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By 

Dr Hannah Burke 

Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterised by 
chronic airway inflammation, which is dependent upon a complex network of intercellular 
communication between the damaged airway epithelium and the immune system. Extracellular 
vesicles (EVs) are novel major signalling mediators between cells, and shuttle cargo such as micro 
RNA (miRNA) in health and disease. This thesis examines the role of EV miRNA regulation of 
inflammatory signalling pathways in COPD.  
 
  EVs were isolated from bronchoalveolar lavage fluid (BALF), and epithelial brushings were taken 
from the same patients with COPD and healthy controls. RNA sequencing was used to quantify EV 
miRNA expression and gene expression in epithelial brushings. Negative binomial models were 
used to identify differentially expressed miRNA and genes in patients with COPD, and a 
combination of bioinformatic approaches were used to identify the biologically significant 
interactions between these miRNA and genes. Further analysis assessed the predictive ability of 
the differentially expressed miRNA in discriminating between health and disease and their 
relationship with inflammatory endotypes in COPD. 
 
  Differential miRNA expression was observed in BALF EVs from patients with COPD compared to 
healthy ex-smokers. Specifically, five miRNA were found to be up-regulated in COPD (miR-2110, 
miR-182-5p, miR-223-3p, miR-200b-5p and miR-625-3p) and three miRNA were down-regulated in 
COPD (miR-338-3p, miR-138-5p and miR-204-5p). In silico analysis demonstrated these 
differentially expressed miRNA targeted differentially expressed genes in epithelial brushings in 
the same patients. These miRNA-gene expression interactions may have a significant impact on 
key inflammatory pathways in COPD. In addition, lung-derived EV miRNA were a strong predictor 
of disease presence. Moreover, specific EV miRNA correlated with expression of inflammatory 
cells within the airways of COPD patients, which may provide novel insights into distinct 
inflammatory endotypic disease mechanisms. 
 
..In summary, the findings from this thesis suggest that lung-derived EV miRNA may regulate gene 
expression in COPD leading to aberrant inflammatory signalling. Furthermore, EV miRNA may 
provide a novel diagnostic opportunity to detect early disease presence in COPD, and give further 
insights into the underlying endotypic mechanisms of disease, whereby EV miRNA could help 
future treatment stratification. 
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 Introduction 

1.1 Chronic obstructive pulmonary disease 

1.1.1 Overview of COPD 

Chronic obstructive pulmonary disease (COPD) affects 384 million people worldwide and is the 

third leading cause of death globally, claiming three million lives in 2016 (1, 2). The burden of 

COPD is predicted to increase over the next few decades due to continued exposure to COPD risk 

factors, such as tobacco smoke and an aging population (3). This is in marked contrast to other 

chronic diseases, such as heart disease and stroke, where there have been considerable decreases 

in mortality (4). Consequently, COPD represents an important public health challenge that is both 

preventable and treatable. COPD is characterised by irreversible airflow obstruction associated 

with emphysema, chronic inflammation and fibrosis, mucus gland hyperplasia and pulmonary 

arteriolar wall thickening and remodelling (5). In addition to pulmonary disease, COPD is also 

associated with several systemic complications, which contribute to overall morbidity and 

mortality (6, 7). COPD is therefore a complex and heterogeneous disease with many distinct 

clinical phenotypes and varied disease progression. This complexity has limited our understanding 

of disease and therefore has hindered the development of effective therapies. 

1.1.2 Burden of COPD 

COPD is a leading cause of morbidity and mortality worldwide that generates an economic and 

social burden that is both substantial and increasing (8, 9).  

Prevalence data is widely variable in COPD, due to differences in survey methods, diagnostic 

criteria, and analytical approaches (3). The lowest estimates of prevalence are those based on 

self-reporting of a doctor-diagnosis of COPD or an equivalent condition. For example, most 

national data show that less than six percent of the adult population have been told that they 

have COPD (10) and this likely reflects the widespread under-recognition and under-diagnosis of 

COPD (11). Large-scale epidemiological studies with more robust methodology, including 

standardised questionnaires and pre- and post-bronchodilator spirometry, have estimated the 

global prevalence of COPD to be 11.7% (8.4-15%, 95% confidence intervals) (1).  

COPD is associated with significant economic burden. In the European Union, the total direct costs 

of respiratory disease are estimated to be about six percent of the total healthcare budget, with 

COPD accounting for 56% (38.6 billion Euros) of the cost of respiratory disease (12). In particular, 
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COPD exacerbations account for the greatest proportion of the total COPD burden on the 

healthcare system. Unsurprisingly, the health care costs rise exponentially with COPD disease 

severity and in ageing populations with advancing comorbidities, this rise in costs is multiplied. 

The burden of COPD to a patient is high, both in terms of health-related quality of life and health 

status. Disability adjusted life years (DALY) is a composite measure of the burden of each health 

problem on a patient. COPD is an increasing contributor to disability and mortality, with COPD 

ranked as the fifth leading cause of DALYs lost globally. In addition, there are significant impacts 

on the patient’s family, friends and carers, with added emotional, social and financial burdens as a 

result of the disease (13).  

1.1.3 Risk factors for development and progression of disease 

COPD results from a complex interplay of long-term cumulative exposure to noxious gases and 

particles, combined with a variety of host factors including genetics, airway hyper-responsiveness 

and poor lung growth during childhood (14-17).  

Cigarette smoking is the leading environmental risk factor for COPD and is estimated to account 

for up to 80-90% of cases within the developed world. Yet even in heavy smokers, fewer than 50% 

develop COPD during their lifetime (18) suggesting additional complex interactions between 

genes and other environmental factors. 

1.1.3.1 Genetic factors 

The most well described genetic risk factor is Alpha-1 antitrypsin (AAT) deficiency. A hereditary 

deficiency of AAT leads to uninhibited action of serine proteases in the lung leading to massive 

tissue destruction and emphysema in people who smoke. This genetic abnormality is relatively 

rare and affects only a small proportion of the world’s population (estimated prevalence 0.01-

0.02%), with a prevalence of ~1% in patients with COPD (17, 19). 

Another clearly defined genetic defect linked to COPD are mutations of the telomerase reverse 

transcriptase gene (TERT), which results in early onset emphysema in smokers, who are 

predominantly female and have increased incidence of pneumothorax. These mutations are also 

described in idiopathic pulmonary fibrosis and there may be a family history of pulmonary 

fibrosis. These TERT polymorphisms were found in approximately 1% of COPD patients in two 

small independent cohorts, thus similar prevalence to AAT deficiency (20). The mutations lead to 

a shortening of telomeres leading to cellular senescence, which is discussed in more detail in the 

next section. 
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Early familial aggregation and linkage analysis studies strongly suggest genetic contributions to 

COPD (21-25), and more recent genome-wide association studies have identified several genomic 

regions that are clearly related to COPD susceptibility (26, 27). However, despite research 

advances, much of the heritability of COPD remains unexplained. Therefore the genetic 

determinants of COPD are likely to compose of multiple genetic susceptibility variants acting 

together to create a diverse array of COPD-related phenotypes. 

1.1.3.2 Ageing and COPD 

There is accumulating evidence that ageing hallmarks are prominent features of COPD (28). The 

structural changes seen in ageing airways and parenchyma (e.g. enlarged alveolar spaces and loss 

of lung elasticity) are similar to the changes seen in COPD. Broadly, the ageing hallmarks in COPD 

can be divided into processes affecting gene transcription (e.g. genomic instability, telomere 

attrition and epigenetic alterations), cellular metabolism (e.g. loss of proteostasis, dysregulated 

nutrient sensing and mitochondrial dysfunction) and other cellular processes (e.g. cellular 

senescence, stem cell exhaustion and altered intracellular communication) (29-31). The strongest 

evidence of the role of abnormal ageing in COPD come from studies demonstrating increased 

cellular senescence (mediated by the phosphoinositide 3-kinase (PI3K) -mammalian target of 

rapamycin (mTOR) pathway) (32, 33), however more work needs to be done to integrate findings 

and assess how age-related changes affect tissue repair and contribute causally to COPD. 

1.1.3.3 Lung growth and development 

Problems occurring during gestation, birth, and exposures during childhood and adolescence may 

all affect lung growth (34, 35), and have the potential to increase an individual’s risk of developing 

COPD. For example, low birth weight has been associated with lower FEV1 (forced expiratory 

volume in one second) in adulthood (36) and several studies have found a link between early 

childhood lung infections and COPD (37, 38). 

1.1.3.4 Smoking & domestic fuel exposure 

Cigarette smoking is the most common risk factor for COPD worldwide. Cigarette smokers have a 

higher prevalence of respiratory symptoms, greater lung function abnormalities, a faster decline 

in FEV1 and greater COPD mortality rate than non-smokers (39). Passive smoke exposure is also 

an important contributor to the development of COPD (40), as well as smoking during pregnancy 

affecting lung growth and development in utero (39, 41, 42).  

Globally, indoor air pollution is an underappreciated, but important risk factor for COPD. Almost 

three billion people worldwide use biomass as their main source of energy for cooking and 
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heating, which in poorly ventilated dwellings can accelerate lung damage (43-45). In these 

communities, indoor air pollution is responsible for a greater fraction of COPD risk than smoking.  

1.2 Pathogenesis and pathophysiology of COPD 

Inhalation of cigarette smoke or other noxious particles, such as smoke from biomass fuels, 

causes lung inflammation (46). The normal protective response to inhaled toxins is amplified in 

COPD leading to a chronic inflammatory response (47). This inflammation is thought to be 

responsible for parenchymal tissue destruction (resulting in emphysema), disruption of normal 

repair and defence mechanisms (resulting in small airway fibrosis), and goblet cell hyperplasia 

with mucus gland hypertrophy, as well as loss of cilia and reduced mucociliary function (resulting 

in chronic bronchitis). These pathological changes lead to gas trapping and progressive airflow 

limitation. The mechanisms for this amplified inflammation are not yet understood, but may at 

least in part, be genetically determined (48), and importantly persists despite smoking cessation. 

In support of the latter, studies have shown that levels of airway inflammatory cells are similar in 

current and ex-smokers (49) and markers of oxidative stress are found persistently elevated in the 

airways post-smoking cessation (50). One of the mechanisms postulated is increased 

phosphorylation of extracellular regulated kinase-1/2 (ERK) within emphysematous lungs driving 

matrix metalloproteinases (MMP)-1 induction leading to airway inflammation and matrix 

remodelling (51). Furthermore autoimmunity (via antielastin antibodies) (52), embedded 

particles/heavy metals from smoking (53) and changes in the lung microbiome have all been 

implicated in persistent airway inflammation in COPD (52, 54). However, novel mechanisms are 

emerging by which cells adapt to environmental cues such as smoking, which include changes in 

DNA methylation, histone modifications and regulation of transcription and translation by 

noncoding RNAs. These epigenetic mechanisms may be in key in driving persistent inflammation 

as a consequence of prior cigarette smoke exposure.  

The inflammatory and cellular interactions in COPD are summarised in Figure 1.1, and will be 

discussed in more detail in the next section. 
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Figure 1.1 An overview of the inflammatory and cellular interactions in COPD 

Cigarette smoke induced activation of immune cells leads to the release of cytokine, chemokines and 
proteases. Amplification signals (e.g. viruses, oxidative stress) are important in augmenting these 
inflammatory responses. CCL, CC chemokine ligand; CRP, C-reactive protein; CXCL, CXC chemokine 
ligand; EMT, epithelial mesenchymal transition; GM-CSF, granulocyte-macrophage colony stimulating 
factor; IFN, interferon; IL, interleukin; IP, interferon (IFN)-γ-inducible protein; LT, Leukotriene, MCP, 
monocyte chemotactic protein; MMP, Matrix metalloproteinase; NETs, neutrophil extracellular traps; 
NF-κB, nuclear factor kappa B; TGF, transforming growth factor; Th, T-helper cell; TNF, tumour necrosis 
factor; TSLP, thymic stromal lymphoprotein; VEGF, vascular endothelial growth factor. Adapted from 
Chung et al., 2008 (55) 

1.2.1 Inflammatory cells 

COPD is characterised by increased numbers of neutrophils, macrophages and lymphocytes 

(mainly CD8+ T lymphocytes) in bronchial biopsies (56), the small airways and lung parenchyma 

(57).  

1.2.1.1 Neutrophils 

Neutrophils are the front line of defence for the immune system. As summarised in Figure 1.1, 

they are a source of proteases and oxidants as well as inflammatory cytokines and antibacterial 

peptides (58, 59). They are, in part, responsible for both goblet cell hyperplasia in chronic 

bronchitis and tissue destruction in emphysema. 

Neutrophils are present in the lung tissue in steady state conditions in small numbers, but rapidly 

migrate to the sites of infection or injury in response to chemoattractants released by epithelial 

cells and alveolar macrophages (60). Cigarette smoke, oxidative stress, bacteria and viruses all 

activate neutrophilic inflammation via the transcription factor nuclear factor kappa B (NF-kB), and 

p38 mitogen-activated protein kinase (MAPK) signalling in airway epithelial cells, resulting in the 

release of neutrophilic mediators, including neutrophil chemoattractants CXC chemokine ligand 
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(CXCL)1, interleukin (IL)-8 and leukotriene (LT) B4 (61). Neutrophils are maintained in the airway by 

tumour necrosis factor (TNF)-α and granulocyte-macrophage colony stimulating factor (GM-CSF), 

and secrete serine proteases (e.g. neutrophil elastase) and MMP-8 and -9, which may contribute 

to alveolar destruction (62). Furthermore, neutrophil elastase secretion can activate epidermal 

growth factor receptors (EGFRs) leading to mucus hypersecretion and hyperplasia of goblet cells 

and submucosal glands (63). Neutrophils also release granule proteins and chromatin that 

together form extracellular fibres that bind bacteria. These neutrophil extracellular traps (NETs) 

degrade virulence factors and kill bacteria (64). Furthermore, neutrophils generate reactive 

oxygen species (ROS) causing oxidative stress, which further activates inflammation and induces 

corticosteroid resistance (65). Neutrophils from patients with COPD show marked abnormalities 

in chemotactic response, with increased migration but reduced accuracy (66), which may lead to 

increased damage to lung tissue and emphysema. 

1.2.1.2 Macrophages 

Macrophages are the dominant immune cell type in the healthy airways (67). Similar to 

neutrophils, macrophages release oxidants, inflammatory cytokines, growth factors, chemotactic 

factors and an array of MMPs when activated. They are critical to host defence and display a high 

degree of plasticity by changing their functional phenotype depending on the cytokine 

environment (68). In COPD, there are increased numbers of macrophages in the airways (69), they 

have a dysregulated response to virus (70), defective phagocytic ability (71) and reduced cytokine 

response (72), all of which may contribute to microbial dysbiosis and susceptibility to 

exacerbation. 

Alveolar macrophages have an important role in host immune defence and regulate both innate 

and adaptive immunity (73). They are significantly increased in the lungs of smokers and in 

patients with COPD (74), where they accumulate in the areas of emphysema (75, 76). The 

increase in numbers of macrophages in COPD may be as a result of increased recruitment from 

peripheral blood (77), local proliferation and/or local survival of macrophages (78, 79). In 

addition, evidence suggests that the effects of acute and chronic cigarette smoke exposure on 

macrophage survival may differ (80).  

Macrophages are a heterogeneous population of innate immune cells and can therefore perform 

different roles within the lung. Alveolar macrophages are primed to interact with inhaled 

pathogens and particles, whereas interstitial macrophages have an important role in regulating 

extracellular matrix proteins (81-83). Alveolar macrophages release more inflammatory mediators 

(e.g. TNF-α, IL-1β and IL-8), ROS and nitrogen intermediates, and show increased chemotaxis in 

response to cigarette smoke exposure (84-87). As a result, this activation implicates alveolar 



Chapter 1 

7 

macrophages in the airway inflammation and remodelling characteristic of COPD pathogenesis. 

MMP-9 is the predominant protease secreted by alveolar macrophages in COPD, and amongst 

other inflammatory proteins (e.g. TNF-α), is up-regulated by the transcription factor NF-κB, which 

is activated in alveolar macrophages in COPD patients, particularly during exacerbations (88). 

In addition, in response to cigarette smoke, alveolar macrophages also recruit neutrophils to the 

lungs via release of IL-8 (89), which further enhances the inflammatory cascade. This 

inflammation persists even after smoking cessation, suggesting there are self-perpetuating 

mechanisms, although these are not well understood (90). 

1.2.1.3 T Lymphocytes 

T lymphocytes are also increased in the airways and lung parenchyma, with an increased CD4:CD8 

ratio (91). T cell activation in COPD typically results in a T helper (Th)-1 mediated immune 

response and production of interferon (IFN)-γ (92). The mechanisms by which CD8+ T cells may 

cause COPD are unclear, however both CD8+ cells and IFN-γ levels correlate with airflow 

limitation and severity of emphysema, suggesting a role in pathogenesis (93). Furthermore, CD8+ 

T cells release perforin, granzyme B and cathepsins, which can contribute to alveolar cell 

apoptosis and therefore the development of emphysema (62).  

1.2.1.4 Airway epithelial cells 

The primary function of the airway epithelial cells is to form a physical and biochemical barrier 

between pathogens and harmful inhaled toxins. In COPD, this barrier function is compromised 

due to changes in the airway epithelial architecture, such as squamous metaplasia resulting in 

ciliary dysfunction, goblet cell hyperplasia and mucosal gland hypertrophy (94, 95). These changes 

result in reduced mucociliary clearance and chronic colonisation with respiratory pathogens (96, 

97). 

An important secondary function of these cells is to stimulate the innate immune response on 

recognition of an airway pathogen. Microbial presence is detected by pattern recognition 

receptors (PRRs) such as toll-like receptors (TLRs), C-type lectin receptors (CLRs), cytoplasmic 

retinoic acid-inducible gene-I-like receptors (RLRs) and NOD-like receptors (NLRs). Oxidative stress 

and viral infection can trigger epithelial cell production of IL-6 and IL-8 (98-100), which in turn 

leads to recruitment of innate immune cells, such as neutrophils, to surrounding tissues. In health 

these are protective mechanisms, however in COPD excessive or sustained recruitment and/or 

activation of immune cells can lead to tissue damage. Furthermore, IL-8 release from epithelial 

cells can alter structural cell phenotypes resulting in squamous metaplasia and impaired barrier 

function (101).  
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1.2.2 Inflammatory mediators 

Inflammatory mediators, such as chemokines, cytokines and growth factors, are increased in 

COPD and their role in COPD pathogenesis has been extensively studied (102). Increased levels of 

IL-1β, TNF-α, IL-6 and IL-8 have all been measured in the sputum of COPD patients, with further 

increases during COPD exacerbations (103, 104).  

TNF-α up-regulates adhesion molecules and facilitates migration of leucocytes into the bronchial 

mucosa during exacerbations by inducing IL-8 expression, and stimulating neutrophil 

degranulation and superoxide production (105). TNF-α activates NF-κB driven pro-inflammatory 

cytokine production, via activation of TNF receptor 2 (TNFR2) (106). Similarly, TNF-α activates p38 

MAPK, which in turn may activate a similar array of genes and interact with the NF-κB pathway 

(107). This network of inflammatory signalling suggests a role for TNF-α in amplification of 

inflammation in COPD, resulting in activation of neutrophils, macrophages, the epithelium, mucus 

secretion, and destruction of lung parenchyma through release of proteinases. 

IL-1β has similar actions to TNF-α and is also a potent activator of alveolar macrophages from 

COPD patients. Together, they both stimulate macrophages to produce MMP-9 (108).  

The airway epithelium over-expresses monocyte chemotactic protein (MCP)-1 and IL-8 in 

response to cigarette smoke (109). MCP-1 is a chemoattractant of monocytes and may therefore 

be involved in the recruitment of macrophages in COPD. Whereas IL-8, along with LTB4, are 

potent chemoattractants of neutrophils, and are the major drivers for neutrophilic recruitment to 

the airways in COPD (110). 

Additionally, growth factors such as transforming growth factor (TGF)-β are also increased in the 

airway epithelium and lung tissue in COPD (111, 112). TGF-β is a potent regulatory cytokine with 

many effects on cell proliferation and differentiation, and on initiation and resolution of 

inflammatory responses (113). TGF-β is also implicated in the development small airway fibrosis 

and remodelling in COPD, by inducing epithelial mesenchymal transition (EMT) (114). EMT is a 

process whereby fully differentiated epithelial cells undergo transition to a mesenchymal 

phenotype giving rise to fibroblasts and myofibroblasts, and is increasingly recognized as playing 

an important role in aberrant repair and fibrosis in the airways in COPD (115). 

1.2.3 Oxidative stress 

In addition to chronic inflammation, an imbalance between oxidants and antioxidants (defined as 

oxidative stress) also occurs in the lungs of COPD patients (116). Sources of oxidants include 

inhaled cigarette smoke and ROS and nitrogen species released from inflammatory cells, such as 
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neutrophils. Biomarkers of oxidative stress (e.g. hydrogen peroxide, 8-isoprostane) are increased 

in stable COPD and further increased during exacerbations (117). Oxidative stress can lead to 

inactivation of anti-proteases and stimulation of mucus production. There may also be a reduction 

in antioxidants through activation of transcription factors such as NF-κB, which regulates many 

anti-oxidants (118). 

Furthermore, studies have demonstrated a direct relationship between oxidative stress and 

cyclooxygenase (COX)-2 (119, 120). COX-2 is one of the rate-limiting enzymes in the metabolic 

pathway that transforms arachidonic acid into prostaglandins (PGs) and ROS, both of which 

promote inflammation via p53 signalling pathway (119). Moreover, the expression of COX-2 is 

increased by cigarette smoke exposure in lung epithelial cells (121), and activation of COX-2-PG 

signalling is thought to be central in promoting cigarette smoke induced-airway inflammation 

(120). 

1.2.4 Protease-anti-protease imbalance 

Both cigarette smoke exposure and chronic inflammation drive oxidative stress, which primes 

several inflammatory cells to release a combination of proteases and inactivates several anti-

proteases such as AAT, secretory leucoprotease inhibitor (SLPI) and tissue inhibitors of MMPs 

(122). The main inflammatory cell types involved are neutrophils releasing proteases such as 

serine proteases, elastases, cathepsin G and protease 3, and macrophages releasing cysteine 

proteases, cathespins E, A, L and S, and various MMPs (e.g. MMP-8, MMP-9 and MMP-12). 

Protease mediated destruction of elastin, a major tissue component in lung parenchyma, is 

thought to lead to alveolar wall destruction and emphysema (123). 

1.2.5 Airflow obstruction and hyperinflation 

The main site of airflow obstruction occurs in the smaller airways (< 2mm in diameter) due to 

inflammation, airway remodelling and inflammatory exudates driven by the above processes (57). 

This peripheral airway limitation progressively traps gas during expiration, resulting in 

hyperinflation. Evidence suggests that hyperinflation occurs early in disease, and is the main 

mechanism for exertional dyspnoea in COPD (124). Exertional dyspnoea occurs as a consequence 

of dynamic hyperinflation, where loss of inspiratory capacity at rest leads to a reduction in 

functional residual capacity during exercise (125).  

Other factors contributing to airflow obstruction include loss of elastic recoil (due to destruction 

of elastin fibres by proteases) and destruction of alveolar support (from alveolar attachments) 

(126). These features are the hallmarks of emphysema. 
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1.2.6 Gas exchange abnormalities and pulmonary hypertension 

Both gas exchange abnormalities and pulmonary hypertension occur in late disease, due to 

advanced structural changes (e.g. emphysema) in the COPD lung. Loss of alveolar surface area and 

a reduction in the pulmonary vascular bed lead to a ventilation: perfusion mismatch (127). 

Chronic hypoxia leads to vasoconstriction of the small pulmonary arteries, which in turn leads to 

endothelial dysfunction, remodelling of the pulmonary arteries with smooth muscle hypertrophy 

and hyperplasia (128). Persistent pulmonary hypertension results in right ventricular hypertrophy 

and dysfunction (known as cor pulmonale) (129). 

1.2.7 Systemic features 

Comorbidities are common in COPD, are often linked to the same risk factors (i.e. smoking, 

ageing, and inactivity), and have a major impact on morbidity and mortality (130). Cachexia, 

skeletal muscle wasting, cardiovascular disease, osteoporosis, anaemia and metabolic syndromes 

(e.g. diabetes) are all recognised complications of COPD. The mechanisms underlying these 

systemic effects are likely multifactorial, including inactivity, systemic inflammation, tissue 

hypoxia and oxidative stress (131). 

The above pathogenic mechanisms result in the pathological changes found in COPD. These in 

turn result in pathophysiological abnormalities – mucus hypersecretion and ciliary dysfunction, 

airflow obstruction and hyperinflation, gas exchange abnormalities, pulmonary hypertension and 

systemic effects. 

1.3 Diagnosis of COPD 

COPD should be considered in any patient who has dyspnoea, chronic cough or sputum 

production, and/or a history of exposure to risk factors for the disease. In this clinical context, 

post-bronchodilator spirometry is the current test used to diagnose COPD by demonstrating 

airflow obstruction (4). It is a physiological test that measures the volume of air an individual can 

expel from his lungs after a maximum inspiration. The standard spirometry manoeuvre is maximal 

exhalation after a maximum deep inspiration. A number of indices can be derived from this:  

• Forced vital capacity (FVC): The volume delivered during expiration made as forcefully and 

completely as possible, starting from full inspiration.  

• FEV1: Maximum volume of air exhaled in the first second of a forced expiration.  

• FEV1/FVC ratio: Airflow obstruction is defined as, an FEV1/FVC ratio of under 0.7.  

• FEF 25%–75%: The mean forced expiratory flow rate between 25% and 75% of the FVC.  
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Predicted values for spirometry have been calculated from large sample groups and vary with age, 

height, sex and race (132). A diagnosis of airflow obstruction in COPD is made when the ratio of 

FEV1/FVC is less than 0.7 on post-bronchodilator spirometry. However, in certain populations this 

absolute cut-off may be unreliable as it can over diagnose in the elderly and under diagnose in the 

young (133, 134). There are therefore advocates of using the lower limit of normal value for these 

populations, which involves taking the bottom 5% as abnormal (135). The FEV1 can also be used 

to severity grade COPD (see Table 1.1).  

Table 1.1 Classification of airflow limitation severity in COPD based on post-bronchodilator 
FEV1 

GOLD classification Severity FEV1 

GOLD 1 Mild FEV1 ≥ 80% predicted 

GOLD 2 Moderate 50% ≤ FEV1 < 80% 

GOLD 3 Severe 30% ≤ FEV1 < 50% 

GOLD 4 Very severe FEV1 < 30% 
GOLD, Global initiative for Chronic Obstructive Lung Disease; FEV1, Forced expiratory volume in one second. Adapted 
from GOLD guidelines, 2019 report (4). 

Spirometry is cheap, easy to perform and highly reproducible in most populations and has 

therefore been utilised as the investigation of choice for diagnosing and severity grading COPD. In 

early studies, reduced FEV1 was associated with higher mortality (136, 137). However in the large 

National Emphysema Treatment trial, FEV1 was not associated with mortality in multivariate 

analysis (138) and other studies have also not found this link with mortality (139). There are also 

only weak correlations between FEV1 and change of quality of life and health status (140). There 

are also concerns that spirometry is an effort dependent test and can be insensitive to early 

disease (141). FEV1 provides little information about the distal airways and so FEF 25%–75% is 

often cited as a measure of small airways pathology. However FEF 25-75% measure is not very 

sensitive and has poor reproducibility (142). Given these issues, efforts should be made to find 

more specific and sensitive measures of early disease, which would allow earlier interventions 

(i.e. smoking cessation) to alter disease course. 

1.4 Treatment of COPD 

Smoking cessation is key and has the greatest capacity to influence the natural history of COPD. 

Pharmacotherapy and nicotine replacement reliably increase long-term smoking abstinence rates 

(143). Furthermore, effective tobacco control policies (i.e. smoking ban legislation) have been 

shown increase quit rates and reduce harm from second hand smoke exposure (4). 

Pulmonary rehabilitation (PR) is defined as a comprehensive intervention tailored to patient’s 

needs, and includes exercise training, education and self-management (144). PR should be 
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considered in all COPD patients as it has been shown to be the most effective therapeutic strategy 

to improve breathlessness, increase exercise capacity, and improve quality of life in COPD patients 

(144, 145). 

Vaccination is also an integral part of COPD management, with the annual influenza vaccine 

reducing lower respiratory tract infections requiring hospitalisation and death in COPD patients 

(146).The pneumococcal vaccine also provides significant protection against community acquired 

pneumonia (147).  

Pharmacological therapy can reduce COPD symptoms, reduce the frequency and severity of 

exacerbations, and improve health status and exercise tolerance (4). However, to date, there is no 

conclusive clinical trial evidence that any existing medications for COPD modify the long-term 

decline in lung function (4). Medications used to treat stable COPD encompass bronchodilators 

and anti-inflammatory agents, such as inhaled corticosteroids (ICS). In vitro evidence suggests that 

COPD-associated inflammation has limited responsiveness to corticosteroids, however, in 

combination with bronchodilators, improvements in lung function, health status and exacerbation 

frequency are shown (4). In addition, regular treatment with ICS increases risk of pneumonia, 

especially in those with severe disease (148). More recently, a number of studies have shown that 

blood eosinophil counts predict the magnitude of the effect of ICS treatment in preventing future 

exacerbations (149, 150). The issues around using blood eosinophils to guide treatment are 

discussed in the next section, however a blood eosinophil count > 300 cells/μL can be used to 

identify patients with the greatest likelihood of treatment benefit with ICS (4). 

In the current paradigm, treatment options for COPD are used relatively indiscriminately, without 

consideration of specific phenotypes and endotypes. This arbitrary treatment strategy is largely 

due to limits in our understanding of the pathophysiology in COPD and the disease heterogeneity, 

which is a challenge in itself when designing clinical trials of future treatments. The following 

section, will discuss the concept of endotypes in COPD and their role in defining patients that may 

benefit from specific targeted therapy. 

1.5 COPD Endotypes 

Although, COPD is defined by characteristic symptoms and fixed airflow obstruction, patients may 

show different clinical features, rates of progression, frequency of exacerbations and associated 

diseases (co-morbidities), suggesting different clinical phenotypes. The classically defined 

phenotypes of chronic bronchitis and emphysema in COPD are based on the two major 

pathologies in COPD, yet despite these different pathologies, the clinical presentation in both 

these phenotypes is very similar, with progressive dyspnoea on exertion and reduced exercise 
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tolerance as the major presenting symptoms. Furthermore, identification of frequent 

exacerbations in a patient (151) (so called frequent exacerbator phenotype – discussed in section 

1.6) may influence the choice of therapy, however there is no evidence that exacerbation 

frequency is related to differences in underlying mechanisms of COPD (4).  

Endotypes describe a distinct pathophysiological mechanism at a cellular and molecular level 

leading to a clinical phenotype of disease. Despite similar clinical symptoms, patients may respond 

very differently to the same therapeutic intervention and therefore precision medicine is used to 

describe treatment targeted at specific patient endotypes. Different inflammatory patterns have 

been described in COPD and are referred to as “inflammatory endotypes”, however the true 

molecular mechanisms underlying these remain uncertain.  

1.5.1 Neutrophilic COPD 

Neutrophilic inflammation is one of these inflammatory patterns described in COPD, with sputum 

neutrophilia characteristic of the disease (152). Neutrophilic inflammation in COPD is 

unresponsive to corticosteroids, even in high doses (153) and this may reflect the marked 

reduction in histone deacetylase 2 (HDAC2) seen in COPD lungs, which is secondary to oxidative 

stress (154). This resistance to corticosteroids is reflected by the lack of effect of high-dose ICS on 

mortality and progression of COPD (155) and thus indicates the need for more specific anti-

neutrophilic therapies in COPD. However although a CXC chemokine receptor-2 (CXCR2) 

antagonist (navarixin) that blocks the chemotactic effect of the neutrophil chemoattractant IL-8 

and related chemokines does reduce sputum neutrophils in COPD patients, it had no clinical 

benefit on lung function, symptoms or exacerbations (156). Other therapies directed towards 

neutrophilic inflammation, including antibodies against TNF‐α and IL‐1β, and p38 MAPK have also 

been largely clinically ineffective (157-160). The phosphodiesterase (PDE)-4 inhibitor roflumilast, 

which reduces neutrophilic (and eosinophilic) inflammation, can reduce exacerbations in carefully 

selected patients (161). However, its dose is limited by side effects, such as diarrhoea, headaches 

and nausea (162). Patients with frequent exacerbations, FEV1<50% predicted and chronic 

bronchitis appear to show the best responses to roflumilast in terms of reduced exacerbations 

(163), which may indicate a neutrophilic endotype given neutrophils drive mucus hypersecretion 

in COPD. 

1.5.2 Eosinophilic COPD 

Some COPD patients may have more reversibility to bronchodilators and a better response to 

corticosteroid therapy. These patients show increased sputum eosinophils, increased FeNO 
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(marker of eosinophilic airway inflammation) (164), and have been classified as eosinophilic 

COPD. The prevalence of eosinophilic COPD is uncertain as different studies have used different 

criteria and eosinophil measurements, reports vary from a prevalence of 15% (165), to 60% of 

patients with COPD (166). There is evidence that eosinophilic COPD patients have more frequent 

exacerbations (167, 168) and are more responsive to corticosteroid treatment (149). 

Defining eosinophilic COPD has been challenging since although blood eosinophils are easy to 

measure in clinical practice, it is uncertain whether they closely reflect sputum or tissue 

eosinophilia. Increased blood eosinophils predict an increase in sputum eosinophils (>3%) in 

around 70% of patients (169) but there is only a weak relationship between blood and sputum or 

bronchial tissue eosinophils in COPD patients (170, 171). Furthermore, blood eosinophils counts 

are variable over time and even within the same day, so that it is important to make repeated 

measurements (172). 

The mechanism of eosinophilia in COPD is not yet certain. An increase in sputum IL-5, a key 

mediator of eosinophil proliferation, differentiation and maturation, has been reported in COPD 

patients with eosinophilia (173). Furthermore, there is an increase in granulocyte-macrophage 

GM-CSF, which is also important for maintaining eosinophil survival in lungs, and CC chemokine 

ligand 5 (CCL5), a recruiter of eosinophils, in the sputum of these patients (174). Both these 

cytokines are released by airway epithelial cells in addition to the upstream cytokines thymic 

stromal lymphopoietin (TSLP) and IL-33 in response to cigarette smoke and viral infection. These 

latter stimuli recruit Th2 and type 2 innate lymphoid cells (ILC2), which secrete IL-5, resulting in 

eosinophilic inflammation (175-177). However, it is not understood why only a minority of COPD 

patients have significant eosinophilia, but it may be linked to associated allergy or asthma. 

Treatments targeting eosinophilic inflammation, such as the anti-IL-5 antibody mepolizumab, 

have only a minor effect in reducing exacerbations in eosinophilic COPD patients with a history of 

exacerbations (178). Furthermore, benralizumab, which blocks the IL-5 receptor-α even more 

effectively and removes eosinophils from the airways, does not seem to provide a significant 

clinical benefit in COPD patients (179). Importantly, resident eosinophils have been described in 

healthy human lungs that are independent of IL-5 regulation (180), and therefore this IL-5 

independent sub-population may contribute to lung eosinophilia in COPD and thus may require 

alternative targets to achieve a treatment response in this disease. 

1.6 Exacerbations in COPD 

The clinical course of COPD is often characterised by “exacerbations”, defined as episodes of 

worsening symptoms such as breathlessness, cough and an increase in sputum production and/or 
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purulence (181). These exacerbations have a detrimental effect on patients’ quality of life (182), 

accelerate disease progression and are associated with increased hospital admission and death 

(183, 184). Up to 70% of exacerbations are due to respiratory infections, including bacterial and 

respiratory viral pathogens (185). Other causes include environmental pollution, which can 

depend on season and geographical placement (186), and up to 30% are of unknown aetiology 

(187). Exacerbations are 50% more likely in winter, probably due to improved survival of 

respiratory viruses in colder weather, the crowding together of people indoors during the winter 

and a possible reduced immunological response (188).  

Exacerbation frequency increases with COPD severity (189). Although, a sub-group of patients 

have frequent exacerbations independent of lung function and this has been recognized as a 

clinical phenotype, which are often referred to as “frequent exacerbators” (151). These patients 

have a poorer quality of life (182), faster decline in lung function (184), higher readmission rates 

to hospital (190, 191) and increased mortality (192). Given these worsening outcomes, the ability 

to predict and prevent exacerbations would have a significant impact on survival in this patient 

group. However so far, studies have been unsuccessful in identifying markers of exacerbation risk 

(193-196). Therefore new insights into the defective immune functions in COPD are required to 

identify key cells, proteins or mediators of disease, which increase susceptibility to exacerbation.  

1.7 Extracellular vesicles 

Defective innate immunity is key to COPD pathogenesis and susceptibility to exacerbations. 

Although some of the mechanisms are well described (outlined in section 1.2), much is still 

uncertain and a clearer understanding of the different interactions between the main cellular 

players may result in new mechanistic insights. Aberrant intercellular communication has been 

demonstrated so far through investigation of classical pro-inflammatory cytokine pathways. 

However, more recently, a novel mechanism of intercellular signalling has been identified via 

extracellular vesicles (EVs) and this may provide new insights for disease pathogenesis.  

Intercellular communication is fundamental for organisms to respond and adapt to changes in the 

environment. It is the cornerstone of the immune response and is typically defined as either 

direct cell to cell contact or via secretion of soluble mediators (e.g. cytokines) (197). EVs have 

been shown to “shuttle” cargo between cells and have undergone intensive investigation in the 

last two decades (198). The study of EVs in COPD may provide novel insights into the underlying 

mechanisms driving defective innate immunity and chronic airway inflammation. 
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1.7.1 Definition 

Almost all cell types release EVs, and the term EVs encompasses apoptotic bodies, microvesicles 

(MVs) and exosomes, which are differentiated by size, origin and biochemical composition (Figure 

1.2). Each subset of vesicles are enriched for a subset of diverse proteins reflecting that of the 

parent cell, and include adhesion molecules, membrane trafficking molecules, cytoskeleton 

molecules, heat shock proteins, signal transduction proteins, cytoplasmic enzymes, cytokines and 

chemokines. In addition, EVs can contain messenger ribonucleic acid (mRNA), non-coding RNAs 

(e.g. microRNA (miRNA)) (199) and extra-chromosomal deoxyribonucleic acid (DNA) (200), all of 

which are derived from the parent cell.  

EVs have an important role in immune function, by regulating both inflammatory and 

immunosuppressive pathways, and therefore are implicated in driving processes responsible for 

many inflammatory, autoimmune and infectious diseases (201-204). There is growing interest into 

their use as diagnostic biomarkers in these diseases, but also as therapeutics by targeted 

manipulation of their cargo for modulating the immune response in these diseases (198). 

 
Figure 1.2 Biogenesis and secretion of different subtypes of extracellular vesicles.  

MVB, multivesicular body; MHC, Major histocompatibility complex; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase; HSP70 Heat shock protein 70; Tsg101, Tumour susceptibility gene-101. 
Adapted from Giau et al., 2016 (205)  

1.7.2 Subtypes and classification 

1.7.2.1 Apoptotic bodies 

Apoptotic bodies, the largest of the EVs, are 1-5 µm in diameter and are released indiscriminately 

from the plasma membrane during cellular apoptosis (206, 207) (see Figure 1.2). They can 

transfer DNA (208), specifically oncogenes (209), and are also capable of antigen presentation 

(210, 211).  
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1.7.2.2 Microvesicles 

MVs (also known as microparticles or ectosomes) are 100-1000nm in diameter and are released 

from the plasma membrane by budding or blebbing (212-215) (see Figure 1.2). As a consequence 

they express the same surface antigens found on the parent cells. For example, vascular 

endothelial (VE)-cadherin (CD144), platelet endothelial cell adhesion molecule 1 (PECAM-1 or 

CD31) and endothelial-leucocyte adhesion molecule 1 (ELAM-1 or CD62E) are expressed on 

endothelial cell-derived MVs (216), whereas P-selectin (CD62P) and integrin alpha-IIb (ITGA2B or 

CD41) are expressed on platelet-derived MVs (217). These surface markers enable efficient 

characterisation of these vesicles using antigen detection with fluorescence-activated cell sorting 

(FACs) (218). MVs bind via specific receptors to the surface of target cells leading to endocytic 

uptake of the vesicle and direct delivery of its contents (214). MVs have a number of diverse 

functions including pro-coagulant activity (219), secretion of IL-1β (220) and a role in tumour 

progression (221), in addition to several immunoregulatory functions (201, 222, 223). 

1.7.2.3 Exosomes 

Exosomes, the smallest of the EVs (50-100nm), were first discovered over 30 years ago, but 

considered little more than “cell junk” whose job it was to discard unwanted cellular components. 

Exosomes were originally discovered by researchers using transmission electron microscopy 

(TEM) to investigate the loss of the transferrin surface receptor from reticulocytes (224, 225). 

They noted that radioactive-labelled transferrin bound to its receptor made its way from the cell 

surface into the cell via the endocytic pathway and travelled through different cellular 

compartments to multivesicular bodies (MVBs). The transferrin, still bound to its receptor, was 

sequestered in small vesicles that formed inside the larger MVB. Unexpectedly, these MVBs fused 

with the plasma membrane and released these small vesicles – now known as exosomes, to the 

outside of the cell.  

The next major exosome discovery implicated their role in adaptive immunity. In 1996, Raposa et 

al. showed that Epstein-Barr virus (EBV)-transformed B-lymphocytes secreted exosomes that bore 

major histocompatibility complex (MHC) II bound to antigenic peptides which could induce 

antigen-specific MHC class II T cell responses (226).  

Subsequently, major advances in large-scale protein analysis techniques allowed further 

characterisation of exosome composition and studies showed that exosomes contained specific 

proteins originating mainly from the endosomal compartment (e.g. tetraspanins; CD9, CD63 and 

CD81), the endocytic pathway (e.g. Tumour susceptibility gene 101 (Tsg101) and programmed cell 

death 6 interacting protein (Alix)), and the cytosol (e.g. Actin and Tubulin) (207, 227). 
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Simultaneously, studies showed that exosomes secreted from one cell could transfer information 

to a recipient cell, such as MHC-peptide complexes inducing immune responses (228-230) and 

apoptotic signals initiating cell death (231).  

More recently Valadi et al. discovered the presence of mRNA and miRNA inside exosomes, 

suggesting that exosomes can transfer genetic information and alter gene expression in recipient 

cells (199). This discovery not only indicated a new form of intercellular communication, but also 

suggested that exosomes could behave similarly to viruses, in that they could deliver genetic 

material, which was then processed by the recipient cells machinery.  

1.7.3 Extracellular vesicles in the lung 

EVs have been implicated in the pathogenesis of a number of lung diseases. Adymre et al. found 

that exosomes isolated from healthy human bronchoalveolar lavage fluid (BALF) express MHC 

class I and II, CD54 and CD63 and the co-stimulatory molecule CD86. Based on these findings, they 

concluded that these exosomes were likely to originate from antigen presenting cells (232). 

However, subsequent analysis of exosomes isolated from BALF in asthmatic mice originated 

predominantly from epithelial cells and exosome production was enhanced by IL-13. In addition, 

these exosomes were able to induce proliferation and chemotaxis of undifferentiated 

macrophages (233). In vitro work by Kesimer et al. showed that epithelial cells secreted exosomes 

enriched for mucins (MUC1, MUC4 and MUC16), which reduced the ability of the human influenza 

virus to infect epithelial cells by up to 85-90% (234). Surfactant proteins have also been detected 

in EVs derived from lung epithelial cells (235). 

Epithelial cell injury secondary to cigarette smoke is also known to stimulate exosome production. 

Moon et al. showed that cigarette smoke extract (CSE) increased the release of exosomes from 

lung epithelial cells, mediated by the induction of RAB27a expression (an important regulator of 

exosome production) (236). These exosomes were shown to encapsulate full length cysteine-rich 

angiogenic protein 61 (CCN1) that induced epithelial cell IL-8 and vascular endothelial growth 

factor (VEGF) secretion, both of which are implicated in the pathogenesis of COPD. Further work 

has also shown that CSE triggers epithelial cells to produce EVs containing miRNA-210, which 

promotes myofibroblast differentiation in lung fibroblasts via autophagy related 7 (ATG7) 

silencing (a regulator of autophagy) (237). Consequently, EV miRNA autophagic regulation of 

myofibroblast differentiation could be a critical determinant of airway fibrotic remodelling in 

COPD pathogenesis. 

As well as CSE inducing EV release from epithelial cells, macrophages also release EVs. In response 

to CSE, macrophage derived exosomes are both pro-thrombotic and proteolytic (containing MMP-
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14) and therefore may contribute to the instability of atherosclerotic plaques and the destruction 

of pulmonary connective tissue in emphysema (238, 239). Cordazzo et al. demonstrated the 

effects of CSE-induced MVs from monocytes increasing production of pro-inflammatory and pro-

thrombotic mediators from human lung epithelial cells (240). In addition, Cerri et al. 

demonstrated EVs from human macrophages have pro-inflammatory potential in human airways 

through their ability to up-regulate IL-8, CD54 and MCP-1 synthesis by bronchial and alveolar 

epithelial cells. Finally, Soni at el. demonstrated that alveolar macrophage MVs mediate acute 

lung injury in response to lipopolysaccharide (LPS) stimulus by transporting biologically active 

TNF-α. When instilled intra-tracheally into mice, these MVs induced neutrophil influx and CD54 

expression in epithelial cells (241). All of these mechanisms may contribute to the persistent 

airway inflammation recognised in COPD. 

In contrast, alveolar macrophage derived EVs have also been shown to have anti-inflammatory 

effects. Bourdonnay et al. demonstrated that EVs derived from alveolar macrophages were a 

source of suppressor of cytokine signalling (SOCS) 1 and 3 proteins. When delivered to airway 

epithelial cells these EVs inhibited cytokine-induced signal transducer and activator of 

transcription protein (STAT) activation and expression of MCP-1 (a STAT-dependent gene 

product). Furthermore they found reduced levels of SOCS1 and 3 in BALF of smokers compared 

with non-smokers, suggesting that EV delivery of SOCS proteins may be dysregulated by smoke 

exposure as a result of persistent inflammation (242). In addition, alveolar macrophages have 

been shown to secrete EVs which inhibit influenza infection of nearby airway epithelial cells. 

However, when exposed to cigarette smoke this inhibitory mechanism is lost (243). These findings 

may have important consequences for patients with COPD who demonstrate increased 

susceptibility to viral infections.  

In summary, EVs have been implicated in both driving chronic airway inflammation and altering 

cellular function of important immune cells within the lung. Their release and function is altered 

by cigarette smoke exposure and therefore it is plausible that EVs play a key role in COPD 

pathogenesis. 

1.7.4 Extracellular vesicles in COPD 

To date, no study has directly sampled and characterised EVs from the lungs of patients with 

COPD. However, a number of studies have investigated EVs in smokers, murine models, cell 

culture models and circulating EVs in patients with COPD and these are summarised in Table 1.2. 
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Table 1.2 Summary of the EV studies in smokers, patients with COPD and murine models 

EV type Subject cohort/Cell type Main findings Ref 

Bronchoalveolar lavage EVs 

 Smokers (n=10) and non-
smokers (n=10) 

MiRNAs let-7e, let-7g and miR-26b were 
significantly down-regulated in smokers. MiRNAs 
let-7e and let-7g expression was also found to be 
reduced in human bronchial epithelial cells (BEAS-
2B) exposed to smokers EVs in comparison with 
non-smoker EVs. 

(244) 

 Smoke exposed mice 
(n=8), LPS challenged mice 
(n=8), saline & air control 
mice (n=16) 

Findings support that infectious agents (bacterial 
or viral) can trigger EV release in the airways and 
that ATP drives EVs to release IL-1β and IL-18 via a 
P2X receptor-7/caspase-dependent mechanism. 

(245) 

Lung tissue EVs (isolated using UC from surgically resected lung tissue) 

 Non-smokers (n=13), 
healthy smokers (n=13), 
COPD (n=13) 

EVs showed greater biodiversity (more 
operational taxonomic units) than lung tissue. 
Firmicutes were highly present in the EVs of the 
COPD group compared with other samples or 
groups. 

 

(246) 

Sputum microparticles (MPs) 

 Male, COPD patients 
(n=18) 

MPs were identified in the sputum of COPD 
patients. CD31- MPs (i.e. those not associated 
with the endothelium) correlated negatively with 
FEV1, suggesting relationship with disease 
severity. 

(247) 

Plasma endothelial microparticles (EMPs) 

 Healthy non-smokers 
(n=32), healthy smokers 
with normal spirometry 
and DLCO (n=42), and 
healthy smokers with 
normal spirometry and 
low DLCO (n=19)  

Smokers with low DLCO (evidence of emphysema) 
have increased circulating EMPs, suggesting that 
measurement of plasma EMPs may be helpful in 
identifying early disease. 

(248) 

 Stable COPD patients 
(n=80), exacerbating COPD 
patients (n=27), healthy 
controls (n=20) 

Levels of CD144+, CD31+ and CD62E+ EMPs were 
significantly higher in stable COPD than healthy 
controls and even higher in exacerbating patients 
when compared to stable COPD. Suggesting EMPs 
may be a biomarker for exacerbations. 

 

 

(249) 
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EV type Subject cohort/Cell type Main findings Ref 

Plasma endothelial microparticles (EMPs) continued... 

 Stable COPD patients 
(n=104), healthy controls 
(n=74) 

Levels of CD31+ EMPs were significantly higher in 
mild COPD consistent with endothelial apoptosis 
CD31+ EMPs were also associated with percent of 
emphysema and correlated with reductions in 
pulmonary microvascular perfusion. Levels of 
CD63E+ EMPs were elevated in severe COPD and 
patients with hyperinflation  

(250) 

 Non-smokers (n=28), 
healthy smokers (n=61), 
COPD smokers (n=49) 

COPD and healthy smokers had elevated plasma 
EMPs, which remained elevated over 12 months, 
but returned to non-smoker levels in healthy 
smokers only who quit.  

(251) 

 Healthy non-smokers 
(n=8), COPD subjects 
(n=17). 

Primary human lung 
microvascular endothelial 
cell (HLMVEC) model 
exposed to CS. 

Levels of EMPs significantly increased in COPD.  

Furthermore, miRNAs let-7d, miR-191, miR-126 
and miR-125a were significantly enriched in EMPs 
released by HLMVEC exposed to CS. These EMPs 
were ceramide-rich and required aSMase for their 
release, an enzyme found to exhibit significantly 
higher activity in the plasma of COPD patients. 

(252) 

 Smoke exposed rats 
(n=30), sham-smoke 
exposed rats (n=30)  

Plasma CD42b-/CD31+ EMPs were significantly 
increased in rats exposed to cigarette smoke and 
associated with lung function decline. These EMP 
markers are suggestive of pulmonary endothelial 
apoptosis  

(253) 

Plasma exosomes 

 Stable COPD patients 
(n=20), exacerbating COPD 
patients (n=20), healthy 
controls (n=20) 

Circulating plasma exosome levels (CD9+) were 
significantly higher in COPD patients both at 
stable state and acute exacerbation. Levels of 
exosomes correlated with CRP, sTNFR1 and IL-6 in 
plasma suggesting a role in exacerbations in 
COPD. 

 

(254) 

Serum EVs 

 Stable COPD patients 
(n=5), 5 healthy controls 
(n=5). 

Levels of miR-21 increased in the serum EVs of 
COPD patients and suggested a role for EV miR-21 
in macrophage polarisation.  

(255) 

aSMase, acid sphingomyelinase; CRP, C-reactive protein; CS, cigarette smoke; DLCO, diffusing capacity of the lungs for 
carbon monoxide; EMPs, endothelial microparticles; EV, extracellular vesicle; HLMVEC, human lung microvascular 
endothelial cell; LPS, lipopolysaccharide; IL, interleukin, sTNFR1, soluble tumour necrosis factor receptor 1 
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1.7.4.1 Extracellular vesicles as a diagnostic biomarker in COPD 

Over the past decade, there have been numerous studies focused on discovery and assessment of 

biomarkers in relation to acute exacerbations of COPD (AECOPD). Owing to their heterogeneity 

and the lack of available diagnostic laboratory tests, AECOPD are often based on clinical suspicion 

alone, which is subjective and variable within and across physicians. The most well studied 

biomarkers are C-reactive protein (CRP), IL-6, and TNF-α. However these are rather non-specific as 

they are raised by many inflammatory conditions and had variable statistical significance and 

results (256). EVs could be used as potential biomarkers for diagnosis and monitoring of COPD 

patients. Indeed, numerous EV proteins and miRNAs have already been identified as potentially 

useful biomarkers for various diseases, especially cancer detection (257-259)  

Recently, Tan et al. assessed the expression levels of exosomes in the plasma of patients with 

AECOPD (n=20) versus patients with stable COPD (n=20) and healthy non-smokers (n=20). They 

showed that plasma exosome levels were highest in patients with AECOPD and stable COPD 

compared with healthy non-smokers. In addition, exosome levels correlated with plasma levels of 

CRP, soluble TNFR1 and IL-6 (254).  

Circulating endothelial microvesicles (EMVs) have also been analysed to evaluate the endothelial 

damage in COPD patients and several studies have reported that some types of EMVs could be 

used as potential new biomarkers. Thomashaw et al. reported that CD31+ EMVs, reflecting 

endothelial apoptosis, were elevated in mild COPD and emphysema. In contrast, CD62E+ EMVs, 

indicating endothelial activation, were elevated in severe COPD and hyperinflation (250). 

Takahashi et al. showed that CD144+ (the most specific marker for endothelial cells), CD31+ and 

CD62E+ EMVs were significantly higher in patients with stable COPD than in the healthy non-

COPD subjects (260). In addition, Lacedonia et al. reported a negative correlation between the 

number of EMVs in the sputum and FEV1 (247). 

As well as overall levels of circulating EVs used in distinguishing disease, EV miRNA cargo can also 

be used as a potential biomarker. Furthermore, various miRNAs have been implicated in the 

development and progression of COPD (see section 1.4.3) (261). To date, studies in sarcoidosis 

and asthma have shown the potential of EV miRNA as biomarkers of disease. Levanen et al. 

demonstrated that BALF-derived exosomal miRNA are different in asthmatic patients compared 

with healthy volunteers. The effect of these exosomes to promote leukotriene and IL-8 release 

from bronchial epithelial cells was significantly increased in asthmatic patients, giving an 

additional functional role to this potential biomarker (262). In a recent study, the profile of 

exosomal miRNA in BALF and serum of patients with sarcoidosis has been investigated. In this 
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study, exosomal miR-21, miR-150 and miR-146a expression was increased in patients with chest 

X-ray (CXR) stage II sarcoid compared with CXR stage I disease (263). 

1.7.4.2 Extracellular vesicles as a potential therapy in COPD 

The utility of EVs as a potential for therapeutic intervention is currently under intense 

investigation. One of the considerations for developing an EV therapeutic is the cellular source. 

Mesenchymal stem cells (MSC), known for their anti-inflammatory and regenerative properties 

have been trialled as possible therapies for COPD (264, 265). However there is still no evidence 

for clinically relevant effects and further study of MSC-base treatments for COPD patients is 

needed (266). EVs derived from MSC have recently been proposed as having the potential for 

tissue repair, wound healing and lung tissue regeneration (267, 268). Furthermore, MSC-EVs and 

dendritic cell EVs are already being studied in on-going phase 1 and 2 trials for cancer and graft 

versus host disease in leukaemia (269-272). Issues such as culture conditions, yield and 

manufacturability have been addressed by research groups who have reported using EVs derived 

from plant-based systems, as they are able to be loaded with smaller cargo, which can mediate a 

therapeutic effect in animal models (273, 274). 

Importantly, with reference to EV miRNA use in therapy, Zhang et al. used a novel protocol to 

manipulate EV miRNAs with high efficiency and deliver them to recipient cells (275). However, in 

order for EV-mediated miRNA delivery to be used as therapy, several issues still need to be 

addressed. For example, studies have reported that the load of miRNA from tumour cells are low 

in individual EVs from patient plasma, and that host-derived EVs are unable to deliver sufficient 

copies of desired miRNAs (276). In addition, EV-mediated miRNA therapy may need to be 

delivered at regular intervals as the effects are likely to be short lasting. However, emerging 

technology has seen the development of EVs containing adeno-associated vectors (AAVs), which 

can provide sustained transgene expression in vivo and may overcome some of the challenges 

seen with the EV-miRNA or AAVs not contained within an EV system (277). 

1.7.5 Extracellular vesicle isolation methods 

A major challenge in the field of EV research is to improve and standardise the methods for EV 

isolation and analysis. The International Society for Extracellular Vesicles (ISEV) has attempted to 

address this in their 2018 statement on the minimal information required for studies of EV sample 

collection, isolation and analysis (278), which represents the majority viewpoint of over 70 

experts in the field.  
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1.7.5.1 Ultracentrifugation 

Differential ultracentrifugation (with or without density gradient separation) is the method most 

often reported in the literature (226, 279). Sequential centrifugation at higher speeds separates 

out larger apoptotic bodies from smaller exosomes, the latter usually pellet at 100,000-120,000 g. 

This process is time consuming, (up to 48 hours to complete purification), requires a large sample 

volume and may lead to low yield of desired EV population. In addition, there is a suggestion that 

the centrifugal forces may cause vesicle aggregation (affecting separation) and physical damage 

leading to impaired structure and function (280, 281). 

1.7.5.2 Size exclusion chromatography 

Size exclusion chromatography (SEC) separates EVs based on size and passage through a 

suspension, whereby different particles move at different rates (282). Used alone, this method 

often results in co-elution of multiple EV classes and therefore can be combined with filtration to 

remove larger cell fragments and/or EVs (e.g. apoptotic bodies and MVs) to ensure enrichment of 

desired EV population (279, 283). SEC is ideally performed under gravity to prevent EVs being 

deformed by forcing particles through filter pores. Studies have shown the resultant EV fraction 

has minimal soluble protein contamination (282, 284, 285). 

1.7.5.3 Filtration 

The currently available commercial membrane filters (e.g. ExoMir™ kit from Bioo Scientific, 

Austin, USA) have pores of various diameters with a narrow range of pore size distribution, which 

simplifies isolation of the particles with a specified size. When isolating EVs by filtration, larger 

particles are removed first (by filters with pore diameters 0.8 and 0.45 μm) and the particles with 

a size smaller than the target EVs are separated from the filtrate at the next stage (by filters with 

pore diameters 0.22 and 0.1 μm). This method is simple and requires no additional equipment, 

however EVs may bind to the membrane even when using materials with low affinity for proteins 

resulting in lower yield (286). Furthermore, the pressure that is used to “push” the specimen 

through the membrane may result in contamination or deformation of the desired EV population 

(286, 287). However, this method has been used to successfully isolate EVs from cell culture 

media (288), serum and BALF (289).  

1.7.5.4 Polymeric precipitation 

Polymeric precipitation kits are commercially available (e.g. ExoQuick™ from System Biosciences®, 

Cambridge, UK) and typically use polyethylene glycol to precipitate EVs. This method is quick, 

technically easy to reproduce and result in typically high yields of EVs (290). However, there are 
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concerns around the purity of the resultant EV fraction with protein and extra-vesicular RNA 

contamination being common. In addition, polyethylene glycol may affect downstream analysis, 

such as mass spectrometry platforms (291). 

1.7.5.5 Immunoaffinity isolation 

Antibodies to characteristic surface markers present on certain EV classes (e.g. tetraspanins CD9, 

CD63 and CD81 present on exosome surface) can be used to select desired EV populations 

(immune-enrichment) or exclude unwanted EV fractions (immune-depletion) (279, 292). These 

antibodies are typically bound to beads, facilitating separation by low-speed centrifugation or 

magnetic techniques (293, 294). This selectivity allows high specificity, however concomitantly 

results in lower yields and will exclude subpopulations of EVs, given that some markers are not 

represented on all vesicles within a given class (279). 

1.7.5.6 Membrane affinity isolation 

More recently, a new membrane affinity spin column method for the isolation of highly pure EVs 

from biofluids was released (exoEasy kit from Qiagen®) (295). Briefly, prefiltered biofluid (e.g. 

plasma) is mixed with a binding buffer and added to the exoEasy membrane affinity column to 

bind the EVs to the membrane. After centrifugation, the flow-through is discarded and a wash 

buffer is added to the column to wash off non-specifically retained material. After another 

centrifugation and discarding of the flow-through, the EVs are then lysed by adding QIAzol to the 

spin column, and the lysate is collected by centrifugation. This new procedure is reported to 

capture nearly 100% of mRNA from plasma samples and is equal to or better than 

ultracentrifugation in mRNA yield (295). The method also allows for intact vesicles to be eluted 

from the column material for further characterisation.  

1.7.6 Characterisation of extracellular vesicles 

Given the complexities in EV isolation, detailed characterisation of the resultant EV fraction of 

interest is recommended by 2 or more techniques (291). These include electron microscopy (EM) 

to visualise the size and structure (226); nanoparticle tracking analysis (NTA), a commercial 

method to obtain size and concentration of EVs (296, 297); flow cytometry, for characterisation of 

larger EVs (>500nm) (298); and conventional western blotting or enzyme linked immunosorbent 

assay (ELISA) to demonstrate presence of characteristic protein markers (e.g. tetraspanins CD9, 

CD63 and CD81) (279, 299).  

In summary, EVs are recognised as an emerging novel intercellular communication tool in 

numerous physiological and pathological processes. Investigating the role of EVs is an emerging 
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and rapidly progressing area of research, especially in lung disease. The above section highlights 

that EVs may play a pivotal role in COPD pathogenesis and further work could contribute to the 

understanding of the disease pathogenesis as well as the development of novel therapies. Of 

particular importance is the role of EVs as carriers of miRNA, which may provide novel insights 

into the persistent inflammation and defective innate immunity described in COPD.  

1.8 MicroRNA 

Protein-coding genes only represent about 2% of the human genome (300); the rest are 

transcribed into non-coding RNA, of which the most widely studied is miRNA. MiRNAs are small 

RNA molecules (approximately 21-25 nucleotides in length) that negatively regulate gene 

expression post-transcriptionally, by degrading mRNA or by blocking translation (301). They are 

predicted to regulate more than 60% of the human genome (302) and are involved in controlling 

cellular proliferation, apoptosis and differentiation (303). Dysregulated miRNA expression is 

reported to be involved in the pathogenesis of many diseases (304-308), including COPD (309). 

1.8.1 MicroRNA biogenesis and function 

Briefly, miRNA biogenesis begins with the cleavage of primary miRNA (pri-miRNA) into pre-miRNA 

in the nucleus, which is mediated by a nuclear RNase III enzyme, Drosha (310). The resulting 70 

nucleotide pre-miRNA is then actively transported into the cytoplasm and processed into a 22 

nucleotide double-stranded miRNA by a cytoplasmic RNase III enzyme, Dicer (311). One strand of 

this duplex is degraded, whilst the other functions as mature miRNA, and is incorporated into a 

RNA-induced silencing complex (RISC) (312). This mature miRNA-RISC complex then binds to 

mRNA depending on sequence complementarity between the miRNA 5’ region (the seed 

sequence) and the mRNA 3’ untranslated region (UTR) (the biogenesis and function of miRNA is 

summarised in Figure 1.2). This matching does not need to be perfect and therefore a single 

miRNA may regulate several hundred mRNA (313). Moreover, by targeting transcription factors or 

genes involved in epigenetic regulation, miRNAs can alter expression of hundreds of genes at 

once. Guo et al. found that miRNA regulation of target mRNA accounted for ~84% of protein 

repression (314). 
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Figure 1.3 MiRNA biogenesis and function. 

Ago, Argonaute protein; DGRC8, DiGeorge syndrome critical region gene 8; Pri-miRNA, Primary miRNA; 
TRBP, trans-activation response RNA-binding protein; RISC: RNA-induced silencing complex; UTR: 
untranslated region. Adapted from Rupani et al., 2013 (315). 

1.8.2 MicroRNA in COPD 

As discussed in section 1.1.3, cigarette smoke exposure is the most important risk factor for the 

development of COPD and has been shown to dysregulate miRNA expression. Schembri et al. 

found that miR-218 was down-regulated in smokers relative to never smokers in human bronchial 

epithelium (316). In addition, 34 miRNA were found to be differentially expressed in induced 

sputum from never-smokers compared with current smokers (309). It is known that changes in 

gene expression were found to persist in the bronchial epithelium of ex-smokers years after 

smoking cessation (317). In line with this, cigarette smoke induced changes in miRNA expression 

in murine lung are irreversible and depend on the duration and dose of smoke exposure (318). 

Taken together, these findings support the theory that persistent changes in gene expression 

found in the lungs of ex-smokers, might be attributable to changes in miRNA expression induced 

by prolonged (dose dependant) exposure to cigarette smoke. 

More in-depth expression profiling of miRNA in COPD subjects compared with non-COPD smokers 

has shown 70 miRNAs differentially expressed in lung tissue (319). In particular, miR-146a, miR-

15b, miR-223 and miR-1274a were up-regulated in COPD samples. In addition, Ezzie et al. 

demonstrated down-regulation of a number of target genes (including mothers against 

decapentaplegic homolog (SMAD)-7 gene, a target of miR-15b) involved in the TGF-β signalling 
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pathway in COPD. Thus, miRNA regulation of fibrotic pathways could be key to understanding 

airway remodelling in COPD. 

Increased COX-2 protein is one of the hallmarks of chronic inflammation in COPD. Sato et al. 

reported reduced expression of miR-146a in lung fibroblasts from COPD following stimulation by 

inflammatory cytokines, IL-1β and TNF-α. They suggested that this decrease in miR-146a resulted 

in reduced degradation of COX-2 mRNA (a predicted target of miR-146a), and in turn, over-

expression of COX-2 protein (320). Furthermore, miR-146a has been implicated in other 

inflammatory diseases, such as rheumatoid arthritis (321, 322). 

Analysis of miRNA expression in induced sputum showed expression of let-7c was reduced in 

COPD patients compared with smoking and non-smoking controls (309). Moreover, let-7c was 

shown to be down-regulated in response to cigarette smoke exposure in murine models (318, 

323). TNFR2 is a predicted target of let-7c and levels inversely correlated with let-7c in the same 

COPD patients (309). Importantly, TNFR2 plays a vital role in COPD pathogenesis, demonstrated in 

a TNFR2 knock-out mouse, which protects against cigarette-induced inflammation and 

emphysema (324). In addition, let-7c has also been investigated as a therapeutic target in cancer 

(325). 

Several other miRNAs have been implicated in the pathogenesis of COPD and these are 

summarised in Table 1.3. 

Table 1.3 Expression pattern of miRNAs in COPD 

miRNA(s) Expression in COPD Tissue/cell type Target Gene(s) Reference 

let-7c Down-regulated Induced sputum TNFR2 (predicted) (309) 

miR-218, miR-146a, miR-125, 
miR-34b 

Down-regulated Induced sputum   

miR-34c Down-regulated Induced sputum  (326) 

miR-34c, miR-30e-3p miR-218, 
let-7c 

Down-regulated  Induced sputum  (327) 

miR-31, miR135b, miR-148a, 
miR-155, miR-191 
miR-149 

Up-regulated 
 
Down-regulated 

Lung tissue   (327) 

miR-34c Down-regulated Lung tissue SERPINE1 
(validated) 

(328) 

miR-34a Up-regulated Peripheral lung 
samples  

SIRT1 (validated) (329) 

miR-34a, 
miR-199a-5p 

Up-regulated Lung tissue HIF-1α (validated) (330) 

miR-101, miR-144 Up-regulated Lung tissue CFTR (validated), 
MPK-1 (predicted) 

(331) 

miR-15b Up-regulated Lung tissue SMAD7 (validated) (319) 

miR-223, miR-1274a, miR-424  Up-regulated Lung tissue  (319) 
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miRNA(s) Expression in COPD Tissue/cell type Target Gene(s) Reference 

miR-638 Up-regulated Lung tissue  (332) 

miR-212-5p 
miR-28-3p, miR-374a-3p, miR-
181d, miR-151a-3p, miR-30a-5p, 
miR181b-5p, miR-30-2-3p, miR-
143-3p, miR-30a-3p, miR-378f, 
miR-361-5p 

Up-regulated 
Down-regulated 

Lung tissue Genes enriched in 
the nuclear lumen 
and transcription 
initiation process 

(333) 

miR-320d Up-regulated in 
response to ICS 

Bronchial biopsies CXCL8 (334) 

miR-146a Down-regulated Lung fibroblasts COX-2 (predicted) (320) 

miR-31, miR-155, miR-218, let-7c     

miR-1 Down-regulated Quadriceps muscle IGF-1 (validated) (335) 

miR-1, miR-499, miR-206, miR-
133 

Up-regulated Plasma  (336) 

miR-328, miR-21 Down-regulated Exhaled breath 
condensate 

 (337) 

miR-29b, miR-483-5p, miR-152, 
miR-629, miR-26b, miR-101, 
miR-106b, miR-532-5p, miR-
133b 

Down-regulated Plasma  (338) 

miR-223 Up-regulated In vitro (human 
endothelial cells), in 
vivo (mouse) 
 

HDAC2 (validated) (339) 

miR-20a, 
miR-28-3p, miR-34c-5p, mir-100 

Down-regulated Serum  (340) 

miR-7 Up-regulated    

miR-145-5p, miR-338-3p Down-regulated Plasma IFI30 (predicted); 
LTK (predicted), 
TNF2 (predicted)  

(341) 

miR-132, miR-212 Up-regulated Cell fraction of  
BALF 

TLR-2, -4, -5, Myc, 
MYD88, IRAK4, IL-
6, BDNF, AAT 
(predicted) 

(342) 

miR-1, miR-133, miR-206 Down-regulated Diaphragmatic 
muscle 

HDAC4, Med2c 
(validated) 

(343) 

miR-21 Up-regulated Serum  (344) 

miR-181 Down-regulated    

miR-34a-5p, miR-374a-5p 
 
 
miR-150-5p, miR-191-5p, miR-
223-3p 

Down-regulated in 
COPD exposed to 
biomass smoke 
Up-regulated in COPD 
exposed to biomass 
smoke 

Serum  (345) 

AAT, Alpha-1 antitrypsin; BDNF, Brain-derived neurotrophic factor; CFTR, Cystic fibrosis transmembrane conductance 
regulator; COX2, Cycloxygenase-2; HDAC, Histone deacetylase; HIF, Hypoxia-inducible factor; IFI30, Gamma-interferon-
inducible lysosomal thiol reductase; IGF, Insulin growth factor; IL, Interleukin; IRAK4, Interleukin-1 receptor-associated 
kinase 4; LTK, Leucocyte receptor tyrosine kinase; MPK-1, Mitogen-activated protein kinase-1; MYD88, Myeloid 
differentiation primary response 88; SERPINE1, Serpin family E member 1; SIRT1, Sirtuin 1; SMAD7, Mothers against 
decapentaplegic homolog 7; TLR, Toll-like receptor; TNF, Tumour necrosis factor; TNFR2, Tumour necrosis factor 
receptor 2. 
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As shown in Table 1.3, much of the work has focused on miRNA as a potential biomarker in COPD. 

In addition, miRNAs have potential as novel therapeutic targets, for example by either miRNA 

replacement therapy using miRNA mimics or inhibition of miRNA function by antagomiRs (346). 

The application of miRNA as therapy in COPD however faces several challenges, including mode of 

delivery, stability of miRNA in biofluids and tissue specificity. In the context of lung disease, 

aerosolisation is a strategy for enhancing drug delivery and reducing side effects. However, free 

miRNAs are rapidly degraded by nucleases present in extracellular fluids. EVs may provide a 

solution to this, by encapsulating the miRNAs in a protective package and allowing tissue specific 

delivery (198, 347)  
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1.9 Hypothesis and aims 

COPD is characterised by chronic airway inflammation and defective innate immunity (5), which is 

dependant upon a complex network of intercellular communication between the damaged airway 

epithelium and the immune system (93). This complexity and the disease heterogeneity has 

limited our understanding of the pathogenesis of COPD and therefore hindered the development 

of novel and effective disease modifying therapies. 

As outlined in section 1.7, EVs are a unique method of intercellular communication (199); they are 

released in response to tissue damage (236, 237) and can alter the phenotype of recipient cells 

(348). In addition, miRNA are powerful regulators of post-transcriptional gene expression and can 

have far reaching effects on downstream cellular function (313, 314). So far, no studies have 

directly sampled and characterised EV miRNA from the lungs of COPD patients and investigated 

their impact on COPD pathogenesis. Therefore my study focus and hypothesis is: 

MicroRNA is differentially expressed in extracellular vesicles in the airways of patients with COPD, 

and leads to differential gene expression, which drives chronic inflammation in COPD. 

Overall study aims: 

1. To isolate EVs from the BALF of COPD subjects and healthy ex-smokers. 

2. To identify differentially expressed miRNA in lung-derived EVs in COPD subjects compared 

with healthy ex-smokers. 

3. To identify the biologically significant targets of these differentially expressed miRNA in 

the airway epithelium 

4. To investigate the diagnostic use of the lung-derived EV miRNA and explore their 

relationship with specific COPD inflammatory endotypes.  
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 Methods 

This section will detail the methods for patient sample collection, extracellular vesicle (EV) 

isolation and characterisation, RNA extraction and library preparation, microRNA (miRNA) and 

smallRNA sequencing, bioinformatics analysis of sequencing results and the validation steps using 

real time quantitative polymerase chain reaction (RT-qPCR). It will also cover the methods used to 

explore the miRNA – messenger RNA (mRNA) interactions to identify those most relevant to the 

pathophysiology of Chronic Obstructive Pulmonary Disease (COPD). 

Due to the extensive and advanced methodology used in this thesis, some of the methods were 

performed by external contributors. The following methods were performed by the author, Dr 

Hannah Burke: patient and healthy volunteer recruitment to the MICA II study (outlined in section 

2.2), bronchoscopy including epithelial brushings and bronchoalveolar lavage, EV isolation and 

characterisation, and RNA isolation, cDNA synthesis and RT-qPCR for optomisation of EV methods. 

Furthermore, all the analysis of the miRNA sequencing data including unsupervised filtering, 

exploratory data analysis, and differential expression analysis was peformed by the author. 

Analysis of the epithelial brushing transcriptome was also performed by Dr Hannah Burke as well 

as the miRNA-mRNA interaction analysis and gene ontology enrichment analysis. Dr Hannah 

Burke performed all of the statistical analysis included in the thesis. The wider MICA II research 

team helped with the subject phenotyping including the physiological measurements, high-

resolution computer tomography (HRCT) analysis and BAL inflammatory cell counts. Qiagen® 

Genomic services performed the final EV RNA isolation, library preparation and next generation 

miRNA sequencing protocols, including mapping and alignment to the reference genome. All 

other quality control measures of the miRNA sequencing data was performed by the author. RNA 

isolation and next generation mRNA sequencing of the epithelial brushings was performed by the 

Translational Science and Experimental Medicine team at AstraZeneca. The mRNA sequencing 

data preparation was performed by the Bioinformatics team at AstraZeneca, with Dr Hannah 

Burke performing the final differential gene expression analysis. 

2.1 Ethics 

All subjects gave written informed consent for the study RHM MED1277 Microbiology and 

Immunology of the Chronically-Inflamed Airway (MICA) II. This study was approved by the South 

Central - Oxford C Research Ethics Committee (15/SC/0528). 
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2.2 MICA II study design 

MICA II is a longitudinal cohort study in which patients with mild-moderate COPD, healthy ex-

smokers and healthy non-smokers underwent full lung function, blood and sputum sampling, 

high-resolution computer tomography (HRCT) and bronchoscopy. The study principle outcomes 

were to investigate the microbiology, inflammation and immunology within the airways of COPD 

patients. Detailed inclusion and exclusion criteria are shown in Table 2.1. 

Table 2.1 Inclusion and exclusion criteria for the MICA II study 

Inclusion Criteria Exclusion Criteria 

Written informed consent obtained from the 
participant 

A confirmed diagnosis of asthma, cystic fibrosis, 
pneumonia risk factors or other respiratory 
disorders (e.g., tuberculosis, lung cancer). 

Patients with COPD and healthy ex-smokers with a 
history of ≥10 pack-years of cigarette smoking 

History of lung surgery. 

Male or female aged 40–85 years AAT deficiency as underlying cause of COPD. 

COPD subjects must have a confirmed diagnosis of 
mild/moderate COPD based on post bronchodilator 
spirometry with FEV1 >50% of predicted normal and 
FEV1/FVC <0.7. 

Moderate or severe COPD exacerbation not 
resolved at least 1 month prior to enrolment and 
less than 30 days following the last dose of oral 
corticosteroids and/or antibiotics. 

Healthy subjects must have an FEV1/FVC >0.7. Long-term corticosteroid or antibiotic therapy. 
Use of any antibacterial, antiviral or respiratory 
investigational drug or vaccine within 30 days of 
the enrolment visit 

Subjects must be fit to undergo bronchoscopy Presence of other conditions that the principal 
investigator judges may interfere with the study 
findings. 

 Evidence of alcohol or drug abuse. 
AAT, Alpha-1 antitrypsin; COPD, Chronic obstructive pulmonary disease; FEV1, Forced expiratory volume in one second; 
FVC, Forced vital capacity. 

2.3 Study population for bronchoalveolar lavage exosomal miRNA 

analysis 

Bronchoalveolar lavage fluid (BALF) samples from 20 subjects with stable mild and moderate 

COPD and 15 healthy ex-smokers were used from the MICA II cohort for EV isolation, RNA 

extraction and miRNA sequencing. For COPD patients, post-bronchodilator spirometry was used 

to assess airflow obstruction with a Forced expiratory volume in one second (FEV1)/Forced vital 

capacity (FVC) ratio of <0.7 and an FEV1 of ≥50% predicted value required for enrolment.  

In addition, samples from a further six COPD subjects and five healthy ex-smokers from the MICA 

II cohort were included in the validation cohort. BALF samples from these patients underwent EV 

isolation, RNA extraction and RT-qPCR for direct target miRNA identification.  
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All of the above patients had epithelial brushing samples processed for mRNA sequencing, 

however only 14 subjects with COPD and 10 healthy ex-smokers from the study population who 

had lung EV isolation, had serum processed for EV miRNA analysis due to sample availability. The 

details of this sub-group will be explored in detail in Chapter 6, section 6.6.1. 

2.4 Sampling protocols 

2.4.1 Spirometry 

Spirometry was performed with a MicroLab™ spirometer (CareFusion®, San Diego, US) in 

accordance with the American Thoracic Society (ATS)/European Respiratory Society (ERS) 

guidelines (349), by a trained individual following the standard operating procedure (SOP). Briefly, 

the subject was seated and a nose clip was applied during the procedure. The patient was 

instructed to take a deep breath in filling their lungs to total lung capacity (TLC), making a good 

seal around the mouthpiece and blowing out as hard and as fast as possible, and for as long as 

possible. This continued until their lungs were completely empty and they were encouraged 

through the process. The blows were repeated until 3 technically good blows were obtained with 

the highest two FEV1 and FVC measurements being within 150 mL of each other. Spirometry 

results recorded were FEV1, FEV1% predicted, FVC, FVC% predicted, FEV1/FVC ratio, FEF 25%–

75% and FEF 25%–75% % predicted. 

2.4.2 Transfer factor 

Gas transfer was performed using a body plethysmograph HDpft™4000 (nSpire™ Healthcare Ltd, 

Hertford, UK), by a trained member of staff following the SOP. Briefly, tidal breathing was traced 

to ensure there are no irregularities. The patient was then instructed to exhale slowly to residual 

volume (RV), at this point the patient was instructed to immediately take a deep and full breath 

into TLC. The patient was then asked to hold their breath for 10 s until the red sample line reaches 

the vertical lines at which point they were asked to breathe out with medium force until RV 

(where the red sample line touches/plateaus with the RV dotted blue line). Four min were given 

between tests, allowing adequate washout of the gases from the lungs. Tests were acceptable if 

complete inspiratory breaths were within 2 s, breath holds were between 8 and 12 s and 

complete exhalation was within four s (349). A maximum of 5 tests were performed and two 

diffusion capacity of the lung for carbon monoxide (DLCO) results needed to be within 10% of 

each other or 1 mmol·min−1·kPa−1 of each other, and diffusion capacity of the lung of carbon 

monoxide per unit volume (KCO) measurement within 0.1 mmol.min-1 x kPa-1 x l-1. 
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2.4.3 Blood serum preparation 

Blood samples were collected in 2 x 9 mL plain (no anticoagulant additive) tubes and placed 

upright for 30-60 min to allow a clot to form. Tubes were then centrifuged at 1500 g, room 

temperature for 15 min to pellet clotted cells. The supernatant was aspirated into fresh tubes and 

underwent further centrifugation at 1500 g, room temperature for 15 min to remove any residual 

cells and cellular debris. Purified serum was stored at -80oC for future EV isolation.  

2.4.4 High resolution computer tomography 

HRCT scanning was undertaken on a Siemens Sensation 64 CT scanner (Siemens Medical 

Solutions®, Erlangen, Germany). The scans comprised of a helical scan in inspiration and one in 

held expiration. During the scan each subject was given strict instructions about position, which 

consisted of having the arms raised above their heads. The imaging protocol consisted of; slice 

thickness 0.75 mm, slice separation 0.5 mm, tube voltage 120 KV, effective milliamps 90mAs 

(using dose modulation), collimation 0.6 mm and a pitch of 1.  

The scan data was anonymised to a study number on the CT scanner. All CT images were reviewed 

by a thoracic radiologist to determine if there were any clinically important abnormalities, which 

were then managed as per local clinical practice. Emphysema was quantified by the percent of 

lung voxels on the inspiratory scan with attenuation values below -950 Hounsfield Units (%LAA<-

950) (350, 351). A surrogate marker for small airways disease was measured using the ratio of 

mean lung attenuation on expiratory and inspiratory scans (E/I MLD), which has previously been 

validated (352). Quantitative analysis of lung attenuation values derived from the CT images were 

used to determine the amount of small airways disease and emphysema. This was performed 

using Apollo™ pulmonary analysis software version 2.0 (VIDA Diagnostics®, Iowa, USA), and used 

to assess regional variability of disease in COPD and guide bronchoscopic sampling from disease 

and less-diseased lobes.  

2.4.5 Fibreoptic bronchoscopy 

All subjects underwent a fibreoptic bronchoscopy, performed on an outpatient basis. Subjects 

were asked not to eat and drink four hours prior to the procedure. All subjects were given 2.5 mg 

of nebulised salbutamol and underwent spirometry. A combination of intravenous alfentynyl 

(100-500 µg) and midazolam (1-10 mg) were given as sedation. Lignocaine spray and gel were 

used as local anaesthetic to the nose and pharynx. Ten millilitres of 1% lignocaine was used as 

local anaesthetic for the larynx and bronchial tree and were given via the bronchoscope channel. 
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The fibreoptic bronchoscope was passed either through the nose or mouth and two lobes were 

sampled in all subjects.  

Two unprotected bronchial epithelial brushes were taken for RNA isolation and sequencing from 

the same lobe location. BAL was performed by advancing and wedging the bronchoscope into a 

segmental bronchus. One hundred millilitres of pre-warmed 0.9% sodium chloride in 20 mL 

aliquots were introduced into each lobe and recovered by gentle aspiration. Samples were 

processed within two hours of the procedure. Finally, two bronchial biopsies were taken from 

each lobe for RNA isolation and sequencing. All samples were processed within 2 hours of the 

procedure. 

2.4.5.1 Epithelial brushings for RNA isolation and sequencing 

Two unprotected brushes from the same lobe were collected in 5 mL of 1X Phosphate-buffered 

saline (PBS) and centrifuged at 400 g, room temperature for 5 min. The pellet was re-suspended 

in 600 μL of RNAprotect® Cell Reagent (Qiagen®, Manchester, UK) and incubated at 4oC overnight 

and then stored at -80oC for RNA isolation and sequencing. 

2.4.5.2 Bronchoalveolar lavage fluid analysis  

BAL fluid was poured through 100 µm cell strainer to remove mucus and cells were removed by 

centrifugation at 400 g, 4oC for 10 min. The cell-free supernatant was stored at -80⁰C prior to EV 

isolation, while the resulting cell pellet was resuspended in 10 mL hypotonic lysis buffer for 2 min 

to remove any red blood cell contamination. Ten millilitres of hypertonic recovery was then added 

with 1X PBS to make-up the volume to 40 mL. The sample was centrifuged at 400 g for 10 min.  

The pellet was resuspended in 1 mL 1X PBS and cell counts were performed using the Trypan blue 

exclusion method. The cell solution was then adjusted to 0.5 x 106 cells/mL, and 75 μL of this 

solution was loaded onto cytospin funnels. Cells were centrifuged at 350 g for 6 min and collected 

on Poly-L-Lysine slides. Any leftover cell solution in the polypropylene tube was spun at 400 g, 4⁰C 

for 10 min, and the resultant pellet was resuspended in 500 μL of TRIzol® (ThermoFisher 

Scientific®, Basingstoke, UK) and stored at -80⁰C.  

2.4.5.3 Bronchoalveolar lavage cell counts 

Cell slides were left to air-dry overnight, and stained the next day using Rapid Romanowsky A-B-C 

kit (TCS Biosciences, Buckingham, UK). A differential cell count was performed by counting 500 

cells using light microscopy.at X40 magnification. Numbers and relative percentages of 

eosinophils, neutrophils, macrophages, lymphocytes, bronchial epithelial cells and squamous cells 

were calculated. 
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2.5 Extracellular vesicle isolation 

For the purposes of this study, EVs refers to an “enriched” exosome population. Given it is 

currently technically challenging to obtain a pure exosome fraction (i.e. free from MVs and other 

non-vesicular components), it is more widely accepted (and scientifically correct) to refer to an 

isolated vesicle fraction as EVs rather than exosomes (353). 

After trialling both polymeric precipitation and ultracentrifugation methods I chose to proceed 

with a combination of ultrafiltration and size exclusion chromatography (SEC) to isolate EVs from 

BALF. Although polymeric precipitation was an established technique in my research laboratory, I 

had concerns over the purity of the resultant EV sample based on the size of the EV pellet isolated 

(very large and difficult to resuspend) and the transmission electron microscopy (TEM) images, 

which demonstrated large amounts of debris (e.g. soluble protein, cell fragments) surrounding 

the vesicles. Furthermore, I also trialled ultracentrifugation (the most widely used technique in 

the field), but due to the low initial concentration of EVs in BALF, my sample yield was too low for 

adequate RNA isolation. I therefore proceeded with SEC isolation of EVs, using ultrafiltration as a 

method of purifying and concentrating the BALF supernatant to prior to this technique. 

2.5.1 Ultrafiltration for sample purification and concentration 

BALF samples were purified and concentrated using Amicon® Ultra centrifugal filters (Merck 

Millipore®, Watford, UK) using an adapted manufacturer's protocol. Briefly, the 15 mL BALF was 

filtered through a 0.22 µm PVDF, 33 mm gamma sterilised filter (Merck Millipore®), to remove any 

larger particles (e.g. apoptotic bodies). The sample was then loaded onto an equilibrated Amicon® 

Ultra-15 (10,000 MWCO) spin filter and centrifuged at 4000 g, 4oC for 15 min. The filter device 

was washed with 14 mL of 1X PBS and centrifuged at 4000 g, 4oC for a further 15 min. The EV 

containing sample was recovered from the filter device using a Gilson pipette, by pipetting up and 

down vigorously to ensure all EVs recovered. 

2.5.2 Size exclusion chromatography 

Separation of EV based on size and passage through physical filters can be achieved through the 

use of SEC. In addition, SEC is considered an effective method for isolating EVs from soluble 

proteins and is not thought to affect the original shape or functionality of the vesicles (Figure 2.1). 

I trialled two different commercial SEC columns for EV isolation: PURE-EVs™ columns 

(HansaBioMed Life-Sciences®, Tallinn, Estonia) and Exo-spin™ Midi-Columns (CELL guidance 

systems®, Cambridge, UK).  
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Figure 2.1 Size exclusion chromatography platform separating soluble proteins (yellow) from 
the extracellular vesicles (blue) 

2.5.2.1 Size exclusion chromatography using PURE-EV™ columns 

Columns were prepared by allowing the preservative buffer to flow through and washed with 

three 10 mL volumes of 1X PBS to eliminate any preservative buffer residues. Up to 2 mL of the 

ultrafiltrate generated in section 2.5.1 was then placed in the column and allowed to pass through 

under gravity. The column was topped up with 1X PBS regularly to ensure the column did not dry 

out. 24 x 500 µL fractions were collected, and once satisfied with the purity of the EV containing 

fractions, fractions 1-5, 6-11, 14-17, 18-24 were collated. After all fractions were collected the 

column was washed with up to 30 mL of 1X PBS to remove any sample residue. Columns were 

stored at 4oC and only reused for the same sample to ensure no cross contamination. The pore 

size of the agarose beads within the resin is between 40-60 nm to ensure an exosome-enriched 

population of EVs is eluted. 

If the EV fraction (fractions 6-11) was to be used for RNA isolation, then the sample was 

concentrated using an equilibrated Amicon® Ultra-4 (10,000 MWCO) spin filter, centrifuged at 

4000 g, 4oC for 25 min. The EV containing sample was recovered from the filter device using a 

Gilson pipette, by pipetting up and down vigorously to ensure all EVs recovered. 

2.5.2.2 Size exclusion chromatography using Exo-spin™ Midi-columns  

Columns were prepared by discarding the preservative buffer and equilibrated using two 10 mL 

volumes of 1X PBS. When no buffer remained on the surface of the column, up to 1 mL of the 

ultrafiltrate generated in section 2.5.1 was added to the column and allowed to pass through 

under gravity. The column was topped up with 1X PBS regularly to ensure the column did not dry 

out. Twenty-four fractions of 500 µL were collected ready for downstream analysis. According to 

the manufacturer’s protocol, the majority of EVs eluted between fractions 7 and 12. The pore size 

Clarified sample 

Soluble proteins 

Extracellular vesicles 
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within the resin is approximatively 30 nm to attain a highly pure exosome elution. Columns could 

not be reused and therefore were discarded after use. 

2.5.3 Measurement of protein concentration of SEC-derived EV samples 

To compare the performance of these two commercial SEC columns, I analysed the protein 

concentration of the 24 fractions from both columns using the Pierce BCA Protein Assay kit 

(ThermoFisher Scientific®) according to the manufacturer’s instructions. Briefly, diluted bovine 

serum albumin (BSA) standards were prepared according to the protocol dilution scheme. Ten 

microlitres of each standard or unknown sample replicate was added to an appropriately labelled 

well of a 96-well, flat-bottomed plate (Nunclon®, Sigma-Aldrich Company Ltd, Gillingham, UK). 

Two hundred microlitres of prepared working reagent was added to each well to achieve a sample 

to working reagent ratio of 1:20. The plate was covered and incubated at 37oC for 1 h. The plate 

was cooled on ice and absorbance measured using a Softmax® microtitre plate spectrophometer 

at 550 nm. The average 550 nm absorbance measurement of the Blank standard replicates was 

subtracted from the 550 nm measurement of all the other individual standard and unknown 

sample replicates. A standard curve was plotted using the Blank-corrected 550 nm measurement 

for each BSA standard versus its concentration in µg/mL. This was then used to determine the 

concentration of each unknown sample. 

In addition, protein concentrations were also determined by NanoDrop 1000 (ThermoFisher 

Scientific®), using the A280 protein method for both the BSA protein standards and EV samples. A 

standard curve was generated from the BSA standards and was used to determine the 

concentration of each unknown sample. 

2.5.3.1 Protein concentration of size exclusion chromatography fractions 

To compare the performance of these two commercial SEC columns, I analysed the protein 

concentration of the 24 fractions from both columns using the Pierce BCA Protein Assay kit 

(ThermoFisher Scientific®). The majority of the protein was eluted in fractions 13-24 in both 

columns, demonstrating the separation of soluble proteins from EVs. However, the protein 

concentrations were more consistent and reproducible using the PureEV™ columns, which also 

showed a small rise in protein concentration in fractions 6-11, corresponding to the EV-dominant 

fractions (Figure 2.2-B). Based on this and the reproducibility of the protein concentrations, all 

proceeding EV isolation from BALF was performed using the PureEV™ columns. 
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Figure 2.2  Protein concentration measured by BCA assay of the SEC fractions isolated from both 

Exo-spin™ (A) and PureEV™ (B) columns 
EV-dominant fraction for Exo-spin™ (A) are SEC fractions 7-12 and for PureEV™ (B) are SEC fractions 6-
11. Individual data points plotted plus connecting line. Each line represents a different BALF sample, 
N=4.  

2.5.4 Summary of EV isolation from BALF 

To my knowledge, this is the first study demonstrating EV isolation from BALF using SEC. All other 

published studies have used ultracentrifugation as their method of choice (232, 233, 354-360). Of 

those, the studies performed on human samples are more than seven years old (232, 262, 357, 

359) and EV isolation using SEC has only been published in the last six years (284). Interestingly, in 

a 2016 survey on EV isolation techniques used worldwide, although ultracentrifugation was the 

most widely used isolation method (81%), it was mainly for isolation of EVs from conditioned cell 

culture media. While those analysing more complex biofluids tended to use a combination of 

methods, and in this setting, SEC was used by up to 15% of respondents (similar to density 

gradient centrifugation and filtration) (361). 
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As discussed previously (section 1.3.5.1), ultracentrifugation can result in low EV yield; and vesicle 

aggregation and/or damage affecting structure and function (280, 281). The International Society 

for Extracellular Vesicles (ISEV) agree there is no “gold standard” for EV isolation, but accept that 

the technique used will rely on the original sample input volume (for my study 15 mL of BALF) and 

the subsequent required degree of EV purity and concentration for on-going analysis (291). 

Although I trialled ultracentrifugation, the EV yield was poor and I could not isolate enough RNA 

for sequencing purposes. Therefore, I employed the combination of ultrafiltration, to purify and 

concentrate my input sample, and SEC to separate the EV fraction from the soluble proteins. This 

latter step was particularly important for my downstream RNA analysis, as extra-vesicular RNA 

can be bound to soluble protein complexes, such as AGO2 (362), which would have contaminated 

my final EV RNA sample. 

Two commercial SEC platforms were available for EV isolation (PureEV™ and ExoSpin™), however 

these were not validated for use in BALF samples, with the only prior studies being done in urine 

and plasma (282, 284, 285). Therefore, I initially confirmed separation of the EV fraction from the 

soluble protein outlined in sections 2.5.3.1. These analyses confirmed the EV dominant fractions 

and demonstrated the higher reproducibility of the PureEV™ column. Therefore a combination of 

ultrafiltration and SEC using the PureEV™ columns was used as the method for subsequent BALF 

EV isolation including characterisation of these EVs (outlined in section 2.6). 

BALF samples from 20 COPD subjects and 15 healthy ex-smokers in the MICA II research cohort 

were initially processed for EV isolation and RNA sequencing. A further 6 COPD subjects and 5 

healthy ex-smokers BALF samples were processed for EV RNA isolation for the RT-qPCR validation 

study. This gave a total of 46 BALF samples processed (26 COPD and 20 healthy ex-smoker 

samples) for EV isolation and miRNA quantification. A pragmatic sample size for this study was 

driven by access to patient bronchoscopy samples and adequate volume of BALF available for EV 

isolation. Furthermore, comparison with previous studies investigating EV miRNA in BALF in other 

inflammatory lung diseases (262, 358, 360) suggest that this sample size would be adequate to 

detect a significant difference in EV miRNA signatures between COPD and healthy controls. 

2.5.5 EV isolation from serum by filtration using ExoMir™ kit  

The ExoMir™ kit uses filters of different sizes to capture EVs and larger membrane-bound particles 

(e.g. apoptotic bodies and microvesicles). Filters are then flushed with an RNA extraction reagent 

to lyse captured particles and release their contents. This method was chosen due to the previous 

experience of the laboratory group in using this method and the abundance of EV RNA recovered 

from serum using this method.  
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The kit was used according to the manufacturer's instructions. Briefly, 100 μL of Proteinase K was 

added to 4 mL of serum and incubated at 37oC for 30 min, to minimise non-specific signal and 

prevent filter clogging. The sample was loaded into a 10 mL syringe, which was pre-connected to a 

filter stack. The top filter had a pore size of ~200 nm to capture the larger particles and the 

bottom filter had a smaller pore size (~20 nm) to capture the EVs. The plunger was gently 

depressed at a rate of 2-3 drops per second. After sample filtration, residual fluid was completely 

removed from the filter disks using an air filled syringe. Each filter was then flushed with 1 mL 

BiooPure™-MP (a single-phase RNA extraction reagent containing guanidinium thiocyanate and 

phenol) to lyse captured particles.  

2.6 Extracellular vesicle characterisation 

2.6.1 Quantification of BALF derived EVs using enzyme-linked immunosorbent assays 

To quantify the BALF EVs isolated using the PureEV™ columns and ensure these were present in 

the correct fractions; I used two types of ELISA: a CD63 direct ELISA and a CD9 double sandwich 

ELISA I performed these experiments on combined SEC fractions (see Table 2.2) based on the 

manufacturer’s instructions and the results from the protein concentration experiments (section 

2.5.3.1). 

Table 2.2  Summary of combined SEC fractions for PureEV™ columns 
Combined SEC fraction SEC fractions included Total final volume (mL) 

SEC # 1 1-5 2.5 

SEC # 2* 6-11* 3 

SEC # 3 12-17 3 

SEC # 4 18-24 3.5 
*Corresponds to the EV-dominant fraction SEC, Size exclusion chromatography; #, fraction. 

2.6.1.1 CD63 enzyme-linked immunosorbent assay 

CD63 is one of the tetraspanins found on the surface of EVs and can be used to confirm the 

presence of EVs, but also quantified to determine relative abundance. EV abundance was 

quantified in the SEC fractions by direct ELISA for CD63, using the ExoELISA-ULTRA™ CD63 assay 

(System Biosciences®, Cambridge, UK). EV samples required pelleting and resuspending in Coating 

Buffer, therefore after SEC they were prepared using ExoQuick-TC™ kit (System Biosciences®). 

Briefly, ExoQuick-TC™ was added to the collated SEC fractions in a 1:5 ratio (i.e. 500 µL of 

ExoQuick-TC™ to 2500 µL SEC fraction) and incubated overnight (12-16 h) at 4oC. The EVs were 

pelleted by centrifugation twice at 1500 g, 4oC for 30 min. The EV pellet was resuspended in 120 

µL Coating Buffer.  
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Diluted ExoELISA-ULTRA™ protein standards were prepared according to the manufacturer's 

dilution scheme. 50 µL of each standard or EV sample replicate was bound to a high protein 

binding microtitre plate (supplied by System Biosciences®). The wells were incubated with an anti-

CD63 primary antibody, and a horseradish peroxidase enzyme linked secondary antibody was 

used for signal amplification. A colorimetric substrate (extra-sensitive TMB) was then used for the 

assay read out. The results were quantitated using a Softmax® microtitre plate spectrophometer 

at 450 nm absorbance.  

The average 450 nm absorbance measurement of the Blank standard replicates was subtracted 

from the 450 nm measurement of all the other individual standard and unknown sample 

replicates. A standard curve was plotted using the Blank-corrected 450 nm measurement for each 

ExoELISA-ULTRA™ standard versus its concentration in µg/mL. This was then used to determine 

the EV abundance of each unknown sample. 

The results of this ELISA are shown in Figure 2.3, where CD63 was not present in any of the 

combined fractions, apart from in combined SEC # 4 in one sample. 

 
Figure 2.3 EV abundance according to presence of CD63, measured by direct ELISA in combined 

SEC # 1-4 from PureEV™ columns 
Median and 95% confidence intervals shown. Dotted line shows zero level of EV abundance. BALF 
samples, N=3. 

2.6.1.2 CD9 enzyme-linked immunosorbent assay 

EV populations have different expression levels of the tetraspanins, and given I had poor results 

using the CD63 ELISA, I used an alternative, double sandwich ELISA for CD9 (ExoTest™, 

HansaBioMed® Life-Sciences) which could be performed directly on the combined SEC fractions.  

Diluted lyophilized exosome standards were prepared according to the manufacturer's dilution 

scheme. One hundred microlitres of each standard or EV sample replicate was added to a pre-

coated ELISA plate with primary antibodies against CD9. The sample was incubated overnight (12-

20 h) at 4°C. The wells were incubated with an anti-CD9 mouse primary antibody, and a 
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horseradish peroxidase enzyme conjugated anti-mouse Ig secondary antibody was used for signal 

amplification. A colorimetric substrate (100 μL per well of the Substrate Chromogenic solution 

provided by the manufacturer HansaBioMed® Life-Sciences) was then used for the assay read out. 

The results were quantitated using a Softmax® microtitre plate spectrophotometer at 450 nm and 

550 nm absorbance.  

The 550 nm absorbance measurement was subtracted from the 450 nm measurement for all the 

samples. The average 450 - 550 nm absorbance measurement of the Blank standard replicates 

was subtracted from the 450 - 550 nm measurement of all the other individual standard and 

unknown sample replicates. A standard curve was plotted using the corrected 450 - 550 nm 

measurement for each ExoTest™ standard versus its concentration in µg/mL and used to 

determine the EV abundance of each unknown sample. 

These results showed significant EV abundance, (quantified by the presence of CD9) in combined 

SEC # 2 compared with the other SEC fractions (Figure 2.4-A). This is despite a far higher protein 

concentration in combined SEC #3 and #4 (Figure 2.4-B).  

  
Figure 2.4 EV abundance (A) according to presence of CD9 and protein concentration (B) in 

combined SEC # 1-4 from PureEV™ columns 
Median and 95% confidence intervals shown. Dotted line shows zero level of EV abundance/protein 
concentration. Mann-Whitney U test, ****p<0.0001, **p<0.01. BALF samples, N=9. 

These results confirmed the presence of CD9 positive EVs in combined SEC # 2 and demonstrated 

the separation of soluble protein from the EV fraction. 

It is worth noting that this method of EV quantification will only capture a sub-population of EVs 

(i.e. the CD9 positive EVs). Overall EV particle number can be measured by light scattering 

technologies, such as nanoparticle tracking analysis (NTA) (297). This approach could be used to 

determine if there is a difference in EV number between health and COPD. This may be important 

as an increase in EV particle number in either health or disease may confer additional miRNA 

carrying capacity. Therefore, EV particle number may be important when considering 

normalisation of RNA sequencing results. In this thesis, normalisation was performed in four 

S E C  # 1 S E C  # 2 S E C  # 3 S E C  # 4
-2 0

0

2 0

4 0

6 0

8 0

E
V

 a
b

u
n

d
a

n
ce

 (
µ

g
)

* *
* *

* * * *

A

S E C  # 1 S E C  # 2 S E C  # 3 S E C  # 4
-5

0

5

1 0

1 5

2 0

2 5

P
ro

te
in

 c
o

n
ce

n
tr

a
tio

n
 (

m
g

/m
L

)

* * * *

* * * *

B

* * * *



Chapter 2 

46 

ways, firstly the starting volume of BALF was fixed at 15 mL for all samples, the same 

concentration of final library preparation was used prior to sequencing for each samples (see 

section 2.8.2), filtered reads underwent normalisation (see section 2.10.3) and miRNA expression 

data was normalised to stably expressed miRNA across health and disease (see section 2.11.2). 

There are inherent challenges of normalisation strategies in this field and EV particle number may 

affect RNA content, however correcting for this variable may be an important signal which is a 

relevant to the biology between health and disease. Therefore using the same starting volume of 

15 mL was considered to be a more biologically relevant strategy in this thesis. 

2.6.2 Transmission electron microscopy of BAL derived EVs to visualise characteristic size 

and shape 

TEM techniques are well established and proven useful in EV characterisation, providing direct 

evidence of the characteristic vesicular structures. In addition, the use of heavy metal stains such 

as ammonium molybdate in TEM enables visualisation of the bi-lipid layer. Briefly, 10 µL of EVs in 

1X PBS were fixed with 1 µL 25% (v/v) glutaraldehyde. Five microlitres of the preparation was 

layered onto individual formvar-carbon coated 200 mesh copper grids (Agar Scientific Ltd, 

Stansted, UK) and dried at room temperature. The samples were then contrasted in a solution of 

3% ammonium molybdate in 0.1 M ammonium acetate buffer pH 7.0 for 10 s, then blotted and 

allowed to dry (363). The samples were examined under an electron microscope (Hitachi®, High-

Technologies Ltd, High Wickham, UK) with a 16-megapixel side mounted camera (Morada® G3, 

EMSIS Ltd, Muenster, Germany). The EM images were analysed using RADIUS™ 2.0 software 

(EMSIS Ltd). 

TEM was used to characterise the EVs isolated from BALF using the PureEV™ SEC columns. Figure 

2.5 shows the EV sample morphology in combined SEC # 2 (A) compared with combined SEC # 3 

(B). In image A, there is little surrounding debris and the characteristic EV cup-shaped morphology 

and size between 30-150 nm is illustrated. In contrast, image B shows some larger vesicles, which 

are difficult to distinguish from the surrounding debris, which is likely to comprise largely of 

soluble protein aggregates.   
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A. 

 
B. 

 
 
Figure 2.5 Whole mounted BALF-derived EVs isolated using PureEV™ SEC columns viewed by 

transmission electron microscopy from combined SEC # 2 (A) and # 3 (B) 
White arrow points to a characteristic EV with cup-shaped morphology and size between 30 – 150 nm 
Scale bar shown in bottom right hand corner. BALF, bronchoalveolar lavage fluid; EV, extracellular 
vesicles; SEC, Size exclusion chromatography  

2.6.3 Characterisation of serum derived EVs 

Isolation of serum EVs differed from the BALF as it was performed using the ExoMir kit. This 

method was chosen due to the previous experience of the laboratory group and the abundance of 

EV RNA recovered from serum using this method. Characterisation of the serum EVs using this 

method was performed by western blot (section 2.6.3.1) and TEM (section 2.6.3.2). 

2.6.3.1 SDS PAGE and Western blotting to determine presence of serum EV surface 

markers 

Western blotting can be used to demonstrate the presence of proteins reportedly associated with 

EV or EV subgroups. Markers can include tetraspanins (CD9, CD63, CD81), major 

histocompatibility complex (MHC) molecules and cytosolic proteins such as certain stress proteins 
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(e.g. Tumour susceptibility gene 101 (Tsg101) and programmed cell death 6 interacting protein 

(Alix)) or cytoskeletal proteins (e.g. actin, tubulin) (207, 227).  

Briefly EVs were lysed and denatured in NuPAGE™ LDS Sample buffer 4X with 12% B-

Mercaptoethanol (ThermoFisher Scientific®) at 70oC for 10 min and resolved in NuPAGE™ 4-12% 

Bis-Tris Protein gels (ThermoFisher Scientific®). Expression of CD63 (anti-rabbit polyclonal 

antibody, Atlas Antibodies, Bromma, Sweden) and calnexin (anti-rabbit monocolonal antibody, 

Cell Signaling Technology, Danvers, US) were detected by specific antibodies.  

Figure 2.6 demonstrates the presence of CD63 (a tetraspanin, known to be present on EV surface) 

and the absence of the endoplasmin reticulum protein calnexin from EVs isolated using ExoMir™ 

method from serum. 

 

Figure 2.6 Western blot analysis of isolated EVs from serum  
30ug of protein was used for Western blot analysis of isolated EVs. Images captured from different WB 
for CD63 due to issues with running gel non-reducing conditions. Best image shown for both EVs and 
Cells. 

Of note, Western blot analysis was attempted on EVs isolated using SEC from BALF, but the 

antibodies did not bind and therefore an alternative, more sensitive approach was used with the 

high-sensitivity ELISAs (see section 2.6.1). 

2.6.3.2 Transmission electron microscopy of serum derived EVs to visualise characteristic 

size and shape 

TEM was used to characterise the EVs isolated from serum using the ExoMir™ kits. Figure 2.7 

shows the EV sample morphology with bilayer membranes visible, the characteristic EV cup-

shaped morphology and size between 30-150 nm is illustrated.  
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Figure 2.7 Whole mounted serum-derived EVs isolated using ExoMir™ kit viewed by 

transmission electron microscopy 
White arrow points to a characteristic EV with cup-shaped morphology and size between 30 – 150 nm 
Scale bar shown in bottom right hand corner. EV, extracellular vesicles 

Although difficult to make direct comparison due to the different isolation methodologies and 

samples types, there appears to be less characteristic vesicles observed in the EM images from 

the serum samples (Figure 2.7) than the BALF EV samples (Figure 2.5 A), and there appears to be 

more contaminating material in the serum EV sample. 
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2.7 RNA isolation, cDNA synthesis and real-time qPCR 

2.7.1 BALF EV RNA isolation, quantification and quality control to assess SEC EV isolation 

suitability for downstream application (RNA seqencing) 

This method was used for RNA isolation, cDNA synthesis and RT-qPCR of RNA extracted during 

optimisation of BALF EV isolation to ensure adequate RNA quantity and quality prior to formal 

sequencing.  

RNA from BALF EVs was isolated using miRNeasy Micro kit (Qiagen®) according to the 

manufacturer's instructions. Briefly, EVs were lysed with 1 mL of QIAzol Lysis Reagent. Chloroform 

was then added, mixed and incubated at room temperature for 2-3 min. Following centrifugation 

at 12,000 g, 4oC for 15 min, RNA was isolated by removing the aqueous phase which was then 

mixed with 1.5X volume of 100% ethanol. The total sample was transferred to an RNeasy 

MinElute spin column and centrifuged at 10,000 g for 15 s at room temperature followed by 

addition of Buffer RWT to the spin column.  After further centrifugation at 10,000 g for 15 s, the 

flow-through was discarded and spin column washed with 80% ethanol. The column was left to air 

dry and the resultant RNA eluted in 14 µL of pre-heated (60oC) nuclease-free water. 

Concentrations of RNA were determined by NanoDrop 1000 (ThermoFisher Scientific®). 

Custom primer pools were made up for the reverse transcription and pre-amplification reactions 

using specific Taqman™ miRNA assays (5X RT Primer and 20X mix of forward and reverse primers 

respectively) for the miRNA of interest. These were diluted with 1X Tris- 

Ethylenediaminetetraacetic acid (TE) Buffer and stored at -20oC for up to 2 months, according to 

the manufacturer's instructions. 

Reverse transcription was carried out in 15 µL reactions; 45 ng of RNA was added to 1X RT buffer, 

2X RT primer pool, 2mM deoxynucleotide (dNTP) mix, 150 U MultiScribe™ Reverse Transcriptase 

and 3.8 U RNase Inhibitor (ThermoFisher Scientific®). Remaining volume was made up to 15 μL 

with nuclease-free water. 

Following cDNA synthesis, a preamplification reaction was performed in 25 μL reactions, as 

recommended by the manufacturer for a starting total RNA of 1-350 ng. Briefly, 2.5 µL of cDNA 

was added to 3X PreAmp Primer Pool (both forward and reverse primers) and 1X TaqMan® 

PreAmp Master Mix. Remaining volume was made up to 25 μL with nuclease-free water. 

Following thermal-cycling, the amplified cDNA (PreAmp product) was diluted with 0.0875X TE 

Buffer, pH 8.0 to a total volume of 200 μL and stored at -20oC for up to 1 week. 
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Quantitative PCR was carried out in duplicate 10 μL reactions, where 1X Taqman® Universal 

Master Mix II, No AmpErase® UNG was added to 1X Taqman® miRNA primer. Remaining volume 

was made up to 10 μL with nuclease-free water. This master mix cocktail was added to 

appropriate wells on a 384 well PCR plate before addition of 1 µL of diluted PreAmp product. 

Gene expression was normalized to stably expressed miRNA (varied per sample) and presented as 

either ΔCq or ΔΔCq to show fold induction. 

To ensure RNA was of sufficient quantity to be analysed by sequencing, I performed RNA 

isolation, cDNA synthesis with pre-amplification and RT-qPCR on the combined SEC fractions from 

the PureEV™ columns. Primers for miR-29a and miR-340 were used as these miRNA have been 

used as normalisers in previous work I have performed using BALF EV samples (364). Figure 2.8 

shows there was no RNA detected in either combined SEC # 1 or the blank sample, defined as a 

Cq value of above 36 (represented by the dotted line). There was however sufficient quantities of 

RNA detected in the other three combined SEC fractions (2-4), with a mean Cq value of 29.1 

(SD±3.2, N=6) for combined SEC #2 (EV-dominant fraction). Importantly, RNA was detected in 

higher quantities (corresponding to a lower Cq value) in both combined SEC # 3 and 4, 

demonstrating the ability of soluble protein to carry RNA. It was therefore important to ensure 

this was separated from the EV-dominant fraction prior to RNA isolation to prevent any non-

vesicular RNA contamination. 

 
Figure 2.8 Mean Cq values for miR-29a and miR-240 for combined SEC fractions from PureEV™ 

columns 
BALF samples, N=6. Combined SEC fractions 1-4 from PureEV™ columns used. Dotted line represents 
cut-off for RNA detection, where a Cq>36 shows no miRNA detected. SEC, size exclusion 
chromatography. 

2.7.2 BAL EV RNA quantification and quality control prior to library preparation & next 

generation sequencing – performed by Qiagen® Genomic Services 

Qiagen® Genomic Services performed the following methods as part of the next generation 

sequencing protocol. Prior to RNA isolation, EVs (suspended in up to 200 μL of 1X PBS) were lysed 
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using Buffer RPL at room temperature for 3 min. In order to assess the quality of RNA isolation 

across samples, Qiaseq miRNA Library Quality control (QC) Spike-Ins solution (contents listed in 

Table 2.3) was added to each of the lysed EV samples. RNA from EVs was then isolated by Qiagen® 

using the miRNeasy® Serum/Plasma Advanced kit (Qiagen®) following the manufacturer’s 

instructions.  
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Table 2.3 Fifty-two QIAseq miRNA library QC spike-ins 

NGS Spike-In name Sequence NGS Spike-In name Sequence 

UniSp100  uugauucccaauccaagcaag  UniSp126  acaaacaccuuggauguucuu 

UniSp101 uaccaaccuuucaucguuccc  UniSp128  uaguccgguuuuggauacgug 

UniSp102  ucccaaauguagacaaagca  UniSp102  ucccaaauguagacaaagca  

UniSp103  ugaagcugccagcaugaucua  UniSp129  uuagaugaccaucaacaaacu 

UniSp104  cagccaaggaugacuugccgg  UniSp130  ucuugcuuaaaugaguauucca 

UniSp105  uccggcaaguugaccuuggcu UniSp131  agcucugauaccaaaugauggaau 

UniSp106  agaaucuugaugaugcugcau UniSp132  ugaucucuucguacucuucuug 

UniSp107  uuggcauucuguccaccucc UniSp133 cgaaacuggugucgaccgaca 

UniSp108 uuggcauucuguccaccucc UniSp134  uucuugcauauguucuuuauc 

UniSp109  cgaaacuggugucgaccgaca UniSp135  uccuguguuuccuuugaugcgugg 

UniSp110 uucgaggccuauuaaaccucug UniSp136  aucaguuucuuguucguuuca 

UniSp111 uagaaugcuauuguaauccag UniSp137 ucauggucagauccgucaucc 

UniSp112 gguucguacguacacuguuca UniSp138 ucauggucagauccgucaucc 

UniSp113 uaaacuaaucacggaaaugca UniSp139 uugaauugaagugcuugaauu 

UniSp114 uuuuggaaauuuguccuuacg UniSp140 ugacaugggacugccuaagcua 

UniSp115 ugagccucugugguagcccuca UniSp141 uaacuaaacauugguguagua 

UniSp116 uuugcuuccagcuuuugucuc UniSp142 uaagauccggacuacaacaaag 

UniSp117 uugguuacccauauggccauc UniSp143 uaauccuaccaauaacuucagc 

UniSp118 uucgaugucuagcagugcca UniSp144 gauggauaugucuucaaggac 

UniSp119 ucuaagucuucuauugauguu UniSp145 ccuuggagaaauaugcgucaa 

UniSp120 uacgcauugaguuucguugcuu UniSp146 uuaugucuuguugaucucaau 

UniSp121 uggcuugguuuauguacaccg UniSp147 uaaagucaauaauaccuugaag 

UniSp122 uucugcuauguugcugcucau UniSp148 uuuuuccucaaauuuauccaa 

UniSp123 ugauuggaaauuucguugacu UniSp149 augaauuuggaucuaauugag 

UniSp124 ucuagcagcuguugagcaggu UniSp150 auugguucaauucugguguug 

UniSp125 uucuucgugaauaucuggcau UniSp151 uaauuugguguuucuucgauc 
These are 5' phosphorylated miRNAs with sequence length in the range 20-24 nucleotides. The sequences are of plant 
origin and bear no significant homology to miRNAs from the following species: human (hsa), mouse (mmu), rat (rno), 
rhesus monkey (mml), orangutan (ppy), chimpanzee (ptr) or pig (ssc). 
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Reverse transcription was performed in 10 µL reactions using the miRCURY LNA RT kit (Qiagen®), 

with an artificial RNA spike-in (UniSp6) to assess the quality of the reverse transcriptase reaction. 

Following cDNA synthesis, quantitative PCR was performed by Qiagen in a LightCycler® 480 Real-

Time PCR System (Roche®, Welwyn Garden City, UK) in 384 well plates. Primers used were: miR-

23a, miR-30c, miR-103, miR-142-3p and miR-451, as well as the primers for the 52 RNA spike-ins 

(listed in Table 2.3) and the primer for the artificial RNA spike-in (UniSp6). Negative controls 

excluding the template from the reverse transcription reaction was performed and profiled like 

the samples. Amplification curves were analysed using the Roche® LC software, both for 

determination of Cq (by the 2nd derivative method) and for melting curve analysis. 

The ISEV position paper on “EV RNA analysis and bioinformatics” recommends the use of external 

spike-in RNA to evaluate the sensitivity, accuracy and comparability of RNA-sequencing 

experiments (365). Pearson correlation analysis of the 52 RNA-spike-in Cq values was performed 

across the samples. The following radar plot demonstrates excellent correlation of counts 

corresponding to the spike-ins between the samples (Figure 2.9). The actual R2 values were 

between 0.94 and 1.0 for all samples. 

 
Figure 2.9 Radar plot showing relative spike-in signal for each sample 

Figure adapted from Qiagen® sequencing data report. N=35; COPD, n=20. 
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Importantly, no sample outliers were identified at this point, which is key to ensure the quality 

and reliability of the library preparations.  

The methods for RNA isolation, cDNA synthesis and RT-qPCR for validation of the sequencing 

results were the same as above, and again performed by Qiagen® Genomic Services. The only 

differences were the RNA spike-ins used for QC. Instead of the 52 RNA spike-Ins listed in Table 

2.3, the following spike-ins were used to assess RNA isolation efficiency: UniSp2, UniSp4 and 

UniSp5. In addition to this, a DNA spike-in (UniSp3) was also added. This DNA spike-in consists of a 

premixed combination of DNA template and primers. Deviations in this reaction would indicate if 

there had been inhibitions at the qPCR level. For cDNA synthesis control, the same RNA spike-In 

(UniSp6) was used during the reverse transcription reaction. 

2.7.3 Serum EV RNA isolation, quantification and quality control 

Serum EVs were isolated using the ExoMir™ kit (see section 2.5.5) and were processed for RNA 

isolation using the following method. 200 μL of chloroform was added to the lysed particles that 

had been flushed from the ~20 nm filter (smaller, bottom filter) with 1 mL BiooPure™-MP. The 

resultant sample was vortexed for 20 sec and left at room temperature for 5 min. Samples were 

centrifuged 12,000 g, 4oC for 15 min. RNA was isolated by removing the aqueous phase, adding 3 

μL of co-precipitant (linear acrylamide) and incubating at room temperature for 5 min. To 

precipitate the RNA, 550 μL of isopropanol was added to the sample and then left at 20oC for at 

least 1 hour. RNA was recovered by centrifugation at 12,000 g, 4oC for 15 min. The resultant RNA 

pellet was washed with 900 μL 75% ethanol, re-suspended in 25 μL of nuclease-free water. Prior 

to storage at -80oC, concentrations of RNA were determined by NanoDrop 1000 (ThermoFisher 

Scientific®). Custom primer pools were made up for the reverse transcription and pre-

amplification reactions using specific Taqman™ miRNA assays (5X RT Primer and 20X mix of 

forward and reverse primers respectively) for the miRNA of interest. These were diluted with 1X 

Tris- Ethylenediaminetetraacetic acid (TE) Buffer and stored at -20oC for up to 2 months, 

according to the manufacturer's instructions. 

Reverse transcription was carried out in 15 µL reactions; 45 ng of RNA was added to 1X RT buffer, 

2X RT primer pool, 2mM deoxynucleotide (dNTP) mix, 150 U MultiScribe™ Reverse Transcriptase 

and 3.8 U RNase Inhibitor (all applied biosystems® by ThermoFisher Scientific®). Remaining 

volume was made up to 15 μL with nuclease-free water. 

Following cDNA synthesis, a preamplification reaction was performed in 25 μL reactions, as 

recommended by the manufacturer for a starting total RNA of 1-350 ng. Briefly, 2.5 µL of cDNA 

was added to 3X PreAmp Primer Pool (both forward and reverse primers) and 1X TaqMan® 
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PreAmp Master Mix. Remaining volume was made up to 25 μL with nuclease-free water. 

Following thermal-cycling, the amplified cDNA (PreAmp product) was diluted with 0.0875X TE 

Buffer, pH 8.0 to a total volume of 200 μL and stored at -20oC for up to 1 week. 

Quantitative PCR was carried out in duplicate 10 μL reactions, where 1X Taqman® Universal 

Master Mix II, No AmpErase® UNG was added to 1X Taqman® miRNA primer. Remaining volume 

was made up to 10 μL with nuclease-free water. This master mix cocktail was added to 

appropriate wells on a 384 well PCR plate before addition of 1 µL of diluted PreAmp product. 

Gene expression was normalized to stably expressed miRNA (varied per sample) and presented as 

either ΔCq or ΔΔCq to show fold induction. 
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2.8 Next generation microRNA sequencing of bronchoalveolar lavage 

extracellular vesicle RNA 

2.8.1 BALF EV RNA Library preparation – performed by Qiagen® Genomic Services 

Library preparation was performed by Qiagen® Genomic Services using the methods outlined in 

the Qiaseq™ miRNA Library Kit Handbook – precision small RNA library prep for Illumina® NGS 

system (version November 2016). Figure 2.10 summarises the methods for library preparation. 

 
 
Figure 2.10 Summary of library preparation process 

UMI, unique molecular index 

2.8.2 microRNA library pre-sequencing quality control  and preparation 

MiRNA library pre-sequencing quality control was performed by Qiagen® Genomic Services on an 

Agilent® Bioanalyser 2100 using a High Sensitivity DNA chip. 

The concentration of the miRNA sequencing library was performed by Qiagen® on a Qubit™ 

Fluorimeter (Invitrogen™). The molarity of each sample (in nM) was determined using the 

following equation: 

(X ng/µl)(106)/(112450) = Y nM 

The individual libraries were diluted with nuclease-free water to 4 nM. The libraries were 

combined in equimolar amounts ready for sequencing. 

Prior to sequencing, Qiagen® Genomic Services performed the "Standard Normalisation Method" 

outlined in the NextSeq System Denature and Dilute Libraries Guide (Document # 15048776 v5). A 
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final concentration of 1.8 pM of the denatured, diluted library solution was used for loading of the 

Flow cell. 

2.8.3 Sequencing run setup 

Next generation sequencing methods were performed by Qiagen® Genomic Services using the 

NextSeq500 instrument (Illumina®, Chesterford, UK). The high output Flow cell was prepared and 

the following sequencing parameters were used: 

Read type - Single-end read 

Number of sequencing cycles (read length) - 75 nucleotides 

Average number of reads - 10 million reads/sample 
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2.9 MicroRNA sequencing output processing, quality control, mapping 

and alignment 

2.9.1 Trimming of adaptors and UMI correction – performed by Qiagen® Genomic Services 

The NextSeq500 sequencing system generates raw data files in binary base call (BCL) format. 

Qiagen® Genomic Services used bcl2fastq conversion software v2.20 (Illumina®) to demultiplex 

data and convert BCL files to standard FASTQ file format for downstream analysis. FASTQ is a text 

based sequencing data file format that stores both raw sequence data and quality scores. Next, 

cutadapt (1.11) is used to remove low quality bases, and identify the adapter and UMIs applied 

during library preparation (366). The output from cutadapt is used to remove adapter sequences 

and to collapse reads by unique molecular index (UMI) with in-house script (summarised in Figure 

2.11). According to the experiment protocol, each raw read is expected to contain (starting from 

the 5' end): an insert sequence, the adapter sequence, 12nt-long UMI sequence, and other ligated 

sequence (see Figure 2.12). Depending on the read length and insert length, not all parts are 

present on all reads. To correct PCR bias with UMI information, raw reads are processed as 

follows: 

1. Use cutadapt on raw reads with provided adapter sequence to acquire output with 

information about the presence of adapter for each read. 

2. Parse cutadapt output and keep only reads that fulfil all of the following: 

a. Reads contain adapters 

b. Insert sequences should be equal or larger than minimal insert length (default 16 

nucleotides) 

c. UMI sequence should be equal or longer than minimal UMI length (default 10 

nucleotides) 

3. Extract insert sequences from reads which do not contain full length UMI sequence from 

step 2 output as "partial-UMI reads". 

4. Examine the reads with full length UMI in step 2 output and identify all unique insert + 

UMI combinations. Extract insert sequences from unique inset + UMI combinations as 

"full-UMI reads". 

5. Combine "partial-UMI reads" and "full-UMI reads" as output of UMI correction. 
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Figure 2.11 Overview of trimming of adapters and UMI correction process 

 

 
Figure 2.12 Illustration of the principle behind UMI correction 

In order to correct for amplification biases, sequences containing identical insert and UMI are collapsed 
into a single sequence. 

2.9.2 microRNA sequencing quality control 

Trimmed FASTQ files were analysed using FastQC (367) a quality control tool for high throughput 

sequence data. This provided an overview on average read quality, average base quality and 

highlighted any potential outliers. The FastQC report provides basic statistics, per base sequence 

quality, per tile sequence quality, per sequence quality scores, per base sequence content, per 

sequence GC content, per base N content, sequence length distribution, sequence duplication 

levels, overrepresented sequences and adapter content metrics. Qiagen® generated the FastQC 

reports and I then performed the quality control analysis.  

2.9.2.1 Average read quality 

Using the trimmed FASTQ files, FastQC generates a per sequence quality report, which identifies if 

a subset of sequences have universally low quality values. If a significant proportion of the 

sequences in a run have overall low quality then this could indicate a systematic problem (e.g. a 

problem with the flowcell). All of my samples passed this module, with the majority of the reads 

having a mean sequence quality score (Q-score) of above 30, which is consistent with high quality 
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data. An example of the average read quality is shown in Figure 2.13. The rest of the samples had 

similar plots, with the majority of reads having a Q score of greater than 30.  

 
Figure 2.13 Average read quality of miRNA sequencing data 

The mean sequence quality (Q score) is plotted against the number of reads. A Q-score above 30 is 
considered high quality.  

2.9.2.2 Per base sequence quality 

The per base sequence quality metric gives an overview of the range of quality scores across all 

bases at each position in the FASTQ file. All of my samples passed this module, with Q-scores 

above 30 (>99.9% correct), and therefore indicative of high quality data. An example of the quality 

scores across all bases is shown in Figure 2.14. All other samples in my dataset had simple 

profiles. Of note, the quality of calls on most platforms will degrade as the run progresses, so it is 

common to see base calls falling into the orange area towards the end of a run.  

 
Figure 2.14 Box whisker plot showing the quality scores across all bases for a representative BALF 

sample. 
Blue line represents the mean quality. Red dotted line represents the median. Whiskers represent IQR. 
Scores within the green area are considered high quality. Figure adapted from FASTQ file. 
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2.9.2.3 Sequence length distribution  

The data generated from BAL EVs show a peak in sequence length around 21-22 base pairs, which 

represents miRNA (Figure 2.15). Longer sequences are of other origin (i.e. rRNA), transfer RNA 

(tRNA), mRNA and Y-RNA fragments) and have a length of ~30-50 nucleotides.  

 
Figure 2.15 Read length distribution after filtering of adaptors for a representative BALF sample 

MiRNA appear as a peak at 21-22 nucleotides. The other samples had very similar sequence length 
profiles corresponding to miRNA.  

2.9.2.4 Additional FastQC quality metrics 

In addition to the average read quality, per base sequence quality and sequence length 

distribution, the FastQC report generates a number of other outputs. This includes per base 

sequence content, which measures the proportion of each base (e.g. A, T, C, and G) position in a 

file. In a random library there is very little difference between bases in a sequencing run, however 

libraries produced by priming using random hexamers (i.e. RNA sequencing libraries) inherit an 

intrinsic bias in the positions at which reads start. Given my data is from an RNA sequencing 

library, the FastQC reported an error in this module, highlighting the difference between A and T, 

or C and G was greater than 10-20% in any position. Whilst this is considered true technical bias, 

the literature suggests it does not seem to affect downstream analysis. 

Sequence duplication levels and overrepresented sequences are also presented in the quality 

control report. Diverse libraries will have very low levels of sequence duplication and 

overrepresented sequences. However, in RNA-sequencing libraries different transcripts are 

present at very different levels in the starting population. Therefore, in order to observe lowly 

expressed transcripts, it is common to greatly over-sequence highly expressed transcripts 

resulting in sequencing duplicates and overrepresented sequences. The FastQC reported an error 

in both sequence duplication and overrepresented sequences for this reason. However by using 

the UMI correction (outlined in section 2.9.1), I accounted for this technical duplication of 

sequences by collapsing identical insert sequences and UMI sequences (insert-UMI pairs) into a 

0 1 0 2 0 3 0 4 0 5 0
0

5 0 0

1 0 0 0

1 5 0 0

   

S e q u e n ce  le n g th  (b p )

R
e

a
d

s



Chapter 2 

63 

single read. Table 2.4 summarises the number of reads after each step of the UMI correction 

process.  

Table 2.4 Number of reads after each step of the UMI correction process 

 Raw reads Reads with 

adapter 

Reads after 

length filtering 

Reads with full 

or partial UMI 

Collapsed and 

Partial reads 

Mean  
(±SD) 

15,911,755 
(±1.27x106) 

15,626,191 
(±1.27x106) 

3,760,379 
(±9.54x105) 

3,627,757 
(±9.18x105) 

2,233,781 
(±4.75x105) 

% of original raw 
reads 100 98 24 23 14 

2.9.2.5 Summary of microRNA sequencing quality control 

The quality metrics presented in section 2.9.2 are consistent with high quality data as 

demonstrated by the Q-scores of above 30. In addition, the sequence length distribution indicates 

that the majority of the reads correspond to an RNA sequence length of 18-22 nucleotides, 

representative of miRNA, the RNA of interest in my study. At this stage no outliers were identified 

in the sample cohort. 

2.9.3 Mapping and aligning to reference genome – performed by Qiagen® Genomic 

Services 

Qiagen® Genomic Services used bowtie2 (v 2.2.2) tool to align sequencing reads to the reference 

genome, Genome Reference Consortium Human Build 37 (GRCh37/hg19), and miRNA to the 

miRNA database, miRBase (version mirbase_20) (368). The reads had to have a perfect match to 

the reference sequences to be included for aligning reads to spike-ins, abundant sequences and 

miRBase. For mapping to the genome, 1 mismatch was allowed in the first 32 bases of the read. 

No indels were allowed in mapping. MiRNA counts were generated by "in-house" software by 

Qiagen® (mapping summarised in Figure 2.16). Mapped reads were classified into the following 

classes: 

• Outmapped: Reads aligning to poly(A) and poly(C) homopolymers as well as abundant ribosomal 

RNA (rRNA) and mitochondrial RNA (mtRNA) 

• Unmapped reads: No alignment to reference genome possible. 

• Genome: Reads align to reference genome (GRCh37), but not to smallRNA or miRNA. 

• MiRNA: Reads aligning to miRNA in miRBase (version mirbase_20). 

• SmallRNA: Reads map to smallRNA database (compiled by Exiqon). 

• Predicted miRNA: Reads map to a sequence found in miRBase in another organism ("predicted 

putative") or reads that don't match any known miRNAs in miRBase, but have the structural 

properties (i.e. read count distribution and secondary structure) of the genome in specific locations 

that resemble known miRNAs ("predicted miRBase").  
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An overview of the RNA sequencing quality control and mapping process performed by Qiagen® is 

summarised in Figure 2.16. 

 
Figure 2.16 Overview of RNA sequencing quality control and mapping. 

Blue rectangle indicates a process, with the software/tool specified in parenthesis. Grey trapezium 
indicates data output. 

Given that the EV RNA was isolated from BALF, a non-sterile biofluid with possible bacterial and 

fungal contamination (both of which can release EVs), it is worth noting that during the mapping 

process, Qiagen® Genomic services also aligned sequenced reads to several bacterial and fungal 

reference genomes, however found no positive alignment. Therefore only sequenced reads 

aligning to the human genome were taken forward for further analysis. 

2.9.3.1 Analysis of mapping and alignment to reference genome  

I performed the analysis of the alignment and mapping results. The total number of reads 

mapped after full UMI correction for each sample is shown in Figure 2.17. The mean total number 

of reads mapped for the dataset was 2,804,969 (range: 1.6x106 – 4.3x106, SD±7.07x105) and the 

average genome-mapping rate was 53.4%.  
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Figure 2.17 Total number of reads for each sample. 

The dotted line represents in the mean total number of reads obtained ~ 2.8x106. N=35; COPD, n=20. 

 

2.9.3.1.1 Classification of mapped reads 

As described in section 2.9.3, mapped reads were classified into the following types outmapped, 

unmapped, genome mapped, miRNA mapped, smallRNA mapped or predicted. The proportions of 

each type were calculated for each sample (Figure 2.18 A). After excluding the unmapped reads, 

(Figure 2.18 B) the most predominant mapped reads were genome-mapped, (mean 45.3%, 

SD±14.7%) and miRNA (mean 40.5%, SD±14.3%). SmallRNA, predicted RNA and outmapped RNA 

only accounted for a mean of 4.9%, 0.3% and 8.9% reads respectively.  
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B

 
Figure 2.18 Summary of mapping results of reads for each sample. 

Each sample consists of reads that can be classified into the following categories: miRNA, smallRNA, 
genome-mapped, outmapped or high abundance (e.g. rRNA, polyA, polyC, mtRNA) and reads which did 
not align to anything (unmapped). Figure 4.6 A unmapped reads included, B.unmapped reads excluded. 
N=35; COPD, n=20. 
 

Of note, although several samples showed lower mapping rates when including both mapped and 

unmapped reads (Figure 2.18 A), MICA_II_091_RLL appears to have significantly lower mapping 

rates for both miRNA and smallRNA. This may well influence downstream analysis and will be 

considered further in the exploratory data analysis (see section 2.10.2). 

2.9.3.1.2 Classification of smallRNA mapped reads 

Five different types of smallRNA were found, transfer RNA (tRNA), piwi-interacting RNA (piRNA), 

small nucleolar RNA (snoRNA), small nuclear RNA (snRNA) and Y-RNA. tRNA was the most 

abundant (92.2%) smallRNA found in my EV samples (Table 2.5). It is integral to protein synthesis 
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by helping decode mRNA into protein. piRNA, is the largest class of small non-coding RNA 

molecules expressed in animal cells (369). This is reflected in my dataset, as they had the highest 

number of different RNA (2314) detected across all samples (Table 2.5). They form RNA-protein 

complexes through interactions with piwi proteins and have been linked to both epigenetic and 

post-transcriptional gene silencing, particularly in germ line cells (370). snoRNA are mainly 

involved in the modification of other RNAs, mainly rRNA, tRNA and snRNA. They were the smallest 

proportion (0.008%) of smallRNA found in both COPD and healthy ex-smoker EVs (Table 2.5). 

snRNA are one of many small RNA species confined to the nucleus and responsible for the 

processing of pre-messenger RNA (hnRNA) in the nucleus (371). The final type of smallRNA found 

are Y-RNAs, which are components of the Ro60 ribonucleoprotein particle. They are necessary for 

RNA replication through interactions with chromatin and initiation proteins (372). 

 

Table 2.5 Types and proportions of smallRNA found in BALF EV miRNA (n=35) 
Class of small RNA Number of different types of small RNA 

found across samples 
Proportion of small RNA type found 

across samples (%) 

piRNA 2314 0.008 

snoRNA 1612 0.8 

snRNA 2065 1.9 

tRNA 624 92.2 

Y-RNA 866 5.1 
piRNA, piwi-interacting RNA; snoRNA, small nucleolar RNA; snRNA, small nuclear RNA; tRNA, transfer RNA. 
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2.10 MicroRNA sequencing filtering, data analysis and differential 

expression analysis 

Unsupervised filtering, data analysis and differential expression analysis was performed in 

RStudio®, an open source software for using the R statistical computing environment, using R (v 

3.8.2). The methods were adapted from the Bioconductor package, “Empirical analysis of digital 

gene expression in R” (edgeR) (373) and are summarised in Figure 2.19. 

 
Figure 2.19 Overview of unsupervised filtering, exploratory data analysis and differential 

expression analysis methods 
Blue rectangle indicates a process, grey trapezium indicate a data output, yellow diamond is an 
important checkpoint. BCV, Biological coefficient of variation; CPM, counts per million; IQR, Interquartile 
range; miRNA, microRNA; QC, Quality control; TMM, Trimmed mean of M values. 

 

2.10.1 Unsupervised filtering 

MiRNA with very low counts across all libraries provide little evidence for differential expression 

(373). From a biological standpoint, a miRNA must be expressed at some minimal level before it is 

likely to have a downstream effect on gene expression. In addition, the notable discreteness of 

these low counts interferes with some of the statistical approximations used later in the analysis.  

Therefore, miRNA can be excluded from the dataset if it cannot be expressed in all samples for 

any of the conditions (i.e. in healthy ex-smokers or COPD). For a miRNA to be considered 

"expressed" in a library, it is usually required to have a raw read count of 5-10. However, it is also 

recommended, that filtering should be performed on count-per-million (CPM) data rather than on 



Chapter 2 

69 

raw counts directly, as the latter does not account for differences in library sizes between 

samples.  

I found three examples of 3 different cut-offs for unsupervised filtering of RNA sequencing data:  

I. Median log2-transformed  CPM cut-off (326).  

II. CPM>1 in a minimum of n samples, where n=size of the smallest group (373). 

III. CPM>10 in a minimum of n samples, where n=size of the smallest group (374). 

After removing the lowly expressed miRNA the library sizes were recalculated, for each filtered 

dataset, although the differences are usually negligible. 

2.10.1.1 Median log2-transformed CPM cut-off method 

This method uses a cut-off based on the median log2-transformed CPM for each miRNA (326). 

Briefly, the raw count data is converted into CPM and then log transformed (defined as 

median_log2_cpm in R). The median of this dataset is then used as a cut-off and every miRNA 

with a log2-transformed CPM of less than the median is discarded. The following code will 

perform this filtering process in R, where the raw count data is defined as data_clean_1: 

> cpm_log <- cpm(data_clean_1), log = TRUE) 

> median_log2_cpm <- apply(cpm_log, 1, median) 

> hist(median_log2_cpm) 

> expr_cutoff <- median_log2_cpm 

> abline(v = expr_cutoff, col = "red", lwd = 3) 

> sum(cpm_log > expr_cutoff) 

> keep_1 <- data_clean_1[cpm_log > expr_cutoff,] 

Library sizes were recalculated using the following code, where groups is defined by a vector that 

assigns each of the samples to a subject group, either COPD or healthy: 

> group <- read.table("Experimental_Design_File.csv", header = TRUE, row.names = 1, 

sep = ",") 

> groups <- group$Disease 

> keep_1 <- DGEList(counts = keep_1, genes = row.names(keep_1), group = groups) 
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2.10.1.2 CPM>1 in a minimum of n samples, where n=size of the smallest group 

This method uses a CPM cut-off of greater than 1 in a minimum of 15 or more of the samples 

(373). Here, a CPM of 1 corresponds to a raw read count of 6-7 in the smallest sample. A 

requirement for expression in 15 or more libraries is used, as the minimum number of samples in 

each group is 15 (i.e. there are 15 healthy controls and 20 COPD subjects, therefore the minimum 

number in each group is 15). The following code will perform this filtering process using the edgeR 

statistical package in R (v 3.8.2), where the raw count data is contained within a simple list-based 

data object called DGEList (defined as data_clean_2): 

> keep_2 <- rowSums(cpm(data_clean_2)>1) >= 15 

Library sizes were recalculated using the following code: 

> keep_2 <-eds[keep_2, , keep.lib.sizes=FALSE] 

2.10.1.3 CPM>10 in a minimum of n samples, where n=size of the smallest group  

Again, this uses the edgeR statistical package in R (v 3.8.2), but utilises the function filterByExpr, 

which has a pre-set CPM cut-off of greater than 10 in a minimum of 15 or more samples (374). 

This is therefore, the most stringent cut-off and can be performed using the following code, 

where the raw count data is contained within the DGEList, data_clean_3: 

> keep_3 <- filterByExpr(data_clean_3, design) 

Library sizes were recalculated using the following code: 

> keep_3 <-eds[keep_3, , keep.lib.sizes=FALSE] 

Each filtering method resulted in a different number of miRNA being included in the filtered 

dataset (Figure 2.18). The median cut-off method resulted in 527 included miRNA, whereas the 

CPM>10 in a minimum number of samples (n=15) was the most stringent cut-off and resulted in 

only 275 included miRNA. This method included all of the miRNA from the other two filtered 

datasets.  
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Figure 2.20 Non-scaled Venn diagram showing the number of miRNA included in each filtered 

dataset and the overlap between each method 

For each of these three cut-offs for unsupervised filtering, I used several analytical and graphical 

approaches to determine which cut-off was the most robust for my dataset and to identify any 

outliers within the sample dataset. The next section will explored these quality control measures.  

2.10.2 Exploratory data analysis for quality control 

In order to build familiarity with the sequencing data, determine overall quality and identify 

possible outliers, which could bias further analysis, it is important to visualise and summarize 

aspects of the data. I used a number of methods to do this: basic quality control plots (e.g. 

boxplots, histograms), interquartile range (IQR) versus median plots and principle component 

analysis. 

2.10.2.1 Basic quality control plots 

Boxplots and histograms were used to visualise the distribution and density respectively, of read 

counts across each of the sample libraries. These were generated in R (v 3.8.2) using the following 

code, where "cpm_log" is defined as the log-transformed CPM value for each miRNA, in each 

sample: 

> boxplot(cpm_log, outlines=FALSE, las=2, cex.axis=0.5, main="cpm_log data miRNA", 

col="gray79") 

> hist(cpm_log, main=”cpm_log data miRNA”, xlab = “CPM_log counts”) 

The boxplots for each filtered dataset are shown in Figure 2.21, A-C. The median log2CPM cut-off 

(A) and CPM>1 in a minimum of 15 samples (B) methods show the highest variation in data 

(highlighted in red circles) suggesting these methods are still including miRNA with very low 

counts. Low counts are also highlighted in the histograms (Figure 2.21, D-F), which show higher 
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frequencies in the 0 log-transformed CPM counts for the median logCPM cut-off (D) and CPM>1 in 

a minimum of 15 samples (E) filtered data (highlighted in red circles). 
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Figure 2.21 Boxplots (A-C) and histograms (D-F) showing the distribution and frequency of log-transformed CPM data across datasets for different filtering 

methods. 

Boxplots: Median log2CPM cut-off (A), CPM>1 in a minimum of 15 samples (B), CPM>10 in a minimum of 15 samples (C). Black lines represent medians, grey boxes represent 
IQRs, whiskers represent the range except for “outliers” that are more than ±1.5 times the IQR larger or smaller than the median.  Histograms: Median log2CPM cut-off (D), 
CPM>1 in a minimum of 15 samples (E), CPM>10 in a minimum of 15 samples (F) Red circles highlight large variation in data or frequency of miRNA included with zero log-
transformed CPM. N=35, COPD n= 20. CPM, counts per million. 
 

A B 
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2.10.2.2 Interquartile range versus median plot 

For each of the filtering methods, the IQR and median was calculated, using Microsoft® Excel® 

(2011), from the CPM miRNA expression data for each sample library. The values were plotted on 

an XY graph along with reference points for 1 standard deviation (SD) of the mean and 2 SDs of 

the mean. This allows visualisation of the spread or variance in data across the samples. It also 

highlights potential outliers, by identifying those with very large variance and therefore outside 2 

SDs of the mean (Figure 2.22). 

CPM>1 and CPM>10 in a minimum of 15 samples filtering identified similar outliers (defined as 

outside 2 SD of IQR/Median CPM) with both MICA_II_100_LLL and MICA_II_091_RLL showing a 

high degree of variance. In addition, MICA_II_007_RML was also identified as a possible outlier in 

the CPM>10 in a minimum of 15 samples filtered dataset. In contrast, the median log2CPM 

filtered dataset identified several different outliers, and except for MICA_II_091_RLL, all of which 

were samples from healthy ex-smokers (MICA_II_077_RML, MICA_II_061_RLL, MICA_II_128_RLL 

and MICA_II_131_RML).  

 
Figure 2.22 Interquartile range/median plots of CPM data for different filtering methods. 

Median log2CPM cut-off (A), CPM>1 in a minimum of 15 samples (B), CPM>10 in a minimum of 15 
samples (C) datasets. Black dots represent samples (n=35, COPD n = 20). Blue dots and perimeter 
represent ±2SD from the mean. Orange dots and perimeter represent ±1SD from the mean. Outlier 
samples outside ± 2SD from the mean labelled. 
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The outliers identified from the boxplots and IQR/Median plots are summarised in Table 2.6 for 

each of the different filtering methods. The sample identified most commonly as an outlier was 

MICA_II_091_RLL. This was identified by all three filtering methods in both boxplots and 

IQR/Median plots. The median log2CPM cut-off method included the highest number of miRNA, 

however this meant lowly expressed miRNA with high variance were included. I concluded that 

the most robust data for further analysis was the CPM>10 in a minimum of 15 samples filtered 

data. Although, this method used the most stringent cut-off (resulting in the smallest number of 

miRNA, 275), when visualising the data and examining the variance using the above techniques it 

included the least lowly expressed miRNA with the least variance. Therefore, this dataset is likely 

to contain more biologically significant miRNA, which is an important consideration for differential 

expression analysis. 

 

Table 2.6  Summary of outliers identified from the boxplots and IQR/median plots for each 

unsupervised filtering method 

Unsupervised filtering 

method 

Number of miRNA 

included in filtered 

dataset 

Sample outliers identified on 

boxplots of CPM filtered data 

Sample outliers identified on 

IQR/Median plots of CPM 

filtered data 

Median log2CPM cut-off  527 MICA_II_077_RML 
MICA_II_061_RLL 
MICA_II_128_RLL 
*MICA_II_091_RLL 
MICA_II_131_RML 

MICA_II_077_RML 
MICA_II_061_RLL 
MICA_II_128_RLL 
*MICA_II_091_RLL 
MICA_II_131_RML 

CPM>1 in a minimum of 
15 samples 

519 MICA_II_077_RML 
MICA_II_061_RLL 
MICA_II_128_RLL 
MICA_II_054_RML 
*MICA_II_091_RLL 
MICA_II_131_RML 

MICA_II_100_LLL 
*MICA_II_091_RLL 

CPM>10 in a minimum of 
15 samples 

275 *MICA_II_091_RLL MICA_II_ 007_RML 
MICA_II_100_LLL 
*MICA_II_091_RLL 

*Sample identified as an outlier in every filtering method, in all both analysis. CPM, counts per million; IQR, interquartile 
range. 
 

Interestingly, MICA_II_091_RLL was identified as an outlier in all three unsupervised filtering 

methods and in all graphical analysis of the data (Table 2.6). Furthermore, as highlighted in 

section 2.9.3.1.1, this sample appeared to have significantly lower mapping rates for both miRNA 

and smallRNA. Therefore, as these anomalies are likely to affect downstream differential 

expression analysis, the sample was excluded from the final analysis (see section 2.10.2.4). 
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2.10.2.3 Principle component analysis 

Principle component analysis (PCA) was used to transform the multi-dimensional sequencing 

dataset to smaller, discrete sets of orthogonal principle components.  The first principle 

component specifies the direction with the largest variability in the data, the second component 

is the direction with the second largest variation and so on. The PCA and plots were generated 

using the rgl package in R (v 3.8.2) using the function "prcomp" on the filtered CPM, log-

transformed dataset, using the following code (375): 

> pca <- prcomp(t(cpm_log), scale. = TRUE) 

> PC1 <- pcs$x[ ,1] 

> PC2 <- pcs$x[ ,2] 

> PC3 <- pcs$x[ ,3] 

> PCA_details <- cbind(PC1, PC2, PC3) 

> write.table (PCA_details, "PCA_details.txt", sep = "/t') 

## Open PCA_details.txt file in excel and shift column titles to the right, add 

"Sample_ID" heading and Disease column (i.e. assign each sample to COPD 

("dodgerblue" color) or Healthy ("firebrick" color) group) and save. 

> pca <- read.table ("PCA_details.txt", sep="/t") 

## Plot 3D PCA plot 

> library (rgl) 

> p3d <- plot3d (pca$PC1, pca$PC2, pca$PC3, x lab = "Comp 1", y lab = "Comp 2", z 

lab = "Comp 3", col = (pca$Disease), box = FALSE, size = 0.5, type = 's') 

> text3d (PC1, PC2, PC3, text = pca$Sample_ID, font = 1, cex = 0.6) 

Outliers were identified on the PCA plot by capturing those within 1 SD of the mean using the 

following code: 

> mean.vec <- c(mean(PC1), mean(PC2), mean(PC3)) 

> all_comp <- cbind (PC1, PC2, PC3) 

> sigma <- cov(all_comp) 

> plot3d(ellipse3d(x = sigma, centre= mean.vec, scale = c(1,1,1), col = "PeachPuff", 

alpha = 0.5, add = TRUE, level = 0.95, smooth = TRUE) 
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This generated the following three-dimensional PCA plots (Figure 2.23-A and -B).  The outliers 

identified from the previous methods (e.g. Boxplots and IQR/Median plots) are labelled. In 

addition, Figure 2.23-B shows the data points within one SD of the mean (contained within the 

ellipsoid), MICA_II_054_RML is the only sample outside this cut-off showing high variation within 

the sample. 

 
 
Figure 2.23 Three-dimensional PCA plot showing the variation and clusters within the Limma 

filtered dataset 
One standard deviation from the mean is plotted as an ellipsoid in Figure 4.11-B. Red dots represent 
healthy ex-smokers (n=15), blue dots represent COPD subjects (n=20). Potential sample outliers labelled. 

2.10.2.4 Summary of exploratory data analysis 

There is no consensus as to which unsupervised filtering method to use for processing raw RNA 

count data (365) and there is no previous work directly comparing one strategy against another. 

Therefore, I tested three cut-off options (median log2CPM; CPM>1 and CPM>10 – both in a 

minimum of 15 samples) and used a number of graphical outputs (e.g. boxplots, histograms, 

IQR/median plots and PCA) to analyse the data. The choice of methodology came from multiple 

sources including: attending an international EV conference (“Extracellular Vesicles 2017”; 

Cambridge, UK; September 2017), supervised analysis on a bioinformatics research methods 

course (“Introduction to RNA-seq analysis”; University of Cambridge, UK; October 2017), 

collaborations with researchers in the field (Professor Mark Lindsay; University of Bath, UK) and 

the literature (373, 374). This process allowed me to build familiarity with my dataset and identify 

sample outliers, which would bias differential miRNA expression analysis. 

Although the median log2CPM and CPM>1 in a minimum of 15 samples methods resulted similar 

numbers of miRNA (527 and 519 respectively), the CPM>1 and CPM>10 in a minimum of 15 

samples methods were more similar with respect to outlier identification, particularly on the 

MICA_091_RLL 
MICA_054_RML 

MICA_007_RML 

MICA_100_LLL 

A 

MICA_054_RML 

B 
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IQR/median plots (Figure 2.19). In this analysis, the median log2CPM method identified a group of 

healthy ex-smokers (MICA_II_077_RML, MICA_II_061_RLL, MICA_II_128_RLL and 

MICA_II_131_RML), who did not flag up on any of the additional outputs leading to the 

assumption that this was a possible spurious result. Although, the CPM>10 in a minimum of 15 

samples method resulted in the smallest number of included miRNA (275 compared with 519 and 

527), the lowly expressed miRNA included in the other methods are likely to introduce increased 

variance and therefore bias any future differential expression testing. Given this, I proceeded with 

the CPM>10 in a minimum of 15 samples filtered dataset, with four outliers identified above 

removed (MICA_II_007_RML, MICA_II_054_RML, MICA_II_091_RLL and MICA_II_100_LLL), 

leaving n=31 (COPD, n=17 and Healthy ex-smoker, n=14). This is known as the “CPM filtered 

dataset” and was used for all onward analysis. 

2.10.3 Normalisation methods 

CPM is a unit to measure expression levels in next generation sequencing experiments and is 

calculated by the following equation: 

CPM = (Number of reads mapped to specific miRNA/ Total number of reads in the library) x 1 

million 

This is a simple normalisation procedure that corrects only for sequencing depth and provides a 

measure of quantity for each miRNA. However, this method does not account for the most 

important technical influence on differential expression, RNA composition. MiRNA sequencing 

provides a measure of the relative abundance of each miRNA in each RNA sample, but does not 

provide any measure of the total RNA output on a per-cell basis. This becomes important when a 

small number of miRNA are very highly expressed in one sample, but not in another. These highly 

expressed miRNA can constitute a substantial proportion of the total library size, causing the 

remaining miRNA to be under-sampled in that library. Therefore, unless these highly expressed 

miRNA are adjusted for, the remaining miRNA may falsely appear to be downregulated in that 

sample. 

The calcNormFactors function in the edgeR package in R normalises for RNA composition by 

finding a set of scaling/normalisation factors for the library sizes that minimise the log-fold 

changes between the samples for most miRNA. The default method for computing these scale 

factors uses a trimmed mean of M-values (TMM) between each pair of samples (376). The 

following code performs the TMM normalisation and generates a list of normalisation factors for 

each sample, where keep is the log-transformed “CPM filtered dataset”: 
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> TMM_normalised <- calcNormFactors(keep) 

> TMM_normalised$samples 

The normalisation factors of all the libraries multiply to unity. A normalisation factor below one 

indicates that a small number of high count miRNA are dominating the sequencing, causing the 

counts for the other miRNA to be lower than would be usual given the library size. Conversely, a 

factor above one scales up the library size, analogous to downscaling the counts. The recalculated 

library sizes and normalisation factors are listed in Table 2.7.  

Table 2.7 List of library sizes and normalisation factors for the “CPM filtered dataset” 
generated by TMM normalisation. 

Sample ID Sample cohort Adjusted library size Normalisation factor 

MICA_II_077_RML Healthy 193077 0.996 

MICA_II_078_RML COPD 1092789 1.000 

MICA_II_061_RLL Healthy 175842 1.046 

MICA_II_065_LLL Healthy 294122 0.977 

MICA_II_109_RML Healthy 601252 0.985 

MICA_II_141_RML Healthy 659567 0.985 

MICA_II_128_RLL Healthy 214688 0.970 

MICA_II_130_LLL Healthy 496871 1.004 

MICA_II_126_RML COPD 1248508 1.106 

MICA_II_095_LLL Healthy 768741 0.922 

MICA_II_085_RUL COPD 371065 0.919 

MICA_II_094_LLL COPD 364761 0.901 

MICA_II_132_RML COPD 1805946 1.007 

MICA_II_081_RML COPD 801747 1.128 

MICA_II_105_RML COPD 844511 0.969 

MICA_II_046_RUL Healthy 343816 0.899 

MICA_II_104_RML COPD 1152597 0.990 

MICA_II_064_RML COPD 1089079 0.974 

MICA_II_056_RLL Healthy 313940 1.034 

MICA_II_062_RML Healthy 344192 1.067 

MICA_II_076_LUL Healthy 333900 1.008 

MICA_II_082_LLL COPD 732867 1.007 

MICA_II_131_RML Healthy 127769 1.017 

MICA_II_079_RML COPD 810943 1.072 

MICA_II_097_RUL COPD 1077755 0.974 

MICA_II_134_LLL Healthy 699110 0.961 

MICA_II_069_RML COPD 1076087 1.161 

MICA_II_093_RML COPD 373396 0.996 

MICA_II_098_RML COPD 678973 1.046 

MICA_II_133_RML COPD 882149 0.935 

MICA_II_147_LLL COPD 451583 0.998 
CPM filtered dataset, N=31. COPD, n=17. 
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The TMM-normalised dataset (n=31) was then used for the differential expression analysis 

between patients with COPD and healthy ex-smokers. By using the TMM normalisation values, 

the statistical tests used in differential expression analysis were less skewed and the false positive 

rate was reduced. 

2.10.4 Negative binomial models 

Original methods for modelling RNA-sequencing count data used the Poisson distribution. 

However, the Poisson assumes the mean and variance are identical and in RNA-sequencing 

measurements, the variance of miRNA expression is larger than the mean (termed 

"overdispersion"). Therefore the negative binomial distribution is used which has a dispersion 

parameter for modelling the increase in variance from a Poisson process. 

2.10.4.1 Biological coefficient of variation 

The package edgeR in R (v 3.8.2) was used to perform the statistical methodology (based on 

negative binomial models) to analyse the differentially expressed miRNA. Firstly, edgeR shares 

information across miRNA to determine a common dispersion. It then extends this to a trended 

dispersion to model the mean-variance relationship (lowly expressed genes are typically more 

noisy). Lastly, it calculates a dispersion estimate per miRNA and shrinks it towards the trended 

dispersion, referred to as the "biological coefficient of variation" (BCV). The BCV is normally ~0.4 

in human studies (373). The miRNA-specific (referred to in edgeR as tagwise) dispersion estimates 

are used in the test for differential expression. The following code can be used to calculate 

dispersion estimates and visualise them in a BCV plot (see Figure 2.24); where 

“TMM_normalised” is the normalised miRNA dataset and “design” is a model matrix based on 

the experimental design of the study (i.e. samples either assigned to COPD or Healthy). 

> Condition <- factor(group[ ,”Disease”], levels=c(“Healthy”, “COPD”) 

> design <- model.matrix(~Condition) 

> y <- estimateDisp(TMM_normalised,design) 

## The square root of the common dispersion gives the BCV  

> sqrt(y$common.dispersion)  

# The dispersion estimates can be view in a BCV plot 

> plotBCV(y) 
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The package edgeR applies an empirical Bayes strategy for squeezing the tagwise dispersions 

towards a global dispersion trend or towards a common dispersion value. The amount of squeeze 

is determined by the weight given to the global value on one hand and the precision of the 

tagwise estimates on the other. The relative weights given to the two are determined the prior 

and residual degrees of freedom. By default, the prior degrees of freedom, which determines the 

amount of empirical Bayes moderation, is estimated by examining the heteroskedasticity of the 

data (377). 

Negative binomial distribution methods were used to model the CPM filtered-TMM normalised-

dataset. The common dispersion estimate was calculated as 0.398 (~0.4 is usual for biological 

studies). Trended dispersion estimates and miRNA specific estimates (referred to as “Tagwise” in 

edgeR) were plotted (Figure 2.24) and used in testing for differential expression. 

 
Figure 2.24 Biological coefficient of variation plot showing trended, common and miRNA 

("Tagwise") specific estimates for CPM filtered TMM normalised data 

2.10.5 Differential expression analysis between COPD subjects and healthy ex-smokers 

Once negative binomial models were fitted and dispersion estimates obtained, edgeR determined 

differential miRNA expression using the exact test.(373)  

The exact test is based on quantile-adjusted conditional maximum likelihood (qCML) method, 

which is commonly used for RNA-sequencing experiments with a single factor (e.g. COPD versus 

health). Knowing the conditional distribution for the sum of counts in a group, (i.e. calculated by 

the dispersion estimates), p-values were computed by summing over all sums of counts that have 

a probability less than the probability under the null hypothesis of the observed sum of counts. 

The exact test for negative binomial distribution has strong parallels with Fisher’s exact test (373). 



Chapter 2 

83 

The following code performs this function in R, where “y” is the dispersion estimates calculated 

above: 

>  et <- exactTest(y) 

## To give the top 10 differentially expressed miRNA 

> topTags(et) 

## To list the miRNA differentially expressed at a false discovery rate (FDR) of 5% 

> results_edgeR <- topTags (et, n= nrow(data_clean), sort.by = “none”) 

> sum(results_edgeR$table$FDR<0.05) 

## To visualise the data on an MA plot, showing the log2 fold change on y axis versus 

average log 2 CPM on x axis for differentially expressed miRNA, with miRNA with an 

FDR<0.05 in red. 

> plotSmear (et, de.tags  = rownames (results_edgeR) [results_edgeR$table 

$FDR<0.05], pch=16, cex=1) 

## Additional information can be added to the MA plot e.g. blue line representing two-

fold change in expression 

> abline(h=c(-1,1), col = “blue”) 

 
Figure 2.25 An example of an MA plot showing differential expressed miRNA 

An MA plot is an application of Bland-Altman plot. Red dots represent miRNA with a FDR <0.05. Blue 
lines represent a twofold change in expression. 
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2.11 Real time-qPCR data analysis 

2.11.1 RT-qPCR data quality control 

The amplification efficiency was calculated using algorithms by Qiagen® proprietary software 

(378). All assays were inspected for distinct melting curves and the primer melting temperature 

(Tm) was checked to be within known specifications for the assay. Furthermore, assays must be 

detected with five Cq less than the negative control, and with Cq<37 to be included in the data 

analysis. Data that did not pass these criteria were omitted from any further analysis. Cq was 

calculated as the 2nd derivative. 

Analysis of the expression levels of the RNA spike-in controls were performed to assess the quality 

of the RNA extraction (UniSp2, UniSp4 and UniSp5), reverse transcriptase reaction (UniSp6) and 

qPCR steps (UniSp3). These assays are not used for normalisation. 

2.11.2 Normalisation of RT-qPCR data 

NormFinder software in Microsoft® Office Excel was used to identify miRNA that were most stably 

expressed across all samples from the miRNA sequencing results (379). These miRNA were then 

used as normalisers for the qPCR validation study. Although all of these “normaliser” miRNA were 

measured by RT-qPCR, only “normaliser” miRNA detected in all samples were used for 

normalisation of Cq data. The mean Cq for all the universally expressed “normaliser” miRNA was 

calculated to give a Geomean Cq. Then, the following formula was used to calculate the 

normalized Cq values: 

Normalized Cq of miRNA of interest (ΔCq) = Geomean Cq – miRNA of interest Cq 

A higher value thus indicates that the miRNA is more abundant in the particular sample. Values 

were then presented as 2ΔCq to represent fold change. 

2.11.3 Differential expression analysis of RT-qPCR data 

To compare the differences between COPD and healthy ex-smokers, the SD, and the average ΔCq 

was calculated for the two groups. Based on this, the ΔΔCq was calculated for each miRNA. The 

distribution of the data was assessed by a Shapiro-Wilk normality test, with a p>0.05 suggesting 

data is normally distributed.  

An unpaired t test with Welch’s correction (assuming the SD was not equal for groups) was 

performed. Raw P values were then adjusted for multiple testing using the Benjamini-Hochberg 

correction (380).  
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Volcano plots were generated in R (v 3.8.2) using the following code: 

>qPCR_results <- read.table("MA_data_qPCR.csv", header = TRUE, row.names = 1, sep 

= ",") 

>with(qPCR_results, plot(log2FC, -log10(Pvalue), pch=20, main="Volcano plot", xlim=c(-

2.5,2))) 

>with(subset(qPCR_results, FDR<0.05), points(log2FC, -log10(Pvalue), pch=20, 

cex=2,col="red"))  
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2.12 Identifying miRNA target genes 

An overview of the methods to identify of miRNA target genes is summarised in Figure 2.26. Each 

of the following sections will cover the processes outlined in the blue boxes. 

 
Figure 2.26  An overview of the methods used to identify miRNA-mRNA interactions in this study 

Blue rectangle indicates a process with the software/tool specified in parenthesis, grey trapezium 
indicate a data output, yellow diamond is an important checkpoint. BALF, bronchoalveolar lavage fluid; 
COPD, Chronic obstructive pulmonary disease; DE, differential expression; EVs, extracellular vesicles; 
FDR, false discovery rate; H-ES, healthy ex-smoker; miRNA, microRNA; mRNA, messenger RNA 

2.12.1 miRNA target prediction in silico analysis using multiMiR 

MicroRNA targets sites are catalogued in databases based on experimental validation and 

computational prediction using a variety of algorithms. Several online resources provide 

collections of multiple databases such as miRBase (381), TargetScan 7.2 (303) and the multiMiR 

package in R (382). The latter is a comprehensive collection of nearly 50 million predicted and 

validated miRNA-target interactions and their associations with diseases and drugs. MultiMiR was 

chosen for this analysis over other databases as it includes several novel features: 

1. Compilation of 14 different databases, more than any other collection 

2. Expansion of databases to those based on disease annotation and drug response, in 

addition to many experimental and computational databases. 

3. User-defined cut-offs for predicted binding strength to provide the most confident 

selection. 

Lists of validated and predicted mRNA targets for the differentially expressed lung EV miRNA 

identified from the differential expression analysis (Chapter 4) were generated in using multiMiR 

package (v.2.1.1.) in R (v 4.0.2) using the following code (where UP_mRNA corresponds to the up-

regulated miRNA in COPD): 



Chapter 2 

87 

>library(multiMiR) 

 

##List of validated targets of up-regulated miRNA in COPD 

>UP_multimir_results <- get_multimir(org     = 'hsa', 

mirna   = UP_miRNA, 

table   = 'validated', 

summary = TRUE) 

>table(UP_multimir_results@data$mature_mirna_id) 
 
##List of validated results for a specific miRNA (e.g. miR-2110) 

>miR_2110 <- UP_multimir_results@data[grep("hsa-miR-2110", UP_multimir_results@data[, 

"mature_mirna_id"]), ] 

>miR_2110 <- as_tibble(miR_2110) 

>miR_2110 <- miR_2110 %>% distinct(target_ensembl, .keep_all = TRUE) 

 

##List of predicted results for all up-regulated miRNA in COPD, with the top 20% of targets 

considered. 

> UP_multimir_results_pred <- get_multimir(org     = 'hsa', 

mirna   = UP_miRNA, 

table   = 'predicted', 

predicted.cutoff.type = 'p', 

predicted.cutoff = 20, 

use.tibble = TRUE, 

summary = TRUE) 

> table(UP_multimir_results_pred@data$mature_mirna_id) 

The analysis was completed for both up and down-regulated miRNA identified from the 

differential expression analysis comparing COPD with healthy ex-smokers. 

2.12.2 Next generation mRNA sequencing of epithelial brushings – performed by the 

Translational Science & Experimental Medicine team at AstraZeneca 

Paired epithelial brushings (processed as outlined in section 2.4.5.1) from the same study subjects 

and lung lobe location as the BAL EV were isolated from, were processed for mRNA sequencing by 

the Translational Science & Experimental Medicine team from AstraZeneca (Gothenburg, 

Sweden). The following section outlines the methods of the library preparation and sequencing. 
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Briefly, total RNA was extracted from epithelial brushings using the AllPrep DNA/RNA/miRNA 

Universal Kit (Qiagen®). The quantity and quality of RNA samples were determined using the 

standard RNA analyzer kit on a 96-channel Fragment analyzer (Agilent® Technologies, Stockport, 

UK). Extracted samples with a yield concentration >25 ng/µl total RNA, and a DV200 value 

(percentage of RNA fragments >200nucleotides) >=30% were deemed to be of sufficient quantity 

and quality for TotalRNA-seq analysis. Samples were diluted to 25 ng/µl using a Tecan Fluent 

liquid handling automation system (Tecan, Männedorf, Switzerland). Library preparation was 

done in four separate runs, one 96 well plate per run. The Kapa RNA HyperPrep Kit with RiboErase 

was used for reverse transcription, generation of double stranded cDNA and subsequent library 

preparation and indexing to facilitate multiplexing (Roche, Basel, Switzerland), all of which was 

performed through automation on a Tecan fluent. The libraries were quantified with the 96-

channel Fragment Analyzer using the standard sensitivity NGS kit (Agilent® Technologies). 

Samples from each preparation plate were pooled and the final pools (4 in total) were quantified 

using a Qubit™ instrument for concentration determination with the DNA High Sensitivity kit 

(ThermoFisher Scientific®). Fragment size was determined using the Fragment Analyzer, standard 

sensitivity NGS kit (Agilent® Technologies). Three of four library pools were further diluted to 1 

nM and sequenced on a NovaSeq 6000 (Illumina®) using NovaSeq 6000 S4 Reagent Kit, 2x76 

cycles. The remaining library pool was diluted to 1.9 nM and sequenced on NovaSeq 6000 

(Illumina®) using 2 NovaSeq 6000 SP S1 Reagent Kits, 2x51 cyclers. Average reads per sample were 

52.6 million. 

2.12.2.1 mRNA sequencing data preparation - performed by the Bioinformatics team at 

AstraZeneca 

The epithelial brushing mRNA sequencing output processing, quality control, mapping and 

alignment was performed by the AstraZeneca bioinformatics team. Briefly, Fastq files from 

paired-end sequencing libraries were collected and read quality for all libraries was accessed using 

FastQC (v 0.11.7) (383), Qualimap (v 2.2.2c) (384) and samtools stats (v 1.9) (385). QC metrics for 

Qualimap were based on a STAR (v 2.7.2b) (386) alignment against the human genome (GRCh38, 

Ensembl v99). Next, QC metrics were summarized using MultiQC (v 1.7) (387). Two libraries were 

excluded; one due to a low mapping rate (57% vs [79%-97%]) and another due to low sequencing 

throughput (210k reads vs [20M-86M]), leaving 118 epithelial brushings for analysis. Sequencing 

adapters were then trimmed from the remaining libraries using NGmerge (v 0.3) (388). A human 

transcriptome index consisting of cDNA and ncRNA entries from Ensembl (v 99) was generated 

and reads were mapped to the index using Salmon (v1.1.0) (389). The bioinformatics workflow 

was organized using Nextflow workflow management system (v 19.07) (390) and Bioconda  

software management tool (391). 
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2.12.3 Differential gene expression analysis of the epithelial brushing mRNA 

I performed the differential gene expression analysis of the epithelial brushing mRNA using 

DESeq2 (v 1.26.0) (392), using apeglm (v 1.8.0) (393) for fold change shrinkage, all in R (v 4.0.2). In 

the model for differential expression effects from a technical batch-effect (library preparation 

plate) were taken into account. Estimated counts were used as input for the DESeq2 with lowly 

expressed genes excluded (only genes with at least 10 counts in at least 20 samples were kept, 

n=27,229).  

Differential gene expression analysis was performed in R (v 4.0.2) using the following code: 

## Read in total RNA-seq data (provided by AstraZeneca, where a pre-prepared dds object is 

available with two assays: 

1. counts: estimated raw counts (from Stargazer pipeline (counts from tximport, Salmon 

quantification) 

2. vst_batch: vst normalized expression from batch-corrected counts where the Lane/Plate 

effect has been removed. 

The dds object also has all metadata available (coldata). 

 

> dds < - readRDS(file.path(params$dir_data, params$data_version)) 

 

## Subset dds object to sample type of interest, epithelial brushings 

> dds_brush <- dds[ , dds$NGS.Sample.type %in% c(params$sample_type)] 

 

## Subset dds object to only include Groups of interest, COPD (P_FE, P_IE) and healthy ex-

smokers (HV_ES). 

>dds_brush <- dds_brush[ , dds_brush$Group %in% c("P_FE","P_IE","HV_ES")]  

 

## Subset dds object to only include matched samples of interest (i.e. those with matched EV 

miRNA from the same lobe location, N=44) 

>rownames <- rownames(dds_brush_16g@colData) 

>dds_brush_N44 <- dds_brush_16g[,rownames %in% 

c("200716V4007RNCRLLA1","111116V4034RNCRMLA1","C1111820013", 

"030816V4056RNCRLLA1","111116V4062RNCRLLA1","111116V4061RNCRMLA1", 

"020916V4065RNCLLLA1","111116V4073RNCRLLA1","111116V4076RNCLULA1","111116V4077R

NCRMLA1","040518V4095RNCLLLA1","040518V4109RNCLLLA1","040518V4128RNCRLLA1","

040518V4130RNCLLLA1","040518V4131RNCRMLA1","040518V4134RNCLLLA1","040518V413
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5RNCLLLA1","040518V4140RNCRMLA1","040518V4141RNCRMLA1","040518V4150RNCLLLA

1","111116V4078RNCRLLA1","C1111820001","C1111820006","C1111820009","040518V4097RNC

RULA1","040518V4100RNCLULA1","040518V4105RNCLLLA1","040518V4145RNCRMLA1","04

0518V4148RNCRLLA1","040518V4151RNCRMLA1","210616V4054RNCRMLA1","020916V406

4RNCRMLA1","020916V4069RNCRMLA1","111116V4079RNCRMLA1","231116V4081RNCRML

A1","040518V4093RNCRMLA1","040518V4094RNCLLLA1","040518V4104RNCRMLA1","0405

18V4126RNCRMLA1","040518V4132RNCRMLA1","040518V4133RNCRMLA1","040518V4139

RNCRULA1","040518V4144RNCRMLA1")] 

 

## Set-up “design” & “reference level” to reflect experimental design of study (i.e. samples 

either assigned to COPD or Healthy) and adjust for potential bias. 

>design(dds_brush_N44) <- formula(~Lane.Plate + Disease)  

>dds_brush_N44$Disease <- relevel(dds_brush_N44$Disease, ref = "HV")  

## Drop levels prior to performing DESeq2 analysis: 

>dds_brush_N44$Disease <- droplevels(dds_brush_N44$Disease) 

 

## Run DESeq2 analysis for differential expression between COPD and healthy ex-smokers.  

>dds_brush_N44 <- DESeq(dds_brush_N44)  

 

# Perform log fold change-shrinkage using apeglm  

>res_COPDvsES_g <- lfcShrink(dds_brush_N44, coef="Disease_COPD_vs_HV", type="apeglm") 

 

## To list the mRNA with differentially expressed at a FDR of 5% 

>sum(res_COPDvsES_g$padj < 0.05, na.rm=TRUE) 

 

## To list the mRNA with fold change of greater than 2. 

>sum((res_COPDvsES_g$padj < 0.05 & abs(res_COPDvsES_g$log2FoldChange) > 1), 

na.rm=TRUE)  

 

## To visualise the data on an MA-plots, showing the log2 fold change on y axis versus vs 

expression-level (Mean of Normalised counts) on x axis for differentially expressed miRNA, 

with miRNA with an FDR<0.05 in red. 

>plotMA(res_COPDvsES_g, ylim=c(-4,4), colSig ="red", alpha = 0.05, abline(h=c(-1,1), col 

= "blue", lty = 2), ylab = "log2 fold change" 
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2.12.4 Identify miRNA-mRNA putative interactions 

In addition to retrieving all validated and predicted target genes of given miRNA or set of miRNA, 

the multiMiR package within R (382) has functionality to retrieve interactions between miRNAs 

and a specific set of differentially expressed genes. Given than miRNA lead to a down-regulation 

of their gene targets (an inverse correlation relationship), only down-regulated genes in COPD 

were selected as possible targets for up-regulated miRNA in COPD and vice versa. Interactions 

between the up-regulated miRNA and down-regulated genes identified from the differential 

expression analysis were identified by the multiMiR (v 2.1.1.) in R (v 4.0.2) using the following 

code: 

##Run multiMiR package for human organism, up-regulated miRNA, down-regulated 

genes, for both validated and predicted targets, considering only the top 20% of 

predicted interactions.  

 >UP_multiMir <- get_multimir(org     = "hsa", 

   mirna   = DE.miRNA.up, 

   target  = DE.entrez.dn, 

   table   = "all", 

    summary = TRUE, 

   predicted.cutoff.type = "p", 

   predicted.cutoff      = 20, 

   use.tibble = TRUE) 

The analysis was also performed for the down-regulated miRNA and up-regulated genes. Any 

duplicates found from multiple databases were removed from the resultant miRNA-mRNA 

interaction matrix. 
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2.13 miRNA-mRNA interaction analysis 

An overview of the methods to identify the miRNA-mRNA most important to COPD biology is 

summarised in Figure 2.27. Each of the following sections will cover the processes outlined in the 

blue boxes on the right under the miRNA-mRNA interaction analysis heading. 

 
Figure 2.27  An overview of the methods used in this study for miRNA-mRNA interaction analysis 

Blue rectangle indicates a process with the software/tool specified in parenthesis, grey trapezium 
indicate a data output, yellow diamond is an important checkpoint. BALF, bronchoalveolar lavage fluid; 
COPD, Chronic obstructive pulmonary disease; DE, differential expression; EVs, extracellular vesicles; 
FDR, false discovery rate; H-ES, healthy ex-smoker; miRNA, microRNA; mRNA, messenger RNA 

2.13.1 Pairwise correlation analysis between miRNA and mRNA 

Due to its simplicity and intuitive interpretation, Pearson correlation is widely used to analyse the 

relationships between miRNAs and mRNAs (394, 395). Therefore, Pearson correlations were 

generated using the Hmisc package in R (v 4.0.2) to determine the relationship between the 

normalised expression data of the differentially expressed miRNA and mRNA. The following code 

generated the correlation coefficients with adjusted P values using the Benjamini-Hochberg 

method.  

The object mRNA_vs_miRNA contained the normalised expression data for miRNA and mRNA for 

each of the 44 matched patient samples. 

>mRNA_vs_miRNA_rcorr <- rcorr(as.matrix(mRNA_vs_miRNA), type = c("pearson")) 

 

##For R values 

>mRNA_vs_miRNA_coeff <- mRNA_vs_miRNA_rcorr$r 

 

##For p values 

>mRNA_vs_miRNA_p <- mRNA_vs_miRNA_rcorr$P 
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##Flatten correlation matrix in order to visualise 

>res2 <- rcorr(as.matrix(mRNA_vs_miRNA)) 

>flattenCorrMatrix <- function(cormat, pmat) { 

ut <- upper.tri(cormat) 

data.frame( 

row = rownames(cormat)[row(cormat)[ut]], 

column = rownames(cormat)[col(cormat)[ut]], 

cor  =(cormat)[ut], 

p = pmat[ut] 

) 

}required to have an FEV1 % predicted of >50% to be included for a research rb 

>correlationresults <- flattenCorrMatrix(mRNA_vs_miRNA_coeff, mRNA_vs_miRNA_p) 

>P_values <- correlationresults[,4] 

 

##Adjust P values using FDR correction 

>Adj_P_values <- p.adjust(P_values, method = c("fdr"), n = length(P_values)) 

>Adj_P_values_DF <- as.data.frame(Adj_P_values) 

>correlationresults_adj_P_values <- cbind(correlationresults,Adj_P_values_DF) 

 

##Subset those results with a FDR<0.05 

>sign_P <- subset(correlationresults_adj_P_values, Adj_P_values < 0.05, select = c(row, 

column, cor, p, Adj_P_values)) 

 

##Filtering out correlations between miRNA-miRNA or mRNA-mRNA 

>HSA_ALL <- correlationresults_adj_P_values[grep("HSA", 

correlationresults_adj_P_values$row), ] 

>HSA_ALL <- HSA_ALL[grep("ENSG", HSA_ALL$column), ] 

>HSA_ALL_sign_P <- subset(HSA_ALL, p < 0.05, select = c(row, column, cor, p, Adj_P_values)) 

2.13.2 Network analysis of miRNA-mRNA interaction network 

The package miRmapper in R uses miRNA-mRNA predictions and a list of differentially expressed 

mRNAs to identify the most dominant miRNAs in the miRNA-mRNA interaction network and 

recognise the similarities between miRNA based on commonly regulated mRNA (396). 
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The following code was used in R (v 4.0.2) for this analysis, where input_1 is the miRNA-mRNA 

interaction matrix (generated by multiMiR – see section 2.12.4) and input_2 are the differentially 

expressed genes in the epithelial brushings (identified by DESeq2 analysis – see section 2.12.3). 

>library(miRmapper) 

>miRm <- miRmapper(interactions = input_1, DEgenes = input_2) 

##To generate an adjacency matrix of the interaction network (SUM of miRNA targeting a 

specific gene) 

>adjMat <- adjMat(miRm) 

##To generate metrics that measure the predicted impact each miRNA has on the 

differentially expressed genes. 

>impact <- getImpact(miRm) 

##To depict the impact of each miRNA on the set differentially expressed gene targets. 

>barPlot(miRm) 

##To explore the similarity between the miRNA based on shared targets 

>dendrogram(miRm) 

>identityPlot(miRm) 

The inputs and outputs of this workflow are summarised in Figure 2.29. 
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Figure 2.28 An overview of miRmapper outputs describing the miRNA-mRNA interaction network 

DE, differentially expressed; miRNA, microRNA; mRNA, messenger RNA 

2.13.3 miRNA-mRNA interaction network topology 

Networks generated by the miRNA-mRNA interactions generated by the analysis in section 2.12.4 

can be analysed further to identify a small number of miRNA-mRNA interactions that could be 

biologically important or related to a process in the study. Network topology analysis is a 

powerful way to prioritise nodes that can be important for gene network function. The methods 

used for this analyses are outlined by Leόn and Calligaris in the book MicroRNA Profiling: Methods 

and Protocols (397).  

Cytoscape is an open source software platform for visualising complex networks and integrating 

these with any type of attribute data (e.g. expression values) (398). The platform includes built-in 

tools that give basic network statistics such as: 

• Node degree (number of edges incidents to the node) 

• Betweeness centrality (indicator of a node’s centrality in a network) 

• Cluster coefficient (measure of the degree to which nodes in the network tend to cluster 

together). 

Cytoscape was used to visual the miRNA-mRNA interaction networks for both up and down-

regulated miRNA. The following node attributes were added to the network to integrate all of the 

analytical steps performed so far: 
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i. The circular nodes correspond to the differentially expressed genes identified from 

the methods outlined in section 2.12.3. The size of the node is proportional to the 

differential expression in COPD, i.e. for the up-regulated miRNA network, the larger 

the node, the more down-regulated the gene was in COPD epithelial brushings. 

ii. The edges represent an interaction between a miRNA and mRNA. If the edge is a solid 

line, this represents a validated mRNA target, whereas a dotted line represents a 

predicted mRNA target (these targets were identified using the methods outlined in 

2.12.1). 

iii. The nodes coloured in orange are those identified as significant (FDR<0.05) from the 

correlative analysis (methods in section 2.13.1). 

iv. The nodes coloured purple are those mRNA regulated by more than one miRNA and 

therefore have a degree centrality >1 (identified by methods outlined in section 

2.13.2). 

The nodes coloured yellow satisfy both iii. and iv. and therefore may be of greater significance. 

2.13.3.1 Cluster analysis of networks 

Cluster analysis of biological networks is one of the most important approaches for identifying 

functional modules and predicting downstream protein functions. I used ClusterViz, a Cytoscape 

plugin, to identify clusters (highly connected nodes) within the miRNA-mRNA interaction network 

(399). Within this tool I used the EAGLE algorithm (400), which has previously been used to 

analyse networks of this type (401). This approach allows the discovery of interconnected miRNA 

and genes, which may therefore identify those interactions with greater biological significance. 

2.13.4 Gene Ontology enrichment analysis 

The gene ontology (GO) project maintains a controlled hierarchical vocabulary of terms along with 

logical definitions to describe molecular functions, biological processes and cellular components 

(402). This knowledge can be applied to a given list of genes (referred to as a ‘gene-set’) to 

explore the GO terms annotating the genes and split them into functional groups (‘annotation 

analysis’). In addition, ‘enrichment analysis’ can be performed by only focusing on terms 

significantly over-represented in the gene-set.  

2.13.4.1 The Biological Networks Gene Ontology tool (BiNGO) 

The Biological Networks Gene Ontology tool (BiNGO) is an open source Java-based tool to 

determine which GO categories are statistically overrepresented in a gene-set (403). It is 

implemented as a plugin for Cytoscape and maps the predominant functional themes of the gene-



Chapter 2 

97 

set on the GO hierarchy, and outputs this mapping as a Cytoscape graph. It has been used 

previously to analyse functional enrichment of miRNA-mRNA networks (404). I performed the 

enrichment analysis for both GO biological processes and molecular functions within BiNGO using 

the hypergeometric statistical test, which is recommended for differentially expressed genes 

(405), followed by a multiple hypothesis correction by FDR (p = 0.05). 

 

2.13.4.2 Enrichment Map for gene-set enrichment visualisation and interpretation 

Although GO enrichment analysis is a helpful technique for high-throughput data interpretation, 

enrichment results are often characterized by lots of redundancy and inter-dependencies 

between gene-sets representing functional categories. Therefore a typical enrichment analysis 

can output up to 300 hundred different functional categories, which can be difficult to prioritise 

for further exploration. To address this, I used ‘Enrichment Map’, a network-based visualisation 

method within Cytoscape for organising and displaying the major enriched functional themes 

from the GO enrichment results (406).  
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2.14 Statistics 

Statistical analyses were performed in GraphPad® Prism version 7.05 (GraphPad Software®, San 

Diego, USA), unless otherwise specified.  

Baseline subject characteristics were summarised using standard descriptive statistics, with 

number and percentages for binary and categorical outcomes and appropriate measures for 

continuous outcomes – means and SD for normally distributed variables and medians and IQR for 

skewed distributions. The distribution of the data was assessed by the Shapiro-Wilk normality 

test, with a p>0.05 suggesting data is normally distributed. Welch two-sample t tests (for normally 

distributed data) and Mann Whitney U tests (for skewed data) were used to test whether there 

were significant differences in baseline subject characteristics between COPD subjects and 

healthy controls. 

Logistic regression models were used to explore the relationship between co-variables (age, 

gender, smoking pack year history and lobe sampled) on the proportion of miRNA reads in COPD 

compared with healthy ex-smoker samples.  

Receiver operative characteristic (ROC) curves were generated using the miRNA normalised 

expression data in SPSS® to investigate the predict ability of the differentially expressed miRNA to 

differentiate between health and disease. 

Further specific statistical tests are defined either in the corresponding methods sub-section or 

where presented in the results.  

Results were determined to be significant with a value of at least P<0.05; except when making 

multiple comparisons (e.g. differential expression analysis) where results were determined to be 

significant given a FDR<0.05 using the Benjamini-Hochberg correction (380). 

 



Chapter 3 

99 

 

 Study cohort characteristics for extracellular 

vesicle isolation from bronchoalveolar lavage fluid 

3.1 Introduction 

This chapter describes the characteristics of the study cohort used for extracellular vesicle (EV) 

isolation from bronchoalveolar lavage fluid (BALF). This study cohort comprises 20 subjects with 

Chronic Obstructive Pulmonary Disease (COPD) and 15 healthy ex-smokers and is a sub-group 

from the larger MICA II cohort study in which patients underwent full lung function, blood and 

sputum sampling, high-resolution computer tomography (HRCT) and bronchoscopy. This chapter 

will cover the phenotypic characteristics of this sub-group and highlight any differences that may 

be important to consider prior to any further analysis exploring underlying disease mechanisms. 

3.2 Characteristics of the subjects included in EV isolation from BALF 

BALF samples from 20 COPD subjects and 15 healthy ex-smokers in the MICA II research cohort 

were processed for EV isolation using size exclusion chromatography (SEC). The baseline 

characteristics for this group are summarised in Table 3.1. 
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Table 3.1 Characteristics of subjects included in BALF EV RNA isolation for miRNA sequencing, 

n=35 

Subject/sample characteristics COPD  
(n=20) 

Healthy ex-smoker 
(n=15) 

P value 

Age, mean ±SD 70.4 ±6.8 66.9 ±7.8 0.18 

Male, n (%) 17 (85) 9 (60) 0.13 

Smoking pack years, median (IQR) 40 (46.4) 25 (19) 0.16 

BMI, mean ±SD 29.3 ±4.3 28.4 ±4.4 0.12 

Lung Physiology 

FEV1 (% predicted), mean ±SD 79.9 ±13.9 99.5 ±14.2 0.0003 

FVC (% predicted), mean ±SD 99.7 ±14.9 104.5 ±16.6 0.34 

FEV1/FVC%, mean ±SD 58.6 ±8.0  77.3 ±3.2 <0.0001 

FEF 25-75 (% predicted), mean ±SD 44 ±16.4 98.1 ±21 <0.0001 

DLCO (% predicted), mean ±SD 75.8 ±14.9 91.1 ±12.6 0.004 

COPD status, GOLD stage, n (%)  0.45 

Mild 9 (45) NA  

Moderate 11 (55) NA  

Baseline & historic blood counts 

Total blood leucocytes (109/L), mean 
±SD 

7.3 ±1.4 6.7 ±1.3 0.13 

Absolute neutrophil count (109/L), 
mean ±SD 

4.6 ±1.2 3.9 ±1.0 0.06 

Absolute eosinophil count (109/L), 
median (IQR) 

0.2 (0.2) 0.1 (0.1) 0.1 

Historic eosinophils (109/L), median 
(IQR) 

0.35 (0.2) 0.1 (0.1) <0.0001 

HRCT measurements 

E/I MLD, mean ±SD  0.8 ±0.04 0.81 ±0.05 0.02 

%LAA<-950, mean ±SD 10.4 ±5.1 7.3 ±4.9 0.08 
Fisher’s exact test was performed for Gender given small sample size. Chi-squared test used for COPD status.  
Shapiro-Wilk test for normality was performed for all continuous variables.  
Welch two sample t test was performed for normally distributed data; Age, BMI, FEV1, FVC, FEV1/FVC and FEF 25-75, 
TLCO, RV/TLC SR, total blood leucocytes, absolute neutrophil count, E/I MLD and %LAA<-950. 
Mann-Whitney U test was performed for skewed data; smoking pack years and eosinophil blood counts.  
BMI, body mass index; FEV1, forced expiratory volume in 1 sec, FVC, forced vital capacity; FEF, Forced expiratory flow 
rate; DLCO, diffusion capacity of the lung for carbon monoxide; E/I MLD, ratio of mean lung attenuation on expiratory 
and inspiratory scans; Historic eosinophil count, highest ever recorded eosinophil measurement; HRCT, high resolution 
computer tomography; %LAA<-950, percent of lung voxels on the inspiratory scan with attenuation values below -950 
Hounsfield Units; IQR, interquartile range; NA, non-applicable; SD, standard deviation. 

The subjects were matched for age, sex, smoking history and body mass index (BMI) (Table 3.1). 

There were however more males in both groups. As expected post-bronchodilator forced 

expiratory volume in one second (FEV1) % predicted, FEV1/forced vital capacity (FVC), forced 

expiratory flow rate (FEF) 25-75 % predicted and diffusion capacity of the lung for carbon 

monoxide (DLCO) % predicted were all significantly reduced in the COPD group. The COPD 

subjects were balanced between mild (45%) and moderate (55%) GOLD status. 
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3.2.1 Baseline & historic blood count 

Full blood count with cell differential were analysed for all subjects prior to bronchoscopy. Blood 

eosinophils are an important biomarker in COPD as they are seen as a useful marker of future 

exacerbation risk and have a role in predicting steroid responsiveness (407). Although baseline 

levels of blood eosinophils were not different between COPD subjects and healthy ex-smokers 

(median 0.2 and 0.1 respectively), historic blood eosinophil counts were significantly higher in the 

COPD subjects than the healthy controls (Table 3.1, p <0.0001), where historic blood eosinophil 

count refers to the highest ever-recorded eosinophil measurement. 
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Figure 3.1 Baseline (A) and historic (B) blood eosinophil counts for COPD subjects compared 

with healthy ex-smokers 
Median and IQR presented as skewed data. ****p<0.0001 using Mann Whitney test 

When examining the variability of eosinophil counts across the COPD subjects, analysis showed 

one subject with COPD with higher levels of eosinophils both at baseline (absolute eosinophil 

count 0.7 109/L, Figure 3.1 A) and in historic blood eosinophil levels (absolute eosinophil count 1.9 

109/L, Figure 3.1 B). Interestingly, this was a different COPD subject in each case, demonstrating 

the variability of eosinophil levels in the blood over time. After excluding these as possible 

outliers, the significance remained when comparing historic blood eosinophil expression in COPD 

subjects with health ex-smokers (p<0.001).  

There were no differences in total blood leucocyte count or absolute neutrophil count between 

the two groups (see Table 3.1). 

3.2.2 HRCT measurement 

Quantitative assessment of gas trapping and emphysema were performed using HRCT analysis. 

The ratio of mean lung attenuation on expiratory and inspiratory scans (E/I MLD), a surrogate 
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marker for gas trapping (as discussed in section 2.4.4), was found to be significantly lower in COPD 

subjects compared with healthy controls (mean 0.8 (SD±0.04), 0.81 (SD±0.05) respectively, p = 

0.02). E/I MLD also significantly negatively correlated with spirometric markers of airflow 

obstruction (FEV1/FVC, r = -0.43, p = 0.008), small airways disease (FEF 25-75%, r = -0.47, p = 

0.007) and disease severity (FEV1%, r = -0.48, p = 0.006) across the whole cohort, but not in COPD 

subjects alone (see Table 3.2). The measure percent of lung voxels on the inspiratory scan with 

attenuation values below -950 Hounsfield Units (%LAA<-950) did not differ between the two groups 

(mean 10.4 (SD±5.1) and 7.3 (SD±4.9) in COPD and health ex-smokers respectively), and only 

correlated with FEV1/FVC (r = -0.39, p = 0.03) and FEF 25-75% predicted (r = -0.36, p = 0.03) across 

the whole study cohort. Similar to E/I MLD, %LAA<-950 did not correlate with any spirometric 

markers or DLCO in COPD subjects alone (Table 3.2).  

 

Table 3.2 Correlation between HRCT measures of small airways disease and emphysema and 
physiology measures of disease 

 FEV1 %  FVC % FEV1/FVC FEF 25-75% DLCO 

Whole cohort, n= 35 

E/I MLD -0.48** -0.13 -0.43** -0.47** -0.26 

%LAA<-950 -0.21 0.24 -0.39* -0.36* -0.23 

COPD Subjects, n= 20 

E/I MLD -0.3 0.07 -0.43 -0.37 -0.18 

%LAA<-950 -0.1 0.41 -0.32 -0.24 -0.27 
Spearman’s correlation coefficient. N=35, whole cohort. N=20, COPD subjects. *p<0.05, **p<0.01 
FEV1, forced expiratory volume in 1 sec, FVC, forced vital capacity; FEF, Forced expiratory flow rate; DLCO, diffusion 
capacity of the lung for carbon monoxide; E/I MLD, ratio of mean lung attenuation on expiratory and inspiratory scans; 
%LAA<-950, percent of lung voxels on the inspiratory scan with attenuation values below -950 Hounsfield Units 

3.2.3 BALF count analysis 

BALF differential cell counts were analysed in all 20 COPD subjects and 15 healthy ex-smokers 

(Figure 3.2). For this analysis the differential cell count from the same lobe as was sampled for the 

EVs was used. There were significantly increased neutrophils and eosinophils in the BALF of COPD 

subjects compared with the healthy ex-smokers (p = 0.02 and p = 0.04 respectively – Figure 3.2 A 

and C). As expected macrophages were the dominant cell type in the BALF (median 67.4% across 

the whole cohort), however there were no differences in proportions between COPD subjects and 

healthy ex-smokers (Figure 3.2 B). Relative numbers of lymphocytes in BALF were low and there 

were no significant differences between groups (Figure 3.2 D). 
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Figure 3.2 BALF expression of immune cells in COPD subjects and healthy ex-smokers. 

(A) Neutrophil, (B) Macrophage, (C) Eosinophil, (D) Lymphocyte. Data represents median with 
interquartile range. Each dot represents BALF concentration of individual value in a specific patient. 
N=35; COPD, n=20. *p<0.05 using Mann-Whitney U test. COPD, Chronic Obstructive Pulmonary Disease; 
Healthy ES, healthy ex-smoker. 

 

Given the differences in both blood and BALF eosinophil expression in COPD compared with 

healthy ex-smokers, I further investigated whether these two measures correlated across the 

whole cohort and in COPD subjects alone (Table 3.3). 

 

Table 3.3 Correlation between blood and BALF eosinophil expression 

 Absolute blood eosinophil count 
(109/L) 

Historic blood eosinophil count 
(109/L) 

Whole cohort, n=35 

BALF % eosinophils 0.2 0.29 

COPD subjects, n = 20 

BALF % eosinophils -0.17 -0.13 
Spearman’s correlation coefficient. N=35, whole cohort. N=20, COPD subjects. BALF, bronchoalveolar lavage fluid; 
COPD, Chronic Obstructive Pulmonary Disease. 
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None of the blood eosinophil counts correlated with BALF eosinophil expression in either the 

whole cohort or in COPD subjects alone. Although historic blood eosinophil count showed a 

possible weak correlation with BALF % eosinophils approaching significance (r = 0.29, p = 0.08). 

3.3 Discussion 

In this chapter I have outlined the subject characteristics of my study cohort, which underwent 

BALF EV isolation. Subjects enrolled in the study were fully phenotypically characterised with 

measures of inflammation, small airways disease and emphysema analysed. 

3.3.1 Subject characteristics 

The COPD patients sampled in this study had predominantly mild disease as determined by Global 

Initiative for Chronic Obstructive Lung Disease (GOLD) stage (4), with a mean FEV1 % predicted of 

79.9% (SD±13.9). This was primarily as a result of included subjects undergoing a fibreoptic 

bronchoscopy, whereby the safety FEV1 % predicted cut-off was set at 50%. A further reflection of 

the relatively mild cohort of COPD patients sampled in this study are the data from the HRCT 

analysis, which showed very little established emphysema, with no significant difference in %LAA<-

950 in COPD subjects compared with healthy controls. These phenotypic characteristics are 

important to note, as any differential BALF EV microRNA (miRNA) expression discovered during 

subsequent analysis, would therefore reflect relatively mild disease changes. The lack of HRCT-

defined emphysema in these patients has implications when determining the mechanistic effects 

of these dysregulated miRNA, as early epigenetic regulation of key inflammatory pathways may 

lead to novel understanding of the temporal nature of COPD pathogenesis. Furthermore, any 

differences in EV miRNA expression in early disease could have a future diagnostic role, 

particularly given the issues with spirometry as a relatively insensitive test in early or pre-clinical 

disease (142). 

Despite not showing any significant difference levels of emphysema (as measured by %LAA<-950), 

there was a significant difference in presence of small airways disease in subjects with COPD with 

a reduced FEF 25-75 % predicted and E/I MLD ratio in subjects with COPD. As discussed in section 

1.2, small airways disease is a cardinal feature of COPD and there is evidence that it occurs early 

in the natural history of COPD, with the narrowing and destruction of small airways appearing to 

precede the development of emphysema (408-410). Therefore targeting treatment towards small 

airways disease has the potential to treat both the progression of airway and parenchymal 

disease, although this remains to be proven. Therefore, by investigating mechanisms of disease in 
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this relatively mild cohort of patients with COPD, it may be possible to uncover new insights into 

the role of EV miRNA in the development of small airways disease and may identify targets that 

prevent disease progression. 

As previously discussed in section 1.7.4, there are no published studies studying BALF EVs in the 

lungs of COPD patients. Therefore, it is difficult to directly compare my sample cohort to others in 

the literature. Those that have studied endothelial microvesicles (EMVs) in blood and sputum 

have included more severe COPD patients, with a mean FEV1 % predicted range of 52.4 – 71.6% 

(SD±8.51 - 40.9%) (247, 250, 260). These findings are applicable to a wider COPD cohort, however 

less applicable mechanistically given their broader range of included subject phenotypes. Similarly 

to my study, the subjects included in these previous studies were predominantly male (73.5%), 

which historically, reflects the global increased prevalence of COPD in men (2). Importantly, my 

groups were matched for gender (p=0.13) and therefore the male predominance should not 

affect the differential expression analysis of EV miRNA between the two groups. 

All subjects included in my study were ex-smokers, defined as smoking cessation for at least six 

months prior to enrolment. This is contrary to previous EV studies, where cohorts have comprised 

a mixture of current, ex- and non-smokers (247, 250, 254, 260). My study deliberately excluded 

current smokers and non-smokers as my main aim was to investigate the effect of COPD on 

differential EV miRNA expression, rather than smoke exposure. Importantly, all subjects had at 

least a 10 pack-year history of smoking and again, groups were matched (p=0.16) so as not to 

effect differential EV miRNA expression analysis. 

3.3.2 Blood eosinophilia 

Historic blood eosinophil counts (referring to highest ever-recorded eosinophil measurement) 

were significantly higher in COPD subjects than healthy controls. This finding is consistent with the 

literature that describes around 60% of COPD patients have blood eosinophil counts of ≥2% (150). 

However, this difference was not shown at baseline absolute eosinophil measurement (Table 3.1, 

p = 0.1). This is in-keeping with the concept that blood eosinophils counts are variable over time 

and therefore is important to make repeated measurements (172).  

Recognising eosinophilia in COPD has been shown to be important in predicting future 

exacerbation risk and those who respond to corticosteroid treatment (149, 168, 407). However, 

defining eosinophilia in COPD is challenging. As discussed in section 1.5.2, although blood 

eosinophils are easy to measure, there is conflicting evidence as to whether they correlate with 

eosinophil levels within the lungs of patients with COPD (169-171, 411). Data modelling suggests 
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that there is a continuous relationship between blood eosinophil counts and inhaled 

corticosteroid (ICS) effects, with ICS treatment having little or no effect at a blood eosinophil 

count of < 100 cells/μL, and maximal effect at a blood eosinophil count of >300 cells/μL (407). 

Therefore these thresholds are used as a guide in clinical practice to help estimate the likely 

beneficial preventive response to the addition of ICS to regular bronchodilator treatment (4).  

Furthermore, the mechanism of eosinophilia in COPD is not yet certain and targeted eosinophilic 

treatments (such as anti-IL-5 therapies) have had limited success (178, 179). Therefore, by 

investigating the role of EVs in this context, whereby eosinophils may be a target or source of EVs, 

may have significant implications on their role in COPD pathophysiology and uncover new 

treatment targets. 

3.3.3 Airway inflammatory cell profile 

As discussed previously (section 1.7.3), epithelial cells have been shown to be one of the main EV 

sources in the lung (233, 412). However, studies have shown that all innate immune cells can 

release, and be regulated by EVs (413). Specifically, alveolar macrophages are known to release 

pro-inflammatory EVs in response to cigarette smoke (238-241) and these may have important 

consequences in driving persistent airway inflammation and vulnerability to infection in COPD 

(243). Furthermore, eosinophil-derived EVs have been implicated in asthma (414), and direct 

transport of neutrophil EVs are key in the innate immune response to eliminate bacterial infection 

(415). Therefore, when determining the role of EV miRNA in COPD pathogenesis, it is important to 

consider the role and abundance of these different cell types within the airways of patients with 

COPD, given they could be a key target or source of EVs and their cargo. 

Proportions of neutrophils and eosinophils were significantly raised in COPD subjects compared 

with healthy controls, which is in keeping with previous studies (416, 417). This likely reflects the 

increased airway inflammation and tissue damage associated with disease (5). Although BAL 

eosinophils were elevated in COPD subjects, levels did not correlate with blood eosinophilia 

(Table 3.3). These findings reflect current literature, which shows only a weak relationship 

between blood and sputum or bronchial eosinophils in COPD patients (170, 171). Given this poor 

relationship, when investigating the impact of EV miRNA on specific inflammatory pathways in 

COPD, it may be important to distinguish between those patients with COPD who demonstrate 

peripheral eosinophilia compared with those with airway eosinophilia, as the mechanisms 

underlying the two are likely to be different. 
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Interestingly, proportions of macrophages were similar between the two groups, which is 

contrary to previous studies (74). This similarity in macrophage proportions may, in part, be due 

to the increased numbers of neutrophils and eosinophils in the COPD samples leading to a relative 

reduction in the proportion of macrophages in the COPD subjects. In addition, as highlighted 

above, this study cohort included patients with COPD with relatively mild disease (mean FEV1 % 

predicted 79.9%) and numbers of macrophages in the airways are known to negatively correlate 

with disease severity (56). Consistent with previous work, macrophages were the predominant 

cell type in the airways (median proportion 67.4%, IQR 36.2) (73). However the IQR for the 

proportion of macrophages found in COPD BALF samples were wide (Figure 3.6 B), suggesting a 

large degree of heterogeneity. 

3.3.4 Strength and Limitations  

As mentioned above, the 35 subjects (20 patients with COPD and 15 healthy ex-smokers) included 

in this study of BAL EV miRNA characterisation were part of a larger study investigating the 

inflammatory mechanisms within COPD (the MICA II study). By using patients from this larger 

study I was able to access and utilise the extensive phenotyping data for my analysis that included 

physiological, HRCT and inflammatory measurements. Importantly, this in-depth profiling gives 

unique insights into specific disease characteristics present in this cohort. For example, this 

analysis identified the presence of small airways disease (as defined by low FEF 25-75% predicted 

and low E/I MLD), but not emphysema in the subjects with COPD. Furthermore, it has provided 

insight into the heterogeneity of inflammation within this group, with particular reference to both 

airway and blood eosinophilia. Using this information will be key in determining the impact of any 

differential EV miRNA expression on disease relevant pathways.  

One of the limitations of this study is that the cohort is relatively small (n=35), particularly when 

considering the heterogeneous nature of COPD. Ideally, I would have included all those recruited 

to the MICA II study (n=51), however I was limited by the volume of BALF available for EV 

isolation. As outlined in my methods (section 2.5), I required a minimum of 15 mL of BALF per 

subject, which was not possible for all, particularly in the case of patients with COPD, where 

recovery of BALF was more difficult due to airway closure (likely as a result of small airways 

disease). To try and mitigate this, I was able to validate the findings from my initial microRNA 

sequencing in a slightly larger group of subjects (n=46 – see section 4.4). 

A further limitation is the sampling method used in this study. Bronchoscopy is an invasive 

procedure, with limits on sample availability and on subject inclusion, with COPD subjects 
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requiring an FEV1 % predicted of greater than 50% due to safety concerns. COPD is a disease 

characterised by pulmonary inflammation and therefore sampling the airways to look for novel 

mechanisms of disease seems logical. However if EVs and/or their contents are to be used as 

diagnostic or therapeutic biomarkers (as suggested in section 1.7.4), these findings will need 

translating into more readily available biofluids (such as blood), and this will be key to 

determining EVs utility in this context. 

3.3.5 Summary 

In summary, to my knowledge this is the first study to isolate and characterise EVs from BALF of 

COPD patients compared with healthy ex-smokers. Subjects across the two groups were well-

matched for non-disease defining characteristics, which is an important consideration for the 

differential expression analysis used for the comparison of EV miRNA expression in COPD 

compared with healthy ex-smokers in the next chapter. In addition, the in-depth phenotypic 

characterisation of the COPD subjects identifying disease specific characteristics, such as presence 

of small airways disease and eosinophilia, will be important when exploring the involvement of 

the differentially expressed miRNA in the regulation of known/novel disease mechanisms given 

the heterogeneity of the disease.  
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 MicroRNA sequencing of bronchoalveolar 

lavage extracellular vesicles and validation of the 

results 

4.1 Introduction 

Extracellular vesicles (EVs) were isolated from bronchoalveolar lavage fluid (BALF) from patients 

with Chronic Obstructive Pulmonary Disease (COPD) (n=20) and healthy ex-smoker controls 

(n=15), using ultrafiltration and size exclusion chromatography (SEC) as described in section 2.5. 

RNA was isolated from the EV fraction and prepared for sequencing, as described in sections 2.7.2 

and 2.8.1 respectively. Next generation microRNA (miRNA) sequencing was performed on the 

NextSeq500 instrument (illumina®) (described in section 2.8.3) and the resulting FASTQ files were 

trimmed and corrected using the unique molecular index (UMI) methods described in section 

2.9.1. Raw reads were aligned and mapped to the reference genome, Genome Reference 

Consortium Human Build 37 (section 2.9.3). Unsupervised filtering and exploratory data analysis 

(outlined in section 2.10.1 and 2.10.2 respectively) resulted in the “counts per million (CPM) 

filtered dataset” (n=31, with outliers removed) that was used for differential expression analysis 

of EV miRNA between COPD and healthy ex-smokers. 

Chapter 4 describes the subject characteristics of the refined cohort (n=31) and miRNA 

sequencing mapping and alignment results for the CPM filtered dataset. The main findings 

covered in this chapter are the differential expression analysis of the BALF EV miRNA comparing 

COPD with healthy ex-smokers and the results from the validation study using real-time 

quantitative polymerase chain reaction (RT-qPCR) in a larger cohort (n=46). 

4.1.1.1 Characteristics of the subjects included in differential expression analysis of BALF 

EV miRNA 

After exploratory data analysis identified a number of outliers (see section 2.10.2), a final CPM 

filtered dataset was used for the differential expression analysis consisting of 17 COPD subjects 

and 14 healthy ex-smokers. The subject characteristics are summarised in Table 4.1. 
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Table 4.1 Characteristics of subjects included in differential expression analysis of BALF EV 

miRNA, n=31 

Subject/sample characteristics COPD  
(n=17) 

Healthy ex-smoker 
(n=14) 

P value 

Age, mean ±SD 69.6 ±7.2 66.2 ±7.6 0.18 

Male, n (%) 15 (88) 9 (57) 0.13 

Smoking pack years, mean ±SD 45.8 ±25.8 25.8 ±13.7 0.07 

BMI, mean ±SD 29.8 ±4.1 28.5 ±4.6 0.39 

FEV1 (% predicted), mean ±SD 78.9 ±14.4 100.6 ±14 0.0007 

FVC (% predicted), mean ±SD 102.2 ±14.8 101.3 ±14.1 0.87 

FEV1/FVC%, mean ±SD 59.1 ±8.2 76.9 ±2.9 <0.0001 

FEF 25-75 (% predicted), mean+/-SD 44.1 ±17.2 97.7 ±22.2 <0.0001 

COPD status, GOLD stage, n (%)  0.3 

Mild 7 (41) NA  

Moderate 10 (59) NA  
Fisher’s exact test for Gender given small sample size. Chi-squared test used for COPD status. Shapiro-Wilk test for 
normality was performed for all continuous variables. Welch two sample t test was performed for normally distributed 
data; Age, BMI, FEV1, FVC, FEV1/FVC and FEF 25-75. Mann-Whitney U test was performed for skewed data; smoking 
pack years. BMI, body mass index; FEV1, forced expiratory volume in one sec, FVC, forced vital capacity; FEF, Forced 
expiratory flow rate; NA, non-applicable; SD, standard deviation. 

The subjects were matched for age, sex, smoking history and body mass index (BMI) (Table 4.1). 

There were however more males in both groups. As expected forced expiratory volume in one sec 

(FEV1) % predicted, FEV1/Forced vital capacity (FVC) and forced expiratory flow rate (FEF) 25-75% 

predicted were significantly reduced in the COPD group. The COPD subjects were balanced 

between mild (41%) and moderate (59%) GOLD status.  

Given the groups were well-matched apart from disease defining characteristics (i.e. FEV1 % 

predicted), differential miRNA expression analysis was performed comparing between COPD and 

healthy ex-smokers without adjustment for multiple variables. 

4.2 Mapping and alignment results comparing patients with COPD and 

healthy ex-smokers 

4.2.1 Total number of reads 

The mean total number of reads mapped for the dataset is 2,800,633 (SD±695,277) and the 

average genome mapping rate was 52.7%. When comparing COPD against healthy ex-smoker 

samples, there was no statistical difference between the total numbers of reads sequenced 

(Figure 4.1).  
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Figure 4.1 Total number of reads for COPD and healthy ex-smoker samples 

Median and 95% confidence intervals shown. N=31; COPD, n=17. Mann Whitney U test showed no 
significant difference. COPD, Chronic obstructive pulmonary disease; Health-ES, healthy ex-smoker. 

 

4.2.2 Proportion of miRNA and smallRNA mapped reads in COPD and healthy ex-smokers 

When comparing different types of reads mapped in COPD and healthy ex-smoker samples, there 

is a higher proportion of miRNA in COPD samples than in healthy ex-smoker samples, both when 

including unmapped reads (p=0.03) (Figure 4.2 A) and without unmapped reads (p=0.02) (Figure 

4.2 B). 

  
Figure 4.2 Proportions of different types of reads in COPD and healthy ex-smoker samples 

A includes unmapped reads and B excludes unmapped reads. N=31; COPD, n=17. Chi-squared test 
performed on proportion of miRNA present in two groups, *p<0.05. COPD, Chronic obstructive 
pulmonary disease; Health-ES, healthy ex-smoker; miRNA, microRNA; Pred, predicted 

 

Logistic regression was used to look at the effect of co-variables (age, gender, smoking pack year 

history and lobe sampled) on the proportion of miRNA reads in COPD compared with healthy ex-

smoker samples. The model explained 47-63% (Cox&Snell R2 model - Nagelkerke R2 model) of the 

variance in COPD and correctly classified 83.9% of cases. Higher miRNA read % was the only 

variable significantly associated with the presence of COPD (p=0.02) (Table 4.2). 
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Table 4.2 Logistic regression of proportions of miRNA reads in COPD and healthy ex-smokers 

Variable OR (95% CI)* P Value 

Age in years 1.05 (0.9-1.2) 0.5 

Smoking pack years 1.03 (0.9-1.1) 0.3 

Gender 2.7 (0.02-30) 0.4 

Lobe sampled 1.8 (0.03-2.4) 0.2 

miRNA read % 1.2 (1.02-1.3) 0.02* 

*Without unmapped reads included. Calculated in SPSS. CI, confidence interval; miRNA, microRNA; OR, Odds ratio 

In addition, the proportion of smallRNA mapped reads was significantly higher in COPD than 

healthy ex-smokers (p=0.01) (Figure 4.3 A). However there was no difference in the different 

types of smallRNA between health and disease (Figure 4.3 B). As previously discussed in section 

2.9.3.1, tRNA was the most abundant (92.2%) smallRNA found in my EV samples and is integral to 

protein synthesis by helping decode mRNA into protein.  
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Figure 4.3 Total number (A) and proportions (B) of smallRNA for COPD and healthy ex-smoker 

samples 
A. Median and 95% confidence intervals shown. N=31; COPD, n=17. Mann Whitney U test performed, 
*p <0.05. CPM, counts per million; COPD, Chronic obstructive pulmonary disease; Health-ES, healthy ex-
smoker. 
B. Proportions of types of smallRNA. N=31; COPD, n=17. Chi-squared test showed no significant 

difference. piRNA, piwi-interacting RNA; snoRNA, small nucleolar RNA; snRNA, small nuclear RNA; 
tRNA, transfer RNA. 

 

Together these results suggest that EVs in COPD package a higher proportion of miRNA (Figure 4.2 

A, p = 0.02) and smallRNA (Figure 4.3 A, p = 0.01) compared with healthy ex-smokers. 

C O P D H e a lth y _ E S
0

2 5

5 0

7 5

1 0 0

%
re

a
d

s

p iR N A

s n o R N A

s n R N A

tR N A

Y _ R N A

B



Chapter 4 

113 

 

4.3 Differential expression of EV miRNA between COPD subjects and 

healthy ex-smokers 

Differential expression analysis was performed using methods outlined in section 2.10.5. Given 

the comparator groups were well-matched apart from disease defining characteristics (i.e. FEV1 % 

predicted), an unadjusted analysis was performed comparing differential miRNA expression 

between COPD and healthy ex-smokers. The results are summarised in the MA plot in Figure 4.4, 

showing 54 significantly differentially expressed miRNA with p value adjustment using fold 

discovery rate (FDR) correction, whereby by significance is demonstrated with an FDR of less than 

0.05.  

 

 
Figure 4.4 MA plot showing differentially expressed miRNA between COPD subjects and healthy 

ex-smokers 
Red dots represent miRNA with an FDR <0.05. Blue lines represent a twofold change in expression. CPM, 
counts per million; FC, fold change 

Of the 54 significantly differentially expressed miRNA, two miRNA were upregulated in COPD 

(miR-223-3p and miR-200b-5p) and three miRNA were downregulated in COPD (miR-138-5p, mIR-

338-3p and miR-204-5p) by a log2 fold change (log2FC) of greater than one when compared with 

healthy ex-smokers (Table 4.3). 
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Table 4.3 Top differentially expressed miRNA between COPD subjects and healthy ex-smokers 

miRNA Expression in 
COPD 

Log2FC Average 
logCPM 

P value FDR 

miR-223-3p Up 1.73 10.87 <0.0001 0.006 

miR-200b-5p Up 1.03 4.79 <0.01 0.048 

miR-138-5p Down -1.02 6.45 <0.001 0.007 

miR-338-3p Down -1.18 10.65 <0.001 0.007 

miR-204-5p Down -1.36 6.97 <0.01 0.019 

CPM, counts per million; FC, fold change; FDR, false discovery rate; miRNA, microRNA;  

4.4 Validation of differentially expressed miRNA with RT-qPCR 

In order to confirm that the differentially expressed miRNA identified from miRNA sequencing 

were truly up or down-regulated in COPD, a second method was employed to confirm miRNA 

expression levels. This is an important step, especially when there are no biological replicates 

available (i.e. only one sample per patient analysed). Ideally this validation step would be 

performed in a separate cohort of subjects, however, due to sample availability this was not 

possible. However, an additional six COPD and five healthy ex-smoker BALF samples were used 

from the MICA II cohort to increase the total sample size, giving a total of 46 samples.  

4.4.1 Characteristics of subjects used for differential expressed EV miRNA validation by 

RT-qPCR, N=46 

A total of twenty-six COPD subjects and twenty healthy ex-smokers were included in the miRNA 

target validation by RT-qPCR. The subjects were matched for age, sex, smoking history and BMI 

(Table 4.4). There were more males in both groups. As expected FEV1% predicted, FEV1/FVC and 

forced FEF 25-75% predicted was significantly reduced in the COPD group. The COPD subjects 

were balanced between mild (41%) and moderate (59%) GOLD status.  
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Table 4.4 Characteristics of subjects included in miRNA validation by RT-qPCR, n= 46 
Subject/sample characteristics COPD  

(n=26) 
Healthy ex-smoker 

(n=20) 
P value 

Age, mean ±SD 70.3 ±6.8 68 ±7.3 0.28 

Male, n (%) 22 (85) 11 (55) 0.06 

Smoking pack years, mean ±SD 46 ±28.8 27.8 ±13 0.06 

BMI, mean ±SD 29.1 ±4.4 28.4 ±4 0.57 

FEV1 (% predicted), mean ±SD 77.4 ±14.4 101.8 ±14.6 <0.0001 

FVC (% predicted), mean ±SD 103.1 ±15.6 100.6 ±16.4 0.59 

FEV1/FVC%, mean ±SD 57.4 ±8.6 78.2 ±4.2 <0.0001 

FEF 25-75 (% predicted), mean ±SD 41 ±16.7 106 ±25.4 <0.0001 

COPD status, GOLD stage, n (%)   0.27 

Mild 11 (42) NA  

Moderate 15 (57) NA  

Fisher’s exact test for Gender given small sample size. Chi-squared test used for COPD status. Shapiro-Wilk test for 
normality was performed for all continuous variables. Welch two sample t test was performed for normally distributed 
data; Age, BMI, FEV1, FVC, FEV1/FVC and FEF 25-75. Mann-Whitney U test was performed for skewed data; smoking 
pack years. BMI, body mass index; FEV1, forced expiratory volume in one sec, FVC, forced vital capacity; FEF, Forced 
expiratory flow rate; NA, non-applicable; SD, standard deviation. 
 

4.4.2 MiRNA chosen for validation by RT-qPCR 

The top 35 targets identified from the differential expression analysis were chosen for validation 

by RT-qPCR (Table 4.5). Targets were chosen preferentially based on the highest log2FC (thus 

possibly the most biologically relevant), and also on availability of miRNA assays available for RT-

qPCR.  
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Table 4.5 List of miRNA targets validated by RT-qPCR 

Assay Log2FC logCPM P Value FDR 

Upregulated in COPD based on sequencing results 

hsa-miR-223-3p 1.74 10.87 <0.00001 <0.001 

hsa-miR-223-5p 1.72 4.34 <0.00001 <0.001 

hsa-miR-296-3p 1.05 3.69 <0.0001 0.01 

hsa-miR-20b-5p 1.01 4.79 <0.01 0.048 

hsa-miR-27b-3p 0.91 5.73 <0.001 0.005 

hsa-miR-31-5p 0.89 9.64 <0.001 0.01 

hsa-miR-2110 0.83 8.15 <0.0001 0.002 

hsa-miR-769-3p 0.79 4.54 <0.01 0.04 

hsa-miR-185-5p 0.78 8.04 <0.001 0.005 

hsa-miR-146a-5p 0.72 12.38 <0.01 0.03 

hsa-miR-191-5p 0.69 13.50 <0.0001 0.004 

hsa-miR-25-5p 0.66 4.76 <0.01 0.04 

hsa-miR-345-5p 0.65 7.36 <0.01 0.02 

hsa-miR-200b-5p 0.57 8.87 <0.00001 0.004 

hsa-miR-182-5p 0.53 11.03 <0.000001 0.001 

hsa-miR-625-3p 0.55 7.28 <0.01 0.04 

hsa-miR-589-5p 0.66 4.48 <0.05 0.048 

Downregulated in COPD based on sequencing results 

hsa-miR-138-5p -1.02 6.45 <0.0001 0.002 

hsa-miR-338-3p -1.18 10.65 <0.0001 0.002 

hsa-miR-204-5p -1.36 6.97 <0.001 0.009 

hsa-miR-181a-5p -0.70 11.11 <0.001 0.005 

hsa-miR-20a-5p -0.61 9.16 <0.001 0.007 

hsa-miR-181d-5p -0.72 4.85 <0.01 0.03 

hsa-miR-301a-3p -0.73 5.70 <0.001 0.01 

hsa-miR-17-3p -0.76 4.24 <0.01 0.046 

hsa-miR-181c-5p -0.80 4.68 <0.01 0.02 

hsa-miR-30b-5p -0.81 11.31 <0.001 0.009 

hsa-miR-934 -0.88 5.04 <0.001 0.008 

hsa-miR-30d-3p -0.96 6.86 <0.001 0.006 

hsa-miR-374a-5p -0.56 8.63 <0.001 0.008 

hsa-miR-452-5p -0.52 4.99 <0.01 0.04 

hsa-miR-138-1-3p -0.98 4.54 <0.01 0.048 

hsa-miR-374b-5p -0.58 6.65 <0.01 0.048 

hsa-miR-30e-5p -0.35 12.08 <0.05 0.048 
FC, fold change; CPM, counts per million; FDR, false discovery rate; miR, microRNA 
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In addition, the top six miRNA that were most stably expressed across both COPD and healthy ex-

smokers were chosen as normalisers (Table 4.6). These were identified using the NormFinder® 

software (379). 

Table 4.6 miRNA identified from NormFinder analysis of miRNA sequencing data as those most 
stably expressed across COPD and healthy ex-smoker samples 

Assay Stability CPM average 

hsa-miR-24-3p 0.06 1636 

hsa-miR-23b-3p 0.14 1732 

hsa-miR-27b-3p 0.16 3185 

hsa-miR-93-5p 0.17 1496 

hsa-miR-221-3p 0.18 1209 

hsa-let-7g-5p 0.18 1736 

Stability is the measure of stability across the dataset, low values (<0.2) indicate good stability.  
CPM (counts per million) average is the abundance of the miRNA across the dataset, CPM > 10  
required for detection by qPCR. 

4.4.3 RT-qPCR data quality control 

RNA spike-ins were used for quality control of RNA isolation (data shown previously section 2.7.2) 

and cDNA synthesis. The cDNA synthesis control (UniSp6) was added in the reverse transcription 

step giving the opportunity to evaluate the reaction. In addition to this, a DNA spike-in (UniSp3) 

was added to indicate any inhibitions at the qPCR level. Figure 4.5 shows the steady level (Cq 

between 19.12 – 19.66 for UniSp3 and 18.5 – 20.19 for UniSp6) of these assays, indicating the 

reverse transcription and qPCR were successful. The steady level of the RNA spike-ins, which is 

comparable to the blank purification, also shows that none of the samples contained inhibitors. 

  
Figure 4.5 Raw Cq values for spike-in assays used to assess quality of cDNA synthesis (UniSp3) 

and reverse transcription reaction (UniSp6) 
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4.4.3.1 Number of detected miRNAs 

The number of miRNA detected in each sample and the Cq value of the global mean for each 

sample is shown in Figure 4.6. Only 10 out of the 41 miRNA tested (35 target miRNA and six 

normaliser miRNA) were detected in all 46 samples. The mean number of miRNA detected per 

sample was 30 (range 10-38, SD±5). The average global mean Cq value across the dataset was 

29.17 (range 26.9-34.6, SD±1.6). Two samples, MICA_II_091_RLL and MICA_II_145, showed much 

higher average global mean Cq values, at 34.6 and 33.8 respectively. In addition these samples 

had a lower number of miRNA detected in their samples, at 10 and 21 out of a total of 41 miRNA 

respectively. Given these findings, these two samples were excluded from the differential 

expression analysis. 

 
Figure 4.6 Number and expression level of miRNA detected by RT-qPCR for each sample 

Number of miRNAs detected across samples shown as blue bars and the average Cq value for the 
commonly expressed miRNAs shown in red line. N=46; COPD, n=26. 

 

4.4.4 Differential miRNA expression analysis of RT-qPCR data 

After outliers (MICA_II_091_RLL and MICA_II_145) were removed, differential miRNA expression 

analysis was performed on a final cohort of 44 samples, 24 COPD subjects and 20 healthy ex-

smokers. This did not alter the overall subject characteristics, and groups were still matched for 

age, sex, gender, BMI and smoking pack years.  

When comparing COPD subjects to healthy ex-smokers, fourteen miRNAs were found to be 

differentially expressed using a cut-off P-value <0.05. Eight of these passed an FDR correction at a 

significance level of 0.05 (Table 4.7). Five were up-regulated in COPD (miR-2110, miR-223-3p, miR-

625-3p, miR-182-5p and miR-200b-5p) and three were down-regulated in COPD (miR- 204-5p, 
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miR-138-5p and miR-338-3p). The log2FC of these differentially expressed miRNA are summarised 

in Table 4.7 and highlighted in red in Figure 4.7. The spread of the normalised expression data 

across the samples for each of the differentially expressed miRNA is shown in Figure 4.8.  

Table 4.7 Significantly differentially expressed miRNA measured by RT-qPCR between COPD 
subjects and healthy ex-smokers 
miRNA COPD SD Healthy_ES SD Log2FC P value FDR 

Up-regulated in COPD 

hsa-miR-2110 1.21 0.71 2.12 0.001 0.016 

hsa-miR-223-3p 1.47 1.37 2.97 0.001 0.016 

hsa-miR-625-3p† 0.91 0.76 1.85 0.006 0.041 

hsa-miR-182-5p 0.70 0.66 1.52 0.006 0.041 

hsa-miR-200b-5p 0.79 0.72 1.52 0.009 0.047 

Down-regulated in COPD 

hsa-miR-204-5p 1.32 1.23 -2.37 0.003 0.037 

hsa-miR-138-5p 0.90 0.77 -1.66 0.005 0.041 

hsa-miR-338-3p 1.15 0.78 -1.72 0.009 0.047 
Shapiro-Wilk test for normality was performed and showed data were normally distributed. Unpaired Welch’s t test was 
performed and then adjusted using Benjamini Hochberg to generate an FDR value. COPD, Chronic obstructive 
pulmonary disease, FC: Fold change. FDR, false discovery rate; Healthy_ES, healthy ex-smoker; miRNA, microRNA, SD: 
standard deviation. 
†missing data points; COPD, n=18; Healthy-ES, n=12  

 
Figure 4.7 Volcano plot showing relationship between P values and expression data 

Red dots show miRNA with P values <0.05 after FDR correction for multiple testing. Blue dotted line 
represents zero Log2FC, points to the right are up-regulated in COPD, and points to the left are down-
regulated in COPD. FC, fold change; miRNA, microRNA.  
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Figure 4.8 Normalised expression levels for significantly differentially expressed miRNA 

2∆Cq, normalised expression levels. Mean and SD shown.  
Shapiro-Wilk test for normality demonstrated normally distributed data for all continuous variables. 
Unpaired Welch’s t test was performed and then adjusted using Benjamini-Hochberg to generate an FDR 
value, *p<0.05. N=44; COPD, n=24.†miR-635-3p = missing data points; COPD, n=18; Healthy-ES, n=12  
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Of note, in the RT-qPCR validation experiment, there were several missing data points for miR-

625-3p (n=31; COPD, n=18; healthy ex-smokers, n=12), as this miRNA was not detected in these 

samples. There were no obvious clinical characteristics which delineated these samples and 

missing values were found in both comparator groups. Given this missing data, this may make the 

results for this miRNA less robust. 

When comparing the RT-qPCR validation results with the miRNA sequencing results, several of the 

top targets identified from the sequencing analysis were validated as significantly differentially 

expressed by RT-qPCR. The up-regulated miRNAs miR-223-3p, miR-200b-5p and all of the down-

regulated miRNAs (miR-204-5p, miR-138-5p and miR-338-3p) were identified as the top 

differentially expressed miRNA between COPD and healthy controls in the sequencing analysis 

(Table 4.3). This gives greater certainty to the results, given these differentially expressed miRNA 

have been identified by multiple methods.  

4.5 Discussion 

In this chapter I have described the mapping and alignment results with comparison between 

COPD and healthy ex-smokers, the results of my differential expression analysis of the BALF EV 

miRNA, and the RT-qPCR validation study in a slightly larger cohort of 44 subjects.  

4.5.1 RNA mapping and alignment 

The main mapping quality parameter is the percentage of mapped reads, which is a global 

indicator of the overall sequencing accuracy and of the presence of contaminating DNA (365). On 

average ~2.8 million reads were obtained for each sample and the average genome mapping rate 

was 52.7%. It is difficult to find exact estimates of what mapping rates are expected in RNA 

sequencing experiments, especially when trying to compare different sources of RNA and 

different mapping tools. Some literature suggests as high as 70-90% (386), however this 

predominantly includes studies using abundant RNA sources (e.g. tumour) rather than limited 

sources such as EVs. Reassuringly, after excluding the unmapped reads, the mean number of 

miRNA mapped reads was 40.5%, (SD±14.3%) which is within the 10-60% range quoted in the 

literature (418). 

Of the two previous studies investigating BALF derived EV RNA, only one used sequencing to 

profile RNA expression in lung transplant patients with and without acute cellular rejection (358). 

The library sizes generated were much smaller compared with my sequencing results (166,326 
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versus ~2.8 million), suggesting a much lower depth of sequencing, and they did not report the 

mapping rate. The other study investigated BALF derived EV miRNA in asthmatics compared with 

healthy controls using miRNA microarray (262). Next generation sequencing has now superseded 

this technology as it provides a more in-depth, unbiased, discovery-based analysis of the 

transcriptome, generating both known and novel transcript data with increased specificity and 

sensitivity compared to a microarray platform (419). 

This rigorous quality control processes and detailed exploratory analyses (outlined in sections 

2.10.1 and 2.10.2) were key in ensuring the quality and reliability of my data. Reporting these 

quality control metrics will be critical in any forthcoming publication (365). Although advanced 

RNA sequencing techniques can yield novel transcript discovery, it is a rapidly evolving field and 

the bioinformatics methods for data analysis are highly diverse and newly emerging.  

4.5.2 Extracellular vesicle miRNA packaging 

Importantly, my results show a higher proportion of miRNA in COPD BALF EVs than healthy ex-

smokers (section 4.3.2). To my knowledge, only one other study has previously shown altered 

proportions of miRNAs in EVs in disease. Francisco-Garcia et al. showed deficient loading of 

miRNAs in BALF EVs of severe asthmatics compared with healthy controls. In addition, pathway 

analysis suggested that these significantly down-regulated miRNAs in severe asthmatics converge 

on pathways known to be important in asthma pathogenesis (420). 

To explore this in more detail it is important to understand the potential sorting mechanisms for 

miRNA in EVs. Based on current research, there are four potential modes for sorting miRNA into 

EVs, although the underlying mechanisms remain largely unclear. Firstly, the “neutral 

sphingomyelinase (nSMase)2-dependent pathway”: nSMase2 is the first molecule reported to be 

related to miRNA secretion into EVs. Kosaka et al. found that expression of nSMase2 was 

proportional to the number of miRNAs packaged in EVs (421). Previous work has also shown the 

role of nSMase in ceramide generation, aberrant apoptosis and lung injury in response to 

cigarette smoke exposure (422, 423). Moreover, as previously highlighted (Table 1.2 in section 

1.7), Serban et al. showed endothelial microparticles (EMPs) required acid sphingomyelinase 

(aSMase) for release in response to cigarette smoke exposure, and aSMase enzyme activity was 

significantly up-regulated in plasma of patients with COPD (252). Together, these studies suggest 

that SMase activity may be regulated by smoke exposure, and sMase may have a role EVs release 

and regulation of EV miRNA cargo in COPD.  
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Secondly, the “heterogeneous nuclear ribonucleoproteins (hnRNPs)-dependant pathway”: hnRNPs 

are capable of recognising the GGAG motif in the 3’ region of miRNA sequences and cause specific 

miRNAs to be packed into EVs (424). Furthermore, hnRNPs are more widely involved in telomere 

stability, cell senescence and cell cycle regulation (425). Overexpression of hnRNP A2/B1 in 

plasma and primary human bronchial epithelium has a high sensitivity for the presence of Non-

small cell lung cancer (NSCLC), and is also present in high-risk smokers’ years before they develop 

lung cancer (426). Thus hnRNPs role in COPD pathogenesis may be beyond just involvement in EV 

miRNA packaging. 

Thirdly, the “3’-end of the miRNA sequence-dependent pathway”: Koppers-Lalic et al. found that 

3’-end adenylated miRNAs isoforms are enriched in cells, whereas 3’-end uridylated miRNA 

isoforms are over-represented in EVs, suggesting that post-transcriptional modifications (e.g. 3’-

end adenylation and uridylation) contribute in part to miRNA packaging in EVs (427). Recently, 

Zhang et al. showed that 3’-end uridylation mediated the packaging of miR-223 and miR-142 into 

macrophage-derived microvesicles (MVs) released in the lungs in response to lipopolysaccharide 

(LPS) and Klebsiella pneumoniae (428). Interestingly, miR-223 (along with miR-142) was found to 

be the selectively enriched miRNA in the macrophage MVs, in-keeping with the findings of this 

study, which shows miR-223-3p up-regulated in lung-derived EVs in COPD. These studies suggest 

that 3’-end uridylation mechanism may play a pivotal role in EV miRNA packaging in lungs in 

response to inflammatory stimuli.  

Finally, the “miRNA induced silencing complex (miRISC) pathway”: as discussed in section 1.8.1, 

mature miRNA bind with assembly proteins (RISC) to form a complex, the main components of 

which are:  miRNA, target mRNA, GW182 and argonaute 2 (AGO2). Recent studies suggest a 

correlation between AGO2 and EV miRNA packaging, with the presence of AGO2 increasing 

abundance of miRNAs in EVs (429). Although, so far, no studies have investigated AGO2 role in EV 

packaging within the lungs or in inflammatory disease.  

In summary, cells have the ability to selectively sort miRNA into EVs for secretion to nearby or 

distant targets. Broadly these mechanisms include RNA-binding proteins such as hnRNPA2B1, 

membranous proteins involved in EV biogenesis such as nSMase2, and specific miRNA-binding 

motifs capable of exerting selectivity over the miRNAs shuttled into EVs. Current EV miRNA 

literature focuses on the dysregulated EV-miRNA content, however little is known about the role 

of disease pathogenesis in regulating the EV miRNA selective sorting process. Therefore 

understanding the sequences and/or proteins responsible for selective sorting of miRNA in COPD 
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lung-derived EVs may reveal novel mechanisms in the disease pathogenesis, and provide targets 

for manipulating EV content that could have beneficial disease modifying effects.  

4.5.3 Differential expression of EV miRNA in COPD subjects compared with healthy ex-

smokers 

In addition to the overall proportion of miRNA being higher in COPD BALF EVs than healthy ex-

smokers, this is the first study showing differential miRNA expression in lung-derived EVs in COPD. 

Specifically, five miRNA were found up-regulated in COPD (miR-223-3p, miR-182-5p, miR-2110, 

miR-200b-5p and miR-625-3p) and three were down-regulated (miR-204-5p, miR-338-3p and miR-

138-3p) when compared to healthy ex-smoker controls.  

Up-regulation of non-EV miR-223 has been reported in COPD miRNA studies (reviewed in section 

1.8.2) both in COPD lung tissue compared with smokers (319), and in human endothelial cells in 

culture (339). MiR-223 has a crucial role in innate immunity, myeloid cell differentiation, and cell 

homeostasis and has several gene targets that are involved in pathways implicated in the 

pathogenesis of COPD. MiR-223 is transcribed from an independent promoter located on the X 

chromosome and is mainly expressed by haemopoeitic cells (430). Under resting conditions, low 

levels of miR-223 expression are primarily controlled by binding of nuclear factor I A-type (NFI-A) 

to the miR-223 promoter (430). During granulocytic differentiation, NFI-A is released from the 

miR-223 promoter and replaced by CCAAT enhancer protein α (C/EBPα), resulting in up-regulation 

of miR-223 expression (431). Interestingly, one of the target genes of miR-223 is NFI-A, implicating 

that up-regulation of miR-223 dampens the expression of NFI-A, resulting in a positive feedback 

loop. In line with the role of miR-223 in myeloid differentiation, overexpression of miR-223 

induces the monocytic and granulocytic differentiation marker CD11b, while inhibition of miR-223 

is shown to reduce the expression of CD11b in promyelocytic leukaemia cells (430). In addition to 

the importance in myeloid differentiation, miR-223 is involved in erythropoiesis by dampening the 

gene expression and protein translation of LIM-only protein 2, a positive regulator of 

erythropoiesis (432). 

MicroRNA profiling in human blood demonstrated that miR-223 is expressed in hematopoietic 

stem cells, granulocytes, dendritic cells and monocytes, while lower levels of miR-223 were also 

found in naïve and memory T cells (430, 433, 434). In induced sputum high expression of miR-223 

was measured in monocytes, macrophages and neutrophils (435). Furthermore, in situ 

hybridisation in human bronchial biopsies showed that miR-223 expression was mainly expressed 

in neutrophils localized in the lamina propria (435). 
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With regards to smoking, lower miR-223 expression levels have been observed in bronchial 

brushings from current smokers compared to never smokers (316). Whereas, Ezzie et al. found 

higher levels of miR-223 in the lung tissue of COPD patients compared with smokers (319). 

Furthermore, higher levels of miR-223 were also measured in the BALF cell pellet obtained from 

COPD patients compared to non-COPD controls (342). In serum, miR-223 expression was also 

higher in women with COPD due to biomass smoke, than healthy controls exposed to biomass 

smoke (345). Taken together, it is clear that miR-223 expression is differently expressed in 

response to obstructive lung disease, however no data are available that link miR-223 expression 

to disease stage, inflammatory phenotype or presence of emphysema. Additionally, smoke 

(tobacco or biomass) can alter the expression of miR-223, which together with differences in 

examined samples and patient groups, further adds to the complexity of the observed findings. 

Dysregulation of miR-223 has been implicated in the pathogenesis of a number of inflammatory 

diseases, including acute lung injury, rheumatoid arthritis, inflammatory bowel disease, and type 

II diabetes (436-438). Furthermore, studies have shown miR-223 as a regulator of macrophage 

function. Chen et al. demonstrated that expression of miR-223 dampens macrophage 

inflammatory responses to toll-like receptor (TLR) ligand stimulation; whereby LPS stimulated 

macrophages showed decreased miR-223 expression, resulting in increased levels of signal 

transducer and activator of transcription (STAT) 3 (a direct target of miR-223). This in turn, led to 

an increased production of pro-inflammatory cytokines interleukin (IL)-6 and IL-1β (439). In 

Mycobacterium tuberculosis infected patients, increased miR-223 levels in monocyte-derived 

macrophages (MDMs) correlate with impaired activation and cytokine production when 

compared to healthy individuals (440). Given this previous work, future investigation into EV-

derived miR-223 regulation of macrophage function could be fundamental in determining the 

mechanisms underlying the defective macrophage phenotype found in COPD (73). 

In addition to intrinsic cellular function of miR-223, studies have also reported EV transfer of miR-

223 as a mechanism for intercellular communication (437, 441, 442). Neudecker et al. used a 

murine acute lung injury model to show in response to pulmonary injury neutrophils secrete EVs 

containing miR-223, which are shuttled to alveolar epithelial cells leading to reduced cellular 

inflammation and tissue injury via repression of poly-(ADP-ribose) polymerase (PARP)-1.(437) 

Therefore, therapeutic manipulation of miR-223 to dampen inflammatory targets could be a 

potential treatment to control excessive innate immune responses during mucosal inflammation. 

MicroRNA-182 is known as an oncogenic miRNA and is implicated in the progression of several 

cancers owing to its role in promoting cell proliferation and invasion (443). Specifically, miR-182 
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has been found up-regulated in sputum of patients with lung adenocarcinoma (444) and in serum 

of patients with early stage NSCLC (445). In addition, recent work has identified miR-182-3p as a 

regulator of smooth muscle cell proliferation and vascular remodelling, with implications for 

pulmonary arterial hypertension (446). Moreover, miR-182-5p is overexpressed in lung tissue in 

pulmonary fibrosis, and modulation of miR-182-5p via mothers against decapentaplegic homolog 

(SMAD)7 up-regulation can inhibit the expression of pro-fibrotic proteins such as fibronectin, α-

smooth muscle actin and p-SMAD2/p-SMAD3 (447). Finally, miR-182 expression is regulated by 

smoke exposure, and was up-regulated in the BALF of mice after 4 weeks of cigarette smoke 

exposure (327). Taken together, miR-182 may be important in COPD pathogenesis as a regulator 

of smooth muscle cell proliferation, vascular remodelling (128) and fibrosis (448).  

MicroRNA-2110 was first reported as one of a group of neurite-inducing miRNAs (449). MiR-2110 

was also identified as a tumour-suppressor by targeting Tsukushi (TSKU), inducing cell 

differentiation and reducing cell survival in neuroblastoma cell lines (450). In patients, low tumour 

miR-2110 levels were significantly correlated with high tumour TSKU mRNA levels, and both low 

miR-2110 and high TSKU mRNA levels were significantly correlated with poor patient survival 

(450). In addition, miR-2110 has been identified as one of five miRNAs up-regulated in serum 

exosomes in patients with active Mycobacterium tuberculosis infection (451). Little is known 

about miR-2110 in the context of inflammatory disease, and therefore further work investigating 

mRNA targets within the airways of COPD patients may establish a role in inflammatory lung 

disease. 

MicroRNA-200b-5p belongs to the miR-200 family, which controls epithelial-mesenchymal 

transition (EMT) and metastasis in tumour cells (452, 453). The primary cause of organ fibrosis is 

the production of excessive extracellular collagen by activated fibroblasts (myofibroblasts). A 

significant proportion of fibroblasts are derived via EMT of resident epithelial cells within the 

diseased organ itself and this process has been observed in the alveolar epithelial cells (454). 

Furthermore as discussed in section 1.2, as part of remodelling, peribronchiolar fibrosis is 

observed in the small airways of patients with COPD contributing to airway obstruction. EMT 

appears to be involved in the formation of peribronchiolar fibrosis in COPD (115) and may be a 

precursor to the development of lung cancer in these patients (455). In addition, miR-200b 

promotes angiostatic effects by silencing v-ets erythroblastosis virus E26 oncogene homolog 1 

(ETS1), a transcription factor for controlling angiogenic genes like vascular endothelial growth 

factor receptor 2 (VEGFR2) and matrix metalloproteinase 1 (MMP1) expression in endothelial cells 

(456). Both small airway fibrosis and vascular remodelling have important roles in COPD 
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progression and therefore manipulation of these pathways may lead to novel targets for COPD 

treatment. 

Finally, miR-625-3p was significantly up-regulated miRNA in lung-derived EVs COPD. MiR-625-3p, 

is overexpressed in colorectal malignancies where it promotes migration, invasion and apoptosis 

resistance (457, 458). MiR-625-3p has also been detected in the circulation of malignant pleural 

mesothelioma patients (459). Additionally, miR-625-3p may have an essential role in the 

downstream cascade of T cell receptor signals to promote CD8+ T cell proliferation. Inhibition of 

miR-625-3p expression by the mammalian target of rapamycin (mTOR) inhibitor rapamycin, can 

influence CD8+ T cell proliferation and functions that mediate the anti-viral immunity and graft-

vs-host-disease (GVHD) in stem cell transplant patients (460). MiR-625-5p is also shown to be 

significantly down-regulated in paediatric asthma (461) and suppresses inflammatory responses 

by targeting protein kinase B2 (AKT2) and inhibiting the nuclear factor kappa B (NF-κB) signalling 

pathway in human bronchial epithelial cells (462). Thus, based on this previous work, up-

regulation of miR-625 in COPD lung-derived EVs may suggest a role in regulation of CD8+ T cell 

proliferation within the lungs of COPD and regulation of several inflammatory pathways. 

However, as noted in the results (section 4.5.4), there were several missing data points in the RT-

qPCR validation study, which may suggest this data showing up-regulation in COPD lung-derived 

EVs may be less robust than for the other significantly dysregulated miRNA. 

In this study, miR-338-3p was down-regulated in lung-derived EVs of patients with COPD. MiR-

338-3p has previously been reported to be down-regulated in COPD plasma compared with 

asthmatics and healthy controls (341), and down-regulated in plasma of allergic rhinitis patients, 

where it was shown to target selected inflammatory genes mitogen-activated protein kinase 

(MAPK) 8 and inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ) (463). In contrast, 

Lacedonia et al. showed miRNA-338 expression in the sputum was higher in both patients with 

asthma and COPD compared to controls, however asthmatics showed a significantly higher miR-

338 expression compared to COPD patients (464). In addition, studies have shown that miR-338 

may be important in cellular apoptosis, differentiation and tumour growth (465-467), via targeting 

of metastasis associated in colon cancer 1 (MACC1) gene (468). Given the aforementioned 

literature, down-regulation of miR-338-3p in COPD lung-derived EVs may have an important role 

in regulating key inflammatory pathways (MAPK and NF-κB signalling) and cellular processes 

important in tumour development. 

MicroRNA-204-5p was found down-regulated in COPD lung-derived EVs compared with healthy 

ex-smokers. Recent work has identified down-regulation of miR-204-5p and its regulatory 
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network is important in NSCLC (469), with low expression in NSCLC tumours associated with 

advanced progression, poor prognosis and severe metastatic potential (470, 471). Furthermore, 

miR-204-5p has reported as a novel diagnostic biomarker in patients with frontotemporal 

dementia (472) and Parkinson’s disease (473). Importantly, as with miR-200b-5p, research 

suggests a role for miR-204-5p in direct regulation of EMT through its targeting of SMAD4, a 

mediator of transforming growth factor (TGF)-β signalling (474). Wang et al. demonstrated that 

miR-204-5p overexpression enhanced the repression of TGF-β2–induced EMT in the presence of 

SMAD4 small interfering RNA (474). Therefore, a reduction in miR-204-5p, as seen in lung-derived 

EVs in COPD patients in this study, is likely to lead to an increase in EMT. These findings suggest 

possible synergistic activity with miR-200b-5p and together these dysregulated miRNA may 

contribute to the small airway fibrosis seen in COPD. 

Finally miR-138-5p was found down-regulated in COPD lung-EVs compared with healthy ex-

smokers. miR-138-5p is known to inhibit tumour growth and activate the immune system by 

down-regulating programmed cell death protein (PD)-1/PD-ligand 1, and thus is a promising 

therapeutic target for NSCLC (475). Little is known about miR-138-5p in the context of 

inflammatory disease or immune cell dysfunction, and thus additional work investigating mRNA 

targets within the airways of COPD patients may establish a role in inflammatory lung disease. 

4.5.4 Strengths and limitations 

Limitations of these results include the relatively small sample size (n=44 for the validation study), 

although this is in keeping with other studies using human BALF samples (232, 262, 357-359). This 

is in part due to the availability of samples, as not only can recruitment to a bronchoscopy study 

be challenging, but also the resultant sample quantities (i.e. of BALF) can be influenced by the 

underlying disease processes (discussed in Chapter 3). In addition, the validation study was 

performed in the same cohort as the microRNA sequencing study, where a more robust 

experimental design would have conducted these experiments in an entirely separate cohort. 

Again due to sample availability this was not possible, however I was able to increase the sample 

size (with an additional 6 COPD subjects and 5 healthy ex-smokers) at this stage. 

As previously discussed the COPD patients included in this study had relatively mild disease with a 

mean FEV1% predicted of 78.9% (SD±14.4). This is in contrast to other EV miRNA studies in COPD 

(247, 250, 260), which included a broader range and severity of COPD patients (mean FEV1 63.4%, 

SD±29.54) and current smokers. Although their findings may be applicable to a wider COPD 

cohort, they are less translatable mechanistically given their broader range of included subject 
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phenotypes and the inclusion of current smokers, which may attribute effects to active smoking 

rather than disease alone. In addition, these studies used blood and sputum samples, rather than 

BALF as a source for EVs. A recent study has shown that major differences in the COPD lung tissue 

transcriptome were poorly mirrored in sputum and non-representative to those in blood (476). 

Therefore, a major strength of this work is the EV miRNA were derived from BALF and therefore 

should relate directly to the altered lung transcriptome in COPD and provide novel mechanistic 

insights into disease pathogenesis. 

4.5.5 Summary 

In conclusion, this chapter highlights two novel findings in the field of EV miRNA research in 

COPD. Firstly, there is an increased proportion of miRNA packaged in COPD lung-derived EVs 

compared with healthy ex-smokers. Further work needs to be done to establish the mechanisms 

underlying the alteration in EV RNA content in COPD, and whether these changes have any 

pathological consequences. Secondly, there are differentially expressed miRNA within the COPD 

lung-derived EVs compared with healthy ex-smokers. Two of these miRNA (miR-223-3p and miR-

338-3p) have been found dysregulated in other COPD studies (319, 339, 341), providing further 

evidence as to their importance and relevance in this disease. To investigate the effects of these 

differentially expressed miRNA on target gene expression and their importance to COPD 

pathogenesis, in-depth pathway analysis was performed, and the results are presented in the 

following chapter. 
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 Identification, visualisation and analysis of 

microRNA-target interaction networks 

5.1 Introduction 

Identifying the differentially expressed lung-derived extracellular vesicle (EV) microRNA (miRNA) 

in Chronic Obstructive Pulmonary Disease (COPD) compared with healthy ex-smokers was the first 

aim of this thesis. However, understanding the impact of these differentially expressed miRNA on 

gene expression in COPD is key to understanding whether these differences have biological 

significance and relevance to disease pathology.  

Chapter 5 explores the interactions between the differentially expressed miRNA and their 

differentially expressed target genes in COPD. Firstly, it presents the validated and predicted gene 

targets of the differentially expressed miRNA. Next, it shows the results of the differential 

expression analysis for the epithelial brushing transcriptome data comparing COPD with healthy 

ex-smokers, using the same cohort as the EV miRNA samples. Finally, this chapter explores how 

these differentially expressed genes integrate with the differentially expressed miRNA using 

several bioinformatic techniques (outlined in methods section 2.13) to provide further insights 

into the impact of this regulatory network on the biology of COPD.  

5.2 Identifying miRNA target genes 

5.2.1 miRNA target identification in silico using multiMiR  

In silico analysis using the multiMiR package identified 21,343 gene targets of the differentially 

expressed miRNA in COPD (results summarised in Table 5.1). Of these 7,615 (35.6%) were 

validated in experimental models. Several of the gene targets identified were co-regulated by the 

miRNA, suggesting possible synergistic action, which may result in a greater impact on transcript 

expression.  
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 Table 5.1  Summary results of in silico target prediction using multiMiR 

miRNA Number of Validated 
targets 

Number of Predicted 
targets 

Total number of 
targets 

Up-regulated miRNA in COPD 4,627 7487 12,114 

miR-2110 534 1538 2072 

miR-223-3p 149 1335 1484 

miR-625-3p 198 468 666 

miR-182-5p 3634 3244 6878 

miR-200b-5p 112 902 1014 

Down-regulated miRNA in COPD 2,988 6,241 9,229 

miR-204-5p 945 3172 4117 

miR-138-5p 1053 1557 2610 

miR-338-3p 990 1512 2502 

Total number of targets 7,615 13,728 21,343 
COPD, Chronic Obstructive Pulmonary Disease; miRNA, microRNA 

These results were used to identify the putative miRNA-mRNA interactions (section 5.2.3) in 

combination with the results from the next section (section 5.2.2), which identifies the 

differentially expressed genes in the epithelial brushings in COPD compared with healthy ex-

smokers. 

5.2.2 Differential gene expression analysis of epithelial brushings in COPD and healthy ex-

smokers 

A key strength to this study is that in addition to bronchoalveolar lavage fluid (BALF) EV miRNA 

isolation, epithelial brushings were also taken from the same patients and from the same lung 

lobe location as the EVs were recovered from for transcriptome analysis. By identifying the 

differentially expressed genes in the epithelial cell compartment between COPD and healthy ex-

smokers, it is possible to identify those genes that may be under epigenetic control by the 

differentially expressed EV miRNA. 

Raw mRNA counts generated using the NovaSeq 6000 (Illumina®) were filtered, analysed for 

quality and condensed into a filtered dataset (performed by AstraZeneca) comprising of 44 

epithelial brushing samples and 27,229 mRNA. Average reads per sample were 52.6 million.  

Differential gene expression were assessed with DESeq2 in the 44 epithelial brushing samples (24 

COPD and 20 healthy ex-smokers), and this identified 192 differentially expressed genes between 

COPD and healthy ex-smokers with a false discovery rate (FDR) of <0.05 (Figure 5.1). 
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Figure 5.1  MA plot showing differentially expressed mRNA in epithelial brushings between 

COPD subjects and healthy ex-smokers 
Red dots represent mRNA with an FDR <0.05. Blue lines represent a twofold change in expression 

Of the 196 differentially expressed genes, there were 57 genes with a log2 fold change (FC) of 

greater than one (most up-regulated in COPD) and 17 genes with a log2FC less than one (most 

down-regulated in COPD). Table 5.2 summarises the top 10 up and down-regulated genes in the 

COPD epithelial brushings, with the entire list of differentially expressed genes summarised in 

Appendix A, Supplementary Table 1.  
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Table 5.2  Top ten differentially expressed genes in epithelial brushings in COPD subjects  

ENSEMBL ID HGNC SYMBOL Log2FC P value FDR 

Top up-regulated genes in COPD 

ENSG00000090512 FETUB 2.87 4.05E-05 0.013 

ENSG00000179593 ALOX15B 2.61 1.32E-05 0.0075 

ENSG00000273331 TM4SF19-
TCTEX1D2 

2.60 1.09E-05 0.0064 

ENSG00000287059 N/A 2.55 6.54E-10 2.94E-06 

ENSG00000155918 RAET1L 2.52 0.00014 0.028 

ENSG00000262406 MMP12 2.49 5.40E-05 0.015 

ENSG00000115590 IL1R2 2.34 2.50E-07 0.00045 

ENSG00000287771 N/A lncRNA 2.24 3.69E-05 0.012 

ENSG00000111700 SLCO1B3 2.20 3.13E-06 0.0028 

ENSG00000255833 TIFAB 2.14 4.56E-05 0.014 

Top down-regulated genes in COPD 

ENSG00000198787 19587 
(pseudogene) 

-2.34 3.10E-05 0.012 

ENSG00000113389 NPR3 -2.01 9.96E-08 0.0003 

ENSG00000038295 TLL1 -1.35 3.42E-05 0.012 

ENSG00000174059 CD34 -1.27 9.15E-05 0.021 

ENSG00000099994 SUSD2 -1.25 8.03E-06 0.0056 

ENSG00000214870 LOC441204 -1.24 0.000114 0.025 

ENSG00000126562 WNK4 -1.19 1.17E-06 0.0013 

ENSG00000078596 ITM2A -1.14 2.59E-05 0.011 

ENSG00000125144 MT1G -1.12 3.66E-05 0.012 

ENSG00000283413 N/A lncRNA -1.11 0.000184 0.033 
HGNC, HUGO Gene Nomenclature Committee; FC, fold change; FDR, False discovery rate. 

These 196 differentially expressed genes were used in combination with the in silico identified 

targets of the differential expressed miRNA (section 5.1) to identify the putative miRNA-mRNA 

interactions in the next section. 
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5.2.3 Identifying putative miRNA-mRNA interactions using multiMiR 

In addition to retrieving all validated and predicted target genes of a given miRNA (section 5.1), 

the multiMiR package has functionality to retrieve interactions between differentially expressed 

miRNAs and a specific set of differentially expressed genes (methods summarised in section 

2.12.4 and an overview in Figure 5.2 – Figure 2.26 re-presented for ease of reference). Given that 

miRNA lead to down-regulation of their gene targets (an inverse correlation), only down-

regulated mRNA in COPD from the epithelial biopsy differential expression analysis were selected 

as possible targets for up-regulated EV miRNA in COPD and vice versa. 

 
Figure 5.2 An overview of the methods used to identify putative miRNA-mRNA interactions 

Blue rectangle indicates a process with the software/tool specified in parenthesis, grey trapezium 
indicate a data output, yellow diamond is an important checkpoint. BALF, bronchoalveolar lavage fluid; 
COPD, Chronic obstructive pulmonary disease; DE, differentially expressed; EVs, extracellular vesicles; 
FDR, false discovery rate; H-ES, healthy ex-smoker; miRNA, microRNA; mRNA, messenger RNA 

5.2.3.1 Identification of the up-regulated EV miRNA gene targets in epithelial brushings  

The multiMiR package identified 54 gene targets of the five EV miRNA up-regulated in COPD when 

considering both validated and the top 20% predicted targets. Of these, 16 had been 

experimentally validated and 38 were predicted targets, summarised in Table 5.3. All of the 

validated targets had been identified using high-throughput methods, such as high-throughput 

sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP). Seven of the target 

genes (Pleomorphic adenoma gene 1 (PLAG1), Kruppel Like Factor 10 (KLF10), GLI Family Zinc 

Finger 3 (GLI3), Inhibitor Of Growth Family Member 1 (ING1), FXYD Domain Containing Ion 

Transport Regulator 6 (FXYD6), Cysteine Rich Transmembrane BMP Regulator 1 (CRIM1), F-Box 

And Leucine Rich Repeat Protein 14 (FBXL14)), were co-regulated by different up-regulated 

miRNA in COPD suggesting synergistic action.  
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Table 5.3  Gene targets of the up-regulated EV miRNA in COPD, identified as down-regulated 

within the epithelial brushing transcriptome in COPD  

 miRNA Gene Target*  ENSEMBL ID Method of validation Source database 

Validated targets 

hsa-miR-200b-5p PLAG1 ENSG00000181690 HITS-CLIP mirtarbase (477) 

hsa-miR-200b-5p KLF10 ENSG00000155090 HITS-CLIP mirtarbase 

hsa-miR-182-5p THSD7A ENSG00000005108 Degradome sequencing tarbase (478) 

hsa-miR-182-5p JADE1 ENSG00000077684 Degradome sequencing tarbase 

hsa-miR-182-5p GLI3 ENSG00000106571 Degradome sequencing tarbase 

hsa-miR-182-5p SLC19A2 ENSG00000117479 Degradome sequencing tarbase 

hsa-miR-182-5p C3 ENSG00000125730 Degradome sequencing tarbase 

hsa-miR-182-5p CILP ENSG00000138615 Degradome sequencing tarbase 

hsa-miR-182-5p HOMER1 ENSG00000152413 Degradome sequencing tarbase 

hsa-miR-182-5p ING1 ENSG00000153487 Degradome sequencing tarbase 

hsa-miR-182-5p KLF10 ENSG00000155090 Degradome sequencing tarbase 

hsa-miR-182-5p SRGAP2C ENSG00000171943 Degradome sequencing tarbase 

hsa-miR-182-5p HEG1 ENSG00000173706 Degradome sequencing tarbase 

hsa-miR-182-5p DPY19L3 ENSG00000178904 Degradome sequencing tarbase 

hsa-miR-182-5p PLAG1 ENSG00000181690 Degradome sequencing tarbase 

hsa-miR-182-5p ZDBF2 ENSG00000204186 Degradome sequencing tarbase 

Predicted targets 

hsa-miR-182-5p SCUBE3 ENSG00000146197 NA diana_microt (479) 

hsa-miR-182-5p PIEZO2 ENSG00000154864 NA diana_microt 

hsa-miR-182-5p NPR3 ENSG00000113389 NA diana_microt 

hsa-miR-182-5p PCDH17 ENSG00000118946 NA diana_microt 

hsa-miR-182-5p SIK2 ENSG00000170145 NA diana_microt 

hsa-miR-182-5p CDKN1C ENSG00000129757 NA diana_microt 

hsa-miR-182-5p PER2 ENSG00000132326 NA diana_microt 

hsa-miR-182-5p ATOH8 ENSG00000168874 NA diana_microt 

hsa-miR-182-5p FAM69B ENSG00000165716 NA elmmo (480) 

hsa-miR-182-5p SCNN1G ENSG00000166828 NA elmmo 

hsa-miR-182-5p NEURL1B ENSG00000214357 NA elmmo 

hsa-miR-182-5p FLNB ENSG00000136068 NA elmmo 

hsa-miR-182-5p LRIG1 ENSG00000144749 NA miranda (481) 

hsa-miR-182-5p FZD8 ENSG00000177283 NA miranda 

hsa-miR-182-5p ARHGAP6 ENSG00000047648 NA mirdb (482) 

hsa-miR-182-5p TLL1 ENSG00000038295 NA mirdb 
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 miRNA Gene Target*  ENSEMBL ID Method of validation Source database 

hsa-miR-182-5p FXYD6 ENSG00000137726 NA pita (483) 

hsa-miR-182-5p CRIM1 ENSG00000150938 NA pita 

hsa-miR-182-5p TOB1 ENSG00000141232 NA targetscan (303) 

hsa-miR-200b-5p PRDM11 ENSG00000019485 NA diana_microt 

hsa-miR-200b-5p CD34 ENSG00000174059 NA miranda 

hsa-miR-200b-5p CRIM1 ENSG00000150938 NA miranda 

hsa-miR-2110 FBXL14 ENSG00000171823 NA diana_microt 

hsa-miR-2110 ATP6V1B1 ENSG00000116039 NA diana_microt 

hsa-miR-2110 SNTB1 ENSG00000172164 NA diana_microt 

hsa-miR-2110 ING1 ENSG00000153487 NA diana_microt 

hsa-miR-2110 FXYD6 ENSG00000137726 NA diana_microt 

hsa-miR-2110 TSPAN11 ENSG00000110900 NA diana_microt 

hsa-miR-2110 INSR ENSG00000171105 NA diana_microt 

hsa-miR-2110 FZD8 ENSG00000177283 NA diana_microt 

hsa-miR-2110 SUSD2 ENSG00000099994 NA mirdb 

hsa-miR-223-3p FAM46A ENSG00000112773 NA diana_microt 

hsa-miR-223-3p CRIM1 ENSG00000150938 NA diana_microt 

hsa-miR-223-3p FBXL14 ENSG00000171823 NA diana_microt 

hsa-miR-223-3p GLI3 ENSG00000106571 NA diana_microt 

hsa-miR-223-3p ADAMTS15 ENSG00000166106 NA diana_microt 

hsa-miR-223-3p ACTR3B ENSG00000133627 NA pita 

hsa-miR-625-3p TBC1D3C ENSG00000278299 NA diana_microt 

*Gene target in bold if co-regulated by more than one EV miRNA. miRNA target databases referenced in table. HITS-
CLIP, high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation; NA, non-applicable as a 
predicted target. 

Only two of the five up-regulated EV miRNA (miR-182-5p and miR-200b-5p) had targets identified 

within the significantly down-regulated genes in epithelial brushings that had been validated in 

experimental models. Overall miR-182-5p was found to target the most genes with 33, compared 

with miR-2110 with nine gene targets, mir-200b-5p with five targets, miR-223-3p with six targets, 

and miR-625-5p with just one identified gene target. 

5.2.3.2 Identification of the down-regulated EV miRNA gene targets in epithelial brushings. 

The multiMiR package identified 53 gene targets in the epithelial brushing transcriptome of the 

three EV miRNA down-regulated in COPD when considering both validated and top 20% of 

predicted targets. Of these, 22 had been experimentally validated and 31 were predicted targets, 

summarised in Table 5.4. In this instance, some of the validated targets were confirmed by low 
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throughput techniques such as real-time quantitative polymerase chain reaction (RT-qPCR) (c.f. 

section 5.2.3.1), which are considered to have greater specificity than high-throughput platforms. 

Six of the target genes (Solute Carrier Family 45 Member 3 (SLC45A3), CD44 molecule (CD44), 

Aldo-Keto Reductase Family 1 Member C2 (AKR1C2), Brain-derived neurotrophic factor (BDNF), 

Cyclic AMP-Responsive Element-binding Protein 5 (CREB5), Solute Carrier Family 39 Member 14 

(SLC39A14), BTB Domain containing 7 (BTBD7)) were co-regulated by different down-regulated EV 

miRNA in COPD suggesting synergistic action. 

 

Table 5.4  Gene targets of the down-regulated EV miRNA in COPD, identified as up-regulated in 
the epithelial brushing transcriptome in COPD 

miRNA Gene Target* ENSEMBL ID Method of validation Source database 

Validated targets 

hsa-miR-138-5p SLC45A3 ENSG00000158715 WB mirtarbase (477) 

hsa-miR-138-5p CD44 ENSG00000026508 Degradome sequencing tarbase (478) 

hsa-miR-138-5p CDC45 ENSG00000093009 Degradome sequencing tarbase 

hsa-miR-138-5p FGFBP1 ENSG00000137440 Degradome sequencing tarbase 

hsa-miR-138-5p CYP1B1 ENSG00000138061 Degradome sequencing tarbase 

hsa-miR-138-5p PHLDA1 ENSG00000139289 Degradome sequencing tarbase 

hsa-miR-138-5p MKI67 ENSG00000148773 Degradome sequencing tarbase 

hsa-miR-138-5p AKR1C2 ENSG00000151632 Degradome sequencing tarbase 

hsa-miR-138-5p CABYR ENSG00000154040 Degradome sequencing tarbase 

hsa-miR-138-5p PTTG1 ENSG00000164611 Degradome sequencing tarbase 

hsa-miR-138-5p AKR1B10 ENSG00000198074 Degradome sequencing tarbase 

hsa-miR-204-5p ARNTL2 ENSG00000029153 PAR-CLIP mirtarbase 

hsa-miR-204-5p BDNF ENSG00000176697 IF/RT-PCR/WB mirtarbase 

hsa-miR-204-5p CD44 ENSG00000026508 HITS-CLIP mirtarbase 

hsa-miR-204-5p CREB5 ENSG00000146592 IF/Microarray/RT-PCR/WB mirtarbase 

hsa-miR-204-5p KCNK6 ENSG00000099337 HITS-CLIP mirtarbase 

hsa-miR-204-5p MDFI ENSG00000112559 HITS-CLIP mirtarbase 

hsa-miR-204-5p PLAT ENSG00000104368 Microarray mirtarbase 

hsa-miR-338-3p SLC39A14 ENSG00000104635 Degradome sequencing tarbase 

hsa-miR-338-3p FAM49B ENSG00000153310 Degradome sequencing tarbase 

hsa-miR-338-3p TUBA1C ENSG00000167553 Degradome sequencing tarbase 

Predicted targets 

hsa-miR-138-5p BTBD7 ENSG00000011114 NA diana_microt (479) 

hsa-miR-138-5p C12orf36 ENSG00000180861 NA diana_microt 
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miRNA Gene Target* ENSEMBL ID Method of validation Source database 

hsa-miR-138-5p SCN2A ENSG00000136531 NA elmmo (481) 

hsa-miR-138-5p CREB5 ENSG00000146592 NA elmmo 

hsa-miR-138-5p BDNF ENSG00000176697 NA pita (483) 

hsa-miR-138-5p C15orf37 ENSG00000259642 NA pita 

hsa-miR-138-5p CYP3A5 ENSG00000106258 NA targetscan 

hsa-miR-204-5p BTBD7 ENSG00000011114 NA elmmo 

hsa-miR-204-5p CA12 ENSG00000074410 NA elmmo 

hsa-miR-204-5p CHST15 ENSG00000182022 NA elmmo 

hsa-miR-204-5p CLEC5A ENSG00000258227 NA elmmo 

hsa-miR-204-5p CLIP4 ENSG00000115295 NA elmmo 

hsa-miR-204-5p CYP1B1 ENSG00000138061 NA elmmo 

hsa-miR-204-5p DSG3 ENSG00000134757 NA diana_microt 

hsa-miR-204-5p MKI67 ENSG00000148773 NA elmmo 

hsa-miR-204-5p RHBDL2 ENSG00000158315 NA elmmo 

hsa-miR-204-5p SCN2A ENSG00000136531 NA diana_microt 

hsa-miR-204-5p SLC39A14 ENSG00000104635 NA elmmo 

hsa-miR-204-5p SLC45A3 ENSG00000158715 NA elmmo 

hsa-miR-204-5p SLC7A11 ENSG00000151012 NA elmmo 

hsa-miR-338-3p KIAA1199 ENSG00000103888 NA diana_microt 

hsa-miR-338-3p ADAMDEC1 ENSG00000134028 NA diana_microt 

hsa-miR-338-3p RASAL1 ENSG00000111344 NA diana_microt 

hsa-miR-338-3p BTBD7 ENSG00000011114 NA diana_microt 

hsa-miR-338-3p SYT8 ENSG00000149043 NA diana_microt 

hsa-miR-338-3p CCL22 ENSG00000102962 NA diana_microt 

hsa-miR-338-3p COL17A1 ENSG00000065618 NA microcosm(484) 

hsa-miR-338-3p AKR1C2 ENSG00000151632 NA microcosm 

hsa-miR-338-3p LILRB2 ENSG00000131042 NA microcosm 
*Gene target in bold if co-regulated by more than one EV miRNA. miRNA target databases referenced in table. HITS-
CLIP, high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation; IF, Immunofluorescence; NA, 
non-applicable as a predicted target; PAR-CLIP, photoactivatable ribonucleoside-enhanced crosslinking and 
immunoprecipitation; RT-qPCR, Real time quantitative polymerase chain reaction; WB, Western blotting; 

Compared with the up-regulated EV miRNA, all three down-regulated EV miRNA were found to 

have validated targets within the significantly up-regulated gene targets identified in COPD 

epithelial brushings. Overall, miR-138-5p had the greatest number of targets with 21, followed by 

miR-204-5p with 20 and miR-338-3p with 12 gene targets identified in the up-regulated genes in 

epithelial brushings transcriptome in COPD. 
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Together these 107 putative miRNA-mRNA interactions (54 gene targets of the five up-regulated 

EV miRNA and 53 gene targets of the three down-regulated EV miRNA) formed the “miRNA-

mRNA interaction matrix” that was used for the miRNA-mRNA interaction analysis in the next 

section. 

5.2.4 miRNA-mRNA interaction analysis 

There is no gold standard method for integrative analysis of miRNA and mRNA expression data. 

Therefore, a number of different approaches were used to explore and understand the 

interactions between the differentially expressed lung EV miRNA and mRNA from epithelial 

brushings in COPD (summarised in Figure 5.3) (394-396, 399-401, 403, 404). The results of each of 

these approaches will be covered in this section, with the ultimate aim of determining those 

interactions, which require further investigation and potential validation in disease specific 

biological models. 

 
Figure 5.3  Summary of miRNA-mRNA interaction analyses performed in this thesis. 

Blue rectangle indicates a process with the software/tool specified in parenthesis, grey trapezium 
indicate a data output, yellow diamond is an important checkpoint. 

5.2.4.1 Pairwise correlations between dysregulated miRNA and mRNA 

Pairwise correlations were used to analyse the relationship between the eight differentially 

expressed EV miRNA and 196 differentially expressed genes from the epithelial brushings.  

In this analysis, a valid miRNA-mRNA interaction was reported based on the following conditions: 

I. only significantly (i.e. FDR <0.05) differentially expressed miRNA and mRNA in COPD were 

considered for analysis. 

II. miRNA normalised expression significantly correlated with normalised gene expression 

(i.e. FDR <0.05). 
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III. directions of effect sizes of miRNA and gene on COPD were consistent with that from the 

pairwise correlation analysis. 

A total of 302 pairs were identified were identified by Pearson correlation test with P <0.05, of 

those 141 had an FDR of <0.05. Of these, 85 showed negative correlations implying miRNA 

regulation of mRNA (summarised in Figure 5.4). Comparison of these 85 miRNA-mRNA pairs with 

the results from the in silico target prediction (section 5.2.1) revealed 13 known target pairs, 

defined as “direct” interactions (Table 5.5) and 72 unknown pairs defined as “indirect” 

interactions (Appendix A, Supplementary Table 2). 

 

 
Figure 5.4  Summary of pairwise correlation analyses to identify mRNA targets of miRNA 
Direct interaction = known validated or predicted gene target of miRNA; Indirect interaction = unknown gene target of 
miRNA. miRNA, microRNA; FDR, false discovery rate  
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Table 5.5  “Direct” miRNA-mRNA interactions from pairwise correlation analyses 

miRNA HGNC 
SYMBOL 

Log2FC Validated/ 
Predicted 

r P value FDR 

Up-regulated miRNA 

hsa-miR-182-5p JADE1 -0.27 Validated -0.52 0.0003 0.002 

hsa-miR-182-5p PIEZO2 -1.06 Predicted -0.42 0.005 0.02 

hsa-miR-223-3p ACTR3B -0.26 Predicted -0.39 0.008 0.02 

hsa-miR-182-5p ZDBF2 -0.29 Validated -0.39 0.008 0.02 

hsa-miR-182-5p PLAG1 -0.46 Validated -0.38 0.01 0.03 

hsa-miR-182-5p ARHGAP6 -0.47 Predicted -0.38 0.009 0.03 
Down-regulated miRNA 

hsa-miR-138-5p AKR1C2 0.88 Validated -0.46 0.002 0.009 

hsa-miR-338-3p AKR1C2 0.88 Predicted -0.44 0.003 0.01 

hsa-miR-338-3p CEMIP 1.42 Predicted -0.4 0.007 0.02 

hsa-miR-338-3p COL17A1 1.21 Predicted -0.4 0.008 0.03 

hsa-miR-338-3p RASAL1 0.94 Predicted -0.37 0.01 0.04 

hsa-miR-138-5p CYP1B1 1.83 Validated* -0.37 0.01 0.04 

hsa-miR-338-3p ADAMDEC1 0.009 Predicted -0.36 0.02 0.046 
*Also a predicted target for miR-204-5p. r – generated using Pearson’s correlation coefficient. FDR, false discovery rate 
generated using the Benjamini-Hochberg method, with significance <0.05 

Only two of the up-regulated miRNA (miR-182-5p and mIR-223-3p) were found to have 

“direct”/known gene target interactions based on the pairwise correlative analysis. Of these direct 

interactions, miR-182-5p showed a moderate correlation with both Jade family PHD finger 1 

(JADE1) (r = -0.52, FDR = 0.002) and Piezo Type Mechanosensitive Ion Channel Component 2 

(PIEZO2) (r = -0.42, FDR = 0.02), whereas the rest of the up-regulated miRNA demonstrated only 

weak correlations with their direct targets. Of the down-regulated mRNA, miR-138-5p and miR-

338-3p showed a moderate correlation with AKR1C2 (r = -0.46, FDR = 0.009; r = -0.44, FDR = 0.01 

respectively), suggesting synergistic action. In addition, miR-338-3p showed a moderate 

correlation with Cell migration inducing hyaluronidase (CEMIP) (r = -0.4, FDR = 0.02), whereas the 

rest of the down-regulated miRNA-mRNA pairs demonstrated only weak correlations. The 

“indirect” interactions (summarised in Appendix A, Supplementary Table 2) showed several 

moderate correlations, however these may be considered to be less reliable as they were not 

found in the target prediction databases.  
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5.2.4.2 Identifying the dominant miRNAs of the miRNA-mRNA interactions using 

miRMapper 

The most relevant miRNAs in a cellular context are not necessarily those with the greatest change 

in expression levels between healthy and diseased tissue. Differentially expressed miRNAs that 

modulate a large number of mRNA transcripts ultimately have a greater influence in determining 

phenotypic outcomes and are sometimes considered more important than miRNA that modulate 

just a few mRNA transcripts.  

Using the 107 miRNA-mRNA interactions (54 between up-regulated miRNA and down-regulated 

mRNA and 53 between down-regulated miRNA and up-regulated mRNA) generated by the 

analysis in section 5.2.3; and the 196 differentially expressed mRNA identified in section 5.2.2, the 

mirMapper package was used to identify the dominant miRNA in the miRNA-mRNAs interaction 

network. 

5.2.4.2.1 Adjacency matrix to determine gene targets with the greatest centrality 

Firstly, an adjacency matrix was produced, which organises the data for downstream analysis and 

defines the gene targets with the greatest degree centrality (the number of edges and so in this 

example regulatory miRNAs) in the miRNA-mRNA interaction network (Table 5.6). 
 

Table 5.6  Adjacency matrix for the gene targets with the greatest degree centrality 
Gene miR-

2110 
miR-

223-3p 
miR-

182-5p 
miR-

625-3p 
miR-

200b-5p 
miR-

138-5p 
miR-

204-5p 
miR-

338-3p 
sums 

CRIM1 0 1 1 0 1 0 0 0 3 

BTBD7 0 0 0 0 0 1 1 1 3 

GLI3 0 1 1 0 0 0 0 0 2 

ING1 1 0 1 0 0 0 0 0 2 

KLF10 0 0 1 0 1 0 0 0 2 

PLAG1 0 0 1 0 1 0 0 0 2 

FXYD6 1 0 1 0 0 0 0 0 2 

FBXL14 1 1 0 0 0 0 0 0 2 

FZD8 1 0 1 0 0 0 0 0 2 

SLC45A3 0 0 0 0 0 1 1 0 2 

0 = not a gene target of the specified miRNA; 1 = known gene target of the specified miRNA 

In the epithelial brushings, the genes CRIM1 and BTBD7 have the greatest degree centrality in the 

miRNA-mRNA interaction network, with three regulatory miRNAs in each case (miR-223-3p, miR-

182-5p and miR-200b-5p target CRIM1 and miR138-5p, miR-204-5p and miR-338-3p target 

BTBD7). Interestingly, both CRIM1 and BTBD7 had relatively small differential expression in the 
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epithelial brushings in COPD (Appendix A, Supplementary Table 1 log2FC = -0.39, FDR = 0.01 and 

log2FC = 0.00044, FDR 0.006 respectively). In contrast, both the most down-regulated gene 

transcript in COPD (atrial Natriuretic Peptide Receptor 3 (NPR3), log2FC = -2.34, FDR = 0.01) and 

the most up-regulated gene transcript in COPD (Aldo-Keto Reductase Family 1 Member B10 

(AKR1B10), log2FC =2.03, FDR < 0.00001) identified as a miRNA target had a degree centrality of 1, 

with just one miRNA target each (miR-182-5p and miR-138-5p respectively).  

5.2.4.2.2 miRNA impact on gene expression in epithelial brushings 

The adjacency matrix is also used as input to define the degree centrality of the miRNA itself, 

shown in Table 5.7 and in Figure 5.5. 

 

Table 5.7  miRNA impact on the differential gene expression  
miRNA Predicted genes 

identified 
Percentage of gene 
targets 

Percentage of differentially 
expressed genes 

hsa-miR-182-5p 33 39.3 16.8 

hsa-miR-204-5p 20 23.8 10.2 

hsa-miR-138-5p 18 21.4 9.2 

hsa-miR-338-3p 12 14.3 6.1 

hsa-miR-2110 9 10.7 4.6 

hsa-miR-223-3p 6 7.1 3.1 

hsa-miR-200b-5p 5 6.0 2.6 

hsa-miR-625-3p 1 1.2 0.5 

 

Although miR-223-3p was shown to be the most up-regulated miRNA in lung-derived EVs in COPD, 

(log2FC = 2.97, FDR = 0.02, Table 4.7), it appears to have only a small effect on the gene targets 

identified, impacting only 3.1% of all the differentially expressed genes and regulating only 7.1% 

of all genes targeted by the miRNA. However miR-182-5p, with a linear expression nearly three 

times smaller than miR-223-3p (log2FC = 1.52, FDR = 0.04, Table 4.7), has the greatest number of 

targets, impacting on 16.8% of all the differentially expressed genes and regulating 39.3% of all 

the genes targeted by a miRNA in the dataset (Table 5.7 & Figure 5.5). 
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Figure 5.5  Predicted miRNA impact on genes.  

Data are presented in the order of the greatest number of impacted genes to the lowest, with 
percentage of total targets affected by the miRNA in red and the percentage of total differentially 
expressed genes affected by the miRNA in blue. 

5.2.4.2.3 Identification of synergistic miRNA action on differential gene expression 

The mirMapper package also identifies those miRNA that are working synergistically (Figure 5.6), 

which is important as it is normally the action of more than one miRNA on a gene target to cause 

a significant impact on transcript levels (485). As shown in the dendrogram (Figure 5.6), miR-204-

5p and miR-138-5p are represented in a single clade (branch of a dendrogram), with the shortest 

branch points indicating the greatest similarity based on the miRNAs’ Jaccard similarity index (a 

statistical measure of similarity for two sets of data (486). These two down-regulated miRNA 

belong to two distinct miRNA clusters (487) and therefore it is not possible to infer synergistic 

action from their sequence analysis alone. The two up-regulated miRNA, miR-223-3p and miR-

200b-5p are also present in a single clade, but have a longer branch point indicating less similarity 

than miR-204-5p and miR-138-5p. In addition, miR-625-3p is represented as a single leaf (terminal 

end of a clade) of a clade demonstrating no similarity to the other differentially expressed miRNA. 
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Figure 5.6  Dendrogram showing clustering of differentially expressed EV miRNA based on the 

similarity of the miRNAs' Jaccard index values to each other 

5.3 miRNA-mRNA interaction network topology 

The 107 miRNA-mRNA interactions were mapped and visualised in a network using a programme 

Cytoscape. The network of the up-regulated miRNA and their down-regulated gene targets are 

shown in Figure 5.7 and the network of the down-regulated miRNA and their up-regulated gene 

targets are shown in Figure 5.8. These networks display a summary of the findings from the 

analysis so far in this chapter, with the following attributes: 

I. The circular nodes correspond to the differentially expressed genes identified in section 

5.2.2. The size of the node is proportional to the differential expression (log2FC) in COPD, 

i.e. for the up-regulated miRNA network, the larger the node, the more down-regulated 

the gene was in COPD epithelial brushings. 

II. The edges represent an interaction between a miRNA and mRNA. If the edge is a solid 

line, this represents a validated mRNA target, whereas a dotted line represents a 

predicted mRNA target (both of these would be considered “direct” interactions from the 

correlation analysis in section 5.2.4.1). 

III. The nodes coloured in orange are those identified as significant (FDR<0.05) from the 

correlative analysis (section 5.2.4.1). 
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IV. The nodes coloured purple are those mRNA regulated by more than one miRNA and 

therefore have a degree centrality >1 (identified in section 5.2.3 & 5.2.4.2.1). 

V. The nodes coloured yellow satisfy both iii. and iv. and therefore may be of greater 

significance. 

 
Figure 5.7 Up-regulated EV miRNA- mRNA interaction network in epithelial brushings in COPD 

Red triangular nodes correspond to up-regulated EV miRNA in COPD, circular nodes correspond to 
down-regulated genes in COPD, these are coloured according to significance, with purple nodes showing 
a degree centrality >1, orange nodes identified as significant interactions from the Pearson correlation 
analysis, yellow nodes showing both attributes and blue nodes showing neither. The size of the circular 
node is proportional to the differential expression in COPD (i.e. the bigger the circle, the more down 
regulated it is in COPD). The edges are solid if the genes are validated targets of the miRNA and dotted if 
predicted targets 

The miRNA with the highest node degree (number of edge incidents to the node) and the 

highest betweenness centrality (indicator of a node’s centrality in a network) is miR-182-5p 

(Figure 5.7). This reinforces the results presented in section 5.2.4.2.2, which demonstrated 

miR-182-5p has the greatest number of targets, impacting on 16.8% of all the differentially 

expressed genes. Whereas, miR-625-3p has only one gene target, TBC1 Domain Family 

Member 3C (TBC1D3C), and is separate from the rest of the network, suggesting this EV 
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miRNA has the least regulatory effect on the differentially expressed genes and the network 

as a whole. Interestingly, the genes with the greatest differential expression levels (largest 

circles) such as NPR3, Tolloid-like 1 (TLL1), Sushi domain containing 2 (SUSD2), PIEZO2 and 

CD34 molecule (CD34) are not co-targeted by any of the up-regulated miRNA. In addition, 

with the exception of PIEZO2 (r = -0.42, FDR = 0.02), they were not significant in the pairwise 

correlation analysis (section 5.2.4.1). 

 
Figure 5.8 Down regulated EV miRNA-mRNA interaction network in epithelial brushings in COPD 

Green triangular nodes correspond to down-regulated EV miRNA in COPD, circular nodes correspond to 
up-regulated genes in COPD. These are coloured according to significance, with purple nodes showing a 
degree centrality >1, orange nodes identified as significant interactions from the Pearson correlation 
analysis, yellow nodes showing both attributes and blue nodes showing neither. The size of the circular 
node is proportional to the differential expression in COPD (i.e. the bigger the circle, the more up 
regulated it is in COPD). The edges are solid if the genes are validated targets of the miRNA and dotted if 
predicted targets. 

In the down-regulated EV miRNA-mRNA interaction network (Figure 5.8), miR-204-5p showed the 

highest node degree (20 gene targets) and the highest betweenness centrality, indicating it may 

be the most important miRNA in the network. All three down-regulated EV miRNA demonstrate 

possible synergistic activity with several co-targeted genes. In particular, Cytochrome P450 1B1  

(CYP1B1) (one of the most up-regulated genes in the network, log2FC = 1.83, FDR = 0.02) is 

targeted by both miR-138-5p and miR-204-5p, and CYP1B1 gene expression negatively correlated 
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with expression of miR-138-5p (r = -0.37, FDR = 0.04, Table 5.5). In addition, AKR1C2 (log2FC = 0.9, 

FDR = 0.01) is targeted by both miR-138-5p and miR-338-3p, and AKR1C2 gene expression 

negatively correlated with both expression of miR-138-5p and miR-338-3p (r = -0.46, FDR = 0.009 

and r = -0.44, FDR = 0.01 respectively). This synergism suggests coordinated activity by the down-

regulated EV miRNA and may lead to a greater impact on post-transcriptional gene expression 

and further downstream pathway effects. 

5.3.1 Cluster analysis of networks 

Usually in biological networks, the nodes that work together (i.e. play a role in the same 

pathway), are highly interconnected. These interconnected nodes or clusters may represent an 

important cellular module. These nodes can be identified by visual exploration of the network. 

The tool ClusterViz within Cytoscape was used to analyse the miRNA-mRNA network using the 

EAGLE clustering algorithm to identify key clusters/modules within the network. This approach 

identified five major sub-networks (Figure 5.9).  

 
Figure 5.9  Cluster analysis of miRNA-mRNA interaction network 
Each colour represents a cluster: Cluster 1 (purple), Cluster 2 (Pink), Cluster 3 (Green), Cluster 4 (Orange), Cluster 5 
(Blue). Triangular nodes represent differentially expressed EV miRNA. Circular nodes represent differentially expressed 
gene targets in epithelial brushings. 

The attributes of these five clusters are summarised below Table 5.8. The largest cluster (Cluster 1 

- purple) involving two down-regulated EV miRNA (miR-204-5p and miR-138-5p) encompassed 30 

nodes, with an in-degree (number of edges within the cluster) centrality of 36, and the highest 
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modularity of 12. This supported the findings of the miRMapper analysis (section 5.2.4.3.2), which 

used a different method (similarity of miRNAs’ Jaccard’s index values) to determine miRNA 

synergism, and showed that miR-138-5p and miR-204-5p were the most similar of the 

differentially expressed miRNA (Figure 5.5). Cluster 2 (pink) involving only miR-182-5p, contained 

27 nodes and the greatest out-degree (number of edges outside the cluster) centrality (Table 5.8). 

The smallest cluster (Cluster 5 – blue) involved two up-regulated miRNA (miR-2110 and miR-625-

3p) that did not interconnect and had the lowest modularity of 2.25. As mentioned previously, 

miR-625-3p is likely to be of least importance to the network as a whole with only one interaction 

(edge) and no shared targets. Whereas, miR-204-5p, miR-138-5p and miR-182-5p are the most 

central miRNAs to the network and therefore likely to have more biological significance. 

 

Table 5.8  Attributes of the five clusters identified from the miRNA-mRNA network cluster 
analysis 

 miRNA Number 
of nodes 

Number of 
edges inside 
the cluster (In-
degree) 

Modularity Number of 
edges outside 
the cluster (Out-
Degree) 

Cluster 1 
(Purple) 

miR-204-5p, miR-138-5p 30 36 12 3 

Cluster 2 
(Pink) 

miR-182-5p 27 26 3.71 7 

Cluster 3 
(Green) 

miR-338-3p 12 11 3.67 3 

Cluster 4 
(Orange) 

miR-200b-5p, miR-223-3p 12 11 2.2 5 

Cluster 5 
(Blue) 

miR-2110, miR-625-3p 11 9 2.25 4 
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5.4 Gene Ontology Enrichment Analysis 

To identify the key biological processes, molecular functions and pathways, which the identified 

miRNA-mRNA interactions are involved in, Gene Ontology (GO) enrichment analysis was 

performed using the Biological Networks Gene Ontology tool (BiNGO) within Cytoscape. BiNGO 

identifies the GO categories that are statistically overrepresented in a set of genes or a sub-graph 

of a biological network. BiNGO maps the predominant functional themes of a given gene set on 

the GO hierarchy and outputs this mapping as a Cytoscape graph. From this analysis, the intention 

is to prioritise one or a few gene targets to perform functional studies for their interaction 

validation. 

5.4.1 Gene ontology enrichment analysis for GO: biological process 

In this analysis the BiNGO output was generated using the hypergeometric statistical test followed 

by an FDR correction (<0.05) for overrepresentation of the target genes against the 

GO_biological_process dataset. This output was used to generate an enrichment map using a p 

value < 0.01 (Figure 5.10). 
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Legend
0.001 > p > 0.05

 
Figure 5.10  Enrichment Map from BiNGO output with most significant GO terms for biological process and their interactions.  

Circles represent GO: biological process, with a darker red colour corresponding to increasing significance. Edges in blue represent an interaction between biological processes. 
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Although this analysis identified several significant (p<0.01) GO: biological processes for the 

miRNA-mRNA network, none passed the FDR <0.05 threshold. This is likely due to the interaction 

network being small and only involving 107 target genes. The most significant GO terms for GO: 

biological processes are summarised in Table 5.9. These include several GO terms relating to 

regulation of phospholipase activity, which mapped to the following target genes NPR3, Homer 

scaffold protein 1 (HOMER1) and Rho GTPase activating protein 6 (ARHGAP6). 

 

Table 5.9  Most significant GO terms generated from BiNGO output for GO biological process 
GO ID Description # Genes Mapped Genes P value FDR 
GO:7588 Excretion 3 SCNN1G|NPR3|ATP6V1B1 0.0002 0.08 
GO:7202 Activation of 

phospholipase c activity 
3 NPR3|HOMER1|ARHGAP6 0.0003 0.08 

GO:10863 Positive regulation of 
phospholipase c activity 

3 NPR3|HOMER1|ARHGAP6 0.0003 0.08 

GO:60193 Positive regulation of 
phospholipase activity 

3 NPR3|HOMER1|ARHGAP6 0.0004 0.08 

GO:10517 Regulation of 
phospholipase activity 

3 NPR3|HOMER1|ARHGAP6 0.0005 0.08 

GO:60193 Positive regulation of 
lipase activity 

3 NPR3|HOMER1|ARHGAP6 0.0005 0.08 

GO:1501 Skeletal system 
development 

5 NPR3|ATP6V1B1|KLF10| 
TLL1|GLI3 

0.0007 0.09 

GO:60191 Regulation of lipase 
activity 

3 NPR3|HOMER1|ARHGAP6 0.001 0.09 

GO:32583 Regulation of gene-
specific transcription 

4 GLI3|CDKN1C|PER2|INSR 0.001 0.09 

GO:48731 System development 13 NPR3|ATP6V1B1|HOMER1| 
KLF10|TLL1|GLI3|CDKN1C| 
INSR|PLAG1|CRIM1|FZD8| 
ATOH8|FLNB 

0.001 0.09 

FDR, False discovery rate; GO, Gene ontology 

5.4.2 Gene ontology enrichment analysis for GO: molecular function 

In this analysis, the BiNGO output was generated using the hypergeometric statistical test 

followed by an FDR correction (<0.05) for overrepresentation of the target genes against the 

GO_molecular function dataset. This output was used to generate an enrichment map using a p 

value < 0.01 (Figure 5.11). 
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Legend
0.001 > p > 0.05

Legend
0.001 > p > 0.05

  
 Figure 5.11  Enrichment Map from BiNGO output with most significant GO terms for molecular function and their interactions.  

Circles represent GO: molecular functions, with a darker red colour corresponding to increasing significance. Edges in blue represent an interaction between molecular functions. 
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Again, although this analysis identified several significant (p<0.01) GO: molecular function terms 

for this miRNA-mRNA network, however none passed the FDR <0.05 threshold. The most 

significant GO terms for GO molecular function are summarised in Table 5.10. These include 

several GO terms relating to regulation of hormone activity, with the following mapped genes 

Insulin receptor (INSR), CRIM1 and NPR3. 

 

Table 5.10  Most significant GO terms generated from BiNGO output for GO molecular function 
GO ID Description # Genes Mapped Genes P value FDR 
GO:5200 Insulin-like growth 

factor binding 
2 INSR|CRIM1 0.001 0.1 

GO:17046 Peptide hormone 
binding 

2 INSR|NPR3 0.002 0.1 

GO:5009 Insulin receptor activity 1 INSR 0.002 0.1 
GO:15234 Thiamine 

transmembrane 
transporter activity 

1 SLC19A2 0.002 0.1 

GO:43423 3-phosphoinositide-
dependent protein 
kinase binding 

1 INSR 0.005 0.1 

GO:5070 Sh3/sh2 adaptor 
activity 

2 ARHGAP6|TOB1 0.006 0.1 

GO:42562 Hormone binding 2 INSR|NPR3 0.007 0.1 
GO:51425 Ptb domain binding 1 INSR 0.007 0.1 
GO:16941 Natriuretic peptide 

receptor activity 
1 NPR3 0.007 0.1 

GO:16004 Phospholipase activator 
activity 

1 ARHGAP6 0.009 0.1 

FDR, False discovery rate; GO, Gene ontology 
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5.5 Discussion 

Chapter 5 presents the findings of EV miRNA gene target identification, differential expression 

analysis of the epithelial brushing transcriptome in paired samples, and the interactions of the 

differentially expressed lung EV miRNA with the differentially expressed genes in these epithelial 

brushings. The chapter explores these miRNA-mRNA interactions further to identify key pathways 

and biological processes under miRNA regulation that may be pertinent to COPD pathology. 

5.5.1 Identifying differentially expressed EV miRNA target genes within epithelial 

brushings 

The results of the in silico analysis identified over 21,000 target genes of the eight differentially 

expressed lung-derived EV miRNA. The majority of these genes were predicted targets (64.3%) 

rather than validated in experimental models. This distinction is important to note as miRNA 

target prediction methods mainly focus on programming alignment to identify complementary 

elements in the 3’-untranslated region (UTR) within the seed sequence of the miRNA and the 

phylogenetic conservation of the complementary sequences in the 3’-UTRs of orthologous genes. 

Although, evidence suggests that perfect seed pairing may not necessarily be a reliable predictor 

for miRNA interactions (488). Therefore experimental validation is important to endorse the 

physiological functions and clinical relevance of specific miRNA on their predicted gene targets. 

However in this study, using both predicted and validated targets for analysis may reveal both 

novel and known miRNA-mRNA interactions that could be important in COPD pathogenesis.  

A major strength of the overall MICA II study is the paired sampling approach, which 

encompassed epithelial brushings, alveolar macrophages and epithelial biopsies from the same 

patients as the lung EVs were isolated from. Epithelial brushings were chosen as a focus of miRNA 

regulation as they demonstrated the greatest differential gene expression between COPD and 

healthy ex-smokers, compared with the alveolar macrophage and epithelial biopsy samples (489). 

Furthermore, they are a key regulatory cell in COPD, not only forming a physical barrier to harmful 

pathogens and toxins, but also a coordinator of the innate immune response (98-100). In addition, 

there is clear evidence of epithelial cell compromise in COPD (94-97, 302). 

The differential expression analysis of the epithelial brushing transcriptome revealed 196 

differentially expressed genes (FDR <0.05). Nearly 40% of these had a log2FC >1/-1 demonstrating 

significant up/down regulation in COPD. Although not all of these genes were found to be 

regulated by the differentially expressed miRNA, these dysregulated genes are discussed in more 
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detail in the next section, as they may be key to mechanisms and pathways important to the 

pathophysiology in COPD. 

5.5.1.1 Up-regulated genes in COPD epithelial brushings 

Several of the up-regulated genes in the epithelial brushings have been identified previously as 

dysregulated in COPD. Fetuin B (FETUB) was the most up-regulated gene in the COPD epithelial 

brushings compared with healthy ex-smokers (Table 5.2, log2FC = 2.87, FDR = 0.01). FETUB is a 

liver-derived plasma protein (490) and has been reported to influence glucose metabolism (491). 

Raised plasma FETUB in COPD compared with controls was identified by isobaric tags for relative 

and absolute quantitation (iTRAQ)-based proteomics and validated in a second cohort by enzyme-

linked immunosorbent assay (ELISA) (492). This latter study also showed that plasma FETUB 

predicted the occurrence of acute exacerbations and levels negatively correlated with disease 

severity (FEV1 % predicted) (492). Furthermore, the EvA study identified FETUB and retinoic acid 

early transcript-1 (RAETL1) (another of the up-regulated genes in this study) as two of the top 

differentially expressed genes in epithelial brushings of patients with COPD and high blood 

eosinophil counts (>200 eosinophils/µL) (493). This suggests that FETUB and RAETL1 may play a 

role in eosinophilic COPD (to be explored further in Chapter 6). 

Additionally, other up-regulated genes in the COPD epithelial brushings included arachidonate 15-

lipoxygenase type B (ALOX15B) (Table 5.2, log2FC = 2.61, FDR = 0.008), which is a member of the 

lipoxygenase family and is involved in resolution of inflammation (494). ALOX15B is implicated in 

conditions that complicate inflammatory lung disease such as nasal polyps and chronic 

rhinosinusitis (495), and the mechanism by which roflumilast (phosphodiesterase - 4 (PDE4) 

inhibitor) works in COPD (496). The matrix metalloproteinase 12 (MMP12) gene was also 

significantly up-regulated in COPD epithelial brushings (Table 5.2, log2FC = 2.49, FDR = 0.02). 

MMP12 is considered to play a key role in the development of emphysema and small airway 

remodelling (497). Interestingly there is also published data suggested that selective inhibition of 

MMP12 might be a viable therapy for COPD (497), raising the possibility of miRNA post-

transcriptional regulation of MMP12 as a possible future therapy. Interleukin 1 receptor type 2 

(IL1R2) was also found up-regulated in COPD epithelial brushings compared with healthy ex-

smokers (Table 5.2, log2FC = 2.34, FDR = 0.0005). Baines et al. demonstrated raised IL1R2 in 

sputum of patients with COPD and that sputum IL1R2 may predict future exacerbations (498). 

Importantly, the IL1R2 gene encodes for one of the IL-1 cytokine receptors that binds IL-1β, a 

potent activator of alveolar macrophages in COPD leading to MMP-9 production (108), and thus 

together these findings further illustrate the importance of IL1R2 dysregulation in COPD. 
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5.5.1.2 Down-regulated genes in COPD epithelial brushings 

Atrial natriuretic peptide receptor 3 (NPR3) was the most down-regulated known transcript in 

COPD epithelial brushings compared with healthy ex-smokers (Table 5.2, log2FC = -2.01, FDR = 

0.0003), and has been implicated in COPD previously (499). NPR3 encodes for one of the three 

natriuretic peptide receptors, which have an essential role in the regulation of blood pressure, 

intravascular volume and electrolyte homeostasis (500). Specifically, the NPR3 receptor is 

primarily responsible for clearing circulating and extracellular natriuretic peptides (501). However, 

several studies indicate that NPR3 receptor activation may also trigger several intracellular 

signalling pathways, including cyclic adenosine monophosphate (cAMP) inhibition (501), a potent 

regulator of innate and adaptive immune cell functions, and phospholipase C signalling (502) (to 

be discussed in more detail in section 5.5.3). NPR3 can also activate mitogen-activated protein 

kinase (MAPK)/ phosphoinositide 3-kinase (PI3K) signalling pathways, which are involved in cell 

proliferation in vascular smooth muscle cells (503). Furthermore, in the context of the lung, NPR3 

gene expression is selectively down-regulated in the lungs of rats and mice in response to hypoxia 

and may enhance the vasodilator effects of atrial natriuretic peptide (ANP) in the lung, thus 

modulating hypoxic pulmonary vasoconstriction/hypertension (504). Most recently, Kachroo et al. 

showed NPR3 was differentially methylated in smoke exposed fetal lung samples (505) and NPR3 

presence (along with TLL1), another significantly down-regulated gene in this study) correlated 

with diseased parenchyma in lung biopsies (506). Furthermore, in a COPD mouse model, NPR3 

regulation was implicated in treatment responsiveness to a glucagon-like peptide (GLP)-1 agonist 

(499).  

In contrast to this study (where subjects were all ex-smokers and TLL1 was down-regulated), TLL1 

expression was found significantly up-regulated in bronchial brushes compared with nasal 

epithelium after exposure to smoke, implying that TLL1 gene expression may vary depending on 

the temporal nature of smoke exposure (507). In addition, TLL1 was found significantly 

dysregulated in subtypes of asthma (508), and importantly encodes a metalloprotease that is 

involved in degradation of the extracellular matrix suggesting a role in airway remodelling (509).  

CD34 is a protein coding gene for haemapoietic stem cells, these are found be reduced in 

peripheral blood of smokers (510) and patients with COPD (511), and are important for vascular 

endothelial repair (512). CD34 transcript was down-regulated in COPD epithelial brushings 

compared with healthy ex-smokers (Table 5.2, log2FC = -1.27, FDR = 0.02), which may suggest a 

lack of recruitment of these stem cells to the lungs in COPD, impairing tissue repair and 

regeneration. In addition, other down-regulated genes, WNK lysine deficient protein kinase 4 
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(WNK4) and SUSD2 have been identified as altered in co-methylation analysis in lung tissue in 

COPD (505). Integral membrane protein 2A (ITM2A) has previously been identified as down-

regulated in COPD lung tissue (513), whereas metallothionein 1G (MT1G) was up-regulated in the 

same study in contrast to the results of this study (Table 5.2, log2FC = -1.12, FDR = 0.012). It is 

worth noting that MT1G codes for the protein metallothionein 1 which is transcriptionally 

regulated by glucocorticoids, with increased metallothionein expression reflecting steroid 

resistance (514). 

A number of the transcripts identified from the differential expression analysis were new 

transcripts with very little literature base, such as ENSG00000287059, ENSG00000287771, 

ENSG00000198787, ENSG00000214870, ENSG00000283413. 

Overall the differentially expressed genes in the epithelial brushings in COPD revealed several 

possible (and some novel) mechanisms underlying COPD pathophysiology. Encouragingly, many of 

these dysregulated genes were already found in the COPD literature (e.g. ALOX15B, MMP12 and 

IL1R2), which increases the likelihood of their significance to underlying biology. Several of the 

genes were shown to be epigenetically modified in COPD, (NPR3, WNK4, SUSD2 modified by DNA 

methylation rather than miRNA (505)) suggesting that there may be dual epigenetic control of 

some genes related to COPD pathogenesis. Furthermore, certain genes were found to have 

implications for treatment in COPD, such as steroid resistance (e.g. MTIG) or an association with 

eosinophilic disease (e.g. FETUB). Finally the dysregulation of CD34 raised important insights into 

the role of stem cells in vascular remodelling in COPD and whether this is a key modifiable factor 

that is currently under-explored in this disease. 

5.5.2 Identifying putative miRNA-mRNA interactions 

The multiMiR package identified 107 putative interactions between the eight differentially 

expressed EV miRNA and the 196 differentially expressed genes in the COPD epithelial brushings. 

Further analysis suggested 13 of these interactions had a significant negative correlation when 

comparing their normalised expression profiles, increasing the likelihood of a meaningful 

interaction within this sample. The strongest correlation in the up-regulated EV miRNA was JADE1 

expression with miR-182-5p (Table 5.5, r = -0.52, p = 0.0003). JADE1 is a negative regulator of 

Wingless/Integrase-1 (WNT) signalling, where previous studies have suggested the shift from 

canonical to non-canonical WNT signalling in the COPD alveolar epithelium promotes emphysema 

through abnormal alveolar repair (515). JADE1 has previously been shown to be differentially 

methylated in COPD and was one of the biomarkers shown to predict future risk of COPD (516). 



Chapter 5 

 

160 

Of the down-regulated EV miRNA gene targets, AKR1C2 showed significant negative correlations 

with both miR-138-5p and miR-338-3p. This synergistic activity increases the likely biological 

impact of these interactions. The AKR1C family, including AKR1C2, code for enzymes implicated in 

steroid metabolism and their expression levels are localised in the normal tissues of the lung, 

liver, prostate, testis and mammary glands (517). Their regulation is associated with several 

cancers, however their exact mechanism in promoting tumourigenenis is not known (518). 

Furthermore, AKR1C2 has been found up-regulated in the airways of COPD and healthy smokers 

(519), in keeping with this study (Table 5.3, log2FC = 0.88, FDR = 0.01).  

The gene CEMIP was up-regulated in COPD epithelial brushings (Table 5.2, log2FC = 1.42, FDR = 

0.002) and significantly correlated with miR-338-3p (Table 5.5, r = -0.4, FDR = 0.02). CEMIP has 

been implicated in pulmonary fibrosis (520), inflammation (521) and tumorigenesis (522) and 

therefore may have a significant role in COPD pathogenesis. Collagen type XVII alpha 1 chain 

(COL17A1), a protein-coding gene for XVII collagen, was also found up-regulated in COPD 

epithelial brushings and negatively correlated with miR-338-3p expression (Table 5.5, r = -0.39, 

FDR = 0.03). Up-regulation of COL17A1 has been shown previously in COPD (523) and given its 

role in collagen formation, dysregulation of COL17A1 has implications for extracellular matrix 

remodelling and emphysema pathogenesis (524). 

5.5.2.1 Identifying the most dominant miRNA-mRNA interactions 

Overall, several of these interactions have biological importance to COPD pathogenesis. However, 

using this correlative approach to analyse the relationships between miRNA and mRNA can 

miss/under-represent targets of biological importance that are regulated by multiple miRNA 

(525). The mirMapper analysis focused on identifying the most dominant miRNA-mRNA 

interactions. This analysis identified CRIM 1 and BTBD7 as the two most targeted genes with three 

miRNA targets each (Table 5.6). The gene CRIM1 was found to be down-regulated in COPD 

epithelial brushings and is targeted by three up-regulated EV miRNA (miR-223-3p, miR-182-5p and 

miR-200b-5p). CRIM1 has been implicated in inhibiting the invasion and metastasis of lung 

adenocarcinoma cells via regulation of miR-182 (526), and may play a role in capillary formation 

and maintenance during angiogenesis (527). Furthermore, BTBD7 was found to be up-regulated in 

COPD epithelial brushings and is regulated by all three down-regulated miRNA. Altered 

methylation of BTBD7 has been described in asthma (528) and implicated in lung cancer 

progression (529). Yet, although these findings suggest both CRIM1 and BTBD7 have the greatest 

degree of centrality to the miRNA-mRNA interaction network, their relatively small differential 

expression in the COPD epithelial brushings (log2FC = -0.39 FDR = 0.02; log2FC = 0.0004, FDR = 
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0.006 respectively) are unlikely to translate into a large impact on disease specific pathways. In 

contrast, BDNF and sodium voltage-gated channel α subunit 2 (SCN2A) had much higher 

differential expression in COPD epithelial brushings (log2FC = 1.44 and 0.97 respectively), and 

were also co-regulated by miRNA (miR-138-5p and miR-204-5p) suggesting a greater potential 

impact on downstream pathways. Levels of serum BDNF have been shown in a number of studies 

to correlate with disease severity in COPD (530-532) and its role as a mediator of neuronal 

plasticity, has been shown to be key in acute and chronic inflammatory conditions of the airways 

(533, 534). Furthermore, mutations in the SCNA family have a strong association with pulmonary 

emphysema (535) and therefore modulation of SCN2A in the airway epithelium may have 

important consequences for COPD pathogenesis. 

In addition to focusing on gene targets, the miRmapper analysis also highlighted the miRNA with 

the greatest degree centrality in the miRNA-mRNA interaction network and any synergism within 

the differentially expressed EV miRNA. The up-regulated EV miRNA, miR-182-5p, had the highest 

degree centrality, targeting 39.3% of all differentially expressed targets (Table 5.7) and therefore 

is presumed to have a greater impact on biological function, even though it is not the most 

differentially expressed miRNA. However, more recent studies suggest rather than a single miRNA 

leading to meaningful biological effect, that cooperative regulation of miRNA on a group of genes 

is far more likely (536). Therefore, two cluster-based methods (Jaccard similarity index and EAGLE 

algorithm) were used to interrogate the miRNA-miRNA interaction network, and these methods 

both identified miR-204-3p and miR-138-5p with the greatest synergistic activity based on shared 

targets (Figure 5.5 and Figure 5.8). Interestingly, two of these gene targets have already been 

discussed as potentially important to COPD pathogenesis (SCN2A and BDNF). In addition, the up-

regulated CYP1B1 gene in epithelial brushings in COPD (Table 5.5. log2FC = 1.83, FDR = 0.01) is 

also co-targeted by miR-204-3p and miR-138-5p, and was found to be negatively correlated with 

miR-138-3p expression (Table 5.5, r = -0.37, FDR = 0.04). The gene CYP1B1 encodes a member of 

the cytochrome P450 superfamily of enzymes, which catalyse many reactions involved in drug 

metabolism and synthesis of cholesterol, steroids and other lipids (537). Specifically, CYP1B1 has 

been shown to metabolically activate polycyclic aromatic hydrocarbons (PAHs), such as those 

found in tobacco smoke, to ultimately generate carcinogenic compounds (538). Moreover, 

Smerdova et al. demonstrated pro-inflammatory cytokines, such as tumour necrosis factor (TNF)-

α augmented the effects of PAHs through CYP1B1 (539). Finally, in keeping with this study, up-

regulation of CYPB1 expression has been previously shown in type II alveolar epithelial cells from 

patients with COPD (540). Taken together these findings suggest an important role for CYPB1 

regulation in the development of lung cancer in pro-inflammatory lung conditions. 
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5.5.2.2 Visualising the miRNA-mRNA interactions in a network 

To summarise the findings of the miRNA-mRNA interaction analysis, an open source network 

visualisation software (Cytoscape) was used (398). Although node attributes, such differential 

expression, are often incorporated into the network structure, to my knowledge this is the first 

miRNA-mRNA network representation to include results of the analytical approaches used in this 

thesis. In order to determine the important miRNA-mRNA interactions, results of the in silico 

analysis identifying predicted and validated gene targets, correlation analysis and miRmapper 

analysis were all displayed in the network to give a comprehensive overview of the analytical 

methods and results. This enabled specific miRNA-mRNA interactions with likely greater biological 

significance to be highlighted and these interactions have been discussed above. However, 

although network visualisation gives insights into the individual miRNA-mRNA interactions and 

clusters, GO enrichment analysis highlights biological pathways where these interactions are 

prominent and thereby identifies processes that may by key to COPD pathogenesis. 

5.5.3 GO enrichment analysis to identify key pathways regulated by miRNA-mRNA 

network 

Gene ontology enrichment analysis identified several significant biological processes, however 

none passed the FDR of <0.05. This is likely due to the small sample size, but despite this 

conclusions can be drawn from those processes highlighted in this analysis. Strikingly, processes 

involving regulation of phospholipase (PL) were repeatedly found to be significant in this analysis 

and mapped to three significantly differently expressed genes NPR3, HOMER1 and ARHGAP6. PLs 

are a ubiquitous group of enzymes that have a diverse set of functions, and include the signalling 

effector PLC family which regulate various cellular activities through activated protein kinase C 

and calcium metabolism (541). In this study, activation and regulation of PLC activity were 

highlighted in the top three GO: biological processes. Studies have shown that PLC activation is 

important for influenza virus infection of lung epithelial cells (542), and is involved in up-

regulation of pro-inflammatory cytokines (via NFκB-MAPK signalling), as well as the generation of 

intracellular reactive oxygen species (ROS) (543). Furthermore, accumulated evidence has 

suggests that the PLC signalling inhibitor U73122 attenuates both acute and chronic inflammation 

(544). Little is known about PLC function and expression in COPD and therefore these findings 

highlight possible novel pathways for exploration in this disease.  

Of the genes mapped to these biological processes, NPR3 was identified as the most down-

regulated in epithelial brushings (see above for activity related to COPD), whereas ARHGAP6 
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significantly correlated with miR-182-5p expression (Table 5.5 r = -0.38, FDR = 0.03). The latter 

encodes a member of the rhoGAp family of proteins, which play a role in the regulation of actin 

polymerization at the plasma membrane during several cellular processes and have also been 

implicated in COPD pathogenesis (25). HOMER1 encodes proteins that serve as adaptors linking 

receptors that activate the phosphoionositide 3-kinase (PI3K) - mammalian target of rapamycin 

(mTOR) pathway (545), which plays a key role in cellular senescence and autophagy. Therefore, 

dysregulation of HOMER1 is may be implicated in the accelerated ageing process implicated in 

COPD progression (see section 1.1.3.2). 

The GO enrichment analysis for molecular function again identified several significant molecular 

functions, however none passed the FDR of 5% for the same reasons outlined above. These 

results identified a number of hormone regulatory pathways such as insulin-like growth factor 

(IGF) binding with key mapped genes INSR, NPR3 and ARHGAP6. IGF-1 signaling modulates the 

development and differentiation of many types of lung cells, including airway basal cells, club 

cells, alveolar epithelial cells, and fibroblasts. Although, the components of the IGF-1 signalling 

pathway are potentiated as biomarkers as they are dysregulated locally or systemically in COPD, 

much of data may be inconsistent or even paradoxical among different studies (546). Therefore, 

further work elucidating the exact mechanisms of this dysregulation in COPD is required. The 

significance of this dyrsegulation of insulin receptor activity may also have a bearing on the 

systemic nature of COPD and provide insights into the pathological mechanisms linking COPD with 

metabolic multimorbidity such as diabetes and obesity (547).  

5.5.4 Strengths and limitations 

A major strength of this work is the paired dataset between the EV miRNA and epithelial 

brushings from the same lung lobe, in the same subject. This enables a more accurate description 

of the miRNA-mRNA interactions, rather than relying on in silico analysis alone or even 

experimental models, which are an over-simplification of the disease process. Next the 

combinatorial analytical approach of these miRNA-mRNA interactions, with correlations, 

synergistic analysis, network visualisation and clustering enables emphasis of specific interactions, 

which may have more biological relevance. This enables a more focused insight into the 

interaction network and highlights targets that could be taken forward for validation in 

experimental or therapeutic models. 

As mentioned above, there is a limitation to mining miRNA target prediction databases which 

mainly focus aligning complementary features in the 3’- UTR within the miRNA and genes (488). In 
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addition, the in silico analysis was limited to the top 20% of predicted genes, which may have 

missed some additional novel findings. However, the search identified over 21,000 target genes 

and subsequent analysis has focused on narrowing these to a few for further investigation, which 

ultimately will provide more certainty into the importance of these miRNA-mRNA interactions. 

As seen with the GO enrichment analysis, the interaction miRNA-mRNA network was relatively 

small and therefore did not highlight biological processes or molecular functions that passed the 

FDR of 5%. The sample size was restricted by the availability of large volumes of BALF for EV 

isolation, which can be hard to achieve particularly in patients with COPD. Regardless, this study is 

the largest looking at lung derived EV miRNA and their impact on target genes in the epithelium.  

One of the questions this study raises, is whether the airway epithelium is the most applicable 

target cell type to study. Lung EVs are known to target several cell types and an alternative 

approach could include analysis of the alveolar macrophage and bronchial biopsy transcriptomes. 

The epithelial brushing mRNA data was chosen initially as it had the greatest number of samples 

available which matched the EV miRNA lung samples and the greatest number of differentially 

expressed genes. However, given alveolar macrophages are key inflammatory cell mediators in 

COPD, the macrophage transcriptome may be the next dataset to explore. 

5.5.5 Summary 

In conclusion, these analyses describe the possible interactions and regulation of lung-derived EV 

miRNA with differentially expressed genes identified in the epithelial brushings of patients with 

COPD. Using combinatorial bioinformatic methods, these results identified a novel miRNA-mRNA 

interaction network and highlighted key signalling pathways, which may be helpful in 

understanding the pathophysiological changes of COPD at a transcriptome level. 
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 Diagnostic use of extracellular vesicle miRNA 

and the relationship with COPD inflammatory 

endotypes 

6.1 Introduction 

Chronic Obstructive Pulmonary Disease (COPD) is an umbrella diagnosis currently defined by the 

presence of airflow limitation (measured by spirometry) and characteristic symptoms alone. 

Although spirometry is the most reproducible and objective measurement of airflow limitation, 

there are concerns that spirometry is an effort dependent test and can be insensitive to early 

disease (141). Therefore exploring additional diagnostic strategies may improve early diagnosis 

and give potential insights into the underlying biology of the disease. 

Despite the clinical heterogeneity of COPD, it has proved difficult to identify distinct endotypes of 

disease. Endotypes are important as they describe a distinct pathophysiological mechanism at a 

cellular or molecular level, with the aim of identifying specific treatment targets for a greater 

impact on disease control. Different inflammatory patterns have been described in COPD and are 

referred to as “inflammatory endotypes” (described in section 1.5), however the true molecular 

mechanisms underlying these remain uncertain. Most patients have increased neutrophils and 

macrophages in their lungs reflecting the inflammatory nature of the disease (548). Some patients 

also have increased eosinophils, which are associated with more frequent exacerbations (549) 

and importantly, predict good response to corticosteroid treatment (549, 550). However, studies 

have failed to show the same improvement with other treatments targeting eosinophilia (e.g. 

anti-interleukin (IL)-5 antibodies) (178) therefore further research is needed to understand the 

mechanisms behind these inflammatory endotypes in COPD. 

Chapter 6 describes the clinical characteristics of the subjects included in the bronchoalveolar 

lavage fluid (BALF) extracellular vesicle (EV) microRNA (miRNA) validation analysis (section 4.5) 

and their relationship with lung-derived EV miRNA expression. Furthermore, it explores the 

predictive ability of these differentially expressed miRNA to differentiate between health and 

COPD and whether they can differentiate between different inflammatory endotypes in COPD. 

Finally, this chapter explores whether the differential EV miRNA expression is translated from the 

lung into the peripheral blood, which would lead to a greater potential for its clinical utility as a 

possible biomarker of disease.  
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6.2 Characteristics of the subject included in the analysis exploring the 

predictive ability of EV miRNA to differentiate COPD from health 

and associate with inflammatory endotypes 

For the analyses covered sections 6.3, 6.4 and 6.5, the larger cohort from the differential miRNA 

expression analysis performed in the validation study (section 4.5) was used as this cohort 

contained the greatest number of subjects (N=44), with 24 COPD subjects and 20 healthy ex-

smokers included. The clinical characteristics are summarised in Table 6.1. 

Table 6.1  Characteristics of subjects included in the analysis exploring the diagnostic use of 
BALF EV miRNA and associations with inflammatory endotypes, N=44 

Subject/sample characteristics COPD  
(n=24) 

Healthy ex-
smoker (n=20) 

P value 

Age, mean ±SD 70.1 ±6.9 68 ±7.3 0.34 
Male, n (%) 20 (83) 11 (55) 0.06 
Smoking pack years, mean ±SD 47 ±29.2 27.8 ±13 0.06 
BMI, mean ±SD 29.6 ±4 28.4 ±4 0.3 
FEV1 (% predicted), mean ±SD 77.5 ±14.8 101.8 ±14.6 <0.00001 
FVC (% predicted), mean ±SD 102.8 ±16 100.6 ±16.4 0.65 
FEV1/FVC%, mean ±SD 57.7 ±8.3 78.2 ±4.2 <0.00001 
FEF 25-75 (% predicted), mean ±SD 41.2 ±16.7 106 ±25.4 <0.000001 
DLCO (% predicted), mean ±SD 75.1 ±13.3 88.39 ±4.4 0.004 
COPD status, GOLD stage, n (%)   0.41 
Mild 10 (42) NA  
Moderate 14 (58) NA  
Baseline & historic blood counts 
Total blood leucocytes (109/L), mean ±SD 7.4 ±1.4 6.7 ±1.4 0.09 
Absolute neutrophil count (109/L), mean ±SD 4.5 ±1.2 3.9 ±1.1 0.12 
Absolute eosinophil count (109/L), median 
(IQR) 

0.2 (0.18) 0.1 (0.1) 0.01 

Historic eosinophils (109/L), median (IQR) 0.35 (0.2) 0.1 (0.1) <0.0001 
HRCT measurements 
E/I MLD, mean ±SD  0.85 ±0.05 0.8 ±0.05 0.003 
%LAA<-950, mean ±SD 10.9 ±5.1 6.6 ±4.5 0.005 
BALF differential cell count 
Neutrophil %, median (IQR) 3.6 (8.4) 0.8 (1.2) 0.02 
Macrophage %, median (IQR) 63.7 (53.2) 70 (28.4) 0.4 
Eosinophil %, median (IQR) 1 (2.95) 0.4 (0.6) 0.04 
Lymphocyte %, median (IQR) 0 (0.55) 0 (1.85) 0.08 
Fisher’s exact test was performed for gender given small sample size. Chi-squared test used for COPD status. Shapiro-
Wilk test for normality was performed for all continuous variables. Welch two sample t test was performed for normally 
distributed data; Age, BMI, FEV1, FVC, FEV1/FVC and FEF 25-75, TLCO, RV/TLC SR, total blood leucocytes, absolute 
neutrophil count, E/I MLD and %LAA<-950. Mann-Whitney U test was performed for skewed data; smoking pack years, 
eosinophil blood counts and BALF differential cell count. BMI, body mass index; FEV1, forced expiratory volume in 1 sec, 
FVC, forced vital capacity; FEF, Forced expiratory flow rate; DLCO, diffusion capacity of the lung for carbon monoxide; 
E/I MLD, ratio of mean lung attenuation on expiratory and inspiratory scans; HRCT, high resolution computer 
tomography; %LAA<-950, percent of lung voxels on the inspiratory scan with attenuation values below -950 Hounsfield 
Units; IQR, interquartile range; NA, non-applicable; SD, standard deviation. 
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The subjects were matched for age, smoking pack years and body mass index (BMI). There were 

more males in both groups, and although it appeared as though the COPD subjects had a greater 

proportion of males, this wasn’t statistically significant (p = 0.06). As expected post-

bronchodilator forced expiratory volume in one second (FEV1) % predicted, FEV1/forced vital 

capacity (FVC) ratio, and forced expiratory flow rate (FEF) 25-75% predicted were all significantly 

reduced in the COPD group. The COPD subjects varied from mild to moderate disease, with a 

mean FEV1% predicted of 77.5% (SD±14.8).  

Similar to the smaller cohort (n=35 – see section 3.2), COPD patients had higher levels of historic 

eosinophil counts (p <0.0001). However, in addition, in this larger cohort they also demonstrated 

higher levels of blood eosinophils at their baseline test (p = 0.01).  

As expected, COPD subjects demonstrated more evidence of small airways and emphysema, with 

a higher ratio mean lung attenuation on expiratory and inspiratory scans (E/I MLD) (p = 0.02) and 

lower diffusion capacity of the lung for carbon monoxide (DLCO) % predicted (p = 0.004) 

respectively compared with healthy ex-smokers. Furthermore, in contrast to the smaller cohort 

(n=35 – see section 3.2), COPD patients also had higher percent of lung voxels on the inspiratory 

scan with attenuation values below -950 Hounsfield Units (%LAA<-950), suggestive of underlying 

emphysema (p = 0.005). 

In addition, COPD subjects also demonstrated higher proportions of neutrophils and eosinophils 

in the BALF, which is in keeping with the findings from the smaller cohort (n=35, see section 3.2). 

Again, similar to the smaller cohort macrophages were the predominant cell type in the BALF 

(median proportion 68% across the whole cohort), and there was no difference in macrophage 

proportions between COPD and healthy ex-smokers (p = 0.4). Relative numbers of lymphocytes in 

BALF were low and there were no significant differences between groups (p = 0.08). The BALF 

differential cell counts in relation to COPD inflammatory endotypes will be explored further in 

section 6.5. 

6.3 Lung-derived EV miRNA in relation to COPD clinical characteristics 

Spearman correlation coefficients were generated for the lung-derived EV miRNA normalised 

expression data and the clinical phenotypic characteristics of COPD (Table 6.2). Although 

significant correlations between clinical variables and EV miRNA expression data were shown 

when analysing the cohort as a whole (n=44), most of these became non-significant when 

analysing just the COPD subjects alone (n=24) (Table 6.2).  These results suggest significant 
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correlations are due to the presence of disease, rather than disease specific characteristics. Of 

note, significant correlations were identified for miR-2110 and miR-200b-5p expression with DLCO 

% predicted (r = -0.43, p = 0.04 and r = -0.6, p = 0.003 respectively) in COPD patients alone, 

suggesting these associations may be due to a specific disease pathology (e.g. emphysema in the 

context of DLCO %). 

 

Table 6.2 Correlations of up-regulated lung-derived EV miRNA expression with COPD 
phenotypic disease characteristics 

 FEV1   FVC FEV1/ 
FVC  

FEF 25-
75  

DLCO  E/L 
MLD 

%LAA
<-950 

Historic 
Eosinophils 

(109/L) 

Whole cohort, N=44 

miR-2110 -0.4** -0.07 -0.46** -0.47** -0.37* 0.19 0.26 0.43** 

miR-223-3p -0.26 0.05 -0.42** -0.44** -0.38* 0.34* 0.14 0.43** 

miR-182-5p -0.3* 0.05 -0.43** -0.38* -0.4* 0.18 0.24 0.32* 

miR-625-3pΓ 0.005 -0.06 0.007 -0.0005 0.11 -0.05 0.03 0.08 

miR-200b-5p -0.16 0.07 -0.24 -0.23 -0.35* 0.08 0.14 0.28 

COPD subjects alone, N=24 

miR-2110 -0.19 -0.04 -0.12 -0.18 -0.43* -0.04 0.04 0.01 

miR-223-3p 0.02 0.17 -0.07 -0.03 -0.22 -0.03 -0.37 0.02 

miR-182-5p 0.04 0.09 -0.07 -0.06 -0.3 -0.25 -0.04 0.03 

miR-625-3pΓ 0.18 0.01 0.19 0.17 -0.21 -0.07 -0.12 0.1 

miR-200b-5p 0.22 0.25 0.07 0.05 -0.6** -0.05 0.01 -0.04 
Γmissing data for 13 COPD subjects, N=11. Spearman’s correlation coefficient.*p<0.05, **p<0.005. FEV1, FVC, FEF 25-75 
and DLCO are all measured as percent predicted. Historic eosinophil refers to highest ever recorded eosinophil count. 
FEV1, forced expiratory volume in 1 sec, FVC, forced vital capacity; FEF, Forced expiratory flow rate; DLCO, diffusion 
capacity of the lung for carbon monoxide; E/I MLD, ratio of mean lung attenuation on expiratory and inspiratory 
scans; %LAA<-950, percent of lung voxels on the inspiratory scan with attenuation values below -950 Hounsfield Units 

Likewise, in the down-regulated lung-derived EV miRNA correlations with clinical characteristics of 

COPD (Table 6.3), all of the miRNA significantly correlated with FEV1% predicted, (a marker of 

disease severity), FEF 25-75% predicted, (a marker of small airways disease), and historic 

eosinophils when analysing the cohort as a whole (n=44). However, when examining the 

associations in COPD subjects alone (n=24), only miR-338-3p expression correlated significantly 

with FEF 25-75% suggesting possible association with small airways disease (r = 0.44, p = 0.03) and 

DLCO % suggesting a possible link with underlying emphysema (r = 0.48, p = 0.03). 
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Table 6.3 Correlations of down-regulated BAL EV miRNA expression with COPD phenotypic 
disease characteristics 

 FEV1  FVC  FEV1/ 
FVC  

FEF 25-
75  

DLCO  E/L 
MLD 

%LAA<-950 Historic 
Eosinophils 

(109/L) 

Whole cohort, N=44 

miR-204-5p 0.35* -0.13 0.52** 0.47** 0.2 -0.31* -0.2 -0.33* 

miR-138-5p 0.32* -0.07 0.43** 0.42** 0.28 -0.3 -0.22 -0.35* 

miR-338-3p 0.34* -0.06 0.41** 0.4** 0.4* -0.26 -0.24 -0.35* 

COPD subjects alone, N=24 

miR-204-5p 0.28 -0.08 0.36 0.33 0.13 -0.2 -0.05 -0.03 

miR-138-5p 0.2 -0.05 0.2 0.26 0.3 -0.2 -0.07 0.008 

miR-338-3p 0.29 -0.21 0.43* 0.44* 0.48* -0.25 -0.28 0.004 

Spearman’s correlation coefficient.*p<0.05, **p<0.005. FEV1, FVC, FEF 25-75 and DLCO are all measured as percent 
predicted. Historic eosinophil refers to highest ever recorded eosinophil count. FEV1, forced expiratory volume in 1 sec, 
FVC, forced vital capacity; FEF, Forced expiratory flow rate; DLCO, diffusion capacity of the lung for carbon monoxide; E/I 
MLD, ratio of mean lung attenuation on expiratory and inspiratory scans; %LAA<-950, percent of lung voxels on the 
inspiratory scan with attenuation values below -950 Hounsfield Units 
 

6.4 Predictive ability of miRNA to differentiate between COPD and 

health  

Given the lung-derived EV miRNA were associated with many of the clinical phenotypic 

characteristics across the cohort as a whole, the predictive ability of the up-regulated miRNA to 

differentiate between health and COPD was assessed. Importantly, these up-regulated miRNA 

were identified from comparison of a relatively mild COPD cohort, with a mean post-

bronchodilator FEV1 % predicted of 77.5% (SD±14.8) with a healthy ex-smoker age-matched 

population. 

Receiver operative characteristic (ROC) curves were generated using the miRNA normalised 

expression data in SPSS® and results are summarised in Table 6.4. 
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Table 6.4 ROC analysis for predictive ability of up-regulated miRNA to differentiate between 
COPD and healthy ex-smokers 

miRNA Log2FC  
 

AUC (95% CI) Standard 
Errora 

P value 
 

miR-2110 2.12 0.81 (0.68 -0.93) 0.06 <0.0001 

miR-223-3p 2.97 0.79 (0.65 – 0.93) 0.07 0.001 

miR-182-5p 1.52 0.78 (0.64 – 0.92) 0.07 0.001 

miR-625-3pΓ 1.85 0.76 (0.59 – 0.93) 0.09 0.02 

miR-200b-5p 1.52 0.71 (0.56 – 0.87) 0.08 0.02 

Γ data missing for 13 COPD subjects, N=11. a. under the nonparametric assumption. AUC, area under receiver operator 
characteristic curve; CI, confidence interval; miRNA, microRNA. 

 

The ROC curve analysis showed that in isolation miR-2110, miR-223-3p and miR-182-5p have 

moderate predictive ability to differentiate between COPD and healthy ex-smokers, with an area 

under the curve (AUC) either >0.8 for miR-2110 or approaching 0.8 for the latter two. Although 

miR-625-3p performed nearly as well, this was excluded from further analysis based on the 

number of missing data points (n=11 for this analysis only). MiR-200b-5p performed least well 

with an AUC 0.71. 

Different combinations of the miRNA were tested using the ROC curve analysis to determine the 

best combination of miRNA for predicting disease presence (Table 6.5).  

 

Table 6.5 ROC analysis to determine optimal combination of EV miRNA in differentiating 
between COPD and healthy ex-smokers 

miRNA AUC (95% CI) Standard 

Errora 

P value 

miR-2110, miR-223-3p, miR-182-5p 0.91 (0.8 -0.98) 0.05 <0.0001 

miR-2110, miR-223-3p, miR-182-5p, miR-200b-5p 0.85 (0.73 – 0.97) 0.06 <0.0001 

miR-2110, miR-223-3p 0.84 (0.72 – 0.96) 0.06 <0.0001 

miR-2110, miR-182-5p 0.84 (0.73 – 0.96) 0.06 <0.0001 

miR-223-3p, miR-182-5p 0.83 (0.72 – 0.96) 0.06 <0.0001 
a. under the nonparametric assumption. AUC, area under receiver operator characteristic curve; CI, confidence interval; 
miRNA, microRNA. 

These analyses showed that using the combination of miR-2110, miR-223-3p and miR-182-5p 

improved the predictive ability to discriminate between COPD and healthy ex-smokers, with an 

AUC 0.91 (Figure 6.1). 
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Figure 6.1  ROC curve for miR-2110, miR-223-3p and miR-182-5p for the predicting the presence 

of COPD in the cohort  

AUC = area under the curve. 

6.5 EV miRNA in relation to COPD inflammatory endotypes 

6.5.1 Describing inflammatory endotypes in COPD subjects 

BALF differential cell counts were analysed in all 24 COPD subjects and 20 healthy ex-smokers. As 

previously described each subject had two lobes sampled and for this analysis the cell counts 

which corresponded to the lobe from which the EVs were recovered were used. There were 

significantly increased neutrophils and eosinophils in the BALF of COPD subjects compared with 

the healthy ex-smokers. However, there was no difference in macrophage proportions between 

COPD subjects and healthy ex-smokers (Figure 6.2). Macrophages were the predominant cell type 

in the airways (median proportion 68%). However the 95% confidence intervals for the proportion 

of macrophages found in COPD BALF samples were wide (Figure 6.2 C), reflecting heterogeneity 

across disease and the limits of a proportional analysis. 

  

AUC 0.91 



Chapter 6 

 

172 

 
Figure 6.2 BALF expression of immune cells in COPD subjects and healthy ex-smokers.  

 (A) Neutrophils, (B) Eosinophils, (C) Macrophages. Data represents median with 95% confidence 
interval. Each dot represents BALF concentration of individual value in a specific patient. N=44; COPD, 
n=24. **p<0.01, *p<0.05 using Mann-Whitney U test. 

6.5.2 Relationship between EV miRNA expression and levels of inflammatory cells in BAL 

The relationship between BAL EV miRNA expression and levels of inflammatory cells was assessed 

using Spearman’s correlations in the COPD subjects alone (N=24), (Table 6.6). 

 
Table 6.6 Correlations between EV miRNA expression and immune cells proportions within 

BALF 

BALF EV miRNA  Neutrophils % Eosinophils % 

Up-regulated in COPD 

miR-2110 0.47* 0.2 

miR-223-3p 0.35 0.47* 

miR-182-5p 0.46* 0.1 

miR-625-3pΓ 0.12 0.23 

miR-200b-5p 0.33 0.02 

Down-regulated in COPD 

miR-204-5p -0.49* -0.57** 

miR-138-5p -0.11 -0.22 

miR-338-3p -0.22 -0.42* 
Γmissing data for 13 COPD subjects, N=11. Spearman’s correlation coefficient. N = 24 *p<0.05, **p<0.005. BAL; 
bronchoalveolar lavage fluid; EVs, extracellular vesicles; miR, microRNA. 

There were significant positive correlations between levels of neutrophils and two of the up-

regulated miRNA in COPD (miR-2110 and miR-182-5p). Whereas, miR-223-3p significantly 

correlated with eosinophil expression. Conversely, in the down-regulated miRNA, miR-204-5p 

showed significant negative correlations with both neutrophils and eosinophil expression, 

whereas miR-338-3p only significantly correlated with eosinophils. 
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The significant correlation with miR-223-3p, miR-204-5p and miR-338-3p with BALF eosinophil 

levels, prompted further analysis with blood eosinophil levels given the clinical utility of highest-

ever historic blood eosinophil count in defining eosinophilic disease in COPD. However, there was 

no correlation between BALF eosinophil levels and highest-ever historic blood eosinophil count (r 

= 0.1, p = 0.65). Furthermore, there was no association between highest-ever historic eosinophil 

count and miR-223-3p (r = 0.02, p = 0.9), miR-204-5p (r = -0.03, p =0.9) and miR-338-3p (r = 0.004, 

p = 0.9) expression levels in the lung-derived EVs.  

6.5.3 Using EV miRNA to predict inflammatory endotypes in COPD 

Given the significant correlations between levels of inflammatory cells and specific EV miRNA in 

COPD subjects, this raises the possibility of EV miRNA ability to predict specific inflammatory 

endotypes in COPD.  

The above analyses were used to categorise the COPD subjects into inflammatory endotypes 

based on the cut-offs defined in the American Thoracic Society Clinical Practice Guidelines for BAL 

analysis (551), which determined neutrophilia as >3% and eosinophilia as >1%. 

Using these criteria, the 24 COPD subjects were classified into four inflammatory endotypes based 

on the inflammatory cut-offs defined below (summarised in Table 6.7). 

 

Table 6.7 Definitions of inflammatory endotypes in COPD using %neutrophil and eosinophil 
pre-defined cut-offs 

Inflammatory endotype % Neutrophils in BALF % Eosinophils in BALF 

Eosinophilic NA >1% 

Neutrophilic >3% NA 

Mixed granulocytic >3% >1% 

Paucigranulocytic ≤3% ≤1% 

BALF, bronchoalveolar lavage fluid; NA, non-applicable 
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The Venn diagram below describes the distribution of inflammatory endotypes within this cohort, 

with 10 COPD subjects defined as eosinophilic (41.7%), 13 defined as neutrophilic (54.2%), 6 

defined as mixed granulocytic (25%) and 7 defined as paucigranulocytic (29.2%). 

 
 
Figure 6.2 Venn diagram to describe the inflammatory endotypes in the COPD subjects based 

on pre-defined cut-offs 

A series of ROC analyses were performed to determine the predictive ability of miRNA to 

determine inflammatory endotypes. Firstly, the eosinophilic subjects with COPD (n=10) were 

compared against the non-eosinophilic COPD subjects (n=14; pure airway neutrophilia, n = 7 and 

paucigranulocytic, n = 7), to determine the predictive ability of the dysregulated miRNA in 

distinguishing between eosinophilic and non-eosinophilic disease (Table 6.8). 

Table 6.8 ROC analyses to determine predictive ability of miRNA to differentiate between 
eosinophilic and non-eosinophilic subtypes in COPD 

miRNA AUC (95% CI) Standard 
Errora 

P value 
 

miR-2110 0.51 (0.2 – 0.8) 0.14 0.9 

miR-223-3p 0.78 (0.6-1) 0.14 0.04 

miR-182-5p 0.57 (0.3 – 0.8) 0.14 0.6 

miR-625-3pΓ 0.30 (0.04 – 0.6) 0.14 0.14 

miR-200b-5p 0.51 (0.2 – 0.8) 0.14 0.9 

miR-204-5p 0.74 (0.5 – 0.9) 0.05 0.05 

miR-138-3p 0.60 (0.4 – 0.8) 0.41 0.4 

miR-338-3p 0.74 (0.5 – 0.9) 0.05 0.046 
a. Standard error under the nonparametric assumption 
Γ data missing for 13 subjects 

 Paucigranulocytic = 

7 (29.2%) 

   Airway Eosinophilia 

= 10 (41.7%) 

Airway Neutrophilia 

= 13 (54.2%) 

Pure airway 

eosinophilia = 

4 (16.7%) 

Pure airway 

neutrophilia = 

7 (29.2%) 

Mixed granulocytic = 6 (25%) 
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MiR-223-3p and miR-338-3p showed fair predictive ability to distinguish between eosinophilic and 

non-eosinophilic disease with AUC >0.7 (p <0.05). When combining these measures the AUC 

improved to 0.83 (95% CI 0.7 – 0.9, p = 0.007) and therefore using a combination of miRNA 

markers may be a more accurate approach. 

Given the combination of miR-223-3p and miR-338-3p showed good predictive ability in 

distinguishing eosinophilia when also including the subjects with a mixed granulocytic picture; 

further analysis was performed to see whether these miRNA were even more specific at 

distinguishing eosinophilic disease when considering just pure eosinophilic disease (n=4).  

 

Table 6.9 ROC analysis to differentiate between pure eosinophilic COPD and paucigranulocytic 
or neutrophilic COPD 

miRNA AUC (95% CI) Standard 
Errora 

P value 
 

miR-2110 0.75 (0.3 – 1) 0.21 0.25  

miR-223-3p 0.94 (0.8 – 1) 0.09 0.04  

miR-182-5p 0.81 (0.5 – 1) 0.18 0.15  

miR-625-3pΓ 0.75 (0.4 – 1) 0.19 0.25  

miR-200b-5p 0.88 (0.6 – 1) 0.14 0.08 

miR-204-5p 0.86 (0.6 -1) 0.13 0.06  

miR-138-3p 0.68 (0.3 – 1) 0.18 0.35 

miR-338-3p 0.85 (0.6 – 1) 0.08 0.03 

miR-223-3p, miR-338-3p 0.81 (0.6-1) 0.09 0.04 
a. Standard error under the nonparametric assumption 
Γ data missing for 13 subjects 

MiR-223-3p showed excellent predictive ability of differentiating pure airway eosinophilia from 

paucigranulocytic and pure airway neutrophilic disease with an AUC 0.94 (p = 0.04). MiR-338 did 

not perform as well, but was significant in this analysis at distinguishing pure airway eosinophilia 

with an AUC 0.85 (p = 0.03). The combination of the two miRNA did not improve the specificity 

with an AUC 0.81 (see Table 6.9).  

Next, the neutrophilic subjects with COPD (n = 7) were compared against the non-neutrophilic 

COPD subjects (n=11; pure airway eosinophilia, n= 4 and paucigranulocytic, n = 7)) to determine 

the predictive ability of the miRNA in distinguishing between neutrophilic and non-neutrophilic 

disease (Table 6.10). 
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Table 6.10  ROC analyses to determine predictive ability of miRNA to differentiate between 
neutrophilic and non-neutrophilic subtypes in COPD 

miRNA AUC (95% CI) Standard 
Errora 

P value 
 

miR-2110 0.69 (0.5 – 0.9) 0.12 0.2 

miR-223-3p 0.67 (0.4 – 0.9) 0.12 0.2 

miR-182-5p 0.58 (0.3 – 0.9) 0.14 0.6 

miR-625-3pΓ 0.34 (0.09 – 0.6) 0.13 0.2 

miR-200b-5p 0.52 (0.2 – 0.8) 0.14 0.9 

miR-204-5p 0.60 (0.4 – 0.8) 0.12 0.4 

miR-138-3p 0.4 (0.2 – 0.6) 0.12 0.4 

miR-338-3p 0.44 (0.2 – 0.7) 0.12 0.6 
a. Standard error under the nonparametric assumption 
Γ data missing for 13 subjects 
 

However, none of the miRNA showed significant predictive ability for distinguishing between 

neutrophilic and non-neutrophilic disease. 

6.6 Differences in serum extracellular vesicle miRNA expression 

Given the promise of the ROC analyses showing specific BAL EV miRNA (miR-2110, miR-223-3p 

and miR-182-5p) had good predictive ability in differentiating between COPD and healthy ex-

smokers, serum EV miRNA were analysed to assess whether the changes were also present in 

blood. Peripheral blood was chosen as if EV miRNA were to be used as an additional diagnostic 

marker for COPD, it would need to be identified via a non-invasive method (i.e. blood test rather 

than bronchoscopy) to have clinical utility. 

6.6.1 Subject characteristics 

Fourteen COPD subjects and ten healthy ex-smokers were included in the serum EV miRNA 

quantification by RT-qPCR based on sample availability. Not all of the subjects included in this 

analysis were part of the larger cohort (N=44). To increase sample numbers, an additional seven 

serum samples were used from an additional seven COPD subjects from the overall MICA II 

cohort. The characteristics of this smaller cohort (N=24) is summarised in Table 6.11.   
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Table 6.11 Characteristics of subjects included in serum EV miRNA target validation by RT-qPCR, 
N=24 

Subject/sample characteristics COPD  

(n=14) 

Healthy ex-smoker 

(n=10) 

P value 

Age, mean ±SD 69.1 ±6.6 67.7 ±9.3 0.68 

Male, n (%) 5 (36%) 4 (40%) 1 

Smoking pack years, mean ±SD 63.8 ±50.3 25.5 ±15.6 0.003 

BMI, mean ±SD 28.2 ±3.6 27.5 ±4.5 0.66 

FEV1 (% predicted), mean ±SD 62.9 ±13.2 101.8 ±11.9 <0.00001 

FVC (% predicted), mean ±SD 93.3 ±18.2 101.6 ±12.5 0.17 

FEV1/FVC%, mean ±SD 52.9 ±9.6 77.5 ±3.7 <0.0001 

FEF 25-75 (% predicted), mean ±SD 28.1 ±12.9 103.6 ±21.8 <0.000001 

COPD status, GOLD stage, n (%)   0.003 

Mild 1 (7) NA  

Moderate 11 (79) NA  

Severe 2 (14) NA  

Fisher’s exact test for Gender given small sample size. Chi-squared test used for COPD status. Shapiro-Wilk test for 
normality was performed for all continuous variables. Welch two sample t test was performed for normally distributed 
data; Age, BMI, FEV1, FVC and FEF 25-75. Mann-Whitney U test was performed for skewed data; smoking pack years 
and FEV1/FVC. BMI, body mass index; FEV1, forced expiratory volume in one sec, FVC, forced vital capacity; FEF, Forced 
expiratory flow rate; NA, non-applicable; SD, standard deviation. 
 

Despite the smaller cohort, the subjects were still matched for age, gender, and BMI. However 

there were a higher number of smoking pack years in the COPD subjects (mean 63.8 years, 

±SD50.3) than the healthy ex-smokers (mean 25.5 years, ±SD15.5). This is likely to be due to 

including COPD subjects that had more severe disease (mean FEV1 % predicted 62.9, ±SD13.2), 

and therefore were not eligible for a research bronchoscopy. As expected FEV1% predicted, 

FEV1/FVC and FEF 25-75% predicted was significantly reduced in the COPD group. Due to the 

additional seven patients to this cohort, the COPD subjects now included a full spectrum of 

disease, with mild (7%), moderate (79%) and severe (14%) GOLD stage represented. Not all of 

these patients underwent gas transfer measurement (DLCO) and HRCT assessment and therefore 

these parameters were not included in any analysis. 

It is important to note that the serum EVs were isolated using the ExoMiR™ filtration kit, a 

different method to the BALF EV isolation (see section 2.5.5). This method was chosen due to the 

previous experience of the laboratory group and the abundance of EV RNA recovered from serum 

using this approach. This may have a significant bearing on the results obtained from this analysis, 

especially when comparing them to the BALF EV miRNA results. 
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6.6.2 Differential miRNA expression analysis from serum EV miRNA 

The five up-regulated and three down-regulated miRNA identified from the differential expression 

analysis of the BAL EV miRNA were chosen for analysis in serum EVs by RT-qPCR. In addition, two 

miRNA (miR-16-5p and miR-24-3p) known to be most stably expressed in serum EVs (552) were 

chosen as normalisers. 

The normaliser miRNA showed stable expression across the data set and between groups, with a 

mean Ct 24.6 (±SD 1.6) in healthy ex-smokers and a mean Ct 24.5 (±SD 1.2) in COPD for miR-16-5p 

and a mean Ct 27.1 (±SD 1.0) in healthy ex-smokers and a mean Ct 26.9 (±SD 1.2) in COPD for miR-

24-3p. These data were combined as a geomean to normalise the results of the other miRNA.  

Only four of the eight miRNA were detectable in serum EVs (miR-2110, miR-223-3p, miR-625-3p 

and miR-338-3p), with miR-223-3p showing the highest level of expression in serum EV with a 

mean Ct 24.6 (±SD 2.2) in all samples (compared with mean Ct >30 for the other three miRNA). 

However, only miR-2110 was found to be differentially expressed in COPD compared with healthy 

ex-smokers in the serum EV samples (Figure 6.4). This significance may in part be driven by the 

sample from MICA_II_052 which had the highest normalised expression level of 0.054. This 

subject had the most severe disease with a post-bronchodilator FEV1 % predicted of 46%. 

Upregulated miRNA in COPD BAL EVs detected in serum EVs 

 
Downregulated miRNA in COPD BAL EVs detected in serum EVs 

 
Figure 6.3  Normalised expression levels for miRNA in serum EVs 

2∆Ct, normalised expression levels. Median and 95% confidence intervals shown. Unpaired, Welch’s t 
test, *p <-0.05. N=24; COPD, n=14 
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This prompted a further analysis to examine whether miR-2110 expression in serum EVs 

correlated with disease severity (post-bronchodilator FEV1 % predicted). There was a significant 

association between miR-2110 expression and post-bronchodilator FEV1 % predicted (Figure 6.4), 

with a higher miR-2110 expression in the more severe COPD subjects (r = -0.51, p = 0.03). There 

was no association with other markers of disease severity such as FEF 25-75% predicted (r = -0.33, 

p = 0.25). 

 
Figure 6.4  Relationship between Post FEV1% predicted and miR-2110 expression in serum. 

Pearson correlation performed given FEV1% predicted normally distributed as determined by Shapiro-
Wilk test with a one-tail hypothesis. N=14. 

6.7 Discussion  

Chapter 6 presents the clinical characteristics of the cohort used for BALF EV miRNA validation 

study and their relationship with the differentially expressed miRNA. It presents the findings of 

the ROC curve analysis examining the predictive ability of the EV miRNA to discriminate between 

COPD and healthy ex-smokers and explores the potential of these miRNA to differentiate 

between different inflammatory endotypes of COPD, which may have important implications for 

treatment strategies. Finally, this chapter explores the potential of these dysregulated EV miRNA 

to be used as biomarkers for early disease in the serum of patients with COPD.  

6.7.1 Predictive ability of EV miRNA to differentiate between health and disease 

Results from the ROC curve analysis demonstrated the combination of miR-2110, miR-223-3p and 

miR-182-5p had excellent predictive ability (AUC 0.91) in discriminating between COPD and 

healthy ex-smokers. Importantly this was shown in a relatively mild COPD cohort (mean FEV1 % 

predicted 77.5%; SD±14.8). Currently the diagnosis of COPD depends on the use of spirometry to 

define lung function impairment, however lung function decline can occur before the disease is 
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clinically apparent and therefore decline in FEV1 may not detect early stage disease. Therefore 

having a more sophisticated biomarker of disease that is able to detect pre-clinical disease could 

have significant implications for treatment initiation and long term prognosis in COPD. 

MicroRNA are posed as ideal biomarker candidates as they are easily measurable in liquid 

biopsies (e.g. blood, urine, sputum and BALF) and have demonstrated high sensitivity for 

differentiating stages of disease and even treatment responsiveness (553). Specifically urinary 

exosomal miRNA have been shown to detect early renal fibrosis in lupus nephritis (554) and a 

nine-miRNA multimarker panel for breast carcinoma has been shown to significantly improve 

reliability of breast cancer diagnosis (555). Furthermore, the technologies for detection of these 

small non-coding RNAs are advancing at speed with the development of newer assays requiring 

less time and lower costs in comparison to producing new antibodies for protein biomarkers.  

However in this study, although, a differential EV miRNA signature was found in the lungs of 

patients with COPD, this did not translate into serum. Only four of the differentially expressed 

miRNA were found in the serum EVs and of these, only one (miR-2110) showed differential 

expression in COPD compared with healthy ex-smokers. Interestingly, miR-2110 was also shown 

to correlate with disease severity and therefore highlights its utility as a possible marker of early 

disease. EV miRNA content is known to vary depending on sample type and even plasma and 

serum EVs have shown differences in miRNA expression (556). Therefore, it is perhaps 

unsurprising that the signal detected in the lungs was not translated into peripheral blood. 

Furthermore a different method of EV isolation was used in the serum (ExoMiR™ kit, section 

2.5.5) compared with BALF (ultrafiltration and SEC, sections 2.5.1 and 2.5.2). Thus direct 

comparison of the two EV populations may not be possible. 

One of the challenges of working in the EV field is the lack of cell/tissue of origin specificity 

exosomes display. As discussed in section 1.7, exosomal surface markers correspond to proteins 

from the endosomal compartment (CD9, CD63 and CD81), endocytic pathway (Tsg101 and alix), 

and cytosol (actin and tubulin) (207, 227), which are generic cellular markers. However, unlike 

microvesicles, which express the same surface antigens found on the parent cells, there is no 

consensus on markers that distinguish the origin of exosomes once they have left the cell (557). 

Ideally when evaluating the lung EV miRNA signature in serum, one would be able to stratify the 

EV serum sample for the lung “specific” EVs and hope to find a more specific disease signature. 

More work needs to be done to characterise markers of exosomal origin to allow more specific 

characterisation, particularly in circulatory EV populations which may originate from multiple 

organs and tissue types. 
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Although this thesis highlights novel differences in BALF-derived EV miRNA between health and 

COPD, for this work to be translated into a useful clinical biomarker, the EV miRNA signature 

needs to be measureable in easily accessible biofluids. Given the above mentioned challenges of 

measuring a lung EV specific signature in the peripheral blood, next steps should perhaps focus on 

lung-derived biofluids such as sputum and exhaled breath. Sputum microparticles have already 

been identified in patients with COPD (247) and differential miRNA expression has been identified 

in both induced sputum (309, 327) and exhaled breath (337). Therefore, methodology focused on 

rapid EV isolation and miRNA quantification in these samples may provide a useful platform to 

translate this novel, COPD specific EV miRNA signature into clinical practice. Furtherwork also 

needs to be done to establish the stability of the EV miRNA signature over time and whether 

miRNA expression correlates with disease severity, with studies so far showing high stability in 

blood in cancer (558). In addition, the study of a lung EV miRNA signature in pre-clinical disease 

(i.e in smokers with normal spirometry) may have huge potential in broadening understanding of 

why only some smokers go on to develop COPD. 

6.7.2 Relationships between lung EVs and inflammatory endotypes in COPD 

The heterogeneous clinical manifestations of COPD and differences in response to therapy 

suggest there may be different endotypes of disease that in future may be treated with more 

precision than the current broad-spectrum therapies. Endotypes imply that the underlying 

molecular mechanisms that drive the clinical manifestations of the disease are known but this is 

rarely the case in COPD. Therefore exploring the relationship with lung EV miRNA expression and 

inflammatory cells within the lung may shed new light on these poorly defined pathways. 

Correlative analysis showed there were significant positive correlations between neutrophil 

expression and miR-2110 and miR-182-5p, and eosinophil expression and miR-223-3p. In the 

down-regulated miRNA, miR-204-5p showed significant negative correlations with both 

neutrophil and eosinophil expression, whereas miR-338-3p only significantly correlated with 

eosinophils. These associations raise questions about the origin of these lung-derived EVs and 

their possible target cells. For example, a positive correlation may suggest that a specific cell type 

(e.g. neutrophil) may be the dominant source of a particular EV miRNA (e.g. miR-182-5p) or the 

primary recipient.  

MicroRNA-182-5p is already known to regulate neutrophils, with Li et al. showing miR-182-5p 

enhances neutrophil migration into the vascular endothelium as a mechanism for coronary artery 

scar formation in Kawasaki patients (559). In addition, miR-182 has been shown to regulate 
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granulopoiesis via inhibition of C/EBPα (a master regulator of granulopoiesis) suggesting a role in 

neutrophil generation (560). To date this is the first study linking miR-2110 to neutrophil 

accumulation in the airways, where previous work has focused solely on its role in tumorigenesis 

(450). Interestingly, previous work demonstrated gene ontology (GO) terms enriched among 

genes down-regulated by miR-204 (e.g. transforming growth factor β2 (TGFB2) and complement 

C3a receptor 1 (C3AR1)), were related to neutrophil chemotaxis (561), which is in keeping with 

the negative correlation with neutrophil expression seen in this study. Furthermore, studies show 

that miR-204-5p inhibits inflammation and chemokine generation in renal tubular epithelial cells 

by modulating IL-6 expression (562). This may suggest an anti-inflammatory role within airway 

epithelium, where IL-6 is a potent recruiter of neutrophils during acute inflammation (563). Thus, 

down-regulation of lung-derived EV miR-204-5p may lead to airway neutrophilia via an IL-6 

dependant pathway in patients with COPD. This may suggest targeted treatment promoting miR-

204-5p expression may prevent excessive airway neutrophilia and lead to a reduction in airway 

inflammation and tissue destruction. Thus, exploring the mechanisms of miRNA regulation of 

neutrophil function in COPD may provide key insights into neutrophil dysfunction in this disease 

and identify alternative targets for treatment. 

In this study, eosinophil expression was shown to significantly correlate with miR-204-5p, miR-

223-3p and miR-338-3p expression (Table 6.5, r = -0.57, p = 0.003; r = -0.47, p = 0.03; r = -0.42, p = 

0.03 respectively). MiR-204-5p has been shown to regulate toll-like receptor (TLR) 4 protein 

expression via targeting the transcription factor (SRY-related HMG-box) SOX-11 (564). TLR4 is a 

known activator of eosinophils (565) and therefore miR-204-5p modulation of TLR4 may play a 

role in driving eosinophilia in COPD. MiR-223-3p expression in bronchial biopsies was previously 

shown to correlate with eosinophils in asthmatics (566). Overexpression of miR-223-3p 

significantly reduced granulocyte-macrophage colony stimulating factor (GM-CSF) at baseline and 

in response to house dust mite, poly-(I:C) and cigarette smoke extract stimulation (567). GM-CSF 

is known to promote eosinophil recruitment and cell survival (568) and therefore miR-223-3p may 

be involved in a negative feedback loop, whereby miR-223-3p reduces GM-CSF expression, when 

eosinophil levels are high. Furthermore, miR-223-3p levels are significantly increased in the serum 

and nasal epithelium of patients with allergic rhinitis (569), where it is shown to enhance 

eosinophilic infiltration by targeting the inositol phosphatase INPP4A  (a molecular checkpoint in 

control of the phosphoionositide 3-kinase (PI3K) - mammalian target of rapamycin (mTOR) 

pathway (570)). In another study of allergic rhinitis and asthma, miR-338-3p was found down-

regulated in plasma of allergic rhinitis patients and was shown to target selected inflammatory 

genes mitogen activated protein kinase (MAPK)-8 and inhibitor of nuclear factor kappa-B kinase 
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subunit beta (IKKβ), but had no specific relationship with eosinophil expression (463). A more 

recent study exploring the role of miR-338 specifically in obstructive airways disease 

demonstrated that the expression level of miRNA-338 in the sputum was higher in all patient 

groups compared to controls; however, asthmatics showed a significantly higher miR-338 

expression compared to COPD patients (464). Although these results are in contrast to the above 

results, where lung EVs from COPD patients had reduced levels of miR-338-3p, Lacedonia et al. 

data are from a different compartment (sputum) and did not explore the relationship with 

eosinophilia (464).  

Further analysis exploring the predictive ability of EV miRNA discriminating between different 

inflammatory endotypes in COPD demonstrated miR-223-3p and miR-338-5p showed good 

predictive ability at identifying eosinophilic disease when using a pre-defined cut-off of >1% 

eosinophils in BALF. Furthermore this predictive ability improved when using these miRNA in 

combination, or, when discriminating pure airway eosinophilia from neutrophilic or 

paucigranulocytic disease. This study in combination with previous work suggests that both these 

miRNA (miR-223-3p and miR-338-5p) may play a role in defining eosinophilic airways disease in 

COPD, however the underlying mechanisms are yet to be elucidated.  

There has been considerable interest in the role of blood eosinophil count in predicting treatment 

responsiveness to corticosteroids in COPD patients, based on the premise that they reflect and 

correlate with tissue eosinophilic inflammation (549, 571). However in this study, further analysis 

of historic blood eosinophil expression in COPD patients showed no relationship with lung EV miR-

223-3p, miR-204-p and miR-338-3p expression. This is in keeping with more recent work which 

suggests blood eosinophils do not correlate with lung tissue eosinophilia (411). Therefore the 

mechanisms underlying the treatment responsiveness seen with corticosteroids in high blood 

eosinophilic patients’ needs to be explored further, as it is unlikely this is mediated by lung tissue 

eosinophilic inflammation alone. 

6.7.3 Strengths and limitations 

Importantly, these results showed the excellent predictive ability of specific lung EV miRNA (miR-

2110, miR-223-3p and miR-182-5p) to discriminate between COPD and healthy ex-smokers. These 

findings were shown in a relatively mild COPD cohort, and the importance of early diagnosis as 

well as the limitations of the current diagnostic method – spirometry, has been discussed in 

section 1.3. However, to be used as a diagnostic tool, a biomarker must be easily measurable in 

an easily accessible biofluid. Bronchoscopy is an invasive procedure with risk in those with 
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significant respiratory failure. It therefore is not an appropriate method of diagnosis and exploring 

the role of EVs miRNA found in blood is an important one. There is little consensus in the 

literature with regards to the specificity of circulating EV miRNA in health or disease and extensive 

literature has shown the importance of standardization in EV isolation and analysis techniques to 

facilitate comparison of results (291). A major limitation in this study was the use of different EV 

isolation techniques in serum and BALF, which limited the comparisons between the two EV 

populations. However, these methods were employed at the time as a result of the current 

expertise within the research group and have now evolved to reflect these identified limitations. 

As mentioned above, one of the key challenges is identifying the origin of these circulating EVs 

and until we have fully identified a method of doing this, it will be hard to justify their use as a 

biomarker of disease. 

A major strength of this study is the phenotypic characterisation of the subjects included. This 

allows exploration into the association of the differentially expressed lung EV miRNA with 

different subgroups of disease. A fascinating discovery was the association between certain lung 

EV miRNA (specifically mir-223-3p and miR-338-5p) and eosinophilia within the lungs of patients 

with COPD. Although associations do not imply a causal relationship and the subgroups in this 

analysis are small, these findings are promising for discovery of new inflammatory endotypes in 

COPD and possible identification of new targets for precision based medicine. 

6.7.4 Summary 

In conclusion, these findings suggest specific lung-derived EV miRNA are a strong predictor of 

disease presence in COPD, even in mild disease, and further work should be directed into whether 

these findings could be translated into other bodily compartments (e.g. blood or exhaled breath) 

to increase their utility as a diagnostic biomarker. Furthermore, specific lung EV miRNA correlate 

with expression of inflammatory cells in COPD, and may have a role in defining inflammatory 

endotypes, which could be important in future treatment stratification. 
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 Summary discussion and future work 

7.1 Overview 

COPD morbidity and mortality continues to rise (3), in marked contrast to other chronic diseases, 

where considerable progress has been made due to targeted treatments (2). COPD is a complex, 

heterogeneous disease with many distinct phenotypes and this complexity has limited 

understanding of disease mechanisms and therefore hindered development of effective, novel 

therapies. 

COPD is characterised by persistent airway inflammation with several known underlying 

mechanisms described such as oxidative stress, protease-anti-protease imbalance and immune 

cell dysfunction (548). However, therapy targeted towards these pathological mechanisms have 

had limited success, suggesting that there is more to discover and understand in this disease. 

Extracellular vesicles (EVs) are a novel area of biology to explore in the context of COPD. EVs are 

key intercellular messengers and have been identified as playing an important role in 

inflammatory regulation. They encompass several components including miRNA, which are 

important epigenetic modulators of gene expression in recipient cells. Therefore, understanding 

the impact of EV miRNA in the lungs of COPD patients may uncover new insights and pathological 

mechanisms which could be pertinent to disease progression, but also manipulated for novel 

therapies. 

Thus, the primary goal of my PhD was to understand the targets and functions of EV miRNA in the 

lungs of COPD patients with the main hypothesis being: 

MicroRNA is differentially expressed in extracellular vesicles in the airways of patients with COPD, 

and leads to differential gene expression, which drives chronic inflammation in COPD  

Many of my findings are novel and support the above hypothesis. The main findings are as 

follows:- 

• EVs can be isolated from the bronchoalveolar lavage fluid (BALF) of patients with COPD 

and healthy ex-smokers using a combination of ultrafiltration and size exclusion 

chromatography (SEC). The EV yield and resultant RNA quantity and quality is sufficient to 

examine the miRNA content using next generation sequencing. 
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• There is an increased proportion of miRNA packaged in COPD lung-derived EVs compared 

with healthy ex-smokers. 

• Lung-derived EV miRNA are differentially expressed between patients with COPD and 

healthy ex-smokers, with five upregulated miRNA and three downregulated miRNA in 

COPD.  

• These differentially expressed lung-derived EV miRNA may be involved in epigenetic 

regulation of differentially expressed genes in the airway epithelium in patients with 

COPD.  

• These targeted miRNA-mRNA interactions form a network which may have a significant 

impact on key metabolic and inflammatory pathways and provide new insights into the 

biology of COPD. 

• Lung-derived EV miRNA are a strong predictor of disease presence in patients with COPD, 

even in a mild disease cohort. Although, these findings were not translated into the 

peripheral blood in a smaller, sub-cohort of patients. 

• Specific lung-derived EV miRNAs correlate with expression of inflammatory cells within 

the airways of patients with COPD, which may provide novel insights into the distinct 

inflammatory endotypic disease mechanisms, and could help future treatment 

stratification. 

Next, I will discuss my results in consideration of each of my specific aims (outlined in section 1.5 

and below) in the context of the known literature: 

Overall study aims: 

1. To isolate EVs from the BALF of COPD subjects and healthy ex-smokers. 

2. To identify differentially expressed miRNA in lung-derived EVs in COPD subjects 

compared with healthy ex-smokers. 

3. To identify the biologically significant targets of these differentially expressed miRNA 

in the airway epithelium. 

4. To investigate the diagnostic use of the lung-derived EV miRNA and explore their 

relationship with specific COPD inflammatory endotypes.  
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7.2 Aim 1: Isolate and characterise EVs from bronchoalveolar lavage 

fluid of COPD subjects and healthy ex-smokers 

To my knowledge, this is the first study demonstrating EV isolation from BALF using SEC. All other 

published studies have used ultracentrifugation as their method of choice (232, 233, 354-360). 

SEC was chosen on the basis that it resulted in an adequate yield of EV from BALF and ensured 

separation of the EV fraction from the soluble proteins. This soluble protein separation was 

particularly important for my downstream RNA analysis, as extra-vesicular RNA can be bound to 

soluble protein complexes, such as argonaute 2 (AGO2) (362), which would have contaminated 

my final EV RNA sample. 

During method development, I characterised my EV fractions using a CD9 enzyme-linked 

immunosorbent assay and transmission electron microscopy. These techniques demonstrated 

expression of CD9 (a known EV surface marker) and the characteristic size (30-150 nm) and cup-

shaped morphology of EVs (279). These results confirmed the presence of EVs from BALF using my 

chosen method of isolation. However, I did not compare the EV characteristics between my 

healthy and disease populations. In doing so, I may have identified differences in EV surface 

markers in those derived from the lungs of patients with COPD compared with healthy ex-

smokers. These EV surface marker differences may have led to important insights into the 

biological activity of these EVs or inferred a dominant cell of origin. For example, previous work 

has demonstrated that EVs isolated from BALF can express MHC class I and II, CD54 and CD63 and 

the co-stimulatory molecule CD86 (232). Based on these findings, Admyre et al. concluded that 

these EVs were likely to originate from antigen presenting cells (232). Whereas Kesimer et al. 

demonstrated that epithelial cells secrete EVs enriched for mucins (234) and thus comparing 

these two groups of EV surface markers across health and disease may identify differences in 

cellular origin of EVs. Importantly, understanding the origin of these EVs may reveal the key 

functions of EV miRNA.  

The primary reason for not examining the EV surface markers in more detail was sample 

availability. In order to achieve the EV RNA quantity and quality required for next generation 

sequencing, the entire sample was processed for RNA isolation. Access to bronchoscopy samples 

is limited as this is an invasive procedure for patients to undergo and not without risk. In addition, 

it was not always possible to recover adequate volumes of BALF (at least 15 mL) to undergo EV 

isolation with adequate yield. Previous studies have already analysed different subtypes of EVs in 

samples such as sputum and blood. However, almost all of these studies have focused solely on 
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microparticles (the larger subtype of EVs) in patients with COPD (247-252), except for one study 

which studied circulating plasma exosomes (254). Interestingly this latter study found circulating 

plasma exosome levels were significantly higher in COPD patients and these exosomes were 

predominantly CD9 positive which is consistent with my findings in lung EVs, which showed CD9 

expression rather than CD63 (see section 2.6.1). 

EVs were isolated from serum by filtration using the ExoMir™ kit (methods outlined in section 

2.5.5). This method was chosen due to the experience of the wider research group, and resulted 

in an abundant EV population for downstream RNA analysis. However, there are several 

limitations of using this sample type and method of isolation. Firstly, retrieved vesicles are 

consistently more abundant in sera than plasma (572) due to platelet-derived EV released after 

blood collection during the process of clot formation (573), which may account for over 50% of EV 

in serum. Thus, although serum has been shown to exhibit different EV RNA expression in health 

and disease (574), plasma is recommended as the sample type of choice for investigating 

circulating EVs (291). However, in preliminary experiments (not shown in the thesis), I compared 

serum versus plasma EV miRNA signatures using real time quantitative polymerase chain reaction 

(RT-qPCR) and found no detectable levels of miRNA in the plasma EV samples and thus proceeded 

to use serum for my subsequent experiments. Secondly, using filtration as a method for EV 

isolation may not be the optimal method for studying EV miRNA. Filtration may result in 

contamination from non-EV proteins, which are capable of transporting RNA (e.g. AGO2) (575). In 

addition, EVs may bind to the filtration membrane resulting in lower yields and the forces applied 

during filtration may result in EV deformation or rupture (576). This influenced my choice of EV 

isolation method for the BALF samples where I refined the filtration method using the additional 

step of SEC to isolate the EVs from soluble proteins. 

Given the above factors, it may be difficult to compare the EV miRNA signatures of serum and 

BALF using different EV isolation methods. In Chapter 6 (section 6.6), I assessed whether the 

differentially expressed EV miRNA in BALF were also found in the peripheral blood. Of the eight 

differentially expressed EV miRNA in the lungs of COPD patients, only four were detectable in the 

serum. Of these, only one miRNA (miR-2110) was found differentially expressed between COPD 

and health. Expression of miR-2110 in the serum EVs was also shown to significantly correlate 

with disease severity (FEV1, r =-0.51, p = 0.03). Given, the limited sample numbers (n=24) and 

different EV isolation methods, it may be difficult to draw any firm conclusions from these results. 

Therefore to further investigate the possibility of a lung EV signature presence in the peripheral 

circulation, the methods of EV isolation should be similar but optimised for the sample type and 
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involve more in-depth characterisation of the EVs themselves (e.g. proteomic/lipidomic 

description). This approach may identify cell/tissue specific markers which may give novel insights 

into EV biology. 

Although the EV field is rapidly evolving and expanding, there are still several unknowns with 

regards to the biology of EVs. A major challenge is the huge and underappreciated vesicle 

diversity; with a lack of understanding of EV function stemming from our inability to separate 

complex populations of vesicles into subclasses of particular sizes, compositions and biogenetic 

pathways (291). Furthermore, most EV research has been conducted in vitro, in which the 

experiment specific culture conditions may affect the biochemical and biophysical features of EVs. 

However, recent experiments using animal models have tracked EVs to their cells of origin, 

provide strong evidence in support of an important EV function in vivo (577-579). Furthermore, 

data reproducibility remains a challenge in the field, which is amplified by the EV diversity in both 

cell culture systems and bodily fluids. Small deviations in isolation protocols may result in 

collection of very different EV populations. The position papers by the International Society for 

Extracellular Vesicles (ISEV) and the Extracellular RNA Communication Consortium (ERCC) aim to 

address these issues and outline developments of effective technologies and strategies that allow 

better EV isolation, size characterisation, and definition of cargo composition (580-582). In future 

research, techniques such as single-vesicle analysis (583, 584), will provide greater insights into 

vesicle type and diversity and will reveal new functional and structural properties of EVs, which 

could be manipulated for the treatment of human disease. 

7.3 Aims 2&3: Identify differentially expressed lung-derived EV miRNA 

in patients with COPD compared with healthy ex-smokers and their 

biological significant targets 

Using next generation sequencing, I characterised the small RNA content of the EVs from patients 

with COPD compared with healthy controls. Firstly, my results show a higher proportion of miRNA 

and smallRNA in COPD BALF EVs than healthy ex-smokers (section 4.2.2). To my knowledge, only 

one other study has previously shown altered proportions of miRNAs in EVs in disease, with 

Francisco-Garcia et al. showing deficient loading of miRNAs in the BALF EVs of severe asthmatics 

(420). During their biogenesis, EVs may selectively capture cell-specific proteins, lipids, RNAs and 

DNA, which may become part of the EV’s membrane or cargo (585). However, the exact 

mechanism of such selective packaging remains unknown. Specific sequences present in certain 

miRNA and/or certain proteins may guide the incorporation of specific miRNA into EVs (586-589). 
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These sequences and/or proteins may be dysregulated in COPD leading to higher levels of miRNA 

in COPD lung EVs.  

Different molecules may be concomitantly incorporated into EVs, as illustrated by the different 

subclasses of smallRNA identified in this study (section 4.2.2). In general, biological 

communication systems are characterised by redundancies and interdependence, thus if EVs 

constitute a system of cell-to-cell communication, it has been suggested that EVs are likely to 

harbour some redundancy in surface characteristics and cargo (590). Therefore, to fully 

understand the functionality of EV cargo, technologies such as single-vesicle analysis may help 

decipher the mechanism of selective encapsulation of EV cargo and identify both active and 

redundant elements.  

Moreover, this is the first study showing differential miRNA expression in lung-derived EVs in 

COPD. Specifically, five miRNA (miR-2110, miR-223-3p, miR-182-5p, miR-625-3p and miR-200b-5p) 

were found up-regulated in COPD and three were down-regulated (miR-338-3p, miR-138-5p, miR-

204-5p) when compared to healthy controls. In comparison with previous literature (summarised 

in Table 1.2), this study used a cohort of subjects with COPD and healthy ex-smokers, whereas 

previous work in the lung used samples from smokers (244) and/or murine models (245). None of 

the miRNA identified in the study of smoker BALF EVs (let-7e, let-7g and miR-26b) (244) were 

identified as dysregulated in this study. In addition, the sample size was greater in this study 

(n=44) in comparison with those previously. Therefore the findings in this study are likely to 

represent changes as a result of disease, rather than smoke exposure alone, and are more 

applicable to human disease than a murine model, especially as disease continues after smoking 

cessation (591). 

Several of the differentially expressed lung-derived EV miRNA have been found dysregulated in 

COPD in other sample types. Importantly, miR-223 has been identified as a key regulator in the 

innate immune response in airway disease (592), and up-regulation of non-EV miR-223 has been 

reported in COPD miRNA studies (summarised in Table 1.3). Differential expression of miR-223 

has been observed in several lung sample types (e.g. bronchial brushings, lung tissue and BALF) in 

smokers and patients with COPD (316, 319, 342). In addition, biomass fuel exposure has been 

shown to increase miR-223 expression in serum from women with COPD (345). Yet no studies so 

far have linked miR-223 expression to disease stage, inflammatory phenotype or presence of 

emphysema.  



Chapter 7 

191 

 

In this study of lung-derived EVs, miR-223-3p was the most up-regulated miRNA in COPD 

compared with healthy ex-smokers with a log2FC 2.97 (Table 4.7, FDR = 0.016). In addition, miR-

223-3p was one of the three miRNA (along with miR-182-5p and miR-2110) which showed the 

greatest predictive ability to discriminate between COPD and healthy ex-smokers (Table 6.5, AUC 

0.91). Interestingly, although previous work in asthma suggested that miR-223 expression in 

sputum is associated with neutrophilic disease (435), this study shows lung-EV miR-223-3p 

expression correlates with airway eosinophilia (Table 6.6, r = 0.47, p = 0.03), and moreover 

strongly predicted the presence of pure airway eosinophilia from other inflammatory endotypes 

in COPD (Table 6.9, AUC 0.94). In support of this, miR-223-3p expression in bronchial biopsies was 

previously shown to correlate with eosinophils in asthmatics (566). Overexpression of miR-223-3p 

significantly increased GM-CSF in response to cigarette smoke extract (566), whereby GM-CSF is 

known to promote eosinophil recruitment and cell survival (568). Therefore miR-223-3p may be 

involved in eosinophil recruitment control by increasing GM-CSF expression leading to an increase 

in eosinophil infiltration and cell survival. 

MicroRNA-182 is another candidate which has previously been implicated in COPD pathogenesis, 

with up-regulation found in BALF of smoke exposed mice (327). This thesis showed up-regulation 

of miR-182-5p in lung-derived EVs in COPD compared with healthy ex-smokers (Table 4.7, log2FC 

1.52, FDR = 0.04). Furthermore, miR-182-5p expression correlated with airway neutrophilia in the 

lungs of patients with COPD (Table 6.6, r = 0.46, p = 0.03). MiR-182-5p is already known to 

regulate neutrophil proliferation and migration and therefore EV delivery of miR-182-5p in the 

airways of COPD patients may contribute to neutrophilia. In addition, miR-182-5p has been 

implicated in vascular remodelling (446) and small airway fibrosis (447), both which are key 

pathological processes in COPD.  

MiR-182-5p demonstrated the greatest number of putative mRNA targets within the paired 

epithelial brushing transcriptome (Table 5.7 – 33 predicted genes identified, Figure 5.4 - 16.8% of 

all differentially expressed genes). In addition, cluster analysis identified miR-182-5p to be a 

central component to Cluster 2 (shown in pink in Figure 6.9) suggesting miR-182-5p is key to the 

miR-mRNA interaction network. In addition, lung-EV miR-182-5p expression significantly 

negatively correlated with several target genes, including jade family PHD finger 1 (JADE1) 

expression (Table 5.5, r = -0.52, FDR = 0.002). JADE1 is a negative regulator of Wingless/Integrase-

1 (WNT) signalling, which has been previously implicated in promoting emphysema through 

abnormal alveolar repair (515). Thus, lung-derived EV miR-182-5p reduction of JADE1 expression 

in the airway epithelium could be one mechanism underlying the development of emphysema in 

COPD. MiR-182-5p was also found to co-regulate several target genes in the miR-mRNA 
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interaction network suggesting synergistic activity. For example, CRIM1, which was down-

regulated in COPD epithelial brushings was targeted by three up-regulated miRNA, miR-223-3p, 

miR-182-5p and miR-200b-5p (Figure 5.7). CRIM1 has been implicated in inhibiting the invasion 

and metastasis of lung adenocarcinoma cells via regulation of miR-182 (526) and may play a role 

in capillary formation and maintenance during angiogenesis (527). Thus, down-regulation of 

CRIM1 expression in COPD airway epithelium may have implications for the early development of 

lung cancer and the vascular remodelling in COPD. 

Of the other up-regulated miRNA, very little is known about their regulation in COPD. MiR-2110 

was first reported as one of a group of neurite-inducing miRNAs (449) and may have a role in 

tumour suppression in neuroblastoma (450). Furthermore, it has been identified as one of five 

miRNAs up-regulated in serum exosomes in patients with active tuberculosis infection (451). In 

this thesis, miR-2110 was up-regulated in the lung-derived EVs of patients with COPD compared 

with healthy ex-smokers. MiR-2110 showed strong predictive ability to differentiate between 

health and disease (Table 6.4, AUC 0.81), correlated with neutrophilic airway inflammation (Table 

6.6, r = 0.47, p = 0.03) and was also one of two miRNA to correlate with a physiological measure of 

emphysema (diffusion capacity of the lung for carbon monoxide, DLCO) in COPD patients alone 

(Table 6.2, r = -0.43, p = 0.02). Furthermore, in serum, miR-2110 was the only miRNA significantly 

differentially expressed (Figure 6.3, p = 0.03) and correlated with disease severity as measured by 

FEV1 (Figure 6.4, r = -0.51, p = 0.03). Taken together, miR-2110 is likely to have a role in COPD 

progression and given its association with neutrophilia and DLCO (a surrogate for emphysema), it 

may have a role in potentiating neutrophilic tissue destruction in the lungs of patients with COPD.  

Interestingly, although miR-2110 had far fewer putative mRNA targets identified in the airway 

epithelial transcriptome in COPD (Figure 5.7) than miR-182-5p (likely due to its more recent 

discovery), a number of these targets had larger difference in fold change, suggesting more 

regulation. For example, miR-2110 targeted Sushi Domain Containing 2 (SUSD2) gene was found 

down-regulated in epithelial brushings in COPD (log2FC -1.25, FDR 0.005) and is known to function 

as a tumour suppressor in lung cancer (593). Cheng et al. demonstrated that knockdown of SUSD2 

promoted cell growth in human alveolar epithelial cells (A549 cells) (593), thus miR-2110 

suppression of SUSD2 has implications for COPD as a possible mechanism for aberrant cellular 

repair. 

It is well known that COPD is a significant risk factor for lung cancer independent of cigarette 

smoking (594) and activation of specific inflammatory pathways (such as NFκB signalling) are 

common to both pathologies. MiR-200b belongs to the miR-200 family, which controls epithelial-
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mesenchymal transition (EMT) and metastasis in tumour cells (452, 453). EMT has been 

implicated in the formation of peribronchiolar fibrosis in COPD (115) and may be a precursor of 

lung cancer in these patients (455). Indeed, miR-200b is significantly over-expressed lung cancer 

tissue with estimated fold change exceeding 37 times (595). In this thesis, miR-200b was up-

regulated in the lung-derived EVs of patients with COPD compared with healthy ex-smokers. In 

addition miR-200b-5p showed a strong negative correlation with the physiological measure DLCO 

in COPD patients alone (Table 6.2, r = -0.6, p = 0.001). DLCO is a measure of the total ability of the 

lungs to transfer carbon monoxide across into the bloodstream (596). When the alveolar-capillary 

membrane is thickened, as in fibrosis, the distance which the test gas has to travel to reach the 

blood is increased and the DLCO will be lower. Therefore, these results may suggest that EV 

delivered miR-200b-5p is increasing EMT, resulting in increased airway fibrosis and reduced gas 

transfer (DLCO) in patients with COPD. Thus, modulating this signal may offer a therapeutic 

opportunity to prevent small airway fibrosis and improve gas transfer in patients with COPD. 

As discussed in Chapter 4, miR-625-3p has been implicated in several malignancies (457-459) and 

also has a role in CD8+ T cell proliferation in stem cell transplant patients (460). Furthermore it 

has been implicated in paediatric asthma (461) and has been shown to suppress inflammation by 

targeting protein kinase B2 (AKT2) (462). It is worth noting that there were several missing data 

points for miR-625-3p (n=13 missing points) and therefore the up-regulation in COPD lung-EVs 

may be a less reliable signal. In keeping with this, miR-625-3p was not as strong predictor of 

disease presence in COPD (AUC 0.76) and did not correlate with any inflammatory indices within 

the airways. Moreover, in the miRNA-mRNA interaction network (see Figure 5.7), miR-625-3p had 

only one mRNA target identified (TBC1D3C) within the paired epithelial brushing transcriptome 

and this demonstrated only a tiny down-regulation in COPD with a log2FC -0.0017 (FDR 0.03). 

Therefore in this study miR-625-3p regulation is unlikely to have any significant bearing on disease 

mechanisms.  

In this thesis, miR-338-3p was down-regulated in lung-derived EVs of patients with COPD 

compared with healthy ex-smokers. MiR-338-3p has previously been reported to be down-

regulated in COPD plasma compared with asthmatics and healthy controls (341), and down-

regulated in the plasma of allergic rhinitis patients, where it was shown to target selected 

inflammatory genes MAPK8 and IKKβ (463). In contrast, Lacedonia et al. showed miRNA-338 

expression in the sputum was higher in both patients with asthma and COPD compared to 

controls, however asthmatics showed a significantly higher miR-338 expression compared to 

COPD patients (464). Furthermore, in this thesis, miR-338-3p was the only down-regulated miRNA 

to correlate with a clinical characteristic of COPD, with a moderate correlation with a marker of 
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small airways disease (FEF 25-75%) in COPD patients alone (Table 6.3, r = 0.44, p = 0.02). In 

addition, as with miR-223-3p, miR-338-3p correlated with airway eosinophilia (Table 6.6, r = -0.42, 

p = 0.03), suggesting a role in regulating T helper-2 (Th2)-driven inflammation. Thus given this 

association with eosinophilia, these miRNAs may serve as biomarkers for steroid responsive 

disease in COPD.  

MicroRNA-204-5p was the most significantly down-regulated miRNA in the lung-derived EVs in 

COPD compared with healthy ex-smokers (Table 4.7, log2FC -2.37, FDR 0.037) and had the 

greatest number of putative mRNA targets identified of the down-regulated miRNA (Table 5.7, 20 

predicted genes identified; Figure 5.4, 10.2% of the differentially expressed genes). Importantly, 

as with miR-200b-5p, research suggests a role for miR-204-5p in direct regulation of EMT through 

its targeting of SMAD4, a mediator of TGF-β signalling (474). Wang et al. demonstrated that miR-

204-5p overexpression enhanced the repression of TGF-β2–induced EMT in the presence of 

SMAD4 small interfering RNA (474). Therefore a reduction in miR-204-5p, as seen in lung-derived 

EVs in COPD patients in this study, may lead to an increase in EMT. MiR-204-5p’s regulation of 

EMT suggests synergistic activity with miR-200b-5p (452, 453) and together they may contribute 

to the small airway fibrosis seen in COPD.  

Furthermore, miR-204-5p negatively correlated with both airway neutrophilia and eosinophilia 

(Table 6.6, r = -0.49, p = 0.01; r = -0.57, p = 0.002 respectively). Previous research shows that miR-

204-5p inhibits inflammation and chemokine generation by modulating interleukin (IL)-6 

expression (562). This may suggest down-regulation of lung-derived EV miR-204-5p may 

contribute to airway neutrophilia via an IL-6 dependant pathway in patients with COPD, since IL-6 

is a potent recruiter of neutrophils during acute inflammation (563). Thus, enhanced miR-204-5p 

expression may prevent excessive airway neutrophilia and lead to a reduction in airway 

inflammation and tissue destruction. Whilst there is no direct evidence of miR-204-5p regulation 

of eosinophils, miR-204-5p has been shown to regulate TLR4 (564), which in turn activates 

eosinophils (565) and therefore miR-204-5p modulation of TLR4 may play a role in driving 

eosinophilia in COPD. Moreover neutrophils and eosinophils are both granulocytes with a 

common progenitor cell (myeloblast) and therefore regulation of miR-204-5p may occur before 

differentiation in precursor cell types within the bone marrow.  

MiRNA-138-5p was significantly down-regulated in lung-derived EVs in COPD compared with 

healthy ex-smokers (Table 4.7, log2FC = -1.66, FDR = 0.041). Along with miR-338-3p, miR-138-5p 

was found to negatively correlate with target gene Aldo-keto reductase type 1C 2 (AKR1C2) (Table 

5.5, r = -0.44, FDR 0.01; r = -0.46, FDR 0.009 respectively). The AKR1C family, including AKR1C2, 
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code for enzymes implicated in steroid metabolism and their expression levels are localised in the 

normal tissues of the lung, liver, prostate, testis and mammary glands (517). AKR1C2 regulation is 

associated with several cancers, however their exact mechanism in promoting tumourigenesis is 

not known (518). In-keeping with this thesis, AKR1C2 has been found up-regulated in the airways 

of COPD and healthy smokers (519),  

Cluster analysis (Figure 5.9 – cluster 1 shown in purple) and comparison of the miRNA’s Jaccard 

index values to each other (Figure 5.6) revealed similarity of miR-138-5p with miR-204-5p 

suggesting possible synergistic action. Several genes were co-regulated by miR-138-5p and miR-

204-5p (Figure 5.8), including brain-derived neurotrophic factor (BDNF) gene and sodium voltage-

gated channel alpha subunit 2 (SCN2A) gene. Levels of serum BDNF have been shown in a number 

of studies to correlate with disease severity in COPD (530-532) and its role as a mediator of 

neuronal plasticity, has been shown to be key in acute and chronic inflammatory conditions of the 

airways (533, 534). Furthermore, mutations in SCN1A have a strong association with pulmonary 

emphysema (535) and therefore modulation of this gene in the airway epithelium may have 

important consequences for COPD pathogenesis. 

The quantity of cargo material carried within an EV is extremely small (597) and therefore it is 

assumed that there must be a highly efficient and EV-specific recognition tool in recipient cells 

(585). Furthermore, it is unlikely that a single miRNA is responsible for phenotypic change, where 

rather a panel or subset specific for the task would be released by the donor cell. Considering this 

multi-miRNA regulation, a network approach was employed to understand the synergistic 

activities of the dysregulated miRNA, and gene ontology (GO) enrichment analysis of the miRNA 

target genes to explore pathway regulation.  

To identify the possible EV miRNA–mRNA interactions a number of analytical approaches were 

used. A major strength of this work is the paired dataset between the EV miRNA and epithelial 

brushings from the same lung lobe, in the same subject. This enables a more accurate description 

of the miRNA-mRNA interactions, rather than relying on in silico analysis alone or even 

experimental models, which are an over-simplification of the disease process. The combinatorial 

analytical approach of these miRNA-mRNA interactions, with correlations, synergism analysis and 

clustering enables emphasis of specific interactions, which may have more biological relevance 

and highlights targets that could be taken forward for validation in experimental or therapeutic 

models. 

The miRNA-mRNA interaction network analysis identified several pathways which may be key to 

COPD pathogenesis. Specific miRNA-mRNA interactions have been discussed above, however to 
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examine the overall impact of the miRNA-mRNA interaction network on biological pathways, GO 

enrichment analysis was performed. Pathways involving regulation of phospholipase (PL) were 

found to be significantly targeted in this analysis and mapped to three significantly differently 

expressed genes NPR3, HOMER1 and ARHGAP6, all of which are regulated by miR-182-5p. As 

previously discussed in Chapter 5, PLs are important in cellular homeostasis and are recognised as 

an important mediator of lung inflammation and infection (598). In addition, GO analysis for 

molecular function, identified insulin-like growth factor (IGF) binding as dysregulated with key 

mapped genes INSR, NPR3 and ARHGAP6. Components of the IGF-1 signalling pathway are 

potentiated as biomarkers as they are dysregulated locally or systemically in COPD, however 

these findings vary among different studies (546). In both GO analyses, NPR3 was identified as a 

key target. NPR3 was the most downregulated mRNA in COPD epithelial brushings compared with 

healthy ex-smokers (Table 5.2, log2FC = -2.01, FDR = 0.0003) and has been implicated in COPD 

previously. Most recently, Kachroo et al. showed NPR3 was differentially methylated in smoke 

exposed fetal lung samples (505) and its presence correlated with diseased parenchyma in lung 

biopsies (506). Furthermore, in a COPD mouse model, NPR3 regulation was implicated in 

treatment responsiveness to a GLP-1 agonist (499). IGF-1 has also been implicated in right heart 

failure in COPD via modulation by miR-223-3p (599), and in skeletal muscle wasting (600). This 

invites the possibility that EV miRNA may have a role in multimorbidity in COPD, a condition that 

has been identified as a key modifiable factor in COPD (601). 

In summary, the eight differentially expressed miRNA found in lung-derived EVs in patients with 

COPD were found to target 196 differentially expressed genes in epithelial brushings from the 

same cohort. Several of these miRNA-mRNA interactions are involved in central cellular 

inflammatory and metabolic pathways and are thus likely to play important roles in COPD 

pathophysiology. In addition, these novel findings may have therapeutic potential and lead to the 

development of disease modifying treatments. 

7.4 Aim 4 Explore the diagnostic use of the lung-derived EV miRNA and 

their relationship with specific COPD inflammatory endotypes 

The combination of miR-2110, miR-223-3p and miR-182-5p showed excellent predictive ability 

(AUC 0.91) in discriminating between COPD and healthy ex-smokers. Importantly these findings 

were shown in a relatively mild COPD cohort (mean FEV1 % predicted 77.5%; SD±14.8), with no 

established emphysema on high resolution computer tomography. Thus, these findings may have 

implications for diagnosis and disease mechanisms in early disease. 
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There is growing interest in the origins of COPD as it is envisaged that preventative efforts and 

treatment can modify its clinical course. Furthermore, it is recognised that our current diagnostic 

classifier of FEV1/FVC (4) is a crude tool, which may miss early disease and correlates poorly with 

symptoms particularly in mild disease (602). COPD pathogenesis may begin in utero, where 

passive smoke exposure is associated with adult COPD risk, independent of active or passive 

exposure during lifetime (603). In addition, childhood respiratory impairment, either through 

smoke exposure or infection, leads to an increased risk of reduced adult lung function (604). So 

far, neither measures of inflammation nor other biomarkers can identify individuals with lung 

function in the healthy range who will develop COPD (602), however studies designed 

purposefully to investigate the markers of early disease are ongoing (605). Thus, the potential role 

of EV miRNA as a biomarker of early disease or as a potential mechanisms for early epigenetic 

regulation in COPD may be important to investigate further. 

In the present study, to pursue the role of these differentially expressed miRNA as a biomarker for 

disease, I investigated whether the lung-derived EV miRNA signature was also present in the 

peripheral blood. These results showed only one of the eight miRNA (miR-2110) found in the lung 

EVs was also significantly dysregulated in serum EVs in COPD patients. As discussed in section 7.2 

this lack of translation into the peripheral circulation may be due to the different methodologies 

used for EV isolation. The role of biomarkers in COPD has been the focus of intensive research, 

however due to the complexity and heterogeneity of the disease, it has been suggested that 

future studies should progress from a simplistic approach of comparing patients with COPD with 

control subjects and focus on more specific patient groups or endotypes (606). 

Understanding of COPD endotypes is still limited given the poor understanding of the underlying 

cellular and molecular mechanisms of COPD and how these mechanisms may vary between 

patients. However, the variable clinical manifestations of COPD and differences in response to 

therapy suggest that there may be different endotypes of disease that in future may be treated 

with more precision than current broad spectrum therapies. 

As discussed above, my results suggest that lung-derived EV miR-223-3p and miR-338-5p are 

associated with eosinophilia within the lung. These results may have implications for treatment 

stratification for eosinophilic targeted therapy, given that eosinophilic COPD patients have more 

frequent exacerbations (102, 103) and are more responsive to corticosteroid treatment (104). 

However, a major issue facing the COPD research community is the lack of consensus on the 

appropriate thresholds used to define eosinophilic inflammation in this disease. Eosinophil 

numbers differ during stable disease, exacerbations, and following treatment (607), with blood 
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eosinophil counts known to fluctuate in individuals during a 24-hour period (608). Therefore, it is 

unlikely that a single threshold will be recommended for guiding all treatment decisions. 

Furthermore, evidence varies on whether blood eosinophil levels correlate with eosinophil 

expression within the airways (169, 171, 411) and the mechanism of eosinophilia in COPD is not 

yet certain. Eosinophilic promoters such as IL-5, are all increased in patients with eosinophilic 

COPD (173), however targeted anti-IL-5 treatments (e.g. mepolizumab) have only a minor clinical 

benefit (178). Therefore exploring novel mechanisms for airway eosinophilia in COPD, possibly 

through an EV miRNA mechanism, could provide new therapeutic targets. 

7.5 Summary of the implications of study findings 

7.5.1 EV miRNA as a biomarker in COPD 

To my knowledge, this is the first study to identify differentially expressed miRNA in lung-derived 

EVs in patients with COPD compared with healthy controls. One of the major implications of these 

findings, is whether these EV miRNA could be used as biomarkers of disease, particularly given 

these results were shown in a mild disease cohort. EVs have been identified as novel disease 

biomarkers due to their capacity to reflect parent cells physiological state and microenvironment, 

as well as being highly stable in circulating bodily fluids, with the ability to package an array of 

disease associated molecules (199, 223). A number of studies have already demonstrated the use 

of circulating microvesicles (MVs) as possible biomarker candidates in COPD (250, 260). Although, 

my findings did not translate into the peripheral blood, future studies investigating EV miRNA as a 

biomarker in easily sampled biofluids, such as blood or exhaled breath, may identify novel 

biomarkers for COPD. This could have important implications for early diagnosis and initiation of 

treatment in a disease with growing prevalence. 

7.5.2 Therapeutic potential of EVs in COPD 

Molecular engineering techniques have been employed to modify EV cargo for therapeutic use. 

With particular reference to the findings in this thesis, manipulation of EV miRNAs has been 

performed, with high efficiency of miRNA delivery to recipient cells (275). EVs provide the ideal 

transportation method for therapeutic miRNA cargo given they protect from digestion and 

degradation whilst evading the host immune surveillance system due to their surface markers 

reflecting host cell origin. Given the implications of some of the differentially expressed miRNA 

targets in this study, (e.g. miR-200b-5p and miR-204-3p in possible direct synergistic regulation of 
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EMT), manipulation of these EV miRNA either with mimics or antagomiRs could result in a 

significant impact on COPD pathological processes, such as small airways fibrosis. Given the lack 

of disease modifying treatments, this could be a real step-change in the way we manage this 

condition. 

In summary, this thesis demonstrates that dysregulated EV miRNA in the lungs of COPD patients 

may in part be driving aberrant cellular regulation, specifically in the context of phospholipase C 

and IGF-1 signalling. Both of these pathways are integral to cellular homeostasis, and therefore 

altered epigenetic control via miRNA post-transcriptional regulation of gene expression may lead 

to significant downstream consequences. To further prove this hypothesis, ex vivo modelling 

demonstrating the impact on these miRNA on specific gene expression (e.g. NPR3, HOMER1 and 

ARHGAP6) would provide experimental validation in a disease relevant system. In addition, 

exploring whether altered gene expression is a consequence of a single miRNA target or multiple 

miRNA in synergism would be important in determining the role of EVs as targeted messengers of 

a specific disease miRNA signature. Importantly, examining the functional consequences of 

changes in gene expression (e.g. loss of epithelial barrier integrity) would be an important 

additional step in understanding the consequences of this possible epigenetic regulation. Finally, 

given the high prevalence of comorbidity in COPD, the role of lung derived EV miRNA in driving 

IGF-1 dysregulation may be a key to understanding the complex interplay between lung 

inflammation and systemic comorbidity. Future work could focus on the role of lung EV miRNA in 

driving systemic disease, such as epigenetic control of IGF-1 signalling in potentiating skeletal 

muscle wasting. The full scope of the future work will be discussed in section 7.7. 

7.6 Strengths & Limitations 

The strengths and limitations of this thesis have been discussed throughout this chapter. 

Importantly, the in-depth patient/subject characterisation and paired sampling approach of the 

MICA II cohort has been crucial in providing a platform for investigation of EV miRNA differences 

in COPD. Furthermore, in comparison to other patient focused studies in COPD EV miRNA, the 

sample size was comparable if not larger, leading to increased power of these results. To answer 

the fundamental unknowns in COPD pathogenesis, detailed characterisation of COPD cohorts is 

key to exploring the heterogeneity and complexity of this disease.  

COPD is inherently a disease characterised by pulmonary inflammation. Thus, focusing on lung-

derived samples such as BALF and epithelial brushings to explore the differences and key targets 

of EV miRNA in COPD is likely to gain novel and relevant insights into COPD biology. However, as 
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discussed, bronchoscopy is an invasive procedure with limits on sample availability, and in 

particular reference to biomarker discovery, sampling of more readily available biofluids such as 

blood or sputum will be key to determining the utility of EV miRNA as biomarkers in future. In this 

study, the lack of translatability of the EV miRNA differential signal in the peripheral blood limits 

its value as a diagnostic marker. Thus further work should be done to explore the EV miRNA 

signature in peripheral blood in COPD, with a focus on cell/tissue specific surface marker 

identification, which may have increase EV miRNA disease specificity. 

7.7 Further work 

To fully understand the role of these differentially expressed lung-derived EV miRNA in COPD and 

prove the overall hypothesis, there is a significant amount of further work to be explored. 

7.7.1 Ex vivo cell culture models 

A next step would be to validate the miRNA-mRNA targets in an established experimental ex vivo 

human bronchial epithelial cell model (609). Using a lipofectamine transfection system, which 

mimics EV delivery machinery, transfection of primary human bronchial epithelial cells with the 

differentially expressed miRNA (either as precursor mimics for up-regulated miRNA or as 

antagomiRs for down-regulated miRNA) could be performed. Measurement of downstream target 

gene expression with RT-qPCR would validate the predicted targets of the differentially expressed 

miRNA in a disease relevant cell system and provide an opportunity to further explore synergistic 

activity of different miRNA combinations. The experimental model can be altered to reflect 

different disease specific environments, for example EV miRNA function in the context of viral 

infection. Furthermore, downstream consequences of altered gene expression could be 

measured, for example using immunofluorescence for tight junction proteins (e.g. Zonula 

occludens-1) to assess epithelial cell barrier function.  

7.7.2 Explore EV miRNA-mRNA interactions in other cell types 

As part of the MICA II cohort study, subjects had epithelial biopsies and alveolar macrophages 

collected processed for RNA sequencing. Therefore, it is possible to examine the mRNA targets of 

the differentially expressed miRNA in these tissues and cells. Epithelial biopsies contain a mixture 

of cell types and may give further insights into the likely EV miRNA functions. Whereas alveolar 

macrophages are the dominant inflammatory cell in the airways (67) and have an altered 

phenotype in COPD (70-72). Thus exploring the possible interaction of EV miRNA on macrophage 
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gene expression could identify disease specific pathological mechanisms. Furthermore, by using 

an established in vitro model of naive macrophages derived from monocytes harvested from 

healthy blood (610), it is possible to transfect macrophages in culture with the dysregulated 

miRNA (or relevant antagomiRs) and measure phagocytic ability using green fluorescent protein 

(GFP)-labelled bacteria. In addition, using these established macrophage infection models, 

measurement of cytokine production and expression of cell surface markers (e.g. MHC class I and 

II, CD54 and TLRs) in transfected cells following infection with influenza (611, 612) would 

demonstrate the functional consequences of any miR-mRNA regulation. Together these models 

will validate the findings of the in silico analysis and provide novel mechanistic insights into the 

pathogenesis underlying COPD. 

7.7.3 Interrogate multi-omic readouts to identify downstream effects of EV miRNA 

In addition to RNA sequencing, proteomic, metabolomic and lipidomic analysis was performed on 

the BALF samples in the MICA II cohort subjects. Therefore, it is possible to investigate the 

potential downstream effects of these miRNA-miRNA interactions in each of these ‘omic outputs. 

Importantly, changes in mRNA expression, do not necessarily result in variation at a protein level 

and therefore investigating specific mRNA-protein interactions will add further evidence to the 

importance of these changes in COPD pathogenesis. Lipidomic and metabolomic changes in COPD 

are somewhat under investigated in comparison with the other ‘omic platforms and therefore 

exploring these changes in relation to EV miRNA may give novel insights into pathways and 

cellular processes involved in COPD pathogenesis. With reference to this work, I have already 

started a working collaboration with the AstraZeneca multi-omics bioinformatics team and have 

preliminary expertise in interpreting multi-omic results using strategies such as multi omics data 

integrative clustering and gene set analysis (MOGSA).  

7.7.4 Study of EV miRNA signature in early COPD 

Finally, as discussed in section 7.4, there is renewed focus in the early origins of COPD with the 

prospect of early intervention leading to more favourable prognostic course. Given the results of 

this thesis showing the excellent predictive ability of miR-2110, miR-223-3p and miR-182-5p in 

discriminating between mild COPD and healthy ex-smokers, there is a possible role for EV miRNA 

as a biomarker of early disease. Therefore investigation of EV miRNA in an early disease COPD 

cohort, such as the British Lung Foundation Early COPD cohort (605) may give important insights 

into the role of EV miRNA in the potential mechanisms for the development of COPD in some 

smokers. 
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7.7.5 Summary of future work 

In summary, the investigation of lung-derived EV miRNA in COPD has led to some novel insights 

into possible inflammatory and metabolic mechanisms underlying COPD disease progression. 

Further work pursing the EV miRNA impact on gene expression and downstream protein function 

both at a molecular and cellular level may lead to novel targets for manipulation into new 

therapeutics. Moreover, the combinatorial multi-omic analysis approach provides an exciting 

opportunity to explore in-depth mechanistic processes in a complex disease, which is vital to the 

evolution of novel disease-modifying treatments in COPD. 
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Appendix A Supplementary results from microRNA-

miRNA interaction  

A.1 Differentially expressed genes in epithelial brushings in COPD 

Differential gene expression were assessed with DESeq2 in the 44 epithelial brushing samples (24 

COPD and 20 healthy ex-smokers) and this identified 192 differentially expressed genes between 

COPD and healthy ex-smokers with a false discovery rate (FDR) of <0.05 (summarised in 

Supplementary Table 1). 

Supplementary Table 1 Differentially expressed genes in epithelial brushings comparing COPD 
subjects with healthy ex-smokers. 

ENSEMBL ID HGNC SYMBOL Log2FC P value FDR 

ENSG00000090512 FETUB 2.87 0.00004 0.013 

ENSG00000179593 ALOX15B 2.61 0.00001 0.008 

ENSG00000273331 TM4SF19-DYNLT2B 2.60 0.00001 0.006 

ENSG00000287059 lncRNA 2.55 6.54E-10 2.94E-06 

ENSG00000155918 RAET1L 2.52 0.00014 0.028 

ENSG00000262406 MMP12 2.49 0.00005 0.015 

ENSG00000115590 IL1R2 2.34 2.50E-07 4.50E-04 

ENSG00000287771 Lnc-IL1R1-1 2.24 0.00004 0.012 

ENSG00000111700 SLCO1B3 2.20 3.13E-06 0.003 

ENSG00000255833 TIFAB 2.14 0.00005 0.014 

ENSG00000198488 B3GNT6 2.10 0.00001 0.006 

ENSG00000238266 LINC00707 2.09 0.00001 0.006 

ENSG00000118785 SPP1 2.07 0.00004 0.012 

ENSG00000231683 LOC101927136 2.06 1.08E-06 0.001 

ENSG00000198074 AKR1B10 2.03 2.36E-09 9.09E-06 

ENSG00000187054 TMPRSS11A 2.01 0.00025 0.039 

ENSG00000283994 Lnc-KYNU-14 2.00 0.00032 0.047 

ENSG00000180438 TPRXL 1.94 9.44E-12 5.10E-08 

ENSG00000134827 TCN1 1.90 2.98E-06 0.003 

ENSG00000258227 CLEC5A 1.87 0.00023 0.038 
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ENSEMBL ID HGNC SYMBOL Log2FC P value FDR 

ENSG00000145832 SLC25A48 1.84 0.00003 0.012 

ENSG00000270164 LINC01480 1.83 0.00023 0.038 

ENSG00000138061 CYP1B1 1.83 4.12E-06 0.003 

ENSG00000105388 CEACAM5 1.79 1.63E-06 0.002 

ENSG00000186832 KRT16 1.77 0.00021 0.036 

ENSG00000102962 CCL22 1.73 0.00013 0.027 

ENSG00000167680 SEMA6B 1.72 0.00006 0.016 

ENSG00000180861 LINC01559 1.71 1.77E-06 0.002 

ENSG00000106178 CCL24 1.69 0.00018 0.033 

ENSG00000272405 Lnc-NES-2 1.67 0.00002 0.010 

ENSG00000182885 ADGRG3 1.67 0.00017 0.032 

ENSG00000137440 FGFBP1 1.66 0.00005 0.015 

ENSG00000163421 PROK2 1.66 0.00005 0.014 

ENSG00000080031 PTPRH 1.51 0.00001 0.005 

ENSG00000176697 BDNF 1.44 0.00003 0.012 

ENSG00000253339 Lnc-RDH10-1 1.43 1.29E-07 3.17E-04 

ENSG00000103888 CEMIP 1.42 2.37E-06 0.002 

ENSG00000151012 SLC7A11 1.39 4.21E-06 0.003 

ENSG00000167210 LOXHD1 1.39 0.00007 0.017 

ENSG00000160862 AZGP1 1.34 0.00001 0.005 

ENSG00000146013 GFRA3 1.32 0.00006 0.015 

ENSG00000104368 PLAT 1.29 5.44E-07 0.001 

ENSG00000142224 IL19 1.26 0.00033 0.047 

ENSG00000104783 KCNN4 1.23 1.12E-06 0.001 

ENSG00000128591 FLNC 1.23 0.00009 0.021 

ENSG00000232079 LINC01697 1.21 0.00003 0.011 

ENSG00000065618 COL17A1 1.21 2.48E-07 4.50E-04 

ENSG00000100024 UPB1 1.17 0.00016 0.031 

ENSG00000148926 ADM 1.16 0.00018 0.033 

ENSG00000074410 CA12 1.16 0.00001 0.005 

ENSG00000176153 GPX2 1.14 0.00000 0.000 

ENSG00000080007 DDX43 1.13 0.00036 0.049 

ENSG00000233013 FAM157B 1.11 0.00030 0.044 
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ENSEMBL ID HGNC SYMBOL Log2FC P value FDR 

ENSG00000178363 CALML3 1.09 0.00030 0.045 

ENSG00000134757 DSG3 1.06 0.00002 0.009 

ENSG00000237523 LINC00857 1.02 0.00007 0.017 

ENSG00000248323 LUCAT1 1.01 0.00000 0.001 

ENSG00000130598 TNNI2 0.99 0.00003 0.011 

ENSG00000232931 LINC00342 0.99 0.00002 0.009 

ENSG00000187583 PLEKHN1 0.97 0.00004 0.012 

ENSG00000136531 SCN2A 0.97 0.00031 0.046 

ENSG00000111344 RASAL1 0.94 0.00005 0.015 

ENSG00000158292 GPR153 0.93 0.00004 0.012 

ENSG00000204264 PSMB8 0.91 0.00007 0.017 

ENSG00000090659 CD209 0.91 0.00013 0.027 

ENSG00000232977 LINC00327 0.90 0.00007 0.017 

ENSG00000093009 CDC45 0.89 0.00013 0.027 

ENSG00000151632 AKR1C2 0.88 0.00002 0.010 

ENSG00000148773 MKI67 0.87 0.00003 0.012 

ENSG00000196344 ADH7 0.87 0.00010 0.024 

ENSG00000154040 CABYR 0.85 0.00002 0.009 

ENSG00000164611 PTTG1 0.82 0.00001 0.008 

ENSG00000149043 SYT8 0.81 0.00013 0.027 

ENSG00000112559 MDFI 0.81 0.00019 0.034 

ENSG00000106258 CYP3A5 0.80 0.00006 0.015 

ENSG00000146592 CREB5 0.79 0.00035 0.049 

ENSG00000065911 MTHFD2 0.76 0.00033 0.047 

ENSG00000026508 CD44 0.76 0.00013 0.027 

ENSG00000029153 ARNTL2 0.73 0.00001 0.005 

ENSG00000260658 Lnc-CDH8-10 0.68 0.00036 0.050 

ENSG00000167553 TUBA1C 0.67 0.00007 0.017 

ENSG00000139289 PHLDA1 0.66 0.00016 0.031 

ENSG00000065833 ME1 0.65 0.00025 0.040 

ENSG00000184731 FAM110C 0.65 0.00005 0.014 

ENSG00000099337 KCNK6 0.64 0.00014 0.028 
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ENSEMBL ID HGNC SYMBOL Log2FC P value FDR 

ENSG00000166401 SERPINB8 0.60 0.00000 0.003 

ENSG00000121380 BCL2L14 0.53 0.00004 0.013 

ENSG00000259642 ST20-AS1 0.49 0.00022 0.037 

ENSG00000112699 GMDS 0.49 0.00014 0.028 

ENSG00000104635 SLC39A14 0.49 0.00023 0.038 

ENSG00000182022 CHST15 0.47 0.00006 0.017 

ENSG00000153310 FAM49B 0.47 0.00020 0.035 

ENSG00000158715 SLC45A3 0.46 0.00011 0.025 

ENSG00000213186 TRIM59 0.43 0.00018 0.033 

ENSG00000115295 CLIP4 0.40 0.00001 0.005 

ENSG00000158315 RHBDL2 0.32 0.00021 0.036 

ENSG00000140374 ETFA 0.21 0.00023 0.038 

ENSG00000105641 SLC5A5 0.01 0.00015 0.029 

ENSG00000134028 ADAMDEC1 0.01 0.00018 0.033 

ENSG00000131042 LILRB2 0.0011 2.27E-07 4.50E-04 

ENSG00000229186 ADAM1A 0.0003 8.70E-14 5.87E-10 

ENSG00000179886 TIGD5 0.0003 0.00024 0.039 

ENSG00000273003 ARL2-SNX15 0.0002 0.00000 0.001 

ENSG00000011114 BTBD7 0.00004 0.00001 0.006 

ENSG00000234882 EIF3EP -0.0001 2.49E-07 4.50E-04 

ENSG00000251992 SCARNA17 -0.0003 2.80E-14 2.52E-10 

ENSG00000227508 LINC01624 -0.0005 1.36E-14 1.83E-10 

ENSG00000278599 TBC1D3E -0.0005 3.71E-18 1.00E-13 

ENSG00000278299 TBC1D3C -0.0017 0.00023 0.038 

ENSG00000285645 AL133410.3 -0.01 0.00016 0.031 

ENSG00000165716 DIPK1B -0.01 0.00026 0.040 

ENSG00000113721 PDGFRB -0.01 0.00025 0.039 

ENSG00000250381 UNC93B4 -0.01 0.00011 0.024 

ENSG00000121075 TBX4 -0.01 0.00024 0.039 

ENSG00000137726 FXYD6 -0.02 0.00005 0.014 

ENSG00000189319 FAM53B -0.21 0.00012 0.026 

ENSG00000171823 FBXL14 -0.21 0.00032 0.046 

ENSG00000154930 ACSS1 -0.24 0.00029 0.044 
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ENSEMBL ID HGNC SYMBOL Log2FC P value FDR 

ENSG00000170145 SIK2 -0.24 0.00008 0.019 

ENSG00000133627 ACTR3B -0.26 0.00015 0.030 

ENSG00000176842 IRX5 -0.26 0.00016 0.031 

ENSG00000077684 JADE1 -0.27 0.00004 0.013 

ENSG00000136068 FLNB -0.28 0.00036 0.049 

ENSG00000204186 ZDBF2 -0.29 0.00023 0.038 

ENSG00000019485 PRDM11 -0.29 0.00009 0.021 

ENSG00000154856 APCDD1 -0.31 0.00028 0.043 

ENSG00000149929 HIRIP3 -0.31 0.00003 0.011 

ENSG00000178904 DPY19L3 -0.32 0.00005 0.014 

ENSG00000153487 ING1 -0.32 0.00008 0.019 

ENSG00000118960 HS1BP3 -0.33 0.00000 0.001 

ENSG00000168350 DEGS2 -0.34 0.00026 0.040 

ENSG00000177508 IRX3 -0.34 0.00029 0.044 

ENSG00000214357 NEURL1B -0.34 0.00022 0.037 

ENSG00000171105 INSR -0.35 0.00003 0.012 

ENSG00000144749 LRIG1 -0.35 0.00002 0.010 

ENSG00000172164 SNTB1 -0.36 0.00019 0.033 

ENSG00000112773 TENT5A -0.36 0.00006 0.015 

ENSG00000143365 RORC -0.38 0.00000 0.001 

ENSG00000150938 CRIM1 -0.39 0.00007 0.017 

ENSG00000141232 TOB1 -0.41 0.00033 0.047 

ENSG00000185010 F8 -0.41 0.00031 0.045 

ENSG00000132326 PER2 -0.41 0.00005 0.014 

ENSG00000137486 ARRB1 -0.42 0.00016 0.031 

ENSG00000155090 KLF10 -0.43 0.00004 0.012 

ENSG00000117479 SLC19A2 -0.44 0.00002 0.010 

ENSG00000171943 SRGAP2C -0.45 0.00001 0.008 

ENSG00000181690 PLAG1 -0.46 0.00011 0.024 

ENSG00000047648 ARHGAP6 -0.47 0.00019 0.033 

ENSG00000177283 FZD8 -0.48 0.00011 0.024 

ENSG00000152413 HOMER1 -0.49 0.00003 0.012 
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ENSEMBL ID HGNC SYMBOL Log2FC P value FDR 

ENSG00000106571 GLI3 -0.50 0.00003 0.012 

ENSG00000164776 PHKG1 -0.54 0.00036 0.049 

ENSG00000169515 CCDC8 -0.55 0.00006 0.017 

ENSG00000184986 TMEM121 -0.56 0.00001 0.006 

ENSG00000006210 CX3CL1 -0.57 0.00002 0.011 

ENSG00000146197 SCUBE3 -0.57 0.00018 0.033 

ENSG00000144712 CAND2 -0.58 0.00030 0.045 

ENSG00000181458 TMEM45A -0.59 0.00003 0.011 

ENSG00000187987 ZSCAN23 -0.59 0.00003 0.012 

ENSG00000138615 CILP -0.62 0.00035 0.049 

ENSG00000116039 ATP6V1B1 -0.63 0.00000 0.003 

ENSG00000125730 C3 -0.69 0.00029 0.044 

ENSG00000152931 PART1 -0.71 0.00010 0.022 

ENSG00000166828 SCNN1G -0.72 0.00003 0.011 

ENSG00000073067 CYP2W1 -0.76 0.00025 0.040 

ENSG00000005108 THSD7A -0.76 0.00021 0.036 

ENSG00000197291 RAMP2-AS1 -0.77 0.00004 0.012 

ENSG00000118946 PCDH17 -0.77 0.00031 0.046 

ENSG00000173706 HEG1 -0.78 0.00004 0.012 

ENSG00000079819 EPB41L2 -0.80 0.00001 0.006 

ENSG00000205835 GMNC -0.80 0.00014 0.028 

ENSG00000255471 Lnc-FZD4-1 -0.82 0.00004 0.012 

ENSG00000168874 ATOH8 -0.83 0.00005 0.014 

ENSG00000110900 TSPAN11 -0.86 0.00012 0.026 

ENSG00000161055 SCGB3A1 -0.86 0.00012 0.026 

ENSG00000197838 CYP2A13 -0.89 0.00002 0.011 

ENSG00000129757 CDKN1C -0.93 0.00000 0.001 

ENSG00000205502 C2CD4B -0.96 0.00004 0.014 

ENSG00000007216 SLC13A2 -0.98 0.00002 0.010 

ENSG00000130988 RGN -1.00 0.00021 0.036 

ENSG00000263063 LOC101929552 -1.02 0.00017 0.033 

ENSG00000129437 KLK14 -1.04 0.00020 0.035 

ENSG00000154864 PIEZO2 -1.06 0.00001 0.006 
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ENSEMBL ID HGNC SYMBOL Log2FC P value FDR 

ENSG00000166106 ADAMTS15 -1.07 0.0000002 0.0001 

ENSG00000149021 SCGB1A1 -1.09 0.00004 0.012 

ENSG00000171476 HOPX -1.10 0.00006 0.015 

ENSG00000283413 Lnc-IL12B-3 -1.11 0.00018 0.033 

ENSG00000125144 MT1G -1.12 0.00004 0.012 

ENSG00000078596 ITM2A -1.14 0.00003 0.011 

ENSG00000126562 WNK4 -1.20 0.000001 0.001 

ENSG00000214870 LOC441204 -1.24 0.00011 0.025 

ENSG00000099994 SUSD2 -1.25 0.00001 0.006 

ENSG00000174059 CD34 -1.27 0.00009 0.021 

ENSG00000038295 TLL1 -1.35 0.00003 0.012 

ENSG00000113389 NPR3 -2.01 0.00000 0.000 

ENSG00000198787 OR7E103P -2.34 0.00003 0.012 
HGNC, HUGO Gene Nomenclature Committee; FC, fold change; FDR, False discovery rate. 
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A.2 Correlation analysis of miRNA-mRNA interactions 

Pearson correlations were generated to explore the relationship between the differentially 

expressed miRNA and differentially expressed genes in the epithelial brushings in COPD (see 

section 5.2.4.1). A total of 302 pairs were identified were identified by Pearson correlation test 

with P <0.05, of those 141 had an FDR <0.05. Of these, 85 showed negative correlations implying 

miRNA regulation of mRNA (summarised in Figure 5.3). Comparison of these 85 miRNA-mRNA 

pairs with the results from the in silico target prediction (section 5.2.1) revealed 13 known target 

pairs, defined as direct interactions (summarised in Table 6.5) and 72 unknown pairs defined as 

indirect interactions (summarised in Appendix A, Supplementary Table 2). 

Supplementary Table 2 Indirect miRNA-mRNA interactions from pairwise correlation analyses 

miRNA HGNC SYMBOL r P value FDR 

hsa_mir_182_5p RAMP2-AS1 -0.58 0.00004 0.000 

hsa_mir_223_3p PIEZO2 -0.57 0.00005 0.000 

hsa_mir_2110 SCGB1A1 -0.53 0.0002 0.002 

hsa_mir_223_3p AC008703.1 -0.52 0.0003 0.002 

hsa_mir_138_5p SERPINB8 -0.50 0.0006 0.003 

hsa_mir_223_3p FLNB -0.48 0.001 0.005 

hsa_mir_223_3p ZSCAN23 -0.48 0.001 0.006 

hsa_mir_204_5p AKR1C2 -0.48 0.001 0.006 

hsa_mir_138_5p FAM110C -0.47 0.001 0.007 

hsa_mir_2110 ZSCAN23 -0.46 0.002 0.008 

hsa_mir_182_5p OR4D12P -0.45 0.002 0.009 

hsa_mir_204_5p AL365181.3 -0.45 0.002 0.009 

hsa_mir_338_3p AZGP1 -0.45 0.002 0.009 

hsa_mir_338_3p CYP1B1 -0.45 0.002 0.01 

hsa_mir_223_3p ACSS1 -0.45 0.002 0.01 

hsa_mir_338_3p FAM110C -0.45 0.002 0.01 

hsa_mir_138_5p CA12 -0.44 0.003 0.01 

hsa_mir_138_5p DSG3 -0.44 0.003 0.01 

hsa_mir_182_5p CCDC8 -0.44 0.003 0.01 

hsa_mir_138_5p CEMIP -0.44 0.003 0.01 

hsa_mir_138_5p ALOX15B -0.44 0.003 0.01 

hsa_mir_223_3p PHKG1 -0.44 0.003 0.01 

hsa_mir_2110 GMNC -0.43 0.003 0.01 
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hsa_mir_223_3p DEGS2 -0.43 0.004 0.02 

hsa_mir_338_3p CHST15 -0.42 0.004 0.02 

hsa_mir_338_3p ALOX15B -0.42 0.004 0.02 

hsa_mir_182_5p WNK4 -0.42 0.004 0.02 

hsa_mir_338_3p CLIP4 -0.42 0.005 0.02 

hsa_mir_138_5p GPX2 -0.41 0.005 0.02 

hsa_mir_2110 PLAG1 -0.41 0.005 0.02 

hsa_mir_204_5p ADAMDEC1 -0.41 0.005 0.02 

hsa_mir_2110 CYP2A13 -0.41 0.006 0.02 

hsa_mir_223_3p SNTB1 -0.41 0.006 0.02 

hsa_mir_200b_5p SCGB1A1 -0.41 0.006 0.02 

hsa_mir_2110 HS1BP3 -0.41 0.006 0.02 

hsa_mir_182_5p C2CD4B -0.40 0.008 0.03 

hsa_mir_204_5p CDC45 -0.40 0.008 0.03 

hsa_mir_204_5p ALOX15B -0.39 0.008 0.03 

hsa_mir_338_3p SERPINB8 -0.39 0.009 0.03 

hsa_mir_338_3p DSG3 -0.39 0.009 0.03 

hsa_mir_138_5p ENSG00000287059 -0.39 0.009 0.03 

hsa_mir_204_5p SLC25A48 -0.38 0.01 0.03 

hsa_mir_223_3p TMEM121 -0.38 0.01 0.03 

hsa_mir_338_3p FLNC -0.38 0.01 0.03 

hsa_mir_2110 PIEZO2 -0.38 0.01 0.04 

hsa_mir_223_3p OR4D12P -0.38 0.01 0.04 

hsa_mir_138_5p COL17A1 -0.37 0.01 0.04 

hsa_mir_2110 AC004540.1 -0.37 0.01 0.04 

hsa_mir_338_3p CA12 -0.37 0.01 0.04 

hsa_mir_138_5p CALML3 -0.37 0.01 0.04 

hsa_mir_625_3p LINC01480 -0.37 0.01 0.04 

hsa_mir_338_3p MDFI -0.37 0.01 0.04 

hsa_mir_182_5p ACTR3B -0.36 0.02 0.045 

hsa_mir_338_3p IL1R2 -0.36 0.02 0.047 

hsa_mir_182_5p TSPAN11 -0.36 0.02 0.047 

hsa_mir_182_5p GMNC -0.36 0.02 0.048 
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hsa_mir_204_5p DDX43 -0.36 0.02 0.049 

Genes in bold also direct targets for alternative miRNA. r – generated using Pearson’s correlation coefficient. FDR 
calculated using the Benjamini-Hochberg method. 

 



List of References 

213 

 

List of References 

1. Adeloye D, Chua S, Lee C, Basquill C, Papana A, Theodoratou E, et al. Global and regional estimates of 
COPD prevalence: Systematic review and meta-analysis. Journal of global health. 2015;5(2):020415. 

2. World Health Organisation: Global Health Estimates 2016: Disease burden by Cause, Age, Sex, by 
Country and by Region, 2000-2016. 2018. 

3. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS 
medicine. 2006;3(11):e442. 

4. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, 
management, and prevention of Chronic Obstructive Pulmonary Disease, 2019 Report. www.goldcopd.org; 
2018. 

5. Fletcher C, Peto R. The natural history of chronic airflow obstruction. British Medical Journal. 
1977;1(6077):1645-8. 

6. Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD: a summary of 
the ATS/ERS position paper. Eur Respir J. 2004;23(6):932-46. 

7. Sinden NJ, Stockley RA. Systemic inflammation and comorbidity in COPD: a result of 'overspill' of 
inflammatory mediators from the lungs? Review of the evidence. Thorax. 2010;65(10):930-6. 

8. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality 
from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of 
Disease Study 2010. Lancet. 2012;380(9859):2095-128. 

9. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years lived with disability (YLDs) 
for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of 
Disease Study 2010. Lancet. 2012;380(9859):2163-96. 

10. Halbert RJ, Natoli JL, Gano A, Badamgarav E, Buist AS, Mannino DM. Global burden of COPD: 
systematic review and meta-analysis. Eur Respir J. 2006;28(3):523-32. 

11. Quach A, Giovannelli J, Cherot-Kornobis N, Ciuchete A, Clement G, Matran R, et al. Prevalence and 
underdiagnosis of airway obstruction among middle-aged adults in northern France: The ELISABET study 
2011-2013. Respiratory medicine. 2015;109(12):1553-61. 

12. American Thoracic Society Foundation: The Global Burden of Lung Disease 2014 [Available from: 
http://foundation.thoracic.org/news/global-burden.php. 

13. Halpin DM, Miravitlles M. Chronic obstructive pulmonary disease: the disease and its burden to 
society. Proc Am Thorac Soc. 2006;3(7):619-23. 

14. Stern DA, Morgan WJ, Wright AL, Guerra S, Martinez FD. Poor airway function in early infancy and 
lung function by age 22 years: a non-selective longitudinal cohort study. Lancet. 2007;370(9589):758-64. 

15. Tashkin DP, Altose MD, Bleecker ER, Connett JE, Kanner RE, Lee WW, et al. The lung health study: 
airway responsiveness to inhaled methacholine in smokers with mild to moderate airflow limitation. The 
Lung Health Study Research Group. Am Rev Respir Dis. 1992;145(2 Pt 1):301-10. 

16. Lange P, Celli B, Agusti A. Lung-Function Trajectories and Chronic Obstructive Pulmonary Disease. 
The New England journal of medicine. 2015;373(16):1575. 

17. Sveger T. Liver disease in alpha1-antitrypsin deficiency detected by screening of 200,000 infants. The 
New England journal of medicine. 1976;294(24):1316-21. 

http://foundation.thoracic.org/news/global-burden.php


List of References 

214 

18. Rennard SI, Vestbo J. COPD: the dangerous underestimate of 15%. Lancet. 2006;367(9518):1216-9. 

19. Hutchison DC. Alpha 1-antitrypsin deficiency in Europe: geographical distribution of Pi types S and Z. 
Respiratory medicine. 1998;92(3):367-77. 

20. Stanley SE, Chen JJ, Podlevsky JD, Alder JK, Hansel NN, Mathias RA, et al. Telomerase mutations in 
smokers with severe emphysema. J Clin Invest. 2015;125(2):563-70. 

21. Cohen BH, Ball WC, Jr., Brashears S, Diamond EL, Kreiss P, Levy DA, et al. Risk factors in chronic 
obstructive pulmonary disease (COPD). American journal of epidemiology. 1977;105(3):223-32. 

22. Silverman EK, Chapman HA, Drazen JM, Weiss ST, Rosner B, Campbell EJ, et al. Genetic epidemiology 
of severe, early-onset chronic obstructive pulmonary disease. Risk to relatives for airflow obstruction and 
chronic bronchitis. Am J Respir Crit Care Med. 1998;157(6 Pt 1):1770-8. 

23. Silverman EK, Palmer LJ, Mosley JD, Barth M, Senter JM, Brown A, et al. Genomewide linkage analysis 
of quantitative spirometric phenotypes in severe early-onset chronic obstructive pulmonary disease. 
American journal of human genetics. 2002;70(5):1229-39. 

24. Soler Artigas M, Wain LV, Repapi E, Obeidat M, Sayers I, Burton PR, et al. Effect of five genetic 
variants associated with lung function on the risk of chronic obstructive lung disease, and their joint effects 
on lung function. Am J Respir Crit Care Med. 2011;184(7):786-95. 

25. Cho MH, Boutaoui N, Klanderman BJ, Sylvia JS, Ziniti JP, Hersh CP, et al. Variants in FAM13A are 
associated with chronic obstructive pulmonary disease. Nature genetics. 2010;42(3):200-2. 

26. Pillai SG, Ge D, Zhu G, Kong X, Shianna KV, Need AC, et al. A genome-wide association study in 
chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS genetics. 
2009;5(3):e1000421. 

27. Wain LV, Shrine N, Artigas MS, Erzurumluoglu AM, Noyvert B, Bossini-Castillo L, et al. Genome-wide 
association analyses for lung function and chronic obstructive pulmonary disease identify new loci and 
potential druggable targets. Nature genetics. 2017;49(3):416-25. 

28. Mercado N, Ito K, Barnes PJ. Accelerated ageing of the lung in COPD: new concepts. Thorax. 
2015;70(5):482-9. 

29. Meiners S, Eickelberg O, Königshoff M. Hallmarks of the ageing lung. Eur Respir J. 2015;45(3):807-27. 

30. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 
2013;153(6):1194-217. 

31. Brandsma C-A, de Vries M, Costa R, Woldhuis RR, Königshoff M, Timens W. Lung ageing and COPD: is 
there a role for ageing in abnormal tissue repair? European Respiratory Review. 2017;26(146). 

32. Tuder RM, Kern JA, Miller YE. Senescence in chronic obstructive pulmonary disease. Proc Am Thorac 
Soc. 2012;9(2):62-3. 

33. Antony VB, Thannickal VJ. Cellular Senescence in Chronic Obstructive Pulmonary Disease: 
Multifaceted and Multifunctional. Am J Respir Cell Mol Biol. 2018;59(2):135-6. 

34. Todisco T, de Benedictis FM, Iannacci L, Baglioni S, Eslami A, Todisco E, et al. Mild prematurity and 
respiratory functions. European journal of pediatrics. 1993;152(1):55-8. 

35. Barker DJ, Godfrey KM, Fall C, Osmond C, Winter PD, Shaheen SO. Relation of birth weight and 
childhood respiratory infection to adult lung function and death from chronic obstructive airways disease. 
Bmj. 1991;303(6804):671-5. 

36. Lawlor DA, Ebrahim S, Davey Smith G. Association of birth weight with adult lung function: findings 
from the British Women's Heart and Health Study and a meta-analysis. Thorax. 2005;60(10):851-8. 

37. Stocks J, Sonnappa S. Early life influences on the development of chronic obstructive pulmonary 
disease. Therapeutic advances in respiratory disease. 2013;7(3):161-73. 



List of References 

215 

 

38. Shaheen SO, Barker DJ, Holgate ST. Do lower respiratory tract infections in early childhood cause 
chronic obstructive pulmonary disease? Am J Respir Crit Care Med. 1995;151(5):1649-51; discussion 51-2. 

39. Kohansal R, Martinez-Camblor P, Agusti A, Buist AS, Mannino DM, Soriano JB. The natural history of 
chronic airflow obstruction revisited: an analysis of the Framingham offspring cohort. Am J Respir Crit Care 
Med. 2009;180(1):3-10. 

40. Yin P, Jiang CQ, Cheng KK, Lam TH, Lam KH, Miller MR, et al. Passive smoking exposure and risk of 
COPD among adults in China: the Guangzhou Biobank Cohort Study. Lancet. 2007;370(9589):751-7. 

41. Burke H, Leonardi-Bee J, Hashim A, Pine-Abata H, Chen Y, Cook DG, et al. Prenatal and passive smoke 
exposure and incidence of asthma and wheeze: systematic review and meta-analysis. Pediatrics. 
2012;129(4):735-44. 

42. Beyer D, Mitfessel H, Gillissen A. Maternal smoking promotes chronic obstructive lung disease in the 
offspring as adults. European journal of medical research. 2009;14 Suppl 4(Suppl 4):27-31. 

43. Gan WQ, FitzGerald JM, Carlsten C, Sadatsafavi M, Brauer M. Associations of ambient air pollution 
with chronic obstructive pulmonary disease hospitalization and mortality. Am J Respir Crit Care Med. 
2013;187(7):721-7. 

44. Ezzati M. Indoor air pollution and health in developing countries. Lancet. 2005;366(9480):104-6. 

45. Zhou Y, Zou Y, Li X, Chen S, Zhao Z, He F, et al. Lung function and incidence of chronic obstructive 
pulmonary disease after improved cooking fuels and kitchen ventilation: a 9-year prospective cohort study. 
PLoS medicine. 2014;11(3):e1001621-e. 

46. Gualano RC, Hansen MJ, Vlahos R, Jones JE, Park-Jones RA, Deliyannis G, et al. Cigarette smoke 
worsens lung inflammation and impairs resolution of influenza infection in mice. Respir Res. 2008;9(1):53-. 

47. Saetta M. Airway inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 
1999;160(5 Pt 2):S17-20. 

48. MacNee W. Pathogenesis of Chronic Obstructive Pulmonary Disease. Proceedings of the American 
Thoracic Society. 2005;2(4):258-66. 

49. Gamble E, Grootendorst DC, Hattotuwa K, O'Shaughnessy T, Ram FS, Qiu Y, et al. Airway mucosal 
inflammation in COPD is similar in smokers and ex-smokers: a pooled analysis. Eur Respir J. 2007;30(3):467-
71. 

50. Louhelainen N, Rytilä P, Haahtela T, Kinnula VL, Djukanović R. Persistence of oxidant and protease 
burden in the airways after smoking cessation. BMC Pulm Med. 2009;9:25. 

51. Mercer BA, Kolesnikova N, Sonett J, D'Armiento J. Extracellular regulated kinase/mitogen activated 
protein kinase is up-regulated in pulmonary emphysema and mediates matrix metalloproteinase-1 
induction by cigarette smoke. J Biol Chem. 2004;279(17):17690-6. 

52. Lee SH, Goswami S, Grudo A, Song LZ, Bandi V, Goodnight-White S, et al. Antielastin autoimmunity in 
tobacco smoking-induced emphysema. Nat Med. 2007;13(5):567-9. 

53. Hassan F, Xu X, Nuovo G, Killilea DW, Tyrrell J, Da Tan C, et al. Accumulation of metals in GOLD4 
COPD lungs is associated with decreased CFTR levels. Respir Res. 2014;15(1):69. 

54. Sze MA, Dimitriu PA, Suzuki M, McDonough JE, Campbell JD, Brothers JF, et al. Host Response to the 
Lung Microbiome in Chronic Obstructive Pulmonary Disease. American journal of respiratory and critical 
care medicine. 2015;192(4):438-45. 

55. Chung KF, Adcock IM. Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair 
and destruction. Eur Respir J. 2008;31(6):1334-56. 



List of References 

216 

56. Di Stefano A, Capelli A, Lusuardi M, Balbo P, Vecchio C, Maestrelli P, et al. Severity of airflow 
limitation is associated with severity of airway inflammation in smokers. Am J Respir Crit Care Med. 
1998;158(4):1277-85. 

57. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, et al. The nature of small-airway 
obstruction in chronic obstructive pulmonary disease. The New England journal of medicine. 
2004;350(26):2645-53. 

58. Hiemstra PS, van Wetering S, Stolk J. Neutrophil serine proteinases and defensins in chronic 
obstructive pulmonary disease: effects on pulmonary epithelium. Eur Respir J. 1998;12(5):1200-8. 

59. Dubravec DB, Spriggs DR, Mannick JA, Rodrick ML. Circulating human peripheral blood granulocytes 
synthesize and secrete tumor necrosis factor alpha. Proc Natl Acad Sci U S A. 1990;87(17):6758-61. 

60. Hoenderdos K, Condliffe A. The neutrophil in chronic obstructive pulmonary disease. Am J Respir Cell 
Mol Biol. 2013;48(5):531-9. 

61. Barnes PJ. The cytokine network in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 
2009;41(6):631-8. 

62. Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J 
Allergy Clin Immunol. 2016;138(1):16-27. 

63. Burgel PR, Nadel JA. Roles of epidermal growth factor receptor activation in epithelial cell repair and 
mucin production in airway epithelium. Thorax. 2004;59(11):992-6. 

64. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil 
extracellular traps kill bacteria. Science (New York, NY). 2004;303(5663):1532-5. 

65. Hoenderdos K, Condliffe A. The Neutrophil in Chronic Obstructive Pulmonary Disease. Too Little, Too 
Late or Too Much, Too Soon? American Journal of Respiratory Cell and Molecular Biology. 2013;48(5):531-9. 

66. Sapey E, Stockley JA, Greenwood H, Ahmad A, Bayley D, Lord JM, et al. Behavioral and structural 
differences in migrating peripheral neutrophils from patients with chronic obstructive pulmonary disease. 
Am J Respir Crit Care Med. 2011;183(9):1176-86. 

67. Linden M, Rasmussen JB, Piitulainen E, Tunek A, Larson M, Tegner H, et al. Airway inflammation in 
smokers with nonobstructive and obstructive chronic bronchitis. Am Rev Respir Dis. 1993;148(5):1226-32. 

68. Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J. Macrophages sequentially change their 
functional phenotype in response to changes in microenvironmental influences. J Immunol. 
2005;175(1):342-9. 

69. Pesci A, Balbi B, Majori M, Cacciani G, Bertacco S, Alciato P, et al. Inflammatory cells and mediators 
in bronchial lavage of patients with chronic obstructive pulmonary disease. Eur Respir J. 1998;12(2):380-6. 

70. McKendry RT, Spalluto CM, Burke H, Nicholas B, Cellura D, Al-Shamkhani A, et al. Dysregulation of 
Anti-viral Function of CD8+T Cells in the COPD Lung: Role of the PD1/PDL1 Axis. Am J Respir Crit Care Med. 
2015. 

71. Donnelly LE, Barnes PJ. Defective phagocytosis in airways disease. Chest. 2012;141(4):1055-62. 

72. Berenson CS, Wrona CT, Grove LJ, Maloney J, Garlipp MA, Wallace PK, et al. Impaired alveolar 
macrophage response to Haemophilus antigens in chronic obstructive lung disease. Am J Respir Crit Care 
Med. 2006;174(1):31-40. 

73. Shapiro SD. The macrophage in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 
1999;160(5 Pt 2):S29-32. 

74. Retamales I, Elliott WM, Meshi B, Coxson HO, Pare PD, Sciurba FC, et al. Amplification of 
inflammation in emphysema and its association with latent adenoviral infection. Am J Respir Crit Care Med. 
2001;164(3):469-73. 



List of References 

217 

 

75. Finkelstein R, Fraser RS, Ghezzo H, Cosio MG. Alveolar inflammation and its relation to emphysema 
in smokers. Am J Respir Crit Care Med. 1995;152(5 Pt 1):1666-72. 

76. Meshi B, Vitalis TZ, Ionescu D, Elliott WM, Liu C, Wang XD, et al. Emphysematous lung destruction by 
cigarette smoke. The effects of latent adenoviral infection on the lung inflammatory response. Am J Respir 
Cell Mol Biol. 2002;26(1):52-7. 

77. Traves SL, Culpitt SV, Russell RE, Barnes PJ, Donnelly LE. Increased levels of the chemokines 
GROalpha and MCP-1 in sputum samples from patients with COPD. Thorax. 2002;57(7):590-5. 

78. Tomita K, Caramori G, Lim S, Ito K, Hanazawa T, Oates T, et al. Increased p21(CIP1/WAF1) and B cell 
lymphoma leukemia-x(L) expression and reduced apoptosis in alveolar macrophages from smokers. Am J 
Respir Crit Care Med. 2002;166(5):724-31. 

79. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nature reviews 
Immunology. 2011;11(11):723-37. 

80. Barnes PJ. Alveolar Macrophages as Orchestrators of COPD. COPD: Journal of Chronic Obstructive 
Pulmonary Disease. 2004;1(1):59-70. 

81. Fathi M, Johansson A, Lundborg M, Orre L, Skold CM, Camner P. Functional and morphological 
differences between human alveolar and interstitial macrophages. Experimental and molecular pathology. 
2001;70(2):77-82. 

82. Duan M, Li WC, Vlahos R, Maxwell MJ, Anderson GP, Hibbs ML. Distinct macrophage subpopulations 
characterize acute infection and chronic inflammatory lung disease. J Immunol. 2012;189(2):946-55. 

83. Laskin DL, Weinberger B, Laskin JD. Functional heterogeneity in liver and lung macrophages. J Leukoc 
Biol. 2001;70(2):163-70. 

84. Haugen TS, Nakstad B, Lyberg T. Heterogeneity of Procoagulant Activity and Cytokine Release in 
Subpopulations of Alveolar Macrophages and Monocytes. Inflammation. 1999;23(1):15-23. 

85. Spiteri MA, Clarke SW, Poulter LW. Isolation of phenotypically and functionally distinct macrophage 
subpopulations from human bronchoalveolar lavage. Eur Respir J. 1992;5(6):717-26. 

86. Shapiro SD, Campbell EJ, Kobayashi DK, Welgus HG. Dexamethasone selectively modulates basal and 
lipopolysaccharide-induced metalloproteinase and tissue inhibitor of metalloproteinase production by 
human alveolar macrophages. J Immunol. 1991;146(8):2724-9. 

87. Russell RE, Thorley A, Culpitt SV, Dodd S, Donnelly LE, Demattos C, et al. Alveolar macrophage-
mediated elastolysis: roles of matrix metalloproteinases, cysteine, and serine proteases. Am J Physiol Lung 
Cell Mol Physiol. 2002;283(4):L867-73. 

88. Caramori G, Romagnoli M, Casolari P, Bellettato C, Casoni G, Boschetto P, et al. Nuclear localisation 
of p65 in sputum macrophages but not in sputum neutrophils during COPD exacerbations. Thorax. 
2003;58(4):348-51. 

89. Culpitt SV, Rogers DF, Shah P, De Matos C, Russell RE, Donnelly LE, et al. Impaired inhibition by 
dexamethasone of cytokine release by alveolar macrophages from patients with chronic obstructive 
pulmonary disease. Am J Respir Crit Care Med. 2003;167(1):24-31. 

90. Invernizzi G. Persistence of systemic inflammation in COPD in spite of smoking cessation. 
Multidisciplinary respiratory medicine. 2011;6(4):210-1. 

91. Majo J, Ghezzo H, Cosio MG. Lymphocyte population and apoptosis in the lungs of smokers and their 
relation to emphysema. Eur Respir J. 2001;17(5):946-53. 

92. Fairclough L, Urbanowicz RA, Corne J, Lamb JR. Killer cells in chronic obstructive pulmonary disease. 
Clinical science (London, England : 1979). 2008;114(8):533-41. 



List of References 

218 

93. Cosio MG, Saetta M, Agusti A. Immunologic aspects of chronic obstructive pulmonary disease. The 
New England journal of medicine. 2009;360(23):2445-54. 

94. Polosukhin VV. Ultrastructural of the bronchial epithelium in chronic inflammation. Ultrastructural 
pathology. 2001;25(2):119-28. 

95. Salazar LM, Herrera AM. Fibrotic response of tissue remodeling in COPD. Lung. 2011;189(2):101-9. 

96. Lumsden AB, McLean A, Lamb D. Goblet and Clara cells of human distal airways: evidence for 
smoking induced changes in their numbers. Thorax. 1984;39(11):844-9. 

97. Leopold PL, O'Mahony MJ, Lian XJ, Tilley AE, Harvey BG, Crystal RG. Smoking is associated with 
shortened airway cilia. PLoS ONE. 2009;4(12):e8157. 

98. Biagioli MC, Kaul P, Singh I, Turner RB. The role of oxidative stress in rhinovirus induced elaboration 
of IL-8 by respiratory epithelial cells. Free radical biology & medicine. 1999;26(3-4):454-62. 

99. Kaul P, Biagioli MC, Singh I, Turner RB. Rhinovirus-induced oxidative stress and interleukin-8 
elaboration involves p47-phox but is independent of attachment to intercellular adhesion molecule-1 and 
viral replication. The Journal of infectious diseases. 2000;181(6):1885-90. 

100. Gielen V, Johnston SL, Edwards MR. Azithromycin induces anti-viral responses in bronchial epithelial 
cells. Eur Respir J. 2010;36(3):646-54. 

101. Araya J, Cambier S, Markovics JA, Wolters P, Jablons D, Hill A, et al. Squamous metaplasia amplifies 
pathologic epithelial-mesenchymal interactions in COPD patients. J Clin Invest. 2007;117(11):3551-62. 

102. Chung KF. Inflammatory mediators in chronic obstructive pulmonary disease. Current drug targets 
Inflammation and allergy. 2005;4(6):619-25. 

103. Aaron SD, Angel JB, Lunau M, Wright K, Fex C, Le Saux N, et al. Granulocyte inflammatory markers 
and airway infection during acute exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit 
Care Med. 2001;163(2):349-55. 

104. Bhowmik A, Seemungal TAR, Sapsford RJ, Wedzicha JA. Relation of sputum inflammatory markers to 
symptoms and lung function changes in COPD exacerbations. Thorax. 2000;55(2):114. 

105. Berkow RL, Wang D, Larrick JW, Dodson RW, Howard TH. Enhancement of neutrophil superoxide 
production by preincubation with recombinant human tumor necrosis factor. The Journal of Immunology. 
1987;139(11):3783. 

106. Yang S, Wang Y, Mei K, Zhang S, Sun X, Ren F, et al. Tumor necrosis factor receptor 2 
(TNFR2)·interleukin-17 receptor D (IL-17RD) heteromerization reveals a novel mechanism for NF-κB 
activation. J Biol Chem. 2015;290(2):861-71. 

107. Zarubin T, Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Research. 
2005;15(1):11-8. 

108. Russell REK, Culpitt SV, DeMatos C, Donnelly L, Smith M, Wiggins J, et al. Release and Activity of 
Matrix Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 by Alveolar Macrophages from 
Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular 
Biology. 2002;26(5):602-9. 

109. de Boer WI, Sont JK, van Schadewijk A, Stolk J, van Krieken JH, Hiemstra PS. Monocyte 
chemoattractant protein 1, interleukin 8, and chronic airways inflammation in COPD. J Pathol. 
2000;190(5):619-26. 

110. Barnes PJ. Mediators of Chronic Obstructive Pulmonary Disease. Pharmacological Reviews. 
2004;56(4):515. 

111. Takizawa H, Tanaka M, Takami K, Ohtoshi T, Ito K, Satoh M, et al. Increased Expression of 
Transforming Growth Factor- β 1 in Small Airway Epithelium from Tobacco Smokers and Patients with 



List of References 

219 

 

Chronic Obstructive Pulmonary Disease (COPD). American Journal of Respiratory and Critical Care Medicine. 
2001;163(6):1476-83. 

112. Vignola AM, Chanez P, Chiappara G, Merendino A, Pace E, Rizzo A, et al. Transforming Growth 
Factor- β Expression in Mucosal Biopsies in Asthma and Chronic Bronchitis. American Journal of Respiratory 
and Critical Care Medicine. 1997;156(2):591-9. 

113. Li MO, Wan YY, Sanjabi S, Robertson A-KL, Flavell RA. Transforming Growth Factor-Β Regulation of 
Immune Responses. Annual review of immunology. 2006;24(1):99-146. 

114. Willis BC, Borok Z. TGF-β-induced EMT: mechanisms and implications for fibrotic lung disease. 
American Journal of Physiology-Lung Cellular and Molecular Physiology. 2007;293(3):L525-L34. 

115. Milara J, Peiró T, Serrano A, Cortijo J. Epithelial to mesenchymal transition is increased in patients 
with COPD and induced by cigarette smoke. Thorax. 2013;68(5):410. 

116. Domej W, Oettl K, Renner W. Oxidative stress and free radicals in COPD--implications and relevance 
for treatment. Int J Chron Obstruct Pulmon Dis. 2014;9:1207-24. 

117. Zinellu E, Zinellu A, Fois AG, Carru C, Pirina P. Circulating biomarkers of oxidative stress in chronic 
obstructive pulmonary disease: a systematic review. Respir Res. 2016;17(1):150-. 

118. Malhotra D, Thimmulappa R, Vij N, Navas-Acien A, Sussan T, Merali S, et al. Heightened endoplasmic 
reticulum stress in the lungs of patients with chronic obstructive pulmonary disease: the role of Nrf2-
regulated proteasomal activity. Am J Respir Crit Care Med. 2009;180(12):1196-207. 

119. Dagouassat M, Gagliolo J-M, Chrusciel S, Bourin M-C, Duprez C, Caramelle P, et al. The 
Cyclooxygenase-2–Prostaglandin E2 Pathway Maintains Senescence of Chronic Obstructive Pulmonary 
Disease Fibroblasts. American Journal of Respiratory and Critical Care Medicine. 2013;187(7):703-14. 

120. Lin C-C, Lee IT, Yang Y-L, Lee C-W, Kou YR, Yang C-M. Induction of COX-2/PGE2/IL-6 is crucial for 
cigarette smoke extract-induced airway inflammation: Role of TLR4-dependent NADPH oxidase activation. 
Free Radical Biology and Medicine. 2010;48(2):240-54. 

121. Sarkar P, Hayes BE. Induction of COX-2 by acrolein in rat lung epithelial cells. Molecular and cellular 
biochemistry. 2007;301(1-2):191-9. 

122. Stockley RA. Neutrophils and protease/antiprotease imbalance. Am J Respir Crit Care Med. 
1999;160(5 Pt 2):S49-52. 

123. Johnson SR. Untangling the protease web in COPD: metalloproteinases in the silent zone. Thorax. 
2016;71(2):105-6. 

124. Ofir D, Laveneziana P, Webb KA, Lam Y-M, O'Donnell DE. Mechanisms of Dyspnea during Cycle 
Exercise in Symptomatic Patients with GOLD Stage I Chronic Obstructive Pulmonary Disease. American 
Journal of Respiratory and Critical Care Medicine. 2008;177(6):622-9. 

125. Ofir D, Laveneziana P, Webb KA, Lam YM, O'Donnell DE. Mechanisms of dyspnea during cycle 
exercise in symptomatic patients with GOLD stage I chronic obstructive pulmonary disease. Am J Respir Crit 
Care Med. 2008;177(6):622-9. 

126. Goldklang M, Stockley R. Pathophysiology of Emphysema and Implications. Chronic obstructive 
pulmonary diseases (Miami, Fla). 2016;3(1):454-8. 

127. Barbera JA, Roca J, Ferrer A, Felez MA, Diaz O, Roger N, et al. Mechanisms of worsening gas 
exchange during acute exacerbations of chronic obstructive pulmonary disease. Eur Respir J. 
1997;10(6):1285-91. 

128. Magee F, Wright JL, Wiggs BR, Pare PD, Hogg JC. Pulmonary vascular structure and function in 
chronic obstructive pulmonary disease. Thorax. 1988;43(3):183-9. 



List of References 

220 

129. MacNee W. Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part two. 
Am J Respir Crit Care Med. 1994;150(4):1158-68. 

130. Miller J, Edwards LD, Agusti A, Bakke P, Calverley PM, Celli B, et al. Comorbidity, systemic 
inflammation and outcomes in the ECLIPSE cohort. Respiratory medicine. 2013;107(9):1376-84. 

131. Agusti AG. Systemic effects of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 
2005;2(4):367-70; discussion 71-2. 

132. Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, et al. Interpretative strategies for 
lung function tests. Eur Respir J. 2005;26(5):948-68. 

133. van Dijk W, Tan W, Li P, Guo B, Li S, Benedetti A, et al. Clinical relevance of fixed ratio vs lower limit 
of normal of FEV1/FVC in COPD: patient-reported outcomes from the CanCOLD cohort. Ann Fam Med. 
2015;13(1):41-8. 

134. Guder G, Brenner S, Angermann CE, Ertl G, Held M, Sachs AP, et al. "GOLD or lower limit of normal 
definition? A comparison with expert-based diagnosis of chronic obstructive pulmonary disease in a 
prospective cohort-study". Respir Res. 2012;13(1):13. 

135. Vaz Fragoso CA, McAvay G, Van Ness PH, Casaburi R, Jensen RL, MacIntyre N, et al. Phenotype of 
normal spirometry in an aging population. American journal of respiratory and critical care medicine. 
2015;192(7):817-25. 

136. Anthonisen NR, Wright EC, Hodgkin JE. Prognosis in chronic obstructive pulmonary disease. Am Rev 
Respir Dis. 1986;133(1):14-20. 

137. Oga T, Nishimura K, Tsukino M, Sato S, Hajiro T. Analysis of the factors related to mortality in chronic 
obstructive pulmonary disease: role of exercise capacity and health status. Am J Respir Crit Care Med. 
2003;167(4):544-9. 

138. Martinez FJ, Foster G, Curtis JL, Criner G, Weinmann G, Fishman A, et al. Predictors of mortality in 
patients with emphysema and severe airflow obstruction. American journal of respiratory and critical care 
medicine. 2006;173(12):1326-34. 

139. Boutou AK, Shrikrishna D, Tanner RJ, Smith C, Kelly JL, Ward SP, et al. Lung function indices for 
predicting mortality in COPD. Eur Respir J. 2013;42(3):616-25. 

140. Jones PW, Bosh TK. Quality of life changes in COPD patients treated with salmeterol. Am J Respir Crit 
Care Med. 1997;155(4):1283-9. 

141. Johns DP, Walters JAE, Walters EH. Diagnosis and early detection of COPD using spirometry. J Thorac 
Dis. 2014;6(11):1557-69. 

142. Burgel PR, Bourdin A, Chanez P, Chabot F, Chaouat A, Chinet T, et al. Update on the roles of distal 
airways in COPD. European respiratory review : an official journal of the European Respiratory Society. 
2011;20(119):7-22. 

143. A clinical practice guideline for treating tobacco use and dependence: A US Public Health Service 
report. The Tobacco Use and Dependence Clinical Practice Guideline Panel, Staff, and Consortium 
Representatives. Jama. 2000;283(24):3244-54. 

144. Spruit MA, Singh SJ, Garvey C, ZuWallack R, Nici L, Rochester C, et al. An Official American Thoracic 
Society/European Respiratory Society Statement: Key Concepts and Advances in Pulmonary Rehabilitation. 
American Journal of Respiratory and Critical Care Medicine. 2013;188(8):e13-e64. 

145. Bourne S, DeVos R, North M, Chauhan A, Green B, Brown T, et al. Online versus face-to-face 
pulmonary rehabilitation for patients with chronic obstructive pulmonary disease: randomised controlled 
trial. BMJ Open. 2017;7(7):e014580. 

146. Bekkat-Berkani R, Wilkinson T, Buchy P, Dos Santos G, Stefanidis D, Devaster JM, et al. Seasonal 
influenza vaccination in patients with COPD: a systematic literature review. BMC Pulm Med. 2017;17(1):79. 



List of References 

221 

 

147. Tomczyk S, Bennett NM, Stoecker C, Gierke R, Moore MR, Whitney CG, et al. Use of 13-valent 
pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine among adults aged 
≥65 years: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR 
Morbidity and mortality weekly report. 2014;63(37):822-5. 

148. Suissa S, Patenaude V, Lapi F, Ernst P. Inhaled corticosteroids in COPD and the risk of serious 
pneumonia. Thorax. 2013;68(11):1029. 

149. Bafadhel M, McKenna S, Terry S, Mistry V, Pancholi M, Venge P, et al. Blood eosinophils to direct 
corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease: a randomized placebo-
controlled trial. Am J Respir Crit Care Med. 2012;186(1):48-55. 

150. Kerkhof M, Sonnappa S, Postma DS, Brusselle G, Agustí A, Anzueto A, et al. Blood eosinophil count 
and exacerbation risk in patients with COPD. Eur Respir J. 2017;50(1):1700761. 

151. Hurst JR, Vestbo J, Anzueto A, Locantore N, Müllerova H, Tal-Singer R, et al. Susceptibility to 
Exacerbation in Chronic Obstructive Pulmonary Disease. New England Journal of Medicine. 
2010;363(12):1128-38. 

152. Singh D, Edwards L, Tal-Singer R, Rennard S. Sputum neutrophils as a biomarker in COPD: findings 
from the ECLIPSE study. Respir Res. 2010;11(1):77. 

153. Culpitt SV, Maziak W, Loukidis S, Nightingale JA, Matthews JL, Barnes PJ. Effect of high dose inhaled 
steroid on cells, cytokines, and proteases in induced sputum in chronic obstructive pulmonary disease. Am J 
Respir Crit Care Med. 1999;160(5 Pt 1):1635-9. 

154. Ito K, Hanazawa T, Tomita K, Barnes PJ, Adcock IM. Oxidative stress reduces histone deacetylase 2 
activity and enhances IL-8 gene expression: Role of tyrosine nitration. Biochemical and biophysical research 
communications. 2004;315(1):240-5. 

155. Ernst P, Saad N, Suissa S. Inhaled corticosteroids in COPD: the clinical evidence. Eur Respir J. 
2015;45(2):525-37. 

156. Rennard SI, Dale DC, Donohue JF, Kanniess F, Magnussen H, Sutherland ER, et al. CXCR2 Antagonist 
MK-7123. A Phase 2 Proof-of-Concept Trial for Chronic Obstructive Pulmonary Disease. Am J Respir Crit 
Care Med. 2015;191(9):1001-11. 

157. MacNee W, Allan RJ, Jones I, De Salvo MC, Tan LF. Efficacy and safety of the oral p38 inhibitor PH-
797804 in chronic obstructive pulmonary disease: a randomised clinical trial. Thorax. 2013;68(8):738-45. 

158. Watz H, Barnacle H, Hartley BF, Chan R. Efficacy and safety of the p38 MAPK inhibitor losmapimod 
for patients with chronic obstructive pulmonary disease: a randomised, double-blind, placebo-controlled 
trial. The Lancet Respiratory medicine. 2014;2(1):63-72. 

159. Aaron SD, Vandemheen KL, Maltais F, Field SK, Sin DD, Bourbeau J, et al. TNFα antagonists for acute 
exacerbations of COPD: a randomised double-blind controlled trial. Thorax. 2013;68(2):142. 

160. Calverley PMA, Sethi S, Dawson M, Ward CK, Finch DK, Penney M, et al. A randomised, placebo-
controlled trial of anti-interleukin-1 receptor 1 monoclonal antibody MEDI8968 in chronic obstructive 
pulmonary disease. Respir Res. 2017;18(1):153-. 

161. Calverley PM, Rabe KF, Goehring UM, Kristiansen S, Fabbri LM, Martinez FJ. Roflumilast in 
symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet. 
2009;374(9691):685-94. 

162. Wedzicha JA, Calverley PM, Rabe KF. Roflumilast: a review of its use in the treatment of COPD. 
International journal of chronic obstructive pulmonary disease. 2016;11:81-90. 



List of References 

222 

163. Rennard SI, Calverley PM, Goehring UM, Bredenbröker D, Martinez FJ. Reduction of exacerbations by 
the PDE4 inhibitor roflumilast--the importance of defining different subsets of patients with COPD. Respir 
Res. 2011;12(1):18. 

164. Papi A, Romagnoli M, Baraldo S, Braccioni F, Guzzinati I, Saetta M, et al. Partial reversibility of airflow 
limitation and increased exhaled NO and sputum eosinophilia in chronic obstructive pulmonary disease. Am 
J Respir Crit Care Med. 2000;162(5):1773-7. 

165. Cosio BG, Soriano JB, López-Campos JL, Calle-Rubio M, Soler-Cataluna JJ, de-Torres JP, et al. Defining 
the Asthma-COPD Overlap Syndrome in a COPD Cohort. Chest. 2016;149(1):45-52. 

166. Singh D, Kolsum U, Brightling CE, Locantore N, Agusti A, Tal-Singer R. Eosinophilic inflammation in 
COPD: prevalence and clinical characteristics. Eur Respir J. 2014;44(6):1697. 

167. Siva R, Green RH, Brightling CE, Shelley M, Hargadon B, McKenna S, et al. Eosinophilic airway 
inflammation and exacerbations of COPD: a randomised controlled trial. Eur Respir J. 2007;29(5):906. 

168. Bafadhel M, McKenna S, Terry S, Mistry V, Reid C, Haldar P, et al. Acute exacerbations of chronic 
obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am J Respir Crit Care 
Med. 2011;184(6):662-71. 

169. Negewo NA, McDonald VM, Baines KJ, Wark PA, Simpson JL, Jones PW, et al. Peripheral blood 
eosinophils: a surrogate marker for airway eosinophilia in stable COPD. Int J Chron Obstruct Pulmon Dis. 
2016;11:1495-504. 

170. Turato G, Semenzato U, Bazzan E, Biondini D, Tinè M, Torrecilla N, et al. Blood Eosinophilia Neither 
Reflects Tissue Eosinophils nor Worsens Clinical Outcomes in Chronic Obstructive Pulmonary Disease. Am J 
Respir Crit Care Med. 2018;197(9):1216-9. 

171. Eltboli O, Mistry V, Barker B, Brightling CE. Relationship between blood and bronchial submucosal 
eosinophilia and reticular basement membrane thickening in chronic obstructive pulmonary disease. 
Respirology. 2015;20(4):667-70. 

172. Landis SH, Suruki R, Hilton E, Compton C, Galwey NW. Stability of Blood Eosinophil Count in Patients 
with COPD in the UK Clinical Practice Research Datalink. Copd. 2017;14(4):382-8. 

173. Bafadhel M, Saha S, Siva R, McCormick M, Monteiro W, Rugman P, et al. Sputum IL-5 concentration 
is associated with a sputum eosinophilia and attenuated by corticosteroid therapy in COPD. Respiration. 
2009;78(3):256-62. 

174. Costa C, Rufino R, Traves SL, Lapa ESJR, Barnes PJ, Donnelly LE. CXCR3 and CCR5 chemokines in 
induced sputum from patients with COPD. Chest. 2008;133(1):26-33. 

175. Kearley J, Silver JS, Sanden C, Liu Z, Berlin AA, White N, et al. Cigarette smoke silences innate 
lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection. 
Immunity. 2015;42(3):566-79. 

176. Tworek D, Majewski S, Szewczyk K, Kiszałkiewicz J, Kurmanowska Z, Górski P, et al. The association 
between airway eosinophilic inflammation and IL-33 in stable non-atopic COPD. Respir Res. 2018;19(1):108. 

177. Ying S, O'Connor B, Ratoff J, Meng Q, Fang C, Cousins D, et al. Expression and cellular provenance of 
thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive 
pulmonary disease. J Immunol. 2008;181(4):2790-8. 

178. Pavord ID, Chanez P, Criner GJ, Kerstjens HAM, Korn S, Lugogo N, et al. Mepolizumab for Eosinophilic 
Chronic Obstructive Pulmonary Disease. The New England journal of medicine. 2017;377(17):1613-29. 

179. Brightling CE, Bleecker ER, Panettieri RA, Jr., Bafadhel M, She D, Ward CK, et al. Benralizumab for 
chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-
controlled, phase 2a study. The Lancet Respiratory medicine. 2014;2(11):891-901. 



List of References 

223 

 

180. Mesnil C, Raulier S, Paulissen G, Xiao X, Birrell MA, Pirottin D, et al. Lung-resident eosinophils 
represent a distinct regulatory eosinophil subset. J Clin Invest. 2016;126(9):3279-95. 

181. Parker CM, Voduc N, Aaron SD, Webb KA, O'Donnell DE. Physiological changes during symptom 
recovery from moderate exacerbations of COPD. Eur Respir J. 2005;26(3):420-8. 

182. Seemungal TA, Donaldson GC, Paul EA, Bestall JC, Jeffries DJ, Wedzicha JA. Effect of exacerbation on 
quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;157(5 
Pt 1):1418-22. 

183. Burrows B, Bloom JW, Traver GA, Cline MG. The course and prognosis of different forms of chronic 
airways obstruction in a sample from the general population. The New England journal of medicine. 
1987;317(21):1309-14. 

184. Donaldson G, Seemungal T, Bhowmik A, Wedzicha J. Relationship between exacerbation frequency 
and lung function decline in chronic obstructive pulmonary disease. Thorax. 2002;57(10):847-52. 

185. Ball P. Epidemiology and treatment of chronic bronchitis and its exacerbations. Chest. 1995;108(2 
Suppl):43s-52s. 

186. Sunyer J, Saez M, Murillo C, Castellsague J, Martinez F, Anto JM. Air pollution and emergency room 
admissions for chronic obstructive pulmonary disease: a 5-year study. American journal of epidemiology. 
1993;137(7):701-5. 

187. Connors AF, Jr., Dawson NV, Thomas C, Harrell FE, Jr., Desbiens N, Fulkerson WJ, et al. Outcomes 
following acute exacerbation of severe chronic obstructive lung disease. The SUPPORT investigators (Study 
to Understand Prognoses and Preferences for Outcomes and Risks of Treatments). Am J Respir Crit Care 
Med. 1996;154(4 Pt 1):959-67. 

188. Eccles R. An explanation for the seasonality of acute upper respiratory tract viral infections. Acta oto-
laryngologica. 2002;122(2):183-91. 

189. Burge S, Wedzicha JA. COPD exacerbations: definitions and classifications. Eur Respir J Suppl. 
2003;41:46s-53s. 

190. Roberts CM, Lowe D, Bucknall CE, Ryland I, Kelly Y, Pearson MG. Clinical audit indicators of outcome 
following admission to hospital with acute exacerbation of chronic obstructive pulmonary disease. Thorax. 
2002;57(2):137-41. 

191. Garcia-Aymerich J, Monso E, Marrades RM, Escarrabill J, Felez MA, Sunyer J, et al. Risk factors for 
hospitalization for a chronic obstructive pulmonary disease exacerbation. EFRAM study. Am J Respir Crit 
Care Med. 2001;164(6):1002-7. 

192. Soler-Cataluna JJ, Martinez-Garcia MA, Roman Sanchez P, Salcedo E, Navarro M, Ochando R. Severe 
acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax. 
2005;60(11):925-31. 

193. Hurst JR, Donaldson GC, Perera WR, Wilkinson TM, Bilello JA, Hagan GW, et al. Use of plasma 
biomarkers at exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 
2006;174(8):867-74. 

194. Zhu A, Ge D, Zhang J, Teng Y, Yuan C, Huang M, et al. Sputum myeloperoxidase in chronic obstructive 
pulmonary disease. European journal of medical research. 2014;19:12. 

195. O'Neil SE, Lundback B, Lotvall J. Proteomics in asthma and COPD phenotypes and endotypes for 
biomarker discovery and improved understanding of disease entities. J Proteomics. 2011;75(1):192-201. 

196. Telenga ED, Hoffmann RF, Ruben tK, Hoonhorst SJ, Willemse BW, van Oosterhout AJ, et al. 
Untargeted lipidomic analysis in chronic obstructive pulmonary disease. Uncovering sphingolipids. Am J 
Respir Crit Care Med. 2014;190(2):155-64. 



List of References 

224 

197. Hodgkin PD, Rush J, Gett AV, Bartell G, Hasbold J. The logic of intercellular communication in the 
immune system. Immunology and cell biology. 1998;76(5):448-53. 

198. Roy S, Hochberg FH, Jones PS. Extracellular vesicles: the growth as diagnostics and therapeutics; a 
survey. Journal of extracellular vesicles. 2018;7(1):1438720-. 

199. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs 
and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-9. 

200. Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, et al. Tumour microvesicles contain 
retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011;2:180. 

201. Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 
2014;14(3):195-208. 

202. Turpin D, Truchetet ME, Faustin B, Augusto JF, Contin-Bordes C, Brisson A, et al. Role of extracellular 
vesicles in autoimmune diseases. Autoimmunity reviews. 2016;15(2):174-83. 

203. Buzas EI, Gyorgy B, Nagy G, Falus A, Gay S. Emerging role of extracellular vesicles in inflammatory 
diseases. Nat Rev Rheumatol. 2014;10(6):356-64. 

204. Hosseini HM, Fooladi AA, Nourani MR, Ghanezadeh F. The role of exosomes in infectious diseases. 
Inflamm Allergy Drug Targets. 2013;12(1):29-37. 

205. Van Giau V, An SSA. Emergence of exosomal miRNAs as a diagnostic biomarker for Alzheimer's 
disease. Journal of the Neurological Sciences. 2016;360:141-52. 

206. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging 
implications in tissue kinetics. Br J Cancer. 1972;26(4):239-57. 

207. Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, et al. Proteomic analysis of 
dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J 
Immunol. 2001;166(12):7309-18. 

208. Holmgren L, Szeles A, Rajnavolgyi E, Folkman J, Klein G, Ernberg I, et al. Horizontal transfer of DNA by 
the uptake of apoptotic bodies. Blood. 1999;93(11):3956-63. 

209. Bergsmedh A, Szeles A, Henriksson M, Bratt A, Folkman MJ, Spetz AL, et al. Horizontal transfer of 
oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci U S A. 2001;98(11):6407-11. 

210. Bellone M, Iezzi G, Rovere P, Galati G, Ronchetti A, Protti MP, et al. Processing of engulfed apoptotic 
bodies yields T cell epitopes. J Immunol. 1997;159(11):5391-9. 

211. Cocca BA, Cline AM, Radic MZ. Blebs and apoptotic bodies are B cell autoantigens. J Immunol. 
2002;169(1):159-66. 

212. Holme PA, Solum NO, Brosstad F, Roger M, Abdelnoor M. Demonstration of platelet-derived 
microvesicles in blood from patients with activated coagulation and fibrinolysis using a filtration technique 
and western blotting. Thromb Haemost. 1994;72(5):666-71. 

213. Hess C, Sadallah S, Hefti A, Landmann R, Schifferli JA. Ectosomes released by human neutrophils are 
specialized functional units. J Immunol. 1999;163(8):4564-73. 

214. Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 
2009;19(2):43-51. 

215. Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, et al. Membrane vesicles, current state-of-
the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011;68(16):2667-88. 

216. Burger D, Schock S, Thompson CS, Montezano AC, Hakim AM, Touyz RM. Microparticles: biomarkers 
and beyond. Clinical science (London, England : 1979). 2013;124(7):423-41. 



List of References 

225 

 

217. Badimon L, Suades R, Fuentes E, Palomo I, Padró T. Role of Platelet-Derived Microvesicles As 
Crosstalk Mediators in Atherothrombosis and Future Pharmacology Targets: A Link between Inflammation, 
Atherosclerosis, and Thrombosis. Frontiers in Pharmacology. 2016;7:293. 

218. Nielsen MH, Beck-Nielsen H, Andersen MN, Handberg A. A flow cytometric method for 
characterization of circulating cell-derived microparticles in plasma. Journal of Extracellular Vesicles. 
2014;3:10.3402/jev.v3.20795. 

219. Leroyer AS, Tedgui A, Boulanger CM. Role of microparticles in atherothrombosis. Journal of internal 
medicine. 2008;263(5):528-37. 

220. MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Surprenant A. Rapid secretion of 
interleukin-1beta by microvesicle shedding. Immunity. 2001;15(5):825-35. 

221. Antonyak MA, Li B, Boroughs LK, Johnson JL, Druso JE, Bryant KL, et al. Cancer cell-derived 
microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient 
cells. Proc Natl Acad Sci U S A. 2011;108(12):4852-7. 

222. Fernandez-Messina L, Gutierrez-Vazquez C, Rivas-Garcia E, Sanchez-Madrid F, de la Fuente H. 
Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biology of the cell. 
2015;107(3):61-77. 

223. Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev 
Immunol. 2009;9(8):581-93. 

224. Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the 
transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97(2):329-39. 

225. Pan BT, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence for externalization of 
the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 1985;101(3):942-8. 

226. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, et al. B lymphocytes 
secrete antigen-presenting vesicles. J Exp Med. 1996;183(3):1161-72. 

227. Thery C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P, et al. Molecular 
characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. 
J Cell Biol. 1999;147(3):599-610. 

228. Thery C, Duban L, Segura E, Veron P, Lantz O, Amigorena S. Indirect activation of naive CD4+ T cells 
by dendritic cell-derived exosomes. Nat Immunol. 2002;3(12):1156-62. 

229. Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, et al. Tumor-derived exosomes are a 
source of shared tumor rejection antigens for CTL cross-priming. Nat Med. 2001;7(3):297-303. 

230. Karlsson M, Lundin S, Dahlgren U, Kahu H, Pettersson I, Telemo E. "Tolerosomes" are produced by 
intestinal epithelial cells. Eur J Immunol. 2001;31(10):2892-900. 

231. Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P, et al. Induction of lymphocyte 
apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med. 2002;195(10):1303-16. 

232. Admyre C, Grunewald J, Thyberg J, Gripenback S, Tornling G, Eklund A, et al. Exosomes with major 
histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur Respir 
J. 2003;22(4):578-83. 

233. Kulshreshtha A, Ahmad T, Agrawal A, Ghosh B. Proinflammatory role of epithelial cell-derived 
exosomes in allergic airway inflammation. J Allergy Clin Immunol. 2013;131(4):1194-203, 203 e1-14. 

234. Kesimer M, Scull M, Brighton B, DeMaria G, Burns K, O'Neal W, et al. Characterization of exosome-
like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense. 
Faseb J. 2009;23(6):1858-68. 



List of References 

226 

235. Aliotta JM, Pereira M, Sears EH, Dooner MS, Wen S, Goldberg LR, et al. Lung-derived exosome 
uptake into and epigenetic modulation of marrow progenitor/stem and differentiated cells. J Extracell 
Vesicles. 2015;4:26166. 

236. Moon H-G, Kim S-H, Gao J, Quan T, Qin Z, Osorio JC, et al. CCN1 secretion and cleavage regulate the 
lung epithelial cell functions after cigarette smoke. American Journal of Physiology-Lung Cellular and 
Molecular Physiology. 2014;307(4):L326-L37. 

237. Fujita Y, Araya J, Ito S, Kobayashi K, Kosaka N, Yoshioka Y, et al. Suppression of autophagy by 
extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis. J Extracell Vesicles. 
2015;4:28388. 

238. Li CJ, Liu Y, Chen Y, Yu D, Williams KJ, Liu ML. Novel proteolytic microvesicles released from human 
macrophages after exposure to tobacco smoke. Am J Pathol. 2013;182(5):1552-62. 

239. Li M, Yu D, Williams KJ, Liu ML. Tobacco smoke induces the generation of procoagulant microvesicles 
from human monocytes/macrophages. Arterioscler Thromb Vasc Biol. 2010;30(9):1818-24. 

240. Cordazzo C, Petrini S, Neri T, Lombardi S, Carmazzi Y, Pedrinelli R, et al. Rapid shedding of 
proinflammatory microparticles by human mononuclear cells exposed to cigarette smoke is dependent on 
Ca2+ mobilization. Inflamm Res. 2014;63(7):539-47. 

241. Soni S, Wilson MR, Dea KP, Yoshida M, Katbeh U, Woods SJ, et al. Alveolar macrophage-derived 
microvesicles mediate acute lung injury. Thorax. 2016;71(11):1020. 

242. Bourdonnay E, Zaslona Z, Penke LRK, Speth JM, Schneider DJ, Przybranowski S, et al. Transcellular 
delivery of vesicular SOCS proteins from macrophages to epithelial cells blunts inflammatory signaling. J Exp 
Med. 2015;212(5):729-42. 

243. Schneider DJ, Smith KA, Latuszek CE, Wilke CA, Lyons DM, Penke LR, et al. Alveolar macrophage-
derived extracellular vesicles inhibit endosomal fusion of influenza virus. The EMBO Journal. 
2020;39(16):e105057. 

244. Héliot A, Landkocz Y, Roy Saint-Georges F, Gosset P, Billet S, Shirali P, et al. Smoker extracellular 
vesicles influence status of human bronchial epithelial cells. International Journal of Hygiene and 
Environmental Health. 2017;220(2, Part B):445-54. 

245. Eltom S, Dale N, Raemdonck KRG, Stevenson CS, Snelgrove RJ, Sacitharan PK, et al. Respiratory 
infections cause the release of extracellular vesicles: implications in exacerbation of asthma/COPD. PLoS 
ONE. 2014;9(6):e101087-e. 

246. Kim HJ, Kim Y-S, Kim K-H, Choi J-P, Kim Y-K, Yun S, et al. The microbiome of the lung and its 
extracellular vesicles in nonsmokers, healthy smokers and COPD patients. Exp Mol Med. 2017;49(4):e316-e. 

247. Lacedonia D, Carpagnano GE, Trotta T, Palladino GP, Panaro MA, Zoppo LD, et al. Microparticles in 
sputum of COPD patients: a potential biomarker of the disease? International journal of chronic obstructive 
pulmonary disease. 2016;11:527-33. 

248. Gordon C, Gudi K, Krause A, Sackrowitz R, Harvey BG, Strulovici-Barel Y, et al. Circulating endothelial 
microparticles as a measure of early lung destruction in cigarette smokers. Am J Respir Crit Care Med. 
2011;184(2):224-32. 

249. Soni S, Wilson MR, O'Dea KP, Yoshida M, Katbeh U, Woods SJ, et al. Alveolar macrophage-derived 
microvesicles mediate acute lung injury. Thorax. 2016;71(11):1020-9. 

250. Thomashow MA, Shimbo D, Parikh MA, Hoffman EA, Vogel-Claussen J, Hueper K, et al. Endothelial 
microparticles in mild chronic obstructive pulmonary disease and emphysema. The Multi-Ethnic Study of 
Atherosclerosis Chronic Obstructive Pulmonary Disease study. Am J Respir Crit Care Med. 2013;188(1):60-8. 

251. Strulovici-Barel Y, Staudt MR, Krause A, Gordon C, Tilley AE, Harvey BG, et al. Persistence of 
circulating endothelial microparticles in COPD despite smoking cessation. Thorax. 2016. 



List of References 

227 

 

252. Serban KA, Rezania S, Petrusca DN, Poirier C, Cao D, Justice MJ, et al. Structural and functional 
characterization of endothelial microparticles released by cigarette smoke. Scientific Reports. 
2016;6(1):31596. 

253. Liu H, Ding L, Zhang Y, Ni S. Circulating endothelial microparticles involved in lung function decline in 
a rat exposed in cigarette smoke maybe from apoptotic pulmonary capillary endothelial cells. J Thorac Dis. 
2014;6(6):649-55. 

254. Tan DBA, Armitage J, Teo TH, Ong NE, Shin H, Moodley YP. Elevated levels of circulating exosome in 
COPD patients are associated with systemic inflammation. Respiratory medicine. 2017;132:261-4. 

255. He S, Chen D, Hu M, Zhang L, Liu C, Traini D, et al. Bronchial epithelial cell extracellular vesicles 
ameliorate epithelial–mesenchymal transition in COPD pathogenesis by alleviating M2 macrophage 
polarization. Nanomedicine: Nanotechnology, Biology and Medicine. 2019;18:259-71. 

256. Chen Y-WR, Leung JM, Sin DD. A Systematic Review of Diagnostic Biomarkers of COPD Exacerbation. 
PLoS ONE. 2016;11(7):e0158843. 

257. Makiguchi T, Yamada M, Yoshioka Y, Sugiura H, Koarai A, Chiba S, et al. Serum extracellular vesicular 
miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respir Res. 2016;17(1):110-. 

258. Yoshioka Y, Kosaka N, Konishi Y, Ohta H, Okamoto H, Sonoda H, et al. Ultra-sensitive liquid biopsy of 
circulating extracellular vesicles using ExoScreen. Nature Communications. 2014;5:3591. 

259. Fujita Y, Yoshioka Y, Ochiya T. Extracellular vesicle transfer of cancer pathogenic components. Cancer 
science. 2016;107(4):385-90. 

260. Takahashi T, Kobayashi S, Fujino N, Suzuki T, Ota C, He M, et al. Increased circulating endothelial 
microparticles in COPD patients: a potential biomarker for COPD exacerbation susceptibility. Thorax. 
2012;67(12):1067-74. 

261. De Smet EG, Mestdagh P, Vandesompele J, Brusselle GG, Bracke KR. Non-coding RNAs in the 
pathogenesis of COPD. Thorax. 2015;70(8):782-91. 

262. Levanen B, Bhakta NR, Paredes PT, Barbeau R, Hiltbrunner S, Pollack JL, et al. Altered microRNA 
profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. Journal of Allergy and Clinical 
Immunology. 2013;131(3):894-+. 

263. Kishore A, Navratilova Z, Kolek V, Novosadova E, Čépe K, du Bois RM, et al. Expression analysis of 
extracellular microRNA in bronchoalveolar lavage fluid from patients with pulmonary sarcoidosis. 
Respirology. 2018;23(12):1166-72. 

264. Stolk J, Broekman W, Mauad T, Zwaginga JJ, Roelofs H, Fibbe WE, et al. A phase I study for 
intravenous autologous mesenchymal stromal cell administration to patients with severe emphysema. 
QJM : monthly journal of the Association of Physicians. 2016;109(5):331-6. 

265. Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M, Tashkin DP. A placebo-controlled, randomized 
trial of mesenchymal stem cells in COPD. Chest. 2013;143(6):1590-8. 

266. Broekman W, Khedoe PPSJ, Schepers K, Roelofs H, Stolk J, Hiemstra PS. Mesenchymal stromal cells: a 
novel therapy for the treatment of chronic obstructive pulmonary disease? Thorax. 2018;73(6):565. 

267. Porro C, Lepore S, Trotta T, Castellani S, Ratclif L, Battaglino A, et al. Isolation and characterization of 
microparticles in sputum from cystic fibrosis patients. Respir Res. 2010;11(1):94-. 

268. Huang L, Ma W, Ma Y, Feng D, Chen H, Cai B. Exosomes in mesenchymal stem cells, a new 
therapeutic strategy for cardiovascular diseases? International journal of biological sciences. 
2015;11(2):238-45. 



List of References 

228 

269. Escudier B, Dorval T, Chaput N, André F, Caby M-P, Novault S, et al. Vaccination of metastatic 
melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical 
trial. Journal of Translational Medicine. 2005;3(1):10. 

270. Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, et al. A phase I study of dexosome 
immunotherapy in patients with advanced non-small cell lung cancer. Journal of translational medicine. 
2005;3(1):9-. 

271. Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, et al. Dendritic cell-derived 
exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology. 
2015;5(4):e1071008-e. 

272. Kordelas L, Rebmann V, Ludwig AK, Radtke S, Ruesing J, Doeppner TR, et al. MSC-derived exosomes: 
a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia. 2014;28(4):970-3. 

273. Mu J, Zhuang X, Wang Q, Jiang H, Deng ZB, Wang B, et al. Interspecies communication between plant 
and mouse gut host cells through edible plant derived exosome-like nanoparticles. Molecular nutrition & 
food research. 2014;58(7):1561-73. 

274. Wang B, Zhuang X, Deng ZB, Jiang H, Mu J, Wang Q, et al. Targeted drug delivery to intestinal 
macrophages by bioactive nanovesicles released from grapefruit. Molecular therapy : the journal of the 
American Society of Gene Therapy. 2014;22(3):522-34. 

275. Zhang D, Lee H, Zhu Z, Minhas JK, Jin Y. Enrichment of selective miRNAs in exosomes and delivery of 
exosomal miRNAs in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol. 2017;312(1):L110-l21. 

276. Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, et al. Quantitative and stoichiometric 
analysis of the microRNA content of exosomes. Proceedings of the National Academy of Sciences. 
2014;111(41):14888. 

277. Wiklander OPB, Brennan MÁ, Lötvall J, Breakefield XO, El Andaloussi S. Advances in therapeutic 
applications of extracellular vesicles. Science translational medicine. 2019;11(492):eaav8521. 

278. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal 
information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International 
Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles. 
2018;7(1):1535750. 

279. Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell 
culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;Chapter 3:Unit 3 22. 

280. Sokolova V, Ludwig AK, Hornung S, Rotan O, Horn PA, Epple M, et al. Characterisation of exosomes 
derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids and 
surfaces B, Biointerfaces. 2011;87(1):146-50. 

281. Ismail N, Wang Y, Dakhlallah D, Moldovan L, Agarwal K, Batte K, et al. Macrophage microvesicles 
induce macrophage differentiation and miR-223 transfer. Blood. 2013;121(6):984-95. 

282. de Menezes-Neto A, Saez MJ, Lozano-Ramos I, Segui-Barber J, Martin-Jaular L, Ullate JM, et al. Size-
exclusion chromatography as a stand-alone methodology identifies novel markers in mass spectrometry 
analyses of plasma-derived vesicles from healthy individuals. J Extracell Vesicles. 2015;4:27378. 

283. Gyorgy B, Modos K, Pallinger E, Paloczi K, Pasztoi M, Misjak P, et al. Detection and isolation of cell-
derived microparticles are compromised by protein complexes resulting from shared biophysical 
parameters. Blood. 2011;117(4):e39-48. 

284. Boing AN, van der Pol E, Grootemaat AE, Coumans FA, Sturk A, Nieuwland R. Single-step isolation of 
extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles. 2014;3. 

285. Oeyen E, Van Mol K, Baggerman G, Willems H, Boonen K, Rolfo C, et al. Ultrafiltration and size 
exclusion chromatography combined with asymmetrical-flow field-flow fractionation for the isolation and 
characterisation of extracellular vesicles from urine. J Extracell Vesicles. 2018;7(1):1490143. 



List of References 

229 

 

286. Taylor DD, Shah S. Methods of isolating extracellular vesicles impact down-stream analyses of their 
cargoes. Methods. 2015;87:3-10. 

287. Andreu Z, Rivas E, Sanguino-Pascual A, Lamana A, Marazuela M, González-Alvaro I, et al. 
Comparative analysis of EV isolation procedures for miRNAs detection in serum samples. Journal of 
Extracellular Vesicles. 2016;5(1):31655. 

288. Torri A, Carpi D, Bulgheroni E, Crosti MC, Moro M, Gruarin P, et al. Extracellular MicroRNA Signature 
of Human Helper T Cell Subsets in Health and Autoimmunity. J Biol Chem. 2017;292(7):2903-15. 

289. Francisco-Garcia AS, Garrido-Martín EM, Rupani H, Lau LCK, Martinez-Nunez RT, Howarth PH, et al. 
Small RNA Species and microRNA Profiles are Altered in Severe Asthma Nanovesicles from Broncho Alveolar 
Lavage and Associate with Impaired Lung Function and Inflammation. Non-coding RNA. 2019;5(4). 

290. Alvarez ML, Khosroheidari M, Kanchi Ravi R, DiStefano JK. Comparison of protein, microRNA, and 
mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease 
biomarkers. Kidney Int. 2012;82(9):1024-32. 

291. Witwer KW, Buzas EI, Bemis LT, Bora A, Lasser C, Lotvall J, et al. Standardization of sample collection, 
isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2. 

292. Clayton A, Court J, Navabi H, Adams M, Mason MD, Hobot JA, et al. Analysis of antigen presenting 
cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods. 
2001;247(1-2):163-74. 

293. Kim G, Yoo CE, Kim M, Kang HJ, Park D, Lee M, et al. Noble polymeric surface conjugated with 
zwitterionic moieties and antibodies for the isolation of exosomes from human serum. Bioconjugate 
chemistry. 2012;23(10):2114-20. 

294. Yoo CE, Kim G, Kim M, Park D, Kang HJ, Lee M, et al. A direct extraction method for microRNAs from 
exosomes captured by immunoaffinity beads. Analytical biochemistry. 2012;431(2):96-8. 

295. Enderle D, Spiel A, Coticchia CM, Berghoff E, Mueller R, Schlumpberger M, et al. Characterization of 
RNA from Exosomes and Other Extracellular Vesicles Isolated by a Novel Spin Column-Based Method. PLoS 
ONE. 2015;10(8):e0136133. 

296. Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P, et al. Sizing and phenotyping 
of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine : nanotechnology, biology, and 
medicine. 2011;7(6):780-8. 

297. Gardiner C, Ferreira YJ, Dragovic RA, Redman CW, Sargent IL. Extracellular vesicle sizing and 
enumeration by nanoparticle tracking analysis. J Extracell Vesicles. 2013;2. 

298. Lacroix R, Robert S, Poncelet P, Kasthuri RS, Key NS, Dignat-George F. Standardization of platelet-
derived microparticle enumeration by flow cytometry with calibrated beads: results of the International 
Society on Thrombosis and Haemostasis SSC Collaborative workshop. J Thromb Haemost. 2010;8(11):2571-
4. 

299. Logozzi M, De Milito A, Lugini L, Borghi M, Calabrò L, Spada M, et al. High Levels of Exosomes 
Expressing CD63 and Caveolin-1 in Plasma of Melanoma Patients. PLoS ONE. 2009;4(4):e5219. 

300. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57-74. 

301. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. Microarray analysis shows 
that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769-73. 

302. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of 
microRNAs. Genome research. 2009;19(1):92-105. 



List of References 

230 

303. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that 
thousands of human genes are microRNA targets. Cell. 2005;120(1):15-20. 

304. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al. MicroRNA-133 controls cardiac 
hypertrophy. Nat Med. 2007;13(5):613-8. 

305. Fiore R, Siegel G, Schratt G. MicroRNA function in neuronal development, plasticity and disease. 
Biochimica et biophysica acta. 2008;1779(8):471-8. 

306. Krutzfeldt J, Stoffel M. MicroRNAs: a new class of regulatory genes affecting metabolism. Cell 
metabolism. 2006;4(1):9-12. 

307. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles 
classify human cancers. Nature. 2005;435(7043):834-8. 

308. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, MacDonald PE, et al. A pancreatic islet-specific 
microRNA regulates insulin secretion. Nature. 2004;432:226. 

309. Van Pottelberge GR, Mestdagh P, Bracke KR, Thas O, van Durme YM, Joos GF, et al. MicroRNA 
expression in induced sputum of smokers and patients with chronic obstructive pulmonary disease. Am J 
Respir Crit Care Med. 2011;183(7):898-906. 

310. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA 
processing. Nature. 2003;425(6956):415-9. 

311. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the 
RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science (New York, NY). 
2001;293(5531):834-8. 

312. Tolia NH, Joshua-Tor L. Slicer and the Argonautes. Nature Chemical Biology. 2006;3:36. 

313. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-97. 

314. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease 
target mRNA levels. Nature. 2010;466(7308):835-40. 

315. Rupani H, Sanchez-Elsner T, Howarth P. MicroRNAs and respiratory diseases. Eur Respir J. 
2013;41(3):695-705. 

316. Schembri F, Sridhar S, Perdomo C, Gustafson AM, Zhang X, Ergun A, et al. MicroRNAs as modulators 
of smoking-induced gene expression changes in human airway epithelium. Proceedings of the National 
Academy of Sciences. 2009;106(7):2319-24. 

317. Beane J, Sebastiani P, Liu G, Brody JS, Lenburg ME, Spira A. Reversible and permanent effects of 
tobacco smoke exposure on airway epithelial gene expression. Genome biology. 2007;8(9):R201. 

318. Izzotti A, Larghero P, Longobardi M, Cartiglia C, Camoirano A, Steele VE, et al. Dose-responsiveness 
and persistence of microRNA expression alterations induced by cigarette smoke in mouse lung. Mutation 
research. 2011;717(1-2):9-16. 

319. Ezzie ME, Crawford M, Cho J-H, Orellana R, Zhang S, Gelinas R, et al. Gene expression networks in 
COPD: microRNA and mRNA regulation. Thorax. 2012;67(2):122-31. 

320. Sato T, Liu X, Nelson A, Nakanishi M, Kanaji N, Wang X, et al. Reduced miR-146a increases 
prostaglandin E(2)in chronic obstructive pulmonary disease fibroblasts. Am J Respir Crit Care Med. 
2010;182(8):1020-9. 

321. Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, et al. Altered expression 
of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 
2008;58(4):1001-9. 

322. Nakasa T, Miyaki S, Okubo A, Hashimoto M, Nishida K, Ochi M, et al. Expression of microRNA-146 in 
rheumatoid arthritis synovial tissue. Arthritis Rheum. 2008;58(5):1284-92. 



List of References 

231 

 

323. Izzotti A, Calin GA, Arrigo P, Steele VE, Croce CM, De Flora S. Downregulation of microRNA 
expression in the lungs of rats exposed to cigarette smoke. Faseb J. 2009;23(3):806-12. 

324. D'hulst AI, Bracke KR, Maes T, De Bleecker JL, Pauwels RA, Joos GF, et al. Role of tumour necrosis 
factor-α receptor p75 in cigarette smoke-induced pulmonary inflammation and emphysema. Eur Respir J. 
2006;28(1):102-12. 

325. Barh D, Malhotra R, Ravi B, Sindhurani P. MicroRNA let-7: an emerging next-generation cancer 
therapeutic. Current oncology (Toronto, Ont). 2010;17(1):70-80. 

326. Blischak J. Differential epxression analysis with edgeR 2016 [Available from: 
https://gist.github.com/jdblischak/11384914. 

327. Conickx G, Avila Cobos F, van den Berge M, Faiz A, Timens W, Hiemstra PS, et al. microRNA profiling 
in lung tissue and bronchoalveolar lavage of cigarette smoke-exposed mice and in COPD patients: a 
translational approach. Sci Rep. 2017;7(1):12871. 

328. Savarimuthu Francis SM, Davidson MR, Tan ME, Wright CM, Clarke BE, Duhig EE, et al. MicroRNA-34c 
is associated with emphysema severity and modulates SERPINE1 expression. BMC genomics. 2014;15:88. 

329. Baker J, Colley T, Ito K, Barnes P. The key role of microRNA-34a in the reduction of sirtuin-1 in COPD. 
Eur Respir J. 2016;48(suppl 60):OA4977. 

330. Mizuno S, Bogaard HJ, Gomez-Arroyo J, Alhussaini A, Kraskauskas D, Cool CD, et al. MicroRNA-199a-
5p is associated with hypoxia-inducible factor-1alpha expression in lungs from patients with COPD. Chest. 
2012;142(3):663-72. 

331. Hassan F, Nuovo GJ, Crawford M, Boyaka PN, Kirkby S, Nana-Sinkam SP, et al. MiR-101 and miR-144 
Regulate the Expression of the CFTR Chloride Channel in the Lung. PLoS ONE. 2012;7(11):e50837. 

332. Christenson SA, Brandsma C-A, Campbell JD, Knight DA, Pechkovsky DV, Hogg JC, et al. miR-638 
regulates gene expression networks associated with emphysematous lung destruction. Genome medicine. 
2013;5(12):114-. 

333. Kim WJ, Lim JH, Hong Y, Hong S-H, Bang CY, Lee JS, et al. Altered miRNA expression in lung tissues of 
patients with chronic obstructive pulmonary disease. Molecular & Cellular Toxicology. 2017;13(2):207-12. 

334. Faiz A, Steiling K, Roffel MP, Postma DS, Spira A, Lenburg ME, et al. Effect of long-term corticosteroid 
treatment on microRNA and gene-expression profiles in COPD. Eur Respir J. 2019;53(4):1801202. 

335. Lewis A, Riddoch-Contreras J, Natanek SA, Donaldson A, Man WD-C, Moxham J, et al. 
Downregulation of the serum response factor/miR-1 axis in the quadriceps of patients with COPD. Thorax. 
2012;67(1):26-34. 

336. Donaldson A, Natanek SA, Lewis A, Man WD, Hopkinson NS, Polkey MI, et al. Increased skeletal 
muscle-specific microRNA in the blood of patients with COPD. Thorax. 2013;68(12):1140-9. 

337. Pinkerton M, Chinchilli V, Banta E, Craig T, August A, Bascom R, et al. Differential expression of 
microRNAs in exhaled breath condensates of patients with asthma, patients with chronic obstructive 
pulmonary disease, and healthy adults. J Allergy Clin Immunol. 2013;132(1):217-9. 

338. Soeda S, Ohyashiki JH, Ohtsuki K, Umezu T, Setoguchi Y, Ohyashiki K. Clinical relevance of plasma 
miR-106b levels in patients with chronic obstructive pulmonary disease. International journal of molecular 
medicine. 2013;31(3):533-9. 

339. Leuenberger C, Schuoler C, Bye H, Mignan C, Rechsteiner T, Hillinger S, et al. MicroRNA-223 controls 
the expression of histone deacetylase 2: a novel axis in COPD. Journal of molecular medicine (Berlin, 
Germany). 2016;94(6):725-34. 

https://gist.github.com/jdblischak/11384914


List of References 

232 

340. Akbas F, Coskunpinar E, Aynaci E, Oltulu YM, Yildiz P. Analysis of serum micro-RNAs as potential 
biomarker in chronic obstructive pulmonary disease. Exp Lung Res. 2012;38(6):286-94. 

341. Wang M, Huang Y, Liang Z, Liu D, Lu Y, Dai Y, et al. Plasma miRNAs might be promising biomarkers of 
chronic obstructive pulmonary disease. The clinical respiratory journal. 2016;10(1):104-11. 

342. Molina-Pinelo S, Pastor MD, Suarez R, Romero-Romero B, Gonzalez De la Pena M, Salinas A, et al. 
MicroRNA clusters: dysregulation in lung adenocarcinoma and COPD. Eur Respir J. 2014;43(6):1740-9. 

343. Puig-Vilanova E, Aguiló R, Rodríguez-Fuster A, Martínez-Llorens J, Gea J, Barreiro E. Epigenetic 
Mechanisms in Respiratory Muscle Dysfunction of Patients with Chronic Obstructive Pulmonary Disease. 
PLoS ONE. 2014;9(11):e111514. 

344. Xie L, Wu M, Lin H, Liu C, Yang H, Zhan J, et al. An increased ratio of serum miR-21 to miR-181a levels 
is associated with the early pathogenic process of chronic obstructive pulmonary disease in asymptomatic 
heavy smokers. Molecular bioSystems. 2014;10(5):1072-81. 

345. Velasco-Torres Y, Ruiz-López V, Pérez-Bautista O, Buendía-Roldan I, Ramírez-Venegas A, Pérez-
Ramos J, et al. miR-34a in serum is involved in mild-to-moderate COPD in women exposed to biomass 
smoke. BMC Pulm Med. 2019;19(1):227. 

346. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer 
and other diseases. Nature Reviews Drug Discovery. 2017;16:203. 

347. György B, Hung ME, Breakefield XO, Leonard JN. Therapeutic Applications of Extracellular Vesicles: 
Clinical Promise and Open Questions. Annual Review of Pharmacology and Toxicology. 2015;55(1):439-64. 

348. Monsel A, Zhu Y-G, Gennai S, Hao Q, Hu S, Rouby J-J, et al. Therapeutic Effects of Human 
Mesenchymal Stem Cell-derived Microvesicles in Severe Pneumonia in Mice. American journal of 
respiratory and critical care medicine. 2015;192(3):324-36. 

349. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of 
spirometry. Eur Respir J. 2005;26(2):319-38. 

350. Gevenois PA, De Vuyst P, de Maertelaer V, Zanen J, Jacobovitz D, Cosio MG, et al. Comparison of 
computed density and microscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med. 
1996;154(1):187-92. 

351. Gevenois PA, de Maertelaer V, De Vuyst P, Zanen J, Yernault JC. Comparison of computed density 
and macroscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med. 1995;152(2):653-7. 

352. Bommart S, Marin G, Bourdin A, Molinari N, Klein F, Hayot M, et al. Relationship between CT air 
trapping criteria and lung function in small airway impairment quantification. BMC Pulmonary Medicine. 
2014;14(1):29. 

353. Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, et al. Minimal experimental 
requirements for definition of extracellular vesicles and their functions: a position statement from the 
International Society for Extracellular Vesicles. Journal of extracellular vesicles. 2014;3:26913-. 

354. Almqvist N, Lonnqvist A, Hultkrantz S, Rask C, Telemo E. Serum-derived exosomes from antigen-fed 
mice prevent allergic sensitization in a model of allergic asthma. Immunology. 2008;125(1):21-7. 

355. Prado N, Marazuela EG, Segura E, Fernandez-Garcia H, Villalba M, Thery C, et al. Exosomes from 
bronchoalveolar fluid of tolerized mice prevent allergic reaction. J Immunol. 2008;181(2):1519-25. 

356. Shin TS, Kim JH, Kim YS, Jeon SG, Zhu Z, Gho YS, et al. Extracellular vesicles are key intercellular 
mediators in the development of immune dysfunction to allergens in the airways. Allergy. 
2010;65(10):1256-65. 

357. Torregrosa Paredes P, Esser J, Admyre C, Nord M, Rahman QK, Lukic A, et al. Bronchoalveolar lavage 
fluid exosomes contribute to cytokine and leukotriene production in allergic asthma. Allergy. 
2012;67(7):911-9. 



List of References 

233 

 

358. Gregson AL, Hoji A, Injean P, Poynter ST, Briones C, Palchevskiy V, et al. Altered Exosomal RNA 
Profiles in Bronchoalveolar Lavage from Lung Transplants with Acute Rejection. Am J Respir Crit Care Med. 
2015;192(12):1490-503. 

359. Qazi KR, Torregrosa Paredes P, Dahlberg B, Grunewald J, Eklund A, Gabrielsson S. Proinflammatory 
exosomes in bronchoalveolar lavage fluid of patients with sarcoidosis. Thorax. 2010;65(11):1016-24. 

360. Maemura T, Fukuyama S, Sugita Y, Lopes TJS, Nakao T, Noda T, et al. Lung-Derived Exosomal miR-
483-3p Regulates the Innate Immune Response to Influenza Virus Infection. The Journal of infectious 
diseases. 2018;217(9):1372-82. 

361. Gardiner C, Di Vizio D, Sahoo S, Théry C, Witwer KW, Wauben M, et al. Techniques used for the 
isolation and characterization of extracellular vesicles: results of a worldwide survey. Journal of extracellular 
vesicles. 2016;5:32945-. 

362. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a 
population of circulating microRNAs independent of vesicles in human plasma. Proceedings of the National 
Academy of Sciences. 2011;108(12):5003-8. 

363. Page AM. The cytoskeleton architechture of trpanosomes: University of London; 1999. 

364. Burke H, Spalluto CM, Cellura D, Staples KJ, Wilkinson TMA. Role of exosomal microRNA in driving 
skeletal muscle wasting in COPD. Eur Respir J. 2015;46(suppl 59). 

365. Hill AF, Pegtel DM, Lambertz U, Leonardi T, O'Driscoll L, Pluchino S, et al. ISEV position paper: 
extracellular vesicle RNA analysis and bioinformatics. Journal of Extracellular Vesicles. 2013;2(1):22859. 

366. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011. 
2011;17(1):3. 

367. Andrews S. FastQC: a quality control tool for high throughput sequence data. Available online at: 
http://www.bioinformatics.babraham.ac.uk/projects/fastqc 2010 [Version 11.7:[ 

368. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature methods. 
2012;9(4):357-9. 

369. Molecular Biology Select. Cell. 2006;126(2):223-5. 

370. Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. 
Nature reviews Molecular cell biology. 2011;12(4):246-58. 

371. Maniatis T, Reed R. The role of small nuclear ribonucleoprotein particles in pre-mRNA splicing. 
Nature. 1987;325(6106):673-8. 

372. Christov CP, Gardiner TJ, Szuts D, Krude T. Functional requirement of noncoding Y RNAs for human 
chromosomal DNA replication. Mol Cell Biol. 2006;26(18):6993-7004. 

373. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression 
analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-40. 

374. Law CW, Alhamdoosh M, Su S, Smyth GK, Ritchie ME. RNA-seq analysis is easy as 1-2-3 with limma, 
Glimma and edgeR. F1000Research. 2016;5:1408-. 

375. Love M. rnaseqGene: RNA-seq workflow: gene-level exploratory analysis and differential expression. 
R package version 1.4.0 2018 [Available from: https://github.com/mikelove/rnaseqGene/. . 

376. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-
seq data. Genome biology. 2010;11(3):R25. 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://github.com/mikelove/rnaseqGene/


List of References 

234 

377. Chen Y, Lun, A.T.L., and Smyth, G.K. . Differential expression analysis of complex RNA-seq 
experiments using edgeR. Statistical Analysis of Next Generation Sequence Data. 2014:51-74. 

378. Blondal T, Jensby Nielsen S, Baker A, Andreasen D, Mouritzen P, Wrang Teilum M, et al. Assessing 
sample and miRNA profile quality in serum and plasma or other biofluids. Methods. 2013;59(1):S1-6. 

379. Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR 
data: a model-based variance estimation approach to identify genes suited for normalization, applied to 
bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245-50. 

380. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to 
Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995;57(1):289-300. 

381. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic 
Acids Res. 2019;47(D1):D155-D62. 

382. Ru Y, Kechris KJ, Tabakoff B, Hoffman P, Radcliffe RA, Bowler R, et al. The multiMiR R package and 
database: integration of microRNA-target interactions along with their disease and drug associations. 
Nucleic Acids Res. 2014;42(17):e133. 

383. Takahashi T, Kubo H. The role of microparticles in chronic obstructive pulmonary disease. Int J Chron 
Obstruct Pulmon Dis. 2014;9:303-14. 

384. Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control for 
high-throughput sequencing data. Bioinformatics. 2016;32(2):292-4. 

385. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map 
format and SAMtools. Bioinformatics. 2009;25(16):2078-9. 

386. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq 
aligner. Bioinformatics. 2013;29(1):15-21. 

387. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools 
and samples in a single report. Bioinformatics. 2016;32(19):3047-8. 

388. Gaspar JM. NGmerge: merging paired-end reads via novel empirically-derived models of sequencing 
errors. BMC Bioinformatics. 2018;19(1):536. 

389. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware 
quantification of transcript expression. Nature methods. 2017;14(4):417-9. 

390. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables 
reproducible computational workflows. Nature Biotechnology. 2017;35(4):316-9. 

391. Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, et al. Bioconda: sustainable and 
comprehensive software distribution for the life sciences. Nature methods. 2018;15(7):475-6. 

392. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data 
with DESeq2. Genome biology. 2014;15(12):550. 

393. Zhu A, Ibrahim JG, Love MI. Heavy-tailed prior distributions for sequence count data: removing the 
noise and preserving large differences. Bioinformatics. 2019;35(12):2084-92. 

394. Liu H, Brannon AR, Reddy AR, Alexe G, Seiler MW, Arreola A, et al. Identifying mRNA targets of 
microRNA dysregulated in cancer: with application to clear cell Renal Cell Carcinoma. BMC Syst Biol. 
2010;4:51. 

395. Van der Auwera I, Limame R, van Dam P, Vermeulen PB, Dirix LY, Van Laere SJ. Integrated miRNA and 
mRNA expression profiling of the inflammatory breast cancer subtype. Br J Cancer. 2010;103(4):532-41. 

396. da Silveira WA, Renaud L, Simpson J, Glen WB, Jr., Hazard ES, Chung D, et al. miRmapper: A Tool for 
Interpretation of miRNA⁻mRNA Interaction Networks. Genes. 2018;9(9). 



List of References 

235 

 

397. León LE, Calligaris SD. Visualization and Analysis of MiRNA–Targets Interactions Networks. In: Rani S, 
editor. MicroRNA Profiling: Methods and Protocols. New York, NY: Springer New York; 2017. p. 209-20. 

398. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software 
environment for integrated models of biomolecular interaction networks. Genome research. 
2003;13(11):2498-504. 

399. Wang J, Zhong J, Chen G, Li M, Wu FX, Pan Y. ClusterViz: A Cytoscape APP for Cluster Analysis of 
Biological Network. IEEE/ACM transactions on computational biology and bioinformatics. 2015;12(4):815-
22. 

400. Gao T, Qian J. EAGLE: An algorithm that utilizes a small number of genomic features to predict 
tissue/cell type-specific enhancer-gene interactions. PLOS Computational Biology. 2019;15(10):e1007436. 

401. Zhang Y, Hou J, Ge F, Cao F, Li H, Wang P, et al. Integrating microRNA and mRNA expression profiles 
of acute promyelocytic leukemia cells to explore the occurrence mechanisms of differentiation syndrome. 
Oncotarget. 2016;7(45):73509-24. 

402. The Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and resources. 
Nucleic Acids Research. 2016;45(D1):D331-D8. 

403. Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene 
ontology categories in biological networks. Bioinformatics. 2005;21(16):3448-9. 

404. Tao L, Shi J, Huang X, Hua F, Yang L. Identification of a lncRNA‑miRNA‑mRNA network based on 
competitive endogenous RNA theory reveals functional lncRNAs in hypertrophic cardiomyopathy. Exp Ther 
Med. 2020;20(2):1176-90. 

405. Rivals I, Personnaz L, Taing L, Potier M-C. Enrichment or depletion of a GO category within a class of 
genes: which test? Bioinformatics. 2006;23(4):401-7. 

406. Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment map: a network-based method for 
gene-set enrichment visualization and interpretation. PLoS ONE. 2010;5(11):e13984-e. 

407. Bafadhel M, Peterson S, De Blas MA, Calverley PM, Rennard SI, Richter K, et al. Predictors of 
exacerbation risk and response to budesonide in patients with chronic obstructive pulmonary disease: a 
post-hoc analysis of three randomised trials. The Lancet Respiratory medicine. 2018;6(2):117-26. 

408. Hogg JC, McDonough JE, Suzuki M. Small airway obstruction in COPD: new insights based on micro-
CT imaging and MRI imaging. Chest. 2013;143(5):1436-43. 

409. McDonough JE, Yuan R, Suzuki M, Seyednejad N, Elliott WM, Sanchez PG, et al. Small-airway 
obstruction and emphysema in chronic obstructive pulmonary disease. The New England journal of 
medicine. 2011;365(17):1567-75. 

410. Bhatt SP, Soler X, Wang X, Murray S, Anzueto AR, Beaty TH, et al. Association between Functional 
Small Airway Disease and FEV1 Decline in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care 
Med. 2016;194(2):178-84. 

411. Turato G, Semenzato U, Bazzan E, Biondini D, Tinè M, Torrecilla N, et al. Blood Eosinophilia Neither 
Reflects Tissue Eosinophils nor Worsens Clinical Outcomes in Chronic Obstructive Pulmonary Disease. 
American Journal of Respiratory and Critical Care Medicine. 2017;197(9):1216-9. 

412. Abdelwahab S, Gupta R, Radicioni G, Jones L, Dang H, O'Neal W, et al. Airway Epithelial Derived 
Exosomes on Protecting and Remodeling of the Lung. The FASEB Journal. 2015;29(1 Supplement). 

413. Groot Kormelink T, Mol S, de Jong EC, Wauben MHM. The role of extracellular vesicles when innate 
meets adaptive. Seminars in Immunopathology. 2018;40(5):439-52. 



List of References 

236 

414. Mazzeo C, Cañas JA, Zafra MP, Rojas Marco A, Fernández-Nieto M, Sanz V, et al. Exosome secretion 
by eosinophils: A possible role in asthma pathogenesis. Journal of Allergy and Clinical Immunology. 
2015;135(6):1603-13. 

415. Rossaint J, Kühne K, Skupski J, Van Aken H, Looney MR, Hidalgo A, et al. Directed transport of 
neutrophil-derived extracellular vesicles enables platelet-mediated innate immune response. Nat Commun. 
2016;7:13464. 

416. O'Donnell R, Breen D, Wilson S, Djukanovic R. Inflammatory cells in the airways in COPD. Thorax. 
2006;61(5):448-54. 

417. Karlicic V. Cellular composition of bronchoalveolar lavage (BAL) as inflammation indicator in patients 
with chronic obstructive pulmonary disease (COPD). Eur Respir J. 2014;44(Suppl 58):P707. 

418. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of best 
practices for RNA-seq data analysis. Genome biology. 2016;17:13. 

419. Zhao S, Fung-Leung W-P, Bittner A, Ngo K, Liu X. Comparison of RNA-Seq and Microarray in 
Transcriptome Profiling of Activated T Cells. PLoS ONE. 2014;9(1):e78644. 

420. Francisco-Garcia A, Martinez-Nunez RT, Rupani H, Lau LC, Howarth PH, Sanchez-Elsner T. LSC 
Abstract – Altered small RNA cargo in severe asthma exosomes. Eur Respir J. 2016;48(suppl 60):PP101. 

421. Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T. Neutral sphingomyelinase 2 
(nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol 
Chem. 2013;288(15):10849-59. 

422. Chung S, Vu S, Filosto S, Goldkorn T. Src regulates cigarette smoke-induced ceramide generation via 
neutral sphingomyelinase 2 in the airway epithelium. American journal of respiratory cell and molecular 
biology. 2015;52(6):738-48. 

423. Filosto S, Becker C, Ashfaq M, Tognon E, Goldkorn T. Cigarette Smoke Induces Epidermal Growth 
Factor Receptor Resistance To Tyrosine Kinase Inhibitors.  Molecular Targets for Therapeutic Development 
in Lung Cancer. American Thoracic Society International Conference Abstracts: American Thoracic Society; 
2011. p. A5077-A. 

424. Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F, Perez-Hernandez D, Vazquez J, Martin-
Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to 
specific motifs. Nat Commun. 2013;4:2980. 

425. Tauler J, Mulshine JL. Lung cancer and inflammation: interaction of chemokines and hnRNPs. Current 
opinion in pharmacology. 2009;9(4):384-8. 

426. Katsimpoula S, Patrinou-Georgoula M, Makrilia N, Dimakou K, Guialis A, Orfanidou D, et al. 
Overexpression of hnRNPA2/B1 in bronchoscopic specimens: a potential early detection marker in lung 
cancer. Anticancer Res. 2009;29(4):1373-82. 

427. Koppers-Lalic D, Hackenberg M, Bijnsdorp IV, van Eijndhoven MAJ, Sadek P, Sie D, et al. 
Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell 
reports. 2014;8(6):1649-58. 

428. Zhang D, Lee H, Wang X, Groot M, Sharma L, Dela Cruz CS, et al. A potential role of microvesicle-
containing miR-223/142 in lung inflammation. Thorax. 2019;74(9):865. 

429. Guduric-Fuchs J, O'Connor A, Camp B, O'Neill CL, Medina RJ, Simpson DA. Selective extracellular 
vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC genomics. 
2012;13:357. 

430. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, et al. A minicircuitry comprised of 
microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell. 
2005;123(5):819-31. 



List of References 

237 

 

431. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, et al. Regulation of progenitor 
cell proliferation and granulocyte function by microRNA-223. Nature. 2008;451(7182):1125-9. 

432. Felli N, Pedini F, Romania P, Biffoni M, Morsilli O, Castelli G, et al. MicroRNA 223-dependent 
expression of LMO2 regulates normal erythropoiesis. Haematologica. 2009;94(4):479-86. 

433. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalian microRNA 
expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401-14. 

434. Seumois G, Vijayanand P, Eisley CJ, Omran N, Kalinke L, North M, et al. An integrated nano-scale 
approach to profile miRNAs in limited clinical samples. American journal of clinical and experimental 
immunology. 2012;1(2):70-89. 

435. Maes T, Cobos FA, Schleich F, Sorbello V, Henket M, De Preter K, et al. Asthma inflammatory 
phenotypes show differential microRNA expression in sputum. J Allergy Clin Immunol. 2016;137(5):1433-46. 

436. Fulci V, Scappucci G, Sebastiani GD, Giannitti C, Franceschini D, Meloni F, et al. miR-223 is 
overexpressed in T-lymphocytes of patients affected by rheumatoid arthritis. Human immunology. 
2010;71(2):206-11. 

437. Neudecker V, Brodsky KS, Clambey ET, Schmidt EP, Packard TA, Davenport B, et al. Neutrophil 
transfer of miR-223 to lung epithelial cells dampens acute lung injury in mice. Science translational 
medicine. 2017;9(408). 

438. Zhu H, Leung SW. Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of 
controlled profiling studies. Diabetologia. 2015;58(5):900-11. 

439. Chen Q, Wang H, Liu Y, Song Y, Lai L, Han Q, et al. Inducible microRNA-223 down-regulation 
promotes TLR-triggered IL-6 and IL-1beta production in macrophages by targeting STAT3. PLoS ONE. 
2012;7(8):e42971. 

440. Liu Y, Wang R, Jiang J, Yang B, Cao Z, Cheng X. miR-223 is upregulated in monocytes from patients 
with tuberculosis and regulates function of monocyte-derived macrophages. Mol Immunol. 2015;67(2 Pt 
B):475-81. 

441. Yang M, Chen J, Su F, Yu B, Su F, Lin L, et al. Microvesicles secreted by macrophages shuttle invasion-
potentiating microRNAs into breast cancer cells. Molecular cancer. 2011;10:117. 

442. Chen L, Lu FB, Chen DZ, Wu JL, Hu ED, Xu LM, et al. BMSCs-derived miR-223-containing exosomes 
contribute to liver protection in experimental autoimmune hepatitis. Mol Immunol. 2018;93:38-46. 

443. Suzuki R, Amatya VJ, Kushitani K, Kai Y, Kambara T, Takeshima Y. miR-182 and miR-183 Promote Cell 
Proliferation and Invasion by Targeting FOXO1 in Mesothelioma. Frontiers in Oncology. 2018;8(446). 

444. Yu L, Todd NW, Xing L, Xie Y, Zhang H, Liu Z, et al. Early detection of lung adenocarcinoma in sputum 
by a panel of microRNA markers. Int J Cancer. 2010;127(12):2870-8. 

445. Zhu W, Zhou K, Zha Y, Chen D, He J, Ma H, et al. Diagnostic Value of Serum miR-182, miR-183, miR-
210, and miR-126 Levels in Patients with Early-Stage Non-Small Cell Lung Cancer. PLoS ONE. 
2016;11(4):e0153046. 

446. Sun L, Lin P, Chen Y, Yu H, Ren S, Wang J, et al. miR-182-3p/Myadm contribute to pulmonary artery 
hypertension vascular remodeling via a KLF4/p21-dependent mechanism. Theranostics. 2020;10(12):5581-
99. 

447. Chen Y, Zhang Q, Zhou Y, Yang Z, Tan M. Inhibition of miR-182-5p attenuates pulmonary fibrosis via 
TGF-β/Smad pathway. Hum Exp Toxicol. 2020;39(5):683-95. 

448. Barnes PJ. Small airway fibrosis in COPD. Int J Biochem Cell Biol. 2019;116:105598. 



List of References 

238 

449. Zhao Z, Ma X, Hsiao T-H, Lin G, Kosti A, Yu X, et al. A high-content morphological screen identifies 
novel microRNAs that regulate neuroblastoma cell differentiation. Oncotarget. 2014;5(9):2499-512. 

450. Zhao Z, Partridge V, Sousares M, Shelton SD, Holland CL, Pertsemlidis A, et al. microRNA-2110 
functions as an onco-suppressor in neuroblastoma by directly targeting Tsukushi. PLoS ONE. 
2018;13(12):e0208777. 

451. Lyu L, Zhang X, Li C, Yang T, Wang J, Pan L, et al. Small RNA Profiles of Serum Exosomes Derived From 
Individuals With Latent and Active Tuberculosis. Frontiers in microbiology. 2019;10:1174. 

452. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-
205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593-
601. 

453. Korpal M, Lee ES, Hu G, Kang Y. The miR-200 Family Inhibits Epithelial-Mesenchymal Transition and 
Cancer Cell Migration by Direct Targeting of E-cadherin Transcriptional Repressors ZEB1 and ZEB2. J Biol 
Chem. 2008;283(22):14910-4. 

454. Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AM, et al. Alveolar epithelial cell 
mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular 
matrix. Proc Natl Acad Sci U S A. 2006;103(35):13180-5. 

455. Sohal SS, Mahmood MQ, Walters EH. Clinical significance of epithelial mesenchymal transition (EMT) 
in chronic obstructive pulmonary disease (COPD): potential target for prevention of airway fibrosis and lung 
cancer. Clin Transl Med. 2014;3(1):33-. 

456. Chan YC, Roy S, Khanna S, Sen CK. Downregulation of endothelial MicroRNA-200b supports 
cutaneous wound angiogenesis by desilencing GATA binding protein 2 and vascular endothelial growth 
factor receptor 2. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012;32(6):1372-82. 

457. Rasmussen MH, Jensen NF, Tarpgaard LS, Qvortrup C, Rømer MU, Stenvang J, et al. High expression 
of microRNA-625-3p is associated with poor response to first-line oxaliplatin based treatment of metastatic 
colorectal cancer. Molecular oncology. 2013;7(3):637-46. 

458. Rasmussen MH, Lyskjær I, Jersie-Christensen RR, Tarpgaard LS, Primdal-Bengtson B, Nielsen MM, et 
al. miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal 
adenocarcinoma cells. Nat Commun. 2016;7:12436. 

459. Kirschner MB, Cheng YY, Badrian B, Kao SC, Creaney J, Edelman JJ, et al. Increased circulating miR-
625-3p: a potential biomarker for patients with malignant pleural mesothelioma. J Thorac Oncol. 
2012;7(7):1184-91. 

460. Verma K, Jyotsana N, Buenting I, Luther S, Pfanne A, Thum T, et al. miR-625-3p is upregulated in 
CD8+ T cells during early immune reconstitution after allogeneic stem cell transplantation. PLoS ONE. 
2017;12(8):e0183828. 

461. Dong X, Xu M, Ren Z, Gu J, Lu M, Lu Q, et al. Regulation of CBL and ESR1 expression by microRNA-
22‑3p, 513a-5p and 625-5p may impact the pathogenesis of dust mite-induced pediatric asthma. 
International journal of molecular medicine. 2016;38(2):446-56. 

462. Qian F-H, Deng X, Zhuang Q-X, Wei B, Zheng D-D. miR‑625‑5p suppresses inflammatory responses by 
targeting AKT2 in human bronchial epithelial cells. Mol Med Rep. 2019;19(3):1951-7. 

463. Panganiban RP, Wang Y, Howrylak J, Chinchilli VM, Craig TJ, August A, et al. Circulating microRNAs as 
biomarkers in patients with allergic rhinitis and asthma. J Allergy Clin Immunol. 2016;137(5):1423-32. 

464. Lacedonia D, Palladino GP, Foschino-Barbaro MP, Scioscia G, Carpagnano GE. Expression profiling of 
miRNA-145 and miRNA-338 in serum and sputum of patients with COPD, asthma, and asthma-COPD overlap 
syndrome phenotype. Int J Chron Obstruct Pulmon Dis. 2017;12:1811-7. 

465. Howe JRVI, Li ES, Streeter SE, Rahme GJ, Chipumuro E, Russo GB, et al. MiR-338-3p regulates 
neuronal maturation and suppresses glioblastoma proliferation. PLoS ONE. 2017;12(5):e0177661. 



List of References 

239 

 

466. Kos A, Olde Loohuis NF, Wieczorek ML, Glennon JC, Martens GJ, Kolk SM, et al. A potential regulatory 
role for intronic microRNA-338-3p for its host gene encoding apoptosis-associated tyrosine kinase. PLoS 
ONE. 2012;7(2):e31022. 

467. Liang L, Gao L, Zou X-P, Huang M-L, Chen G, Li J-J, et al. Diagnostic significance and potential function 
of miR-338-5p in hepatocellular carcinoma: A bioinformatics study with microarray and RNA sequencing 
data. Mol Med Report. 2018;17(2):2297-312. 

468. Lu M, Huang H, Yang J, Li J, Zhao G, Li W, et al. miR‑338‑3p regulates the proliferation, apoptosis and 
migration of SW480 cells by targeting MACC1. Exp Ther Med. 2019;17(4):2807-14. 

469. Liang C-Y, Li Z-Y, Gan T-Q, Fang Y-Y, Gan B-L, Chen W-J, et al. Downregulation of hsa-microRNA-204-
5p and identification of its potential regulatory network in non-small cell lung cancer: RT-qPCR, 
bioinformatic- and meta-analyses. Respir Res. 2020;21(1):60. 

470. Liu X, Gao X, Zhang W, Zhu T, Bi W, Zhang Y. MicroRNA-204 deregulation in lung adenocarcinoma 
controls the biological behaviors of endothelial cells potentially by modulating Janus kinase 2-signal 
transducer and activator of transcription 3 pathway. IUBMB life. 2018;70(1):81-91. 

471. Guo W, Zhang Y, Zhang Y, Shi Y, Xi J, Fan H, et al. Decreased expression of miR-204 in plasma is 
associated with a poor prognosis in patients with non-small cell lung cancer. International journal of 
molecular medicine. 2015;36(6):1720-6. 

472. Schneider R, McKeever P, Kim T, Graff C, van Swieten JC, Karydas A, et al. Downregulation of 
exosomal miR-204-5p and miR-632 as a biomarker for FTD: a GENFI study. Journal of Neurology, 
Neurosurgery &amp; Psychiatry. 2018;89(8):851-8. 

473. Chiu C-C, Yeh T-H, Chen R-S, Chen H-C, Huang Y-Z, Weng Y-H, et al. Upregulated Expression of 
MicroRNA-204-5p Leads to the Death of Dopaminergic Cells by Targeting DYRK1A-Mediated Apoptotic 
Signaling Cascade. Frontiers in Cellular Neuroscience. 2019;13(399). 

474. Wang Y, Li W, Zang X, Chen N, Liu T, Tsonis PA, et al. MicroRNA-204-5p Regulates Epithelial-to-
Mesenchymal Transition during Human Posterior Capsule Opacification by Targeting SMAD4. Investigative 
Ophthalmology & Visual Science. 2013;54(1):323-32. 

475. Song N, Li P, Song P, Li Y, Zhou S, Su Q, et al. MicroRNA-138-5p Suppresses Non-small Cell Lung 
Cancer Cells by Targeting PD-L1/PD-1 to Regulate Tumor Microenvironment. Frontiers in cell and 
developmental biology. 2020;8:540. 

476. Faner R, D. Morrow J, Casas-Recasens S, Cloonan S, Noell G, López-Giraldo A, et al. Do sputum or 
circulating blood samples reflect the pulmonary transcriptomic differences of COPD patients? A multi-tissue 
transcriptomic network META-analysis2019. 

477. Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, et al. miRTarBase: a database curates 
experimentally validated microRNA-target interactions. Nucleic Acids Res. 2011;39(Database issue):D163-9. 

478. Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, Vlachos IS, Tastsoglou S, Kanellos I, et al. 
DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA-gene interactions. Nucleic 
acids research. 2018;46(D1):D239-D45. 

479. Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, et al. DIANA-
microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic acids 
research. 2013;41(Web Server issue):W169-W73. 

480. Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M. Inference of miRNA targets using evolutionary 
conservation and pathway analysis. BMC Bioinformatics. 2007;8:69. 

481. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome 
biology. 2003;5(1):R1. 



List of References 

240 

482. Wang X. Improving microRNA target prediction by modeling with unambiguously identified 
microRNA-target pairs from CLIP-ligation studies. Bioinformatics. 2016;32(9):1316-22. 

483. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target 
recognition. Nature genetics. 2007;39(10):1278-84. 

484. Mu W, Zhang W. Bioinformatic Resources of microRNA Sequences, Gene Targets, and Genetic 
Variation. Frontiers in genetics. 2012;3:31-. 

485. Peter ME. Regulating Cancer Stem Cells the miR Way. Cell Stem Cell. 2010;6(1):4-6. 

486. Shalgi R, Lieber D, Oren M, Pilpel Y. Global and Local Architecture of the Mammalian microRNA–
Transcription Factor Regulatory Network. PLOS Computational Biology. 2007;3(7):e131. 

487. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep 
sequencing data. Nucleic acids research. 2014;42(Database issue):D68-D73. 

488. Didiano D, Hobert O. Perfect seed pairing is not a generally reliable predictor for miRNA-target 
interactions. Nature structural & molecular biology. 2006;13(9):849-51. 

489. Watson A ÖL, Angermann BR, Spalluto CM,  Hühn M, Burke H, Cellura D, Freeman A, Muthas D, Etal 
D, Belfield G, Karlsson F, Nordström K, Ostridge K, Staples KJ, Wilkinson TMA. COVID-19 Related Gene 
Expression in the Lung -Insights into the Susceptibility to Infection and Inflammation in COPD. 2021. 

490. Denecke B, Gräber S, Schäfer C, Heiss A, Wöltje M, Jahnen-Dechent W. Tissue distribution and 
activity testing suggest a similar but not identical function of fetuin-B and fetuin-A. Biochem J. 2003;376(Pt 
1):135-45. 

491. Meex RC, Hoy AJ, Morris A, Brown RD, Lo JC, Burke M, et al. Fetuin B Is a Secreted Hepatocyte Factor 
Linking Steatosis to Impaired Glucose Metabolism. Cell metabolism. 2015;22(6):1078-89. 

492. Diao W-q, Shen N, Du Y-p, Liu B-b, Sun X-y, Xu M, et al. Fetuin-B (FETUB): a Plasma Biomarker 
Candidate Related to the Severity of Lung Function in COPD. Scientific Reports. 2016;6(1):30045. 

493. George L, Taylor AR, Esteve-Codina A, Soler Artigas M, Thun GA, Bates S, et al. Blood eosinophil 
count and airway epithelial transcriptome relationships in COPD versus asthma. Allergy. 2020;75(2):370-80. 

494. Green AR, Barbour S, Horn T, Carlos J, Raskatov JA, Holman TR. Strict Regiospecificity of Human 
Epithelial 15-Lipoxygenase-2 Delineates Its Transcellular Synthesis Potential. Biochemistry. 
2016;55(20):2832-40. 

495. Kristjansson RP, Benonisdottir S, Davidsson OB, Oddsson A, Tragante V, Sigurdsson JK, et al. A loss-of-
function variant in ALOX15 protects against nasal polyps and chronic rhinosinusitis. Nature genetics. 
2019;51(2):267-76. 

496. Wilson SM, Newton R, Giembycz M. Phosphodiesterase 4 Inhibitors Suppress Chemokine Release 
From Human Airway Epithelial Cells By A Novel, 15-Lipoxygenase-2- And PPARg-Dependent Mechanism.  
Phosphodiesterase Inhibitors as Therapeutics for Lung Diseases. American Thoracic Society International 
Conference Abstracts: American Thoracic Society; 2012. p. A5692-A. 

497. Churg A, Zhou S, Wright JL. Matrix metalloproteinases in COPD. Eur Respir J. 2012;39(1):197. 

498. Baines KJ, Fu J-J, McDonald VM, Gibson PG. Airway gene expression of IL-1 pathway mediators 
predicts exacerbation risk in obstructive airway disease. International journal of chronic obstructive 
pulmonary disease. 2017;12:541-50. 

499. Balk-Møller E, Windeløv JA, Svendsen B, Hunt J, Ghiasi SM, Sørensen CM, et al. Glucagon-Like 
Peptide 1 and Atrial Natriuretic Peptide in a Female Mouse Model of Obstructive Pulmonary Disease. J 
Endocr Soc. 2019;4(1):bvz034-bvz. 

500. He XL, Dukkipati A, Garcia KC. Structural determinants of natriuretic peptide receptor specificity and 
degeneracy. Journal of molecular biology. 2006;361(4):698-714. 



List of References 

241 

 

501. Anand-Srivastava MB. Natriuretic peptide receptor-C signaling and regulation. Peptides. 
2005;26(6):1044-59. 

502. Bianciotti LG, Vatta MS, Elverdin JC, di Carlo MB, Negri G, Fernandez BE. Atrial natriuretic factor-
induced amylase output in the rat parotid gland appears to be mediated by the inositol phosphate pathway. 
Biochemical and biophysical research communications. 1998;247(1):123-8. 

503. Li Y, Hashim S, Anand-Srivastava MB. Intracellular peptides of natriuretic peptide receptor-C inhibit 
vascular hypertrophy via Gqalpha/MAP kinase signaling pathways. Cardiovascular research. 2006;72(3):464-
72. 

504. Sun J-Z, Oparil S, Lucchesi P, Thompson JA, Chen Y-F. Tyrosine kinase receptor activation inhibits 
NPR-C in lung arterial smooth muscle cells. American Journal of Physiology-Lung Cellular and Molecular 
Physiology. 2001;281(1):L155-L63. 

505. Kachroo P, Morrow JD, Kho AT, Vyhlidal CA, Silverman EK, Weiss ST, et al. Co-methylation analysis in 
lung tissue identifies pathways for fetal origins of COPD. Eur Respir J. 2020;56(4). 

506. Wang IM, Stepaniants S, Boie Y, Mortimer JR, Kennedy B, Elliott M, et al. Gene expression profiling in 
patients with chronic obstructive pulmonary disease and lung cancer. Am J Respir Crit Care Med. 
2008;177(4):402-11. 

507. Imkamp K, Berg M, Vermeulen CJ, Heijink IH, Guryev V, Kerstjens HAM, et al. Nasal epithelium as a 
proxy for bronchial epithelium for smoking-induced gene expression and expression Quantitative Trait Loci. 
Journal of Allergy and Clinical Immunology. 2018;142(1):314-7.e15. 

508. Zayed H. Novel Comprehensive Bioinformatics Approaches to Determine the Molecular Genetic 
Susceptibility Profile of Moderate and Severe Asthma. International journal of molecular sciences [Internet]. 
2020 2020/06//; 21(11). 

509. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nature 
reviews Molecular cell biology. 2014;15(12):786-801. 

510. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, et al. Circulating endothelial 
progenitor cells, vascular function, and cardiovascular risk. The New England journal of medicine. 
2003;348(7):593-600. 

511. Brittan M, Hoogenboom MM, Padfield GJ, Tura O, Fujisawa T, MacLay JD, et al. Endothelial 
progenitor cells in patients with chronic obstructive pulmonary disease. American Journal of Physiology-
Lung Cellular and Molecular Physiology. 2013;305(12):L964-L9. 

512. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor 
endothelial cells for angiogenesis. Science (New York, NY). 1997;275(5302):964-7. 

513. Lin Y-Z, Zhong X-N, Chen X, Liang Y, Zhang H, Zhu D-L. Roundabout signaling pathway involved in the 
pathogenesis of COPD by integrative bioinformatics analysis. International journal of chronic obstructive 
pulmonary disease. 2019;14:2145-62. 

514. Rekers NV, Bajema IM, Mallat MJK, Anholts JDH, de Vaal YJH, Zandbergen M, et al. Increased 
Metallothionein Expression Reflects Steroid Resistance in Renal Allograft Recipients. American Journal of 
Transplantation. 2013;13(8):2106-18. 

515. Carlier FM, Dupasquier S, Ambroise J, Detry B, Lecocq M, Biétry–Claudet C, et al. Canonical WNT 
pathway is activated in the airway epithelium in chronic obstructive pulmonary disease. EBioMedicine. 
2020;61. 

516. Bermingham ML, Walker RM, Marioni RE, Morris SW, Rawlik K, Zeng Y, et al. Identification of novel 
differentially methylated sites with potential as clinical predictors of impaired respiratory function and 
COPD. EBioMedicine. 2019;43:576-86. 



List of References 

242 

517. Rižner TL, Penning TM. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid 
metabolism. Steroids. 2014;79:49-63. 

518. Zhao SF, Wang SG, Zhao ZY, Li WL. AKR1C1‑3, notably AKR1C3, are distinct biomarkers for liver 
cancer diagnosis and prognosis: Database mining in malignancies. Oncol Lett. 2019;18(5):4515-22. 

519. Steiling K, Lenburg ME, Spira A. Airway gene expression in chronic obstructive pulmonary disease. 
Proceedings of the American Thoracic Society. 2009;6(8):697-700. 

520. Sheu CC, Chang WA, Tsai MJ, Liao SH, Chong IW, Kuo PL. Bioinformatic analysis of next‑generation 
sequencing data to identify dysregulated genes in fibroblasts of idiopathic pulmonary fibrosis. International 
journal of molecular medicine. 2019;43(4):1643-56. 

521. Soroosh A, Albeiroti S, West GA, Willard B, Fiocchi C, de la Motte CA. Crohn’s Disease Fibroblasts 
Overproduce the Novel Protein KIAA1199 to Create Proinflammatory Hyaluronan Fragments. Cellular and 
Molecular Gastroenterology and Hepatology. 2016;2(3):358-68.e4. 

522. Li L, Yan L-H, Manoj S, Li Y, Lu L. Central Role of CEMIP in Tumorigenesis and Its Potential as 
Therapeutic Target. Journal of Cancer. 2017;8(12):2238-46. 

523. Qin J, Yang T, Zeng N, Wan C, Gao L, Li X, et al. Differential coexpression networks in bronchiolitis and 
emphysema phenotypes reveal heterogeneous mechanisms of chronic obstructive pulmonary disease. 
Journal of Cellular and Molecular Medicine. 2019;23(10):6989-99. 

524. Arseni L, Lombardi A, Orioli D. From Structure to Phenotype: Impact of Collagen Alterations on 
Human Health. International journal of molecular sciences. 2018;19(5). 

525. Muniategui A, Pey J, Planes FJ, Rubio A. Joint analysis of miRNA and mRNA expression data. Briefings 
in bioinformatics. 2013;14(3):263-78. 

526. Wang L, Liang Y, Mao Q, Xia W, Chen B, Shen H, et al. Circular RNA CRIM1 inhibits invasion and 
metastasis in lung adenocarcinoma through the microRNA (miR)-182/miR-93-leukemia inhibitory factor 
receptor pathway. Cancer science. 2019;110(9):2960-72. 

527. Jens Glienke AS, Andreas Menrad, Karl-Heinz Thierauch. CRIM1 is involved in endothelial cell 
capillary formation in vitro and is expressed in blood vessels in vivo. Mechanisms of Development. 
2002;119(2):165-75. 

528. Hoang TT, Sikdar S, Xu C-J, Lee MK, Cardwell J, Forno E, et al. Epigenome-wide association study of 
DNA methylation and adult asthma in the Agricultural Lung Health Study. Eur Respir J. 2020;56(3). 

529. Shu J, Wang, L., Han, F., Chen, Y., Wang, S., & Luo, F. BTBD7 Downregulates E-Cadherin and Promotes 
Epithelial-Mesenchymal Transition in Lung Cancer. BioMed research international. 2019;2019: 5937635. 

530. Stoll P, Wuertemberger U, Bratke K, Zingler C, Virchow JC, Lommatzsch M. Stage-dependent 
association of BDNF and TGF-β1with lung function in stable COPD. Respir Res. 2012;13(1):116. 

531. Loza MJ, Watt R, Baribaud F, Barnathan ES, Rennard SI. Systemic inflammatory profile and response 
to anti-tumor necrosis factor therapy in chronic obstructive pulmonary disease. Respir Res. 2012;13(1):12. 

532. Pinto-Plata V, Toso J, Lee K, Park D, Bilello J, Mullerova H, et al. Profiling serum biomarkers in 
patients with COPD: associations with clinical parameters. Thorax. 2007;62(7):595-601. 

533. Aravamudan B, Thompson M, Pabelick C, Prakash YS. Brain-derived neurotrophic factor induces 
proliferation of human airway smooth muscle cells. J Cell Mol Med. 2012;16(4):812-23. 

534. Lommatzsch M, Schloetcke K, Klotz J, Schuhbaeck K, Zingler D, Zingler C, et al. Brain-derived 
Neurotrophic Factor in Platelets and Airflow Limitation in Asthma. American Journal of Respiratory and 
Critical Care Medicine. 2005;171(2):115-20. 



List of References 

243 

 

535. Takatsuki S, Nakamura R, Haga Y, Mitsui K, Hashimoto T, Shimojima K, et al. Severe pulmonary 
emphysema in a girl with interstitial deletion of 2q24.2q24.3 including ITGB6. American Journal of Medical 
Genetics Part A. 2010;152A(4):1020-5. 

536. Bhaskaran V, Nowicki MO, Idriss M, Jimenez MA, Lugli G, Hayes JL, et al. The functional synergism of 
microRNA clustering provides therapeutically relevant epigenetic interference in glioblastoma. Nature 
Communications. 2019;10(1):442. 

537. Manikandan P, Nagini S. Cytochrome P450 Structure, Function and Clinical Significance: A Review. 
Current drug targets. 2018;19(1):38-54. 

538. Shimada T, Hayes CL, Yamazaki H, Amin S, Hecht SS, Guengerich FP, et al. Activation of chemically 
diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res. 1996;56(13):2979-84. 

539. Smerdová L, Neča J, Svobodová J, Topinka J, Schmuczerová J, Kozubík A, et al. Inflammatory 
mediators accelerate metabolism of benzo[a]pyrene in rat alveolar type II cells: the role of enhanced 
cytochrome P450 1B1 expression. Toxicology. 2013;314(1):30-8. 

540. Kamata S, Fujino N, Yamada M, Grime K, Suzuki S, Ota C, et al. Expression of cytochrome P450 
mRNAs in Type II alveolar cells from subjects with chronic obstructive pulmonary disease. Pharmacology 
research & perspectives. 2018;6(3):e00405. 

541. Rebecchi MJ, Pentyala SN. Structure, Function, and Control of Phosphoinositide-Specific 
Phospholipase C. Physiological reviews. 2000;80(4):1291-335. 

542. Zhu L, Ly H, Liang Y. PLC-γ1 Signaling Plays a Subtype-Specific Role in Postbinding Cell Entry of 
Influenza A Virus. J Virol. 2014;88(1):417-24. 

543. Zhu L, Yuan C, Ding X, Xu S, Yang J, Liang Y, et al. PLC-γ1 is involved in the inflammatory response 
induced by influenza A virus H1N1 infection. Virology. 2016;496:131-7. 

544. Zhu L, Jones C, Zhang G. The Role of Phospholipase C Signaling in Macrophage-Mediated 
Inflammatory Response. Journal of immunology research. 2018;2018:5201759. 

545. Jia W, Feng YI, Sanders AJ, Davies EL, Jiang WG. Phosphoinositide-3-Kinase Enhancers, PIKEs: Their 
Biological Functions and Roles in Cancer. Anticancer Res. 2016;36(3):1103. 

546. Wang Z, Li W, Guo Q, Wang Y, Ma L, Zhang X. Insulin-Like Growth Factor-1 Signaling in Lung 
Development and Inflammatory Lung Diseases. BioMed Research International. 2018;2018:1-27. 

547. Chan SMH, Selemidis S, Bozinovski S, Vlahos R. Pathobiological mechanisms underlying metabolic 
syndrome (MetS) in chronic obstructive pulmonary disease (COPD): clinical significance and therapeutic 
strategies. Pharmacol Ther. 2019;198:160-88. 

548. Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. Journal 
of Allergy and Clinical Immunology. 2016;138(1):16-27. 

549. Pascoe S, Locantore N, Dransfield MT, Barnes NC, Pavord ID. Blood eosinophil counts, exacerbations, 
and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive 
pulmonary disease: a secondary analysis of data from two parallel randomised controlled trials. The Lancet 
Respiratory Medicine. 2015;3(6):435-42. 

550. Pavord ID, Lettis S, Locantore N, Pascoe S, Jones PW, Wedzicha JA, et al. Blood eosinophils and 
inhaled corticosteroid/longacting β-2 agonist efficacy in COPD. Thorax. 2016;71(2):118-25. 

551. Meyer KC, Raghu G, Baughman RP, Brown KK, Costabel U, du Bois RM, et al. An official American 
Thoracic Society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in 
interstitial lung disease. Am J Respir Crit Care Med. 2012;185(9):1004-14. 



List of References 

244 

552. Wang L, Liu Y, Du L, Li J, Jiang X, Zheng G, et al. Identification and validation of reference genes for 
the detection of serum microRNAs by reverse transcription‑quantitative polymerase chain reaction in 
patients with bladder cancer. Mol Med Rep. 2015;12(1):615-22. 

553. Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, et al. miRNAs as Biomarkers in 
Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells. 2020;9(2):276. 

554. Solé C, Moliné T, Vidal M, Ordi-Ros J, Cortés-Hernández J. An Exosomal Urinary miRNA Signature for 
Early Diagnosis of Renal Fibrosis in Lupus Nephritis. Cells. 2019;8(8). 

555. Xiong DD, Lv J, Wei KL, Feng ZB, Chen JT, Liu KC, et al. A nine-miRNA signature as a potential 
diagnostic marker for breast carcinoma: An integrated study of 1,110 cases. Oncology reports. 
2017;37(6):3297-304. 

556. Mompeón A, Ortega-Paz L, Vidal-Gómez X, Costa TJ, Pérez-Cremades D, Garcia-Blas S, et al. 
Disparate miRNA expression in serum and plasma of patients with acute myocardial infarction: a systematic 
and paired comparative analysis. Scientific Reports. 2020;10(1):5373. 

557. Shen BY, Wu N, Yang JM, Gould SJ. Protein Targeting to Exosomes/Microvesicles by Plasma 
Membrane Anchors. J Biol Chem. 2011;286(16):14383-95. 

558. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating 
microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of 
Sciences. 2008;105(30):10513. 

559. Li SC, Huang LH, Chien KJ, Pan CY, Lin PH, Lin Y, et al. MiR-182-5p enhances in vitro neutrophil 
infiltration in Kawasaki disease. Mol Genet Genomic Med. 2019;7(12):e990. 

560. Wurm AA, Zjablovskaja P, Kardosova M, Gerloff D, Brauer-Hartmann D, Katzerke C, et al. Disruption 
of the C/EBPalpha-miR-182 balance impairs granulocytic differentiation. Nat Commun. 2017;8(1):46. 

561. Karali M, Guadagnino I, Marrocco E, De Cegli R, Carissimo A, Pizzo M, et al. AAV-miR-204 Protects 
from Retinal Degeneration by Attenuation of Microglia Activation and Photoreceptor Cell Death. Mol Ther 
Nucleic Acids. 2020;19:144-56. 

562. Li H, Wang J, Liu X, Cheng Q. MicroRNA-204-5p suppresses IL6-mediated inflammatory response and 
chemokine generation in HK-2 renal tubular epithelial cells by targeting IL6R. Biochemistry and cell biology = 
Biochimie et biologie cellulaire. 2019;97(2):109-17. 

563. Fielding CA, McLoughlin RM, McLeod L, Colmont CS, Najdovska M, Grail D, et al. IL-6 regulates 
neutrophil trafficking during acute inflammation via STAT3. J Immunol. 2008;181(3):2189-95. 

564. Feng JS, Sun JD, Wang XD, Fu CH, Gan LL, Ma R. MicroRNA-204-5p targets SOX11 to regulate the 
inflammatory response in spinal cord injury. European review for medical and pharmacological sciences. 
2019;23(10):4089-96. 

565. Yoon J, Um H-N, Jang J, Bae Y-A, Park W-J, Kim HJ, et al. Eosinophil Activation by Toll-Like Receptor 4 
Ligands Regulates Macrophage Polarization. Frontiers in cell and developmental biology. 2019;7(329). 

566. Mirjam P. Roffel C-AB, Maarten Van Den Berge, Ilse Boudewijn, Ken Bracke, Tania Maes, Irene 
Heijink. Unraveling the role of miR-223-3p in the regulation of airway inflammation in asthma and COPD. 
ERJ Open Research. 2019;5. 

567. Roffel MP, Brandsma C-A, Van Den Berge M, Boudewijn I, Bracke K, Maes T, et al. Unraveling the role 
of miR-223-3p in the regulation of airway inflammation in asthma and COPD. ERJ Open Research. 
2019;5(suppl 2):OP07. 

568. Nobs SP, Kayhan M, Kopf M. GM-CSF intrinsically controls eosinophil accumulation in the setting of 
allergic airway inflammation. Journal of Allergy and Clinical Immunology. 2019;143(4):1513-24.e2. 

569. Zhou Y, Zhang T, Yan Y, You B, You Y, Zhang W, et al. MicroRNA-223-3p regulates allergic in fl 
ammation by targeting INPP4A. Braz J Otorhinolaryngol. 2020. 



List of References 

245 

 

570. Marshall AJ, Hou S, Wu X, Li H. Control of B cell activation and migration by PI 3-kinase: role of 
inositol polyphosphate 4-phosphatases. The Journal of Immunology. 2016;196(1 Supplement):198.5. 

571. Siddiqui SH, Guasconi A, Vestbo J, Jones P, Agusti A, Paggiaro P, et al. Blood Eosinophils: A Biomarker 
of Response to Extrafine Beclomethasone/Formoterol in Chronic Obstructive Pulmonary Disease. American 
Journal of Respiratory and Critical Care Medicine. 2015;192(4):523-5. 

572. George JN, Thoi LL, McManus LM, Reimann TA. Isolation Of Human-Platelet Membrane 
Microparticles From Plasma And Serum. Blood. 1982;60(4):834-40. 

573. Gemmell CH, Sefton MV, Yeo EL. Platelet-Derived Microparticle Formation Involves Glycoprotein-IIb-
IIIa - Inhibition By RGDS and a Glanzmann Thrombasthenia Defect. J Biol Chem. 1993;268(20):14586-9. 

574. Noerholm M, Balaj L, Limperg T, Salehi A, Zhu LD, Hochberg FH, et al. RNA expression patterns in 
serum microvesicles from patients with glioblastoma multiforme and controls. BMC Cancer. 2012;12:11. 

575. Alvarez ML, Khosroheidari M, Kanchi Ravi R, DiStefano JK. Comparison of protein, microRNA, and 
mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease 
biomarkers. Kidney Int. 2012;82(9):1024-32. 

576. Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. Isolation of Extracellular Vesicles: General 
Methodologies and Latest Trends. BioMed Research International. 2018;2018:8545347. 

577. Ridder K, Keller S, Dams M, Rupp AK, Schlaudraff J, Del Turco D, et al. Extracellular vesicle-mediated 
transfer of genetic information between the hematopoietic system and the brain in response to 
inflammation. PLoS biology. 2014;12(6):e1001874. 

578. Ridder K, Sevko A, Heide J, Dams M, Rupp AK, Macas J, et al. Extracellular vesicle-mediated transfer 
of functional RNA in the tumor microenvironment. Oncoimmunology. 2015;4(6):e1008371. 

579. Zomer A, Maynard C, Verweij FJ, Kamermans A, Schäfer R, Beerling E, et al. In Vivo imaging reveals 
extracellular vesicle-mediated phenocopying of metastatic behavior. Cell. 2015;161(5):1046-57. 

580. Das S, Ansel KM, Bitzer M, Breakefield XO, Charest A, Galas DJ, et al. The Extracellular RNA 
Communication Consortium: Establishing Foundational Knowledge and Technologies for Extracellular RNA 
Research. Cell. 2019;177(2):231-42. 

581. Srinivasan S, Yeri A, Cheah PS, Chung A, Danielson K, De Hoff P, et al. Small RNA Sequencing across 
Diverse Biofluids Identifies Optimal Methods for exRNA Isolation. Cell. 2019;177(2):446-62.e16. 

582. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal 
information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International 
Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 
2018;7(1):1535750. 

583. Chiang CY, Chen C. Toward characterizing extracellular vesicles at a single-particle level. Journal of 
biomedical science. 2019;26(1):9. 

584. Nolan JP, Duggan E. Analysis of Individual Extracellular Vesicles by Flow Cytometry. Methods Mol 
Biol. 2018;1678:79-92. 

585. Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and 
other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21(1):9-17. 

586. Cha DJ, Franklin JL, Dou Y, Liu Q, Higginbotham JN, Demory Beckler M, et al. KRAS-dependent sorting 
of miRNA to exosomes. eLife. 2015;4:e07197. 

587. Mukherjee K, Ghoshal B, Ghosh S, Chakrabarty Y, Shwetha S, Das S, et al. Reversible HuR-microRNA 
binding controls extracellular export of miR-122 and augments stress response. EMBO reports. 
2016;17(8):1184-203. 



List of References 

246 

588. Santangelo L, Giurato G, Cicchini C, Montaldo C, Mancone C, Tarallo R, et al. The RNA-Binding Protein 
SYNCRIP Is a Component of the Hepatocyte Exosomal Machinery Controlling MicroRNA Sorting. Cell reports. 
2016;17(3):799-808. 

589. Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-
Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to 
specific motifs. Nat Commun. 2013;4:2980. 

590. Kaur S, Elkahloun AG, Arakelyan A, Young L, Myers TG, Otaizo-Carrasquero F, et al. CD63, MHC class 
1, and CD47 identify subsets of extracellular vesicles containing distinct populations of noncoding RNAs. Sci 
Rep. 2018;8(1):2577. 

591. Willemse BWM, Postma DS, Timens W, ten Hacken NHT. The impact of smoking cessation on 
respiratory symptoms, lung function, airway hyperresponsiveness and inflammation. Eur Respir J. 
2004;23(3):464. 

592. Roffel MP, Bracke KR, Heijink IH, Maes T. miR-223: A Key Regulator in the Innate Immune Response 
in Asthma and COPD. Front Med (Lausanne). 2020;7:196-. 

593. Cheng Y, Wang X, Wang P, Li T, Hu F, Liu Q, et al. SUSD2 is frequently downregulated and functions 
as a tumor suppressor in RCC and lung cancer. Tumor Biology. 2016;37(7):9919-30. 

594. Turner MC, Chen Y, Krewski D, Calle EE, Thun MJ. Chronic obstructive pulmonary disease is 
associated with lung cancer mortality in a prospective study of never smokers. Am J Respir Crit Care Med. 
2007;176(3):285-90. 

595. Guan P, Yin Z, Li X, Wu W, Zhou B. Meta-analysis of human lung cancer microRNA expression 
profiling studies comparing cancer tissues with normal tissues. Journal of Experimental & Clinical Cancer 
Research. 2012;31(1):54. 

596. "2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung." Brian L. Graham, 
Vito Brusasco, Felip Burgos, Brendan G. Cooper, Robert Jensen, Adrian Kendrick, Neil R. MacIntyre, Bruce R. 
Thompson and Jack Wanger. Eur Respir J 2017; 49: 1600016. Eur Respir J. 2018;52(5). 

597. Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, et al. Quantitative and stoichiometric 
analysis of the microRNA content of exosomes. Proc Natl Acad Sci U S A. 2014;111(41):14888-93. 

598. Yu L, Todd NW, Xing L, Xie Y, Zhang H, Liu Z, et al. Early detection of lung adenocarcinoma in sputum 
by a panel of microRNA markers. International Journal of Cancer. 2010;127(12):2870-8. 

599. Shi L, Kojonazarov B, Elgheznawy A, Popp R, Dahal BK, Böhm M, et al. miR-223-IGF-IR signalling in 
hypoxia- and load-induced right-ventricular failure: a novel therapeutic approach. Cardiovascular research. 
2016;111(3):184-93. 

600. Yoshida T, Delafontaine P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle 
Hypertrophy and Atrophy. Cells. 2020;9(9). 

601. Hurst JR, Dickhaus J, Maulik PK, Miranda JJ, Pastakia SD, Soriano JB, et al. Global Alliance for Chronic 
Disease researchers' statement on multimorbidity. The Lancet Global Health. 2018;6(12):e1270-e1. 

602. Rennard SI, Drummond MB. Early chronic obstructive pulmonary disease: definition, assessment, 
and prevention. Lancet. 2015;385(9979):1778-88. 

603. Martinez FJ, Han MK, Allinson JP, Barr RG, Boucher RC, Calverley PMA, et al. At the Root: Defining 
and Halting Progression of Early Chronic Obstructive Pulmonary Disease. American Journal of Respiratory 
and Critical Care Medicine. 2018;197(12):1540-51. 

604. Allinson JP, Hardy R, Donaldson GC, Shaheen SO, Kuh D, Wedzicha JA. Combined Impact of Smoking 
and Early-Life Exposures on Adult Lung Function Trajectories. American Journal of Respiratory and Critical 
Care Medicine. 2017;196(8):1021-30. 



List of References 

247 

 

605. El-Emir E. DG. The BLF Early COPD Development Partnership Grant. Clinical Trials.gov: Imperial 
College London; 2018. 

606. Stockley RA, Halpin DMG, Celli BR, Singh D. Chronic Obstructive Pulmonary Disease Biomarkers and 
Their Interpretation. American Journal of Respiratory and Critical Care Medicine. 2019;199(10):1195-204. 

607. George L, Brightling CE. Eosinophilic airway inflammation: role in asthma and chronic obstructive 
pulmonary disease. Therapeutic advances in chronic disease. 2016;7(1):34-51. 

608. Sennels HP, Jørgensen HL, Hansen AL, Goetze JP, Fahrenkrug J. Diurnal variation of hematology 
parameters in healthy young males: the Bispebjerg study of diurnal variations. Scand J Clin Lab Invest. 
2011;71(7):532-41. 

609. Nicholas B, Staples KJ, Moese S, Meldrum E, Ward J, Dennison P, et al. A novel lung explant model for 
the ex vivo study of efficacy and mechanisms of anti-influenza drugs. J Immunol. 2015;194(12):6144-54. 

610. Kanayama M, He YW, Shinohara ML. The lung is protected from spontaneous inflammation by 
autophagy in myeloid cells. J Immunol. 2015;194(11):5465-71. 

611. Staples KJ, Nicholas B, McKendry RT, Spalluto CM, Wallington JC, Bragg CW, et al. Viral Infection of 
Human Lung Macrophages Increases PDL1 Expression via IFNβ. PLoS ONE. 2015;10(3):e0121527. 

612. Wallington JC, Williams AP, Staples KJ, Wilkinson TMA. IL-12 and IL-7 synergize to control mucosal-
associated invariant T-cell cytotoxic responses to bacterial infection. J Allergy Clin Immunol. 
2018;141(6):2182-95.e6. 

 


	Table of Contents
	Table of Tables
	Table of Figures
	Research Thesis: Declaration of Authorship
	Acknowledgements
	Definitions and Abbreviations
	Chapter 1 Introduction
	1.1 Chronic obstructive pulmonary disease
	1.1.1 Overview of COPD
	1.1.2 Burden of COPD
	1.1.3 Risk factors for development and progression of disease
	1.1.3.1 Genetic factors
	1.1.3.2 Ageing and COPD
	1.1.3.3 Lung growth and development
	1.1.3.4 Smoking & domestic fuel exposure


	1.2 Pathogenesis and pathophysiology of COPD
	1.2.1 Inflammatory cells
	1.2.1.1 Neutrophils
	1.2.1.2 Macrophages
	1.2.1.3 T Lymphocytes
	1.2.1.4 Airway epithelial cells

	1.2.2 Inflammatory mediators
	1.2.3 Oxidative stress
	1.2.4 Protease-anti-protease imbalance
	1.2.5 Airflow obstruction and hyperinflation
	1.2.6 Gas exchange abnormalities and pulmonary hypertension
	1.2.7 Systemic features

	1.3 Diagnosis of COPD
	1.4 Treatment of COPD
	1.5 COPD Endotypes
	1.5.1 Neutrophilic COPD
	1.5.2 Eosinophilic COPD

	1.6 Exacerbations in COPD
	1.7 Extracellular vesicles
	1.7.1 Definition
	1.7.2 Subtypes and classification
	1.7.2.1 Apoptotic bodies
	1.7.2.2 Microvesicles
	1.7.2.3 Exosomes

	1.7.3 Extracellular vesicles in the lung
	1.7.4 Extracellular vesicles in COPD
	1.7.4.1 Extracellular vesicles as a diagnostic biomarker in COPD
	1.7.4.2 Extracellular vesicles as a potential therapy in COPD

	1.7.5 Extracellular vesicle isolation methods
	1.7.5.1 Ultracentrifugation
	1.7.5.2 Size exclusion chromatography
	1.7.5.3 Filtration
	1.7.5.4 Polymeric precipitation
	1.7.5.5 Immunoaffinity isolation
	1.7.5.6 Membrane affinity isolation

	1.7.6 Characterisation of extracellular vesicles

	1.8 MicroRNA
	1.8.1 MicroRNA biogenesis and function
	1.8.2 MicroRNA in COPD

	1.9 Hypothesis and aims

	Chapter 2 Methods
	2.1 Ethics
	2.2 MICA II study design
	2.3 Study population for bronchoalveolar lavage exosomal miRNA analysis
	2.4 Sampling protocols
	2.4.1 Spirometry
	2.4.2 Transfer factor
	2.4.3 Blood serum preparation
	2.4.4 High resolution computer tomography
	2.4.5 Fibreoptic bronchoscopy
	2.4.5.1 Epithelial brushings for RNA isolation and sequencing
	2.4.5.2 Bronchoalveolar lavage fluid analysis
	2.4.5.3 Bronchoalveolar lavage cell counts


	2.5 Extracellular vesicle isolation
	2.5.1 Ultrafiltration for sample purification and concentration
	2.5.2 Size exclusion chromatography
	2.5.2.1 Size exclusion chromatography using PURE-EV™ columns
	2.5.2.2 Size exclusion chromatography using Exo-spin™ Midi-columns

	2.5.3 Measurement of protein concentration of SEC-derived EV samples
	2.5.3.1 Protein concentration of size exclusion chromatography fractions

	2.5.4 Summary of EV isolation from BALF
	2.5.5 EV isolation from serum by filtration using ExoMir™ kit

	2.6 Extracellular vesicle characterisation
	2.6.1 Quantification of BALF derived EVs using enzyme-linked immunosorbent assays
	2.6.1.1 CD63 enzyme-linked immunosorbent assay
	2.6.1.2 CD9 enzyme-linked immunosorbent assay

	2.6.2 Transmission electron microscopy of BAL derived EVs to visualise characteristic size and shape
	2.6.3 Characterisation of serum derived EVs
	2.6.3.1 SDS PAGE and Western blotting to determine presence of serum EV surface markers
	2.6.3.2 Transmission electron microscopy of serum derived EVs to visualise characteristic size and shape


	2.7 RNA isolation, cDNA synthesis and real-time qPCR
	2.7.1 BALF EV RNA isolation, quantification and quality control to assess SEC EV isolation suitability for downstream application (RNA seqencing)
	2.7.2 BAL EV RNA quantification and quality control prior to library preparation & next generation sequencing – performed by Qiagen® Genomic Services
	2.7.3 Serum EV RNA isolation, quantification and quality control

	2.8 Next generation microRNA sequencing of bronchoalveolar lavage extracellular vesicle RNA
	2.8.1 BALF EV RNA Library preparation – performed by Qiagen® Genomic Services
	2.8.2 microRNA library pre-sequencing quality control  and preparation
	2.8.3 Sequencing run setup

	2.9 MicroRNA sequencing output processing, quality control, mapping and alignment
	2.9.1 Trimming of adaptors and UMI correction – performed by Qiagen® Genomic Services
	2.9.2 microRNA sequencing quality control
	2.9.2.1 Average read quality
	2.9.2.2 Per base sequence quality
	2.9.2.3 Sequence length distribution
	2.9.2.4 Additional FastQC quality metrics
	2.9.2.5 Summary of microRNA sequencing quality control

	2.9.3 Mapping and aligning to reference genome – performed by Qiagen® Genomic Services
	2.9.3.1 Analysis of mapping and alignment to reference genome
	2.9.3.1.1 Classification of mapped reads
	2.9.3.1.2 Classification of smallRNA mapped reads



	2.10 MicroRNA sequencing filtering, data analysis and differential expression analysis
	2.10.1 Unsupervised filtering
	2.10.1.1 Median log2-transformed CPM cut-off method
	2.10.1.2 CPM>1 in a minimum of n samples, where n=size of the smallest group
	2.10.1.3 CPM>10 in a minimum of n samples, where n=size of the smallest group

	2.10.2 Exploratory data analysis for quality control
	2.10.2.1 Basic quality control plots
	2.10.2.2 Interquartile range versus median plot
	2.10.2.3 Principle component analysis
	2.10.2.4 Summary of exploratory data analysis

	2.10.3 Normalisation methods
	2.10.4 Negative binomial models
	2.10.4.1 Biological coefficient of variation

	2.10.5 Differential expression analysis between COPD subjects and healthy ex-smokers

	2.11 Real time-qPCR data analysis
	2.11.1 RT-qPCR data quality control
	2.11.2 Normalisation of RT-qPCR data
	2.11.3 Differential expression analysis of RT-qPCR data

	2.12 Identifying miRNA target genes
	2.12.1 miRNA target prediction in silico analysis using multiMiR
	2.12.2 Next generation mRNA sequencing of epithelial brushings – performed by the Translational Science & Experimental Medicine team at AstraZeneca
	2.12.2.1 mRNA sequencing data preparation - performed by the Bioinformatics team at AstraZeneca

	2.12.3 Differential gene expression analysis of the epithelial brushing mRNA
	2.12.4 Identify miRNA-mRNA putative interactions

	2.13 miRNA-mRNA interaction analysis
	2.13.1 Pairwise correlation analysis between miRNA and mRNA
	2.13.2 Network analysis of miRNA-mRNA interaction network
	2.13.3 miRNA-mRNA interaction network topology
	2.13.3.1 Cluster analysis of networks

	2.13.4 Gene Ontology enrichment analysis
	2.13.4.1 The Biological Networks Gene Ontology tool (BiNGO)
	2.13.4.2 Enrichment Map for gene-set enrichment visualisation and interpretation


	2.14 Statistics

	Chapter 3 Study cohort characteristics for extracellular vesicle isolation from bronchoalveolar lavage fluid
	3.1 Introduction
	3.2 Characteristics of the subjects included in EV isolation from BALF
	3.2.1 Baseline & historic blood count
	3.2.2 HRCT measurement
	3.2.3 BALF count analysis

	3.3 Discussion
	3.3.1 Subject characteristics
	3.3.2 Blood eosinophilia
	3.3.3 Airway inflammatory cell profile
	3.3.4 Strength and Limitations
	3.3.5 Summary


	Chapter 4 MicroRNA sequencing of bronchoalveolar lavage extracellular vesicles and validation of the results
	4.1 Introduction
	4.1.1.1 Characteristics of the subjects included in differential expression analysis of BALF EV miRNA

	4.2 Mapping and alignment results comparing patients with COPD and healthy ex-smokers
	4.2.1 Total number of reads
	4.2.2 Proportion of miRNA and smallRNA mapped reads in COPD and healthy ex-smokers

	4.3 Differential expression of EV miRNA between COPD subjects and healthy ex-smokers
	4.4 Validation of differentially expressed miRNA with RT-qPCR
	4.4.1 Characteristics of subjects used for differential expressed EV miRNA validation by RT-qPCR, N=46
	4.4.2 MiRNA chosen for validation by RT-qPCR
	4.4.3 RT-qPCR data quality control
	4.4.3.1 Number of detected miRNAs

	4.4.4 Differential miRNA expression analysis of RT-qPCR data

	4.5 Discussion
	4.5.1 RNA mapping and alignment
	4.5.2 Extracellular vesicle miRNA packaging
	4.5.3 Differential expression of EV miRNA in COPD subjects compared with healthy ex-smokers
	4.5.4 Strengths and limitations
	4.5.5 Summary


	Chapter 5 Identification, visualisation and analysis of microRNA-target interaction networks
	5.1 Introduction
	5.2 Identifying miRNA target genes
	5.2.1 miRNA target identification in silico using multiMiR
	5.2.2 Differential gene expression analysis of epithelial brushings in COPD and healthy ex-smokers
	5.2.3 Identifying putative miRNA-mRNA interactions using multiMiR
	5.2.3.1 Identification of the up-regulated EV miRNA gene targets in epithelial brushings
	5.2.3.2 Identification of the down-regulated EV miRNA gene targets in epithelial brushings.

	5.2.4 miRNA-mRNA interaction analysis
	5.2.4.1 Pairwise correlations between dysregulated miRNA and mRNA
	5.2.4.2 Identifying the dominant miRNAs of the miRNA-mRNA interactions using miRMapper
	5.2.4.2.1 Adjacency matrix to determine gene targets with the greatest centrality
	5.2.4.2.2 miRNA impact on gene expression in epithelial brushings
	5.2.4.2.3 Identification of synergistic miRNA action on differential gene expression



	5.3 miRNA-mRNA interaction network topology
	5.3.1 Cluster analysis of networks

	5.4  Gene Ontology Enrichment Analysis
	5.4.1 Gene ontology enrichment analysis for GO: biological process
	5.4.2 Gene ontology enrichment analysis for GO: molecular function

	5.5 Discussion
	5.5.1 Identifying differentially expressed EV miRNA target genes within epithelial brushings
	5.5.1.1 Up-regulated genes in COPD epithelial brushings
	5.5.1.2 Down-regulated genes in COPD epithelial brushings

	5.5.2 Identifying putative miRNA-mRNA interactions
	5.5.2.1 Identifying the most dominant miRNA-mRNA interactions
	5.5.2.2 Visualising the miRNA-mRNA interactions in a network

	5.5.3 GO enrichment analysis to identify key pathways regulated by miRNA-mRNA network
	5.5.4 Strengths and limitations
	5.5.5 Summary


	Chapter 6 Diagnostic use of extracellular vesicle miRNA and the relationship with COPD inflammatory endotypes
	6.1 Introduction
	6.2 Characteristics of the subject included in the analysis exploring the predictive ability of EV miRNA to differentiate COPD from health and associate with inflammatory endotypes
	6.3 Lung-derived EV miRNA in relation to COPD clinical characteristics
	6.4 Predictive ability of miRNA to differentiate between COPD and health
	6.5 EV miRNA in relation to COPD inflammatory endotypes
	6.5.1 Describing inflammatory endotypes in COPD subjects
	6.5.2 Relationship between EV miRNA expression and levels of inflammatory cells in BAL
	6.5.3 Using EV miRNA to predict inflammatory endotypes in COPD

	6.6 Differences in serum extracellular vesicle miRNA expression
	6.6.1 Subject characteristics
	6.6.2 Differential miRNA expression analysis from serum EV miRNA

	6.7 Discussion
	6.7.1 Predictive ability of EV miRNA to differentiate between health and disease
	6.7.2 Relationships between lung EVs and inflammatory endotypes in COPD
	6.7.3 Strengths and limitations
	6.7.4 Summary


	Chapter 7 Summary discussion and future work
	7.1 Overview
	7.2 Aim 1: Isolate and characterise EVs from bronchoalveolar lavage fluid of COPD subjects and healthy ex-smokers
	7.3 Aims 2&3: Identify differentially expressed lung-derived EV miRNA in patients with COPD compared with healthy ex-smokers and their biological significant targets
	7.4 Aim 4 Explore the diagnostic use of the lung-derived EV miRNA and their relationship with specific COPD inflammatory endotypes
	7.5 Summary of the implications of study findings
	7.5.1 EV miRNA as a biomarker in COPD
	7.5.2 Therapeutic potential of EVs in COPD

	7.6 Strengths & Limitations
	7.7 Further work
	7.7.1 Ex vivo cell culture models
	7.7.2 Explore EV miRNA-mRNA interactions in other cell types
	7.7.3 Interrogate multi-omic readouts to identify downstream effects of EV miRNA
	7.7.4 Study of EV miRNA signature in early COPD
	7.7.5 Summary of future work


	Appendix A Supplementary results from microRNA-miRNA interaction
	A.1 Differentially expressed genes in epithelial brushings in COPD
	A.2 Correlation analysis of miRNA-mRNA interactions

	List of References

