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ABSTRACT
Nonlinear dynamic modeling of spatio-temporal data is often a challenge, especially due to irregularly
observed locations and location-wide nonstationarity. In this article we propose a semiparametric family of
Dynamic Functional-coefficient Autoregressive Spatio-Temporal (DyFAST) models to address the difficulties.
We specify the autoregressive smoothing coefficients depending dynamically on both a concerned regime
and location so that the models can characterize not only the dynamic regime-switching nature but also
the location-wide nonstationarity in real data. Different smoothing schemes are then proposed to model
the dynamic neighboring-time interaction effects with irregular locations incorporated by (spatial) weight
matrices. The first scheme popular in econometrics supposes that the weight matrix is pre-specified. We
show that locally optimal bandwidths by a greedy idea popular in machine learning should be cautiously
applied. Moreover, many weight matrices can be generated differently by data location features. Model
selection is popular, but may suffer from loss of different candidate features. Our second scheme is thus
to suggest a weight matrix fusion to let data combine or select the candidates with estimation done
simultaneously. Both theoretical properties and Monte Carlo simulations are investigated. The empirical
application to an EU energy market dataset further demonstrates the usefulness of our DyFAST models.
Supplementary materials for this article are available online.
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1. Introduction

Nonlinear modeling of complex spatio-temporal processes
has been widely recognized an important but challenging
issue in analysis of geospatial big data (see Comber and
Wulder 2019). In this article we propose a semiparamet-
ric family of Dynamic Functional-coefficient Autoregressive
Spatio-Temporal (DyFAST) models to address the difficulty in
modeling and analysis of our spatio-temporal data, Yt(si), t =
1, . . . , T, observed at locations si = (ui, vi), i = 1, 2, . . . , N,
that are irregularly positioned on the earth surface, with the data
nonstationary over the irregular locations in space, where ui and
vi stand for the latitude and longitude of the location si. It is well
known that time is unidirectional from the past to the future and
the popular differencing operation along time hence, makes it
easy to change a nonstationary time series into a stationary series
(see, Box et al. 2015). However, locations are multidirectional,
which makes it harder to turn nonstationary data into stationary
ones across locations, in particular with irregularly positioned
locations (see, Lu et al. 2009; Al-Sulami et al. 2017). We therefore
consider our DyFAST models with such spatio-temporal data
that are with irregularly observed locations and location-wide
non-stationarity but the data are stationary in the time direction.

The proposed DyFAST models at least own two significant
features that make the model family useful. The first feature
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lies in the autoregressive smoothing coefficients depending both
on concerned regime variable and spatial location. They extend
linear or semiparametric spatial autoregressive models (see Ord
1975; Gelfand et al. 2003; Hallin, Lu, and Tran 2004; Gao, Lu,
and Tjøstheim 2006; Sun et al. 2014, among others) to non-
linear spatio-temporal modeling with irregular locations. Here
the dynamic features of spatio-temporal data are characterized
by the autoregressive structure together with the advantage of
functional (or varying) coefficients (see, e.g., Chen and Tsay
1993; Fan and Zhang 1999). In fact, through the autoregres-
sive smoothing coefficients depending on both regime and
location, the DyFAST models not only well characterize the
nonlinear dynamic regime-switching nature but also overcome
the irregular-location-wide nonstationarity existent in spatio-
temporal data.

The second feature of our DyFAST models lies in two
schemes proposed to model the dynamic spatial neighboring
temporal-lagged effects with the irregular locations by spatial
weight matrix. Our first scheme is popular in spatial economet-
rics with the idea of using spatial weight matrix pre-specified
either by experts or by information of spatial locations (see,
Anselin 1988). In practice, such spatial weight matrix can be pre-
specified in many different ways. Although the idea of model
selection can be applied to select an optimal weight matrix
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among the candidates, it may lead to loss of the important
features of different spatial weight matrices (see Zhang and Yu
2018). Our second scheme is therefore to suggest using the idea
of weight matrix fusion to combine the candidate spatial weight
matrices, letting data decide the significance of each candidate
weight matrix. This idea is different from the average of spatial
linear AR models with different weight matrices in Zhang and
Yu (2018).

Accordingly, different semiparametric estimation procedures
for our DyFAST models are suggested. Differently from the
two-step estimation procedure (see Lu et al. 2009; Al-Sulami
et al. 2017) that separates utilization of spatial and temporal
information into two steps, we will first explore a one-step
estimation procedure in our Scheme one, where all the data
across space and time are used together to estimate the unknown
coefficients in one step. Compared with the two-step procedure,
we will investigate the differences between both procedures both
in theory and in simulation. From the comparisons we will
clearly see some advantages of the one-step procedure for data
analysis, which will be more identified through simulations. In
particular, when the sample sizes are not sufficiently large, we
recommend one-step procedure for estimation, while with large
sample sizes, we can apply the two-step procedure but should
carefully select the bandwidths as done for the one-step one. In
fact, we will show that the optimal greedy bandwidths in each
step of the two-step procedure would generate poor estimation.
Further smoothing estimation procedure by fuzing the spatial
weight matrices with Scheme two will be developed on the basis
of Scheme one. The large sample theoretical properties and the
finite sample Monte Carlo simulations for all the procedures are
examined. Our empirical applications to an EU energy market
dataset will further illustrate the usefulness of the suggested
models and smoothing procedures.

Before ending this section, we should mention that the lit-
eratures on spatio-temporal modeling based on linear and/or
covariance assumptions are abundant; see Cressie and Wikle
(2015) for a comprehensive review and the related references
therein. Such linearity assumptions, for many real temporal and
spatial data, may actually not be true but an initial or coarse
approximation. The nonlinear analyses of time series data have
been widely explored in the literature (see, e.g., Tong 1990; Fan
and Yao 2003; Gao 2007; Teräsvirta, Tjøstheim, and Granger
2010). However, studies of nonlinear spatio-temporal model-
ing, in particular with irregular locations, are still rare when
compared with the abundant literature of nonlinear time series
analysis.

The structure of the remaining of this article is as follows.
Section 2 introduces the proposed DyFAST models. Estimation
by Scheme one with pre-specified spatial weight matrix is pre-
sented in Section 3. Section 4 further develops Scheme two for
model estimation with the idea of fusion of spatial weight matri-
ces. Asymptotic properties for the suggested smoothing proce-
dures are developed in those sections. Numerical examples are
demonstrated in Section 5 with simulation and Section 6 with
real data of retail gasoline prices in European Union countries,
both of which illustrate the usefulness of our proposed models
and estimation schemes. All technical details together with the
related supplementary materials including regularity conditions
and proofs for the theorems are provided in an Appendix.

2. Dynamical Functional-Coefficient Autoregressive
Spatio-Temporal (DyFAST) Models

We consider a spatio-temporal process Yt(s) that is observed at
discrete time points, t = 1, . . . , T and at irregularly positioned
locations, si = (ui, vi), i = 1, 2, . . . , N, on a spatial domain
S ⊂ R

2, with ui and vi being the latitude and longitude of the
location si, respectively. In practice, the data collected are usually
nonstationary across space. For example, as indicated in the real
data section, Section 6, we will consider the weekly changes of
retail gasoline prices over different countries in the EU, which
can be seen as stationary along time but nonstationary across
different countries of the EU. Here note that different countries
are irregularly positioned on the earth surface. We are therefore
concerned with how to model the dynamic spatio-temporal
lag interactions for this kind of data that are with irregularly
observed locations and of location-wide non-stationarity.

To deal with the irregularly observed locations, a popular idea
in spatial econometrics (see Anselin 1988) is to model the spatial
neighboring effects of Yt(si) by using a spatial weight matrix
W = (wij)N×N , the idea of which can be traced back to Cliff
and Ord (1972) and Ord (1975), to define a so-called spatial lag
(SL) variable

YSL
t (si) =

∑N

j=1
wijYt(sj), (2.1)

where W is a row-wise standardized N × N matrix, with its
elements wij satisfying wij ≥ 0,

∑N
j=1 wij = 1 and wii = 0. This

pre-specified spatial weight matrix W can be presented either
by experts’ knowledge or by using location-related information
(see Anselin 1988, chap. 3). Often, the elements wij’s are specified
as a continuous function of si, say, the inverse of the distance
between si and sj, except at si = sj, for which wii = 0. Here
Yt(si) is allowed to be of the so-called nugget effect involved
in Zt(si) (see, (3.2) in Section 3 and Assumption (A3)(iv) in
Appendix A.1).

The idea of our proposed family of DyFAST models comes
from taking into account the dynamic autoregressive impacts on
Yt(s) from both the spatial neighboring lags and the temporal
lags of Yt(s), the coefficients of which not only depend on
the location s but also vary with a regime-switching covariate
variable Xt(s), either a temporal or spatio-temporal process that
is observable. In applications, this Xt(s) may either be exogenous
or some temporal lag of Yt(s) that is of some real meaning. Then
our semiparametric class of DyFAST models can be defined in
the form

Yt(si) = β0(Xt(si), si) +
∑p

j=1
βj(Xt(si), si)YSL

t−j(si)

+
∑q

l=1
βp+l(Xt(si), si)Yt−l(si)

+ εt(si), i = 1, . . . , N, t = r + 1, . . . , T, (2.2)

where p and q are the neighboring and the location itself autore-
gressive lag orders, respectively, with r = max{p, q}, and the
autoregressive coefficients, βj(·, ·), j = 0, 1, . . . , p + q, are
unknown functional of the regime variable Xt(si) and location
si, to characterize the nonlinear dynamic behavior and location-
wise nonstationarity of Yt(si), with β0(·, ·) for intercept, βj(·, ·),
j = 1, . . . , p, for spatial neighboring time-lag interactions, and
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βj(·, ·), j = p + 1, . . . , p + q, for time-lag effects of Yt(si) itself,
and εt(si) is the error process of the model.

This semiparametric family takes account of some salient
features of dynamic spatio-temporal data. It covers a wide range
of existent models in the literature. For example, it extends, to
the spatio-temporal network setting, the nonlinear functional-
coefficient autoregressive time series model at each fixed loca-
tion si, which is very popular in the literature of time series
data analysis (see Chen and Tsay 1993; Cai, Fan, and Yao 2000).
Our DyFAST family also extends the semiparametric spatio-
temporal models of Subba Rao (2008), Lu et al. (2009), and Al-
Sulami et al. (2017), among others. For example, when βj(·, ·),
j = 1, . . . , p + q, are independent of the regime variable Xt(si),
the DyFAST models reduce to a linear or partially linear spatio-
temporal autoregressive model from the forecasting perspective
(see Al-Sulami et al. 2017). This kind of autoregressive spatio-
temporal model can hence well characterize the location-wise
nonstationarity existent in the data. However, at each location si,
it is still a constant coefficient linear time series model. In fact,
Subba Rao (2008) only considered the temporal lag effect with-
out taking the spatial neighboring effects into account, while Lu
et al. (2009) only applies to the case when the data are observed
regularly on a lattice with a small same number of neighboring
variables able to be well specified for each site, which is impossi-
ble to be implemented for irregularly positioned data considered
in this article. Furthermore, the considered model of Al-Sulami
et al. (2017) is only a special case of model (2.2) as mentioned,
which is unable to capture the dynamic regime-switching effects
in reality. Clearly, our DyFAST model (2.2) can overcome these
shortcomings.

We will propose two schemes to estimate the dynamic spatial
neighboring temporal-lagged effects in model (2.2) adapting to
the irregular locations. Our first scheme uses the idea of spatial
weight matrix pre-specified either by experts or by the prior
information of spatial locations. Because such a spatial weight
matrix may be pre-specified in many different ways (see, Anselin
1988), our second scheme is to propose an idea of combining the
candidate spatial weight matrices, letting data decide the signif-
icance of each candidate. Accordingly, we will suggest different
semiparametric estimation procedures detailed below.

3. Scheme 1: Pre-specified Spatial Weight Matrix

With a pre-specified spatial weight matrix W given, the DyFAST
models given in (2.2) can be rewritten as

Yt(si) = Zt(si)
′β(Xt(si), si) + εt(si), (3.1)

for t = r+1, . . . , T, with r = max{p, q}, and i = 1, . . . , N, where
the notation A′ denotes the transpose of a vector or matrix A,

Zt(si) = (1, YSL
t−1(si), . . . , YSL

t−p(si), Yt−1(si), . . . , Yt−q(si))
′,

(3.2)
the vector of spatio-temporally lagged variables, and

β(x, s) = (β0(x, s), β1(x, s), . . . , βp(x, s), βp+1(x, s), . . . ,
βp+q(x, s))′, (3.3)

the corresponding vector of functional autoregressive
coefficients.

3.1. A One-Step Estimation Method

We first consider to estimate the coefficients β(·, ·) in (3.1).
Differently from the two-step estimation procedure (see, Lu et al.
2009; Al-Sulami et al. 2017) separating utilization of spatial
and temporal information into two steps, this study suggests a
one-step estimation procedure by considering βj(Xt(si), si) as a
function of Xt(si) and si. In this procedure, all the data across
space and time are used together to estimate the coefficients
β(·, ·) in one step.

By the idea of local linear fitting (see Fan and Gijbels 1996),
we can approximate the unknown function βj(Xt(si), si) by a
local linear function if (Xt(si), si) is close to (x, s). For a given
s = (u, v)′, we denote (∂β(x, s)/∂u, ∂β(x, s)/∂v)′ by β̇s(x, s) and
∂β(x, s)/∂x by β̇x(x, s), where

∂β(x, s)/∂u = (
∂β0(x, s)/∂u, . . . , ∂βp+q(x, s)/∂u

)′

and ∂β(x, s)/∂v is defined similarly. Then for any Xt(si) and si in
the neighborhood of x and s, respectively, we have

βj(Xt(si), si) ≈ βj(x, s) + β̇x
j (x, s)(Xt(si) − x) + β̇s

j (x, s)′(si − s)

=: b0,j + b1,j(Xt(si) − x)

+ b′
2,j(si − s), j = 0, 1, 2, . . . , p + q. (3.4)

Locally, estimating (β(x, s), β̇x(x, s), β̇s(x, s)′) is equivalent to
estimating (b0, b1, b′

2), where bk = (bk,0, bk,1, . . . , bk,(p+q))
′ for

k = 0, 1, 2. This motivates an estimator by setting β̂j(x, s) =:
b̂0,j, ̂̇βx

j (x, s) =: b̂1,j, and ̂̇βs
j (x, s) =: b̂2,j, minimizing

∑N

i=1

∑T

t=r+1

[
Yt(si) −

∑p+q

j=0

{
b0,j + b1,j(Xt(si) − x)

+ b′
2,j(si − s)

}
Zt,j(si)

]2
Kit , (3.5)

with respect to bk = (bk,0, bk,1, . . . , bk,(p+q))
′, k = 0, 1, 2, where

Kit = Kh1(Xt(si) − x)Lh2(si − s), Kh1(x) = h−1
1 K(x/h1), with K

a kernel function on R
1 and h1 > 0 a bandwidth, and Lh2(s) =

h−2
2 L(s/h2) with L a kernel function on R

2 and h2 > 0 another
bandwidth.

We let Y = (Yr+1(s1), . . . ,YT(s1), . . . ,Yr+1(sN), . . . ,YT(sN))′
denote a NT0-dimensional vector, with T0 = T −r. Also, denote
by ⊗ the Kronecker product and 1p+q+1 = (1, 1, . . . , 1)′ the
(p + q + 1)-dimensional vector with all components being 1.
Then, with e1 = (1, 0, 0, 0) ⊗ diag(1′

p+q+1), the local linear
estimator of β(x, s) derived from (3.5) is given by

β̂(x, s) = b̂0 = e1U−1
TNVTN , (3.6)

where UTN = (NT0)
−1Z̃′W̃Z̃ and VTN = (NT0)

−1Z̃′W̃Y , with
Z̃ denoting an NT0×4(p+q+1) matrix with its (i×T0+t−r)th
row equal to(

Zt(si)
′, {(Xt(si) − x)/h1}Zt(si)

′, ({(si − s)/h2} ⊗ Zt(si))
′)

for i = 1, . . . , N and t = r + 1, . . . , T, and

W̃ = diag
{

Kh(Xr+1(s1) − x)Lh(s1 − s), . . . ,

Kh(XT(s1) − x)Lh(s1 − s), . . . ,
Kh(Xr+1(sN) − x)Lh(sN − s), . . . ,

Kh(XT(sN) − x)Lh(sN − s)
}

.
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3.2. Asymptotic Property

We establish the asymptotic property for the estimator β̂(x, s) in
this section. All the regularity assumptions needed are collected

in Appendix A.1. Let Hit =
(

1, Xt(si)−x
h1

,
(

si−s
h2

)′)′
. Then it

follows from (3.6) that

UTN = (T0N)−1
∑N

i=1

∑T

t=r+1
HitH′

it ⊗ Zt(si)Zt(si)
′Kit ,

(3.7)

VTN = (T0N)−1
∑N

i=1

∑T

t=r+1
Hit ⊗ Zt(si)Yt(si)Kit . (3.8)

Then by (3.6) together with (3.7) and (3.8), we have(
β̂(x, s) − β(x, s)

)
=

(
b̂0 − b0

)
= e1U−1

TNWTN , (3.9)

WTN := (T0N)−1
∑N

i=1

∑T

t=r+1
(Hit) ⊗ Y∗

t (si)Zt(si)Kit ,
(3.10)

where Y∗
t (si) := Yt(si)−[b0 +b1(Xt(si)−x)+b′

2(si − s)]′Zt(si).
We give some preliminary lemmas before stating the asymp-

totic normality for β̂(x, s). We need to introduce some additional
notations. Denote by fX(x, s) the marginal probability density
function of Xt(s) at a given location s, fS(s) the intensity function
of the observing locations {si}, �(x, s) = E[Zt(s)Zt(s)′|Xt(s) =
x], and μK

2 = ∫
u2K(u)du, μL

2 = ∫
uu′L(u)du.

Lemma 3.1. Under the assumptions given in Appendix A.1,

UTN
P→ U := fX(x, s)fS(s)

⎛
⎝�(x, s) 0 0

0 �(x, s)μK
2 0

0 0 μL
2 ⊗ �(x, s)

⎞
⎠

as T0, N → ∞, where P→ stands for convergence in probability.

Next, we consider the asymptotic behavior of WTN , with its
components WTN,j, for j = 1, 2, 3, corresponding to those of Hit
in (3.10), respectively.

Lemma 3.2. Under the assumptions given in Appendix A.1,

E[WTN,1] = fX(x, s)fS(s)�(x, s)B0(x, s) + o
(
h2

1 + h2
2
)

, (3.11)
E[WTN,j] = o

(
h2

1 + h2
2
)

, j = 2, 3

as T0, N → ∞, where B0(x, s) = (h2
1/2)μ1(x, s) +

(h2
2/2)μ2(x, s), with

μ1(x, s) = (∂2β(x, s)/∂x2)

∫
u2K(u)du,

μ2(x, s) = (μ2,0, . . . , μ2,p+q)
′, with

μ2,j = tr
{
(∂2βj(x, s)/∂s∂s′)

∫
zz′L(z)dz

}
.

The following lemma provides the asymptotic variance of
WTN,1.

Lemma 3.3. Under the assumptions in Appendix A.1,

var[WTN,1] = (
T0h1Nh2

2)−1
�1(1 + o(1))

+ T−1
0 �2(1 + o(1)), (3.12)

where

�1 = σ 2(s)�(x, s)fS(s)fX(x; s)
∫

K2(u)du
∫

L2(z)dz,

�2 = �(x; s, s)�∗(x; s, s)f 2
S (s)q(x, x; s).

Here σ 2(s) = var(ε1(s)), �(x; s, s) and �∗(x; s, s) are the
limits of �(x; si, sj) = E(εt(si)εt(sj)|Xt(si) = x, Xt(sj) = x)

and �∗(x, si, sj) = E[Zt(si)Zt(sj)′|Xt(si) = x, Xt(sj) = x],
respectively, and q(x, y; s) is the limit of the joint probability
density p(x, y; si, sj) of (Xt(si), Xt(sj)), defined in Assumption
(A1), as si and sj tend to s (i.e., ‖si − s‖ → 0 and ‖si − s‖ → 0
with ‖ · ‖ for the Euclidean norm in R2).

We remark that the notations �(x; s, s), �∗(x; s, s) and
q(x, y; s) given in �2 in Lemma 3.3 are denoted simply for
the limits of �(x; si, sj), �∗(x, si, sj) and p(x, y; si, sj) as si and sj
tend to s. They do not mean that �(x; si, sj), �∗(x, si, sj) and
p(x, y; si, sj) are continuous at (si, sj) = (s, s), which may not hold
true in the presence of the so-called nugget effect (Cressie 1993,
sec. 2.3.1). See also the discussions in Lu, Tjøstheim, and Yao
(2008) and Lu et al. (2009).

We now present the asymptotic normality result.

Theorem 3.1. Let the Assumptions in Appendix A.1 hold. Then

β̂(x, s) − β(x, s) = B0(x, s) + o(h2
1 + h2

2)

+
{(

T0h1Nh2
2)− 1

2 	1 + T− 1
2

0 	2

}
η(s)(1 + op(1)),

(3.13)

as T0, N → ∞, where B0(x, s) is defined in Lemma 3.2, η(s) is a
(p + q + 1)-dimensional normal random vector with zero mean
and identity variance matrix, and 	1 and 	2 are two (p + q +
1) × (p + q + 1) matrices, satisfying

	1	
′
1 = σ 2(s){�−1(x, s)/(fS(s)fX(x; s))}

∫
K2(u)du

∫
L2(z)dz,

	2	′
2 = �(x; s, s){�−1(x, s)�∗(x, s, s)�−1(x, s)/f 2

X(x, s)}q(x, x; s).

The proof of the lemmas and Theorem 3.1 will be given in
Appendix A.3.

Remark 1. From Theorem 3.1, the optimal bandwidths for
estimating βj(x, s) in the one-step method can be obtained by
minimizing the asymptotic mean squared error of the estimator
in the form [(

c2h2
1 + c3h2

2
)2 + c4/{T0Nh1h2

2}
]

, (3.14)

minimizing of which with respect to (h1, h2) leads to the optimal
bandwidths

h1 = (
(c3c4)/{4c2

2T0N})1/7 ,

h2 =
(
{23/2c3/2

2 c4}/{c5/2
3 T0N}

)1/7
, (3.15)

where c2 = 1
2

∂2βj(x,s)
∂x2

∫
u2K(u)du, c3 = 1

2 tr
{
∂2βj (x, s)/

∂s∂s′
∫

zz′L(z)dz
}

, and

c4 =
(
{σ 2(s)e′j�−1(x, s)ej}/{fX(x; s)fS(s)}

) ∫
K2(u)du

∫
L2(u)du.
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Remark 2. Based on the optimal bandwidths as given
in Remark 1, we have h1Nh2

2 = O(N/(T0N)3/7) =
O((N4/T3

0)1/7). Therefore, if limN,T→∞ h1Nh2
2 =

limN,T→∞ O((N4/T3
0)1/7) = 0, then the rate of the convergence

for β̂(x, s) is of the usual semiparametric order
(
T0h1Nh2

2) 1
2 =

o(T
1
2

0 ) on the left hand side of (3.13). Alternatively, if
limN,T→∞ h1Nh2

2 = limN,T→∞ O((N4/T3
0)1/7) > 0, then

the rate of the convergence for β̂(x, s) is of order T
1
2 on the

left hand side of (3.13). This implies that if the observing
(spatial) locations are sufficiently dense with the number N
sufficiently large relatively to the time series sample size T,
our semiparametric estimator can even achieve the time series
parametric rate of root T (up to the bias), which is an interesting
finding with modeling of spatio-temporal data by the one-step
procedure.

3.3. Discussion on Comparison with a Two-Step Procedure

Alternative to the above estimation, we can develop a two-step
procedure for estimating the unknown function β(·, ·) as in Lu
et al. (2009) and Al-Sulami et al. (2017), which is sketched for
comparison as follows.

Step 1: (Time-series based estimation) This step just follows
the estimation procedure in Cai, Fan, and Yao (2000). For each
location si, the functions βj(Xt(si), si) are estimated by a local
linear fitting. For Xt(si) in the neighborhood of x,

βj(Xt(si), si) ≈ βj(x, si) + β̇j(x, si)(Xt(si) − x)

=: aj + bj(Xt(si) − x). (3.16)

Then, we define an estimator by β̂j(x, si) =: âj and ̂̇βj(x, si) =: b̂j,
minimizing

∑T

t=r+1

[
Yt(si) −

∑p+q

j=0

{
aj + bj(Xt(si) − x)

}
Zt,j(si)

]2

Kh1(Xt(si) − x), (3.17)

w.r.t. aj, bj, j = 0, 1, . . . , p + q, where Kh1(x) = h−1
1 K(x/h1),

with K the kernel function on R
1 and h1 > 0 denoting the

temporal bandwidth.
Then the local linear estimators can be expressed as

β̂(x, si) = ē(Ai(x)′Bi(x)Ai(x))−1Ai(x)′Bi(x)Y(si), (3.18)

where ē = (1, 0) ⊗ diag(1p+q+1), Ai(x) denotes an T0 × 2(p +
q + 1) matrix with (Zt(si)′, (Xt(si)− x)Zt(si)′) as its t − r th row
for t = r + 1, . . . , T, and

Bi(x) =diag
{

Kh1(Xr+1(si) − x), . . . , Kh1(XT(si) − x)
}

.

Step 2: (Spatial smoothing) The estimators based on Step-1
procedure can be improved by pooling the information from
neighboring locations by spatial smoothing (Lu et al. 2009). At
the observing locations {si, i = 1, 2, . . . , N} ⊂ S, there is a
spatial sampling intensity function fS over S (see Assumptions
in Appendix A.1). Then a spatial smoothing estimator of β(x, s)
is obtained by

β̃j(x, s) =
∑N

i=1
L̃∗

h2,i (s) β̂j(x, si), j = 0, 1, 2, . . . , p+q, (3.19)

where L̃∗
h2,i (s) is the ith component of ẽ′

1
(
C′DC

)−1 C′D, a local
linear fitting equivalent kernel function on R

2. Here ẽ1 =
(1, 0, 0)′ ∈ R

3, C = C(s) denotes an N × 3 matrix with the
ith-row

(
1, (si − s)′/h2

)
, and D = D(s) = diag

{
Lh2(si − s)

}N
i=1

with Lh2(·) = L(·/h2)/h−2
2 and L(·) a kernel on R

2.

Theorem 3.2. Under Assumptions in Appendix A.1, as
T0, N → ∞, the Step 1 estimator satisfies that for si ∈ S,

β̂(x, si) − β(x, si) = h2
1

2
μ1(x, si) + o(h2

1)

+
{
(T0h1)

− 1
2 	1(si)

}
η(si)(1 + op(1)),

(3.20)

and the Step 2 estimator satisfies that for s ∈ S,

β̃(x, s) − β(x, s) = h2
1

2
μ1(x, s) + h2

2
2

μ2(x, s) + o(h2
1 + h2

2)

+
{(

T0h1Nh2
2)− 1

2 	1 + T− 1
2

0 	2

}
η(s)(1 + op(1)),

(3.21)

where η(s) is a (p + q + 1) random vector with zero mean and
identity variance matrix, with μ1(x, s), μ2(x, s) and 	1 = 	1(s)
and 	2 = 	2(s) as defined in Theorem 3.1.

Remark 3. The optimal greedy bandwidth h1 for time series
based estimation at each location si is derived similarly to that
of Cai, Fan, and Yao (2000), which is h1 = O

(
T−1/5

0

)
fol-

lowing from (3.20). Here “greedy” means that the bandwidths
are chosen to be optimal locally stepwise at all the locations,
respectively, a popular idea applied in machine learning mod-
eling. Then, with this order of h1, by minimizing the squared
bias plus variance of β̃(x, s) given in (3.21), we can find h2 =
O

(
(Nh1T0)

−1/6) for the two-step procedure (note that this dif-
fers from the standard optimal bandwidth for spatial smooth-
ing that is of order O(N−1/6) in view of the two-dimensional
smoothing). Clearly these h1 and h2 are different from those
optimal bandwidths in (3.15) for the one-step estimation pro-
cedure given in Theorem 3.1.

Remark 4. It is interesting to discuss the comparison between
the one-step and the two-step procedures. We note from (3.13)
in Theorem 3.1 and (3.21) in Theorem 3.2 that the one-
step and two-step methods have the same form of asymptotic
biases and variances so they have the same form of Asymptotic
Mean Squared Estimation Error (AMSE) as given in (3.14)
in Remark 1. However, for the two-step estimation with the
optimal bandwidths h1 = O

(
T−1/5

0

)
in Step 1 and h2 =

O
(
(NT0h1)−1/6) = O

(
(NT4/5

0 )−1/6
)

in Step 2 (or even worse
if h2 = O(N−1/6)), it leads to, from (3.14), that

AMSEtwo =
[ (

O(T−2/5
0 ) + O

(
(NT4/5

0 )−2/6
))2

+ O(1)

T0N(T−1/5
0 )

(
(NT4/5

0 )−2/6
)]
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= O
( (

T−4/5
0

)
+

(
T−2/3

0 N−1/3
)

+
(

T−8/15
0 N−2/3

)
+

(
T−4/15

0 N−2/3
) )

, (3.22)

while for the one-step procedure with the optimal bandwidths
h1 and h2 given in (3.15), it leads to, from (3.14), that

AMSEone = O
(
(T0N)−4/7) . (3.23)

Remark 5. Clearly AMSEtwo in (3.22) is much larger than
AMSEone in (3.23). In fact it follows from (3.22) and (3.23) that

AMSEtwo

AMSEone = O
((

T− 8
35

0 N
4
7

)
+

(
T− 2

21
0 N

5
21

)

+
(

N− 2
21 T4/105

0

)
+

(
T

32
105

0 N− 2
21

))
. (3.24)

For example, consider the summation of the first and fourth
terms on the RHS of (3.24), the minimum of which is achieved
and equal to O(T8/35

0 ) → ∞ when T− 8
35

0 N
4
7 = T

32
105

0 N− 2
21 ,

that is, N = T4/5
0 . Therefore, (3.24) actually tends to infinity

as T, N → ∞. This implies that the usual two-step estimation
procedure with optimal greedy bandwidths in each of the two
steps is not an optimal estimation. See more comparison of both
methods in Section 5.

From Theorems 3.1 and 3.2 and the discussions above, we
may conclude that when the sample sizes tend to infinity, both
procedures of one-step and two-step share the same asymptotic
mean squared errors. However, when applying the two-step
procedure, the optimal greedy (i.e., locally optimal) bandwidths
would generate poor estimation. In particular, when the sample
sizes are not sufficiently large, we recommend one-step pro-
cedure for estimation, while with large sample sizes, we can
apply the two-step procedure but should carefully select the
bandwidths as done for the one-step one (see Section A.2).

4. Scheme 2: Fusion of Spatial Weight Matrices

In Section 3, we assume the spatial weight matrix W is well pre-
specified. In real applications, it may not be always the case, and
one can often specify different spatial weight matrices based on
different features of the real data, such as distance based spatial
weight matrix W1 or contiguity based spatial weight matrix W2,
and so on (see, Anselin 1988). A significant problem is how
those spatial weight matrices should be used for modeling in
applications. We suggest a weight matrix fusion idea to solve the
issue.

For simplicity, let us look at two spatial weight matrices W1
and W2 (the case for more than two spatial weight matrices is
easily extended), which we suppose are well pre-specified and
linearly independent so that both weight matrices are essentially
different, for model identifiability. We consider a convenient
fusion idea of combining different individual spatial weight
matrices in a form

W = a1W1 + a2W2, (4.1)
where a1 and a2 are unknown constants satisfying a1 + a2 = 1
so that W is row-wise standardized if W1 and W2 are row-
wise standardized. Here we do not suppose ak’s are necessarily

nonnegative. So the elements of our new W may be negative
and W is a kind of generalized spatial weight matrix. We let the
data decide the combining weights ak. Therefore, we have here
extended model (2.2) with our scheme 2 by combining spatial
weight matrices as follows:

Yt(si) = β0(Xt(si), si)

+
∑p

j=1
βj(Xt(si), si)

(
a1YSL(1)

t−j (si) + a2YSL(2)
t−j (si)

)
+

∑q

l=1
βp+l(Xt(si), si)Yt−l(si) + εt(si),

i = 1, . . . , N, t = r + 1, . . . , T, (4.2)

where βj(x, s), j = 0, 1, . . . , p+q, are as specified in model (2.2),
and

YSL(k)
t (si) =

∑N

j=1
wij,kYt(sj), k = 1, 2,

with wij,k is the (i, j)th component of Wk, satisfying wij,k ≥ 0 and∑N
j=1 wij,k = 1.
This idea of combining weight matrices, in our setting of

nonlinear modeling, is essentially different from, and more con-
venient than, the usual idea of spatial weights matrix selection
and model averaging (see Zhang and Yu 2018, in the linear
model setting). Note that in the usual model averaging, one
first needs to establish different models with individual spatial
weight matrices Wk’s taken, respectively, for W in the DyFAST
modeling of Section 3 and then consider to average/combine
those different models. Clearly, this model averaging idea is
more involved from the modeling perspective. Actually, in our
scheme 2, for example, if (a1, a2) = (1, 0), then the model with
W1 is automatically selected, while if (a1, a2) = (0, 1), so is the
model with W2. In the general case with a1 +a2 = 1, it indicates
that fusing different features in W1 and W2 is important for our
DyFAST modeling.

We need to extend the procedure in Section 3 to include esti-
mation of (a1, a2) in Scheme 2 as follows. Let β

(k)
j (Xt(si), si) =

akβj(Xt(si), si) for k = 1, 2. Then we can express (4.2) in the
vector form of model (3.1) with newly defined

Zt(si) = (1, YSL(1)
t−1 (si), YSL(2)

t−1 (si) . . . ,

YSL(1)
t−p (si), YSL(2)

t−p (si), Yt−1(si), . . . , Yt−q(si))
′ (4.3)

denoting the vector of spatio-temporally lagged variables, and

β(x, s) =(β0(x, s), β(1)
1 (x, s), β(2)

1 (x, s), . . . , β(1)
p (x, s), β(2)

p (x, s),
βp+1(x, s), . . . , βp+q(x, s))′ (4.4)

the corresponding vector of functional autoregressive coeffi-
cients. Therefore, we can follow the one-step estimation proce-
dure in Section 3 to get an estimator

β̂(x, s) =(β̂0(x, s), β̂(1)
1 (x, s), β̂(2)

1 (x, s), . . . , β̂(1)
p (x, s), β̂(2)

p (x, s),

β̂p+1(x, s), . . . , β̂p+q(x, s))′. (4.5)

As a1 + a2 = 1, we have βj(x, s) = β
(1)
j (x, s) + β

(2)
j (x, s) for

j = 1, 2, . . . , p in model (4.2), can hence construct an estimator
of βj(x, s) by

β̂j(x, s) = β̂
(1)
j (x, s) + β̂

(2)
j (x, s), j = 1, 2, . . . , p. (4.6)
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Further, note that β
(k)
j (Xt(si), si) = akβj(Xt(si), si) for k = 1, 2

and a1 + a2 = 1. So we have∑p

j=1

∑N

i=1

∑T

t=r+1
β

(k)
j (Xt(si), si)

= ak
∑p

j=1

∑N

i=1

∑T

t=r+1
βj(Xt(si), si),

and can hence construct an estimator of ak by

âk =
∑p

j=1
∑N

i=1
∑T

t=r+1 β̂
(k)
j (Xt(si), si)∑p

j=1
∑N

i=1
∑T

t=r+1 β̂j(Xt(si), si)
, k = 1, 2, (4.7)

if the denominator of the RHS of (4.7) is not equal to zero.
Otherwise, note that 1

NT0

∑N
i=1

∑T
t=r+1{βj(Xt(si), si) −

E(βj(Xt(si), si))} p→ 0, so there must exist one j0 such
that

∑N
i=1

∑T
t=r+1 βj0(Xt(si), si) �= 0. Then we can

estimate ak by âk = ∑N
i=1

∑T
t=r+1 β̂

(k)
j0 (Xt(si), si)/∑N

i=1
∑T

t=r+1 β̂j0(Xt(si), si). Thus, with no loss of generality,
we may assume

∑p
j=1

∑N
i=1

∑T
t=r+1 βj(Xt(si), si) �= 0 for

simplicity below as the proofs for the âk’s are similar.
Similar to Theorem 3.1, for the β̂(x, s) given in (4.5), we have

Theorem 4.1. Let Assumptions A1–A6 in Appendix A.1 hold
and max(h3

1h−2
2 , h2

2h−1
1 )

= O(1). Then β̂(x, s) − β(x, s) = B0 + o(h2
1 + h2

2)

+
{(

T0h1Nh2
2)− 1

2 	1 + T− 1
2

0 	2

}
η(s)(1 + op(1)), (4.8)

as T0, N → ∞, where η(s) is a 2p + q + 1 random vector with
zero mean and identity variance matrix, and B0, 	1, and 	2 are
defined similarly to those in Lemma 3.2 and Theorem 3.1 with
new Zt(s) and β(x, s) defined in (4.3) and (4.4), respectively.

The proof of Theorem 4.1 is similar to that for Theorem 3.1,
so we omit the details here. For the estimators given in (4.6), by
the continuous mapping theorem, it follows from Theorem 4.1
that

Corollary 4.1. Under the assumptions of Theorem 4.1, we have

β̂j(x, s) − βj(x, s)
= dj + o(h2

1 + h2
2) + σjη

∗(s)(1 + oP(1)), j = 1, 2, . . . , p,
(4.9)

where η∗(s) is a standard normal random variable, dj = (e2j +
e2j+1)′B0,

σ 2
j = (e2j + e2j+1)

′ {(
T0h1Nh2

2)−1
	1	

′
1 + T−1

0 	2	
′
2

}
(e2j + e2j+1),

with ei is an (2p+q+1)×1 unit vector with 1 at the ith position.

Next, we give an asymptotic result for âk defined in (4.7).

Theorem 4.2. If Assumption A1(ii) holds for some 2 < δ <

(9 + 3c)/2 and E|Xt(s)|2δ < ∞ holds for all s, then under the
assumptions of Theorem 4.1
√

T(âk − ak − bias(k)) L→ N(0, σ 2
ak), k = 1, 2, as T, N → ∞,

(4.10)

where bias(k) = O(h2
1 + h2

2), and σ 2
ak = �2α′

k�1αk, with αk =
(1 − ak, −ak)

′, � = ∫
R3

∑p
j=1 βj(x, s)f (x, s)fS(s) dxds, and �1

given in Lemma A.6 in Appendix A.4.

It is interesting to note from (4.10) that âk has a root-T
convergence rate, which is independent of N. This is due to the
infill asymptotic over space as specified in Assumption (A4) in
Appendix A.1.

In the estimation procedures for Schemes 1 and 2 above,
there are two lag orders (p, q) in models (2.2) and (4.2) and
two bandwidths (h1, h2) as indicated in (3.5), which need to be
selected in application. See Appendix A.2 for their selections by
a corrected AIC and cross-validation with details.

5. Simulation Study

We will consider the following data-generating simulating
model , with a spatially varying exogenous variable Xt(si) spec-
ified below,

Yt(si) = β0(Xt(si), si) +
∑2

j=1
βj(Xt(si), si)YSL

t−j(si)

+ β3(Xt(si), si)Yt−1(si) + εt(si), (5.1)

where YSL
t (si) = ∑N

k=1 WikYt(sk), with Wik from a pre-specified
spatial weight matrix W, satisfying Wik ≥ 0 and

∑N
k=1 Wik = 1,

and εt(si) follows iid Gaussian distribution N(0, 1). For example,
as in the real data Section 6, we can take si = (ui, vi) the centroid,
a representing location, consisting of the latitude and longitude
(scaled down by 100 ) of the ith country, i = 1, . . . , 23, in the EU.
The covariate process Xt(si) follows an autoregressive model of
order 1, Xt(si) = α(si)Xt−1 + et(si), where α(s) = 0.9 + 0.05 ×
cos(u × v) for s = (u, v), and et(si) follows iid N(0, 1) over t and
si, which is independent of the model innovation εt(si) in (5.1).
We take the functional coefficients

β0(x, s) = 0.2 + 0.05 × x + b(s),
β1(x, s) = 0.2 + 0.1 × sin(x + 1) + b(s),
β2(x, s) = 0.2 + 0.1 × cos(x − 1) + b(s),
β3(x, s) = 0.3 + 0.1 × cos(x + 1) + b(s),

where b(s) = 0.05 sin(u × v) for s = (u, v)′.
We generate data from model (5.1) as follows. At each loca-

tion si for i = 1, . . . , 23, the initial values of Y0(si) are set to zero.
Then we generate Yt(si) for t = 1, 2, . . . , T + 50, with the data
at the first 50 time points discarded to warm up for stationary
series in time, denoted as {(Xt(si), Yt(si)), t = 1, . . . , T, i =
1, . . . , N}. In practice, it is often more common that the number
of the observations along time increases while the number of
locations does not change that much. We therefore focus on
the simulations in this scenario, with N = 23, the number of
the centroids of the EU countries considered in Section 6, and
consider three time series lengths: T = 200, T = 400, and T =
600, respectively. The temporal bandwidth h1 and the spatial
bandwidth h2 are selected to be 0.4 and 7, respectively, in the
estimation for simplicity. To assess the estimate of an unknown
function β(x, s) as a function of x over [−2, 2] (approximately
between the 10th and the 90th percentiles of the data for the
covariate Xt(si)), we examine 50 points of x partitioning [−2, 2].
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The performance of estimation will then be assessed by defining
a squared estimation error (SEE) as a measure of the accuracy
of curve estimation β̂j(x, s) (as a function of x) at a location s
(see, Lu et al. 2009). Let xk, k = 1, . . . , 50, be the 50 points that
equally partition the interval [−2, 2]. To measure the accuracy of
estimation for β̂j(x, ·) as a function of x over [−2, 2] at N = 23
locations, we define, for j = 0, 1, 2, 3,

SEE(β̂j(·)) = 1
50 × 23

∑23

i=1

∑50

k=1

{
β̂j(xk, si) − βj(xk, si)

}2
.

(5.2)

In the simulations, we will consider two spatial weight matri-
ces, namely binary contiguity matrix (W∗

1 ) and distance function
matrices (W∗

2 ), which are two most commonly used specifica-
tions for spatial weight matrix (LeSage and Pace 2009). For W∗

1 ,
its elements are taken as w∗(1)

ij = 1 if two countries si and sj are
boundary to each other and 0 otherwise, and w∗(1)

jj = 0. For W∗
2 ,

its elements w∗(2)
ij = 1/dij, where dij is the Euclidean distance

between the centroids of two countries, si and sj, and w∗(2)
jj = 0.

Both are then row-wise standardized so that all the new elements
(say w(k)

ij ) in each row sum up to 1, that is,
∑N

j=1 w(k)
ij = 1, for

k = 1, 2, which are denoted as W1 and W2, respectively.
We will study the finite sample performances of our two

schemes from different aspects. In particular, we are concerned
with how the one-step procedure performs when compared
with the two-step one and with varying sample sizes in Scheme
1, and how the estimated fused spatial weight matrix impacts
the performances of the proposed estimation procedure in
Scheme 2.

First, we compare the performances of the estimation of βj(·)
by the one-step and the two-step procedures, respectively. We
suppose the spatial weight matrix W = W1 in model (5.1). We
repeat the simulation 100 times with time series length T = 400,
and thus have 100 values of SEE defined in (5.2) for each of
βj(·), j = 0, 1, 2, 3, with the one-step and the two-step methods,
respectively, summarized in boxplots in Figure 1 with the four
panels for β0(·), β1(·), β2(·), and β3(·), respectively. The results
clearly show that the one-step method has consistently smaller
SEE values than the two-step method, and hence gets more
accurate estimation than the two-step method for the considered
T and N.

Second, we compare the performances of the one-step
method under three different time series sample sizes of T =
200, T = 400, and T = 600, respectively. We repeat the
Monte Carlo simulation 100 times, and thus obtain 100 SEE
values defined in (5.2) for each of βj(·), j = 0, 1, 2, 3, with the
DyFAST (5.1) by the one-step estimation method, summarized
in boxplots in Figure A.1 in Appendix A.5. As expected, from
Figure A.1, with the time series sample size increasing, the
accuracy of the estimation of the βj(·)’s apparently improves. As
shown, our Scheme 1 given in Section 3 can work well even for
the sample size T = 200.

Third, we examine Scheme 2 with the fusing/combining
procedure of spatial weight matrices in Section 4 by estimating
the combining weight a. Here we suppose the true spatial weight
matrix W = 0.6W1+0.4W2 with a1 = a = 0.6 and a2 = 1−a =
0.4 as given in (4.1), in model (5.1). We consider the estimation

Figure 1. Boxplots of 100 Monte Carlo SEE values defined in (5.2) for the estimation
of βj(·, ·), j = 0, 1, 2, 3, in the four panels, where the two-step (left) and the one-step
(right) with T = 400 and N = 23 are presented in each panel.

with Scheme 2 under three time series sample sizes of T = 200,
T = 400, and T = 600, respectively. Figure A.2 in Appendix A.5
shows the boxplots of 100 Monte Carlo values for the estimation
of a, under T = 200, T = 400 and T = 600, respectively, which
appears rather acceptable with the median of the 100 estimates
of a very close to 0.6 even for the sample size T = 200.

We further examine the impacts of the estimated combined
weight matrix on the estimation of the coefficient functions of
the DyFAST model. Figure 2 displays boxplots of the 100 Monte
Carlo SEE values defined in (5.2) for the estimation of βj(·),
j = 0, 1, 2, 3, under the real spatial weight matrix W and the
estimated combined spatial weight matrix Ŵ = âW1 + (1 −
â)W2, respectively, under the sample size T = 400. Moreover,
Figure A.3 in Appendix A.5 presents the mean of the 100 Monte
Carlo estimates of βj(·), j = 0, 1, 2, 3 with the DyFAST under the
true spatial weight matrix W (in dotted lines) and the estimated
combined spatial weight matrix Ŵ (in dashed lines), respec-
tively, when compared with the true curves plotted in solid lines.
We observe from both Figures 2 and A.3 that our estimates βj(·),
j = 0, 1, 2, 3 mimic the corresponding true curves quite well
even for the relatively small size T = 200. The estimation results
indicate that with our estimated combined spatial weight matrix,
our DyFAST method can still accurately estimate the coefficient
functions.

Moreover, we examine the efficiency of the estimation in
the case that the true combined spatial weight matrix contains
negative combining weight in the form W = 1.2W1 − 0.2W2
with a1 = a = 1.2 and a2 = 1 − a = −0.2. Figure A.4 in
Appendix A.5 shows the boxplots of the 100 Monte Carlo values
for estimation of a1 = a and a2 = 1 − a under T = 400. It
clearly follows from Figure A.4 that the proposed procedure can
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Figure 2. Boxplots of 100 Monte Carlo SEE values for the estimation of βj(·), j = 0, 1, 2, 3, with T = 400 and N = 23, for the DyFAST under the real (oracle) spatial weight
matrix (W = 0.6W1 + 0.4W2) and the estimated combined spatial weight matrix (Ŵ = â1W1 + â2W2), respectively, in each panel.

also accurately identify the negative combining weight for the
candidate spatial weight matrices. The impacts of the estimated
weight matrix on the estimation of the coefficient functions are
omitted with similar outcomes as reported above. To sum up,
these findings further demonstrate that our DyFAST method
works very well with Scheme 2 even for the combined spatial
weight matrix with negative combining weights.

6. Real Data Example

6.1. Background and Data

Retail gasoline prices are considerably fluctuating over time
and across countries within the Europe. Numerous studies have
examined the impact of crude oil price on retail gasoline prices,
particularly focusing on the asymmetries in price transmission
(see Wlazlowski et al. 2009; Clerides 2010). Any price dis-
equilibria of retail gasoline in neighbor countries can cause
“fuel travels” and create significantly cross-national spatial price
spillovers in EU countries (Banfi, Filippini, and Hunt 2005;
Wlazlowski et al. 2009). Negligence of the spatial dependency
may hence cause a biased result. To better measure the price
transmission of the retail gasoline in the EU, we will apply our
DyFAST analysis in this study.

Our data consist of panel data of weekly spot prices for Brent
crude oil price and diesel prices in N = 23 European countries
from January 26, 2015 to December 19, 2016. The data are
obtained from European Commission (Source from: https://ec.
europa.eu/energy/en/data-analysis/weekly-oil-bulletin), with all
commodity prices expressed in EUR and the diesel prices inclu-
sive of duties and taxes (Wlazlowski et al. 2009). The descrip-
tive statistics for the raw data are reported in Table A.1 in

Appendix A.5. As all the series at the price level are nonsta-
tionary (see, Table A.1), we will consider the data at the return
level by computing the Brent crude oil price return (Xt) and
the diesel prices return (Yit = Yt(si)), through the difference
in the logarithm of two consecutive weekly prices, multiplied
by 100. For such country-level data, as usual, we take si =
(ui, vi) to be the centroid (latitude and longitude, scaled down
by 100) for country i, i = 1, 2, . . . , N(= 23), in the EU, where
we have got the latitude and longitude scaled down by 100 for
easy operations of nonparametric smoothing; see Figure A.5
in Appendix A.5 for the locations plotted. In the analysis as
a demonstration, we took a simple and easy way to see, by a
view of infill asymptotic, the centroid locations si’s simply as
the observing locations in a continuous domain S(⊂ R2) of the
EU, and the data as a realization of a space-continuous process
indexed by location s ∈ S in space, not of a “constant-by-area”
process or a spatially discrete process, in population. See more
discussions on this in Appendix A.6.

6.2. The DyFAST Analysis

We are modeling the diesel prices return Yit = Yt(si) for country
si by our DyFAST model (2.2) associated with the Brent crude oil
price return (Xt), that is Xt(si) =: Xt for different countries. In
estimating the spatial neighboring effect for diesel prices, there
are different candidate weight matrices. In this study, for exam-
ple, we can consider two pre-specified spatial weight matrices
W1 and W2, which are distance based. Let the centroid distances
from each spatial unit (country) i to all other units j �= i be
ranked as follows: diji(1) ≤ diji(2) ≤ · · · ≤ diji(N−1), where
N = 23, and dij is the Euclidean distance between the centroids

https://ec.europa.eu/energy/en/data-analysis/weekly-oil-bulletin
https://ec.europa.eu/energy/en/data-analysis/weekly-oil-bulletin
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of two countries si and sj, and ji(k) stands for the country that is
the kth closest to country i. Then for each k = 1, . . . , N − 1, the
set Nk(i) = {ji(1), ji(2), . . . , ji(k)} contains the k closest units to
unit i. Then for W1, we consider k = 2, andN2(i) = {ji(1), ji(2)}
containing the 2 closest units to unit i. The elements of W1 are
set as wij = 1/dij for j ∈ N2(i), and wij = 0 otherwise. For
W2, we consider all neighboring countries with wij = 1/dij, for
j ∈ N22(i) with k = 22. All spatial weight matrices are then row-
wise standardized, which we still denote as W1 and W2 below.

First, we apply the DyFAST to estimate the spatial neighbor-
ing effect for diesel price returns by Scheme 1, with W1 and W2
considered as follows:

Yt(si) = β0(Xt(si), si) +
∑p

j=1
β

(1)
j (Xt(si), si)YSL(1)

t−j (si)

+
∑p

j=1
β

(2)
j (Xt(si), si)YSL(2)

t−j (si)

+
∑q

l=1
βp+l(Xt(si), si)Yt−l(si) + εt(si), (6.1)

where YSL(1)
t−j (si) and YSL(2)

t−j (si) are defined as in (2.1) with W1
and W2, respectively, and the functional autoregressive coef-
ficients are as given in (4.4). Because the si’s are irregularly
positioned in space, we simply see them as the observing loca-
tions in space that is continuous as in geostatistics (see, Cressie
1993), in particular, in view of that fact that citizens of EU
member countries can move freely around the countries of the
EU. We therefore put the functional coefficients β(x, s)’s in (6.1)
as smooth functions of (x, s) as done in Lu et al. (2009) and Al-
Sulami et al. (2017). The orders (p, q) of spatial neighboring and
temporal lagged autoregressive effects are determined by Akaike
Information Criterion with correction (AICc), which are listed
in Table A.2 in Appendix A.5, with the model of optimal orders
p = 2 and q = 1 as follows

Yt(si) = β0(Xt(si), si) +
∑2

j=1
β

(1)
j (Xt(si), si)YSL(1)

t−j (si)

+
∑2

j=1
β

(2)
j (Xt(si), si)YSL(2)

t−j (si)

+ β3(Xt(si), si)Yt−l(si) + εt(si). (6.2)

Moreover, the bandwidths used for estimation are decided by
cross-validation, which are h1 = 3.187 and h2 = 0.275,
respectively. Figure A.6 in Appendix A.5 shows the estimated
coefficient functions of model (6.2). We can see that the func-
tions β

(1)
1 (x, si) depicted in the top-middle panel and β

(1)
2 (x, si)

in the top-right panel in Figure A.6, both of which are as func-
tions of x with i = 1, . . . , N, associated with W1, appear to
fluctuate around zero mostly. Intuitively, with more neighboring
countries considered in W2, it would be more important as indi-
cated in bottom left and middle panels of Figure A.6. Therefore,
we are considering the DyFAST by combining spatial weight
matrices W1 and W2 to see whether the combining weight a1
is statistically significant by Scheme 2:

Yt(si) =β0(Xt(si), si) +
∑2

j=1
βj(Xt(si), si)

(∑2
k=1

akYSL(k)
t−j (si)

)
+ β3(Xt(si), si)Yt−l(si) + εt(si), (6.3)

where a1 and a2 are two constants, satisfying a1 + a2 = 1.
Moreover, the used bandwidths are decided by cross-validation,
which are h1 = 3.201 and h2 = 0.273, respectively. Then
we can obtain the estimated combining weight vector (a1 =

−0.23, a2 = 1.23), and the estimated functional coefficients
βj(x, si), j = 0, 1, 2, are plotted in Figure A.7 in Appendix A.5.
To test whether the ak is statistically significant, we consider a
bootstrap approach as the asymptotic variance of the estimator
appears complex (see, Theorem 4.2). Given the observed sample
{(Xt(si), Yt(si)), t = 1, . . . , T, i = 1, . . . , N}, the method
proceeds as detailed in the Algorithm (Bootstrap for DyFAST)
given in Appendix A.7.

By repeating the bootstrap 1000 times, we can obtain the t-
values for a1 and a2 based on the replications, which are equal
to −0.4956 and 2.7506, with the corresponding p-values equal
to 0.6203 and 0.0061, respectively. These show that a1 is not,
while a2 is, statistically significant at 1% significance level, which
indicates that our method selects W2 as the optimal weight
matrix (a1 = 0 and a2 = 1). The top middle and right
sub-figures in Figure A.7 further confirm that a1β1(x, si) and
a1β2(x, si) as functions of x fluctuate nearly close to zero.

We now consider only W2 to investigate the impacts of Brent
crude oil price return on diesel price returns in the N = 23 EU
countries, which is of a form

Yt(si) = β0(Xt , si) +
∑2

j=1
βj(Xt , si)YSL(2)

t−j (si)

+ β3(Xt , si)Yt−1(si) + εt(si). (6.4)

Figure A.8 in Appendix A.5 shows the estimated βj(x, si)’s as a
function of x for the ith country, with the bandwidths h1 = 3.293
and h2 = 0.274. Here we can see that for temporal lag equal
to 1, the spatial neighboring effects (i.e., β1(x, si)) are positive.
Further, from Figure A.7, β2(x, si) (especially at the right side)
and β3(x, si) (especially at the left side), as functions of x, can
be categorized as three groups, as given in Table 1, with higher,
medial or lower valued coefficients, respectively, for different
si’s (i.e., the centroids, as representing locations, of different
countries) . Such a division is useful for parameterization of
the thresholds used for forecasting in Appendix A.8. Note that,
for simplicity, we put si’s as usual the centroids, representing
locations, of different countries, which are actually separated
though both countries among them may be neighbored. Here
the Group 1 countries are basically located in North-Western
Europe (except Portugal), and the Group 3 countries are located
in Balkans, while the other countries belonging to Group 2 are
in the middle belt between them. Finally, from Figure A.8, the
self temporal lag effects (i.e., β3(x, si)) are positive and relatively
larger for Group 3 than those for Group 1 (near zero) and Group
2 (negative). These empirical findings seem to be interesting,
which may help governments and energy users to mitigate the
negative impacts from the expected or unexpected fluctuations
in the oil and the neighboring retail gasoline markets and to
better manage energy risk. Moreover, the local country govern-
ments may formulate relevant energy policies on the basis of
their geographical locations.

Table 1. Country groups.

Group 1 Belgium Germany Denmark Luxembourg Netherlands Portugal Sweden
Group 2 Austria Czech.Republic Estonia Spain Finland France Italy Lithuania

Latvia Poland Slovenia Slovakia
Group 3 Bulgaria Greece Hungary Romania

NOTE: The groups are classified based on Figure A.8 in Appendix A.4.
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Table 2. Comparison of forecasting results.

Model (6.2) Model (6.3) Model (6.4) Threshold LinearSpat LinearAR

1.635 1.570 1.557 1.507 1.875 2.212

NOTE: This table shows the Mean Squared Prediction Error (MSPE) of the one-
step ahead prediction evaluated by the last Tf = 15 observations for DyFAST
with (W1, W2) (Model (6.2)), DyFAST with combined spatial weight matrix (Model
(6.3)), DyFAST with W2 (Model (6.4)), DyFAST with nonlinear threshold functions
(Threshold) and linear model with spatial lags (LinearSpat) and linear AR without
spatial lags (LinearAR).

To further evaluate our methods and findings in applica-
tion, we have compared the one-step ahead prediction per-
formances of our DyFAST specifications (6.2)–(6.4) together
with threshold parameterization of the smoothing coefficients
in (6.4) ( denoted by ‘Threshold’; see, Appendix A.8) as well as
the (location-wise) linear model with spatial lags (i.e., (6.4) with
the βj coefficients independent of x; denoted by “LinearSpat”)
and the (location-wise) time series linear AR model (i.e., the
mentioned LinearSpat model without considering spatial lag
terms; denoted by LinearAR). The corresponding Mean Squared
Prediction Errors (MSPEs) for one-step ahead forecasting are
reported in Table 2 with the details presented in Appendix A.9,
where we set aside the last Tf = 15 data for forecasting eval-
uation and used the first T = 76 data as training set. Clearly,
our DyFAST model and schemes can well uncover the nonlinear
effects of the crude oil price fluctuations on the retail gasoline
prices with prediction significantly improved by our models,
especially the “Threshold” model with the smallest MSPE of
1.507, as indicated in Table 2; see Appendix A.8 for more dis-
cussions.

In summary, our proposed methodologies can help to meet
the challenges well in our setting, especially: (a) the irregu-
larly positioned locations that make it hard to characterize the
neighboring effects for selection of an optimal spatial weight
matrix for forecasting; (b) the spatio-temporal dependencies
with location-wide non-stationarity making it difficult to char-
acterize the mutual interactions for a dynamic system across
time and space; (c) the complex spatio-temporal interactions
that make it hard to build an efficient procedure for computa-
tion of the estimation. We have hence proposed two DyFAST
models characterizing nonlinear dynamic behavior of regime-
switching nature, with two different estimation schemes defin-
ing spatial weight matrices together with one- and two-step pro-
cedures for estimation developed. The asymptotic theories for
these estimation schemes are then established. Both simulation
and real data examples have demonstrated the usefulness of
the proposed methods in nonlinear analysis of spatio-temporal
data.

Supplementary Materials

In the “Appendix: supplementary materials” file, we have collected
the related supplementary materials with regularity conditions in
Appendix A.1, practical bandwidth and model order selection in Appendix
A.2, proofs for Sections 3 and 4 in Appendix A.3 and Appendix A.4,
respectively, additional figures and tables for Sections 5 and 6 in Appendix
A.5, more discussions on viewing data, locations and space continuous
process in population for Section 6 in Appendix A.6, the bootstrap
procedure for Section 6 in Appendix A.7, and evaluation of prediction for
Section 6 in Appendix A.8.
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