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Abstract

The paper studies stochastic dynamics of a two-degree-of-freedom system, where a primary linear
system is connected to a nonlinear energy sink with cubic stiffness nonlinearity and viscous damp-
ing. While the primary mass is subjected to a zero-mean Gaussian white noise excitation, the main
objective of this study is to maximise the efficiency of the targeted energy transfer in the system.
A surrogate optimisation algorithm is proposed for this purpose and adopted for the stochastic
framework. The optimisations are conducted separately for the nonlinear stiffness coefficient alone
as well as for both the nonlinear stiffness and damping coefficients together. Three different optimi-
sation cost functions, based on either energy of the system’s components or the dissipated energy,
are considered. The results demonstrate some clear trends in values of the nonlinear energy sink
coefficients and show the effect of different cost functions on the optimal values of the nonlinear
system’s coefficients.

Keywords: Targeted Energy Transfer, Surrogate Optimisation, Stochastic system, Random
Vibration.

1. Introduction

Targeted Energy Transfer (TET) phenomenon has been attracting attention of researchers world-
wide in last 20 years, focusing on the essence of the irreversible energy transfer between linear and
nonlinear elements in nonlinear systems. TET can be used for effective vibration mitigation, en-
ergy harvesting and in other relevant applications [3, 6, 11, 12, 17], thus it can be encountered
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in mechanical, electrical and biological systems on both macro- and micro- levels. In recent years
the TET phenomenon has been extensively studied on an exemplary two-degree-of-freedom sys-
tems, where a primary linear oscillator (LO), under a deterministic excitation, was connected by a
nonlinear (cubic) spring to a secondary system, which is often called as a Nonlinear Energy Sink
(NES). Typically, the aim of introducing the secondary mass is to mitigate vibrations of the LO
by transferring and dissipating its energy. This reasonably simple nonlinear setup, however, can-
not be treated analytically exactly, thus it has to be studied either using approximately analytical
methods or numerically. Treating the system as weakly-nonlinear [4, 19] have shown that TET can
be effective in vicinity of 1:1 resonance depending on the values of the mass ratio and damping
coefficient. However, recent study [22] have revealed that a combination of a linear and nonlinear
springs of the coupled secondary system can also be very effective over a wide range of excitation
parameters in the free vibration problem. Application of approximate methods, although provides
some insight into the fundamentals of TET, cannot reveal its properties in full due to obvious limi-
tations of these methods, which require the system’s parameters to be small, i.e. O(ε). Perhaps, the
only well-known class of nonlinear systems that can be treated exactly analytically is vibroimpact
systems with inelastic instantaneous impacts. In [1, 13–15, 20, 23] the authors treated this system
using approximate analytical, numerical and experimental approaches. Most recent developments
in TETs can be found in seminal review paper [18].

Stochastic TET systems has been studied much less, than their deterministic counterparts. In
[16] the authors have shown that for a weakly coupled system the deterministic regime of energy
transfer is preserved, when the excitation is Gaussian and additive. In [10] the authors used com-
plexification averaging approach to treat the system analytically and an efficiency of the NES as a
function of its parameters and noise intensity was demonstrated. In particular it was shown that
for low values of noise intensities energy transfer was not very efficient. At high values of the noise
intensity, where the approximate solution may not work, the energy transfer and dissipation through
the nonlinear system was more effective, but it was not growing linearly, for example, with increas-
ing mass ratio. Another interesting observation made in [10] was regarding the NES’s damping
coefficient, which increasing values improved nonlinearly the NES’s dissipation performance. These
observations have motivated the authors of this paper to study the optimal performance of such a
system when both NES’s parameters, its stiffness and damping coefficients, are optimised through
a numerical optimisation algorithm. To implement the optimisation algorithm the problem is ad-
dressed numerically, which also removes the limitations on the system’s parameters values, which
otherwise have to be small for an approximate analytical treatment.

The paper structure is as follows. The Section 2 presents the problem formulation and outlines
the surrogate optimisation procedure, which is a global machine-learning based algorithm. In
Section 3 we present and discuss the results of numerical optimisation for two cases: the first case
where the NES’s stiffness is optimised and the second case, where both the stiffness and the damping
coefficients of the NES are optimised. The paper conclusions are presented in section 4.
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2. Problem Statement

To study the TET mechanism, the classical two-degree-of-freedom system a with cubic nonlin-
earity is considered:

m1ẍ1 + k1x1 + c1ẋ1 + c2 (ẋ1 − ẋ2) + α1(x1 − x2)
3 = σ1ζ(t),

m2ẍ2 − c2 (ẋ1 − ẋ2) − α1(x1 − x2)
3 = 0.

(1)

where m1,m2 are the primary and secondary masses, x1, x2 are the corresponding displacements
from the equilibrium positions, k1 is the linear stiffness coefficient of the linear oscillator, α1 is the
cubic stiffness coefficients of the nonlinear spring connecting the LO and the NES, and c1, c2 are
the viscous damping (friction) coefficients, ζ(t) is a zero-mean Gaussian white noise and σ2

1 is the
noise intensity. Following [10] one can introduce a new set of parameters, ϵ = m2/m1, Ω

2 = k1/m1,
σ = σ1/m1, λ1 = c1/m1, λ2 = c2/m1 and λ3 = α/m1, so that equation (1) can be rewritten as:

ẍ1 + Ω2x1 + λ1ẋ1 + λ2 (ẋ1 − ẋ2) + λ3(x1 − x2)
3 = σζ(t),

ϵẍ2 − λ2 (ẋ1 − ẋ2) − λ3(x1 − x2)
3 = 0.

(2)

The main goal of this study is to find the optimal values of the stiffness and damping coefficients
of the NES and establish an empirical relationship with the noise intensity. To implement this
effectively an optimisation algorithm should be used, which will deliver an extremum to a selected
cost function. The choice of the latter is not unique and thus a number of cost functions will be
used, so that the efficacy of the NES can be compared.

To use the optimisation algorithm and explore non-small nonlinearity cases (large values of noise
intensity, mass ratio, etc.) the problem is treated numerically. The surrogate optimisation approach
is used to optimise the TET in (2) by selecting the best possible values of the nonlinear system
parameters depending on the values of other given parameters and noise intensity. The surrogate
optimisation provides an attractive numerical approach based on simple interpolation or regression
models built from objective function values at a limited number of sample points and update these
models iteratively. These approximate objective function are called surrogates. The surrogate
optimisation is a powerful alternative to the gradient-based methods, which may bring the system
to a local extrema instead of the global one. Moreover, due to the surrogate optimisation algorithm,
it is often used when the cost function evaluation is expensive or complicated, like in stochastic
systems, for instance. The optimisation algorithm searches for a global extremum and alternates
between two phases: the phase of generating or updating a surrogate and the phase of performing
global optimisation via the current surrogate. The stopping criterion is usually specified just by
limiting the number of iterations or objective function evaluations. Since system (2) is stochastic,
it is required to have either long enough time series or very representative sample of the response to
collect its statistical properties for a given set of the system’s parameters and the excitation. The
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resulting dependence of the parameters of the nonlinear system on the noise intensity and values
of other parameters can be approximated via an interpolation or regression technique. We propose
to use Kriging [2] (which is a form of Gaussian process regression) for that purpose.

In other words the adapted algorithm of surrogate optimisation for this problem has the following
steps [5, 9]:

1. Construct a quasi-random initial grid in the bounded space of parameters to be optimised. The
grid is constructed from a limited number of quasi–Monte Carlo nodes using Latin Hypercube
sampling algorithm [21]. In general, quasi–Monte Carlo grids reduce the clamping of standard
Monte Carlo grids, which is critical to high-dimensional problems, and can rely on Halton,
Sobol, or Faure quasi-random number sequences [7, 8].;

2. Evaluate the cost function at the current grid nodes in the parameters space. This is performed
by numerically integrating the differential equations (2) using the Monte-Carlo simulations
and Runge-Kutta algorithm with the time step ∆t = 0.01. Since the process is random, a
relatively long time interval is selected (around 105Tn, where Tn was the natural period of the
LO. This procedure executed 20 times, generating each time a different random excitation
sequence, to obtained a mean value of the cost function at the node;

3. Construct a quickly computable surrogate approximation of the cost function based on the
grid data;

4. Solve an auxiliary optimisation problem for the surrogate approximation and include the
obtained solution in the grid;

5. Evaluate the original cost function at the new grid point, as explained in step 2 above, and
update the best solution in case of improvement;

6. Trace if the maximum number of cost function evaluations is reached, which was set to 50 in
this study. If not repeat from step 2, otherwise stop.

It should be noted that although there are some results on convergence of the built surrogate to
the true cost function with increasing number of node, it is hard and expensive to estimate the
maximum error numerically. The reason is that the surrogate provides a good and fast-computed
estimation of the cost function, which is very expensive to calculate by the classical methods. The
values of the surrogate coincide with the cost function values at the nodes only, therefore to calculate
an error it is required to calculate the surrogate and the true cost function within the entire space
of parameters.

3. Discussion of Results

When the damping coefficient λ2 is given in advance, the stiffness coefficient value λ3 can be
optimised according to a selected cost function. The cost function significantly influences the
outcome of the optimisation, thus it should be carefully chosen. Moreover, the cost function of
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a single parameter (for instance for λ3), optimisation may differ from the results obtained in two
parameters optimisation (λ2 and λ3), thus these two cases are considered separately in the following
section. The values of the other constant parameters are taken similar to [10], namely, Ω2 = 1,
λ1 = λ2 = 0.005. To implement the optimisation approach one can choose to maximise the following
measure, defined as:

max
λ3∈[0,λ3R]

ηd, ηd =

λ2

T

T∫
0

(ẋ1(t)− ẋ2(t))
2 dt

< ET >
· 100%,

(3)

where λ3R is the specified top bound of the nonlinear stiffness parameter λ3, < ET > is the averaged
total energy of the system

< ET >=
1

2
< ẋ2

1 > +
ϵ

2
< ẋ2

2 > +
Ω2

2
< x2

1 > +
λ3

4
< (x1 − x2)

4 >
(4)

and T is a sufficiently large time horizon to capture the statistics of the excitation and response.
The top of this fraction is the amount of energy dissipated by the secondary system, which should
be maximised. It can be seen that this function reaches maximum when the difference between
the velocities is maximal, which obviously occurs when both the masses oscillate in anti-phase, i.e.
when x1(t) and x2(t) have different signs. It should be noted that when the damping coefficient
is also optimised this measure may not be very suitable since it is proportional to the damping
coefficient and it may lead to a trivial result of the largest damping coefficient value out of the
given interval.

Another useful measure is the amount of averaged kinetic energy left in the LO, which has to
be minimised:

min
λ3∈[0,λ3R]

ηkp, ηkp =
1
2
< ẋ2

1 >

< ET >
· 100%,

(5)

However, this measure does not show whether the energy is dissipated or simply stored in the
secondary system. The third option is to maximise the amount of kinetic energy in the secondary
system:

max
λ3∈[0,λ3R]

ηks, ηks = max
λ3

ϵ
2
< ẋ2

2 >

< ET >
· 100%,

(6)
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Optimal values of λ3 in log format (left column) and the corresponding measure (right column) for ηd
(a,b), ηkp (c,d) and ηks (e,f).
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The limitation of this measure is that the optimisation algorithm will try to find the nonlinear
stiffness coefficient such that the energy is transferred to the secondary system rather than being
dissipated, when the damping coefficient λ2 is fixed. When λ2 is an optimisation parameter, it
would be reasonable to expect that it could be as small as possible to keep a high energy level
of NES. Although in this paper the above optimisation criteria are used separately to identify the
fundamental trends and features f the stochastic system, it is possible to combine them to potentially
achieve a better result.

Fig. 1 demonstrates the results of λ3 optimisation for different values of ϵ and noise intensity
σ. The left column represents the optimal values of λ3 coefficient according to the selected criteria,
whereas the right column represents the measures described by (3), (5) and (6). The presented
patterns in the left column of Fig. 1 are similar, the higher the noise intensity values the lower the
values of λ3, which provide maximum to the corresponding measure. It should be noted that the
nonlinear decaying trend can be accurately approximated by ≈ C/σ2 curve, where C is a constant.
The effect of increasing ϵ can also be seen comparing the curves in the same plots, where the values
of optimal λ3 grow up with increasing ϵ. This result agrees with observations reported in [10] where
basically the authors showed that increase in ϵ may be beneficial to some extend for a given value of
the system parameters and noise intensity. One can also see that the values of λ3 obtained based on

Figure 2: The extreme values of ηkp, ηks and ηd obtained for σ = 0.3.
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λ3 0.005 0.02∗ 0.1 0.5 1.0 10

< ENES > 0.5082 1.022 1.3882 1.4091 1.3614 1.3506

< ET > 2.8470 3.5123 6.0716 7.8554 8.0926 9.5086

ηks(%) 17.8496 29.0982 22.8642 17.9386 16.8254 14.2037

Table 1: Validation of optimal results for ϵ = 0.3 and σ = 0.3, where ∗ indicate the optimal values according to (6).

ηkp and ηks are always higher than those obtained for optimal ηd value. However, carefully assessing
the results presented in the right column one can make two important observations. Firstly, for a
given value of ϵ the extreme values of the measures are independent of noise intensity σ2. This is a
very interesting and counter-intuitive result, since one would expect higher value of these measures
at higher values of noise intensity. Practically, this result indicates that the NES of the stochastic
system with a particular set of parameters can absorbed and damped a certain maximum amount
of energy. Secondly, the behaviour of all three measures is different, as can be seen in Fig. 2, where
the values of ηkp, ηks and ηd have been plotted as a function of ϵ for σ = 0.01, although, as we know
now from the above observation, it does not matter what value of σ is taken.

One can observe in Fig. 2 that ηd measure can reach its maximum value within the considered
interval, fading out for increasing values of ϵ. It should be noted that measure (5) is just a half of
the total energy, since the potential energy due to linear spring (0.5Ω2x2

1) has not been used in (5).
This measure takes its maximum value at very low values of ϵ and slowly decays with increasing
ϵ, whereas ηks demonstrates an opposite trend and grows with increasing ϵ. These curves indicate
that to reach low energy of the primary system, ϵ should be large, which also leads to high energy
of the NES, however, energy losses in this case will be small, at least when the viscous damping is
used.

The obtained numerical results, presented in Fig. 1, have been validated by taken some non-
optimal values of λ3 and calculating the total and the NES energies. These results are presented in
Table 1. The value λ3 = 0.02 is the optimal according to criteria (6), and with this value the energy
of NES reaches 29%, demonstrating its relatively high efficiency. It can also be seen that the total
energy of the system grows with increasing value of λ3, whereas the NES energy demonstrates a
negative parabolic trend.

The time history of the LO and NES for λ3 = 0.02 and λ3 = 1.0 are presented in Fig. 3a and
Fig. 3b respectively. Lower response amplitude of the LO (x1) and high response amplitude of the
NES (x2) can be clearly seen in these figures for the optimal value of λ3. This demonstrates the
effectiveness of the proposed optimisation algorithm in selecting the optimal parameters of NES.
Plots in Figure 3c and Figure 3d demonstrate the time history of the response for the optimal
values of λ3 based on measure (3) and (5) correspondingly. It should be noted, that due to the
stochastic nature of the problem, the algorithm proposes the optimal values of the parameters based
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(a) (b)

(c) (d)

Figure 3: Time response of the primary mass and NES for values for σ = 0.3 and ϵ = 0.3 with (a) optimal λ3 = 0.02
based on (6), (b) non-optimal λ3 = 1.0, (c) optimal value λ3 = 8.4 × 10−3 based on (3) and (d) optimal value
λ3 = 0.0161 based on (5).

on averaged values, practically relying on stationary properties of the response, which may not be
the case when the noise sample is too short or not very representative. Thus, a very representative
noise sample is essential for perfect selection of the parameters, which is not computationally ex-
pensive due to the features of the surrogate optimisation algorithm combined with Latin Hypercube
sampling.

In [10] the authors claimed that for very small values of noise intensity the NES was not effective.
Fig. 4 demonstrates the results for σ = 0.005, ϵ = 0.05 and two values of the NES’s stiffness
coefficient: the optimal value λ3 = 10.43, provided by the optimisation algorithm and non-optimal
optimal one, e.g. λ3 = 1.0. These values are very similar to those selected in [10]. Fig. 4a
clearly demonstrate the fact that with very small values of noise intensity (σ << 1) the NES can
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still be effective as long as its parameters have been optimised. In the optimal case the efficiency
reaches ηks = 15.94%, which may not be as high as in some other above mentioned cases, whereas
ηks = 0.35% when λ3 = 1.0, as shown in Fig. 4b, where the NES is highly inefficient. The optimal
λ3 value can be further improved by further tuning λ2 and ϵ values. This clearly demonstrates the
need for optimising the system’s parameters based on the noise intensity and shown that at low
values of noise intensity the NES can be effective.

It should be mentioned that when the NES’s viscous damping coefficient is increased the optimal
values of λ3 are also affected. Fig. 5 presents the optimal values of λ3, shown in red, as a function
of λ2. Fig. 5a demonstrates the optimal λ3 values and the corresponding peaks of ηks, indicating
that the NES energy is being reduced with increasing value of NES’s damping coefficient λ2. Fig.
5b demonstrates the optimal λ3 and the corresponding ηd values, where the latter growth initially,
reaching its peak value, and then dropping down with further increase of λ2. It is also observed by
comparing Fig. 5a and Fig. 5b that optimal values of λ3 are higher for ηks than that for ηd. Thus,
to achieve the maximum energy dissipation via the NES the viscous damping coefficient does not
have to be as high as possible, as could be intuitively expected, but it rather has to be properly
tuned based on the values of the system’s parameters.

Table 2 presents the results of two-parameter optimisation based on ηd measure. In this case
the damping coefficient of the NES λ2 is optimised together with the stiffness coefficient λ3, keeping
the rest of the coefficients as above. It can be seen that λ2 values have been relatively identical,
close to 0.02 value, as well as the extreme values of ηd, however, the values of λ3 were going down
with increasing noise intensity values. Values of two other measures are also presented in the table
and they are relatively the same over the range of considered σ values. These results also indicate

(a) (b)

Figure 4: Time response of the primary mass and NES with optimal λ3 = 10.43 (a) and non-optimal λ3 = 1.0 (b)
values for σ = 0.005 and ϵ = 0.05.
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(a) (b)

Figure 5: The optimal values of λ3 based on measures from (6) (a) and (4) (b), correspondingly for σ = 1.0 and
ϵ = 0.3.

σ λ3 λ2 ηd(%) ηkp(%) ηks(%)

0.01 242.03 0.0208 18.448 38.7845 13.1245

0.1 2.359 0.0211 18.419 39.1321 12.7281

0.3 0.2596 0.0213 18.456 39.0794 12.724

1.0 0.0215 0.0205 18.427 39.7639 12.9824

Table 2: Two-parameter (λ2 and λ3) optimisation according to (3) for ϵ = 0.3 and different values of σ.

that the optimal λ2 remains the same for different values of the noise intensity.

4. Conclusions

The paper studies numerically the targeted energy transfer mechanism in a classical two-degree-
of-freedom system consisting of the linear oscillator (LO) and the nonlinear energy sink (NES)
connected to the LO by a cubic spring. To achieve the maximum targeted energy transfer efficiency
of the NES, its parameters are optimised by implementing a surrogate optimisation algorithm. This
algorithm is based on a machine-learning procedure of building a surrogate objective function and
finding an optimal set of parameters according to a selected cost function. Three different cost
functions have been considered and implemented to obtain the optimal values of the nonlinear
stiffness λ3 and damping λ2 coefficients for one- and two- parameter optimisation procedure. The
other system’s parameters were kept constant, with values similar to [10], whereas the mass ratio ϵ
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and the noise intensity σ were varied.

It has been established that for a given value of ϵ and increasing values of σ the optimal values
of the nonlinear stiffness coefficient λ3 decreases as ≈ 1/σ2. It has been also shown that the extreme
values of the measure, proposed in this work, has been independent of the noise intensity. For a
given value of noise intensity, the optimal λ3 values have demonstrated different trends for the three
considered measures. Namely, with increasing values of mass ratio ϵ, the mean nondimensional
energy of the primary system decays, whereas the mean nondimensional energy of NES increases.
At the same time, the energy dissipated by the NES reaches its peak not at the end points of the
interval. Thus, a reasonable NES efficiency can be achieved for small values of noise intensity, by
adjusting the mass ratio coefficient ϵ and the damping coefficient λ2 for a specific noise intensity
value.

Thus, the NES’s damping coefficient influence the optimal values of NES’s stiffness coefficient,
where the latter was increasing with increasing values of damping, thereby reducing the energy of
the NES. Based on the obtained results, a relatively low values of the NES’s damping coefficient
can improve the energy losses as well as keep high energy level in the NES. One of the possible
reason for this is the phase shift between the LO and the NES, which depends on λ2 and should
provide an anti-phase response.

The present work validates the proposed optimisation approach, proven to be reasonably ac-
curate and computationally efficient. A mathematically strict error analysis cannot be effectively
conducted, therefore the obtained results were validated by comparing to the results obtained by
crude Monte-Carlo simulations with non-optimal values of the parameters. Despite some progress
in the area of surrogate optimisation, further studies and developments are required to improve the
algorithm for stochastic problems.
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