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Abstract
Background The complexity of the upper gastrointestinal (UGI) multidisciplinary team (MDT) is continually growing, 
leading to rising clinician workload, time pressures, and demands. This increases heterogeneity or ‘noise’ within decision-
making for patients with oesophageal cancer (OC) and may lead to inconsistent treatment decisions. In recent decades, the 
application of artificial intelligence (AI) and more specifically the branch of machine learning (ML) has led to a paradigm 
shift in the perceived utility of statistical modelling within healthcare. Within oesophageal cancer (OC) care, ML techniques 
have already been applied with early success to the analyses of histological samples and radiology imaging; however, it has 
not yet been applied to the MDT itself where such models are likely to benefit from incorporating information-rich, diverse 
datasets to increase predictive model accuracy.
Methods This review discusses the current role the MDT plays in modern UGI cancer care as well as the utilisation of ML 
techniques to date using histological and radiological data to predict treatment response, prognostication, nodal disease 
evaluation, and even resectability within OC.
Results The review finds that an emerging body of evidence is growing in support of ML tools within multiple domains 
relevant to decision-making within OC including automated histological analysis and radiomics. However, to date, no specific 
application has been directed to the MDT itself which routinely assimilates this information.
Conclusions The authors feel the UGI MDT offers an information-rich, diverse array of data from which ML offers the 
potential to standardise, automate, and produce more consistent, data-driven MDT decisions.

Keywords Machine learning · Artificial intelligence · Oesophageal cancer · Multidisciplinary team

Introduction

Oesophageal cancer (OC) is the  14th most common cancer 
in the UK yet the  7th commonest cause of cancer death.1 
Only 39% of patients enter a curative pathway and less than 
15% are alive at 5 years.2,3 Adenocarcinoma (OAC) of the 
oesophagus, in particular, has seen a 400% increase over the 
last 2 decades in part owing to the increased prevalence of 
gastro-oesophageal reflux and Barrett’s oesophagus and is 
now more prevalent than squamous cell carcinoma (OSCC) 

in some world regions including North America, Northern 
Europe, and Oceania.4

Gold standard management of OC remains curative 
resection, stage-permitting. Patients presenting with nodal 
disease also require neoadjuvant therapy (NAT) either as 
chemotherapy (NACT) or chemoradiotherapy (NACRT).5 
Both have been shown to offer a survival advantage over 
surgery alone although to date, debate remains over which 
regime offers the better outcome.5–9 The Neo-AEGIS trial 
was intended to answer this very question, and yet 3-year 
follow-up data remains equivocal (despite a noticeably 
higher incidence of tumour regression grade (TRG) 1–2 
within the CRT arm).10 Longer follow-up data is still 
awaited. The survival benefit from NAT, however, may 
not be conferred universally. A multicentre study of 1293 
patients by Noble et al. demonstrated that a meaningful 
local response to NACT was only seen in those with TRG 
1–2 (14.8% of the cohort) deemed “responders”. Overall 
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survival in this group was 7.68 years versus 2.22 years in 
those with TRG 3–5 (85.2%).11 A major challenge is there-
fore predicting responders before starting NAT, although 
some groups have found modest success modelling vari-
ables available prior to surgery.12,13 Reliable predictive tools 
might then permit early triaging of non-responders directly 
to surgery in a bid to reduce NAT-associated morbidity and 
mortality for potentially little gain as it is recognised that 
NAT can decondition patients prior to surgery, potentially 
even rendering them inoperable.14–16

OC patients are consequently reliant on high-quality 
decision-making in often complex clinical contexts, with 
significant implications for their outcomes and quality of 
life.17 Currently, their treatment decisions are made by a 
multidisciplinary team (MDT), which is shown to improve 
patient outcomes.18–20 However, these services face ever-
growing caseloads and clinical complexity, potentially lead-
ing to inconsistent and sometimes suboptimal decisions.21 
Individual experience, perception, and bias can also lead to 
discordance within that decision-making consistency, effec-
tively a form of “noise” in the process.22

Data-driven clinical decision tools are increasingly com-
monplace within medicine. The National Emergency Lap-
arotomy Audit (NELA), for instance, has achieved wide-
spread use for more objective operative risk stratification 
and the need for higher levels of care following emergency 
laparotomy.23,24 The domain of machine learning (ML) and 
by extension deep learning (a subset of ML which uses 
unstructured data, processing this through multiple “hidden 
layers” between the input and output layer to form a “neural 
network” designed to approximate human neural networks)25 
offers huge potential to take ML a step further by stand-
ardising, optimising, and streamlining decision-making for 
cancer patients. Thus far, ML has been applied to decision-
making with cardiac patients,26 breast cancer therapies,27 
lung cancer,28 pancreatic cancer,29 and dermatological can-
cers.30 To date, no such approach has been made to the OC 
MDT. The purposes of this review are twofold: to contextu-
alise the MDT’s role within OC and to discuss the applica-
tions of ML techniques within OC to date. This includes 
predicting treatment response using both histopathological 
and radiological data, as well as the emerging potential for 
radiomics for prognostication, nodal disease evaluation, and 
even resectability.

Methods

Studies were selected on their use of, or discussion of arti-
ficial intelligence–based techniques on the UGI MDT as a 
whole or data types used by the MDT to determine treatment 
decisions for oesophageal cancer patients.

Studies will be further discussed by the modality of data 
they apply their machine learning approaches to. Within 
the MDT framework, the two main data sources outside of 
standard clinical patient information are histopathological 
and imaging based. This review will therefore discuss each 
of these separately.

Studies were obtained by a systematic search of Pub-
Med using a combination of key terms including “Machine 
Learning”, “Artificial Intelligence”, “Oesophageal Can-
cer”, “Oesophagogastric Cancer”, “Esophageal”, “Esoph-
agogastric”, “Upper Gastrointestinal Cancer”, “Upper Gas-
trointestinal Multidisciplinary team”, “Multidisciplinary 
team”, “Radiomics”, and “Predicting response”. Additional 
relevant studies were also identified through bibliographic 
examination of articles retrieved through the initial litera-
ture searches.

The Multidisciplinary Team (MDT)

The clinical management of all cancer patients within the 
UK was centralised through MDTs following the Calman-
Hine report in 1995.31 This brought together experts from 
all aspects of a patient’s care to focus on rapid, nuanced, 
complex, and above all-shared decision-making from the 
outset. MDTs comprise a variety of healthcare professionals: 
surgeons, physicians, oncologists, radiologists, histopathol-
ogists, specialist nurses, physiotherapists, occupational 
therapists, palliative care teams, and administrative staff. 
Centralisation also ensured adequate caseload to maintain 
clinical and operative skills. MDTs assess cancer site, stage, 
resectability, fitness for surgery, and necessary oncological 
adjuncts to formulate a treatment plan within the context of 
the patient’s wishes.

Strengths of the MDT

Numerous studies have shown a benefit to managing oesopha-
geal cancer via an MDT framework (Fig. 1) over surgeons 
managing such cases independently.18–20,32 They have been 
shown to reduce the incidence of open-and-close laparoto-
mies or thoracotomies (from 21 and 5, respectively, to 13% 
and 0%, p = 0.02). Operative mortality is lower (5.7% vs 26%, 
p = 0.004), and 5-year survival is significantly higher (52% 
vs 10%, p = 0.0001). On multi-variate analysis, MDT man-
agement, lymph node metastases, and American Society of 
Anaesthesiologist (ASA) grade were all found to be indepen-
dently associated with survival.18 Freeman et al. reported that 
a formal thoracic MDT for OC improved the rate of complete 
staging from 67 to 97% (p < 0.0001) and increased the per-
centage assessment by MDT from 72 to 98% (p < 0.0001) 
and adherence to national guidelines for management from 83 
to 98% (p < 0.0001).19 Van Hagen and colleagues found that 
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over one-third of management plans pre-conceived by indi-
vidual clinicians as the “best course of action” for potentially 
curative upper gastrointestinal (UGI) cancer cases were still 
changed after MDT  discussion20.

These benefits are not restricted to curative cases. A 
Dutch study of 948 palliative oesophagogastric (OG) 
patients found a significantly shorter time from diagnosis 
to commencement of palliative therapy in the MDT group 

Fig. 1  Schematic of the upper 
gastrointestinal (UGI) oesopha-
geal cancer MDT decision-
making process
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(20 days vs 30 days, p < 0.001), a higher incidence of pal-
liative external beam radiotherapy (EBRT) (38% vs 21%, 
OR 2.7), higher incidence of systemic therapy (30% vs 23%, 
OR 1.6,), fewer patients treated with palliative stents (4% vs 
12%, OR 0.3), and greater duration of survival (169 days vs 
107 days, HR 1.3).32 The authors attributed at least part of 
this improved survival to the greater usage of tumour-spe-
cific palliative therapies such as EBRT and systemic therapy 
in the MDT group.

Vulnerabilities of the MDT

Despite the multitude of strengths of the MDT system, 
it is also vulnerable to clinical, inter-personal, and logis-
tic challenges. Rising caseloads, reduced dedicated MDT 
time, missing data, patient complexity, and inter-member 
disagreement all lead to inconsistent and suboptimal deci-
sion-making with potentially life-limiting consequences for 
a patient’s health and quality of life.33 The dedicated prepa-
ration time required and associated financial cost are also 
considerable. Each hour of an MDT has been estimated to 
take 2 h for a radiologist and 2.4 h for a histopathologist to 
prepare for.34 A systematic review in 2011 exploring clini-
cal, social, and technological factors influencing MDT deci-
sion-making found that definitive plans were only reached 
at first discussion in 47.6–73% of cases owing to time pres-
sures or inadequacy of available information at the time 
of discussion (e.g., imaging, staging, pathology review, or 
patient comorbidities).21 A failure to implement MDT deci-
sions was seen in 1–16% of cases owing to differing patient 
wishes or inappropriate management plans when factoring 
in patient comorbidities. General surgical, urological, and 
soft tissue cancer MDTs were found to have clinician-made 
decisions based almost entirely on clinical information. The 
review noted that physicians drove the decision-making, 
often ignoring nurse-led input usually at the detriment of 
the overall efficacy of the MDT.

Patient-centred decision-making varies within MDTs. 
Another study by Lamb et al. determined that patient wishes 
were infrequently considered at MDT unless nurses present 
could, and felt empowered to, speak up.35 Furthermore, 
essential social data such as a patient’s social position, atti-
tude, values, and preferences often be missing, incomplete, 
or selectively presented in order to influence the discussion 
in a particular direction.36

Leadership and personal biases are salient factors. A 
study of breast cancer MDTs found that while a lack of clar-
ity and conflict over leadership were negative predictors for 
effective internal communication, team effectiveness, and 
resource efficiency, a single strong leader also harmed inno-
vation.37 Their results further highlighted that perceptions of 
team effectiveness could vary significantly by role, noting 
that breast surgeons and breast care nurses consistently rated 

their MDT’s performance higher than their radiology and 
histopathology counterparts.

Such vulnerabilities can have clinical impact on OC 
patients. A small observational multicentre Danish study 
investigated inter-observer variability between MDT deci-
sions at four major UGI cancer units in Denmark.22 The 
study presented 20 OSCC cases as new referrals to each of 
the four centres to determine resectability, curability, and 
treatment strategy. The authors reviewed the frequency by 
which disagreement between MDTs resulted in a different 
treatment recommendation and whether this had a clini-
cal impact. Moderate concordance was seen on classifying 
T-stage, M-stage, resectability, and curability, while N-stage 
and operability only reached “fair” concordance. The authors 
traced much of the disagreement back to classifying “Mx” 
and consideration of “further investigations”. The biggest 
impact of their findings was however that MDT disagree-
ment led to a clinical impact in 60% of cases. The authors 
reported that while operability was crucial to determining 
an accurate treatment strategy, it was most vulnerable to 
inter-observer differences. Yet given the clinical information 
available at MDT, it remained difficult if not almost impos-
sible to determine accurately at the time of the meeting. The 
authors reinforced the importance of being able to establish 
operability either pre-MDT or with additional data variables 
available at the time of discussion.

Similarly, comorbidity is inadequately presented or 
integrated into cancer MDTs, despite having a substantial 
impact on the quality of its judgements. A 2015 systematic 
review found that comorbidities were; not well considered 
(meaning MDTs were less likely to reach a treatment deci-
sion); were often the reason given for deviating from treat-
ment guidelines; and where a treatment recommendation 
was given, was usually the reason it was not implemented.33

Decision‑Making Within OC

Table 1 outlines the 2018 National Institute for Clinical 
Excellence (NICE) guidelines for the management of OC.38 
Notably while some authors categorise T2N0 disease as 
early and amenable to endomucosal resection (EMR), NICE 
supports the use of NAT in this cohort, likely to minimise 
local recurrence risk from micro-metastases.39,40 It can be 
readily appreciated that histology, TNM staging, and an 
assessment of patient fitness (commonly quantified by the 
WHO Performance Status classification) account for the 
bulk of decision critical parameters. While the concept of 
comorbidity is acknowledged, especially when determin-
ing suitability for palliative chemotherapy, such guidelines 
remain simplistic, rarely factoring in dimensions such as 
high-risk comorbidities, social variables, or even ease of 
patient access to CRT centres.
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A Role for Machine Learning?

Machine learning (ML) has gained popularity within 
healthcare environments for its potential to assist clinical 
decision-making by detecting complex patterns within 
large datasets. Great promise has been shown even in 
OC, in predicting outcomes following oesophagectomy.41 
However, while post-operative models have shown good 
discrimination and calibration, pre-operative models are 
more challenging.12 Despite this, the pre-treatment MDT 
discussion remains a key mile marker in the patient’s 
care pathway, and optimising the decision-making at 
this stage is vital. MDTs typically assimilate informa-
tion from clinical, pathological, and radiological sources, 
each of which offers a potential focus for ML applica-
tions, yet surprisingly, this has not been exploited in UGI 
MDTs to date.

Machine learning is traditionally divided into supervised 
and unsupervised learning. Supervised learning requires 
the “labelling” of data (the ground truth is given to the 
machine). The machine is then able to compare the input 
and outcome data to determine the best fitting model which 
explains any underlying structure of the data. Supervised 
learning is thus well suited to smaller datasets where 
the ground truth is known—a prime example being the 

outcomes of historic MDTs where treatment decisions of 
patients are already known. By comparison, unsupervised 
learning algorithms identify patterns within datasets to 
extract features that may speak to their structure. Such 
techniques are useful when the ground truth is unknown, 
necessitating large volumes of data—a challenge frequently 
encountered in cancer datasets. Models are trained using 
data partitioned from the main dataset, by which the 
machine searches for patterns between the selected vari-
ables and the designated outcome. Ideal models learn from 
training data to make accurate predictions when fed new 
unseen data (testing datasets), minimising “under-” or 
“over-fitting”. Under-fitted models are too simplistic or 
inflexible to capture the underlying relationships leading 
to high error rates in both training and testing (bias). Over-
fitting occurs when the model features are too numerous 
or complex resulting in high variance. These models per-
form well within training but struggle on test/validation 
sets.42 This may be mitigated by increasing the size of the 
training set available and the diversity of the observations 
themselves, making it more representative of the theoreti-
cal population distribution. In real-world settings however, 
this is often difficult with health data especially for rarer 
clinical scenarios under study. Table 2 summarises some 
common ML-based techniques.

Table 1  2018 NICE guidelines for the management of OC 38

OAC, oesophageal adenocarcinoma; OSCC, oesophageal squamous cell carcinoma; EMR, endomucosal resection; CRT , chemoradiotherapy; NACRT , 
neoadjuvant chemoradiotherapy; NACT , neoadjuvant chemotherapy; ACT , adjuvant chemotherapy; HER2, human epidermal growth factor 2

Disease stage OAC OSCC

T1aN0 Offer EMR Offer EMR
T1bN0 Offer surgery Offer either

  - Definitive CRT 
  - Surgical resection

T2-4 N0-3 M0 Offer either:
  - NACT ± ACT 
  - NACRT 
Assess response
Then surgery

Offer either
-Radical CRT 
Or:
  - NACRT 
Assess response
Then surgery

Non-metastatic disease unsuitable for 
surgery

Consider
  - CRT if feasible within RT field
Or:
  - Chemotherapy
  - Stenting
  - Palliative RT
  - Best supportive care

Consider
  - CRT if feasible within RT field
Or:
  - Chemotherapy
  - Stenting
  - Palliative RT
  - Best supportive care

Metastatic disease If HER2 + ve:
  - Trastuzumab (Herceptin)
1st line palliative chemotherapy (if performance status 0–2, 

no significant comorbidities)
2nd line palliative chemotherapy

If HER2 + ve:
  - Trastuzumab (Herceptin)
1st line palliative chemotherapy (if perfor-

mance status 0–2, no significant comor-
bidities)

2nd line palliative chemotherapy
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ML Applications Within OC to Date

Histopathological Analysis

The application of ML to histopathology in order to aug-
ment decision-making in clinical care is gaining popu-
larity.43–45 RNA and whole genome sequencing (WGS) 
offer detailed and individualised data for analysis at the 
cost of expensive tissue analytical processes.41 Com-
puter vision–based ML promises comparatively low-cost, 
automated large-scale analysis in OC, although to date 
very few studies have applied such techniques to OC 
(Table 3).41,46 Pilot work using convolutional neural net-
works (CNN) to process unlabelled high-resolution digital 
OAC histology slides achieved good internal validation 
in predicting response to NAT (C-index 0.836).41 While 
these results are promising, validation over larger datasets 
and external data sources remains necessary before use 
in clinical practice, especially as the use of unsupervised 
learning creates a “black box” solution impeding transpar-
ency, “explainability”, and ultimately trust in the solu-
tion. An additional confounder in the Rahman et al. study 
was the use of both NACRT and NACT within the patient 
cohort. The training of the CNN in this instance utilised 
ImageNet (non-specific images from a vast online database 
of everyday images) in the form of transfer learning. This 
circumvented the need for the sheer volume of histology-
specific training images otherwise needed to produce a 
sufficiently accurate model. Pre-trained networks have 
performed competitively against models trained from 
scratch.47 However, with academic collaborative projects 
such as the Northern Pathology Imaging Co-operative 
looking to accumulate large-scale digital pathology reposi-
tories, this challenge may become more achievable in the 
future, especially as transfer learning is unlikely to be suf-
ficiently robust for routine clinical use.

With only a minority of OC patients benefitting from 
NAT, it is appealing for MDTs to be able to identify 
them as early as possible. Accurate prediction of tumour 
response from initial biopsies usually available at the 
beginning of a referral pathway would allow patients to 
be filtered towards the most beneficial therapy in the time-
liest fashion.

Imaging‑Based Approaches—Radiomics

Over the last two decades, advances in image process-
ing and analysis have allowed the field of radiomics to 
flourish developing a substantial evidence base across 
numerous solid organ cancer types.48 Radiomics refers to 
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the extraction of quantitative, clinically significant, high-
dimensional imaging biomarkers from standard-of-care 
medical imaging to predict a range of clinical outcomes.42 
Standard radiological assessments within MDTs for OC 
are traditionally largely qualitative, with some quantifica-
tion of tumour size, number, and position of suspected 
lymphadenopathy and the presence of distant metastases. 
A human eye–based assessment however may struggle 
to pick out additional hidden data on a pixel/voxel level 
within the image stacks and inherently involves a degree 
of both selection bias as well as inter- and intra-observer 
variability.49 Radiomics seeks to mine this data for more 
tailored decision-making. Coupling this to the MDT infra-
structure would benefit OC patients by achieving highly 
detailed assessment of their disease burden, resectabil-
ity, and probable interval response to NAT at a very early 
stage.

Radiomic Workflow

The radiomic workflow (Fig. 2) can be summarised as 
image acquisition, image pre-processing, segmentation, 
feature extraction, data preparation, feature reduction, and 
model development.42,50 Image acquisition relates to the 
curating of imaging stacks containing regions of interest 
(ROI) under investigation. Features extracted from ROIs 
may mirror the tumour phenotype and its molecular fin-
gerprint.49 Image pre-processing includes segmentation of 
ROIs which may be manual (considered gold standard but 
resource intensive), automatic, or hybridised. Automated 
segmentations while potentially error-prone offer workflow 
automation with reasonable accuracy.51 The next step is fea-
ture extraction which is the functional core of radiomics. 
Visual features embedded within images are extracted and 
converted into quantifiable vectors.42,49 Vectors may dif-
fer in scales; thus, data preparation includes feature scal-
ing, data continuation, discretisation, and under- or over-
sampling for class imbalances.52 The resultant features may 
be hundreds in number and counter-productive to a well-
performing model.53 Dimensionality reduction and feature 
selection can minimise those redundant, non-relevant fea-
tures which may slow a model for little gain.54–56 The final 
feature pool which forms the radiomic model is then used 
to classify groups of patients into one of several outcome 
classes, whether this is based on a perceived risk or inter-
vention outcome. Finally, validation of the generated model 
must then be done internally and externally as it speaks to 
the generalisability of the final model.57

Radiomics in OC

An evolving body of evidence is now emerging for OC in 
predicting treatment response, prognosis, nodal status, and 

even resectability.16 Improving the diagnostic accuracy of 
each of these aspects in turn using radiomics can drive 
forward a large portion of the MDT’s weekly workflow. 
Table 4 summarises studies which have applied radiomics 
to the OC domain.

Treatment Response Evaluation Most studies predict-
ing treatment response have focussed on NACRT rather 
than NACT, using OSCC primarily or mixed histology 
datasets.58–61 As many of these studies originate from 
China, where 90% of OC is the OSCC subtype, this is 
unsurprising. Nonetheless, it has long been appreci-
ated that tumour heterogeneity on imaging is associated 
with aggressive tumour biology and impaired treatment 
response in OC leading to many ML techniques being 
applied to this very issue.62 As imaging is often one of 
the earliest potential sources of information on tumour 
biology for OC patients, accurate characterisation here 
can tailor the oncological plan even before histology has 
been returned.

Flurodeoxyglucose (18F)-positron emission tomogra-
phy (FDG-PET) is used to assess for metastatic disease 
by uptake of FDG in metabolically active cells. Meta-
bolic tumour volume (MTV) and standardised uptake 
value (SUV) on FDG-PET may variably predict response 
to NACRT in OC across serial imaging time points as 
well holding prognostic significance for survival.16,63,64 
One PET study drew inspiration from DNA microarray 
analysis combining an extracted radiomic signature with 
a LASSO-logistic regression model to predict treatment 
response (AUC 0.835). While the authors contended with 
a class imbalance favouring responders and a radiomic 
signature derived from only 20 patients, the approach 
was nevertheless an intriguing one.65 A drawback to 
FDG-PET is its expense, time consumption, and lack 
of the complete molecular characterisation that one 
wishes to exploit when mining spatial heterogeneity in 
tissue architecture and metabolic activity.62 Contrast-
enhanced CT is comparatively ubiquitous in day-to-day 
clinical practice for assessing treatment response; it is 
quick and easily accessible. In smaller case series, it has 
even successfully predicted response to NACRT using 
as few as five shape and histogram-based metrics (AUC 
0.686–0.727).59

Studies combining multimodal data frequently show 
superior performance compared to single data streams 
alone. Zhang et al. predicted pathological tumour response 
to NACRT in OC patients applying both logistic regression 
(LR) and support vector machine (SVM) models finding 
that a combination of conventional PET/CT response meas-
ures, clinical data (TNM, histology, patient demographics), 
and spatial–temporal PET/CT features offered superior 
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predictive performance over individual feature sets (AUC 
of 1.0 for SVM vs 0.9 for LR).66 However, the study did not 
factor in nodal disease and was small (N = 20), thus risking 
over-fitting in the absence of external validation. Another 
study combining clinical information, geometry, PET tex-
tural features, and CT textural features used a LASSO-
regularised LR model to produce an AUC of 0.78 versus 
0.58 for SUVmax alone.62

Prognostication A number of studies have attempted to 
prognosticate in OC. Qiu et al., for instance, reported disease 
recurrence in one-third of patients who experienced a patho-
logical complete response following NACRT and surgery 
for OSCC.67 Their CT-based nomogram combined clinical 
risk factors and a radiomic signature of eight features. This 
proved superior (C-index of 0.746) versus radiomic (0.685) 
and clinical (0.614) features alone (p < 0.001 in all cases). 

Fig. 2  A standard radiomic workflow
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The model could effectively stratify patients into high and 
low risk categories potentially offering tailored adjuvant 
therapy post-resection.

One Dutch study predicted 3-year survival after NACRT 
using a random forest model comparing clinical and radi-
omic feature sets on pre-treatment CT. This study did 
include both OAC and OSCC, albeit heavily weighted 
towards the former.60 They reported an AUC of 0.61 on 
external validation for their radiomic model versus 0.62 for 
their clinical dataset. While the authors did show clear sur-
vival differences between TRG 1–2 and TRG 3–5 patients 
within the study cohort, this did not translate to a statisti-
cally significant difference in survival within validation 
sets when risk was stratified by the model again reflecting 
the Neo-AEGIS trial.5

Deep convolutional neural networks (CNN) have also 
proved capable of predicting 1-year survival in OSCC 
when trained on PET images. A Taiwanese study pre-
trained a ResNet 3D CNN using a mixed set of 1,107 
OSSC and lung cancer PET scans.68 Their best model 
attained an AUC of 0.738, outperforming clinical data 
alone. The authors found that CNN predictions them-
selves were significant on multivariable analysis for sur-
vival indicating that meaningful prognostic hidden data 
could be extricated. The authors did recognise that the 
extraction and selection of features was not transparent, 
i.e. a “black box” problem.

While accurate knowledge of operability and treatment 
response is vital for counselling patients of MDT treat-
ment recommendations, precise prognostication allows 
them to contextualise the cost–benefit balance. The stud-
ies described above therefore highlight the significant role 
ML can play here.

Nodal Status The prediction of lymph node (LN) disease 
conveys implications for prognosis and MDT treatment deci-
sions. Tan and colleagues achieved a test set validation AUC 
of 0.773 using LASSO-LR when predicting LN metasta-
ses in resectable OSCC cases, outperforming size criteria 
alone on CT imaging.61 Another CT-based study reported 
near-identical performance in testing using an elastic net 
approach across what was implied to be a mixed histologi-
cal cohort.69

Other Outcomes Less conventional radiomic–based prob-
lems have also been explored. Resectability, for exam-
ple, was predicted in one study of 591 OSCC patients. 
A LASSO-enhanced dimensionality reduction technique 
across multiple ML algorithms showed that multivari-
able logistic regression (MLR) offered the best perfor-
mance (AUC 0.87, accuracy 0.86).58 Another study 
in radio-genomics used CT imaging to help predict Ta
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microRNA-1246 expression, a biomarker linked with 
prognostic significance in OSCC.70 Correlation analysis 
extracted image features correlating with miR-1246 levels 
in 92 patients. Linear regression then separated patients 
into low and high expression correlating with survival. 
Unfortunately, while miR-1246 levels were significantly 
raised in stage 2 disease, no difference was seen between 
healthy controls and stage 1 disease, thereby limiting miR-
1246’s potential for screening.

Challenges and Future Directions for ML 
and the MDT

One of the main challenges facing ML tools designed 
for the MDT is inevitably the degree of noise within the 
datasets. This may be attributable to several factors such 
as variation in attendance of specific MDT members, the 
allocated time they possess to be present and discuss each 
case, clinical equipoise over treatment options, clinician 
preferences, and even social factors such as patient geogra-
phy and their relationships to high-resource units.35 Incor-
porating some or all such factors into future model training 
may adjust for this noise. Trustworthiness and transparency 
remain another key issues for model deployment within 
healthcare settings. Patients, clinicians, and health regula-
tors alike will likely require a degree of explainability for 
ML solutions. A route through this would be to focus on 
more simplistic and/or explainable models such as logistic 
regression and decision tree algorithms (a process which 
falls under explainable AI or “XAI” 71). However while 
XAI intuitively fits the perception of providing understand-
ing of a system’s decisions, inherently explainable algo-
rithms and post-hoc explainability tools may conversely 
reflect a misleading sense of true trustworthiness, with 
patient safety potentially better achieved through robust 
validation techniques instead.72 Once model performance is 
confirmed at a single unit, the tool may then be extended to 
other MDTs. This may be through tailoring a model to each 
unit individually or applying a single model to multiple 
units. The former approach is labour intensive yet mini-
mises under-fitting or poor generalisability as we are no 
longer modelling noise and idiosyncrasies particular to one 
MDT and applying these “rules” to another. Alternatively, 
a one-size-fits-all model may be designed for generalisation 
across multiple provided the practices of each such unit fol-
low a consistent pattern. To achieve this, the training data 
requires amalgamation and homogenisation from multiple 
sources which pose challenges such as data sharing agree-
ments between centres, standardised patient data acqui-
sition, and navigating the variation in imaging protocols 
associated with each individual hospital.50 Daramola et al. 
propose a multimodal AI framework for amalgamation, 

processing, and model development using similar data 
types in managing infectious diseases within sub-Saharan 
Africa.73 Through these approaches, ML allows OC MDTs 
to automate aspects of their workflow, potentially extract 
clinically meaningful information from imaging data, and 
streamline decision-making which has been learned from 
its historic decision-making framework. As UGI MDTs 
also manage gastric cancers, the concept is also transfer-
rable to their gastric cancer patients and potentially other 
solid body cancers.

Conclusion

The OC MDT handles complex treatment decisions with 
potentially life-altering implications for its patients, increas-
ingly under pressures of modern practice and caseloads. ML 
has shown great promise as an assistive tool in many clinical 
domains. While ML approaches have been applied to several 
data types relevant to the OC MDT, the MDT itself is as yet 
an unexplored arena. Future work should now look to inte-
grate these techniques to streamline and assist the MDT’s 
own decision-making. This in turn may offer the capacity to 
offer data-driven solutions, reduce costs and help prioritise 
their caseload, and thereby positively impact patient cancer 
care.
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