leading terms in the 1/N expansion come from disconnected
free field diagrams and are independent of λ. The first 1/N2 corrections arise from tree-
level string interactions. At leading order in λ−

1
2 these were given in [1, 2] and take a

particularly simple form in a Mellin representation. These results allow a resolution of the
mixing of the spectrum of degenerate double trace operators which control the operator
product expansion at this order, yielding a simple formula for the leading contributions to
their anomalous dimensions. Recently there has been significant progress in understanding
the nature of the λ−

1
2 corrections at tree level [3–6]. Here it is very interesting to note that

the anomalous dimensions of double-trace operators receive a very restricted set of λ−
1
2

corrections [5, 6].

The next corrections in the large N expansion correspond to one-loop amplitudes. The
supergravity contributions have been investigated from the CFT perspective in [7–12] while
string corrections have also been investigated in [3, 13, 14]. So far the Mellin space and
position space representation for the λ−

3
2 corrections to the one-loop amplitudes is known

for the simplest correlator, that of four stress-energy multiplets, dual to four-graviton
scattering in AdS5.

The aim of this analysis is to calculate more general one-loop correlators of four 1/2-
BPS operators at order λ−3/2. Here we consider the correlator of two stress-energy multi-
plets and two Kaluza-Klein modes denoted here by 〈O2O2OpOp〉(2,3) which gives an infinite
family of correlators with only a single su(4) channel. We also consider the first example of
a correlator with multiple su(4) channels 〈O3O3O3O3〉. The information needed for these
one-loop calculations is already encoded in known tree-level data. In particular, due to
the very special structure of the λ−

1
2 corrections to the double-trace spectrum, the leading

double logarithmic discontinuity at one loop can be obtained through the action of a simple
differential operator on the discontinuity of the corresponding tree-level amplitude. With
this to hand, it is simple to construct the basis of the Mellin representation. In contrast
to the supergravity results presented in [12], it is then necessary to fix an additional set of
simple pole contributions which turn out to have a very simple form.

The rest of this paper is organised as follows. We start with a general discussion of
the 〈O2O2OpOp〉 four-point correlation function in the supergravity limit, and discuss their
structure both in position space as well as in their Mellin space representation. In section 2,
we specialise to one-loop Mellin amplitudes. We first review the known one-loop results for
supergravity amplitudes, and then present how to generalise the one-loop string corrected
Mellin amplitude at order λ−

3
2 to the 〈O2O2OpOp〉 family of correlators, which is the main

result of this work. We will explain that the double discontinuity is not enough to fully
fix the Mellin amplitude, and we need to add an à priori unbounded tower of additional
window poles (which were shown to be absent in the supergravity case). In section 3, we
demonstrate how these window poles are fixed by tree-level data. Interestingly, it turns
out that at most only five extra poles are necessary and they follow a simple pattern. In
section 4 we explicitly construct the one-loop λ−

3
2 correction to the 〈O3O3O3O3〉 correlator,

which is the first correlator with non-trivial (σ, τ) dependence. In section 5 we extract new
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subleading CFT data from our results. Finally, in section 6 we consider the flat space limit
and show that our new results correctly match the non-analytic part of the ten-dimensional
one-loop string-amplitude.

1.1 The 〈O2O2OpOp〉 correlator

We will consider four-point correlation functions of protected one-half BPS operators, which
according to the AdS/CFT correspondence describe scattering amplitudes in AdS5×S5.
The operators dual to single-particle states in AdS are not simply one-half BPS single-trace
operators but they require admixtures of multi-trace operators which are 1/N suppressed:1

Op = yi1 · · · yipTr
(
Φi1 · · ·Φip

)
+ (multi-traces), (1.1)

where Φi are the scalar fields of the N = 4 multiplet and yi are auxiliary so(6) vectors
obeying the null condition y · y = 0, such that Op transforms in the traceless symmetric
representation [0, p, 0] and has protected scaling dimension ∆ = p. In the holographic
context, O2 is dual to the scalar in the graviton supermultiplet, whereas the single-particle
operators Op with p ≥ 3 are dual to supergravity Kaluza-Klein modes which arise from
compactification on S5.

As discussed first in [17], the multi-trace terms in the definition of the supergravity
single-particle operators (1.1) are such that single-particle operators Op are orthogonal to
all multi-trace operators, i.e. 〈Op [Oq1 . . .Oqn ]〉 = 0. This definition via orthogonality of
operators allows one to compute the additional multi-trace terms purely within free field
theory, and the results are exact in N . For example, the first single-particle operator with
a multi-trace admixture is the dimension four operator O4 given by [17]

O4 = Tr
(
Φ4)− 2N2 − 3

N(N2 + 1)O2O2 . (1.2)

A general formula for the multi-trace terms of all single-particle operators Op has been
recently given in [19]. The two-point functions of single-particle operators take the form

〈Op(x1, y1)Op(x2, y2)〉 = gp12Rp(N) (1.3)

where gij = (y2
ij/x

2
ij) is the propagator and y2

ij ≡ yi · yj . Note that since the operators Op
are half-BPS, Rp is independent of the coupling gYM or λ. The operators are normalised so
that in the large N limit we have Rp → pNp, e.g. R2 = 2(N2 − 1). Many more properties
of single-particle operators are described in [19].

To discuss four-point functions it is helpful to introduce the conformal and su(4) R-
symmetry cross-ratios,

u = xx̄ = x2
12x

2
34

x2
13x

2
24
, v = (1− x)(1− x̄) = x2

14x
2
23

x2
13x

2
24
,

1
σ

= yȳ = y2
12y

2
34

y2
13y

2
24
,

τ

σ
= (1− y)(1− ȳ) = y2

14y
2
23

y2
13y

2
24
. (1.4)

1This subtlety was already noticed in the early works [15, 16] and discussed more recently again in [2,
11, 12, 17–19].
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In this paper, we will mainly focus on the four-point correlation function of two stress-tensor
superprimary operators O2 and two Kaluza-Klein modes Op. Superconformal symmetry
constrains these correlators to take the form [20, 21]

〈O2O2OpOp〉 = 〈O2O2OpOp〉free + 1
2pR2Rpg

2
12g

p
34 I Hp(u, v), (1.5)

where the combination g2
12g

p
34 carries the correct conformal weight and the so(6) R-

symmetry weights yi of the correlator. The free theory correlator takes the form

〈O2O2OpOp〉free = R2Rpg
2
12g

p
34

[
1+δ2p

[
u2σ2+u2τ2

v2

]
+2pa

[
uσ+uτ

v
+(p−1)u

2στ

v

]]
. (1.6)

Here we introduced a = 1/(N2−1) which we will take as our large N expansion parameter.
It is particularly convenient to do so as the free theory contribution then has exactly two
terms in this expansion upon factoring out the normalisation R2Rp. Being the free theory
contribution, no term in (1.6) depends on λ.

The factor I in the second term in (1.5) is fixed by superconformal Ward identities
and takes the factorised form

I = (x− y)(x− ȳ)(x̄− y)(x̄− ȳ)
(yȳ)2 . (1.7)

Finally, the factor Hp(u, v) is the only part of the correlator which depends on the
gauge coupling gYM (or λ) and we will therefore refer to it as the interacting part of the
correlator. It contains all the non-trivial dynamical information of the theory, and for
this reason it receives contributions from unprotected operators only. For the special case
of the 〈O2O2OpOp〉 family of correlators, Hp(u, v) is independent of the internal so(6)
variables (σ, τ) and only a function of the conformal cross-ratios. It obeys the crossing
transformations

Hp(u, v) = 1
v2Hp(u/v, 1/v), H2(u, v) = u2

v2H2(v, u), (1.8)

where the second relation is due to the enhanced crossing symmetry of the 〈O2O2O2O2〉
correlator.

We will consider the expansion of Hp(u, v) around the supergravity limit, where one
first takes the large N limit (keeping the ’t Hooft coupling λ = g2

YMN fixed) and then
expands around large λ. In this limit, the interacting part admits the double expansion

Hp = a
(
H(1,0)
p + λ−

3
2H(1,3)

p + λ−
5
2H(1,5)

p + λ−3H(1,6)
p + . . .

)
(1.9)

+ a2(λ 1
2H(2,−1)

p +H(2,0)
p + λ−

1
2H(2,1)

p + λ−1H(2,2)
p + λ−

3
2H(2,3)

p + . . .
)

+O(a3).

The term of order a0 in (1.6) is the contribution from disconnected free field theory. At
order a, we have the contribution from connected free field theory as well as the contribution
from the interacting part given by the first line of (1.9). The term H(1,0)

p and the order
a contribution from free field theory together correspond to the contribution of tree-level
supergravity. These are then followed by an infinite tower of λ−

1
2 corrections H(1,n)

p which
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arise from contact interaction vertices in the string theory effective action. These tree-level
terms are most conveniently studied in their Mellin space representation which we introduce
in section 1.2. They are currently known up to and including the order λ−

5
2 terms [3–6].

The order a2 terms of the double expansion (1.9) correspond to one-loop amplitudes
in AdS5. Note that the leading term λ

1
2H(2,−1)

p corresponds to the presence of a quadratic
divergence at one loop in ten-dimensional supergravity. This divergence is regulated by
a specific R4 counterterm at one loop in string theory. The term H(2,0)

p is the one-loop
supergravity term, as addressed in [8–12]. The term λ−

1
2H(2,1)

p corresponds to the genus-
one contribution to the modular completion of the λ−

5
2H(1,5)

p term. The corresponding
modular function is an Eisenstein series which receives perturbative contributions only at
genus zero and genus two [22] and we therefore expect H(2,1)

p to vanish. The vanishing of
this term is also consistent with the localisation analysis of [23, 24]. The term H(2,2)

p gives
rise, in the flat space limit, to the analytic part of the one-loop string amplitude studied
in [25]. It is therefore non-vanishing and it corresponds to the genus-one contribution to
the modular completion of the λ−3H(1,6)

p term. The next term λ−
3
2H(2,3)

p is the genuine
one-loop string correction induced by the presence of the λ−

3
2H(1,3)

p term at tree level. This
term is the one which we will construct in this paper.

The position space structure of one-loop IIB supergravity amplitudes has been ad-
dressed in [7, 8, 10], culminating in a general algorithm for constructing correlators with
arbitrary external charges [11]. Considering further string corrections at one-loop has re-
vealed a new type of singularity in their analytic structure compared to the supergravity
case [14]. A complementary approach to one-loop amplitudes using their Mellin space
representation is reviewed in section 2.

Let us now describe the superconformal block decomposition of the unprotected part of
a correlator. Note that in some intermediate calculations presented in section 3 we will also
make use of the block decomposition of more general correlators of the form 〈OpOpOqOq〉.
After projecting onto unprotected singlets, the superconformal block decomposition reads

〈OpOpOqOq〉|long[0,0,0] = gp12g
q
34 I

∑
t,`

Cpp;t,`Cqq;t,`Gt,`(x, x̄), (1.10)

where the sum runs over all exchanged unprotected primary operators with half-twist
t ≡ (∆ − `)/2 and even spin `. The functions Gt,`(x, x̄) are simply related to conformal
blocks and are fixed by conformal symmetry to take the form [26, 27]

Gt,`(x, x̄) = (−1)`(xx̄)t x
`+1Ft+`+2(x)Ft+1(x̄)− x̄`+1Ft+`+2(x̄)Ft+1(x)

x− x̄
, (1.11)

where Fρ(x) = 2F1 (ρ, ρ, 2ρ;x) is the standard hypergeometric function.
The parameters a and λ−

1
2 enter through the quantities Cpp and the dimensions ∆. In

the supergravity limit and to leading order in a, the spectrum of exchanged operators is
given by a set of unprotected double-trace operators with classical dimension ∆(0) = 2t+ `

and spin `. It turns out that generically there are many such operators with the same
classical quantum numbers, which leads to a mixing problem. The quantum numbers (t, `)
are thus insufficient to fully describe the set of exchanged double-trace operators, and we
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are led to introduce an additional degeneracy label i, where in the singlet channel i =
1, . . . , t− 1.2 We denote the (canonically normalised) scaling eigenstates by Ki. The Cpp,i
are then related to the three-point functions 〈OpOpKi〉 and admit the double expansion

Cpp,i =
(
C

(0,0)
pp,i + λ−

3
2C

(0,3)
pp,i + . . .

)
+ a

(
C

(1,0)
pp,i + λ−

3
2C

(1,3)
pp,i + . . .

)
+O(a2). (1.12)

Similarly their scaling dimensions admit the expansion,

∆i = ∆(0) + 2a
(
η

(1,0)
i + λ−

3
2 η

(1,3)
i + λ−

5
2 η

(1,5)
i + . . .

)
+ 2a2

(
λ

1
2 η

(2,−1)
i + η

(2,0)
i + λ−

1
2 η

(2,1)
i + λ−1η

(2,2)
i + λ−

3
2 η

(2,3)
i + . . .

)
+O(a3). (1.13)

At the order of tree-level supergravity the mixing problem described above has been solved
in [17, 28], where a surprisingly simple and fully factorised formula for the supergravity
anomalous dimensions η(1,0)

i was found. Also the first string correction exhibits a simple
pattern in its anomalous dimensions η(1,3)

i : only the lightest state (with degeneracy label
i = 1) acquires a non-vanishing anomalous dimension, and furthermore the first string
correction to the three-point functions Cpp,i was shown to vanish [5]:

C
(0,3)
pp,i = 0. (1.14)

We have also included terms in the anomalous dimensions proportional to positive powers
of λ

1
2 . These account for contributions to H(2,−1)

p at one loop.
In section 3, we will derive some new results for the unmixed three-point functions

C
(1,0)
pp,i and C(1,3)

pp,i . Finally, in section 5 we compute the one-loop string corrected anomalous
dimensions η(2,3)

i for some low twist operators.

1.2 The Mellin space representation

In the context of holographic correlators, it was found that comparably simple struc-
tures emerge when considering the correlator in its Mellin space representation. For the
〈O2O2OpOp〉 family of correlators, the (reduced) Mellin amplitude Mp(s, t) of the inter-
acting part Hp(u, v) is defined through the integral transform

Hp(u, v) =
∫ i∞

−i∞

ds

2
dt

2 u
s
2 v

t−2−p
2 Mp(s, t)Γ

[4− s
2

]
Γ
[2p− s

2

]
Γ
[2 + p− t

2

]2
Γ
[2 + p− ũ

2

]2
,

(1.15)
where the Mellin variables (s, t, ũ) obey s+ t+ ũ = 2p. The crossing transformations (1.8)
of Hp(u, v) translate directly into symmetries of the corresponding Mellin amplitudes:

Mp(s, t) =Mp(s, ũ), M2(s, t) =M2(t, s). (1.16)
2In the singlet channel, the set of t− 1 degenerate double-trace operators is of the schematic form{

O2�
t−2∂`O2, O3�

t−3∂`O3, . . . , Ot�
0∂`Ot

}
.
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Furthermore, the Mellin amplitudesMp(s, t) admit an analogous double expansion as given
in (1.9) for the correlator in position space:

Mp = a
(
M(1,0)

p + λ−
3
2M(1,3)

p + λ−
5
2M(1,5)

p + λ−3M(1,6)
p . . .

)
(1.17)

+ a2(λ 1
2M(2,−1)

p +M(2,0)
p + λ−

1
2M(2,1)

p + λ−1M(2,2)
p + λ−

3
2M(2,3)

p + . . .
)

+O(a3).

At tree-level, both the supergravity amplitude M(1,0) [1, 2] and its first string cor-
rection M(1,3) [5] are known for correlators with arbitrary external charges. At the next
order in 1/λ, progress was made using various methods: in [3] the flat space limit was used
to constrain the amplitudeM(1,5)

p , whose final form was later fixed using supersymmetric
localisation [4] and re-derived in [5] by considering constraints on the spectrum of anoma-
lous dimensions η(1,5)

i . Recently, the generalisation to correlators of arbitrary charges was
achieved using bootstrap methods in Mellin space [6]. The structure of one-loop Mellin
amplitudes, and in particular the first one-loop string correctionM(2,3)

p which is the main
focus of this paper, will be reviewed in the next section.

Lastly, note that in the limit of large s and t the Mellin amplitude is related to physics
in ten-dimensional flat space as we discuss in section 6.

2 One-loop Mellin amplitudes

2.1 One-loop supergravity

A complimentary approach to the position space approach developed in [8, 10, 11], is
to consider the Mellin amplitude of one-loop supergravity correlators. In [13], an ansatz
in terms of an infinite double-sum of simultaneous double poles in the Mellin variables
was proposed for M(2,0)

2 . Recently, this was generalised to the 〈O2O2OpOp〉 family of
correlators, whose Mellin amplitudes take the form [12]3

M(2,0)
p =

∑
n,m≥0

[
cumn

(s− 4− 2m)(t− (2 + p)− 2n) + ctmn
(s− 4− 2m)(ũ− (2 + p)− 2n)

+ csmn
(t− (2 + p)− 2n)(ũ− (2 + p)− 2m)

]
reg
, (2.1)

with cumn = ctmn due to crossing symmetry. The residues cumn and csmn can then be fixed
by matching against the position space leading logarithmic singularity in the two distinct
crossing orientations of the 〈O2O2OpOp〉 correlator, which can be directly obtained by
exploiting the hidden ten-dimensional conformal symmetry from [30]. In fact, we will use
a similar reasoning in the next section to obtain the first string correction to the one-loop
leading logarithmic singularity at order λ−

3
2 .

Interestingly, it turns out that any additional single poles are absent in the above
Mellin amplitude. In particular, there are no extra poles in what we call the window-
region, i.e. the region with s = 4, 6, . . . , 2p− 2, where the gamma-functions Γ(4−s

2 )Γ(2p−s
2 )

3The sums are divergent in the form written above and one should use a regularisation scheme, e.g. a
zeta function regularisation. See also the recent reference [29] for a finite form of the one-loop supergravity
Mellin amplitudes.
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from equation (1.15) do not overlap and thus produce only single poles. This region
corresponds to twists 4 ≤ τ < 2p where the three-point functions Cpp,i are subleading and
thus there is no contribution to the leading logarithmic singularity, which is consistent with
at most double-poles in the Mellin amplitude. It is non-trivial that the OPE predictions in
the window from subleading three-point functions are already fully captured by the Mellin
amplitude (2.1), rendering any extra window poles obsolete. In fact, we will argue that this
feature is not shared by one-loop string amplitudes, where an à priori unbounded number
of additional window poles is necessary to fit the OPE predictions in the window.

2.2 One-loop λ−
3
2

Compared to the one-loop supergravity Mellin amplitudes, where the infinite double-sums
require regularisation, a finite Mellin amplitude has been proposed for the tower of one-loop
string-corrections in [13].4 The result for M(2,3)

2 suggests a natural generalisation to the
〈O2O2OpOp〉 family of correlators:

M(2,3)
p = fp(s) ψ̃0

(4− s
2

)
+ gp(t) ψ̃0

(
p+ 2− t

2

)
+ gp(ũ) ψ̃0

(
p+ 2− ũ

2

)
+Rp, (2.2)

where fp and gp are fourth order polynomials which depend only on a single Mellin variable
due to the truncation of the tree-level anomalous dimensions η(1,3)

i to spin zero. As a
consequence of crossing symmetry, the t and ũ-terms are given by the same polynomial gp.
Note that for convenience we use the digamma function shifted by the Euler-Mascheroni
constant: ψ̃0(z) ≡ ψ0(z) + γE .

We will first describe how to obtain the necessary one-loop double discontinuities,
from which we can then determine the polynomials fp and gp, thereby fixing the one-loop
amplitudes M(2,3)

p for twists τ ≥ 2p. However, as discussed earlier, we need to allow for
possible additional poles in the window-region contributing to twists τ = 4, 6, . . . , 2p − 2,
which are denoted by Rp in (2.2). We will discuss the computation of these extra window
poles from subleading OPE predictions in detail in section 3, where we also describe the
resolution of the associated mixing of subleading three-point functions.

2.2.1 One-loop double discontinuities in position space

At any order in the large N , large λ double-expansion, the leading logarithmic singularity
is completely determined by tree-level data. In the present case, we are interested in
the one-loop double discontinuity at order λ−

3
2 , which in position space is given by the

expansion

H(2,3)
p |log2(u) =

∑
t,l

t−1∑
i=1

C
(0,0)
22,i C

(0,0)
pp,i η

(1,0)
i η

(1,3)
i Gt,`(x, x̄). (2.3)

The tree-level supergravity anomalous dimensions η(1,0)
i have been studied in [17, 28]. For

convenience, let us repeat the general formula for all su(4) representations [a, b, a]:

η(1,0)|[a,b,a] = −
2M (4)

t M
(4)
t+`+1(

`+ 2(i+ r) + a− 1+(−1)a+`

2

)
6

, (2.4)

4See also [14] for the corresponding position space results.
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where M (4)
t = (t − 1)(t + a)(t + a + b + 1)(t + 2a + b + 2), the twist τ is parametrised by

t = τ−b
2 − a, and (i, r) are degeneracy labels given by

i = 1, . . . , (t− 1), r = 0, . . . , (µ− 1), µ =
{ ⌊

b+2
2
⌋

a+ l even,⌊
b+1

2
⌋

a+ l odd.
(2.5)

Further string corrections to the double-trace spectrum have been addressed in [5]. An
important aspect of the spectrum at order λ−

3
2 is that only operators in the [0, b, 0] repre-

sentation with degeneracy labels (i, r) = (1, 0) and spin ` = 0 acquire a correction.5 Their
anomalous dimensions read [5, 6]

η
(1,3)
i=1 = − ζ3

840M
(4)
t M

(4)
t+`+1(t− 1)3(t+ b+ 1)3 · δ`,0. (2.6)

The truncation to spin zero and i = 1 simplifies the sum (2.3) drastically, which now
becomes

H(2,3)
p |log2(u) =

∑
t

C
(0,0)
22,1 C

(0,0)
pp,1 η

(1,0)
1 η

(1,3)
1 Gt,`=0(x, x̄), (2.7)

where all factors are understood to have ` = 0. The fact that only the i = 1 state contributes
to the sum allows for a particularly efficient route to compute the double discontinuities,
avoiding a direct resummation of the above sum altogether. Let us describe this convenient
shortcut next.

It was noticed in [9–11, 17, 30] that the use of differential operators constructed from
certain quadratic and quartic Casimirs (of which the conformal blocks are eigenfunctions)
may simplify expressions such as the above (2.7). In particular, in [10] an eighth-order
differential operator ∆(8) was constructed, whose action on the conformal block exactly
produces the numerator of the supergravity anomalous dimensions (2.4), and it was shown
that it is beneficial to pull out this operator from the supergravity double discontinuities.
Generalised to account for the internal su(4) variables, ∆(8) takes the form [30]

∆(8) = xx̄yȳ

(x− x̄)(y − ȳ)

2∏
i,j=1

(
C[α,β,0]
xi

−C[−α,−β,0]
yj

)(x− x̄)(y − ȳ)
xx̄yȳ

, (2.8)

where for a correlator with general external charges pi we have introduced α = (p2−p1)/2,
β = (p3 − p4)/2, and

C[α,β,γ]
x = x2(1− x)∂2

x + x(γ − (1 + α+ β)x)∂x − αβx. (2.9)

For the correlators 〈O2O2OpOp〉, where only the singlet su(4) representation is exchanged,
there is no y or ȳ dependence in the function on which ∆(8) acts. The operator then
reduces to6

∆(8)
[0,0,0] = x4x̄4

x− x̄
[
∂2
x∂

2
x̄(1− x)2(1− x̄)2∂2

x∂
2
x̄

]
(x− x̄) . (2.10)

5As argued in [5], this is a consequence of the effective ten-dimensional spin `10 being constrained to the
value `10 = 0 for the present case of a R4 contact interaction vertex in the string theory effective action.

6This operator, or one related to it by a simple crossing transformation, appeared in [31] as a way
of relating the superconformal primary components to the axion-dilaton components of the stress-energy
four-point function.
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Now, thanks to the truncation of the sum (2.7) to i = 1 only, pulling out ∆(8) amounts
to simply removing the supergravity anomalous dimension from the sum (up to an overall
factor from its denominator), we arrive at

H(2,3)
p |log2(u) = − 1

360u
−2∆(8)

[0,0,0]

[
u2∑

t

C
(0,0)
22,1 C

(0,0)
pp,1 η

(1,3)
1 Gt,`=0(x, x̄)

]
. (2.11)

Finally, we recognise that the remaining sum is nothing else than the single discontinuity
of the tree-level correlator H(1,3)

p ,

H(1,3)
p |log(u) =

∑
t

C
(0,0)
22,1 C

(0,0)
pp,1 η

(1,3)
1 Gt,`=0(x, x̄) . (2.12)

This result for the double discontinuity can be straightforwardly generalised to all
correlators with arbitrary external charges, resulting in the following simple relation,

H(2,3)
p1p2p3p4 |log2(u) = − 1

360u
−2(uσ)−

p43
2 ∆(8)[u2(uσ)

p43
2 H(1,3)

p1p2p3p4 |log(u)
]
. (2.13)

In the case of correlators 〈O2OpO2Op〉 the above expression reduces to

H(2,3)
2p2p |log2(u) = − 1

360u
−2∆(8)

[0,p−2,0]
[
u2H(1,3)

2p2p |log(u)
]

(2.14)

where
∆(8)

[0,b,0] = x4x̄4

x− x̄
[
∂2
x∂

2
x̄(xx̄)−b(1− x)2(1− x̄)2∂2

x∂
2
x̄

]
(xx̄)b(x− x̄) (2.15)

generalises the operator (2.10).
The computation of one-loop double discontinuities at order λ−

3
2 is thus reduced to

acting with ∆(8) on the log(u) part of tree-level correlators. Note that these correlators are
fully determined through the flat space limit, and the result for arbitrary external charges
is given by [5]

H(1,3)
p1p2p3p4 = (Σ− 1)3ζ3

4 Bsugra
pi

(σ, τ)u
p1+p2+p3−p4

2 Dp1+2,p2+2,p3+2,p4+2, (2.16)

with Bsugra
pi

(σ, τ) defined in (6.6) and Σ half the sum of external charges, Σ = p1+p2+p3+p4
2 .

Lastly, let us note that the above result for H(1,3)
p1p2p3p4 can also be obtained from a ten-

dimensional generating functional, along the lines of the hidden ten-dimensional conformal
symmetry discovered for tree-level supergravity correlators [30]. In the supergravity case,
a ten-dimensional generating functional can be used to define the differential operator
Dp1p2p3p4 , which generates correlators of arbitrary external charges by application to the
seed-correlator 〈O2O2O2O2〉, i.e.

H(1,0)
p1p2p3p4 ∝ Dp1p2p3p4 u

4D2422(u, v). (2.17)

Due to the simplicity of the double-trace spectrum at order aλ−
3
2 (or in other words,

because of the simplicity of the Mellin amplitude M(1,3)) the same construction from [30]
applies to the first string correction and we find

H(1,3)
p1p2p3p4 ∝ Dp1p2p3p4 u

4D4444(u, v), (2.18)

which repackages all correlators to descend from the seed u2H(1,3)
2 ∝ u4D4444.
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To summarise, we have arrived at the main formula (2.13) for the one-loop double
discontinuity, given by ∆(8) on the known tree-level λ−

3
2 correlator (2.16), which in turn

can be obtained from a ten-dimensional generating function analogous to the supergravity
case discussed in [30]. In the remainder of this section we will discuss the conversion of the
double discontinuities into Mellin space.

2.2.2 Matching the double discontinuity from Mellin space

The one-loop double discontinuities for the 〈O2O2OpOp〉 correlators as computed
from (2.13) are of the form

H(2,3)
p |log2(u) ∼

a1(x, x̄) + a2(x, x̄)[log(1− x)− log(1− x̄)]
(x− x̄)17+2p , (2.19)

where a1, a2 are polynomials with their degree bounded by the denominator power 17+2p.
In order to facilitate the comparison with the small (u, v) expansion of the Mellin space
amplitudes, we change to the variables (x, x̃) = (x, 1 − x̄) which are related to the usual
conformal cross-ratios by u = xx̄ = x(1− x̃) and v = (1− x)(1− x̄) = (1− x)x̃.

We have now all the necessary ingredients to determine the polynomials fp and gp in
our Mellin space ansatz forM(2,3)

p in equation (2.2): firstly, we consider the log2(u) log(v)
contribution which arises from triple-poles in s and double-poles in t. As only the first term
in (2.2) contributes, matching it against the corresponding term in the double discontinuity
computed from (2.13) fully determines the polynomial fp(s), which is found to be consistent
with the formula,

fp(s) = − p(p)4ζ3
360(p− 2)!

(
(p+ 4)4s

4 − 4(p+ 4)3(7p+ 9)s3

+ 4(p+ 4)2(71p2 + 203p+ 102)s2

− 16(p+ 4)(77p3 + 346p2 + 399p+ 90)s+ 1920(p)4
)
.

(2.20)

In a second step, in order to determine the polynomial gp, we cross the correlator from
the 〈O2O2OpOp〉 orientation to 〈O2OpO2Op〉, which in Mellin space corresponds to the
exchange of s and ũ. In this orientation, matching the double discontinuity fixes the
polynomial gp. We find

gp(t) = fp(t) + (p− 2)p(p)4ζ3
360(p− 2)!

(
4p(p+ 4)3t

3 − 6(p+ 4)2(p3 + 11p2 + 14p− 12)t2

+ 4(p+ 4)(p5 + 14p4 + 106p3 + 239p2 − 6p− 252)t

− (p+ 2)2(p5 + 11p4 + 86p3 + 472p2 − 96p− 576)
)
.

(2.21)

Note that for p = 2 we have f2(s) = g2(s) (consistent with the enhanced crossing
symmetry of the 〈O2O2O2O2〉 correlator) and the result agrees with M(2,3)

2 previously
found in [13, 14].

At this stage, we have determined the Mellin amplitude M(2,3)
p above the window-

region, i.e. for twists τ ≥ 2p. We will now turn our attention to the window-region and
discuss how the additional single poles Rp can be fixed by unmixing the subleading three-
point functions in the window.
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3 Determining the window poles

Having fixed the polynomials fp(s) and gp(t) in the ansatz (2.2), we now consider the
window contributions. The window has been defined as the region in which the poles of
the gamma-funcions Γ(4−s

2 )Γ(2p−s
2 ) from (1.15) are non-overlapping. Therefore, in Mellin

space, these terms are given by at most double poles in s. This suggests including a series
of poles, denoted Rp in our ansatz (2.2), taking the form

Rp =
p−1∑
i=2

αi(p)
s− 2i . (3.1)

The residues αi(p) are then fixed by matching window contributions to the logarithmic
part of the correlator, which is predicted by OPE data. The full space-time expansion of
the one-loop log(u) contribution is given by

H(2,3)
p |log(u) =

∑
t,l

t−1∑
i

[(
C

(0,0)
22,i C

(1,3)
pp,i +C

(1,3)
22,i C

(0,0)
pp,i

)
η

(1,0)
i +

(
C

(0,0)
22,i C

(1,0)
pp,i +C

(1,0)
22,i C

(0,0)
pp,i

)
η

(1,3)
i

+C
(0,0)
22,i C

(0,0)
pp,i η

(2,3)
i

]
Gt,l+2C(0,0)

22,i C
(0,0)
pp,i η

(1,0)
i η

(1,3)
i ∇tGt,l, (3.2)

where ∇t ≡ ut∂tu−t. Let us recall the definition of the window-region for correlators of the
more general form 〈ppqq〉. It is useful to first recap some features of three-point functions
set out in [11]. Firstly, the leading order three-point functions C(0,0)

pp,i in (1.12) are only
non-vanishing for twists τ ≥ 2p. Hence, when considering products such as Cpp,iCqq,i,
there is a region of twists within which only one of the leading three-point functions is
switched on, with the other one vanishing. It is this region which we call the window for
the 〈ppqq〉 correlators, and is given by p ≤ t < q. In the small u expansion the powers
u2, . . . , up−1 are determined only by the window-region.

When restricting to the window-region for 〈22pp〉 (where t = 2, 3, . . . , p−1) the leading
order three-point functions C(0,0)

pp,i vanish. With four of the terms now absent, (3.2) becomes

∑
`

t−1∑
i=1

C
(0,0)
22,i

(
C

(1,0)
pp,i η

(1,3)
i + C

(1,3)
pp,i η

(1,0)
i

)
Gt,l(u, v), (3.3)

where C(1,k)
pp,1 are the tree-level supergravity and string corrected three-point functions for

k = 0 and k = 3 respectively. The three-point functions appearing in (3.3) can be ex-
tracted from the non-log(u) contribution to tree-level correlators of the form 〈ppqq〉. The
generalisation to the set of correlators 〈ppqq〉 is essential for the unmixing of degenerate
operators, which we detail in the following.

3.1 Unmixing

As indicated in (3.3) there is not a one-to-one correspondence between three-point func-
tions and conformal block coefficients. Therefore, to calculate the individual three-point
functions we need to unmix the degenerate operators entering the block coefficients. The
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correlators 〈22pp〉 do not provide enough information to solve this degeneracy problem,
instead we must consider a more general set of correlators taking the form 〈ppqq〉. At each
level in twist we have (t − 1) degenerate operators, thus to solve we must consider the
set of (t − 1) families of correlators with 2 ≤ p ≤ t. As mentioned before, the relevant
information is encoded in the non-log(u) contribution to the tree-level correlators, which
have the space-time expansion

H(1,k)
ppqq |non-log(u) =

∑
t,`

t−1∑
i=1

(
C

(0,0)
pp,i C

(1,k)
qq,i + C

(1,k)
pp,i C

(0,0)
qq,i

)
Gt,` + C

(0,0)
pp,i C

(0,0)
qq,i η

(1,k)
i ∇tGt,l . (3.4)

When looking at the window-region (p ≤ t < q), the only surviving term from (3.4) is
given by ∑

`

t−1∑
i=1

C
(0,0)
pp,i C

(1,k)
qq,i Gt,`(u, v). (3.5)

Having detailed where the required data can be found, the unmixing procedure is best
illustrated with an example. With one operator at twist four, and therefore no mixing,
the three-point functions can indeed be calculated just using data from the 〈22qq〉 family.
Thus, the first instructive case where operator mixing happens is at twist six.

3.1.1 Example: unmixing at twist six

At twist six we wish to compute the couplings C(1,k)
qq,1 and C(1,k)

qq,2 for k = 0 and k = 3 (super-
gravity and string corrected) respectively. Following the discussion above, to have enough
information to perform the unmixing both the 〈22qq〉 and 〈33qq〉 family of correlators are
needed. To ensure twist six lies within the window for both sets of correlators, we must
have q > 3. As shown in (3.5), within the window-region the conformal block coefficients
L

(1,k)
2,τ=6 and L(1,k)

3,τ=6 are given by

C
(0,0)
22,1 C

(1,k)
qq,1 + C

(0,0)
22,2 C

(1,k)
qq,2 = L

(1,k)
2,τ=6,

C
(0,0)
33,1 C

(1,k)
qq,1 + C

(0,0)
33,2 C

(1,k)
qq,2 = L

(1,k)
3,τ=6,

(3.6)

for 〈22qq〉 and 〈33qq〉 respectively. This can be nicely repackaged in matrix form by[
C

(0,0)
22,1 C

(0,0)
22,2

C
(0,0)
33,1 C

(0,0)
33,2

] [
C

(1,k)
qq,1

C
(1,k)
qq,2

]
=
[
L

(1,k)
2,τ=6

L
(1,k)
3,τ=6

]
, (3.7)

from which the desired couplings can be readily obtained. This can be easily generalised
to arbitrary twists

C(0,0)
t

~C(1,k)
t = ~L(1,k)

t , (3.8)

(C(0,0)
t )−1~L(1,k)

t = ~C(1,k)
t , (3.9)

where the matrix is now (t− 1)× (t− 1) dimensional. During this process much new OPE
data has been generated, see appendix A for more details.
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3.2 Results for the window poles

With all necessary OPE data at hand we can proceed, twist by twist, in calculating the
residues αi(p) in our ansatz. The window contribution is found to be

Rp = 16p(p)3
(p− 2)!

(8(p− 2)
s− 4 + 16(p− 3)2

s− 6 + 8(p− 4)3
s− 8 + 4

3
(p− 5)4
s− 10 + 1

15
(p− 6)5
s− 12

)
= 16p(p)3

(p− 2)!
∑
n

192
(n− 1)!(n− 2)!(6− n)!

(p− n)n−1
s− 2n .

(3.10)

A few features of this result are worth mentioning. Firstly, the residues are non-zero. This
means that simply extending the above-window poles (i.e. contributions to twists τ ≥ 2p,
captured by fp(s)) down into the window-region does not entirely account for the operator-
mixing at the level of subleading three-point functions, and thus it does not directly yield
the correct one-loop amplitude. This should be put in contrast with the case of one-loop
supergravity, see section 2.1, which does not seem to require any additional single poles in
order to match the OPE predictions in the window [12].

Secondly, there are only five non-vanishing terms in the above sum. Recall that our
ansatz from equation (3.1) allowed for an arbitrarily large set of poles, growing linearly
with increasing p. We find it highly non-trivial that the sum truncates and, in particular,
that this finite number of poles correctly takes into account the entire OPE data in the
window for all twists. Currently, we do not have any argument why precisely five poles are
enough to accomplish this.

Lastly, note that each term corresponds to a tree-level s-channel exchange-diagram of
an operator with twist at the double-trace location τ = 4, 6, . . . , 12, respectively.7 The
presence of such tree-level correction-terms emphasises the fact that the knowledge of
only the log2(u)-term is not sufficient to reconstruct the full one-loop correlator. Instead,
an additional understanding of the physics in the window-region (and for correlators of
more general external charges, similarly in the below-window region) is crucial, as already
stressed in [11]. Let us now turn to the possibility of adding any tree-level contact-diagrams,
which will show up as polynomial ambiguities in our Mellin space amplitudes.

3.3 Polynomial ambiguities

The OPE predictions for the double discontinuity and the window-region allow for the
addition of in principle any polynomial of the Mellin variables. We will collectively refer to
these polynomial terms as ambiguities, as they are not determined by any OPE consistency
requirements. Note that these terms are of tree-level like form and correspond to the genus-
one contributions to the modular completions of the tree-level string corrections λ−

k
2H(1,k).

In particular, the one-loop ambiguities at order λ−
3
2 are the modular completion of the tree-

level ∂8R4 term at order λ−
7
2 , and as such we expect them to be polynomials of maximal

degree four. They will therefore contribute only to finite spin in the superconformal block
decomposition, i.e. up to spin four.

7In position space, this simply evaluates to a linear combination of so-called D̄-functions.
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In order to fix these ambiguities, we have to rely on different methods. One possibility
is to consider the flat space limit (see section 6 for more details), which due to the vanishing
quartic contribution in (6.14) in the analytic part of the genus-one string amplitude sets
the degree-four ambiguities to zero. Presently, we do not have another method on how to
fix the remaining ambiguities of up to cubic degree. A possible method might be given by
supersymmetric localisation techniques, which were able to fix a similar ambiguity in the
one-loop supergravity correlator, see [23, 24].

4 Towards higher charges: the 〈O3O3O3O3〉 correlator

Let us here present a first extension of the above results to correlators of the next degree
in extremality, where we will encounter non-trivial dependence on the R-symmetry cross-
ratios. The simplest such correlator is 〈O3O3O3O3〉. Being a polynomial in σ and τ of
degree one, there are three su(4) R-symmetry channels: [0, 0, 0], [1, 0, 1] and [0, 2, 0].8

We start with a manifestly fully crossing symmetric ansatz in Mellin space:9

M(2,3)
3333 = h(s;σ, τ)ψ̃0

(6− s
2

)
+ τh

(
t; σ
τ
,

1
τ

)
ψ̃0

(6− t
2

)
+σh

(
ũ; 1
σ
,
τ

σ

)
ψ̃0

(6− ũ
2

)
+R3333,

(4.3)
where h(s;σ, τ) is a polynomial of degree one in the R-symmetry cross-ratios and, as
before, a fourth order polynomial in the Mellin variables. Potential additional single poles
are denoted by R3333.

We proceed as in the previous cases and compute first the one-loop double discontinuity
using formula (2.13), which we then match against the above Mellin space ansatz. We find

h(s;σ, τ) = −1701ζ3
(
(55s4 − 740s3 + 4172s2 − 11360s+ 12368)
+ (55s4 − 900s3 + 5804s2 − 17440s+ 20496)(σ + τ)

)
.

(4.4)

Note that h(s;σ, τ) contributes only to the singlet and [0, 2, 0] channel, and is thus symmet-
ric in σ and τ . This is a consequence of the simplicity of the string anomalous dimensions
η(1,3) which vanish in channels [a, b, a] with a 6= 0. Furthermore, let us remark that the
s4 coefficient of h(s;σ, τ) is proportional to the factor (1 + σ + τ), which is necessary for
matching the flat space limit as we will describe in section 6.

As a second step, we need to consider the additional single poles R3333. Since we
have already fixed the correlator for twists τ ≥ 6 in all three channels, we are left with a

8The three su(4) channels are connected to the R-symmetry cross-ratios via the harmonic polynomials

Y[0,0,0] = 1, Y[1,0,1] = σ − τ, Y[0,2,0] = 1
2(σ + τ)− 1

6 . (4.1)

9Note that for the case of the 〈O3O3O3O3〉 correlator the string of six gamma-functions in the definition
of the Mellin transform (1.15) reads

Γ3333 ≡ Γ2
(

6− s
2

)
Γ2
(

6− t
2

)
Γ2
(

6− ũ
2

)
. (4.2)
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potential twist four contribution, which, due to the higher unitarity bound in the [1, 0, 1]
and [0, 2, 0] channels, can appear only in the singlet.10 A fully crossing symmetric ansatz
for R3333, contributing to twist four only in the singlet channel, reads

R3333(s, t;σ, τ) = β

( 1
s− 4 + τ

t− 4 + σ

ũ− 4

)
. (4.5)

To determine β, let us consider the OPE prediction for the singlet channel at twist 4. In
contrast to the previous discussion, this twist 4 singlet contribution lies below the win-
dow, as the s = 4 pole in R3333 does not overlap with any of the s-poles in the gamma-
functions (4.2). This thus corresponds to an analytic contribution to the correlator, for
which the OPE at twist 4 (t = 2) gives the expression∑

`

2C(1,0)
33,1 C

(1,3)
33,1 Gt=2,`(u, v), (4.6)

where C(1,0)
33,1 and C(1,3)

33,1 can be found in appendix A. Matching the above OPE prediction
determines β to take the value

β = −1036800ζ3, (4.7)

leaving us with a fully fixed Mellin amplitude M(2,3)
3333 (up to the usual set of polynomial

ambiguities described in section 3.3).
This result initiates the study of correlators with general external charges, and we

believe that the previously found property of a truncated number of extra window poles
will generalise. Note that generic higher charge correlators have both a non-empty window
and below-window region, each of which has a different OPE origin and therefore has to
be supplemented with its own tower of single poles. We leave this more general problem
for future investigations.

5 New twist 5 and 6 one-loop anomalous dimensions

With the Mellin amplitudes M(2,3)
p and M(2,3)

3333 at hand, we can now use them to extract
new subleading CFT data at this order. However, as discussed previously, for general twists
one has to solve a mixing problem as there are many degenerate double-trace operators.
Only for specific su(4) channels at the lowest twist there is a unique double-trace operator
whose anomalous dimension one can straightforwardly extract, with the first few cases
being the singlet channel at twist four, the [0, 1, 0] channel at twist five and the [1, 0, 1]
channel at twist six.

The singlet channel twist four anomalous dimension at order a2λ−
3
2 can be extracted

fromM(2,3)
2 and was already given in [4]:

η
(2,3)
4 |[0,0,0] = −1658880ζ3

(`+ 2)4(`2 + 7`+ 16)(`2 + 7`+ 54)
(`− 4)6(`+ 6)6

, for even spins ` ≥ 6,

(5.1)
10For a given su(4) channel [a, b, a], the unitarity bound is given by 2a+ b+ 2 and therefore the genuine

long supermultiplets necessarily have twists τ > 2a+ b+ 2.
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where the restriction on spin is due to the finite spin ambiguities which contribute up to
spin four at this order.

Similarly, we can obtain the twist five anomalous dimension from our new result for
M(2,3)

3 . After crossing the 〈O2O2O3O3〉 correlator to the orientation 〈O2O3O2O3〉, we can
access the twist five contribution in the [0, 1, 0] channel. We find

η
(2,3)
5,even|[0,1,0]=−5529600ζ3

(`+2)2(`+5)2(`3+14`2+103`+280)
(`−4)6(`+7)5

+ 20α
(`+1)(`+4)2(`+7) ,

η
(2,3)
5,odd|[0,1,0]=−5529600ζ3

(`+2)2(`+5)2(`3+10`2+71`+160)
(`−3)5(`+7)6

+ 20α
(`+1)(`+4)2(`+7) ,

(5.2)

which are valid for even spins ` ≥ 6 and odd spins ` ≥ 5, respectively. The second term
arises from the extra window pole at s = 4 and the value of α follows from the general
formula (3.10), giving α = 23040ζ3.

Finally, from the projection of M(2,3)
3333 in (4.3) to the [1, 0, 1] channel, we can extract

information on twist six anomalous dimensions.11 In principle, as well as the single double-
trace operator, there can be triple-trace operators at twist six. If we assume that no
triple-trace operators contribute, the twist six anomalous dimension of the double-trace
operator reads

η
(2,3)
6 |[1,0,1] =−278691840ζ3

(
13`6 +351`5 +3355`4 +13005`3 +20752`2 +43884`+22320

)
(`−3)(`−2)(`−1)`(`+1)(`+3)(`+6)(`+8)(`+9)(`+10)(`+11)(`+12)

+ 16β
(`+1)(`+3)(`+6)(`+8) , for odd spins `≥ 5, (5.3)

where β = −1036800ζ3 as determined in (4.7).
In reference [10], a non-trivial Z2 symmetry of the double-trace anomalous dimensions

was observed. In particular, it was found that the supergravity anomalous dimensions η(1,0)

and η(2,0) are symmetric under the reciprocity symmetry `→ −`−n(t, a, b), where n is an
integer shift depending on the twist and su(4) channel [a, b, a]. We find that the one-loop
string corrected anomalous dimensions given above in (5.1), (5.2) and (5.3) continue to
obey this symmetry. Indeed, at twists four and six one can check that

[0, 0, 0] : η
(2,3)
4 (−`− 7) = η

(2,3)
4 (`),

[1, 0, 1] : η
(2,3)
6 (−`− 9) = η

(2,3)
6 (`),

(5.4)

whereas at twist five the even and odd spin contributions map into each other

[0, 1, 0] : η
(2,3)
5,even(−`− 8) = η

(2,3)
5,odd(`), η

(2,3)
5,odd(−`− 8) = η

(2,3)
5,even(`), (5.5)

consistent with the discussion presented in [10].

11Note that even though the projection to the [1, 0, 1] channel of M(2,3)
3333 by construction does not con-

tribute to the log2(u) term, the full crossing symmetry of the correlator implies a non-vanishing log(u)
contribution from which we extract the one-loop anomalous dimension.
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6 The flat space limit

In this section we first review the flat space limit of Mellin amplitudes, paying attention
to keep the discussion general such that the formalism can be applied to correlators with
arbitrary external charges. Only in the end we will specialise to the 〈O2O2OpOp〉 family
of correlators and verify that the Mellin amplitudes found in the previous sections agree
with the low-energy expansion of the ten-dimensional type IIB amplitude, providing a
non-trivial consistency check for our Mellin amplitudes.

6.1 Review of the flat space limit for arbitrary charge correlators

Let us start by reviewing the general flat space limit formula for four-particle Mellin am-
plitudes. A relation between Mellin amplitudes and scattering amplitudes in AdS was first
motivated in [32], and explored further in [33]. In four dimensions, the relation reads12

lim
L→∞

M(L2s, L2t) = L−1

Γ(Σ− 2)

∫ ∞
0

dββΣ−3e−βAflat

(2βs
L2 ,

2βt
L2

)
, (6.2)

where L is the radius of AdS, Σ is half the sum of external charges, Σ = p1+p2+p3+p4
2 , and

in our particular case Aflat is the ten-dimensional type IIB scattering amplitude of four
super-gravitons in flat space.

Here we will follow the logic of [34] and extend this formula to four-point functions
with arbitrary Kaluza-Klein modes as external operators,13 repeating the analysis given
already in [5]. Starting from the above ten-dimensional expression in flat space, we need
to restrict the kinematics to the five-plane R5 ' AdS5|L→∞ by integrating over the S5

wavefunctions of the Kaluza-Klein modes dual to Op, where the integration over S5 yields an
additional factor of L5. Denoting the ten-dimensional amplitude in transverse kinematics
by A(10)

⊥ (s, t;σ, τ), the relation (6.2) can be inverted to give

A(10)
⊥ (s, t;σ, τ) = Θflat

4 (s, t;σ, τ)
16 NA

Mlim(s, t;σ, τ), (6.3)

whereMlim implements the large s, t limit and is given by

Mlim(s, t;σ, τ) = Γ(Σ− 2) lim
L→∞

L14
∫ +i∞

−i∞

dα

2πi α
−(Σ+2)eα M

(
L2s

2α ,
L2t

2α ;σ, τ
)
. (6.4)

Note that we made use of equation (6.1) to replace M(s, t) with the reduced Mellin ampli-
tudeM(s, t;σ, τ). Furthermore, the normalisation factor NA depends only on the sum of

12Note that the above relation (6.2) requires the use of the full Mellin amplitude M(s, t;σ, τ) which is
related to the reduced Mellin amplitudeM(s, t;σ, τ) as defined in (1.15) through the action of a difference
operator corresponding to the factor I in (1.5). In the flat space limit s, t→∞, this is given by

M(s, t;σ, τ) ' 1
16Θflat

4 (s, t;σ, τ)M(s, t;σ, τ), with Θflat
4 (s, t;σ, τ) = (tu+ stσ + suτ)2. (6.1)

13In the present case of AdS5×S5, this was done for the 〈O2O2OpOp〉 family of correlators in [3, 4] and
later generalised to the case of arbitrary external charges in [5]. Note that an interesting new type of flat
space limit called the ‘large p limit’ has been recently proposed in [29], where additionally to s and t one
also takes the new Mellin variables corresponding to σ, τ as well as the external charges to be large.
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charges through Σ and additionally has a non-trivial (σ, τ) dependence. In the conventions
used here, it is given by

NA = −(α′)3

32π5
Bsugra
pi

(σ, τ)
Σ− 2 . (6.5)

The dependence on the su(4) cross-ratios is fully captured by the factor Bsugra
pi

, which
follows from the large s, t limit of the tree-level supergravity amplitudeM(1,0):

Bsugra
pi

(σ, τ) =
∑
i,j≥0

1
i!j!k!

8p1p2p3p4(p43+p21
2 + i

)
!
(p43−p21

2 + j
)
!
( |p1+p2−p3−p4|

2 + k
)
!
σiτ j , (6.6)

with pij = pi − pj , k = p3 + min
{

0, p1+p2−p3−p4
2

}
− i − j − 2 and the range of i, j is such

that k ≥ 0 in the sum.

6.2 Matching the genus-one string amplitude

Let us finally demonstrate that in the flat space limit the constructed one-loop Mellin
amplitudes M(2,3)

p and M(2,3)
3333 match the ten-dimensional type IIB closed string theory

scattering amplitude.
After performing the α-integration and taking the limit L→∞ of equation (6.4), the

two amplitudes read

M(2,3)
p,lim = −L22 p ζ3

5760(p− 2)!
(
s4 log(−s) + crossed

)
,

M(2,3)
3333,lim = −L22 9ζ3

10240 (1 + σ + τ)
(
s4 log(−s) + crossed

)
,

(6.7)

where we have used that in the limit ψ̃0(x) → log(x). Next, we divide by the respec-
tive normalisation factors, where NA depends on the sum of external charges and for the
〈O3O3O3O3〉 correlator has also a non-trivial dependence on the internal R-symmetry vari-
ables through the polynomial Bsugra

pi
(σ, τ) given in (6.6). For the cases at hand, we have

Bsugra
22pp = 32p2

(p− 2)! , Bsugra
3333 = 648(1 + σ + τ). (6.8)

As expected, we find that all dependence on the su(4) cross-ratios (σ, τ) and the external
charges cancels, such that both M(2,3)

p and M(2,3)
3333 have the same flat space limit. After

reinstating the factors of a2 and λ−
3
2 , the r.h.s. of equation (6.3) is given up to an overall

normalisation by

a2λ−
3
2

Θflat
4 (s, t;σ, τ)

16 L22 ζ3
(
s4 log(−s) + crossed

)
. (6.9)

Lastly, we need to convert the CFT quantities a and λ from the double into string theory
quantities. According to the AdS/CFT dictionary, we have

a = 1
N2 − 1 ∼

g2
s α
′4

L8 , λ−
1
2 ∼ α′

L2 , (6.10)

such that the factor of L22 in (6.9) is precisely cancelled.
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The resulting expression should be compared to the type IIB flat space string ampli-
tude in transverse kinematics, A(10)

⊥ . The four-graviton scattering amplitude admits the
following genus expansion,

A(10)
⊥ = κ2

10 g
4
s

( 1
g2
s

Atree + 2π
(
Agenus-1

an +Agenus-1
non-an

)
+O(g2

s)
)
, (6.11)

The low-energy expansion of the tree-level term Atree takes the form14

Atree = R4
( 3
σ̂3

+ 2ζ3 + σ̂2ζ5 + 2
3 σ̂3(ζ3)2 + . . .

)
, (6.13)

while the genus-one terms are expanded as [25, 35]

Agenus-1
an = π

3

(
1 + 0σ̂2 + ζ3

3 σ̂3 + 0σ̂2
2 + 97

1080ζ5σ̂2σ̂3 + . . .

)
R4, (6.14)

Agenus-1
non-an = Agenus-1

sugra +
(
α′

4

)4 4ζ3π

45

[
s4 log

(
− α′s

µ4

)
+ crossing

]
R4 (6.15)

+
(
α′

4

)6 ζ5π

2520

[
(87s6 + s4(t− u)2) log

(
− α′s

µ6

)
+ crossing

]
R4 + . . . .

Note that all of the above terms share a common factor of R4, and it has been shown
in [34] that in transverse kinematics it is given by

R4
⊥ = Θflat

4 (s, t;σ, τ)
16 , (6.16)

and therefore it cancels against the identical overall factor in equation (6.3). With this in
mind, we see that the flat space limit ofM(2,3)

p andM(2,3)
3333 given in equation (6.9) exactly

match the structure of the (α′)4 term of the non-analytic genus-one expansion (6.15). This
constitutes a non-trivial check on the Mellin amplitudes derived in this paper.

To conclude, let us also briefly comment on the next order in the 1/λ expansion. At
order λ−

5
2 , so far only the 〈O2O2O2O2〉 one-loop correlator has been derived, see [13]

and [14] for more details. Let us show here that its Mellin amplitude M(2,5)
2 correctly

matches the corresponding term in the flat space string amplitude. After performing the
α-integration of equation (6.4) and taking the large L limit, we find

M(2,5)
lim ∼ a2λ−

5
2 L26 ζ5

(
s4(22s2 + st+ t2) log(−s) + crossing

)
, (6.17)

which non-trivially matches the (α′)6 term of the genus-one low-energy expansion in the
second line of (6.15) upon using the identity u = −s− t.

14Here, σ̂2 and σ̂3 are defined as

σ̂2 =
(
α′

4

)2

(s2 + t2 + u2), σ̂3 = 3
(
α′

4

)3

stu, (6.12)

where s, t and u are the usual ten-dimensional Mandelstam invariants obeying s+ t+ u = 0.
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A Subleading OPE data in the window-region

In this appendix we collect some new results for subleading three-point functions in the
window-region. We were able to find a closed formula for all order λ−

3
2 string corrected

three-point functions in the singlet channel, while the supergravity ones turn out to be of
a more complicated form and hence we only present results for the first few twists.

A.1 Results for C(1,3)

The string corrected three-point functions are non-vanishing only for degeneracy label
i = 1 and spin ` = 0 (mirroring the behaviour of the string anomalous dimensions η(1,3)

i ,

see (2.6)). In the window-region, i.e. for twists t < p, they are given by

C
(1,3)
pp,t,1 = C

(0,0)
22,t,1

ζ3
1680

(−1)tt2p(t− 1)(1 + t)3(2 + t)2(3 + t)Γ(p− t)Γ(p+ 2 + t)
Γ(p− 1)Γ(p) δ`,0.

(A.1)

A.2 Results for C(1,0)

We have calculated the subleading supergravity three-point functions up to twist sixteen
and specialising to spin ` = 0 (note that, unlike the C(1,3), the C(1,0) have infinite spin
support). In the window-region t < p, they take the form

C
(1,0)
pp,t,i|`=0 = C

(0,0)
22,t,i ×

p2(1 + p)(2 + p)
(p− t)t−1

× C̃(1,0)
pp,t,i, (A.2)

where we have

C̃
(1,0)
pp,t=2 =

{1
6

}
, (A.3)

C̃
(1,0)
pp,t=3 =

{1
2(−2p−1), 1

56(7p−19)
}
, (A.4)

C̃
(1,0)
pp,t=4 =

{7
2
(
p2+p+4

)
,

1
40
(
−31p2+140p−106

)
,

1
30
(
6p2−38p+57

)}
, (A.5)

C̃
(1,0)
pp,t=5 =

{
− 14

3 (2p+1)
(
p2+p+15

)
,
1
6
(
19p3−129p2+263p−267

)
, (A.6)

1
450
(
−603p3+5756p2−16623p+13996

)
,

1
132
(
55p3−600p2+2081p−2272

)}
,

C̃
(1,0)
pp,t=6 =

{
21
(
p2+p+2

)(
p2+p+36

)
,− 3

100
(
335p4−3200p3+12111p2−26150p+15696

)
, (A.7)

1
1750

(
10889p4−145950p3+684667p2−1363950p+1041408

)
,

1
1100

(
−3355p4+51400p3−278551p2+626250p−487416

)
,

1
143
(
143p4−2354p3+13937p2−34926p+30984

)}
,
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C̃
(1,0)
pp,t=7 =

{
−21(2p+1)

(
p4+2p3+79p2+78p+504

)
, (A.8)

3
100
(
895p5−11465p4+68387p3−239479p2+348582p−257544

)
,

1
500
(
−11353p5+203426p4−1403999p3+4795558p2−8209656p+5325552

)
,

1
1100

(
17435p5−356845p4+2777467p3−10274939p2+18164322p−12423024

)
,

1
143
(
−1144p5+25157p4−211574p3+845563p2−1595682p+1130760

)
,

3
1144

(
1001p5−23023p4+204061p3−866657p2+1752498p−1339560

)}
,

C̃
(1,0)
pp,t=8 =

{
77
(
p6+3p5+145p4+285p3+2374p2+2232p+2880

)
, (A.9)

− 11
4
(
23p6−381p5+3263p4−16539p3+42146p2−67248p+35136

)
,

11
350
(
2219p6−51247p5+487591p4−2490089p3+7129590p2−10524192p+6399168

)
,

− 1
1764 (p−4)

(
114929p5−2569387p4+21708697p3−87056237p2+167481198p−121386960

)
,

1
1911

(
87919p6−2488899p5+28178263p4−162892653p3+506300194p2−802071144p+506306880

)
,

− 3
728
(
5551p6−164346p5+1952327p4−11860562p3+38682426p2−63904876p+41580720

)
,

11
1326

(
884p6−26988p5+331955p4−2097030p3+7141121p2−12358422p+8435160

)}
.
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