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Abstract

Balanced experimental designs, in which the number of treatment and control

units are the same, do not maximize power subject to a cost constraint when treat-

ment units are more expensive than control ones. Despite this, such balanced designs

are the norm in economics. This paper describes methods to optimally choose the

number of treatment and control clusters, and the number of units within treatment

and control clusters, allowing for full flexibility. We use three archetypal examples

from the development literature to illustrate the magnitude of the power gains, which

lie between 8.5 and 19 percentage points.
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1 Introduction

One of the key challenges in economics is to estimate causal relationships between eco-

nomic variables and policy instruments. Randomized Controlled Trials (RCT) have be-

come one of the main tools that researchers use to accomplish this objective (Hausman

and Wise, 1985; Burtless, 1995; Heckman and Smith, 1995; Duflo et al., 2007; Hamermesh,

2013; Olken, 2020). More simple RCTs are usually set up with the objective of estimating

the impact of a certain policy or intervention, while more complex RCTs can be imple-

mented to test between competing hypotheses that explain a phenomenon (also known

as field experiments, see Duflo (2006); Levitt and List (2009); Bandiera et al. (2011); List

(2011); List and Rasul (2011); Karlan and Appel (2016); Duflo (2020)).

The focus of this paper is on maximizing the statistical power – the probability that the

null hypothesis of zero effect is correctly rejected – of a cluster RCT given a cost constraint.

This is important because not only do underpowered RCTs have a smaller probability

of detecting a true effect, but they also have a smaller probability that a statistically

significant result reflects a true effect (Wacholder et al., 2004; Ioannidis, 2005; Button

et al., 2013). Ioannidis et al. (2017) find that the median statistical power in Economics

(in general, not specifically in RCT studies) is 18%. Moreover, low-powered RCTs are

more likely to lead to estimates whose sign is the opposite to the true one, and estimates

whose size is much larger than the true effect size (Gelman and Carlin, 2014).

In the Statistics literature, there is a long tradition of solving the dual problem: mini-

mizing costs subject to achieving a given level of power. It is well known that if treatment

units are more expensive than control units (because of the cost of the intervention),

a balanced design which has the same number of treatment and control units does not

minimize costs. Instead, a given power and significance can be achieved at a smaller

cost if more control and fewer treatment units are sampled than in the balanced design

(Cochran, 1963; Nam, 1973)1.

We argue that the primal problem of maximizing power subject to a cost constraint is

more relevant in economics research, in which funding bodies specify a maximum funding
1Although, for a fixed total number of units, having an unbalanced number of treatment and control

units decreases the power of the RCT, this can be compensated, at a lower cost, by increasing the number
of control units (as they are cheaper than the treatment ones).
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amount per project. Moreover, the sample design of cluster RCTs, which are very common

in Economics, is more complex as the researcher needs to choose the number of treatment

and control clusters, as well as the number of units per treatment and control cluster.

Such choice is not only relevant when the cost per cluster and/or the unit cost might be

different in treatment and control, but also when the costs are the same, as the researcher

must choose amongst the different combinations of number of clusters and number of

units per cluster which satisfy the cost constraint.

This paper makes two key contributions. First, we derive methods to calculate the

optimal sample for a cluster RCT with an endline outcome measure, allowing for different

number of treatment and control clusters, as well as different number of units within

treatment and control clusters. Existing methods in the literature do not allow for the

full extent of flexibility as we do. Our method can be applied to solve the primal problem of

maximizing power subject to a cost constraint, or to minimize costs subject to a minimum

power. We focus on the primal problem as we think it is of most value for researchers in

economics, and present the dual problem in the Appendix.

We model the cost function of the RCT as having a fixed cost per cluster as well

as a variable cost per (within cluster) sampled unit. We consider two pure cases and a

hybrid one: (i) the fixed cost per cluster is different between treatment and control but

the variable cost is the same, (ii) the fixed cost per cluster is the same between treatment

and control but the variable cost is the different, as well as, (iii) the hybrid case in which

both the fixed and variable costs are different. It is important to highlight that even in a

pure case, there are gains in a fully flexible solution that allows for the different number

of clusters and units within clusters for treatment and control arms.

Our second contribution is to show that the gains in power are very significant in

typical cluster RCTs from economics. The first example is a cluster RCT in which head-

teachers are given an unconditional grant to improve the school, and the experiment

measures the effect of the grant on children’s hemoglobin levels (a biomarker for nutri-

tional status, and in particular, anaemia) as in Luo et al. (2019). This is an example in

which the fixed cost per school is much larger in treatment than control clusters (because

of the grant) but the variable cost of sampling a child (hemoglobin test and questionnaire
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time) is the same in treatment and control schools.

The second example is the case of an unconditional cash transfer program, as is anal-

ysed by Haushofer and Shapiro (2016), in which treated households receive a large un-

conditional cash transfer, and in which a cluster design is used to take into account of

spillovers and general equilibrium effects. Unlike the previous example, the fixed cost

per cluster is the same independently of whether it is a treatment or control one, as the

only fixed cost per cluster is the transportation one. However, the cost of a treatment

unit is much higher than a control one, as the cost of the treatment unit includes the

unconditional cash transfer and the interviewing time, but only the latter for control

units.

Our example for the hybrid case refers to the so called “graduation model” in which

households are given large productive assets (i.e., a large animal), time limited cash

transfers, as well as training and support, life skills coaching, and access to health services,

as in Banerjee et al. (2015) and Bandiera et al. (2017). Because these programs provide

training, coaching and access to health services, they need certain infrastructure in the

treatment clusters to deliver these services and hence the fixed cost per treatment cluster

is higher. In addition, the cost of each treated unit is higher because of the productive

asset and cash transfer. Hence, this example synthesizes the previous two cases, by having

both larger fixed cluster costs as well as larger variable treatment costs.

Our results indicate that, compared to a balanced design, optimally allocating the

number of clusters and the number of treatment units can increase power between 8.5

and 19 percentage points. To obtain these results we use realistic cost estimates based

predominantly on the previous studies and reasonable assumptions on parameters which

are unknown to us. We then compare the costs of the balanced design – in which the

number of clusters and units per cluster is the same between treatment and control – with

the optimal allocation that we derive. It should be noted that we do not replicate all the

features of the previous studies, and hence our results should not be understood as what

the previous studies could have gained. Instead one should view our results as benchmark

power gains that can be obtained in a typical cluster RCT using our proposed method.

We further consider the benefits of our approach, by attaching a monetary value to
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the power improvements. To do so, we ask: how much larger a budget would be required

to achieve the same power attained using our approach if instead one implemented a

balanced design? In answering this question, we document sizeable values associated with

the power improvement based on our approach. Expressed in terms of the original budget,

these are respectively 22%, 23% and 54% for the three case studies. Put differently, the

value of our approach is akin to using the standard, balanced design but being granted a

budget of between 22% to 54% larger. This valuation exercise underscores the advantage

of our approach. By moving away from a balanced design in a manner that accounts for

differential costs, one can make sizeable power gains for a given budget.

A general feature of the results is that, in all three cases, both the number of clusters

and the number of units within clusters are different between the treatment and control

arms, in a compensating manner. For instance, when the fixed cost per cluster is larger

in treatment than control clusters but the variable costs are the same, not only it is

optimal to have fewer treatment than control clusters, but also to sample more units per

treatment than control clusters (in the margin, it is more efficient to increase the units

per treatment cluster than paying the cost of an additional treatment cluster). In the

hybrid case, depending on the differences in fixed and variable costs, the optimal solution

could even involve not only more clusters but also more units per cluster in the control

than treatment arm.

This paper contributes to a growing literature on methods to improve the design of

RCTs. Hahn et al. (2011) consider using the propensity score to reduce the variance

of the treatment effect in a setting in which an experiment is run in multiple waves or

replicate previous experiments. McKenzie (2012) studies the problem of how many waves

of post-treatment data to collect to maximize power given a budget constraint, noting

that the standard choice of one baseline and one follow-up wave is unlikely to be optimal

in many cases. Carneiro et al. (2019) focus on the choice of what covariates to collect to

maximize power subject to a cost constraint. Chassang et al. (2012) show how to modify

RCTs to improve external validity in a context in which the outcomes are significantly

affected by unobserved effort decisions taken by experimental subjects, and Banerjee

et al. (2020) study experimental design issues by an ambiguity-averse decision-maker
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who is concerned with both subjective expected performance and robust performance

guarantees. Burlig et al. (2020) advise against using using sample size formulae for the

ANCOVA estimator (in which the post-treatment outcome variable is regressed over its

baseline value and the treatment indicator), and hence we focus our paper on the case in

which only the post treatment values of the dependent variable are used in the estimation

of the treatment effect. Baird et al. (2018) studies the optimal design of experiments in

which an individual’s outcome depends on the outcomes of others in her group.

With respect to the literature that considers unequal costs of treatment and control

units, the comprehensive reviews by Duflo et al. (2007), List et al. (2011) and Glenner-

ster and Takavarasha (2013) all consider the case of unequal costs in their reviews of

experimental methods, but for individual RCTs instead of cluster ones. In the statistics

literature, Liu (2003) is a pioneer in considering different costs in a cluster RCT, but

the scenarios considered are relatively constrained, allowing only either fixed or variable

heterogeneous costs, and constraining the solution to have either the same number of clus-

ters or the same number of units in treatment than control. Shen and Kelcey (2020) has

recently relaxed some of these constraints but still requires the number of units to be the

same in treatment than in control clusters. Moreover, these papers focus on minimizing

costs given a level of power, instead of maximizing power given a maximum cost.

The paper is organized as follows: the next section describes the data generating

process and defines the estimator. Section 3 outlines the method to determine the optimal

sample size to maximize power given a cost constraint. Section 4 presents three examples

from the literature to which we apply our method, and whose results are presented in

Section 5, contrasting the optimal sample allocation with the balanced design, and Section

6 concludes. In the Appendix B, we describe the dual approach of minimizing costs subject

to achieving a given level of power.

2 Data Generating Process and Estimators

In this paper, we will determine the sample calculations in the context of a cluster ran-

domized trial in which j = 1, ..., K clusters have been randomized into treatment (denoted
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by Tj = 1) or control (Tj = 0). For each cluster j, data on the value of the outcome vari-

able for individual i, Yij, is available at the moment of time in which the treatment effect

will be estimated (endline). The data generating process is:

Yij = α + δTj + vj + εij, (1)

where α represents the population mean of the outcome variable in the control group, δ is

the treatment effect, vj is a cluster-level error term, and εij an independent and identically

distributed individual level error term, both error terms with zero mean. The variances

of these two error terms are var(vj)=σ2
v and var(εij)=σ2

ε . The intra-cluster correlation

(ICC), which is a key parameter in determining the required sample size in cluster RCTs

is given by:

ρ =
σ2
v

σ2
v + σ2

ε

Sample size calculations are particular of the estimator that will be used to estimate

the treatment effect, δ. In this case, the most standard is the Ordinary Least Squares

(OLS) estimator of δ, δ̂OLS, in the regression:

Yij = α + δTc + uij, (2)

where uij is a zero mean error term, with var(uij)=σ2
v+σ2

ε = σ2, cov(uij, uhj)=σ2
v for

i 6= h, and cov(uij, uhl)=0 if j 6= l. The above discussion makes explicit that the outcome

variable is measured at the individual level. Cluster RCTs can also be analyzed with

cluster level outcomes, such as prices, in which only one observation per cluster of the

outcome variable is available. In these cases, one would use the standard formulae thought

for individual level clusters ((Cochran, 1963; Nam, 1973)), but where the cost parameters

reflect those of the cluster.
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3 Optimal Sample Size Determination - Maximizing

Power

We now focus on optimal sample size determination for the case where the researcher

wants to maximize power subject to a fixed budget2. The power, κ, of the two-tailed test

at α significance for the null hypothesis that H0 : δ = 0 when using estimator δ̂OLS is

given by Teerenstra et al. (2012) as:

1− κ = TK−1(
δ√
var(δ̂)

− tα
2
) (3)

where T is the cumulative distribution function of the t-distribution with K − 1 degrees

of freedom (DoF), and the variance of δ̂ is given by3,4

var(δ̂) = σ2

[
1 + (m0 − 1)ρ

m0k0
+

1 + (m1 − 1)ρ

m1k1

]
. (4)

A researcher will want to optimize the design of the cluster RCT by determining the

sample that maximizes the power, subject to a budget constraint. We assume that the

costs of the RCT are given by:

C = (f0 + v0m0)k0 + (f1 + v1m1)k1, (5)

where k0 and k1 are the respective numbers of control and treatment clusters, f0 and f1

represent the fixed costs per control and treatment cluster respectively, m0 and m1 are

the number of sample units per control and treatment cluster, and v0 and v1 represent

the variable costs per control and treatment units respectively.

It should be noted that the variable costs, v0 and v1, are those of sampled units. In

cases in which all units in a treatment cluster are treated, the difference in costs are better
2For the reader interested in the dual problem, whereby one minimizes the total cost of the RCT

subject to achieving a given level of power, please see the Appendix B.
3Shen and Kelcey (2020) express the variance differently, but we show in the Appendix C that their

formulation is equivalent to formula (4).
4It is straighforward to adapt (4) in order to allow the variance of the outcome to differ across

treatment and control units: var(δ̂) =
[
σ2
0
1+(m0−1)ρ

m0k0
+ σ2

1
1+(m1−1)ρ

m1k1

]
. One reason to allow for such a

difference is if one is concerned about imperfect compliance, which would lead to σ2
1 > σ2

0 .
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reflected in the fixed cluster costs, as one would expect treatment and control clusters to

be of the same size. This would be the case, for instance, of our first example in which

school principals are given a grant to improve the school.

We write the constrained optimization problem that the researcher faces as:

max
{m0,m1,k0,k1}

t1−κ =
δ√
var(δ̂)

− tα
2

s.t.

C = [(f0 + v0m0)k0 + (f1 + v1m1)k1] (6)

In its general form, the constrained optimization problem above does not have closed

form solutions. However, it can be solved numerically using robust numerical optimization

methods such as Simulated Annealing (Corana et al., 1987; Goffe et al., 1994; Goffe, 1996;

Xiang et al., 2013). An advantage of using Simulated Annealing is that it can easily deal

with lower and upper bounds in the number of clusters and number of units per cluster.

3.1 Pure Cases with Limited Flexibility

Limited flexibility, i.e., where the number of clusters is the same in both treatment and

control arms, or here the number of units within clusters is the same in the treatment

and control arms, will lead to lower power than in the fully flexible case in which we

all four sample parameters are different. However, due to logistical or other practical

considerations, there might be cases in which the researcher cannot implement the fully

flexible solution, and must impose the solution to have either the same number of clusters

in each treatment arm, or the same number of units within cluster per treatment arm.

When this is the case, the constrained optima can be found in two stages: first, through

closed form solutions, find the optimal k0 and k1 (m0 and m1) as a function of m=m0=m1

(k=k0=k1). Second find the optimum m, k0, k1 (k, m0, m1) through a simple numerical

grid search on m (k). For simplicity, we focus on the two pure cases, in which either fixed

or variable costs per cluster are homogenous.
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3.1.1 Homogeneous Variable Costs Within Cluster

Here we consider the case in which the unit cost is the same in treatment and control

(v0 = v1 = v), and we simplify the optimization by using the restriction that the number

of units per cluster is also the same in treatment and control ((m0 = m1 = m)).5 We allow

for the fixed costs per cluster to be different between treatment and control (f0 6= f1), and

we solve for the number of treatment and control clusters (k0 6= k1), conditional on m.

In this more restricted scenario, we substitute (m0 = m1 = m) and (v0 = v1 = v) in (4),

and rewrite the cost function as C = (f0 + vm)k0 + (f1 + vm)k1, giving the optimization

problem as:

max
{k0,k1}

t1−κ =
δ√

σ2 1+(m−1)ρ
m

[
1
k0

+ 1
k1

] − tα2
s.t.

C = (f0 + vm)k0 + (f1 + vm)k1 (7)

where the only unknowns are k0 and k1 because the number of units to be sampled per

each cluster is exogenously given by m.

The solution to the optimization problem yields the following optimality condition:

k1
k0

=

√
(f0 + vm)

(f1 + vm)
, (8)

which clarifies that cheaper clusters will be over-sampled, but that the difference be-

tween the number of treatment and control clusters will be less than proportional to the

difference in costs.

Using the cost function formula, we can write the optimal values of k0 and k1 as
5It should be noted that even if (v0 = v1), we would not expect (m0 = m1) to hold in the unconstrained

optima.
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functions of the model parameters:

k∗0 =
C

(f0 + vm) +
√
(f0 + vm)

√
(f1 + vm)

and (9)

k∗1 =
C

(f1 + vm) +
√
(f0 + vm)

√
(f1 + vm)

(10)

We can now present an expression for the t-statistic associated with maximum power,

t∗1−κ, subject to the budget constraint C, by substituting the equations (9) and (10) into

the objective function in (7) to yield:

t∗1−κ =
δ√

σ2 1+(m−1)ρ
m

[
(
√

(f0+vm)+
√

(f1+vm))2

C

] − tα2 . (11)

The maximum level of power subject to the cost constraint is obtained by inverting

(11). Note that the above closed form solutions were obtained using the assumption that

the number of units to be sampled within each cluster, m, was exogenously given. In

practice, it is straightforward to circumvent this assumption by performing a grid search

on m – compute the optimal values of k0 and k1 for different values of m, and choose the

one that maximizes the power. Hence, the key assumptions for this special case to be

useful are m0 = m1 and v0 = v1.

3.1.2 Homogeneous Fixed Costs Per Cluster

In this subsection, we consider the case in which the fixed cost per cluster is the same

in treatment and control (f0 = f1 = f), and we simplify the optimization by using

the restriction that the number of clusters is also the same in treatment and control

((k0 = k1 = k)). We allow for the unit costs within cluster to be different between

treatment and control (v0 6= v1), and we solve for the number of treatment and control

units per cluster (m0 6= m1), conditional on k. These simplifications allow us to re-write

the cost function as C = (f + v0m0)k0 + (f + v1m1)k1 = 2fk + v0m0k + v1m1k.
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In this case, we write the constrained optimization problem as:

max
{m0,m1}

t1−κ =
δ√

σ2 1
k

[
1+(m0−1)ρ

m0
+ 1+(m1−1)ρ

m1

] − tα2
s.t.

C = 2fk + v0m0k + v1m1k (12)

The solution to the optimization problem yields the following optimality condition:

m1

m0

=

√
v0
v1
, (13)

which clarifies that the over-sample of the cheaper units is less than proportional to the

difference in costs. Using the cost function formula, we can write the optimal values of

m0 and m1 as functions of the model parameters:

m∗0 =
C − 2fk

(v0 +
√
v0
√
v1)k

and m∗1 =
C − 2fk

(v1 +
√
v0
√
v1)k

(14)

With these optimal values at hand, we can then write down an expression for the t-

statistic associated with maximum power, t∗1−κ, subject to the budget constraint C, by

substituting the relations in equations (14) into the objective function in (12) to yield:

t∗1−κ =
δ√

σ2 1
k

[
2ρ+

(
1−ρ

C−2fk

)
(
√
v0 +

√
v1)2k

] − tα2 (15)

The maximum level of power subject to the cost constraint is obtained by inverting (15).

As noted above, one can circumvent the assumption of a fixed, exogenously given k by

running a grid search over different values of k, – compute the optimal values ofm0 andm1

for different values of k, and choose the one that maximizes the power. Hence, the actual

important assumptions for this special case to be useful are k0 = k1 and f0 = f1 = f .
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4 Empirical Examples

The following section applies the methods described above to prominent archetypes of

cluster RCTs to obtain realistic estimates of the cost savings that can be achieved when

choosing the sample to minimize costs. Whenever possible, we use actual cost from the

experiments, but make realistic assumptions when they are not available. We do the same

for the intra cluster correlation or other parameters needed for the sample size calculation.

It should be noted that we do not replicate all the features of the previous studies, and

hence our cost savings estimates should not be understood as what the previous studies

could have saved, but more like benchmark savings that can be obtained in a typical

cluster RCT. See Appendix A for a detailed explanation of the parameter values used in

the computations below.

4.1 Heterogeneous Fixed Costs per Cluster

In many cluster RCTs, the treatment costs are divorced from the sampling costs. The

sampling costs involve the time and material costs of recruiting, testing, and interviewing

subjects, while the treatment costs are fixed per cluster and do not depend on the number

of sampled subjects. An example of such an RCT is a school grant program that aims at

increasing school resources and improves students’ outcomes6. The sampling costs will be

the same in treatment and control clusters (v0 = v1 = v) , while the fixed cost of including

a treatment cluster, f1, are larger than the control cluster fixed costs, f0, because the fixed

cost treatment cluster includes the school grant. The cost function that represents this

scenario is given by C = (f0+vm0)k0+(f1+vm1)k1, which is obtained from substituting

v0 = v1 = v in (5). We build our illustrative example based on Luo et al. (2019) in which

one of the treatment arms considered is a school grant provided for rural primary schools

in five prefectures of western China.
6The amount of the grant might depend on the number of children in the school but not on the

number of children sampled, hence the cost of the grant is fixed per cluster
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4.2 Heterogeneous Variable Costs per Cluster

Here we consider the case where fixed costs per cluster are equal in treatment and control,

but variable costs are different. This leads to a cost function of the form C = (f +

v0m0)k0 + (f + v1m1)k1. A real life example is one of an unconditional cash transfer in

which only some households in the treatment clusters are given the cash transfer (see

for instance, Haushofer and Shapiro (2016)). In this type of RCT, treatment and control

sample households will have very different costs because the cost of the sampled treatment

households include the cash transfer, whilst the costs of the sampled control households

only include identification, enrollment, and interviewing costs. There is a fixed cost per

cluster, representing the costs of transporting the interviewing field team between clusters,

which is the same in treatment and control clusters.

4.3 Heterogeneous Variable and Fixed Costs per Cluster

Another prominent example of Cluster Randomized Control Trials in which treatment

observations are much more expensive than control ones are graduation programs, in which

extremely poor individuals are given a very large transfer, typically including a productive

asset, training, and temporary income support, combined with access to financial services.

7.

5 Results

In this section, we report the sample size estimates for the three examples outlined in the

previous section. The reported sample size estimates are for a double-sided test of means

at 5% significance. We set an effect size δ of 0.25, and a standard deviation, σ, of 1. We

report the sample size results with decimals although in practice they will be need to be

integers, and the researcher will need to adjust them.
7see, for instance, Banerjee et al. (2015) and Bandiera et al. (2017)
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5.1 Optimal Sample Size Allocations

Table 1 reports our sample size estimates of the school grant program in which the cluster

fixed cost is much larger in treatment than control clusters (f1 > f0) but the within cluster

variable cost is the same (v1 = v0 = v). Column 2 of Table 1 reports the estimates for our

benchmark scenario based on their cost figures (f0 = $189, f1 = $1776.4). We calibrate

the available budget, 148, 841, so that the solution to the unconstrained optima (Panel

B) provides 80% power in this benchmark case (column 2).

The optimal number of treatment clusters is much smaller than the number of control

clusters (k∗0 = 164.15, k∗1 = 53.54), which reflects the fact that treatment clusters are

much more expensive because their fixed cost includes the school grant. Interestingly,

to partially compensate for this, the number of sampled individuals is much larger in

treatment than control clusters, m∗1 = 22.65 > m∗0 = 7.39,. Hence, we find that k∗0 > k∗1

but m∗0 < m∗1. The same insights hold for column 1 and 3, which assume smaller and

larger values respectively for f1.

Table 2 reports our sample size estimates of the cash transfer program, in which the

cost per individual in the treatment arm is much higher than in the control because of

the cash transfer (v1 > v0), but the fixed cost per cluster is the same (f1 = f0 = f). As

expected, in Panel B, the number of individuals in the control arm is larger than in the

treatment arm. Given the cost structure, in this case the number of clusters is the same

in treatment as control arms.

Table 3 reports the results for the graduation example, in which both the fixed cost

per cluster, and the variable cost per individual within cluster are larger in the treatment

than the control arm. As expected, the number of control clusters is much larger than

the number of treatment clusters, but interestingly, in columns (1) to (3) there are more

individuals in treatment clusters than in control clusters, despite the unit cost being

higher in treatment than control clusters. Intuitively, there are so many more control

than treatment clusters, that in order to partially offset this, it is optimal to sample more

treatment individuals per cluster despite each being more expensive than their control

counterparts. In column (4), in which f0 is four times that of column (2), the difference

between the number of control and treatment clusters is smaller than in the other columns
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(although still k0 > k1), and in that case we find, contrary to the other columns, that

m0 > m1.

5.2 Power Gains

We compare the power that we obtain with the allocations in the panels B of Tables 1

to 3, with the power that would be obtained with a balanced design (same number of

clusters and individuals per cluster in treatment and control) as reported in the panels A

of the same tables. In the panels A, we use the average of m1 and m0 of Panel B as the m

in Panel A, and compute the number of clusters that will exhaust the budget. We then

use the resulting number of clusters and individuals per cluster to compute the power

provided by each allocation.

The benchmark cost estimates for each example are given in columns (2) of Tables 1

to 3. The optimal allocation computed for those benchmark cost estimates give a power

of 0.8 by design. However, the power provided by panel A is much lower, around 0.71

in Tables 1 and 2, and even much lower 0.61 in Table 3. Hence, with a fixed budget,

our approach can lead to very substantial gains in power with cost parameters that are

typical of experiments in economics.

The columns other than (2) in Tables 1 to 3 provide the corresponding estimates for

cost estimates different from the benchmark ones. The larger the difference between the

costs, the larger the gains in power that our approach can lead to. For instance, the

difference in power is only of 0.035 in column (1) of Table 1 where the difference in fixed

costs (f1 vs. f0) is much smaller than in column (2), but the gain in power is much higher,

0.122, in column (3) where the difference in costs is much larger. In all the comparisons,

the budget is kept the same across the columns of each Table.

5.3 Valuing the Improvement in Power

An alternative way to conceptualize the improvement in power using the approach we

develop in this paper compared to the simple, balanced design is to ask the following:

How much larger a budget would be required to achieve the power attained using our
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approach (Panel B) if one implemented a balanced design (Panel A)? This is a useful

alternative approach as it enables us to better grasp the value of our approach.

To answer this question, we rearrange the Panel A power formula to solve for k, the

number of clusters, and input a t-statistic associated with the value of power attained in

Panel B – denoted t∗,B1−κ – to yield k̃A:

k̃A = 2(t∗,B1−κ + tα
2
)2
σ2

δ2
1 + (m− 1)ρ

m
(16)

This is the value of k under a balanced design that attains the power achieved in Panel

B in the respective table. If we enter this value of k – that is k̃A – into the cost function,

keeping m equal to the value found in panel A – mA – we can calculate a new budget.

Subtracting this new budget from the original yields the penultimate row in Tables 1-3,

the value of the power improvement in Dollars. In all three of our archetypal examples,

the value of the power improvement is sizeable. Expressed in terms of the original budget,

these are respectively 22%, 23% and 54% for the three case studies. Put differently, the

value of our approach is akin to using the standard, balanced approach but being granted

a budget of between 22% to 54% larger.

5.4 Simulation Results

Table 4 compares the power that we obtain as the solution to (6) and report in panel B

of Tables 1 to 3, with the power obtained by simulation using the sample allocations also

reported in panel B of the same tables.8 In order to compute the power by simulation, we

require the number of clusters and the number of individuals per cluster to be integers.

The last (second last) column of Table 4 reports the simulated power by rounding up

(down) the values of k1, k0, m1, m0 reported in panel B of Tables 1 to 3. The power

reported in the panels B of Tables 1 to 3, which we also report in the third last column of

Table 4, is between (or extremely close to) the simulated power obtained by rounding up

and rounding down the sample9. This comparison provides reassurance about the validity
8The simulations are implemented by specifying a data generating process to match model (2) with

Normally distributed error terms and 10,000 simulations.
9Note, for panel B, that the large wedge in the simulated power between rounding the sample up and

down is because m1 is relatively small, so it makes a big difference whether we round it up or down.
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of the methods that we have developed.

6 Conclusion

In cluster RCTs, researchers commonly use a balanced design, in which the same number

of treatment and control clusters and units within treatment and control clusters are

sampled. However, in many cluster RCTs, treatment clusters and/or sampled units within

treatment clusters are more expensive than control ones because the former incorporate

the costs of implementing the intervention. Under these cost differences, the researcher

can maximize the power subject to a cost constraint (or minimize the costs subject to

achieving a pre-determined level of power) by allowing the number of clusters and number

of sampled units within clusters to be different in treatment and control. We develop

methods to optimally compute these four sample parameters, contributing to the existing

literature by allowing for full flexibility of the solution. We focus the paper on the primal

problem of maximizing power subject a cost constraint, but our method can also be

applied to the dual problem of minimizing costs subject to a level of power, as we do in

the Appendix.

To illustrate the relevance of our methods, we apply them to three prominent examples

from the development economics literature, each with a specific cost structure: one in

which the fixed cost per cluster are different between treatment and control, but the unit

costs are the same; another one in which the unit cost per cluster are different between

treatment and control, but the fixed cluster costs are the same, and one in which both

unit and fixed costs are different in treatment and control.

Using realistic cost estimates, we find substantial power gains with respect to the

balanced design, of between 8.5 and 19 percentage points. As expected, we observe some

compensation between clusters and units per cluster. For instance, if it is optimal to have

more control than treatment clusters, then the number of units per treatment cluster

may be larger than that of controls. However, this is not necessarily the case when both

the fixed cost per cluster and the unit cost is higher in treatment than control. In such

cases, depending on the specific cost parameters, it might be optimal to have more control
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clusters, as well as more units sampled per control cluster.

We obtain our results using realistic cost estimates based predominantly on the exam-

ples and reasonable assumptions on parameters which are unknown to us, and comparing

the power of our method with the one of the balanced design. It should be noted that

we do not replicate all the features of the studies from which we derive our examples,

and hence our results should not be understood as what the previous studies could have

gained, but more like benchmark power gains that can be obtained in a typical cluster

RCT. We further consider the benefits of our approach by attaching a monetary value to

the power improvements. We compute that to obtain the same power as we do with our

method, a balanced design with the same number of treatment and control clusters would

need to increase the budget by between 22% to 54%.

There might be reasons why the researcher might want to deviate from the optimal

solution to maximize power. For instance, a lower bound in the number of units per

cluster might help to prevent a cluster ending up with no data due to attrition, and a

lower bound in the number of clusters per treatment arm might be necessary to ensure

balance between treatment and control, as well as correct inference based on asymptotic

standard errors. Such lower bounds can easily be handled by our methods, and in any

case, the unconstrained solution given here would serve as a useful benchmark.10

10Reducing the wedge between the number of treatment and control clusters can help to reduce bias
when the number of units per cluster vary and outcomes are correlated with cluster size (Middleton,
2008).
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(1) (2) (3)

Variable cost (v) 9.36 9.36 9.36
Fixed cost Control (f0) 189 189 189
Fixed cost Treatment (f1) 1000 1776.4 3000
Available Budget ($) 148,841 148,841 148,841

A.) Equal allocation of Clusters and Individuals
k0=k1=k 105.02 66.25 42.12
m0=m1=m 12.19 15.02 18.41
Power 0.881 0.715 0.529

B.) Optimal number of Clusters and Individuals
k0 195.31 164.15 137.78
k1 84.91 53.54 34.58
m0 7.39 7.39 7.39
m1 17.00 22.65 29.44
Power 0.916 0.800 0.651

Power Improvement vs Approach A 0.035 0.085 0.122
Value of Improvement vs Approach A ($) 19,428 32,736 46,219
Value of Improvement as Percent of Budget 13.1% 22.0% 31.1%

Heterogenous Fixed Costs per Cluster - School Grant Program
Table 1. Power Improvement From Optimal Sample Allocation

Notes: The values for number of individuals per cluster (m) and number of clusters (k) are those that 
achieve 80% power at 5% significance given i.) the cost parameters specified in the top 3 rows and ii.) the 

available budget. Other assumed parameters: effect size 0.25, standard deviation 1, intra-cluster 
correlation (𝜌) = 0.27. We calculate the "value of the improvement vs Approach A" by adjusting k in panel 
A in order to achieve the same power as calculated in Panel B, and then calculating the budget required to pay 

for this larger value of k.



(1) (2) (3)

Fixed cost (f) 250 250 250
Variable Cost Control (v0) 100 100 100
Variable cost Treatment (v1) 500 854 1200
Available Budget ($) 260,855 260,855 260,855

A.) Equal allocation of Clusters and Individuals
k0=k1=k 74.69 53.10 41.58
m0=m1=m 4.99 4.63 4.44
Power 0.872 0.714 0.590

B.) Optimal number of Clusters and Individuals
k0 95.54 81.43 72.93
k1 95.54 81.43 72.93
m0 6.89 6.89 6.89
m1 3.08 2.36 1.99
Power 0.908 0.800 0.708

Power Improvement vs Approach A 0.036 0.086 0.117
Value of Improvement vs Approach A ($) 32,940 57,422 75,500
Value of Improvement as Percent of Budget 12.6% 22.0% 28.9%

Notes: The values for number of individuals per cluster (m) and number of clusters (k) are those that 
achieve 80% power at 5% significance given i.) the cost parameters specified in the top 3 rows and ii.) the 

available budget. Other assumed parameters: effect size 0.25, standard deviation 1, intra-cluster 
correlation (𝜌) = 0.05. We calculate the "value of the improvement vs Approach A" by adjusting k in 

panel A in order to achieve the same power as calculated in Panel B, and then calculating the budget required 
to pay for this larger value of k.

Table 2. Power Improvement From Optimal Sample Allocation
Heterogenous Variable Costs per Cluster - Unconditional Cash Transfer



(1) (2) (3) (4)

Variable Cost Control (v0) 100 100 100 100
Variable cost Treatment (v1) 2150 2150 2150 2150
Fixed cost Control (f0) 125 250 500 1000
Fixed cost Treatment (f1) 18000 18000 18000 18000
Available Budget ($) 994,017 994,017 994,017 994,017

A.) Equal allocation of Clusters and Individuals
k0=k1=k 26.30 24.73 22.77 20.41
m0=m1=m 8.74 9.75 11.18 13.20
Power 0.605 0.609 0.609 0.603

B.) Optimal number of Clusters and Individuals
k0 227.36 158.88 110.52 76.39
k1 18.95 18.72 18.42 18.01
m0 4.87 6.89 9.75 13.78
m1 12.61 12.61 12.61 12.61
Power 0.810 0.800 0.785 0.764

Power Improvement vs Approach A 0.205 0.191 0.176 0.162
Value of Improvement vs Approach A ($) 568,358 509,039 446,325 385,297
Value of Improvement as Percent of Budget 57.2% 51.2% 44.9% 38.8%

Notes: The values for number of individuals per cluster (m) and number of clusters (k) are those that achieve 80% power 
at 5% significance given i.) the cost parameters specified in the top 4 rows and ii.) the available budget. Other assumed 

parameters: effect size 0.25, standard deviation 1, intra-cluster correlation (𝜌) = 0.05. We calculate the "value of the 
improvement vs Approach A" by adjusting k in panel A in order to achieve the same power as calculated in Panel B, and then 

calculating the budget required to pay for this larger value of k.

Table 3. Power Improvement From Optimal Sample Allocation
Heterogenous Fixed and Variable Costs per Cluster - Graduation Program



(1) (2) (3) (4) (5) (6) (7)

A.) Heterogenous Fixed Costs per Cluster (Table 1)

1 195.31 84.91 7.39 17.00 0.916 0.913 0.927
2 164.15 53.54 7.39 22.65 0.800 0.802 0.809
3 137.78 34.58 7.39 29.44 0.651 0.655 0.660

B.) Heterogenous Variable Costs per Cluster  (Table 2)

1 95.54 95.54 6.89 3.08 0.908 0.887 0.940
2 81.43 81.43 6.89 2.36 0.800 0.738 0.858
3 72.93 72.93 6.89 1.99 0.708 0.493 0.710

C.) Heterogenous Fixed and Variable Costs per Cluster (Table 3)

1 227.36 18.95 4.87 12.61 0.810 0.785 0.828
2 158.88 18.72 6.89 12.61 0.800 0.778 0.817
3 110.52 18.42 9.75 12.61 0.785 0.770 0.815
4 76.39 18.01 13.78 12.61 0.764 0.763 0.808

If m0, m1, 
k0, k1 are 
rounded 
upwards

Optimal number of Clusters and Individuals

Notes: Columns 1-5 replicate the key values from panel B of Tables 1,2 and 3. These are provided as reference for 
the simulation results. For the simulation results we simulate data to match the DGP presented in Equation (1). For 

every scenario, we run 10,000 simulations and report the mean power achieved from these runs. For the simulation, 
we require the number of individuals and clusters to be integer values. Given that the optimal numbers of clusters 
and individuals are non-integer values we present two cases. Column 6 shows the case where all values are round 

down to the nearest integer and column 7 shows the case where all values are rounded up.

Simulated Power

Table 4. Power Simulations

k0 k1 m0 m1 Power

If m0, m1, 
k0, k1 are 
rounded 

downwards

Scenario:



Appendix

A Justification for parameter values used in the Exam-

ples

A.1 Heterogeneous Fixed Costs per Cluster

For our example on heterogenous fixed costs per cluster, based on the school grant pro-

gramme based on Luo et al. (2019), we used their their budget data to estimate the fixed

cost per control school (f0) to be $ 189. The fixed cost of a treatment school (f1) in-

cludes the same transportation cost of $ 189 plus a school grant of $ 1,587 giving a total of

$ 1,77611. The cost per each sampled student includes the interviewing costs (field team

cost of administering the questionnaires, questionnaire printing costs, as well as costs of

measuring student blood hemoglobin concentration through finger-prick blood samples.)

Using their budget data, we estimate the cost per sampled child, v, to be $ 9.36. Based

on Luo et al. (2019), we estimate the intra cluster correlation coefficient, ρ to be 0.27.

A.2 Heterogeneous Variable Costs per Cluster

For our example on unconditional cash transfers in which the variable costs per cluster

are higher in treatment than control clusters, we use the average transfer amount ($ 709)

and transfer fee of ($ 45) as per (Haushofer and Shapiro, 2016). We do not have data on

the cost of interviewing households in this setting, but we will assume it is $ 100. Hence,

the cost of a control household is $ 100, and the cost of a treatment household is $ 854

(=709+45+100).12 The fixed costs per cluster is the same in treatment and control and

equal to $ 250 (our own assumption on the transportation cost per cluster). We assume

the intra cluster correlation coefficient, ρ to be 0.05.
11The school grant was computed as 48 RMB per student in the school, and the average school has

210 students. Exchange rate $ 1 = 6.3 RMB.
12We ignore here that some households in treatment clusters might be sampled but not given the cash

transfer to estimate the size of the spillovers associated to the cash transfer.
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A.3 Heterogeneous Variable and Fixed Costs per Cluster

For our example on both heterogeneous variable and fixed costs per cluster, inspired

in the graduation programme, we use the costs reported in Banerjee et al. (2015) as a

guide. We assume that the value of the transfer per household is $ 800. Banerjee et al.

(2015) also report that the supervision costs associated to this type of programs are very

important. A share of these supervision costs will be fixed at the cluster level: office

rental costs, IT equipment, etc. As we do not have information on what share of the total

supervision costs is fixed and what is variable, we make the assumption that half of cluster

supervision costs are fixed ($ 17477), and half are variable ($ 1250 per household). We

also make the assumption that recruitment and interviewing costs are $100 per household,

which are the same in treatment and control, and that the transportation cost of each

interviewing team to a cluster amount to $250. Hence, our assumptions are that v0 = 100,

v1 = 100 + 800 + 1250 = 2150, f0 = 250, f1 = 250 + 17, 477 = 17, 727 ≈ 18, 000. We

assume the intra cluster correlation coefficient, ρ to be 0.05.
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B Optimal Sample Size Determination - Minimizing

Costs

In this section, we repeat large swathes of Section 3, but here focus on minimizing total

costs, or budget, subject to a given power. This approach may be of interest to the

researcher wishing to place a competitive budget for a grant application/evaluation tender.

In order to best present this approach, we provide all the necessary detail that one would

need in order to work through the material independently of what is in the body of the

text, hence the elements of repitition.

The power, κ, of the two-tailed test at α significance for the null hypothesis that

H0 : δ = 0 when using the post estimator, δ is given by:

1− κ = TK−1(
δ√
var(δ̂)

− tα
2
,K−1) (17)

where TK−1 is the cumulative distribution function of the t -distribution with K − 1

degrees of freedom (DoF), and the variance of δ̂A is given by:

var(δ̂) = σ2

[
1 + (m0 − 1)ρ

m0k0
+

1 + (m1 − 1)ρ

m1k1

]
, (18)

A researcher will want to optimize the design of the cluster RCT by determining the

sample that minimizes the cost conditional on achieving a pre-specified level of power.

We assume that the costs of the RCT are given by:

C = (f0 + v0m0)k0 + (f1 + v1m1)k1, (19)

where k0 and k1 are the respective numbers of control and treatment clusters, f0 and f1

represent the fixed costs per control and treatment cluster respectively, m0 and m1 are

the number of sample units per control and treatment cluster, and v0 and v1 represent

the variable costs per control and treatment units respectively.

The researcher who wants to minimize costs subject to attaining a level of statistical
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power, κ, will want to solve:

min
{m0,m1,k0,k1}

[(f0 + v0m0)k0 + (f1 + v1m1)k1]

s.t.

1− κ = TK−1(
δ√
var(δ̂)

− tα
2
,K−1) (20)

For mathematical convenience, it is useful to rewrite the constraint solving for δ2, and

hence the optimization problem will be:

min
{m0,m1,k0,k1}

[(f0 + v0m0)k0 + (f1 + v1m1)k1]

s.t.

δ2 = (tα/2,K−1 + t1−κ,K−1)
2var(δ̂) (21)

In its general form, the constrained optimization problem above does not have close form

solutions. However, it can be solved numerically using robust numerical optimization

methods such as Simmulated Annealing (Corana et al., 1987; Goffe et al., 1994; Goffe,

1996; Xiang et al., 2013).13

B.1 Heterogenous Fixed Costs per Cluster - A Closed Form So-

lution

It is possible to obtain closed form solutions to the optimization problem in (21) under

the condition that the individual variable costs are homogenous v0 = v1 = v, and the

number of units to sample within the clusters are equal in treatment and control clusters,

and exogenously given (m0 = m1 = m)

In this more restricted scenario, we can rewrite the cost function as C = (f0+vm)k0+

13We provide an R package Optimal.sample to perform this optimization and obtain the optimal
sample. In order to avoid optimizing over the degrees of freedom in the t distribution, we initialize the
algorithm using the Normal distribution to obtain an initial estimate of the total number of clusters,
which we use to repeat the optimization using the t-distribution. We repeat this process until we achieve
convergence.
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(f1 + vm)k1 = (f0 + vm)k0 + (f1 + vm)k1, giving the optimization problem as:

min
{k0,k1}

(f0 + vm)k0 + (f1 + vm)k1 (22)

s.t.

δ2 = (tα/2 + t1−κ)
2σ2(1 + (m− 1)ρ)

1

m

(
1

k0
+

1

k1

)
(23)

where the only unknowns are k0 and k1 because the number of units to be sampled per

each cluster is exogenously given by m. Note that the constraint is the same as the

constraint in (21) but where the conditions (m0 = m1 = m) and (v0 = v1 = v) has been

substituted in the formulae for V (δ̂) in (18).

The solution to the optimization problem yields the following optimality condition,

k1
k0

=

√
(f0 + vm)

(f1 + vm)
(24)

Using the squared MDE formula (23), we can write the optimal values of k0 and k1 as

functions of the model parameters:

k∗0 = (tα/2 + t1−κ)
2σ2(1 + (m− 1)ρ)

1

m

1

δ2

(√
(f0 + vm) +

√
(f1 + vm)√

(f0 + vm)

)
and (25)

k∗1 = (tα/2 + t1−κ)
2σ2(1 + (m− 1)ρ)

1

m

1

δ2

(√
(f0 + vm) +

√
(f1 + vm)√

(f1 + vm)

)
(26)

We can now present an expression for the minimum total cost, C∗, required in order to

achieve a power of 1−β with a given value of δ, by substituting the relations in equations

(25) and (26) into the cost function C = (f0 + vm)k0 + (f1 + vm)k1:

C∗ = (tα/2 + t1−κ)
2σ2(1 + (m− 1)ρ)

1

m

1

δ2

(√
(f0 + vm) +

√
(f1 + vm)

)2
(27)

Note that the above closed form solutions were obtained using the assumption that

the number of units to be sampled within each cluster, m, was exogenously given. In

32



practice, it is straightforward to circumvent this assumption by doing a grid search on m,

that is, the optimal values of k0 and k1 can be computed for different values of m, and

choose the one that minimizes the costs. Hence, the actual important assumption for this

special case to be useful is that m0 = m1.

B.2 Heterogenous Variable Costs per Cluster - A Closed Form

Solution

In this subsection, we describe the example of a cluster RCT in which the cost function is

given by C = (f+v0m0)k0+(f+v1m1)k1 = 2fk+v0m0k+v1m1k, that is, where fixed costs

per cluster are equal in treatment and control, but variable costs are different. In addition

we assume that the number of clusters are equal across treatment arms (k0 = k1 = k).

In this case, we write the constrained optimization problem as:

min
{m0,m1}

2fk + v0m0k + v1m1k (28)

s.t.

δ2 = (tα/2 + t1−κ)
2σ2 1

k

(
1 + (m0 − 1)ρ

m0

+
1 + (m1 − 1)ρ

m1

)
. (29)

The solution to the optimization problem yields the following optimality condition,

m1

m0

=

√
v0
v1

(30)

Using the squared MDE formula (29), we can write the optimal values of k0 and k1 as

functions of the model parameters:

m∗0 =
(tα/2 + t1−κ)

2σ2
(
1−ρ
k

)
δ2 − (tα/2 + t1−κ)2σ2

(
2ρ
k

) (√v0 +√v1√
v0

)
and (31)

m∗1 =
(tα/2 + t1−κ)

2σ2
(
1−ρ
k

)
δ2 − (tα/2 + t1−κ)2σ2

(
2ρ
k

) (√v0 +√v1√
v1

)
(32)

Finally, we can write down an expression for the minimum total cost, C∗, required in
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order to achieve a power of 1− β with a given value of δ, by substituting the relations in

equations (31) and (32) into the cost function C = 2fk + v0m0k + v1m1k:

C∗ = 2fk +
(tα/2 + t1−κ)

2σ2(1− ρ)(√v0 +
√
v1)

2

δ2 − (tα/2 + t1−κ)2σ2(2ρ
k
)

(33)

Note that the above closed form solutions were obtained using the assumption that

the number of clusters, k, was exogenously given. In practice, it is straightforward to

circumvent this assumption by doing a grid search on k, that is, the optimal values of m0

and m1 can be computed for different values of k, and choose the one that minimizes the

costs. Hence, the actual important assumption for this special case to be useful is that

k0 = k1.

B.3 Results

Here we report the sample size estimates for the same three case studies as we do in

Section 4. The reported sample size estimates are for a double-sided test of means at 5%

significance, and for a power of 80%. We set an effect size δ of 0.25, standard deviation σ

of 1, and a intracluster correlation of 0.27 for the first example (school grant) but a smaller

one, 0.05, for the other two. We report the sample size results with decimals although in

practice they will be need to be integers, and the researcher will need to adjust them.

B.4 Optimal Sample Size Allocations and Cost Savings

Having discussed the three case studies in detail in the main body of the text, in this

section we focus predominantly on the cost savings from our approach (found in Panel B

of Tables 5-7) compared to the non-optimized, equal allocation approach in Panel A.

In Tables 5, 6 and 7, our approach is associated with costs savings of 18%, 18% and

34% respectively. These percentage saving amounts to large savings in absolute terms,

particularly for graduation-style programs – in Table 3 the absolute saving using approach

exceeds half a million US Dollars for our baseline case.
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B.5 Simulation Results

As we do in the body of the text, we validate the power we obtain as the solution to (20)

and reported in panels B of Tables 5 to 7, with the power obtained by simulation using

the sample allocations also reported in panel B of the same tables. The power reported

in the panels B of Tables 5 to 7, which we also report in the third last column of Table

8, is between (or extremely close to) the simulated power obtained by rounding up and

rounding down the sample. This comparison provides reassurance about the validity of

the methods that we have developed.
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(1) (2) (3)

Variable cost Treatment (v) 9.36 9.36 9.36
Fixed cost Control (f0) 189 189 189
Fixed cost Treatment (f1) 1000 1776.4 3000
Target Power 0.80 0.80 0.80

A.) Equal allocation of Clusters and Individuals
k0=k1=k 83.68 80.82 78.55
m0=m1=m 12.19 15.02 18.41
Total cost ($) 118,600 181,577 277,578

B.) Optimal number of Clusters and Individuals
k0 138.08 164.15 195.37
k1 60.03 53.54 49.04
m0 7.39 7.39 7.39
m1 17.00 22.65 29.44
Total cost ($) 105,225 148,841 211,065

Savings vs Approach A ($) 13,375 32,736 66,514
Savings vs Approach A  (%) 11% 18% 24%

Table 5. Cost savings From Optimal Sample Allocation
Heterogenous Fixed Costs per Cluster - School Grant Program

Notes: The values for number of individuals per cluster (m) and number of clusters (k) are those that 
achieve 80% power at 5% significance for the cost parameters specified in the top 3 rows. Other assumed 

parameters: effect size 0.25, standard deviation 1, intra-cluster correlation (𝜌) = 0.27.



(1) (2) (3)

Fixed cost (f) 250 250 250
Variable Cost Control (v0) 100 100 100
Variable cost Treatment (v1) 500 854 1200
Target Power 0.80 0.80 0.80

A.) Equal allocation of Clusters and Individuals
k0=k1=k 61.01 64.79 66.95
m0=m1=m 4.99 4.63 4.44
Total cost ($) 213,058 318,276 420,002

B.) Optimal number of Clusters and Individuals
k0 69.55 81.43 90.81
k1 69.55 81.43 90.81
m0 6.89 6.89 6.89
m1 3.08 2.36 1.99
Total cost ($) 189,906 260,855 324,803

Savings vs Approach A ($) 23,152 57,422 95,199
Savings vs Approach A  (%) 11% 18% 23%

Table 6. Cost savings From Optimal Sample Allocation
Heterogenous Variable Costs per Cluster - Unconditional Cash Transfer

Notes: The values for number of individuals per cluster (m) and number of clusters (k) are those that 
achieve 80% power at 5% significance for the cost parameters specified in the top 3 rows. Other assumed 

parameters: effect size 0.25, standard deviation 1, intra-cluster correlation (𝜌) 0.05.



(1) (2) (3) (4)

Variable Cost Control (v0) 100 100 100 100
Variable cost Treatment (v1) 2150 2150 2150 2150
Fixed cost Control (f0) 125 250 500 1000
Fixed cost Treatment (f1) 18000 18000 18000 18000
Target Power 0.80 0.80 0.80 0.80

A.) Equal allocation of Clusters and Individuals
k0=k1=k 40.25 37.40 34.24 30.94
m0=m1=m 8.74 9.75 11.18 13.20
Total cost ($) 1,521,285 1,503,056 1,494,770 1,506,856

B.) Optimal number of Clusters and Individuals
k0 221.42 158.88 114.63 83.29
k1 18.45 18.72 19.10 19.63
m0 4.87 6.89 9.75 13.78
m1 12.61 12.61 12.61 12.61
Total cost ($) 968,078 994,017 1,030,982 1,083,862

Savings vs Approach A ($) 553,207 509,039 463,788 422,994
Savings vs Approach A  (%) 36% 34% 31% 28%

Table 7. Cost savings From Optimal Sample Allocation
Heterogenous Fixed and Variable Costs per Cluster - Graduation Program

Notes: The values for number of individuals per cluster (m) and number of clusters (k) are those that achieve 80% power 
at 5% significance for the cost parameters specified in the top 3 rows. Other assumed  parameters: effect size 0.25, 

standard deviation 1, intra-cluster correlation (𝜌) 0.05.



(1) (2) (3) (4) (5) (6) (7)

A.) Heterogenous Fixed Costs per Cluster (Table 5)
1 138.08 60.03 7.39 17.00 0.800 0.804 0.807
2 164.15 53.54 7.39 22.65 0.800 0.793 0.811
3 195.37 49.04 7.39 29.44 0.800 0.802 0.813

B.) Heterogenous Variable Costs per Cluster (Table 6)
1 69.55 69.55 6.89 3.08 0.800 0.785 0.854
2 81.43 81.43 6.89 2.36 0.800 0.753 0.855
3 90.81 90.81 6.89 1.99 0.800 0.570 0.805

C.) Heterogenous Fixed and Variable Costs per Cluster (Table 7)
1 221.42 18.45 4.87 12.61 0.800 0.781 0.828
2 158.88 18.72 6.89 12.61 0.800 0.790 0.821
3 114.63 19.10 9.75 12.61 0.800 0.790 0.828
4 83.29 19.63 13.78 12.61 0.800 0.789 0.816

Notes: Columns 1-5 replicate the key values from panel B of Tables 5, 6 and 7. These are provided as reference for 
the simulation results. For the simulation results we simulate data to match the DGP presented in Equation (1). For 

every scenario, we run 10,000 simulations and report the mean power achieved from these runs. For the simulation, 
we require the number of individuals and clusters to be integer values. Given that the optimal numbers of clusters 
and individuals are non-integer values we present two cases. Column 6 shows the case where all values are round 

down to the nearest integer and column 7 shows the case where all values are rounded up.

Table 8. Power Simulations

Optimal number of Clusters and Individuals Simulated Power

k0 k1 m0 m1 Power

If m0, m1, 
k0, k1 are 
rounded 

downwards

If m0, m1, 
k0, k1 are 
rounded 
upwards

Scenario:



C Different Formulations of the Variance of the Treat-

ment Effect

This section presents the equivalence between the variance of the treatment effect in

equation (4) above, and equation A1 in the Appendix of Shen and Kelcey (2020), which

we specify with different sample sizes across treatment conditions at all levels. Table 9

below provides a correspondence between how we define the key parameters, and how

Shen and Kelcey (2020) do so.

Following Shen and Kelcey (2020), the variance of the treatment effect is:

σ2
δ =

ρ(1−R2
2) +

(1−ρ)(1−R2
1)

[ nnT

(1−p)n+pnT
]

p(1− p)
.
(1− p)(c1n+ c2) + p(cT1 n

T + cT2 )

m
(34)

Where the budget function is m = (1− p)J(c1n + c2) + pJ(cT1 n
T + cT2 ). Solving for J in

the budget function, we can write

J =
m

(1− p)(c1n+ c2) + p(cT1 n
T + cT2 )

(35)

Substituting equation (35) into equation (34), we can rewrite the variance of the treatment

effect as:

σ2
δ =

ρ(1−R2
2) +

(1−ρ)(1−R2
1)

[ nnT

(1−p)n+pnT
]

p(1− p)J
(36)

Under the assumption that R2
1 = 0 and R2

2 = 0 the variance of the treatment effect is

given by:

σ2
δ =

ρ+ (1−ρ)
[ nnT

(1−p)n+pnT
]

p(1− p)J
,

which, after some algebra, can be rewritten as:

σ2
δ =

ρnnT + (1− ρ)[(1− p)n+ pnT ]

p(1− p)nnTJ
(37)

The first step is to show that equation (37) is equivalent to equation (4), using the equiv-

alence between parameters in Shen and Kelcey (2020) and our work, which we summarize
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in Table 9. Subsituting parameters accordingly, we can rewrite equation (37) as a function

of our parameters:

σ2
δ =

ρm0m1 + (1− ρ)[(1− p)m0) + pm1]

p(1− p)m0m1J
(38)

From Table 9 we have that p = k1/J and (1−p) = k0/J . If we substitute these expressions

into equation (38) we have:

σ2
δ =

ρm0m1 + (1− ρ)[k0
J
m0 +

k1
J
m1]

k1
J
k0
J
m0m1J

,

which after some algebra we can rewritten as:

σ2
δ =

ρm0m1J + (1− ρ)[k0m0 + k1m1]

m0k0m1k1
. (39)

To completely express the variance of the treatment effect in terms of the parameters we

use in this paper, we need to substitute J . From the equivalences presented in Table 9

we have J = K = k0 + k1. Substituting this last expression into equation (39), we get to

the expression:

σ2
δ =

ρm0m1(k0 + k1) + (1− ρ)[k0m0 + k1m1]

m0k0m1k1

Rearranging some terms we have:

σ2
δ =

m0k0(ρm1 + 1− ρ) + k1m1(ρm0 + 1− ρ)
m0k0m1k1

Finally, a bit more of algebra leads us to determine that the variance of the treatment

effect in Shen and Kelcey (2020), expressed in terms of the paramaters we use, is:

σ2
δ =

1 + (m0 − 1)ρ

m0k0
+

1 + (m1 − 1)ρ

m1k1
(40)
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Recall, equation (4) is:

σ2
δ = σ2

[
1 + (m0 − 1)ρ

m0k0
+

1 + (m1 − 1)ρ

m1k1

]
. (41)

Under the assumption that σ2 = 1, equations (40) and (41) are equivalent, which com-

pletes this section, as we show that the variance of the treatment effect in Shen and Kelcey

(2020) coincides with that in this work.
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Parameter
Shen and Kelcey 

(2020)

McConnell and 
Vera-Hernandez 

(2022)

Sample units per  control cluster n m 0

Sample units per  treatment cluster n T m 1

Total number of clusters J K
Number of control clusters (1-p)J k 0

Number of treatment clusters pJ k 1

Fixed costs per control cluster C 2 f 0
Fixed costs per treatment cluster C 2

T f 1
Variable costs per control cluster C 1 v 0

Variable costs per treatment cluster C 1
T v 1

Total cost m C

Notes: p  is the proportion of clusters to be assigned to the treatment condition.

Table 9. Parameter Equivalence
Shen and Kelcey (2020) and McConnell and Vera-Hernandez (2022)
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