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Development and application of methods for resolving molecular diagnoses from 

patient sequence data for monogenic diseases 

Dareen Mohammed S. Alyousfi 

Identifying molecular causes of disease from sequenced genomes can be extremely challenging, and 

usually requires tiered filtering with the possibility of causal variant(s) being missed. The first stage 

of this study was focused on understanding the specific properties and features of genes including 

essentiality, haploinsufficiency, and selection and therefore, linking these properties to facilitate the 

prediction of disease causal genes. Gene essentiality refers to genes that is required for the survival 

of the cells. This study found 20 gene-specific scores in the literature, each of which measures 

various genetic features. It then showed that until now, no reliable single score has been predictive 

of genic deleteriousness. This systematic review helped in identifying the gaps and challenges in the 

prediction of disease genes that might have an impact on the diagnosis of monogenic diseases. This 

information on genes rather than variants broadens the scope of thinking to better assess gene 

pathogenicity. The second stage gathered all this information to build a model to filter the clinical 

sequence data and decrease the number of potential disease-causing genes to follow-up. Further, 

essentiality specific pathogenicity prioritisation (ESPP) was constructed to prioritise disease causing 

genes and showed improved performance in identifying disease genes that score high—helping to 

exclude non-disease genes that score low—as compared to any single score. The third stage 

evaluated the proposed gene-level score to guide prioritization of disease genes by testing the score 

using multiple databases and integration with alternative scores. This contributes significantly to 

improving data interpretation. The results were encouraging as two genes, named CNOT1 and RYR3, 

that were prioritised by ESPP as strong candidates for Mendelian diseases, were subsequently 

confirmed to be causal. Another finding from the sum of ranks of alternative scores (ESPP, LOEUF 

and CoNeS) found four genes (SETD1A, SMARCC2, KDM3B, MED12L) that were ranked highly 
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and are now known to contain disease variations. Ultimately, applying such models to monogenic 

disease patient sequence data will help identify molecular causes for these conditions. 
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Chapter 1 Introduction 

In this chapter, the key concepts are explained to ease the understanding of this thesis. The 

first section introduces the human genome and some of its relative genetic properties. The 

second section presents a brief background on common and rare genetic diseases. The third 

section introduces next generation sequencing (NGS) and the gap between sequence data 

production and interpretation. The fourth section is on essential gene prediction and 

available methods to predict gene pathogenicity. The fifth section describes several 

gene/variant specific scores and their usage to predict genetic deleteriousness. The sixth 

section introduces the research question framework for the thesis, and the final section 

outlines the aims and contribution.   

 

The purpose of the introduction chapter is to supply the reader with a brief review on the 

basic concepts of understanding the human genome, as well as NGS analysis and how it 

contributes to the prediction of disease causal genes. This gives context and helps in the 

understanding of what will be explored in subsequent chapters.  

Subsequently, a broader coverage of the literature related to gene-specific metrics and 

assessments of gene essentiality are provided. This section is essential to outlining the 

available information on gene-level scores and how these may be utilised to improve the 

prediction of disease-causing genes.  

 

1.1 The human genome  

The human genome consists of a long sequence of bases called (nucleotides): adenine (A), 

guanine (G), thymine (T) and cytosine (C). These four bases are packed tightly into 23 pairs 

of chromosomes with a total of approximately three billion DNA base pairs, with specific 

regions representing genes with different biological significances. There are an estimated 

20–25 thousand genes in the human genome; they are divided into exons (coding) and 

introns/intragenic (non-coding). The sequences located between genes, called intergenic 

regions, differ from introns in that they are located outside genes. More specifically, exons 

account for only 1.1% of the human genome, with 24% being introns, and the remaining 

approximately 75% being intergenic regions (1,2). 
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When a trigger stimulates a cell to produce a specific protein, the respective gene is 

transcribed to synthesise a messenger ribonucleic acid (mRNA) sequence, which will 

directly produce the specific protein. Each protein consists of a specific amino acid (a.a) 

sequence, the alteration of which may affect protein function. Diploid organisms such as 

humans carry two copies of each gene. If a sequence variant is observed in a single copy of 

the gene, the genotype is described as heterozygous, while if the mutation is observed in 

both copies, the genotype is homozygous. 

However, genes are not independent, and several interactions between genes might affect 

the phenotype produced—this phenomenon is known as epistasis. For many years, 

identifying the causal genes for complex and rare disease was challenging, with epistasis 

being a particular cause for concern especially in complex diseases (3). Further, a locus 

might be enhanced or concealed by the impact of another locus, causing difficulty in the 

detection of the genuine variant. Moreover if more than two loci are involved the prediction 

is more complicated (3). Historically, an important aim of genetics was the correlation of a 

phenotype with its specific genotype (4), and although this has improved, much work 

remains to be done. Understanding genetic properties such as selection, essentiality, and 

haploinsufficiency (HI) along with gene interactions is of great importance in improving our 

understanding of how candidate genes are to be prioritised and subsequently, the prediction 

of disease-causality is to be improved. 

The following section will describe how linkage and physical maps can be utilised to 

identify the location of certain genes, which might be the cause for a disease. 

1.1.1 Linkage mapping  

Mapping is used to determine the location of genetic elements using identifiable landmarks, 

which can be functional segments of the DNA; e.g., genes or non-functional sequences (5). 

In this context, linkage mapping or genetic linkage (ASA genetic map) shows the position 

of genetic markers in relation to each other with regard to the recombination frequency 

rather than the physical distance along each chromosome. In other words, using linkage 

mapping, the location of a gene can be determined corresponding to other gene; however, 

the exact location cannot be determined. Thus, the analysis of these maps is a powerful tool 

to detect the location of disease-genes along the chromosome (6). Here, linkage mapping of 

disease genes can be constructed using polymorphic markers (Figure 1-1) or family 

pedigrees. 
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Figure 1-1 A genetic map of a chromosome measured by centimorgan (cM), a cytogenetic 

map, and a physical map measured by megabases (Mb) (5).  

 
Meanwhile, physical maps describe the relative order of markers across a chromosome. 

Further, high quality maps can show the exact distances between adjacent markers. At the 

present time, these have become more accurate as they are built based on the chromosome 

sequence, so the exact base pair distances between markers can be identified (Figure 1-1) 

(5). 

The first-generation combined linkage–physical map (7) was constructed in 2004 and 

contained approximately 14,800 markers. The second-generation such map of the human 

genome was constructed using the previous data of the first generation and around 13,700 

SNPs genotyped in CEPH (Center d’Etude du Polymorphisme Humain) (8). 

This map also referenced pedigrees at the following companies: Applied Illumina, 

Affymetrix, and Biosystems (7). Additionally, this linkage map has approximately double 

the number of markers as the previous one, thus providing a useful map for genetic analysis. 

Every single marker on this map is supported by recombination-based and physical data. 

Moreover, there are two ways to use the confidence intervals (CI) generated from the 

second-generation combined linkage–physical map of the human genome: First, it can be 

used to quantify the impact of map uncertainty on a genetic analysis and second, to integrate 

the information in this map with the independent map estimates obtained from individual 

studies (7). 
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In the early 80s, and with the introduction of genome-wide linkage analysis using 

anonymous DNA polymorphisms, connecting phenotypes to genes was made possible using 

human genetic linkage mapping (4). Previously, approximately 1,200 disease causing genes 

had been discovered using linkage-based ‘positional cloning’. This is a laboratory method 

that localises the chromosomal position of the disease-causing gene of Mendelian 

phenotypes, using the knowledge of the inheritance pattern of the phenotype. In this 

approach, no prior knowledge about the biological process of disease is required, apart from 

that required to evaluate the phenotype. Identifying causal genes for hemochromatosis, 

cystic fibrosis, and lactose intolerance are successful examples of positional cloning (4). 

More specifically, this cloning starts with linkage analysis; here, a particularly important 

example of the use of linkage mapping to identify disease genes is the identification of the 

cystic fibrosis causing gene (4). Advances in this area led to the development of 

polymorphic markers and then, simple sequence repeats, with several studies ultimately 

benefiting from the hundreds and thousands of single nucleotide polymorphisms (SNPs) 

obtained through the sequencing of human genomes (4).  

• Linkage disequilibrium mapping  

Linkage disequilibrium (LD) is defined as ‘the non-random association of alleles at different 

loci’ (9). In evolutionary biology, LD reflects the history of natural selection, mutation, and 

other factors that might affect gene-frequency evolution. It also reflects the population 

history by providing information on past events and constraints to the potential response to 

natural selection. If two loci are very closely linked, recombination will be reduced, and LD 

might be stronger to a good approximation (9). In other words, when two alleles are located 

close to each other in a chromosome, the chance of recombination events are reduced, and 

they are likely to be inherited together.  

The theory behind LD is well-established and has improved understanding of evolutionary 

history as well as provides tools and insights for gene mapping in humans and other species. 

Further, in humans, LD has allowed for the fine-scale gene mapping of alleles and specific 

traits (9).  

 

As the focus of this thesis is the prediction of monogenic disease genes, parametric linkage 

analysis will be used as an effective method to map genes in single-gene disorders. This 

approach is based on the information related to the penetrance of the disease, mode of 
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inheritance, and disease gene frequency. Conversely, due to a limited understanding of 

genotypic penetrance and mode of inheritance in complex diseases, parametric linkage 

analysis has limited power in this group of diseases (Figure 1-2) (4).  

 

Figure 1-2 Linkage analysis and association mapping: a. linkage mapping relies on the co-

segregation of a phenotype and gene through the generations; b. high-resolution mapping 

shown only in haplotypes. For genes within a short distance, the LD between a functional 

allele (yellow diamond for mutation) shows that the marker is low (10) 

After exploring linkage and physical mapping and how these maps can help in detecting the 

position of a gene, it is important to understand how disease genes can be identified among 

the whole genome by recognising some genetic properties of those genes, which might 

improve their detection. 

1.1.2 Loss of function variation (LoF) 

Genetic variation can be classified by its effect on function. This includes loss of function 

(LoF) and gain of function mutations. The former severely disrupt the function of a protein 

(11) and are often nonsense sequence changes. However, they have also been identified in 

the genome of healthy individuals, thus distinguishing those that are pathogenic can be 

difficult (12,13). In this context, recent studies suggested that the healthy human genome 

contains approximately 200 to 800 anticipated LoF variants, which have an impact on the 

clinical interpretation of sequence data (12). This raises the question of whether the unit of 

the whole gene is the correct one to be used when assessing patterns of intolerance, which 

will be addressed later in the thesis. Moreover, large sequencing and genotyping projects are 
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important for the discovery of LoF variants and their impact on the risk of human disease 

(12).  

1.1.3 Gene interactions 

The phenomena of locus heterogeneity and phenocopy contribute to the challenges of 

mapping genotypes to a specific phenotype. Gene–gene interaction, sometimes called 

epistasis, is one of the factors that complicates identification of disease susceptibility genes 

(14). A common definition of epistasis is ‘one gene masking the effects of another gene’ 

(12,13). Further, Moore et al. (15) built a hypothesis that epistasis is a present component of 

the genetic structure of complex diseases and that complex interactions are highly 

substantial as compared to the independent main impact of any single susceptible gene. 

Here, the key question is ‘why are gene–gene interactions likely to be common?’ (14). First, 

the ubiquitous component of the genetic architecture of common human diseases hypothesis 

as explained by Moore (15) state that interactions between genes are important factors that 

lead to deviation from Mendelian ratios (14) and have been known for nearly a hundred 

years. Second, the biomolecular interactions, genetic regulatory functions, and metabolic 

systems suggest that gene–gene interactions are involved in the connection between DNA 

sequence variations and clinical results (14). For instance, any specific gene can be 

regulated by nearly a hundred or more proteins that might affect the gene through protein–

DNA or protein–protein interactions (PPI). These interactions are most likely mediated by 

variations in the DNA sequence of genes that encode for proteins. There are several 

traditional and new statistical methods for identifying gene–gene interactions in association 

studies; examples of these methods include logistic regression and multifactor 

dimensionality reduction (MDR) (14). The advantage of logistic regression is that the 

statistical concept is very well described. However, the main disadvantage when having 

several independent variables is that large sample sizes are required to accurately estimate 

the parameters in the model. Nevertheless, MDR is designed to identify interactions in the 

absence of detectable main effects (14). 

• Protein–protein interaction networks (PINs) 

Generally, proteins do not function separately, but interact with each other to ensure the 

internal function of the cell. Studying PINs show that the network centrality of certain 

proteins in PINs is closely related with the essentiality of that protein (16). There are several 

publicly available protein–protein interaction databases, and each has its own characteristics 
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and different levels of annotation. Examples include the Database of Interacting Proteins 

(DIP) (17), STRING (a web source of predicted PPIs) (18), Biological General Repository 

for Interaction Datasets (BioGRID) (19), The Munich Information Center for Protein 

Sequences (MIPS) (20), IntAct (an open source molecular interaction database) (21), and 

MINT (Molecular INTeraction database) (22). More specifically, some PIN databases, such 

as MINT, STRING, and IntAct, provide scores with reliability of interactions acquired from 

different sources. Interactions with low scores can be filtered out by setting thresholds to 

achieve PPI data with high reliability (16).  

1.2 Human genetic disease  

It has been shown that functionally related genes might produce similar phenotypes. 

Examples include Fanconi anaemia or Usher syndrome, which are genetically heterogenous 

disorders, where multiple genes play a role in a single biological system (23). Moreover, 

several hypotheses have evolved regarding human phenotypes. First, bioinformatic analysis 

show that genetic diseases can be grouped depending on their functional similarities, and 

this represents the true biological connections of the genes involved. Second, specific 

phenotypic similarity can be used to identify the influence of unrelated genes on the same 

functional system. An example of this was testing yeast in two-hybrid screens of all the 

recognised genes for inherited ataxias, which showed that they all work on a single PPI 

network (23). Third, bioinformatics tools can be used to predict new genes for diseases that 

are part of the same phenotype group. This is possible by studying the known disease genes 

and then searching for other genes that share the same function (23). 

To date, there are 6621 known genetic diseases, in which 3865 genes cause monogenic 

disorders, and 502 are associated with complex diseases (24).  

1.2.1 Common and rare genetic diseases 

Common genetic diseases, such as asthma and ischemic heart diseases, are usually caused 

by multiple genetic variants that work in conjunction with environmental factors (25). 

Although patients may have similar clinical presentations, the causative genetic variants 

might differ. Traditionally, genome-wide association studies (GWAS) were used to link 

genetics to the molecular bases of complex diseases before the introduction of Next 

Generation Sequencing (NGS) analysis. Eventually, more than a million common single 

nucleotide variants (SNVs) have been identified using GWAS. However, since they require 
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huge cohorts of patients and controls, they were generally uninformative on an individual 

patient basis, and consequently, the application of GWAS outcomes to individual patients 

could not be transferred into clinical practice. 

Moreover, rare disease is defined as a health condition that affects a small number of 

individuals compared with other widespread diseases in the general population; this is 

commonly said to be < 1:2000. Currently, approximately between 5000 to 8000 distinct rare 

diseases have been identified (26). Although there is no uniform definition of rare disease, 

the terms ‘rare disease(s)’ and ‘orphan drug(s)’ are the most widely used among different 

organizations—by approximately 38% and 27%, respectively—as compared to other 

terminologies such as ‘neglected disease’, ‘rare and neglected disease’, ‘syndrome without a 

name’, ‘ultra orphan disease’ or ‘undiagnosed disease’ (26). Studies showed that the 

average prevalence threshold of rare diseases ranged from five to 76 cases/100,000 

individuals. This signifies a fifteen-fold relative difference in the average prevalence 

thresholds used to label rare diseases. The worldwide average prevalence threshold among 

all organizations was 40 cases/100,000 individual (26). Despite being described as rare, they 

are collectively common as approximately three million people in the United Kingdom have 

been diagnosed with rare diseases; furthermore, 1:17 will have a rare disease at some point 

in their lives (27,28). Here, it is worth noting that rare diseases can be due to genetic and 

non-genetic causes and accounts for 80% of cases. Meanwhile, genetic disorders can be 

classified into hereditary or non-hereditary and the former are further classified into: 

1. Single gene inheritance/Mendelian diseases 

2. Multifactorial inheritance/Complex diseases 

3. Chromosome abnormalities 

4. Mitochondrial inheritance 

Ultimately, since rare diseases are collectively common, and many patients with rare genetic 

diseases have not yet been diagnosed, studying this group of diseases has the potential to 

increase the proportion of cases with a molecular diagnosis, and thus, have a significant 

clinical impact. 
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1.3 DNA Sequencing   

1.3.1 Sanger sequencing 

Sequencing technology has vividly transformed biology as it allows researchers to combine 

DNA sequenced data with clinical phenotypes. In 1977, classical Sanger sequencing was 

introduced; it is based on base-specific chain terminations in four separate reactions (A, G, 

C, and T) (Figure 1-3, a) corresponding to the four different nucleotides in the DNA 

structure (29). The usage of dideoxynucleotide triphosphates (ddNTPs) in Sanger 

sequencing was a novel technique at the time, in which a specific 2’,3’-ddNTP is added to 

every reaction in the presence of all four 2’-deoxynucleotide triphosphates (dNTPs). In 

total, four reactions are undertaken with each terminating at a different base. However, due 

to a small amount of ddNTP (~1%), the termination only occurs occasionally, resulting in 

strands of all lengths (Figure 1-3, a and b). This technique produces better results when 

compared to the prototype approach developed earlier in 1975 by the same group called 

‘plus and minus’ (29). Further, when the corresponding ddNTP is incorporated, the newly 

synthesised DNA strand extension will terminate (chain-termination method). 

Another novel aspect of the Sanger approach is the use of fluorescent labelling incorporated 

into the new synthesised DNA strand by a labelled precursor (the sequencing primer or 

dNTP) to make it detectable by radiography. The last step is to separate and detect the 

complex radioactive DNA molecules produced from each extension reaction, which can be 

done using polyacrylamide gel (PAG) that allows for the specific sizing of termination 

products by electrophoresis followed by in situ autoradiography. Then, by taking advantage 

of a physically compact DNA separation device combined with laser-based fragment 

detection, ultimately capillary electrophoresis became compatible with 96- and 384-well 

DNA plate formats, thus producing high parallel automation (29). 

Although next generation sequencing has substituted Sanger sequencing as a gold standard 

test in the diagnostic field, there is a debate within the scientific community on the 

importance of confirming NGS variants using this test to maintain high sensitivity (30). 
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Figure 1-3 The principles of Sanger sequencing (Adopted from Men et al.) (29)  

(a) Each of the four separate DNA extension reactions contain a single-stranded DNA 

template, primer, DNA polymerase, and all four dNTPs to create new DNA strands. Each 

one of the dideoxynucleotide triphosphates (ddATP, ddCTP, ddTTP, or ddGTP) is spiked 

with a corresponding reaction. In the presence of dNTPs the newly produced DNA strand 

will extend until the ddNTP is incorporated to stop further extension. The radioactive 

products are then detached using polyacrylamide gel in four lanes and scored according to 

their molecular sizes. On the left, the inferred DNA sequence is shown (29).  

(b) As an alternative to adding radioactive dATP, all four ddNTPs are tagged with different 

fluorescent dyes. The extension products are separated using electrophoresis in a single 

glass capillary fully occupied with a polymer. Depending on their molecular sizes, the DNA 

bands pass inside the capillary. Fluorophores are excited by the laser at the end of the 

capillary. Ultimately, the DNA sequence can be interpreted by the colour that corresponds 

to a particular nucleotide (29). 

1.3.2 Next-generation sequencing (NGS) 

The advancement of 454 pyrosequencing and first generation Sanger DNA sequencing is 

the basis of the development of the second/next generation sequencing and the ongoing and 

increasing understanding of the genetic code (31,32). Following this, there were 



Chapter 1 

29 

advancements in NimbleGene technology, through which the sequencing capture allowed 

the enrichment of pre specified fragments of the genome in microarray applications. This 

technique led to markdown through the concentration of genotyping effort on the targeted 

region (33). Further, the development of this technology led to the invention of whole 

exome sequencing (WES), where only the selected genome coding regions are sequenced. 

This transformation of gene sequencing revolutionised gene hunting for monogenic diseases 

(34).  

The field of genomics is an extensive data science topic that has grown substantially post 

the introduction of next generation sequencing. Following the completion of the first human 

genome project in 2003 (35), the post genomic era evolved, characterised by a paradigm 

shift in genomic research and understanding of the human genome. Projects included 

multiple sequencing programmes such as the 1000 genomes project (36), the 100K genome 

project (37) that involved 10 countries, Exome Aggregation Consortium (ExAC) (38), etc. 

Thus, the volume of genomic data continues to increase, which serves clinical and research 

communities. 

 

 

 

Figure 1-4 Number of genes discovered by WES and whole genome sequence (WGS) 

versus conventional methods since 2010 according to OMIM data (Adopted from Chong et 

al.) (27, 39). 

Figure 1-4 shows the increase of discovered rare disease genes (WGS and WES in blue; 

conventional method in red) from 2010 until 2016. Two years after the introduction of the 
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NGS analysis, since 2010, approximately three times as many genes were discovered in 

comparison to conventional methods (27). This included rare disease genes (Figure 1-4). 

Further, significant improvements in identification of disease genes for monogenic disorders 

was achieved after the introduction of WES.  

Moreover, the discovery of the causal variant in Miller syndrome using exome sequencing 

(40) made WES the state-of-art method used for discovering the causal genes of Mendelian 

diseases. The ability to sequence millions of DNA fragments from different samples 

simultaneously is a common feature of NGS platforms. The NGS approaches depend on 

alignment or de novo assembly of abundant short overlapping reads produced from 

fragmented genomic DNA (gDNA) (41). 

• Ilumina sequencing 

The Illumina platform employs a sequence by synthesis (SBS) approach, which has the 

ability to sequence the ends of billions of DNA fragments in parallel and perform read 

assembly for analysis. The standard sequencing procedure of illumina sequencing includes 

four steps: sample library preparation, cluster generation, SBS, and data analysis. The 

library samples are composed of double-stranded DNA flanked by known adapter 

sequences and have the ability to hybridise to the oligonucleotides on the surface of a flow 

cell (42). 

The flow cell is a key element of this technology, and comprises of a thick glass slide with 

single or multiple channels (lanes) coated with a lawn of two designed oligonucleotides. 

The advantage of using a specific pattern flow cell is the production of a higher data 

output—more sequencing reads with a faster run time. In this context, clustering is a process 

where each fragment DNA molecule is amplified iso thermally. The cluster generation will 

start when denatured DNA libraries are permitted to randomly hybridise to the 

oligonucleotide lawn in the flow cell channels by their adapter ends (Figure 1-5) (42). Here, 

a polymerase creates a complement of the hybridised DNA fragment. Then, the double 

stranded DNA is denatured, and the original strand washed away. The cloned strand starts 

amplifying through bridge amplification, which is the process when the cloned strand bends 

over and the adapter hybridises to an adjacent and complementary oligonucleotide on the 

flow cell. Subsequently, a complimentary strand allows polymerases to end up with a 

double stranded bridge, after which the bridge denatures, creating two covalently bound 

complementary copies of the original DNA fragment. The same process is repeated 24 times 

until clonal amplification is achieved for all fragments. In the final step of bridge 
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amplification, the reverse strands are washed off, leaving the forward strand ready for 

sequencing (42).  

 

Sequencing by synthesis begins with extension of the first sequencing primer to produce the 

first read. Fluorescently labelled nucleotides compete for addition to the producing chain. 

Only one nucleotide is incorporated based on the template sequence. After the insertion of 

each nucleotide, the clusters are imaged by laser excitation, and a distinctive fluorescent 

signal is omitted to permit for the incorporation of the next base. This process is called SBS. 

Here, it is worth noting that the length of the read is determined by the number of cycles, 

and the base call is determined by wave length and signal intensity (42).  

Moreover, for a given cluster, all matching strands are read at the same time. When the first 

read is completed, the read product is washed away. In this step, the index one read primer 

is introduced and hybridised to the template (42). Then, another read is generated in the 

same way as the first read. When the index read produced, the read product is washed off 

and the three prime ends of the template are deprotected. Subsequently, another round of 

bridge amplification takes place. The new index is read in the same way as the original one. 

Polymerases extend the second flow cell oligo, thus producing a dual bridge. This double 

stranded DNA is then cleaved, and the three prime ends are blocked. The original forward 

strand is washed away, leaving the reverse strand. Next, read two starts with the insertion of 

the read two primer. Likewise, the sequencing process is repeated until the anticipated read 

length is reached (42). 
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Figure 1-5 Illumina sequencing by synthesis (SBS). Adopted from (Chaitankar et al.) (42). 

After completion of the library preparation and the fragmented DNA flanked with adaptor 

sequences (contain primer sequences), the following steps are undertaken.  

A. Bridge amplification begins by binding single strands to sequences attached to a solid 

surface: The free ends of the strands bend and bind to adjacent complimentary sequences, 

forming a bridge. Then nucleotides are added to produce a double strand, and the original 

strand is detached and washed away. This process is repeated to produce local clusters of 

copies of the same sequence.  

B. Adding four modified dNTPs and correct base incorporations: Numerous bases cannot 

be combined due to the blocking group. Thus, lasers are used to excite the fluorescent dye 

to distinguish the bases. Next, the blocking group and the fluorescent dye are denatured, 

and the cycle is then repeated. 
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• Paired end sequencing 

The Illumina sequencing method allows for single- or paired-end sequencing for the 

multiple loading of libraries. In paired-end sequencing, both ends of the DNA fragment 

(Sequence (~100bp) of a larger fragment of the sequence (~500bp)) are sequenced, 

producing two reads. Bridge amplification is performed to produce a second read, and 

consequently, the forward strand is washed out to start the next round of SBS (42). The two 

reads are processed simultaneously. To identify the libraries from which reads they were 

originated, each library adapter contains a specific index sequence. When using single 

indexing, 24 libraries can be combined in each lane of the flow cell, while dual indexing 

allows up to 96 libraries to be pooled together (42). 

 

• Whole Exome Sequencing 

WES is a genomics approach, in which the protein-coding regions of the genome are 

sequenced, producing a powerful high throughput of exome data. The purpose of this 

technique is to identify genetic variants that affect the final protein product. This approach 

has been applied clinically in research and academia. Multiple steps are required in WES, 

which include: 

1. Library preparation 

2. Amplification and enrichment 

3. Sequencing 

4. Analysis of the data 

In the first step of WES, library preparation, the following steps are required:  

DNA fragmentation and target selection. This step typically aims to produce DNA 

fragments and ligate specific adapters to both ends of the fragment. DNA fragmentation can 

be undertaken using physical or enzymatic methods. These libraries are known as fragment 

libraries (43). On the other hand, if the sequence of the DNA target is known, PCR 

amplification might be used to produce DNA amplicons, known as the amplicons library. 

Specific DNA adaptor sequences are ligated near 3’ or 5’ of the fragmented or amplicon 

DNA. The DNA adapters are usually 20–40 bp of known sequence. After preparing DNA 

fragments with known adapters, the library fragment sizes need to be selected. This step can 

be achieved either by using gel electrophoresis (i.e., separating the fragments by size using 
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gel-based approach) or the bead-based size selection method (i.e., using magnetic beads to 

isolate fragments size of interest). This is a key step to achieve high quality DNA 

sequencing (43).  

The second step is library quantification and quality control. This step can be done using the 

BioanalyzerTM system, which provides fragment size information and library 

concentration. Otherwise, this can be done using qPCR, which provides library 

quantification information with high accuracy; however, it lacks library size information 

(43). 

Further, the amplification step uses PCR to increase the number of fragmented segments for 

subsequent sequencing using one of the major sequencing methods such as sequencing by 

synthesis or ligation or any other such method. In DNA SBS, fragments are read by 

producing a complementary fragment with polymerase enzyme and florescent nucleotide. 

Each colour represents a nucleotide sequence, so it can be determined by differences in 

florescent colours (44). Moreover, SBS uses ligase enzyme to determine the underlying 

sequence of the target DNA. This method depends on the sensitivity of DNA ligase enzyme 

for base pair mismatches (45). Post sequencing, a data file is generated containing the 

observed bases and the relative per base quality. This file can then be analysed using 

bioinformatics tools, usually in FASTQ format, although sometimes the file generated can 

be of a different format. A FASTQ file typically uses four lines per sequence as the 

following:  

• Line 1 is a sequence identifier, and begins with an '@' character. 

• Line 2 is the raw sequence letters. 

• Line 3 begins with a '+' character and is optionally proceeded by the same sequence 

ID (or any description) again. 

• Line 4 encodes the quality values for the sequence presented in Line 2, and must be 

comprised of the same number of symbols as letters in the sequence (46). 

An example of a FASTQ file format is shown below (46): 

@SRR014849.1 EIXKN4201CFU84 length=93 

GGGGGGGGGGGGGGGGCTTTTTTTGTTTGGAACCGAAAGGGTTTTGAATTTCA

AACCCTTTCGGTTTCCAACCTTCCAAAGCAATGCCAATA 

+ 
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SRR014849.1EIXKN4201CFU84length=933+&$#"""""""""""7F@71,’";C?,B;?6B;:EA1E

A1EA5’9B:?:#9EA0D@2EA5’:>5?:%A;A8A;?9B;D@/=<?7=9<2A8== 

Furthermore, the purpose of exome sequencing is to target regions that code for protein. In 

comparison to whole genome sequencing, this reduces output data and is more cost-

effective. There are several methods to capture only the coding parts of the genome (47). 

One of the most common approaches is in-solution capture and uses a pool of custom 

oligonucleotides (probes) synthesised and hybridised in solution to a fragmented DNA 

sample. The probes are labelled with beads mixed to the genomic regions of interest, so that 

this segment of interest can be retained, and non-coding regions are washed out. The beads 

are then removed, and the genomic fragments of interest can be sequenced (47). 

• Challenges of NGS technologies 

Although NGS technology has been widely used and has been helpful in research as well 

diagnostic settings, NGS still has challenges. One of the major limitations is the error rate 

associated with the base calling, which differs for each NGS platform, ranging from 0.1 to 

15%. This error rate is higher than in Sanger sequencing (41). The problem with a high 

error rate is that it leads to false positive or negative results (48). Recently, machine learning 

methods have been proposed to solve this issue (49). 

A further limitation of NGS platforms is the short-read length, increasing the difficulty 

of variant calling in repetitive and low complexity regions of the genome. Initially, this was 

just ~35bp of sequence, but currently, the read length of most of the conventional NGS 

platforms is up to 300bp. Presently, mapping-based variant calling where short-reads are 

uniquely mapped to the reference genome are considered the best available practice. 

Additionally, this problem was also addressed by developing platforms with long-read 

sequencing competency (50); however, read lengths and price were proportionally 

correlated, limiting the extension of this platform into clinical and research settings (41). 

1.3.3 Growth of DNA sequencing 

Prior to 2015, the rate of growth of genomic data almost doubled every seven months. Of all 

the sequencing equipment in the world, the Omics Maps Catalogue recorded approximately 

2,500 high-throughput instruments in more than 55 countries (51). In the future, the 

sequencing capacity is expected to further increase dramatically due to rapid developments 

in this field. Furthermore, if the growth continues at the rate reached in 2015 (by increasing 
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two-folds every seven months), approximately one exabase of sequence/year in five years 

and one zettabase of sequence/year by the year 2025 might be reached (51) (Figure 1-6). 

However, currently, it is quite difficult to analyse and interpret this huge amount of data, 

unless a way is found to prioritise disease genes to reach a diagnosis. One way of doing this 

is to create filters or scores that prioritise genes and score the genes based on their potential 

for causing disease. 

 

Figure 1-6 Growth of DNA sequencing timeline, adapted from Stephens et al. (51).  

 

This timeline figure demonstrates the growth of DNA sequencing both in the total number 

of human genomes sequenced represented in the left axis along with the worldwide annual 

sequencing capacity represented in the right axis with abbreviations describing the length of 

D/RNA molecule: Tera-basepairs (Tbp) = 1,000,000,000,000 bp, Peta-basepairs (Pbp), Exa-

basepairs (Ebp), and Zetta-basepairs (Zbps). 

Sequencing the human genome has improved our understanding of genetic variations, gene 

properties, gene interactions, and how changes in nucleic acid (D/RNA) might manifest a 

phenotype.  
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1.3.4 The gap between sequence data production and interpretation 

The development of DNA sequencing methods has contributed to the production of a 

considerable throughput of data. This has been a quantum leap in the field of genomics 

(Figure 1-1). However, interpretation of these sets of sequenced data is now a major 

challenge, due to the fact that data interpretation techniques have not achieved the same 

growth as sequencing of data, leading to a considerable gap between available genomic data 

and our utilization of it. To facilitate massive genomic data interpretation, data filtering has 

become a necessity and has gained significant popularity to save time and resources. In the 

past, prior studies focused on predicting variant pathogenicity rather than studying how 

likely a gene might contain disease variations. Recently, and by integration with variant 

level scores, a sustained growth of evidence has shown how gene-specific characteristics 

might impact predicting gene pathogenicity. 

1.4 Minimal genome 

The term ‘minimal genome’ refers to the minimal genome content indispensable to creature 

survival referred to “essential genome” in human (52). This concept arose from 

observations that several genes do not seem to be required for an organism’s survival. The 

very small genome size of Mycoplasma genitalium makes this bacterium a good model for a 

minimal genome. Most genes used by it are commonly considered vital for cell survival; 

thus, a set of around 250 genes has been proposed as essential genes based on this concept 

(53). At that time, it was thought that essential genes could be inferred from minimal 

genomes, which apparently comprise only essential genes. In 2009, this concept was 

challenged when McCutcheon et al. (54) showed that the smallest genomes belong to a 

parasitic species, which have the ability to survive with only a few genes obtained from 

their hosts. Hodgkinia cicadicola is a good example as it has one of the smallest genomes 

containing approximately 180 genes. Further, similar to other parasites, it obtains its 

nutrients from its host, so its genes do not need to be essential. 

Moreover, essential genes and proteins play a major role in cell differentiation, metabolism, 

and core biological functions responsible for cell survival. Alteration of these genes might 

be lethal for an organism (16). Studies have identified that there is a close relationship 

between essential and disease genes as the latter fall towards the essential end of the gene 

spectrum; therefore, identification of the essential genes is of great importance to the 
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detection of disease genes (16). This was further investigated by Park et al. by separating 

mutant orthologs of the mouse genome into two groups as causing a ‘phenotype’ and ‘no 

phenotype’. Phenotype genes tend to be disease genes more than genes in a no phenotype 

group. The phenotype genes were further classified into ‘lethal phenotype’ and ‘non-lethal 

phenotype’ subgroups. Based on the results of the logistic regression, the frequency of 

disease genes in the lethal phenotype genes was 38% (odds ratio = 3.02) and 34% in the 

non-lethal phenotype (odds ratio = 2.47), while the frequency of disease genes in no 

phenotype was only 17% with odds ratio of 1.16. This suggests that lethal genes in mice can 

have a disease-causing orthologue in humans (55). 

1.4.1 Essential gene prediction 

In the field of genomics, identifying essential genes relies mainly on laboratory methods 

like gene knockouts (56), RNA interference (RNAi) (57), CRISPR/Cas9 (58,59), transposon 

mutagenesis (60), and antisense RNA (61,16).  

Gene knockouts is a way of studying gene function by investigating gene loss. To this end, a 

gene is knocked out in a model organism and the phenotype is observed (56). Another way 

of testing gene function is RNA interference—a process of inhibiting gene expression or 

translation by using either microRNA (miRNA) or small interfering RNA (siRNA). The 

mechanism of RNAi is through an enzyme complex degraded DNA methylation at genomic 

sites corresponding to siRNA or miRNA. This technique can be used in model organisms to 

determine gene function, discover new drugs, and study cellular processes to predict gene 

essentiality (57). 

Meanwhile, CRISPR/Cas9 is a method that can be used for gene editing. Here, the enzyme 

Cas9 is one of the enzymes produced by the clustered regularly interspaced short 

palindromic repeats (CRISPR) system. This enzyme has the ability to cut the DNA and 

turnoff the targeted gene, which facilitates the studying of gene functions (59). Later, a 

comparison was made comparing the roles of RNAi screens and CRISPR/Cas9 in 

identifying essential genes in human chronic myelogenous leukaemia (CML). The results 

demonstrated that the accuracy of both libraries in identifying essential genes was similar, 

suggesting the benefits of combining data from both screens (58). 

A further method of identifying nonessential genes is to use global transposon mutagenesis, 

which is a method used to study whether the naturally occurring gene complement is a true 

minimal genome under laboratory growth settings. This is performed by applying 
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transposon mutagenesis to completely sequenced genomes, allowing for the accurate 

localization of insertion sites with respect to each of the coding sequences (53). However, 

not every transposon insertion within a gene will lead to gene function disruption. 

Nevertheless, if it is done near the 3′ end of a gene, it may not destroy gene function. 

Likewise, an insertion close to the 5′ end of a gene does not always affect gene function 

(53). 

Moreover, antisense is a technique used to inhibit gene expression in a diverse organism. It 

has been used in combination with regulated expression for rapid identification and 

characterization of essential genes from the human pathogen, Staphylococcus aureus (61). 

Further, the authors created many defined strains exhibiting conditional growth phenotypes. 

These bacteria, in which certain genes are controlled by antisense RNA, were used to 

examine the impact of staphylococcal gene products on growth in bacterial cultures and 

animal models of disease (61). 

Due to the fact that the number of genes in the genome is massive, these experimental 

strategies are certainly sophisticated. However, the complexity of the human genome makes 

these techniques difficult to apply in humans. For this reason, researchers have focussed on 

developing computational techniques to predict essential genes and proteins (16).  

1.4.2 Essentiality hypothetical model 

Recently, a hypothetical model that outlines potential relationships between gene 

essentiality, recombination, and selection, and how these relate to gene categories including 

disease genes, essential and non-essential genes (see Figure1-7) was described. In this 

project, the strength of LD for candidate genes are considered along with other genic scores 

using the same gene groups used in Pengelly et al. (62). 
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Figure 1-7 Hypothetical relationship between gene essentiality, recombination, and selection 

and different gene groups including non-disease, non-essential, human disease and essential 

non-disease. Genes towards the high essentiality end of the spectrum tend to be highly 

intolerant to LOF variants, have a low recombination rate, and are strongly impacted by 

negative selection. While genes in the non-essential end tend to be less intolerant to LOF 

variants, with high recombination rates and less impacted by negative selection. Adapted from 

Pengelly et al. (62). 

As demonstrated in Figure1-7, an increasing gene essentiality measure was assumed for 

genes involved in core biological functions and vital for survival; any disruption in this 

group of genes is fatal at the pre-natal stage. Highly essential genes tend to have strong LD 

with low haplotype diversity. Since these genes are mutation intolerant, they tend to have a 

low recombination rate (62). At the other end of the spectrum, less essential genes, which 

are involved in sensory perception, for example, are more tolerant to mutation and may have 

high recombination rates. This group of genes tend to have high haplotype diversity, weak 

LD, and are weakly impacted by selection (62). According to this model, monogenic genes 
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occupy the intermediate position that is shifted towards the essential end, and complex 

disease genes are closer to the non-essential end. 

1.5 Methods to predict gene pathogenicity 

1.5.1 Variant-level predictors  

Several tools have been produced to predict the potential impact of genetic variants on the 

function of gene or proteins. These tools use a variety of algorithms that can measure one or 

more biological feature(s) to predict variant deleterious impact (63). The following scores 

predict gene conservation: phastCons (64), GERP++ (65), and phyloP (66); variants where 

the homologous position in other species has persisted as constrained over evolutionary 

history and are scored as high deleterious variants (63). Another group of variant-level 

scores focus on prediction of the effect of protein function through disruption of the amino 

acid sequence such as FATHMM (67), SIFT (68), fathmm-MKL (69), and PolyPhen2 (70) 

(63). Numerous scores are described in the literature, which predict the possibility of a gene 

having a LoF mutation. However, until now, no single measure is entirely reliable in 

predicting gene pathogenicity. Here, the integration of gene-level scores may help in 

identifying disease causal genes for monogenic diseases.  

SIFT 

Genetic mutation studies have identified substitutions of a.a (amino acids) in protein-coding 

regions. These might affect protein function and produce the disease phenotype. In this 

context, the sorting intolerant from tolerant (SIFT) score is a variant- level predictor that 

predicts whether an a.a substitution disturbs protein function, so that these substitutions can 

be studied further. SIFT score differentiates between the functionally neutral and damaging 

alterations in a.a sequences (68). The prediction of a SIFT score is based on the assumption 

that important a.as will be conserved in the protein family, and any alteration at well-

conserved positions are predicted as damaging. This can be achieved by choosing related 

proteins in a given protein sequence and obtaining alignments of this protein. Based on the 

amino acids at each position in the alignment, SIFT estimates the probability that an a.a is 

tolerated at a given position (68). 

PolyPhen-2 
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This is a tool that predicts the deleterious effects of missense variations. There are three 

main differences between PolyPhen-2 and the previous PolyPhen tool: the set of predictive 

features, alignment pipeline, and method of classification (70). PolyPhen-2 uses three 

structure-based predictive and eight sequence-based features. These features distinguish the 

wild (ancestral) type from the mutant (derived) allele. Further, Polyphen-2 was tested 

against PolyPhen and found to be consistently superior (70). More specifically, two pairs of 

datasets were used to test and train PolyPhen-2. The first was HumDiv from approximately 

3,100 damaging alleles annotated in the UniProt database as causing human Mendelian 

diseases and affecting protein function or stability, along with approximately 6300 

differences between human proteins and their closely related mammalian homologs, 

presumed to be non-deleterious (70). The second dataset was HumVar, in which there are 

around 13,000 human disease-causing variations from UniProt (71) and approximately 

8,900 human nonsynonymous variants (single-nucleotide polymorphisms) without 

annotated involvement in diseases that are considered as non-damaging. The false positive 

rate was 20%, in which the HumDiv achieved true positive prediction rates of 92% 

compared with 73% achieved by HumVar. The lower accuracy of the HumVar prediction 

could be due to the fact that the nsSNPs presumed to be nondamaging in the HumVar 

dataset included a sizable fraction of mildly damaging alleles. On the other hand, the 

majority of amino acids replacements presumed non-deleterious in HumDiv dataset must be 

most likely close to selective neutrality (70).  

Moreover, PolyPhen-2 calculates the naive Bayes posterior probability that a certain 

mutation is deleterious and produces estimates of false and true positive rates. The former is 

the possibility that the variation is categorised as deleterious when it is in fact, non-

deleterious, while the latter is that the variation is prioritised as deleterious when it is indeed 

a damaging mutation. Thus, HumVar-trained PolyPhen-2 is recommended for predicting 

Mendelian disease variations (70). 

CADD 

Combined annotation dependent depletion (CADD) integrates a number of different 

annotations and produces an individual quantitative score per variant. This is implemented 

using machine learning (support vector machine), trained to distinguish approximately 

fifteen million high-frequency human-derived alleles from fifteen million simulated variants 

(72). In CADD, ‘C-scores’ are computed for around 8.5 billion potential human SNVs and 
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the short insertions and deletions are then allowed to be scored. C-scores are associated with 

allelic assortment, functionality annotations, deleteriousness, severity of disease, complex 

trait associations, and highly ranked known deleterious variants within individual genomes 

(72). CADD scores integrate various genome annotations and give scores to candidate 

SNVs or small insertions/deletions (indel). 

MutationTaster  

This is a free, web-based tool developed by Schwarz et al. (73) for the quick assessment of 

the disease-causing potential of DNA sequence variations. This tool integrates various bits 

of information from different biomedical databases and uses well-established analysis 

applications. The analysis results of MutationTaster are reportedly completed within 0.3 

seconds, providing information for the analysis of splice-site changes, evolutionary 

conservation, loss of protein features, and changes that might affect the amount of mRNA. 

The test results are assessed by a naive Bayes classifier that prioritises disease-causation 

(73). The outcome of a MutationTaster prediction could be silent synonymous, intronic 

variations or variations affecting a single a.a or causing complex alterations in the a.a 

sequence. However, this tool has some limitations: first, its inability to analyse 

insertion/deletions greater than 12 base pairs (bp); second, the analysis of non-exonic 

alterations is restricted to the Kozak consensus sequence, splice sites, and poly (A) signals 

(73). To overcome these limitations, MutationTaster2 was developed to predict the 

functional consequences of not only amino acid substitutions but also intronic and 

synonymous alterations, short insertion/deletion (indel) mutations, and variants spanning 

intron-exon borders (74). It includes all freely available (SNPs) and indels from the 1000 

Genomes Project along with known disease alterations from human genome mutation 

database (HGMD) Public and ClinVar. Any variation found more than four times in the 

homozygous state in HapMap or 1000G is considered neutral. Thus, the automatic 

prediction of a variant to be disease-causing if the variant was prioritised automatically as 

pathogenic in ClinVar and the identification of the presence of the disease phenotype was 

possible (74). 

REVEL 

This is an Ensemble method to prioritise pathogenic rare missense variants. It incorporates 

18 pathogenicity prioritisation scores (features) from 13 different tools as predictive features 
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as follows: phyloP (primate) (66), phastCons (primate) (64), phastCons (placental), SiPhy 

(75), GERP++ RS (65), phyloP (placental), MutationTaster (73), LRT, phyloP (vertebrate), 

phastCons (vertebrate), FATHMM (67), MutPred (76), SIFT (68), MutationAssessor (77), 

PROVEAN (78), VEST (79), Polyphen2 HDIV, and Polyphen2 HVAR (70)). The 

MutPredictor was constructed for the purpose of this study with the UniProt canonical 

protein sequence when available and the Ensembl canonical transcript otherwise.  

FATHMM (67), VEST (79), Mutation-Assessor (77), MutPred (76), and PolyPhen-2 HVAR 

(70) were the most important features in REVEL. Further, the important measure of each of 

these five features reflects correlations with other features in addition to this method’s 

intrinsic prioritisation ability, as significance can be mutual among correlated features.  

The performance of REVEL (80) was compared to other ensemble methods—such as 

(MetaLR (81), MetaSVM (81), KGGSeq (82,83), CONDEL (84),CADD (72), DANN 

(85),and Eigen (86)—for distinguishing HGMD disease variations (rare variants) from 

neutral exome sequencing variants with allele frequency (AF) ranging from very rare (0.1–

0.3%) to common (> 5%). It was found that all of the ensemble methods performed poorly 

as compared to REVEL, which had the best scoring in predicting disease variants from 

uncommon neutral missense variants with an AF below 3% (80). Thus, this method has the 

following strengths: first, REVEL was trained and tested on recently identified pathogenic 

and neutral variants that resemble novel variants identified by future NGS studies, which are 

likely to comprise variants with lower allele frequencies and more modest effects than 

previously identified variants; second, to improve performance when interpreting rare 

variants, the AF of REVEL neutral variants were restricted exactly between 0.1% and 1%; 

third, a larger number of individual predictors were incorporated by REVEL than any 

method prior to ensembling (80). 

1.5.2 Gene-level predictors 

From 2005 onwards, the number of gene-specific pathogenicity predictors has increased 

dramatically. Various measures considered in this project include the following: residual 

variation intolerance score (RVIS), which is an essentiality predictor measuring gene 

intolerance to rare and common functional variation (CFV); pLI, which is another 

essentiality predictor that measures the probabilities of a gene carrying LoF variation; and 

substitution intolerance score (SIS), measuring the probability that a gene is intolerant to 
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functional variation using data from the 1K genomes project; and other scores that predict 

essentiality, HI, and selection (87,88,38).  

1.6 Research question framework 

This project aims to assess how gene-specific features predict the susceptibility of genes to 

monogenic disease variation. To this end, a gene-based score was developed and evaluated 

to allocate and prioritise disease causal genes. Additionally, this score was applied to 

monogenic disease data to aid in identifying molecular causes for those conditions. This aim 

can be achieved by answering the research question presented in Table 1-1, which was 

formulated using the PICO (population, intervention, comparison, and outcome) format. 

This format needs to be directly relevant to a problem or a patient and is widely used in 

evidence-based practice. It was designed to facilitate answering the research question by 

dividing the question into four parts to digest the main idea of the research (89). Thus, this 

project aims to answer the following research question: ‘Can the use of gene-specific 

metrics facilitate the identification of disease genes in patients with monogenic diseases?’ 
 

Table 1-1 Research question framework 

Population Intervention Comparison Outcome 

Patients with 

monogenic diseases 
 

Using gene-

specific metrics 

None Facilitated identification 

of disease genes 

 

1.7 Thesis outline, aims, and contribution 

The role of gene-specific metrics in the identification of Mendelian disease genes is not yet 

established. Thus, the aim of this thesis was to apply gene-level approaches to predict 

disease genes for monogenic diseases. Utilising the available range of gene specific scores 

in addition to the integration of those metrics might potentially improve the prioritisation of 

disease genes. 

Aim 1—Systematic review summarising gene-specific scores using the snowballing 

technique.  
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The aim of chapter 2 was identifying gene-specific scores described in the literature and 

utilising them to help in prioritising disease genes, and the specific objectives are as 

follows: 1. Identifying an effective study design to cover the whole literature in predicting 

disease genes at the gene level; 2. Classifying the identified scores in a way that can 

correlate each group together. 

For this study, 20 gene-level predictors were found, and each score predicts certain genetic 

features. These scores were then classified into three main classes that predict essentiality, 

HI, and selection. This classification was based on score properties and what they are 

intended to measure. The aim was to identify gene-level scores that provide scores per gene 

to create a base for the next project, which is constructing a composite score by combining 

these predictors together. Among the twenty gene-level scores identified in the systematic 

review, 10 scores provided scores per gene. Combining these metrics into a single 

composite score established the foundation for building the Essentiality specific 

pathogenicity prioritisation (ESPP) score. 

My contribution was in choosing an appropriate method (study design) and using it to 

achieve broad coverage of the literature by gathering information about each predictor and 

allocating specific metrics that might have potential when integrated together to produce a 

composite score to predict disease genes. 

Aim 2—Devising methods to facilitate the construction of an essentiality predictor. 

The aim of chapter 3 was preparation to build an essentiality score that predicts disease 

genes. The objectives were to find the highest scores (from the scores identified earlier from 

the systematic review) representing the data and following the same direction of the 

essentiality hypothetical model proposed by Pengelly et al. (62) to evaluate and update the 

Spataro et al. classification (90) to improve the prioritisation of disease genes. 

My contribution was gathering information of all scores that can be used in the composite 

score, evaluating the relationship between those scores, correlating them with Spataro 

groups and undertaking all the statistical analysis. 

Aim 3—Constructing a composite gene score: ESPP.  

Chapter 4 shows the development of a gene essentiality predictor that will help in predicting 

disease causal genes. The aim was to integrate gene-level scores that align with gene 

properties that can be placed on a broad ‘essentiality’ scale corresponding to that described 
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in the Pengelly et al. (62) hypothetical model, to create an essentiality score that predicts 

disease genes and distinguishes them from the essential genes. In order to achieve this, the 

gene classification proposed by Spataro et al. (90) was used. This classifies genes into five 

groups from the least to most essential. Using principal component analysis (PCA), 10 

scores identified from the systematic review were integrated with another additional score 

measuring LD per gene obtained from Vergara-Lope et al. (91) to produce the ESPP score. 

To improve the results, several steps were undertaken to refine the model prediction and 

provide better separation between disease and essential genes. 

The work conducted in this chapter was carried out by this author under the supervision of 

Prof. Andy Collins and Prof. Diana Baralle. My contribution consisted of every step 

outlined in this chapter including the curation of the research database, identification of 

possible gene classification strategies, performing of statistical tests, interpretation of results 

as well as pipeline and score development. 

Aim 4—Using/integrating scores to predict new Mendelian disease candidates. 

Chapter 5 tests the performance of the ESPP score across several data sets. The aim was to 

identify unknown candidate genes that score high based on this study’s ESPP score; these 

genes are expected to be candidate genes for monogenic diseases. These will be tested using 

the ESPP score across available data. The first objective was to test the ESPP score in 

predicting dominant and recessive genes. The second objective was to compare ESPP score 

with the most recent gene-level predictors.  

The work conducted in this chapter was carried out mostly by this author under the 

supervision of Prof. Andy Collins and Prof. Diana Baralle. My contribution consisted of 

every step outlined in this chapter with help in accessing some of the data, I acknowledge 

the help of Dr Jenny Lord in accessing DECIPHER and Dr Gabrielle Wheway in accessing 

GEL data. I tested the performance of ESPP using the previous mentioned data and the 

Saudi data in addition to the comparison of ESPP with LOEUF and CoNeS.  

Aim 5—Constructing a recessive gene score: RSPP (future work). 

As the distribution of recessive disease genes by ESPP were not as clear as the dominant 

disease genes, I decided to build another classifier to improve prediction of recessive 

disease genes (Figure 1-5). Chapter 6 demonstrates the future plans to construct recessive-



 

48 

mode specific pathogenicity prioritization (RSPP) score and test the score using Genomics 

England (GEL) and Saudi Human Genome Programme (SHGP) data.  

 

Figure 1-8 Thesis pipeline and future extension  

 

Recessive-mode Specific Pathogenecity Prioritization (RSPP) (Future plan)

Testing the performance of ESPP

not effective for predicting recessive genes building the RSPP model

Essentiality Specific Pathogenecity Prioritization (ESPP) 
after improving the score performance, only 8 

gene-level scores were included HI, DNE, RVIS, NET, pLI, GIMS, GHIS, SIS

Systematic Literature Review (SLR)

20 gene-level scores have been identified 10 of these metrics were utilised to build the 
next project (ESPP)
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Chapter 2 Literature Review of Gene-Specific 

Pathogenicity Prediction Scores 

2.1 Introduction 

The advancement of NGS technologies has been an exceptional contribution to the detection 

of deleterious variants in previously undiagnosed diseases. Nevertheless, in genome 

sequencing studies, because of the large number of variants seen (on average around 10,000 

variants/genome that cause alteration in the amino acid sequence (92)), a major challenge is 

distinguishing which of these sequence variants are truly deleterious. 

Several variant prediction tools have been constructed to improve detection of disease-

causal sites. However, as many variants scored as deleterious by these tools are often in fact 

tolerated, the results might be equivocal. Further, there is a lack of consistency in the 

prediction results among the various variant-level prioritization tools (93). Latterly, 

researchers believe that understanding gene properties, such as selection, mutation, 

recombination, and HI, may help in the prediction of genes that might be disease causing 

and that utilizing this information will refine molecular diagnostics (93). Thus, the 

motivation behind this review is to assess how understanding gene-specific features may 

improve filtering strategies in clinical sequence data to allocate possible disease variants. 

Additionally, the ability to recognise the ‘disease genome,’ which comprises coding, non-

coding, and regulatory variation, might lend a hand in resolving undiagnosed cases. This 

review delivers an extensive assessment of existing gene prioritizing methods, the 

association between measures of gene-deleteriousness, and how utilizing these prediction 

tools can be improved for molecular diagnostics. 

2.2 Systematic literature review 

2.2.1 Introduction 

NGS and whole genome sequencing, in particular, produce enormous datasets that generate 

substantial analytical challenges for the prediction of disease-causal genes. Within the scope 

of knowledge, a subgroup of human genes contains, or are related to, rare and/or common 
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variations, which are important in disease formation (the ‘disease genome’). Nevertheless, 

the identification of causal variants amongst many thousands of mostly neutral variants is 

not entirely established and a pressing challenge. For instance, Chong et al. (39) state that 

the genes underlying 50% of all Mendelian diseases are still unknown, and many Mendelian 

conditions are yet to be described (39). Further, according to OMIM (24), currently, this 

percentage has decreased by almost 20% (39). In conjunction with methods for anticipating 

the potential deleteriousness of individual DNA variants, a sum of gene-specific scores was 

developed, which may help facilitate the recognition of disease-causing variations. 

Recognising the disease genome properties and combining existing models that score genes 

may help in categorizing genes based on their specific characteristics to improve molecular 

diagnosis (93). However, there is conflicting evidence about the reliability of pathogenicity 

scores for individual DNA variants due to the inconsistencies in the results of the different 

methods used (94). Owing to redundancy in the genome, predicting the potential causal 

variation can be challenging. Thus, this study proposes an integrated approach that appraises 

evidence at a variant level and with a broader scope (gene level). To this end, it was 

identified that variant prioritization metrics alone are presently not accurate and evidence at 

the gene-level has the potential to improve the prediction of variant pathogenicity (93).  

This systematic review brought together the literature related to gene-level approaches and 

their relevance in enhancing filtering of genome sequence data. The goal is to generate a 

satisfactory answer to the following research question: ‘Can the use of gene-specific metrics 

facilitate the identification of disease genes in patient genomes?’ It is presented in Table 2-1 

below. 
 

Table 2-1 Systematic literature review question framework 

Population Intervention Comparison Outcome 

Patient genomes 
 

Using gene-specific 

metrics 

None Facilitated 

identification 

of disease 

genes 
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2.2.2      Methodology 

The research question framework was structured using the PICO framework presented in 

Table 2-1. This framework was particularly chosen to enhance specificity and eliminate the 

conceptual uncertainty of clinical issues (89).   

Moreover, a systematic literature review (SLR) uses a systematic method to examine the 

literature related to a particular topic by collecting and criticizing secondary data to answer 

a specific research question. The top of the hierarchical pyramid of scientific evidence is 

occupied by SLR and meta-analysis, considered the highest level of evidence (95). The 

difference between a regular review and the SLR is that the latter is formally designed to 

cover the entire literature related to a well-defined research question and is conducted in a 

systematic manner (96). For the sake of achieving a high level of validity, SLR cautiously 

selects the available literature in the area of interest and combines scattered evidence into a 

single article (95,96). 

The purpose of this review is to clearly identify articles making a central contribution in the 

understanding of the disease genome. The double-sided systematic snowball strategy (SB) 

was preferred over a keyword-based reviewing method due to the difficulties in selecting 

appropriate keywords for the search strategy as a consequence of the paucity of available 

gene-specific scores in the literature. Additionally, the SB technique is a systematic way to 

screen the literature by collecting papers that are closely related to the area being studied, 

called the start set. This is followed by screening of the bibliographies of these papers for 

any related articles, and this is repeated for every new article identified until there are no 

more related articles to be found—this is called backward snowballing (BSB). On the other 

hand, forward snowballing (FSB) also uses a start set of papers, scans all citation papers and 

does the same for any new citation identified until no new article can be found. The term 

snowballing is used in this context as the search strategy can be started with small number 

of papers that increases gradually until numerous papers that cover the topic of interest are 

found. 

Moreover, the SB technique has been found to be more competitive compared to a database 

search when using general terms and reducing the amount of noise (97). In addition, it is 

reported to be more efficient at finding relevant articles: it identified 85% relevant papers 

compared to a database search that identified 45.9%. Ultimately, the SB technique shows 

higher reliability when the starting set of papers is chosen as compared to a database search 

(98). 
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An extensive scoping search was undertaken to make sure that there was no systematic 

review addressing the same area of study. The scoping search was conducted through four 

major databases: Cochrane Library, Prospero, The Trip and Evidence search (NICE) along 

with two major platforms (EBSCOhost and OvidSP) to ensure the originality of the topic 

and guarantee a comprehensive screen of the literature. The EBSCOhost platform comprises 

three mega databases, which are MEDLINE, CINAHL, and SportDiscus, while OvidSP 

hosts Medline, Embase, and EBM reviews. This was followed by a screening of grey 

literature through Open Grey and MedNar databases, but no relevant SLR was identified. 

More details on the scoping search approach are shown in Appendix A. 

Four search key phrases (KP1-4) were set to identify the start set of (‘seed’) papers: 

KP1: ‘Gene-level approach.’ 

KP2: ‘Protein coding variants.’ 

KP3: ‘Pathogenicity prediction at gene-level.’ 

KP4: ‘Pathogenicity prioritization at gene-level.’ 

The four search key phrases were selected based on the scoping search that was initially 

performed. 

To conduct a high-quality systematic review and among several search databases, Google 

Scholar (GS) was selected for the snowballing search. A comparison was conducted 

between GS and other trusted sources of information, such as Cochrane Database 

Systematic Review and The Journal of the American Medical Association (JAMA), to 

assess the coverage of GS, especially in identifying systematic reviews (99). The authors 

selected original articles that were involved in around 29 systematic reviews identified in 

aforementioned information sources in 2009. Then, they searched for all these papers in GS 

to predict the adequacy of coverage if it is used as the only source. They concluded that GS 

provides broad coverage for studies included in the systematic review, reaching 100% 

coverage (99). For this reason, GS was chosen as the leading search engine for this study. In 

addition to the high sensitivity, it had already been approved when used alone for systematic 

reviews (99). Further, besides the broad variety of articles and resources within its database, 

the usage of GS within the research environment has increased (100,101). A further 

advantage is that it is not restricted to particular publishers (98).   

Initially, five original papers were identified, and these were the seed set of papers chosen to 

start the SB technique. As any starting sets have limitations, it was assured that using the 

double-sided SB technique instead of using the single SB strategy (either backword or 

forward SB) would widely cover the literature.  
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Conducting backward snowballing 

For the retrospective systematic snowball technique, the bibliographies of the initial (n = 5) 

seed articles were used as a starting point. The references in those five papers were analysed 

in three phases (Figure 2-1). The following criteria were used to review the bibliographies 

of each paper. The inclusion criteria were as follows: (i) ‘Papers published during a 2005–

2018 timeframe’; (ii) ‘peer-reviewed papers’; (iii) ‘English language;’ The exclusion criteria 

were as follows: papers that did not offer a score per gene or that described a method to 

predict gene-specific properties; those published prior to 2005 because of limited genome 

sequencing and weak understanding of gene-specific features before then (102). As a result 

of the BSB, n = 6 of new relevant papers were identified based on the inclusion and 

exclusion criteria. The BSB process is illustrated in Figure 2-1. The 11 identified papers (n 

= 5 (seeds) + n = 6 (BSB)) were made the starting set of papers to conduct the FSB. 
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Figure 2-1 Backward snowballing search process: (i) The initial phase—scanning of the 

bibliographies of the initial set of papers was demonstrated including Loss Intolerance 
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probability (pLI), RVIS, gene damage index (GDI), SIS, and inheritance-mode specific 

pathogenicity prioritization (ISPP). The relevant papers were identified based on title, 

abstract, introduction, and results when needed, and sometimes, more sections were 

reviewed. In this phase, the review of the whole text was not done; (ii) The second phase—

application of the inclusion and exclusion criteria; (iii) The third phase—in-depth analysis 

of n = 6 new papers was conducted to confirm relevance including gene constraint score-de 

novo excess (DNE), gene position in networks (NET), indispensability score, recessive 

(REC) score, negative selection (Sel), deletion-based HI score, gene-level integrated metric 

of negative selection (GIMS). Then, it was run through BSB again in the same manner as 

for the initial set of papers (three phases of analysis) until no further papers were found. 

Forward snowballing 

The following steps were undertaken for each of the 11 articles:  

•    Identifying the article in Google Scholar; 

•    By using the citation link, examining all citing papers; 

The frequency of citations for each of the n = 11 papers were as follows: P1—1710; P2—

405; P3—51; P4—29; P5—4; P6—325; P7—92; P8—731; P9—723; P10—311, and P11—

6. 

For all papers P1–P11, 4387 citations were retrieved using FSB. At the start, the relevant 

papers were identified by using a three-phase analysis (as explained in Figure 2-2 legend) in 

the same way as BSB (Figure 2-1). The analysis of the citations and the bibliographies was 

undertaken in February 2018. A number of (n = 9) papers were identified that met the 

previously defined inclusion and exclusion criteria for prospective snowballing; these nine 

papers were provisionally added to the n = 11 primary papers; accordingly, a total of 20 

papers were included in this systematic review. A critical analysis for these twenty papers 

was obtained to try to understand how a gene’s pathogenicity was determined and to 

identify how these gene-specific scores might improve detection of genes that are disease-

related, while also highlighting that the improvement of the filtering of sequence data was 

the primary focus.    

Before extracting any data from the reviewed articles, quality assessment of the papers 

identified was undertaken. Since all included articles were published in peer-reviewed and 
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reputable journals (such as Nature Genetics, Nature, PLoS Genetics, Science, PNAS, 

Oxford Academic), no further quality assessment was undertaken. 
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Figure 2-2 FSB search process. (i) The initial phase: scanning of the citations of n = 11 

papers including DNE, NET indispensability score, REC score, negative selection (Sel), 

deletion-based HI score, GIMS, pLI, RVIS, GDI, SIS, and ISPP, which were identified 
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through BSB. The relevant articles were provisionally included based on title, abstract, 

introduction, and results when needed; sometimes, more sections were reviewed as well, In 

this phase, review of the whole text was not done; (ii) The second phase: application of the 

inclusion and exclusion criteria (iii) The third phase: analysis of n = 9 new papers was made 

in depth to confirm relevance including gene intolerance score based on loss-of-function 

variants (LoFtool), haploinsufficiency predictor (HIPred), genome-wide haploinsufficiency 

score (GHIS), evolutionary intolerance (EvoTol), Selection Inference Using a Poisson 

Random Effects Model (SnIPRE), de novo mutation rate (mirDNMR), X-linked (XL) score, 

machine learning to predict genes associated with dominant disorders (DOMINO),and sub-

regions residual variation intolerance score (subRVIS). FSB was undertaken again in the 

same manner as for the initial set of papers (three phases of analysis) until no further papers 

were identified. 

2.2.3 Results 

Findings: Key models 

A total of 20 models retrieved by the systematic review method were classified into three 

groups determined by the concept of each approach and the corresponding scores: (i) 

Essentiality (conservation), (ii) HI, and (iii) Selection.  

Characteristics of essential (conserved) genes 

Essential (conserved) genes are considered genes that are required for existence; they 

encode proteins that have vital biological functions, playing a crucial role in an organism’s 

viability. However, each gene might be considered to have a different degree of essentiality, 

and there are numerous measurable scores estimating gene essentiality. To assess the level 

of essentiality for a given gene, several methods can be used starting from the estimation of 

the expected rate of de novo mutations for that gene to the prediction of whether that gene is 

tolerant or intolerant to a LoF mutation (62). Table 2-2 summaries the critical approaches in 

this category.  

The RVIS prioritises genes by the likelihood of carrying more, or less, functional genetic 

variation than expected, thus highlighting genes intolerant to CFV (87). This uses the excess 

of rare versus common missense variation within the human genome and highlights genes 

intolerant to CFV. Therefore, the number of observed variants in a given gene can be 
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compared to the observed CFV. Moreover, genes involved in monogenic diseases were 

found to have lower RVIS scores than other genes. Positive scored genes indicate that they 

are prone to have more CFV, whereas genes that scored negatively are less tolerant and 

have less CFV.  

Meanwhile, Rackham et al. constructed the evolutionary in tolerance score (EvoTol) based 

on the evolutionary conservation of protein sequences to predict genes that are intolerant to 

mutation (103,104). Due to the fact that only a small part of a gene may be intolerant—for 

instance, the protein-coding region—these sub-regions, particularly, might be considered 

essential (104). Further, EvoTol makes the prioritization of intolerant protein sub-domains 

in conjunction with the prediction of intolerant genes more generally. 

Moreover, the advancement of NGS technologies facilitates the detection of newly arising 

(de novo) mutations (DNMs) and their possible effect in causing monogenic disease. This 

type of mutation is not considered to have a role in the development of complex diseases 

(105). Further, the meticulous evaluation of gene mutability is needed to predict the 

expected rate of de novo mutation in a given gene. Two essential factors underlie mutation 

rate differences: gene length and local sequence context (11). Based on the observed counts 

of rare missense variants in the Exome Sequencing Project (ESP) data set, Samocha et al. 

calculated the possibility of a gene being mutated. Taking into consideration the depth of 

coverage, which is defined as how many sequence reads were present on average per base 

and the regional divergence in genes between humans and macaques (105). Here, they were 

able to expand a model that evaluated de novo mutations in epileptic encephalopathy 

patients (Epi4K consortium). Several genes with missense variant deficits were observed 

and compared to expectations from expected mutation rates. The deficit indicates a strong 

evolutionary constraint with damaging variation that was removed from the population by 

negative selection (105,106). The Samocha et al. score utilises whole exome sequence 

(WES) data to calculate the DNM rate (DNMR) for a single gene, and on a gene set basis 

(105); this model is referred to as ‘de novo excess’. Additionally, this model can predict the 

selective constraint in the human genome, and recognises approximately 1000 constrained 

genes that are known to cause severe conditions (105). Here, it is worth noting that 

constrained genes are prone to a higher de novo LoF mutation rate than expected by chance 

(105).  

The LoFtool calculates the ratio of LoF mutations to synonymous mutations for every single 

gene. The performance of RVIS, DNE Z-score, and EvoTol were compared with the 
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performance of the LoFtool, which proved to have a better performance in predicting de 

novo haploinsufficient disease-related genes. The values of LoFtool are represented as 

intolerance percentiles: a low LoFtool percentile indicates a less tolerant gene to LoF 

mutation (103). All the genic intolerance predictors outlined so far were described by Bartha 

et al. as essentiality scores (11). 

In 2016, Aggarwala et al., proposed the ‘substitution intolerance score’, a gene-specific 

predictor of essentiality calculated using data from the 1000 Genomes Project. High 

functionally constrained genes scored high based on this scoring system, whereas genes that 

are more tolerant to the functional mutation in the protein scored low; this might have arisen 

through mutations in the DNA sequence (88). 

Meanwhile, SubRVIS is another gene scoring model produced by Gussow et al. that 

predicts genic intolerance in sub-regions to identify where deleterious mutations are likely 

to fall within genes, suggesting that regions that are highly conserved are more likely to 

contain more deleterious variants (107). The ranking of these regions was based on RVIS 

with a combination of data on conservation. Regions intolerant to functional variation were 

shown to have low scores by the subRVIS prediction model. Here, the GERP++ score was 

calculated to estimate evolutionary constraint for bases in each sub-region (107). 

By quantifying the probability that a gene is intolerant to a mutation that produces LoF in 

the protein product, Lek et al. produced the pLI score (38). The score is derived from an 

extensive catalogue of human genetic diversity called the ExAC database. This database 

provides a substantial filter for analysis of candidate pathogenic variants in severe 

Mendelian diseases; this is due to its ability to detect one variant for every eight bases on 

average in the exome, which provides evidence for the existence of extensive variant 

recurrence (38). The pLI score estimates the AF for genetic variants in protein-coding 

regions. Genes intolerant to LoF mutation are those scored high by the pLI score (pLI > = 

0.9), indicating the most evolutionarily constrained genes. Low pLI scores (pLI < = 0.1) are 

usually associated with LoF-tolerant genes, typically involved in the least constrained 

biological pathways, like sensory perception, wherein high haplotype diversity is probably 

beneficial (38). 

However, difficulties remain in the assessment of the relationship between the DNMR and 

genes involved in diseases. Recently, Jiang et al. (108) applied existing DNM data to correct 

for the background mutation rate, which was considered one of the main limitations of the 

Samocha et al. model (105) The issue was detected by sequencing more individuals, as 

more DNMs will inevitably be observed in the same gene by chance. Thus, for diseases 
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associated with de novo mutations, it is expected that disease-genes might contain more de 

novo mutations than expected from background rates. In this context, Samocha et al. 

describe the development of a database that defines the background DNMR acquired from 

population variation data (108).   

Details on gene essentiality predictors with their specific properties are provided in the table 

below. Additionally, the approaches used to calculate each score along with access to 

information on each score when feasible are included. 

Table 2-2 Gene essentiality and conservation metrics.  

Essentiality 

measures 

Non-

essential 

genes 

Essent

ial 

genes 

Score characteristics Method Weblink/Score data Reference 

RVIS  +++ + Applying human population 

genetic data to predict 

pathogenicity and essentiality. 

Linear regression of the 

number of common 

functional variants on 

the total number of 

variants 

RVIS score data 

available for 18,860 

genes in Supplementary 

Table S4, S1 sheet of 

Hsu et al., 2016.  

Petrovski et 

al.  

(87) 

Hsu et al. 

(109) 

 EvoTol +++ 

 

+ 

 

Integrates intra and inter-species 

information (as RVIS).  

Considers intolerance of gene 

sub-regions (e.g., protein 

domains). 

Linear regression 

analysis of the number of 

common functional 

variants on the total 

number of variants. 

http://www.evotol.co.uk

/ 

Rackham et 

al. (104) 

 DNE + +++ 

 

Powerful recognition of 

constrained genes. 

Employs a neutral mutation 

model as a baseline. 

The background rate of DNMs 

is the main limitation. 

 

Z-Score (calculating the 

difference between the 

observed and the 

expected missense 

variants) based on a 

mutation model. 

DNE score data 

available for 18,860 

genes in Supplementary 

Table S4, S1 sheet of 

Hsu et al., 2016. This 

score referred as CONS 

score in Hsu et al. paper. 

Samocha 

et al. (105) 

Hsu et al. 

(109) 

LoFtool +++ 

 

+ 

 

Non-parametric combination of 

functional prediction scores and 

mutation rates. Prediction of de 

novo haploinsufficient disease-

causing genes. 

Heuristic model. 
None Fadista et al. 

(103) 

SIS + +++ Essentiality score depends on 

the following factors: sample 

ascertainment, population 

history, selection, and local 

context features that influence 

the rate of mutation. 

Posterior substitution 

probabilities. 

SIS score data available 

for 16,387 genes in 

Supplementary 3, table 

15 of Aggarwala et al., 

2016 [18] 

Aggarwala et 

al. (88) 
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Sub RVIS +++ + Predicts genic intolerance to 

functional variation in gene sub-

regions. 

Logistic regression 

model. 

None Gussow et al. 

(107) 

Sub GERP + +++ Predicts genic intolerance to 

functional variation in gene sub-

regions. 

Utilises variant-level scores to 

predict genic intolerance. 

Logistic regression 

model. 

None Gussow et al. 

(107) 

 pLI + +++ The probability that a gene is 

intolerant to a loss of function 

(LoF) mutation. 

 

Posterior probabilities 

from a Poisson mixture 

model. 

pLI score data available 

for 18,226 genes in 

Supplementary table 13, 

of Lek et al., 2016 

paper. 

Lek et al. (38) 

 

mirDNMR 

(de novo 

mutation 

rate) 

+ +++ Database predicts the 

background DNMRs by four 

methods based on: GC content 

(DNMR-GC), multiple factors 

(DNMRMF), sequence context 

(DNMR-SC), and local DNA 

methylation level (DNMR-

DM). 

Three statistical methods 

were used 

(TADA, Binomial and 

Poisson test). 

 

https://www.mirdnmr/in

dex.php 

Jiang et al. 

(108) 

Note: +, +++ is relative magnitude of score value. 

Characteristics of haploinsufficient genes 

HI is a mechanism where a diploid species has one copy of a gene missing and remains with 

a single functional copy that is insufficient to maintain normal function (93). LoF mutations 

typically cause HI leading to dominant diseases. Recognizing haploinsufficient genes may 

facilitate filtering of disease genome data, where the disease manifestation is expected to 

have arisen through lower levels of the gene product.  

In 2010, a deletion-based HI model was proposed by Huang et al., and recognised 

differences between HI and haplosufficient genes to achieve better discrimination between 

deleterious and benign deletions, which, in turn, led to better variant prioritization (93). The 

analysis produced a logarithm-of-odds (LOD) score to better predict the likelihood of a 

deletion leading to a HI phenotype. Deleterious deletions are prone to high LOD scores 

through HI and subsequently, might produce dominant traits. However, no assumption of 

statistical interactions between the genes was considered in this model (93). To assess the 

deleteriousness of a deletion, the length of a deletion or the number of genes deleted were 

the main factors considered by clinicians. 
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The Huang et al. score provides a rational basis to classify pathogenic deletions by 

comparing deletions seen in patients with those in controls and calculating the fraction of 

controls with a deletion at least as deleterious as that seen in the patient (93). 

Moreover, in the interest of achieving accurate molecular diagnoses, it is crucial to 

differentiate false-positive disease mutations from true causal mutations. In this context, 

MacArthur et al. applied their REC score for differentiating genes involved in recessive 

diseases from those that are LoF-variation tolerant (12). The non-disease ‘healthy’ genome 

contains approximately 100 genuine LoF variants, mostly in the heterozygous state. Further, 

in a single copy of the human genome, it was reported that there are on average five 

recessive lethal alleles. Consequently, a greater portion of LoF variants are considered as 

common variants, which may still have a phenotypic effect (12). Additionally, the 

alterations in functional and evolutionary properties between recessive disease and LoF-

tolerant genes was also demonstrated by MacArthur et al. This is of great use in the 

development of a prioritization approach to predict recessive disease variants (12). 

In order to investigate the relationships between the degree of network centrality of a gene 

and selection within biological networks, Khurana et al. considered a range of biological 

networks (i.e., phosphorylation, signalling, PPI, regulatory and genetic networks) and 

developed a score called ‘gene position in NETworks’ (NET) indispensability score (110). 

The degree of centrality of a gene in any network represents the number of its interacting 

partners in that specific network. Network centrality measures highlight nodes (each node 

represent a gene) based on their significance to the network topology to be able to identify 

critical genes and proteins in biological networks (111). Genes with significant functions are 

the ones with a high connection to several biological networks. Consequently, alterations in 

those genes might lead to severe conditions (110). Nevertheless, genes associated with 

metabolic networks had higher numbers of duplicated copies through a high number of 

paralogs with additional LoF mutations (110).  

Additionally, the Khurana et al. metric was included as a HIPred score in the paper by Hsu 

et al. (109, 110). Further, the ratio of non-synonymous to synonymous substitution rates 

(dN/dS) for X-chromosome genes was used by Ge et al. to build their gene-level 

pathogenicity score (112). A low ratio indicates that the gene is intolerant to non-

synonymous variation, signifying these are liable to disease-causal variation. This approach 

shows a correlation between genomic regions depleted due to missense mutation with 

disease-related variants (112).  
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Meanwhile, a study undertaken by Steinberg et al. proposed that current biases in many 

biological networks may interfere with the ability of the existing HI predictors to prioritise 

the true haploinsufficient genes. For the sake of eliminating study bias effects, they built a 

novel, unbiased HI score—called the ‘genome-wide haploinsufficiency score’ (GHIS)—by 

substituting biological networks with co-expression networks (113,114). The GHIS model 

was compared with the three pre-existing methods (i.e., HI (93), NET (110) and RVIS (87)), 

and it was suggested that GHIS-scored genes that were not scored by former approaches 

(113) performed better in categorizing less-well-studied genes (113). 

To identify Mendelian genes with different inheritance modes, Hsu et al. developed a score 

by considering Mendelian disease gene properties based on their mode of inheritance. One 

of the essential properties of such genes, with an autosomal dominant (AD) mode of 

inheritance, is HI; this specific group of genes is sensitive to de novo mutations (109). On 

the other hand, disease genes with the autosomal recessive (AR) inheritance mode were 

recognised to have more non-synonymous variants and regulatory transcript isoforms (109). 

Conversely, the XL inheritance pattern is mostly related to less non-synonymous and 

synonymous variants (109). Hsu et al. utilised this information to construct a score 

predicting Mendelian disease genes, based on their mode of inheritance (AD, AR, and XL), 

called ‘inheritance-mode specific pathogenicity prioritization’ (109). The new score 

combines six pre-existing gene-level prediction approaches—i.e., HI (23), NET (25), REC 

(24), RVIS (13), GDI, DNE (16,35)—along with various genic characteristics including 

global expression from RNA-Seq data, the noncoding (intronic region) mutation rate, and 

DNA replication time (109). However, challenges remain in the prioritization of dominant 

mutations for monogenic disorders; due to the abundance of non-deleterious heterozygous 

variants in the human genome. Using machine learning, Quinodoz et al. produced 

DOMINO, a method to predict whether a given gene is liable to carry dominant changes 

(116). Nevertheless, this method does not provide a score per-gene.   

Compared to less-studied genes, well-studied genes are unsurprisingly over-represented in 

most biological networks used to create metrics that estimate HI. Therefore, the study bias 

likely affects the majority of these networks. (114). By eliminating the effect of study bias 

and combining functional annotations with genomic and evolutionary characteristics to 

prioritise HI genes, Shibab et al. (114) created an integrated approach called (HIPred) using 

machine learning and data from NIH Roadmap Epigenomics (117) and the ENCODE (118) 

project. This approach exceeds the performance of the six pre-existing HI predictors (114). 

The fundamental methods in this category are outlined in Table 2-3. 
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The table below provides details about each HI gene score along with their specific 

characteristics as well as the methods used to calculate the score with access to each score’s 

information when possible. 

 

Table 2-3 HI gene metrics.  

HI measures HS HI Score Characteristics Method Weblink/data 

provided 

Reference 

Deletion-based HI score  

 

+ +++ Combines a list of biological 

properties (genomic, 

evolutionary, functional and 

network) by examining copy 

number variations (CNV) 

among many healthy 

individuals. 

Linear discriminant 

analysis (LDA) 

HI score data 

available for 18,860 

genes in 

Supplementary Table 

S4, S1 sheet of Hsu et 

al. (109). 

Huang et al. 

(93) 

REC score +++  +  

 

Based on human-macaque 

conservation and adjacency to 

recessive disease genes in a 

protein interaction network to 

categorise genes into recessive 

disease and LoF-tolerant 

classes. 

Linear discriminant 

model 

REC score data 

available for 18,860 

genes in 

Supplementary Table 

S4, S1 sheet of Hsu et 

al. (109). 

MacArthur et 

al. (12) 

Hsu et al. 2016 

(109) 

 NET indispensability 

score 

 

+ +++ Calculates gene centrality and 

indispensability in various 

protein–protein interactions 

(PPI) and regulatory networks 

to assess the gene importance. 

Logistic regression 

model 

NET score data 

available for 18,860 

genes in 

Supplementary Table 

S4, S1 sheet of Hsu et 

al. (109). 

Khurana et al. 

(110) 

Hsu et al., 

2016 (109) 

XL +++ + Based on the ratio of non-

synonymous to synonymous 

substitution rates (dN/dS) on 

X-chromosome genes. 

Logistic regression 

model 

None Ge et al. (112) 

 GHIS + +++ Utilises gene features that 

eliminate study bias for the 

predictions, called the co-

expression with known 

haploinsufficient genes in the 

COEXPRESdb and GTEx co-

expression networks. 

 

Eliminating study 

bias using R. 

Constructing GHIS 

using support vector 

machine (SVM) 

method 

 Data on 19,701 genes 

in Supplementary 

Table S3 of Steinberg 

et al. (113) 

Steinberg et al. 

(113) 

ISPP +++ + Combines six gene-level 

metrics (RVIS, NET, DNE, 

GDI, HI and REC) with many 

gene features to predict the 

pathogenicity of a gene in 

different inheritance modes. 

Machine learning 

method: random 

forest algorithm. 

None Hsu et al. 

(109) 

DOMINO +++ + Considers genomic data, 

interspecies conservation, 

Machine learning 

method. based on 

None Quinodoz et al. 

(116) 
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gene expression, PPI, and 

protein structure to evaluate 

the probability of a gene to 

harbour dominant changes. 

This method does not provide 

a score per gene. 

linear discriminant 

analysis 

(LDA) 

HIPred + +++ Integrates genomic and 

evolutionary features (number 

of transcripts, length of the 

gene, and the average number 

of predicted protein domains 

across transcripts) with 

functional annotations from 

ENCODE and NIH Roadmap 

Epigenomics to predict HI. 

 

Machine learning 

method 

 

None Shihab et al. 

(114) 

Note: +, +++ is the relative magnitude of score value. 

Characteristics of genes under selection 

Advantageous genetic variants will increase in frequency if they are subjected to positive 

selection. This is contrary to negative selection, which acts to eliminate damaging alleles. 

Measuring the intensity of negative selection acting on genes gives valuable insights into 

which genes are liable to a mutation that might lead to serious conditions. Since some 

essential genes are not recognised to have any disease-causal variation and are possibly 

subject to purifying selection at high intensity, the pattern is quite complex (90). By 

measuring the extent and directionality of selection applied on a particular gene, 

Bustamante et al. developed a score referred to here as ‘Sel’. Initially, they compared 

constant sequence alterations across humans and Chimpanzees over 11.81 Mb region of 

aligned coding DNA, using mutually synonymous and non-synonymous variants. This 

study showed that the ratio of non-synonymous to synonymous differences (divergence) 

is smaller than the ratio of non-synonymous to synonymous polymorphisms (23.76%, 

38.42%, respectively). This indicates a substantial excess of amino acid variation, 

proportional to divergence, supporting previous work revealing that a large proportion of 

amino acid variation in the human genome is damaging to some extent (119).  

Another score was constructed by Eilertson et al. to recognise genes under natural selection 

and robust demography using a non-parametric approach (i.e., no assumption of a specific 

population genetic model) (120). This method, called ‘selection inference using Poisson 
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random effects’ (SnIPRE), takes advantage of polymorphism and divergence data and from 

non-synonymous to synonymous ratios (Ka/Ks) within genes (120).  

Meanwhile, by integrating two meta-analyses, Sampson et al. created a score called the 

‘gene-level integrated metric of negative selection (GIMS). The former meta-analysis 

unified comparative genomic metrics (GERP++) and functional genomic metrics (Poly-

phen2), and the subsequent meta-analysis integrated mutation rates (as SNPs/kb) and allele 

frequencies (as % rare) from the 1K Genomes Project. By combining these two metrics, a 

meta-analysis was achieved providing GIMS scores for 20,079 human genes (121).  

Owing to the fact that the majority of genes are under the effect of negative selection, the 

target was to measure the degree of purifying selection applied to genes. ‘Functional 

genomic metrics’ is a combination of conservation and functional approaches. These were 

combined with ‘population genetic metrics’, which is an integration of mutation rates and a 

fraction of rare variants. The Sampson et al. score integrates these two metrics and produces 

a combined score per-gene. Thus, GIMS provides a range of probabilities in quantiles; 

genes scored low are those under negative selection. This study reinforced that under 

stronger evolutionary constraints, a single pathogenic variant is enough to manifest disease 

than variants that require two alleles to produce the same. Therefore, the GIMS score is 

robust in detecting variants under negative selection in dominant diseases (121). 

Considering the influences of selection and genetic drift, Yuval et al. created the GDI, a 

gene-level predictor that estimates if a human protein-coding gene is likely to contain 

disease-causal variants. For GDI, they used the variant-specific damage prediction score, 

which is the CADD score. This specific score was chosen because of its efficiency at 

differentiating between benign and pathogenic variants and its intense reliance on 

evolutionary conservation (115). Other scores like Poly-Phen-2 and SIFT, are only used to 

assess missense variants, whereas CADD scores can predict the majority of variants types. 

Moreover, the GDI score was created by considering the cumulative predicted damage in 

exonic regions of the gene using the CADD score for each allele compared to the expected 

score for variants with similar allele frequencies. Yuval et al. calculated the homogenised 

Phred I-score for every single metric to identify the position of the targeted gene relative to 

the rest of the genes. Here, human genes with a low GDI scored low as per the Phred score. 

However, a high Phred score reflects high susceptibility of a gene to contain deleterious 

variation.  

The GDI score is interpreted as follows: High GDI represents genes enriched in sensory 

perception (for example, the olfactory receptor superfamily) reflecting redundancy, positive 
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selection constraint, tendency to be under less purifying selective pressure, more significant 

numbers of paralog, low D—complexity of protein amino acid composition (i.e., relatively 

unbiased a.a composition), and long coding DNA seq (CDS). GDI of genes containing FPs 

in patients was much higher than the GDI of disease-causing genes. Low GDI score 

represents highly conserved genes (enriched in ribosome, chemokine signalling proteasome, 

spliceosome) reflecting indispensability, and tend to be under purifying selection stronger 

than the median selective pressure acting on human genes, smaller numbers of paralogs, 

high D (i.e., low complexity, biased amino acid composition with respect to the median 

composition of human proteins), and short coding DNA seq (CDS) (115). Key approaches 

in this category are outlined in Table 2-4. 

The table below illustrates each score measuring selection in details with their specific 

features as well as the methods used to build the score, providing access to information on 

each metric when possible. 

 

Table 2-4 Interpretation of scores measuring selection.  
Selection 

measures 

+ve selection 

Less-essential 

genes 

-ve Selection 

More essential 

genes 

Score Characteristics Method Weblink/ Data Reference 

 Sel +++ + Compares polymorphism 

versus divergence at 

synonymous and non-

synonymous sites to quantify 

the extent of selection on a 

given gene. 

 

Logistic 

regression 

analysis 

None  Bustamante et al. 

(119) 

SNIPRE +++ + Non parametric approach, 

which is robust to 

demography. 

Generalised linear 

mixed model 

None Eilertson et al. 

(120) 

GIMS  +++ + GIMS integrates GERP++ 

scores as comparative 

genomic metric, Polyphen2 

as functional genomic 

metrics, and population 

genetic metrics (SNPs/kb and 

%RARE). 

GIMS measures the strength 

of negative selection. 

 SVM-based 

learning approach. 

GIMS score data 

is available for 

20,080 genes in 

Table S1, of 

Sampson et al., 

2013 paper. 

Sampson et al. 

(121) 

GDI 

 

+++ 

 

+ 

 

Filters out false positive 

variants in genes that are 

susceptible to damaging 

variation in the general 

population. 

Analysis of 

outliers based on 

modified Z-score. 

GDI score data 

available for 

18,860 genes in 

Supplementary 

Table S4, S1 

Itan et al., (115) 

Hsu et al. (109) 
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sheet of Hsu et 

al. (109). 

Note: +, +++ is relative magnitude of score value 

 

2.2.4      Discussion  

Benefits of combining DNE and RVIS  

The DNE score offers some benefits that might be advantageous when scoring genes based 

on their essentiality and conservation properties. However, the specific validity of DNE 

score for interpretation of de novo mutations only considered the main limitation (109). 

More specifically, compared to other methods like RVIS and Sel, DNE considers more 

variables related to mutation rate beyond sequence context. Further, the sequence depth of 

coverage and regional divergence in genes between humans and macaques are 

independently additional variables, which both enhance the predictive value of this score 

(105). When comparing the RVIS and negative selection score Sel to the DNE model, the 

results showed similar effectiveness of DNE and RVIS; therefore, combining the two 

metrics will be of great benefit (105,122).  

Evaluation and recommendation of DNE model 

The Samocha et al. model was improved by incorporation of regional divergence in genes 

between humans and macaques independently, and the depth of coverage in the latter 

reflects the number of reads that were present on average per base. These factors play a 

major role in the development of their predictive score. It appears that there is high 

correlation between the number of rare synonymous variants in the ESP and the probability 

of a synonymous mutation determined by their approach. As rare variant allele frequencies 

are impacted by sample size, it would be worth evaluating this in bigger databases such as 

ExAC. (122). 

Comparison of EvoTol and RVIS 

EvoTol has a higher performance at categorizing intolerant genes compared to RVIS. 

Moreover, it was highly sensitive and more potent in distinguishing genes with high 

pathogenicity (18). RVIS and EvoTol scores are not shown to be highly correlated, although 

application of both models simultaneously is likely to be beneficial (104).  
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HIPred and REC outperform different scores 

Considering the scoring of genes for potential involvement in HI phenotypes, Shihab et al. 

found that the HIPred score outperforms all other scores in predicting HI genes when 

evaluated against five predictive models (HI approach, EvoTol, RVIS, GHIS and NET, 

Tables 2-2 and 2-3) (114). Having different views on the 26 disease-associated gene lists 

and evaluating the potency of several models that prioritise gene pathogenicity, Hsu et al. 

displayed a more positive correlation between HI and REC, whereas the six models have a 

moderate correlation with each other (correlation r = 0.77, r = 0.46) respectively (109). The 

REC score has been shown to outperform five gene-level predictors, which are RVIS, HI, 

DNE, NET, and GDI, in predicting disease-related genes (109,122). 

Best method to filter out false positive variants 

The ISPP score shows high performance in prioritizing AR and XL disease-related genes 

reflecting selective pressure, whereas DNE was constructed dependent on mirDNMR 

estimates. Both ISPP and DNE approaches do not quantitatively predict the mutational load 

for a gene in a healthy human population. Therefore, these two methods are not robust for 

filtering genes that are highly mutated and consequently, many residual false positives 

might be expected. One of the most robust models to predict genes known to have 

deleterious variation is GDI, which proves the efficiency to filter out false positive 

mutations in genes known to contain damaging variations (115,122). 

Features of the dN/dS ratio 

The dN/dS ratio can be measured for any protein-coding gene, and the XL scoring system is 

not limited by former gene annotation. The XL approach can be applied to all X-

chromosome protein-coding genes and can evaluate genes for various disease phenotypes 

(112). The intra-human dN/dS ratio is not specific to the X-chromosome. It is recommended 

that the dN/dS ratio be used to analyse more genomic data for future studies to prioritise 

genes containing disease variation (112,122). 

Aim of the systematic review 

This project aims to place emerging evidence on gene features and variant scoring models 

that might have a significant role in filtering disease sequence data in proximity 

(12,113,114,(12)(12)(12)(12)(12)(12)(12)(12)(12)(12)(12)(12)(12)(12)(12)123). However, 

distinguishing the LoF variants causing disease phenotypes from others that do not cause 
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any functional disruption remains a challenge (113). Based on the 1000 Genomes Project 

data, it has been demonstrated that on average, a healthy person might carry 250 to 300 LoF 

SNVs (1000 Genomes Project Consortium et al., 2010 (124); The 1000 Genomes Project 

Consortium, 2012 (125)) (109). 

 

Recommendation to use wide-coverage databases (ExAC) 

Due to the accumulation of sequence data in publicly available databases, understanding of 

human genomes becomes promising. The ExAC resource provides a strong filter available 

publicly to serve the wider research community and aid identification of deleterious variants 

in severe Mendelian diseases. Using ExAC for filtering and elimination of false positive 

variants, reduces the number of candidate variants that affect protein function by seven-fold 

compared to the ESP database, which has fewer exome sequences and lacks the power to 

filter at 0.1% AF without excluding many true rare variants (38). 

Gene-level scores versus variant-level scores 

Based on previous evidence, the missense Z score, which represents genes rather than 

variants, provides more data than variant-level Poly-phen2 and CADD (72) scores, 

emphasizing that gene-specific metrics of constraints add more detailed information to 

variant-specific metrics in predicting deleteriousness (38). Moreover, limitations of variant 

level scores (for instance, SIFT and POLYPHEN) were considered as not providing 

information on whether purifying selection at a particular site is acting in a recessive, 

additive, or dominant mode based on cross-species alignments by analyse Huang et al. (93).  

Is the whole gene the best unit to use to test patterns of intolerance? 

Based on dividing genes into sub-regions, Gussow et al. proposed a model called subRVIS 

to precisely predict where deleterious mutations are likely to present (107). This paper 

brought new insight into which unit is better used to judge genic intolerance, raising an 

important question: is the unit of the whole gene the correct one to assess patterns of 

intolerance? Future studies could consider modified gene-specific approaches and consider 

them within-gene district patterns of intolerance for further examination.   

The challenge of non-unified nomenclature  

The challenges in interpretation of benign LoF variants due to non-unified nomenclature 



 

72 

(using different terminologies to refer to LoF variant) is a major debateable issue 

worldwide. It is essential to be aware that in healthy individuals, there are overlaps in the 

interpretation of LoF variants. The following are some of the terminologies that represent 

LoF variants in a healthy person: ‘non-deleterious or less-deleterious variants that have an 

impact on risk of phenotype or disease’, ‘true variants that do not seriously disrupt gene 

function’, and ‘benign LoF variations in redundant genes’ (12). 

Limitations of individual score  

Despite the fact that each genic scoring approach only considers genetic architecture from a 

specific angle, each score has limitations as follows: (i) Dominant disease-predisposing 

genes are not considered by the REC score; (ii) Lack of non-CNV genetic variants in the HI 

prediction approach; (iii) NET score does not include the systematic comparison of diverse 

known disease-causal genes; (iv) RVIS score did not consider the differences in the allele 

frequencies among several populations; (v) Limited applicability of DNE approach for 

evaluating de novo mutations; (vi) ‘The GDI score only considers mutation profiles’ (109); 

(vii) the GHIS does not consider the genetic background in individuals, which is a 

significant limitation since genetic variants do not act independently, and disruption of 

individual genes within a particular biological pathway may affect disease risk (113). Here, 

it is worth noting that providing an inclusive review of the individual prediction score is a 

step forward in launching new paths for prioritizing disease-related variants. 

2.2.5  Conclusion    

In the final analysis, a range of well-studied gene-specific predictors were explored and 

investigated with various independent genetic features. Handling the limitations of each 

score or utilizing the established predictors of pathogenicity and merging these approaches 

in an integrated score may enhance prediction of disease-related genes as at present, no 

single scheme has high reliability in prioritizing genes based on pathogenicity.  

Several methods were established to evaluate whether a gene is tolerant or intolerant to 

CFV. Initially, metrics were developed per gene. Subsequently, advanced studies revealed 

that dividing the gene into sub-regions is more potent in pointing out the location of the 

mutation precisely. At that point, prior disease knowledge was required by all scores that 

predict genic intolerance. An important step to overcome this limitation and to improve 

prediction of gene intolerance is the creation of a tool with no prior disease knowledge. 
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The American College of Medical Genetics (ACMG) guidelines evaluate several in silico 

variant predictors of whether a variant is involved in disease. However, the guidelines do 

not determine which or how many variant prediction tools to use. Therefore, it was 

recommended that these tools be used only as ‘supporting’ evidence for variant 

interpretation. Several challenges persisted with respect to validation of these tools, with a 

relatively elevated error rate and many deleterious variants being evaluated as benign by 

these tools and vice versa (94,122). Furthermore, currently, the ACMG guidelines do not 

consider gene-level scores, which are the focus of this systematic review. However, it may 

be possible to use this to establish supporting evidence alongside stronger independent 

evidence signifying the role in development of disease. Overall, it is optimal to undertake 

functional validation, but this can be difficult (94,122). 

The research question of this review was ‘Can the use of gene-specific metrics facilitate the 

identification of disease genes in patient genomes?’ To answer this, various available gene-

level scores were reviewed here with different independent genetic features. Recognizing 

the limitations of each predictor and possibly using these gene-specific predictors in 

conjunction with variant-specific predictors could achieve better prediction, particularly as 

there is currently no particular score predictive of gene pathogenicity with high reliability. 

Thus, this review is intended to outline existing information available to identify and 

explain different gene-level pathogenicity scores, as well as determine the gaps in disease-

gene prioritization and annotation issues to form a solid base for new scores and better 

prediction of disease-related genes. 
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Chapter 3 Devising a Method to Reduce the Number of 

Candidate Genes to Follow up  

3.1 Introduction 

The aim of the 100,000 Genomes Project (37) was extended to broaden the plan to sequence 

the genomes of five million patients diagnosed with rare disease and cancers, over the coming 

five years. The plan of the 100K genome project was to improve the National Health Service 

(NHS) infrastructure, data security, and clinical training (126).  

This is an international endeavour, and since 2013, fourteen countries have invested more 

than four billion US dollars in establishing national genomic programmes to address the 

challenges and transition testing from centres of excellence to medical practice. In countries 

like Australia, United Kingdom, France, Saudi Arabia, and Turkey, the development of 

manpower and infrastructure has been coupled with testing numerous patients who are known 

to have rare diseases or cancer. Further, US, Japan, and Qatar invested in population-based 

sequencing with the involvement of participants and return of results to patients (126).  

In order to achieve the goals of the 100K genome project and the progression of similar 

initiatives, it is vital to develop plans that advance the disease genome data interpretation, so 

that the true causal variant can be easily differentiated from the plausibly pathogenic, but in 

fact neutral, variant.  

In this context, WES has detected variants associated with monogenic diseases and complex 

diseases. However, distinguishing which variants might be causal needs careful variant filters 

and robust tools to predict variant pathogenicity (103). Currently, numerous tools exist to 

predict variant/gene’s deleteriousness like SIFT (68), PolyPhen2 (70), pLI, and RVIS. 

Nevertheless, new tools are needed to efficiently predict pathogenicity. 

Due to the effects of natural selection, pathogenic variants are expected to have low AF 

compared to those that are non-pathogenic, which has been demonstrated in human 

population sequencing data (38). Examples of scores that have been produced measuring the 

impact of selection on genes include Sel (119), SNIPRE (120), and GIMS (121). 

Several methods have been used that attempt to predict variations in terms of their previous 

probabilities of conferring risk of disease, particularly population AF and conservation 

measures at two levels—the phylogenetic level or amino acid properties (87). Here, this study 

seeks to investigate certain gene-level scores and clarify how they can be used to develop a 
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gene-specific metric that can predict which genes have high likelihoods to influence diseases 

(87). 

Meanwhile, Spataro et al. (90) classified genes into five discrete groups by degree of gene 

essentiality as the following: NDNE, CNM,CM,MNC, and END, which shape the 

foundation for the model proposed by Pengelly et al. (62). Essential genes are those required 

for cell survival and are responsible for key biological functions the creatures (127). In the 

Pengelly et al. hypothetical model, candidate disease genes fall in an intermediate position 

on the essentiality spectrum between two other groups of genes: a large group of genes 

considered tolerant to functional variation which are non-disease, non-essential genes 

(NDNE) and essential non-disease genes (END), which are highly intolerant of functional 

variations. The essential gene group includes lists of genes defined as essential through 

mouse knock-out experiments, excluding human disease genes that are listed in OMIM (24) 

and common disease genes that were identified by genome-wide association studies (90). 

Metrics related to gene essentiality for individual genes include measures such as the RVIS 

(87) and pLI (38), both of which quantify tolerance of LoF variations. Other scores focus on 

the degree of conservation: the REC score (12); the position of genes in regulatory and other 

networks (for instance, the NET score (110)); or scores that consider local sequence context 

like SIS (88). Further, LD is another factor associated with gene essentiality; high essential 

genes tend to have low haplotype diversity and therefore, strong LD (62). Moreover, groups 

of genes already identified to contribute in disease process (90) comprise of those that might 

cause only complex diseases (complex non-Mendelian: CNM genes), those which contribute 

to both monogenic and complex variations (complex Mendelian: CM), and those associated 

only with monogenic variations (Mendelian non-complex: MNC). Through investigation of 

different gene-level metrics, each of which is generally linked to gene essentiality, the 

understanding of the impact of each score and how it can help in identification of genes most 

likely to include monogenic disease variation is facilitated. 

The aim of this study was to investigate how to utilise gene-specific scores identified by the 

systematic review (122) to later calculate a new composite gene-level score that predicts 

essentiality of individual genes and possibly determine candidate genes that might cause 

Mendelian diseases. This may help to prioritise genes based on their essentiality and 

contribution to diseases. This can be achieved through selecting gene-level predictors from 

the systematic review that provide scores per gene, and then testing the power of each score 

in representing a clear direction of the data in consideration with their biological meaning 

(Table 3-1) by performing principal component analysis, thus identifying the most useful 
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scores that represent the data and might be helpful to improve the prediction of disease 

genes. 

Table 3-1 Biological interpretation of the scores used to build ESPP 

Score Biological interpretation 

DNE the rate of de novo mutation per gene (105) 

GDI Genes with High GDI are the ones functionally related and strongly enriched 
in sensory perception while genes with low GDI are the onse enriched in 
ribosome,proteasome, and spliceosome genes (115) 

GHIS Using features of co-expression networks to eliminate study bias(113) 

GIMS GIMS has been created to give a new insight on glomerular biology in terms 
of evolutionary selection. They test the enrichment of negative selection in 
high quality gene sets contain genes enriched for expression in the renal 
tubular compartments (121) 

HI Huang et al. found that functional interaction with known HI genes was the 
most predictive property of HI genes might impacts the modularity of the 
interaction network, suggesting certain pathways or biological processes, like 
early development morphogenesis (93) 
 

NET 
Mesure gene centrality and indispensability in various protein–protein 
interactions (PPI) (110) 
 

pLI High pLI genes play a role in core biological process like spliceosome, 
ribosome, and proteasome components, while olfactory receptors are among 
the least constraint with low pLI (38) 

RVIS RVIS applying human population and genetic data to prioritise essential 
genes (87) 

SIS Using multiple gene features that affect the rate of mutation of certain gene 

(88) 

REC Prioritise genes that might play a role in recessive diseases (12) 
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3.2 Materials and methods 

This chapter was in preparation of developing an essentiality score to prioritise disease 

genes. To this end, current data of the available gene-level metrics to be analysed were 

gathered in terms of which score shows a clear direction in predicting disease genes using 

updated gene classification.  

3.2.1 Gene-specific scores 

The database was generated using 10 scores identified by Alyousfi et al. (122). A pLI score 

that measures gene essentiality by predicting the tolerance of a gene of carrying LoF 

variation was used; genes that have high pLI scores represent the most constrained genes. In 

the end, pLI scores for 18,226 genes were obtained from Supplementary table 13 from Lek 

et al. (38). The SIS score is another gene essentiality predictor, in which high scores 

represent highly constrained genes; this score was obtained for 16,387 genes from 

Supplementary 3, table 15 from Aggarwala et al. (88). Further, deletion-based HI score, 

REC, NET indispensability, GDI, and RVIS scores were obtained for 18,860 genes from 

Supplementary Table S4, S1 sheet from Hsu et al. (109).  

More specifically, the HI score is used to assess whether a deletion is benign or pathogenic 

using a LOD score. The LOD score is a statistical test used in genetic linkage analysis to 

observe the linkage of two loci and the probabilities of them being inherited together (128). 

Here, a high LOD score is a feature of high linkage (128), and in this model, represents 

pathogenic deletions and dominant traits. Meanwhile, MacArthur et al. produced the REC 

score to prioritise recessive disease variants using human–macaque conservation data (12), 

and Khurana et al. produced their NET scores based on several biological networks to 

predict gene HI (110). In this context, genes with high NET score are considered 

haploinsufficient. Furthermore, using linear regression analysis, the RVIS score predicts 

essential genes by measuring the intolerance of a gene to CFV, with low scored genes 

considered essential by RVIS predictors. Moreover, the GDI is one of the scores that predict 

whether a gene is impacted by selection; genes that score low by GDI are the ones highly 

impacted by negative selection. More information on each score is detailed in Chapter 2. 

Additionally, the DNE score can predict essential genes using a Z score by estimating the 

difference between the observed and the expected missense variants. This score—referred to 

as the CONS score—was obtained for 18,860 genes from Supplementary Table S4, S1 sheet 
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from Hsu et al. (109). The GIMS measures the impact of selection on a gene using machine 

learning methods. Data using this score was obtained for 20,080 genes from Table S1 from 

Sampson et al. (121). The genome-wide haploinsufficiency (GHIS) score predicts HI using 

the machine learning method; genes with high GHIS score are considered haploinsufficient. 

Data on 19,702 genes with GHIS scores were obtained from Supplementary table 3 from 

Steinberg et al. (113). Further, a pre-existing gene-level LD score for 18,269 genes was 

obtained from LD maps in LD units (LDUs) (91). These maps were built using publicly 

available 1000 Genomes Project data that were derived from the Wellderly study (129). 

Over 400 WGS samples were used to construct the LD maps. The LDU lengths of genes 

were corrected for physical gene length by regression for the ‘LDU_res-fit’ scores used as 

the 11th score in the analysis. Further information about LD maps can be found in Vergara-

Lope et al. (91). A very high-resolution understanding of patterns of LD in the genome was 

provided by these maps (91).  

Other scores that were described in Alyousfi et al. (EvoTol, LoFtool, subRVIS, mirDNMR, 

XL, DOMINO, Sel, and SNIPRE) do not provide score per gene, therefore these were 

excluded from the study. ISPP and HIPred were excluded as well due to the unavailability 

of these scores.  

For GIMS (121), SIS (88), and GHIS (113) scores, ensembl IDs were transformed to the 

corresponding gene name to allow for data to be aligned correctly. Here, the original scores’ 

names were maintained for all metrics except for SIS and DNE scores that were abbreviated 

for ease of usage in the tables—Substitution intolerance score was shortened to ‘SIS’ and de 

novo excess was shortened to ‘DNE’ for better recognition of the score property as it was 

referred to as the CONS score in Hsu et al.(109). 

3.2.2 Gene classification 

In this study, the classification of gene groups by Spataro et al. (90) was used as were the 

17982 genes in their supplementary table S2. Here, it is worth noting that they classified 

genes into two major groups: disease-genes (which are genes presented in both the hand-

curated Online Mendelian Inheritance In Man (hOMIM) and GWAS catalogues); and non-

disease-genes. They further classified the disease gene group into three subgroups: CNM, 

CM and MNC. CNM are genes represented in GWAS but not in hOMIM, and the opposite 

is true for MNC. However, CM are genes were represented in both the hOMIM and GWAS 

catalogues. Moreover, Spataro et al. described the biological property differences between 
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complex disease genes in the two groups, CM and CNM. Compared to the CNM group, CM 

genes tend to have high expression levels in the protein network, and they are enriched in 

certain relevant protein function categories. CM genes also have higher Odds Ratios (ORs) 

than CNM which suggests that variants around CM genes have a stronger impact on the 

complex phenotypes (90). 

Meanwhile, the non-disease genes were classified into two groups: END and NDNE (90). 

Essential genes have been identified through knock-out experiments in mice, so any 

essential gene in mice is putative essential in humans. Then, all genes in that list that were 

found to be disease causal were removed. The number of genes in each group were as 

follows: NDNE (13135 genes), CNM (2388 genes), CM (203 genes), MNC (684 genes), 

and END (1572 genes). After aligning the Spataro list with the other score data, 1273 (NA) 

genes could not be categorised. These are of interest with regards to the testing of their 

essentiality and might include candidate genes for rare monogenic diseases based on this 

study’s future model. 

The results of the Mann Whitney U test revealed no significant statistical differences 

between the two groups (CM and MNC), reflecting the overlap between these two groups. 

As the focus of this project is facilitating recognition of genes implicated in monogenic 

disease, merging the two groups into a single Mendelian disease gene group (MDG) was 

considered to gain full coverage of the gene group of interest—the Mendelian disease genes 

(Figure 4-1).  

All previous tests including the Mann Whitney U, Kruskal Wallis, and Kruskal multiple 

comparison tests were repeated for the new classification after merging Mendelian disease 

gene groups to test whether the previous approach of merging the CM and MNC will 

improve group separation and ensure better results. 

A list of all dominant genes and all recessive genes were obtained from the union of the 

Berg and Blekhman lists of dominant and recessive genes (128,129). These lists were cross-

referenced with the findings from Spataro et al. on Mendelian genes to improve the model’s 

performance by covering most of the discovered Mendelian disease genes and improve 

separation between groups (90). However, for better coverage, the aforementioned study’s 

list was updated using the OMIM database (Figure 4-1)(24), which is the current most 

comprehensive source of Mendelian disease genes. By November 2019, OMIM reported 

3,799 genes and 5,483 phenotypes related to single gene disorders (24).   
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3.2.3  Analysis  

The preliminary analysis was exploratory. Box plots (Figure 3-1) were produced to compare 

medians of these metrics for the five group of genes that were defined by Spataro et al. (90). 

A number of non-parametric tests were performed as the data were not normally distributed. 

Further, since the data are ordinal, a Mann-Whitney U test was performed to explore the 

distribution of gene groups by comparing the means of each of the two groups. This test was 

undertaken for dual comparisons of each two groups as it allowed only paired comparisons. 

For instance, NDNE and CNM, NDNE and CM, NDNE and MNC, NDNE and END, and so 

on.  

The second non-parametric test performed was the Kruskal-Wallis Test, which was conducted 

to compare the mean rank of each variable in the five groups of genes to determine whether 

there are statistically significant differences between the five groups of genes defined by 

Spataro et al. (90). Here, as the outcome of the p-value was less than the significance level 

0.05 for all the variables, the mean rank was produced and transformed to a percentage to 

simplify interpretation. Table 3-2 in the results section shows the results of the Kruskal-Wallis 

test in combination with that of the Mann-Whitney U test. The third non-parametric test 

performed was the Kruskal Wallis multiple comparison test and was integrated with the 

results of Mann Whitney U test as shown in Table 3-1 in the results section. 

Following this, after data standardization to mean zero and SD=1, the first PCA was 

performed to decrease the dimensionality of the variables. PCA is a dimensionality 

reduction algorithm that helps in compressing a dataset with several dimensions and flattens 

it into two or three dimensions in a way that captures the essence of the data and provides 

better visualisation. In other words, PCA is an analytical method to identify a meaningful 

way to look at the data by concentrating on the differences between variables (132). The 

first PCA was undertaken for 11 gene-level scores including LDU_res-fit, HI, REC, NET, 

DNE, GDI, pLI, RVIS, SIS, GIMS, and GHIS. Subsequently, a second PCA was done using 

only the most informative scores from the first PCA. The results of the first and second 

PCAs are presented in Table 3-3 in the results section. 
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3.2.4  Evaluation of the relationship between measures of essentiality  

To test the relationship between measures of essentiality, Spearman’s correlation was 

performed for eight gene specific scores, and the results are presented in Table 3-6 of the 

results section.  

3.3 Results 

Ten gene-specific scores were derived from the systematic review in this study (122) as the 

benchmark dataset to prepare for the essential gene prediction model. Further, the LDU_ 

res-fit from pre-existing whole-genome LD maps was included as a linkage-disequilibrium 

predictor (91). Next, the aforementioned 11 scores were evaluated among gene groups 

described by Spataro et al. (90). 

3.3.1 Relationship of gene-specific metrics in gene groups  

Ø Results based on Spataro et al. gene groups for 11 scores 

Boxplots were produced for all the variables to represent the influence of each score 

amongst different gene classes. The boxplots provide only narrow median differences 

among the three disease-gene groups (CNM, CM, MNC) for all scores. All the predictors 

display non-significant differences between the two ends (NDNE and END) apart from 

NET and pLI (which show significant differences), in addition to GIMS and HI (which 

reveal less significant discrimination among the two groups) as demonstrated in Figure 3-1. 

 

Figure 3-1 Boxplots representing the medians of pLI, HI, NET, and GIMS scores among five 

gene groups.  
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The above boxplots represent the medians of pLI, deletion-based HI, NET indispensability, 

and GIMS scores among the five gene groups, which are NDNE, CNM, CM, MNC, and END. 

The boxplots provide limited discrimination among the disease gene groups for the four 

scores. pLI shows the most significant difference between the essential and non-essential 

groups, while the HI, NET and GIMS show less significant differences between essential and 

non-essential groups. 

 

Table 3-2 The significance of Kruskal Wallis multiple comparison (Kruskalmc) and Mann 

Whitney U tests among the Spataro et al. gene groups (90), which are NDNE, END, CNM, 

CM, and MNC.  

Variable

1 

NDNE-

CNM2 

NDNE-

CM 

NDNE-

MNC 

NDNE

-END 

CNM-CM CNM-

MNC 

CNM

-END 

CM-

MNC 

CM-

END 

MNC-

END 

DNE < 

0.0001 

< 0.0001 < 0.0001 < 

0.0001 

0.169 0.1884 <0.00

0  

0.0394 <0.0001  <0.0001  

GDI 0.5336 < 0.0001  < 0.0001 < 

0.0001 

<0.0001 <0.0001 <0.00

0  

0.0906 <0.0001 <0.0001 

GHIS <0.0001 0.0145 0.3089 < 

0.0001 

<0.0001 0.002309 <0.00

0  

0.0676 <0.0001 <0.0001  

GIMS <0.0001 <0.0001 <0.0001  < 

0.0001 

0.8771 0.3849 <0.00

0  

0.4897 <0.0001  <0.0001  

HI <0.0001 <0.0001 <0.0001 < 

0.0001 

0.0061 <0.0001 <0.00

0  

0.5871 0.0018 <0.0001  

LDU_re

s-fit 

0.0459 0.0983 0.8616 <0.000

1 

0.0611 0.2625 <0.00

0  

0.1813 <0.0001 <0.0001  

NET <0.0001 <0.0001 <0.0001 < 

0.0001 

<0.0001 <0.0001 <0.00

0  

0.0546 0.6000 <0.0001 

pLI <0.0001 0.3119 <0.0001 < 

0.0001 

0.0518 <0.0001 <0.00

0  

0.0192 <0.0001 <0.0001  

REC <0.0001  <0.0001  <0.0001 <0.000

1 

<0.0001 <0.0001  <0.00

0  

0.0546 <0.0001 <0.0001  

RVIS <0.0001  <0.0001 <0.0001 <0.000

1  

0.389 0.0464 <0.00

0  

0.8312 0.0032 <0.0001 

SIS <0.0001  0.1075 <0.0001 <0.000

1  

0.2659 0.0585 <0.00

0  

0.7711 <0.0001 <0.0001  

 
1 Gene constraint score- de novo excess (DNE), Gene damaged index (GDI), genome-wide haploinsufficiency score (GHIS), Gene-level 
Integrated Metric of negative Selection (GIMS), Deletion-based haploinsufficiency score (HI), residuals generated after linear regression 
analysis to correct the LDU length of a gene for physical gene size (LDU_Res-fit), Gene position in networks (NET) indispensability 
score, Loss Intolerance probability (pLI), Recessive (REC) score, Residual Variation Intolerance Score (RVIS), Substitution Intolerance 
Score (SIS). 
 
2 non-disease, non-essential (NDNE), essential non-disease genes (END), complex non-Mendelian (CNM), complex Mendelian (CM), 
and Mendelian non-complex (MNC) 
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Underlined = No significant difference between the two groups as per Kruskalmc (multiple 

comparison)  

Bolded = no significant difference as per the Mann Whitney U test. 
 

The results of the Mann Whitney U and Kruskal multiple comparison (Kruskalmc) tests are 

illustrated in Table 3-1. More specifically, the results of the former showed the highest 

statistical significant difference between the END and NDNE and CNM and END for all the 

scores. The differences between the CM and MNC groups were the least significant. These 

results were supported by the Kruskalmc. Further, the overall results showed a significant 

difference between the essential and non-essential genes for all the scores. Within the rest of 

the disease-gene group, the direction is less clear, which makes the explanation for this 

group difficult. There was no statistical significance difference between the CM–MNC by 

all the variables and CM–CNM by most of the variables. The LDU_res-fit, which 

characterises the effect of LD, was the least good in distinguishing the groups. Whereas, the 

REC score distinguished all the groups based on the Mann-Whitney U test. 

Table 3-3 Mean rank scores in the Kruskal-Wallis Test as percentages of the highest mean 

rank amongst the Spataro et al. five gene classes (90).  

Variable1 NDNE CNM CM MNC END N genes 

DNE 70.054 79.200*** 82.981*** 76.969*** 100*** 16840 

GDI 87.004 85.269 100*** 94.061*** 75.981*** 16840 

GHIS 90.237 88.146*** 74.506* 78.886 100*** 14914 

GIMS 100 84.296*** 83.697*** 80.880*** 64.111*** 16485 

HI 69.054 82.275*** 90.612*** 89.86*** 100*** 16840 

LDU_res-

fit 

93.861 91.397* 100 94.203 82.497*** 16995 

NET 68.481 81.626*** 99.422*** 

 

95.134*** 

 

100*** 

 

16840 

pLI 73.757 

 

81.789*** 

 

74.536 

  

64.29*** 

  

100*** 

 

16161 

REC 60.640 74.222*** 99.777*** 100*** 88.734*** 16840 



 

84 

RVIS 100 86.471*** 83.412*** 81.492*** 68.928*** 16840 

SIS 76.395 

 

81.55*** 

 

77.851 

 

81.406*** 

 

100*** 

 

14502 

*Significantly different from NDNE as per Mann-Whitney Test; * = P < 0.05, ** = P < 

0.01, *** = P < 0.001.  

 

The Kruskal-Wallis and Mann-Whitney U test results are presented in Table 3-2. The 

former suggests that the difference between NDNE and END is statistically significant, 

representing a high P value for all the scores. The same was observed for the MNC group, 

except for the GHIS and LDU_res-fit, which showed non-significant P values. Meanwhile, 

CM and CNM show less significant differences from the NDNE gene group. Further, 

essential genes show a statistically significant difference from NDNE among all variables. 

For the rest of the groups, there were less significant differences. There were high scores for 

DNE, GHIS, HI, NET, pLI, GHIS and SIS, showing more intolerance of variation; 

conversely, low scores of GDI, GIMS, REC, and RVIS showed more intolerance of 

variation. 

As there was no significant statistical difference between the two groups (CM and MNC) 

based on the results of the Mann Whitney U and Kruskalmc tests presented in Table 3-1, the 

Mendelian genes (CM and MNC) groups were merged into a single group called MDG.  

The first principal component analysis (PC1) (Table 3-3, Figure 3-2 and 3-3) showed that 

some scores are less informative than others. For instance, three variables—LDU_res-fit, 

GDI and REC—explained less than 20% of the variance in PC1; thus, these scores were 

eliminated from further analysis. Furthermore, it was expected that REC and GDI would 

have negative scores under the model due to increasing essentiality, but this was not 

observed.   

 

Table 3-4 Principal components for essentiality scores. 

Essentiality 

measure 

11 scores: 

PC1 

8 scores: 

PC1 

DNE 0.3473 0.3574 



Chapter 3 

85 

GDI 0.0129 - 

GHIS 0.3494 0.3607 

GIMS -0.3878 -0.3972 

HI 0.3029 0.2908 

LDU -0.0549 - 

NET 0.2784 0.2729 

pLI 0.3442 0.3527 

REC 0.1866 - 

RVIS -0.3374 -0.3494 

SIS 0.4090 0.4230 

Total variance 

explained 

0.3615 0.4825 

 

 

 

 

Figure 3-2 plot of the first principal component analysis based on the Spataro et al. gene 

classification (90). This plot shows PC1 against PC2 of the first principal component analysis. 

There is substantial overlap between the five groups  
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Figure 3-3 Scree plot of the first principal component analysis. The scores used in the first 

principal component analysis represent 36.1% of the data in PC1. 

The second PC analysis for the eight variables, after discarding the uninformative scores 

from PC1, revealed enhanced representation of all the variables as shown in Table 3-3. 

The percentage of variance explained went from 36% in the first PCA for PC1 to 48% in 

the second PCA for PC1 (Table 3-3, Figure 3-4 and 3-5). 

Since PCAs provide an orthographic transformation of variables that may be originally 

connected and produce linearly uncorrelated variables with close correlations between sub-

sets of scores (Table 3-6), thus decreasing the independent contribution of a number of 

scores and justifying the dimensionality reduction. Hence, a PCA using the remaining eight 

variables was undertaken (Table 3-3); this model describes a high proportion of the variance 

increasing from 36% till 48%. 
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Figure 3-4 plot of the second PCA against four gene groups.  

This plot presents the PC1 against PC2 of the second PCA. It became more noticeable that 

the END genes are right shifted and NDNE left shifted, which gives better representation than 

the first principal component analysis. However, there is substantial overlap between the 

disease groups, which makes it hard to understand the direction of these two groups.  

 

 
Figure 3-5 Scree plot of the second PCA, which represents 48.2% of the data in PC1.  
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Ø Results after merging (CM and MNC) into MDG for eight variables. 

The table below represents the result of eight scores using the combined MDG group, which 

showed improved results when compared to the Spataro et al. gene classification (90). Most 

of the binary comparisons show high statistically significant differences, except for CNM-

MDG, which show less significant differences. 

 

Table 3-5 The significance of Kruskal Wallis multiple comparison (Kruskalmc) and Mann 

Whitney U tests for eight variables using MDG.  

Variable NDNE-

CNM 

NDNE-

MDG 

NDNE-

END 

CNM-

MDG 

CNM-

END 

MDG-

END 

DNE <0.0001 <0.0001 <0.0001 0.5845 <0.0001 <0.0001 

GHIS <0.0001 0.0448 <0.0001 <0.0001 <0.0001 <0.0001 

GIMS <0.0001 <0.0001 <0.0001 0.4985 <0.0001 <0.0001 

HI <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

NET <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0016 

pLI <0.0001 0.0050 <0.0001 <0.0001 <0.0001 <0.0001 

RVIS <0.0001 <0.0001 <0.0001 0.0393 <0.0001 <0.0001 

SIS <0.0001 <0.0001 <0.0001 0.0373 <0.0001 <0.0001 

Underlined = No significant difference between the two groups as per the Kruskalmc 

(multiple comparison) test 

Bolded = no significant difference as per the Mann Whitney U test 
 

Table 3-6 Mean rank scores of the Kruskal-Wallis test as percentages of the highest mean 

rank amongst four gene classes after combining MDGs. 

Variable NDNE CNM MDG END N genes 

DNE 70.054 79.200*** 78.312*** 100*** 16840 

GHIS 90.237 88.146*** 77.908* 100*** 14914 

GIMS 100 84.296*** 81.509*** 64.111*** 16485 

HI 69.054 82.275*** 90.028*** 100*** 16840 
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NET 68.481 81.626*** 96.091*** 

 

100*** 

 

16840 

pLI 73.757 

 

81.789*** 

 

66.579** 

  

100*** 

 

16161 

RVIS 100 86.471*** 81.921*** 68.928*** 16840 

SIS 76.395 

 

81.55*** 

 

80.612*** 

 

100*** 

 

14502 

*Significantly different from NDNE as per Mann-Whitney Test; * = P < 0.05,  

** = P < 0.01, *** = P < 0.001 

 

There was much more consistency with the hypothesised essentiality model, considering the 

results of the Mann Whitney U and Kruskal Wallis tests after combining the Mendelian gene 

groups as demonstrated in Table 3-4 and 3-5. The Mann Whitney U test suggests that the 

eight scores demonstrated a significant statistical difference between all the groups (pairwise), 

apart from the group CNM-MDG, where the two variables did not reach a statistically 

significant level. Almost half of the scores showed insignificant difference in the CNM-MDG 

group as per the Kruskalmc (multiple comparison) test. 

There was improved discrimination between the variables in the CNM-MDG group by more 

than 50% of the score (Table 3-4), when compared to the differences between the complex 

gene groups (CNM-CM) and the Mendelian gene groups (CM-MNC) before the combining 

of the Mendelian genes (Table 3-1), signifying that merging the Mendelian gene groups may 

enhance results. 

Following omission of the least useful scores (LDU_res-fit, GDI and REC), the results of 

the Kruskal-Wallis test (Table 3-5) are consistent with the improved modelling of the data. 

To summarise, merging the Mendelian gene group enhances the discrimination between the 

groups and delivers a better understanding of the data. The high value of all the predictors 

indicates high-essential genes, apart from two variables (GIMS and RVIS), in which 

increasing their values results in them going towards the non-essential spectrum. 
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3.3.2 Relationship between measures of essentiality. 

Ø Spearman’s correlation 

In order to test the power and direction of a monotonic relationship between the scores, 

Spearman’s correlation was performed to produce a correlation coefficient. Table 3-6 provides 

the results of this analysis for the eight scores. The correlations are relatively high throughout. 

Table 3-7 Spearman’s correlation coefficients for the eight scores. 

Essentiali

ty 

measure1 

GHIS GIMS HI NET pLI RVIS SIS 

DNE 0.3107 
_0.4437 

0.3043 0.3082 0.5315 _0.3240 0.6117 

   GHIS - _0.5224 0.3297 0.3387 0.4059 _0.5587 0.5466 

GIMS - - _0.3901 _0.3305 _0.4613 0.5364 _0.6441 

HI - - - 0.3714 0.3416 _0.2740 0.3273 

     NET - - - - 0.3062 _0.2472 0.3236 

pLI - - - - - _0.3443 0.5584 

RVIS - - - - - - _0.6111 

SIS - - - - - - - 

 

The values in Table 3-6 represent Spearman correlation coefficient (rs), which has values 

from positive 1 to negative 1. A rs of +1 indicates a perfect association of ranks, while a rs of 

0 indicates no association between variables, and a rs of -1 indicates a perfect negative 

association of ranks. Thus, the closer rs values are to zero, the weaker the association 

between the ranks, either in positive or negative directions.  
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3.4 Discussion 

Despite the development of sequencing technology, the difficulty of making a solid molecular 

diagnosis from genome sequences remains a challenge in many cases. Since the 

understanding of several features of gene function are not well recognised and genes might 

have overlapping functions and a high degree of redundancy, the challenges persist even for 

highly penetrant monogenic diseases.  

While methods that are intended to estimate the deleteriousness of individual DNA variants 

are widely used to assist in interpreting genome variation, gene-specific scores are less 

frequently considered. Here, 11 quantitative measures—including LDU_res-fit, HI, REC, 

NET, DNE, GDI, pLI, RVIS, SIS, GIMS, and GHIS—that predict gene essentiality are 

evaluated. The metrics have diverse characteristics and gene properties, such as degree of 

intolerance of genes to functional variation, the local sequence context of a gene, and the 

position of genes in gene interaction networks like phosphorylation, signalling, metabolic, and 

physical PPIs. 

Since the results of the principal component analysis showed that LDU_res-fit, GDI, and REC 

consistently explain less of the variance in the data than other scores, these scores were 

eliminated; here, it is worth noting that GDI and REC were the only two scores that had 

opposite directions from what was expected. LD patterns have been found to have some 

relationship with disease/essentiality, but the effect might be small.  

Moreover, the reason why the REC score might have had little effect is because the aim of the 

score is to predict recessive genes particularly and differentiate them from the LoF tolerant 

genes. Meanwhile, in the case of GDI, it might have been because it is based only on CADD 

score, which might be not as powerful as the rest of the scores in predicting gene 

pathogenicity. 

While the prediction of Monogenic disease genes seems to be easier than that of genes 

associated with complex diseases, this study is only looking for single genes that might cause 

the disease. In fact, gene interactions and the influence of certain genes on others is not yet 

well understood, making it complex to predict Monogenic diseases.  

There were few limitations in this study. The first limitation was the number of genes 

available for each individual score; for instance, the SIS score is available for 16,387 genes, 

and by matching this score with the rest of the data, the number of genes drops to 14,503. 
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Another issue was the non-unified nomenclature of genes, so for some scores, there were 

genes that did not exist in the list of genes for another score; therefore, these genes are lost.  

Further, it seems that the available gene classes are not ideal as there are still some groups not 

differentiated well from the rest of the groups; the reason might be because of the following 

limitations of the Spataro et al. gene categorization (90). The major is the precision of the 

genetic information presently available for human diseases, in addition to insufficient up-to-

date knowledge regarding the true susceptibility of genes/variants to cause diseases. For 

example, the genetic bases of 50% of all known Monogenic diseases are not well understood, 

and most complex diseases remain unsolved; the real elements producing a lot of human 

disease phenotypes are not yet recognised. Furthermore, as the GWAS catalogue contains 

false-negatives and false-positives, the list of candidate genes harbouring the causal variants is 

usually reported based on biologists’ knowledge and experience. Therefore, a proportion of 

human disease genes may be mis-allocated to corresponding phenotypes (90).  

In this context, defining well-characterised gene groups is a great area for future study. 

Further, gene essentiality patterns and how essentiality in humans can be studied might help 

in prioritising disease genes. Moreover, identifying a criterion for genes that are highly likely 

to cause disease as well as Mendelian or complex diseases, along with the potential common 

genes for both types can improve genetic prediction. In addition, the role of non-essential 

genes might have a regulatory function or their influence and interaction might differ from 

one gene to another. All these factors need to be studied in order to achieve improved gene 

classification. Thus, this study updated the Spataro et al. gene groups (90) to improve group 

separation and improve gene prediction. Ultimately, there is now better coverage of 

Mendelian disease gene groups based on the best available evidence, and this helps in better 

understanding the data and makes the process of creating an essentiality prediction model 

feasible. 

3.5 Conclusion 

In this chapter, 11 gene-level metrics were evaluated; the aim was to assess the available 

gene-specific scores that might later be utilised to improve clinical diagnosis for patients 

suffering from monogenic diseases. Using the Spataro et al. classification model (90), the 

Mann Whitney U test was applied to evaluate the statistical differences between the two 

groups in pairwise comparisons using P values. Here, the aim was to evaluate the 

differences between the groups for better gene categorisation. The results of the Mann-
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Whitney U test showed no statistically significant difference between CM and MNC groups 

for most of the variables, suggesting the combining of the two groups into one group called 

‘Mendelian disease genes’. Furthermore, the results of the Kruskal Wallis test was 

integrated with the Mann Whitney U results, creating a clear direction of the data and 

showing a statistically significant difference between the non-essential and essential gene 

groups. To investigate each score further, I applied the first PCA analysis to predict the 

weight of each metric in the data for 11 scores; three scores were eliminated as they were 

the least useful in representing the data, and two of them were going in the opposite 

direction from what was expected. Subsequently, the second PCA analysis was produced for 

the eight remaining variables, showing better results by 12%. Ultimately, the next step will 

be utilising these eight scores to produce a composite score that might help in identifying 

Mendelian disease genes. 
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Chapter 4 Essentiality-specific Pathogenicity 

Prioritization  

4.1 Introduction 

Single gene disorders include those that follow the Mendelian pattern of inheritance in 

relatives and conditions arising in individuals through de novo deleterious variations. To 

resolve the underlying cause of these cases at a molecular level, it is essential to understand 

the disease phenotype in terms of the patient’s genotype. This accomplishment can help 

refine diagnoses and make possible routes for better clinical management available. The 

OMIM database (24) lists approximately 3,800 genes underlying 5,470 Mendelian 

phenotypes. However, although ~ 69 percent of all known Mendelian phenotypes have a 

determined genetic source, many more Mendelian conditions have yet to be characterised 

(24). 

A fresh review, using data from approximately 60 NHS hospitals in the United Kingdom 

and around 25 hospitals in other countries, found that only a small number of patients with 

hereditary rare diseases receive a genetic diagnosis (133). Even in cases in which the 

genetic cause is recognised, the chances of making a firm diagnosis may be reduced through 

incomplete characterisation of the patient phenotype or incomplete genetic testing, which 

might be restricted to a set of candidate genes that may not include the gene at fault. For 

some patients, the molecular basis of the condition is recognised after as many as 16 clinic 

visits, following almost three misdiagnoses in a journey, which might last more than two 

years (133). 

Essential gene candidates have also been determined through experiments using technologies 

like CRISPR-Cas9 (134). These genes are very important for survival as the damaging 

variation is intolerable and likely to be preserved only by a selection/mutation balance. These 

genes are responsible for core cellular regulation, and any disruption of these functions may 

lead to fatal illnesses (134). Within the spectrum of essential genes, Cacheiro et al. (135) 

recognised variations between cellular lethal (CL) genes, which demonstrate nearly complete 

concordance with mouse lethal genes and are vital for both cell/organism survival, and 

developmental lethal (DL) genes, which are not essential at a cellular level, however, LoF 

variation in these genes might be fatal. 

Recently, in 2019, Cacheiro et al. produced a new classification of genes considering a sub-
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division of essential genes through their cross-species gene categorization called ‘FUll 

spectrum of intolerance to loss-of-function variation’ (FUSIL) (135). Their analysis supports 

the model by Pengelly et al. (62) model, which demonstrates disease-genes having 

intermediate essentiality.  

This information is gene specific; consequently, the focus of this study is to build a model of 

genes, rather than just variants, which might improve filtering of disease genes and therefore, 

enhance identification of disease-causal genes.  

Combining the most useful scores that represent the data as a single (ESPP) score, the new 

composite score will be evaluated against each individual predictor. Here, it is proposed that 

combining several gene predictors that measure different genetic features will enhance the 

composite score and produce a more powerful predictor than any of the individual scores. 

Consequently, relationships between essentiality measures in different gene groups including 

non-essential genes not involved in disease, Mendelian disease genes, and genes classed as 

essential were assessed. Further, the ESPP score for almost 12, 000 genes that were 

constructed using gene-level predictors including RVIS, pLI, HI, SIS, etc. were introduced. 

These genes were classified into five groups using the Spataro et al. classification, which 

includes NDNE, CNM, CM, MNC, and END (90).  

4.2 Materials and Methods 

As the purpose of this study was to create a simple predictor for disease genes, a score was 

created based on the current available data at the gene-level. The performance of this 

classifier was then assessed. 

4.2.1 Gene classification 

First, the distribution of ESPP scores within different gene groups as defined by Spataro et 

al. (90) were considered, and 17982 genes were listed as done in their supplementary table 

S2. The aforementioned study along with its updated classification that has been done 

previously was used including four gene groups: NDNE, CNM, MDG, and END (Figure 4-

1) (refer to Chapter 3 for more details). 

Meanwhile, Cacheiro et al. identified a set of genes as strong candidates for developmental 

disorders, which was considered in this study. This is a sub-set of 163 genes classed as likely 

to be developmentally lethal ( Supplementary table 7 in Cacheiro et al. (135)). These comprise 
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genes that are ‘highly intolerant to loss of function variation’ (pLI > 0.9) (38) or have 

‘gnomAD’s observed/expected LoF scores with upper boundary <0.35’ 

(https://gnomad.broadinstitute.org/)(136) or ‘haploinsufficiency score (HI) < 10 (93) and [are] 

not currently associated with human disease by OMIM (24), Orphanet (137), or the 

Developmental Disorder Genotype-Phenotype Database (DDG2P)’ (135, 136). Moreover, the 

gene sub-set are genes known to have de novo variants in the 100K Genomes undiagnosed 

cases with intellectual disability (around 50 genes), DDD cases with variants of uncertain 

significance (VUS) in undiagnosed children (approximately 50 genes), and ~ 15 genes from 

the Centre for Mendelian Genomics (CMG). The latter Mendelian candidate genes consist of 

Tier 1 genes, which have variations in multiple kindreds or are located within a linkage peak 

or linked with a phenotype summarised in a model organism or Tier 2, which are considered 

strong candidates, but with mutations only known in one kindred. Accounting for overlaps, 

this is a set of 82 genes (135). 

4.2.2  Constructing a gene-level score  

The aim of this project is to build a composite score at the gene-level to predict disease 

genes based on different genetic features measured by each single score involved in the 

composite score (refer to Chapter 2 for more details about every single score), therefore 

providing a score per gene to predict the position of that gene in the essentiality spectrum. 

This analysis was performed using R Studio statistics software (140), version 1.0.153, 

2009–2017, RStudio Inc. First, the list of genes (~18,269 genes) provided from ensembl was 

aligned with several essentiality scores from various studies along with the LDU_res-fit 

produced from LD maps. The following scores were chosen from this study’s systematic 

review as approximations to essentiality: HI, RVIS, pLI, SIS, NET, REC, DNE, GDI, 

GIMS, and GHIS (122).  

However, some of the scores were less informative than others and included LDU_res-fit, 

GDI, and REC as they explained <20% of the variance; these scores were therefore eliminated 

from further analysis (chapter 3). PCA was repeated using only eight scores, and the result is 

shown in Table 3-3 in the results section of Chapter 3. The result of PCA was improved after 

excluding the least informative scores, and it was possible to then produce a formula from 

PC1 to calculate the new score (ESPP) using the following equation: HI x 0.290 + DNE x 

0.357 + RVIS x – 0.349 + NET x 0.272 + pLI x 0.352 + GIMS x -0.397 + GHIS x 0.360 + 

SIS x 0.423. 
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Figure 4-1 Essentiality specific pathogenicity prioritisation (ESPP) workflow.  

The above simple diagram demonstrates the pipeline of constructing the ESPP score through 

merging eight gene-level scores and then combining them into a single score. ESPP utilised 

the Spataro et al. gene classification including the following five gene groups: NDNE, END, 

CNM, CM, and MNC (90). The arrows represent the direction of essentiality and gene groups 

from the least to the most essential. Next, CM and MNC groups have been merged as 

Mendelian disease genes (MDG). This group of genes was then updated using the OMIM 

updated list of genes to ensure coverage of all Mendelian disease genes (24). 
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4.2.3 Evaluation of the relationships between measures of essentiality  

Spearman’s correlation was performed for nine gene specific scores, including the ESPP 

score, to test the association of measures of essentiality with each other. The results are 

presented in Table 4-5 of the results section.  

 

4.2.4 Evaluation of ESPP performance 

Assuming that genes within the MDG group will score high with ESPP along with the 

essential genes, other groups were expected to score low. This study was interested in Not 

Available (NA) genes with high ESPP scores as these genes might be Mendelian disease 

candidate genes.  

For this study, the updating of the Spataro et al. Mendelian disease gene list (90) by merging 

the MDG group with a list of all dominant and all recessive genes provided by Berg et al. 

(130) and Blekhman et al. (131) was decided. To this end, the most updated list of 

Mendelian disease genes was obtained from the OMIM database (24), which is updated 

daily to improve group separation. Ultimately, the 82 DL candidate genes recognised by 

Cacheiro et al. as strong candidates for developmental disorders were merged to evaluate 

the performance of ESPP scores among these genes. Genes with high ESPP scores > 4 and 

not assigned to MDG or END were extracted to investigate their function in OMIM (24) 

and to verify whether they were ever related to any Mendelian condition (Table 4-4). 

4.3 Results 

After evaluation of the 10 gene-specific scores that were derived from our systematic 

review (122), LDU_ res-fit from pre-existing whole-genome LD maps was used as a 

linkage-disequilibrium predictor (91) to construct the new ESPP model. The results of the 

first PCA showed that GDI, LDU, and REC were the least informative and were, thus, 

excluded from further analysis (refer to Chapter 3 for more details). 

 

The outcomes of the PCA of 11 scores (Table 3-3) display relatively minor weightings for 

GDI (0.013), LDU (-0.055), and REC (0.1866). A second PCA was therefore undertaken for 

the eight scores that demonstrated a higher percentage of the variance. 
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The ESPP is derived from a linear combination of the first principal component weightings 

of the second PCA (Table 3-3). The combined variance explained is (0.48) with the highest 

weighting applied to SIS (0.42) and the lowest to the NET score (0.27).  

 

Table 4-1 Numbers of genes with essentiality score assigned to each group (mean score in 

brackets) 

Essentiality 

measure 

NDNE 

 

CNM 

 

*MDG  

 

END 

 

Genes with 

score but 

no gene 

group 

Totals of genes 

assigned to 

groups 

Gene totals 

(Spataro et al. 

[8] (90) and 

OMIM [27] 

(24) 

classification) 

10627 1732 
4440 

969 0 17768 

DNE 10482 

(0.621) 

1730 (0.880) 
3769 

(1.025) 

968 

(1.651) 

463 

(0.564) 

16949 

GDI 10482 

(192.264) 

1730 

(85.421) 

3769 

(124.199) 

968 

(189.18) 

463 

(2487.1) 

16949 

GHIS 8971 

(0.522) 

1557 (0.527) 3448 

(0.532) 

938 

(0.566) 

0 14914 

GIMS 10177 

(0.525) 

1722 (0.463) 3722 

(0.433) 

958 

(0.322) 

371 

(0.507) 

16579 

HI 10482 

(0.183) 

1730 (0.262) 3769 

(0.304) 

968 

(0.411) 

463 

(0.118) 

16949 

LDU 10627 

(-0.008) 

1732 

(0.237) 

3836 

(-0.034) 

969 

(-0.238) 

1104 

(0.041) 

17164 

NET 10482 

(0.447) 

1730 (0.557) 3769 

(0.639) 

968 

(0.733) 

463 

(0.334) 

16949 

pLI 9956 

(0.253) 

1687 (0.360) 3674 

(0.318) 

941 

(0.579) 

356 

(0.262) 

16258 

REC 10482 

 (0.098) 

1730 

(0.147) 

3769 

(0.232) 

968 

(0.200) 

463 

(0.059) 

16949 

RVIS 10482 

(0.091) 

1730  

(-0.051) 

3769  

(-0.188) 

968  

(-0.389) 

463 

(0.160) 

16949 

SIS 9007  

(-0.093) 

1516 (0.077) 3174 

(0.189) 

805 

(0.619) 

0 14502 
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ESPP (from 

eight scores—

excluding GDI, 

LDU, REC) 

7076 

(0.620) 

1330 (0.884) 2914 

(1.003) 

760 

(1.641) 

0 12080 

*MDG—Mendelian disease genes comprising combined CM and MNC from Spataro et al. 

(90) and the updated OMIM list (24). OMIM total number = 4428; Matched OMIM and 

Spataro = 3824 

 

Table 4-2 ESPP score count by group and percentage of genes in brackets (eight scores) 

ESPP score range NDNE 

 

CNM 

 

MDG 

 

END 

 

Cacheiro et al. 

(135) DL Candidate 

genes 

(70 genes with 

ESPP score) 

<-4  2 (0.02) 1(0.07) 1 (0.03)  0 0 

-4 to -3 13 (0.18) 3 (0.23) 0 0 0 

-3 to -2    65 (0.9) 10 (0.76) 16 (0.5) 0 1 (1.4) 

-2 to -1 367 (5.2)  45 (3.4) 95 (3.2) 10 (1.3) 1 (1.4) 

-1 to 0 1548 

(220) 

240 (18.4) 433 (14.8) 33 (4.6) 1 (1.4) 

0 to 1 2576 (36.7) 411 (31.5) 1043 (35.8) 153 (21.3) 3 (4.3) 

1 to 2 1678 

(23.9) 

 373 (28.6)  724 (24.8)  276 (38.5) 26 (37.1) 

2 to 3  668 (9.5)  188 (14.4) 434 (14.9) 185 (25.8) 32 (45.7) 

3 to 4 82 (1.17) 30 (2.3) 121 (4.1) 44 (6.1) 4 (5.7) 

4 to 5 8 (0.1) 3 (0.2) 36 (1.2) 11 (1.5) 1 (1.4) 

5 to 6 0 0 4 (0.13) 2 (0.27) 1 (1.4) 

>6  0 0 5 (0.17) 2 (0.27) 0 

Totals 7007 1304  2912  716  70 

% greater than 3 = NDNE = 1.3; CNM = 2.5; MDG = 5.7; END = 8.2. [63% of genes with 

ESPP > 3 are MDG/END; 82% of genes with ESPP > 4 are MDG/END] 
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Figure 4-2 The frequency of genes with ESPP scores.  

In the above figure, in each score range, it starts from the least essential ( NDNE, CNM, and 

MDG) to the most essential (END and candidate DL genes adopted from Cacheiro et al. 

(135)). Further, most of the DL candidate genes fall between 1–3 ESPP score (37% fall 

between 1—2, and around 46% between 2—3). 
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Figure 4-3 The median of the ESPP score in each gene group.  

In the above figure, ESPP range starts from the least essential (NDNE, CNM, MDG) to the 

most essential (END and DL genes from Cacheiro et al. (135)). Here, the pattern of positive 

relationships between gene essentiality and the increase of ESPP values can be noted.  

Figure 4-2 demonstrates the breakdown of ESPP scores within a score range with respect to 

each group. As shown, there is wide overlap between groups, which means that the features 

of genes explained by these scores cannot definitively allow genes to be placed into the 

groups. Nevertheless, the gene groups are classified according to current understanding; for 

example, unrecognised monogenic genes are mis-classified, and there is incomplete 

understanding of human essential genes, which might be improved by using CRISPR Cas 9 

and gene trapping methods in identifying essential genes in humans (134). However, while 

Figure 4-2 displays the percentage of genes in each category within an ESPP score range, 

Figure 4-3 shows the median of ESPP in each gene group, demonstrating that the DL 

candidate showing 91% have ESPP > 1. Further, there is a clear separation between the 

peaks for NDNE and END genes. Large ESPP scores (> 2) have an excess of END genes 

(approximately 35% of highly essential genes scored more than 2 as per ESPP) and ESPP 
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scores of ≥ 3 are enriched for rare disease genes including 6% of Mendelian disease genes 

and 8% of essential genes as compared to 1.3% of NDNE and 2.5% of CNM gene groups. 

In general, 63% of genes with ESPP > 3 are essential/Mendelian disease genes, and the 

proportion increases to 82% percent for genes that scored more than 4 as per ESPP (Table 

4-3). Thus, high ESPP scores are strongly indicative of genes at the rare disease/essential 

end of the spectrum.    

Meanwhile, a total of 70 of the 82 genes recognised as strong candidates for developmental 

disorders by Cacheiro et al. (135) have values in terms of ESPP scores (Table 4-3, identified 

as ‘DL candidates’ in Figure 4-2): 10 of these genes are in the complex gene group, 25 in 

the essential gene group, 1 in the Mendelian disease gene group, and 34 are non-essential 

genes. The distribution of ESPP scores for these genes (Figure 4-2) is highly skewed 

towards ESPP with more than two in line with the expectation that most are strong 

candidate genes for monogenic diseases (139). 

 

Table 4-3 Genes with ESPP score > 4 not assigned to MDG or END groups. 

Gene Group ESPP 

score 

Full name Notes on gene function (OMIM) 

ANKR

D17 

CNM 4.612 Ankyrin Repeat 

Domain 17 

May mediate immune responses to 

bacteria  

and viruses 

DIP2C CNM 4.564 Disco Interacting 

Protein 2 Homolog 

C 

May be involved in transcription 

factor binding 

RYR3 CNM 4.039 Ryanodine 

Receptor 3 

Involved in Ca(2+) signalling in 

neurons in the central nervous system 

PLXNA

1 

NDN

E 

4.848 Plexin A1 Involved in cortico-motoneuronal 

connections underlying manual 

dexterity. 

CNOT1 NDN

E 

4.359 CCR4-NOT 

Transcription 

Complex Subunit 1 

May be involved in transcriptional 

regulation. 
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CHD5 NDN

E 

4.346 Cadherin 5 CDH5/beta-catenin signalling 

appears to control endothelial 

survival. 

USP34 NDN

E 

4.281 Ubiquitin Specific 

Peptidase 34 

May rescue ubiquitinated proteins 

from proteasomal degradation. 

FRY NDN

E 

4.200 FRY Microtubule 

Binding Protein 

Involved in structural integrity of 

mitotic centrosomes and maintenance 

of spindle bipolarity. 

SUPT5

H 

NDN

E 

4.084 SPT5 Homolog, 

DSIF Elongation 

Factor Subunit 

May control key aspects of neuronal 

development. 

PCDH1

7 

NDN

E 

4.035 Protocadherin 17 May be involved in synaptic function 

in the central nervous system. 

SUPT6

H 

NDN

E 

4.003 SPT6 Homolog, 

Histone Chaperone, 

and Transcription 

Elongation Factor 

May regulate transcription through 

establishment or maintenance of 

chromatin structure. 

 

Ø Relationships between measures of essentiality  

Spearman’s correlation 

In order to test the power and direction of a monotonic relationship between the scores and 

the ESPP, Spearman’s correlation was performed to produce a correlation coefficient. Table 

4-5 gives the results of this analysis for the eight scores and combined ESPP. Correlations are 

relatively high throughout, and the correlation structure appears to be captured well by the 

combined ESPP score, which shows a higher correlation than any other scores with DNE, HI, 

and pLI and high correlation with other variables. 

 

Table 4-4 Spearman’s correlation coefficients for the eight scores and ESPP 

Essentiality 

measure1 

GHIS GIMS HI NET pLI RVIS SIS Combine

d ESPP 

score 
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DNE 0.3107 
_0.4437 

0.3043 0.3082 0.5315 _0.3240 0.6117 0.8154 

GHIS - _0.5224 0.3297 0.3387 0.4059 _0.5587 0.5466 0.4664 

GIMS - - _0.3901 _0.3305 _0.4613 0.5364 _0.6441 _0.5902 

HI - - - 0.3714 0.3416 _0.2740 0.3273 0.4894 

NET - - - - 0.3062 _0.2472 0.3236 0.4908 

pLI - - - - - _0.3443 0.5584 0.6295 

RVIS - - - - - - _0.6111 _0.5363 

SIS - - - - - - - 0.5019 

4.4 Discussion 

The combined ESPP classifier is linked to the genic essentiality hypothetical model 

proposed by Pengelly et al. (62), in which monogenic disease genes are located between 

non-essential and essential genes. Despite individual gene scores covering a variety of gene 

characteristics, the correlation between scores are relatively high (Table 4-5), which shows 

that combining these scores could be beneficial. Thus, a simple combined model was built 

to prioritise the recognition of monogenic disease genes by integrating the available gene-

level predictors. Here, the ESPP predictor will likely enhance the modularity of various 

genetic properties measured by each score independently. However, this means that it is 

also impacted by the limitations and assumptions of every single score. Moreover, based on 

the PCA results of PC1, the ESPP score proposed combines all measures into a single 

model, explaining a higher percentage of the variance (45%, Table 4-1) than any single 

measure.  

The NET predictor has the smallest weighting PCA of the eight scores that contribute most 

to the predicted variance (Table 4-1). The NET score was the first comprehensive genome-

wide study that associates genetic variants at population level, in addition to disease variants 

with current network resources and may have been affected by the lack of biological 

network data at the time of the study, which was before the 1000 Genomes Project (110). 

On the other hand, the SIS score, which has an elevated overall influence, is more recent 

and utilised data from the 1000 Genomes Project. In order to improve recognition of gene 

properties that might be related to monogenic disease in the future, improving the 

understanding of genic properties—such as essentiality, selection, and mutation—as larger 

numbers of genomes are sequenced is critical.  
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Besides the effect of inconsistency in quality and completeness of every gene-specific 

metric, an added difficulty in the explanation of ESPP scores comes from the lack of a 

complete understanding of gene classification. Thus, the rationale behind this study is to 

recognise new genes that have not yet been assigned to the group of genes already known to 

be involved in monogenic disorders. Therefore, it is inevitable that genes in the existing 

gene group classification (Table 4-2) will be mis-classified. Moreover, to date, more than 

30% of genes involved in monogenic disease have not yet been identified and accordingly, 

those are currently assigned to gene groups other than MDG. Additionally, recognizing 

essential genes is another challenge, since inactivation of an essential gene is fatal and 

unethical to test, so recognition of these genes in humans can only be made indirectly 

through homology or, lately through techniques such as CRISPR-cas9 (141).  

In this context, a sub-division of essential genes was considered by Cacheiro et al. (135) 

through their cross-species gene classification termed FUSIL. Here, they integrated human, 

mouse, and CRISPR-Cas9 screening data and identified two classes of essential genes—CL 

and DL—as defined earlier. They also added diverse sets of sub-viable and viable genes 

determined from LoF mice trials (135). Their analysis is along the same lines as that 

proposed by the model by Pengelly et al. (62), which revealed the intermediate position of 

disease-genes in the essentiality spectrum. Further, their broadly characterised set of DL 

candidates genes show that 91% of them have ESPP > 1 (Figure 4-2), which means that the 

ESPP scores have a high potential in identifying disease genes.  

Moreover, any gene classed as NDNE but with particularly high ESPP scores are probable 

monogenic disease candidates. Here, 63% of genes with a score of at least 3 are currently 

categorised as MDG or END. Moreover, 82% of genes with ESPP > 4 are MDG/END. 

Table 4-4 shows 11 genes currently assigned to these two categories, which have ESPP > 4. 

They consist of candidate essential genes currently categorised as NDNE (for example 

SUPT6H, FRY) and genes that are known to contain CNM variations, but have properties 

that suggest they are also candidate monogenic disease genes (for example RYR3, DIP2C). 

Here, it is worth noting that disease–gene relationships are complex, and the variety of gene 

characteristics restrict the ability of individual and combined predictors to fully distinguish 

certain gene classes. For instance, the score developed by MacArthur et al. was based on 

human-macaque conservation and proximity to known recessive genes in protein interaction 

networks (12). Although their recessive metric, which describes the chance of a gene having 

recessive variation, provides a degree of discrimination between loss-of function tolerant 

and recessive genes, there is a significant overlap. Thus, importance of these scores is to 
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supply useful information to prioritise potential candidates in a genome filtering context. 

Moreover, with the marked rise in the number of genomes being sequenced, a better 

understanding of genic properties and functions is expected to enhance identifying genes 

likely to contain monogenic disease variations.  

Given a sequenced genome, for which there is a number of potential functional candidate 

variants in different genes, access to the available ESPP scores provides a basis for ranking 

candidates objectively. For instance, genes with ESPP scores of 2 or greater appear 

particularly interesting in this context. Thus, a worthwhile basis for prospective studies 

would be to enhance the performance of the classifier in an effort to merge additional 

genomic and functional gene characteristics (133,139), in conjunction with enhancing gene 

classification given developing knowledge. 

4.5 Conclusion 

In this chapter, a composite score comprising eight gene-level metrics was constructed with 

the aim of predicting disease genes that will eventually clinically help in the accurate 

diagnosis of monogenic disease patients. More specifically, PCA analysis was used to 

produce an ESPP score for a total of 12081 genes. The analysis was started with 18873 

genes, but there were limitations with the data that interfered with the computation of ESPP 

scores for some genes as mentioned in Chapter 3. Ultimately, a validation of ESPP is 

needed to assess if the ESPP was better at predicting disease genes (scored high) than 

eliminating non-disease genes, which scored low. 
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Chapter 5 Using/integrating Scores to Predict New 

Mendelian Disease Candidates  

5.1 Introduction 

The functions of many genes in the human body remain a mystery. One way of identifying 

the function of a system is to introduce a variant (mutation) into a gene and explore the 

impact of this mutation by assaying the effect on a model organism or cell line and 

observing the phenotype (143).   

The main obstacles preventing the large-scale engineering of LoF mutations in humans are 

ethical and technical restrictions. However, exome and genome sequencing technologies 

have revealed a high volume of natural LoF variations in humans, which can be used as 

natural models for human gene inactivation. These variants have facilitated the 

identification of disease mechanisms by studying the basis of severe Mendelian diseases. 

These variants have also been shown to be valuable in discovering therapeutic targets—for 

instance, confirmed LoF variants in the PCSK9 gene have been proven to be associated with 

low density lipo-protein cholesterol levels, leading eventually to the production of PCSK9 

inhibitors that are used now to decrease the risk of cardiovascular diseases. Thus, creating a 

catalogue for human LoF variants and classifying genes based on their tolerance to 

functional variations will provide an important resource for human variation. 

Additionally, in-silico metrics that predict the ability of a gene to tolerate LoF variation can 

help in the clinical interpretation of human genomes and make advancements in the 

discovery of human disease genes (144). In this context, the increasing size of publicly 

available variant/gene databases from large populations make the process of evaluation of 

the performance of gene metrics feasible. The aim of this chapter was to evaluate the 

performance of ESPP using the DatabasE of genomiC varIation and Phenotype in Humans 

using Ensembl Resources (DECIPHER) (138) as well as SHGP data, and integrate the most 

recent gene-specific scores. This work highlights a set of genes not currently known to 

harbour variation underlying Mendelian traits, but which are strong candidates based on 

their properties. Further, the recognition of these genes should facilitate the interpretation of 

disease genome sequence data. The new gene-specific scores include the gene-level 

variation intolerance metric (GeVIR) (144), the loss-of-function observed/expected upper 
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bound fraction (LOEUF) (143), and VIRLoF, which is a combination of the aforementioned 

scores, GeVIR and LOEUF (144).  

5.1.1 DECIPHER 

The ESPP score was evaluated using DECIPHER (138), a web-based database that 

enhances the clinical interpretation of a variant using a variety of bioinformatics tools and 

resources. The aim of this database was to improve interpretation of candidate variants from 

genome-wide analyses and focus on variant confirmation to place unknown variants into a 

known variant list (138). DECIPHER contains 439,563 sequence variants from ClinVar, 

223,342,519 sequence variants from gnomAD, and another 139,452 sequence variants from 

HGMD (138). Genes scored high by ESPP and therefore, considered more likely to be 

associated with diseases were explored in DECIPHER to determine any known or predicted 

disease relationships,  

5.1.2 GEL data 

The aim of the 100K genome project, launched in 2013, was to facilitate new scientific 

discovery and help in the development of the UK genomics industry through sequencing 

100,000 individuals (NHS patients with rare diseases, and patients with common cancers) 

(37). The project was focused on improving patient diagnoses in these cases. The 100,000 

Genomes Project is funded by the National Institute for Health Research, The Wellcome 

Trust, NHS England, Cancer Research UK, and the Medical Research Council (37). GEL 

data has been used to check candidate genes that were found to be causal on GEL but will 

not be in the OMIM database until published.  

5.1.3 SHGP 

The SHGP is a national program funded as part of Vision 2030 for Saudi Arabia launched in 

2013 in Riyadh by the King Abdulaziz City for Science and Technology. The aim of the 

project was to sequence more than 100,000 individuals within five years to enhance the 

identification of the genetic basis of rare and common genetic diseases in the Saudi 

population. According to their statistics approximately 40,377 individuals have been 

sequenced, identifying ~ 7000 disease variants (145). A portion of these data have been 

made available and were accessed remotely and comprise around 987 exomes in the csv 
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format. Ethical approval was obtained from both the King Faisal Specialist Hospital and 

Research Centre and the University of Southampton through the ERGO system (Submission 

ID: 48601). More specifically, the ESPP score will be tested against these data, and since it 

is rich in homozygous variants, it is a basis for future work in terms of constructing a score 

to predict recessive genes.  

5.2 Recently developed gene-level scores for comparison and integration 

with ESPP 

5.2.1 GeVIR 

GeVIR is a continuous gene-level variation intolerance metric produced by Abramovs et al. 

(144). This score was built based on the length, evolutionary conservation, and number of 

variant intolerant regions (VIRs) in gnomAD, which is the second version of ExAC that 

aims to harmonise exome and genome sequencing data from different sequencing projects. 

The VIRs are segments lying between two protein-altering variants. To calculate the score 

the VIRs of each length was counted in the canonical transcript of almost 19,400 genes, and 

then the weights of each VIR length were produced based on frequency among all genes. To 

calculate the GeVIR score for each gene, the following equation was used: 

Gene score = ∑ (W × GERP) / N regions 

Where (W × GERP) = high-covered VIR weights (W) adjusted by their conservation 

(GERP) (146), and N regions = the total number of regions in a gene including low-

coverage regions (N regions), where high weights were correlated with high evolutionary 

conservation (144).  

The aforementioned score is distinct from ESPP, which integrates a range of properties 

including the evolutionary conservation, length, and number of variant intolerant regions, 

which looks to be a fairly independent way of scoring genes and is, therefore, useful and 

interesting for comparison with ESPP. 

5.2.2 LOEUF 

Karczewski et al. placed each individual gene on a spectrum of LoF intolerance by 

producing a predicted loss of function (pLoF) variation measure (143). They defined the 

pLoF by frameshift mutations, premature stops (stop-gained), or alteration of the two-
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essential splice-site nucleotides immediately to the left and right of each exon (splice) found 

in protein-coding transcripts. They then created the loss-of-function transcript effect 

estimator (LOFTEE) package to eliminate annotation artefacts in these variants. They found 

that this method eliminates common pLoF variants in the population, which were found to 

be enriched with annotation errors (143). LOFTEE discriminates annotation artefacts from 

high confidence pLoF variants and predicts candidate splice variants outside the essential 

splice site. Further, approximately 443,770 high-confidence pLoF variants in 16,694 genes 

were discovered using this model. 

The LOFTEE model was designed to predict expected levels of variation under neutrality. 

Under the LOFTEE model, ‘the variation in the number of synonymous variants observed is 

accurately captured (r = 0.979)’. Additionally, this model was used to identify depletion of 

pLoF variants by measuring the differences between the number of observed pLoF variants 

and their expectation in the gnomAD exome data from approximately 126,000 individuals. 

By using gnomAD data, an assessment of the degree of intolerance to pLoF variation was 

possible for each gene by using the continuous metric of the observed/expected (o/e) ratio, 

where o and e refer to the observed pLoF variants and expected number of LoF variants in 

the genomAD, respectively. The 90% upper boundary of the confidence interval (CI) was 

used to produce the LoF observed/expected upper bound fraction (LOEUF) (143). 

Meanwhile, the haploinsufficient genes were strongly depleted in the pLoF variations, 

while, in contrast, less essential genes, such as genes encoding olfactory receptors, were 

more tolerant of pLoF variations. Here, it is worth noting that the concept of the LOEUF 

score is a bit similar to ESPP, in which both scores are attempting to assess the degree of 

gene intolerance to LoF variants. However, the method varies as LOEUF produces 

predicted LoF measures and ESPP relies on multiple gene scoring systems. 

LOEUF was examined for 390 genes, which are embryonically lethal upon heterozygous 

deletion in the mouse model system. It was found that these genes have a lower LOEUF in 

comparison with the rest of the genome comprising ~19,300 genes (Figure 5-1 A). 

Likewise, 678 genes characterised by CRISPR screens as essential were depleted in the 

pLoF variation (low LOEUF score) as compared to around 860 non-essential genes (Figure 

5-1 B) (143).  
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Figure 5-1 The functional distribution of LOEUF scores (adapted from Karczewski et al. 

(143)).   

A: Highly constrained genes, when heterozygously inactivated in mice, are more likely to be 

fatal, and consequently, might be lethal in humans. However, unconstrained genes are shown 

to be more tolerant of disruptions. B: On the right side are the most unconstrained or non-

essential genes, while the left side represents highly essential genes. 

5.2.3 CoNeS 

CoNeS is a gene-level metric that measures the strength of negative selection acting on 

genes (147). This score was developed by integrating information from the following 

scores: LOEUF, SnIPRE, LofTool, EvoTool, SIS, pLI, and RVIS. Therefore, a PCA was 

undertaken after data standardization. Moreover, genes with low CoNeS score are strongly 

impacted by negative selection. Further, this score showed a positive correlation with 

LofTool, EvoTool, LOEUF, and RVIS, while it showed negative correlation with pLI and 

SIS. Rapaport et al. used the hOMIM database and essential genes in mice and 

subsequently, produced the CoNeS score for 18,506 genes. It is noteworthy that some of the 

same component scores have been used in constructing ESPP scores, which include SIS, 

pLI, and RVIS; therefore, overlap is to be expected. However, the difference between the 

two scores is that the focus of CoNeS is on predicting genes that are impacted by negative 

selection, while ESPP integrated metrics in which some predict the impact of negative 

selection while other try to predict Mendelian disease genes.  
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5.2.4 Comparison of GeVIR and LOEUF 

The comparison of GeVIR with LOEUF scores showed that the latter was more biased 

toward longer genes than the former, with Spearman’s r = −0.54 and r = −0.26, respectively 

(144). More specifically, the first decile the median protein length of LOEUF was 

approximately 1.91 times longer than the expected 425 amino acids, while GeVIR was 

~1.15 longer than expected. Here, VIR coverage was measured as the mean exome coverage 

of nucleotides, including region start and stop variants. Exome, rather than genome, 

coverage was assessed because the majority of samples in the gnomAD database are 

exomes (~ 123,136 out of 138,632), and exome coverage was less stable than genome 

coverage and henceforth, could better highlight potential biases in the variant load. 

However, as absence of a variant might be a result of low coverage, strict filters were 

applied to help distinguish high and low coverage VIRs (144). 

Next, the GeVIR and LOEUF scores were combined by rank summation with re-sorting to 

develop a new score called VIRLoF to rank genes by intolerance to both missense and LOF 

variations. VIRLoF shows better ranking and higher performance than GeVIR and LOEUF 

by measuring Area Under the ROC Curve (AUC) with higher AUC and indicating better 

performance (144). The set of missense and LOF intolerant genes incorporate 

approximately 32% of the known AD disease genes and only around 2% of the known AR 

genes (Figure 5-1 A,B). Furthermore, a large percentage of these genes (around 70%) were 

not found to be associated with any OMIM phenotypes (144). 

Moreover, identifying dominant genes is comparatively more challenging than identifying 

recessive genes due to the fact that in dominant conditions with monoallelic inheritance, 

there is redundancy through many actually neutral heterozygous variants that act as massive 

background noise (116).  

Meanwhile, in Mendelian diseases, only one or two deleterious variants must be identified 

among a large number of variants that naturally occur in the human genome. A sequence 

patient human genome might carry 20,000 exonic variants, of which 400 will be good-

quality, nonsynonymous, and rare DNA variations (116). If two of these variants are found 

in the same gene, they would most likely underlie a recessive condition, decreasing the 

number of candidate genes to five to 10 genome-wide. On the other hand, any heterozygous 

variants among these 400 variants might be associated with dominant disorders, making 

identification of the dominant genes more difficult (116). Accordingly, the power of NGS 

analysis to detect genes associated with recessive disorders is 10-fold more efficient than 



 

114 

the detection of dominant genes. In this context, the identification of rare alleles as a 

function of their deleterious potential in the heterozygous state signifies a real challenge in 

solving dominant cases. Several in silico tools have been established to prioritise the 

deleterious effect of DNA changes (116). So far, the majority of these methods have 

focused on the pathogenicity of a variant on protein function rather than differentiating 

dominant and recessive variants. Further, other tools were developed to predict 

haploinsufficient genes, which will partially help in identifying dominant genes as dominant 

variants produce a haploinsufficient phenotype; however, dominant variants might arise by 

the gain of function as well (116). Here, as this study is focused on predicting Mendelian 

disease genes, it is worth looking at dominant and recessive genes and exploring their 

patterns in the essentiality spectrum. 

In order to test the performance of the ESPP score, the ESPP percentiles were compared to 

the three gene constraint metrics (GeVIR, LOEUF and VIRLoF) by sorting genes based on 

the updated Spataro et al. classification—that was used in Chapter 3 to identify the 

relationship between these scores and the extent to which they can predict disease genes. 

Further, known dominant and recessive genes in relation to the ESPP score and the Spataro 

et al. updated classification were also examined (please refer to chapter 3 for more details) 

(90).  

5.3 Methods 

5.3.1 Investigating candidate genes prioritised by ESPP using DECIPHER 

and GEL data 

In this study, genes with an ESPP score > 4 that were not assigned to MDG or END groups 

as listed in Chapter 4 (Table 4-4) were investigated using DECIPHER and GEL data. Each 

gene was first examined in DECIPHER and then in GEL data to identify whether it was 

recently predicted to be associated with any clinical phenotypes (See results section). 

5.3.2 Investigating candidate genes prioritised by ESPP using SHGP 

The ESPP score was evaluated within the SHGP data (145). The data consists of 987 

exomes that were accessed remotely from within UK after obtaining the ethical permission 

from both sides. The data was received in csv format and was accessed using a terminal 
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through their server. A list of 483 confirmed disease causing (mostly recessive) variants was 

received enabling evaluation of the performance of ESPP using confirmed cases.  

To test the performance of ESPP, each confirmed variant was searched in the exome data of 

the corresponding patient to extract more information about this specific variant. As a result, 

a database of 143 variants was constructed including REVEL (80), GWAVA (148), SIFT 

(68), Polyphen-2 (70), MutationTaster (73), MetaSVM (81), M-CAP (149), and CADD (72) 

scores. Unfortunately, the majority of the accessed csv files were not annotated, and access 

to the data from outside Saudi Arabia became more restricted preventing wider 

investigations. However, considering the well-established set of 143 variants, the data were 

aligned with the ESPP score for each gene to create a data set of 107 confirmed variants 

with an ESPP value for each corresponding gene.  

Details of library preparation and WES sequencing of Saudi data  

The following description was received from Sateesh (personal communication, Feb, 22, 

2020) at the Saudi project: Exome capture was performed using TruSeq Exome Enrichment 

kit (Illumina) following the producer’s protocol. The preparation of the samples was done as 

an Illumina sequencing library, and in the second step, the sequencing libraries were 

enriched for the desired target using the protocol of Illumina Exome Enrichment. Illumina 

HiSeq2000 Sequencer was used to sequence the captured libraries. The reads were mapped 

against UCSC hg19 (http://genome.ucsc.edu/)(150) by BWA (http://bio-

bwa.sourceforge.net/)(151). The SNPs and indels were detected by SAMTOOLS 

(http://samtools.sourceforge.net/)(152) (145). 

 

5.3.3 Comparison of ESPP score with LOEUF 

Data of the LOEUF scores were downloaded from gnomAD website (136). The LOEUF 

score is available for 19705 genes. This score was aligned with the ESPP score and 

successfully matched 12013 genes. Subsequently, the ESPP data and LOEUF were aligned 

with the Spataro et al. groups (90), and a comparison was made to show which of the two 

scores best fits the Spataro groups and whether there is a correlation between the two scores 

(refer to the results section). 
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5.3.4 Comparison of ESPP score with CoNeS 

Data of CoNeS score were downloaded from this link (147). CoNeS score is available for 

18506 genes. This score was aligned with the ESPP score and successfully matched 12566 

genes. Data on ESPP and CoNeS were aligned with the Spataro et al. groups (90), and a 

comparison was made to show which of the two scores best fits the Spataro groups. Further, 

a regression analysis was performed to test the correlation between the two scores (refer to 

the results section). Afterwards, for the analysis, the data on ESPP were aligned with 

LOEUF and CoNeS, and a list of 11711 genes was retained. 

5.3.5 Comparison of LOEUF score with CoNeS 

The LOEUF score was aligned with the CoNeS score and successfully matched 11711 

genes as previously mentioned. A regression analysis was done for the two scores to 

investigate which best fits the Spataro classification (refer to the results section). 

  

5.3.6 Predicting dominant and recessive genes using ESPP, LOEUF, and 

CoNeS 

Known recessive and dominant genes were categorised by ESPP, LOEUF, and CoNeS 

scores. A list of 985 recessive and dominant genes was obtained from Quinodoz et al. (116). 

Of these, 762 Dom (Dominant) and Rec (Recessive) genes matched ESPP scores, of which 

232 genes were dominant and 530 were recessive. When the complete data was matched 

including ESPP, LOEUF, and CoNeS, 617 recessive and dominant genes were retrieved, of 

which 510 were recessive and the rest were dominant. 

Further, the updated Spataro et al. classification of genes was used to classify genes into 

four categories: NDNE,CNM, MDG, and END (refer to list of abbreviations) (90). The 

MDG group was further classified into dominant and recessive based on Quinodoz et al. 

(116) (refer to the results section). 
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5.4 Results 

5.4.1 Evaluation of candidate genes prioritised by ESPP within the 

DECIPHER and GEL data 

The result of investigating genes with an ESPP score > 4 that were not assigned to MDG or 

END groups using DECIPHER and GEL data is listed in Table 4-4 

The CNOT1 gene that was prioritised as a potential candidate disease gene by ESPP (with a 

4.359 ESPP value) (Table 5-1) has been recently recognised in two studies as a cause of 

holoprosencephaly (147,148). The first report was by De Franco et al. who investigated an 

international cohort of 107 individuals diagnosed with pancreatic agenesis— ‘defined by 

requiring endocrine (insulin) and exocrine (pancreatic enzymes) replacement therapy within 

the first 6 months of life’; here, mutations in known genes were recognised in 98 of these 

individuals. In order to identify de novo mutations in the remaining nine individuals, exome 

sequencing was done as trios (the probands and unaffected parents), which was subject to 

availability (n = 7) (153). A heterozygous missense mutation in CNOT1 was then identified 

(NM_016284.4; c.1603C>T [p.Arg535Cys]) in three individuals with pancreatic agenesis. 

However, the p. Arg535Cys variant was absent in dbSNP138, DECIPHER, and GnomAD. 

This variant affects a highly conserved residue across species. Meanwhile, the in silico 

prediction tools (AlignGVGD, PolyPhen2, and SIFT) predicted that the variant will have a 

pathogenic effect on protein function. 

This variant resulted in a syndrome of pancreatic agenesis and abnormal forebrain 

development in three individuals with a similar phenotype to that in mice. Here, CNOT1 

was found to be an important gene for maintaining embryonic stem cells that differentiate 

other types of cells. Thus, these results suggest that CNOT1 has a crucial role in the 

formation of pancreatic tissues (153). 

At the same time, another group studied two unrelated patients with semi lobar 

holoprosencephaly. Exome sequencing was performed for both patients and an identical de 

novo missense variant was identified in the CNOT1 gene. The variant (c.1603C>T 

[p.Arg535Cys]) is predicted to be deleterious and is not present in public databases (154).  

Furthermore, considering the GEL data, it was found that the RYR3 gene, which was 

prioritised by ESPP (with a 4.039 ESPP value) (Table 5-1), is related to an intellectual 

disability case with a de novo splice donor site mutation (155). This is, therefore, a strong 

candidate disease gene.  
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Table 5-1 Updates on genes with ESPP score > 4 not assigned to the MDG or END groups 

 

5.4.2 Results of testing candidate genes prioritised by ESPP using SHGP 

data 

The ESPP score was examined in relation to 107 confirmed cases—for which the disease 

causal variant was known—from the SHGP data, in which the molecular diagnoses were 

made based on known MDG genes that they recognised in their patients. The data show that 

82.2% out of the 107 variants are in genes classified as MDG/END by ESPP as compared to 

2.8% classified as CNM and 14.9 % as NDNE. Genes that were classified as CNM and 

NDNE were described as novel candidate genes discovered by autozygosity mapping on 

143 multiplex consanguineous Saudi families using WES in 2015 (156). This homozygosity 

scan, which showed genomic regions that are identical by descent, helps in identifying 

recessive diseases with atypical phenotypes such as those in neurogenetic diseases. Further, 

the autozygome in multiplex consanguineous families can be utilised after excluding known 

disease genes in discovering new candidate genes. These genes were assigned as causal, and 

Gene Group ESPP 

score 

Full name Notes on gene 

function (OMIM) 

Update  

RYR3 CNM 4.039 Ryanodine 

Receptor 3 

Involved in Ca (2+) 

signalling in neurons 

in the central nervous 

system 

RYR3 is related to an intellectual 

 disability (155). 

CNOT1 NDNE 4.359 CCR4-NOT 

Transcription 

Complex 

Subunit 1 

May be involved in 

transcriptional 

regulation. 

Causes a novel genetic 

syndrome  

of pancreatic agenesis and  

holoprosencephaly, De Franco 

et al. (153). 

CNOT1 is associated with  

holoprosencephaly; Kruszka et 

al. (154). 
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the next step was to confirm those genes using GenCC (157), which can validate causality 

for newly discovered genes based on various criteria and several databases (e.g., ClinGen, 

DECIPHER, OMIM, GEL PanelApp etc.). 

Here, it is noteworthy that 100% of the genes that have ESPP > 3 were classified as 

MDG/END, 90% of genes that have ESPP > 2 were classified as MDG/END, and ~82% of 

genes that have ESPP > 1 were classified as MDG/END.   

 

 

 

Figure 5-2 The magnitude of ESPP score for 107 confirmed cases from Saudi data in each 

gene group. 

 
Figure 5-2 demonstrates that almost 78% of genes scored > 0 by ESPP were MDG, 2% 

were END, around 1% were CNM, and almost 19% were NDNE. Further, 81.4% of genes 

that scored > 1 were MDG, 2% were END, 2% were CNM, and almost 14% were NDNE. 

Moreover, four out of the 19 genes that were assigned as CNM/NDNE have been recently 

found to be causal in OMIM: YIF1B (158), NEMF (159), METTL5 (160), and PTPN23 

(24,155). The rest of the genes have been checked using the sumRank of ESPP, LOEUF, 

and CoNeS. The sumRank helps in identifying genes that might be essential or disease 

genes which score low by sumRank. Genes that have high sumRank goes toward the non-
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essential end.  The scores for those genes are presented in Table 5-2. Most of those genes 

got very high sumRanks, and all of them had scores > 0 as per ESPP. 

 

Table 5-2 The sumRanks of genes found to be causal in Saudi data and classified as non 

MDG. 

Name Group ESPP LOEUF CoNeS ESPP 
Rank 

LOEUF 
Rank 

CoNeS 
Rank 

Sum 
Ranks 

ST7 NDNE 1.988 0.264 -1.247 1921 1384 1658 4963 
ZNF21
9 

NDNE 2.547 0.124 -1.532 836 272 865 1973 

NID1 NDNE 0.048 0.65 0.043 13 5 12 30 
STXBP
3 

END 1.369 0.593 -0.293 5 4 6 15 

NUDT
2 

NDNE 0.525 1.45 -0.010 7038 10355 6294 23687 

AKR1E
2 

CNM -1.056 1.419 1.403 15 14 15 44 

ARL14
EP 

NDNE 0.228 0.693 -0.336 12 7 5 24 

WDR5
9 

NDNE 1.793 0.723 -0.237 3 8 8 19 

CYP51
A1 

END 0.599 1.011 -0.145 10 12 9 31 

TXND
C15 

NDNE 0.859 0.757 -0.072 8 9 10 27 

ARL6I
P6 

NDNE 0.663 1.047 -0.287 6412 7976 4929 19317 

BIVM NDNE 0.924 0.672 -0.689 7 6 3 16 
ZNF52
6 

NDNE 1.378 0.471 -0.343 4 3 4 11 

LOXL3 NDNE 0.964 0.86 0.400 6 10 13 29 
LRRC3
4 

CNM -0.257 0.998 0.957 14 11 14 39 

 
Comparison of gene-specific scores 

The ESPP score was compared to the most recent gene-specific scores, LOEUF and CoNeS, 

to test their correlation and determine whether combining scores might better predict 

Mendelian disease genes.  
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5.4.3 Results of the comparison of ESPP and LOEUF on the 

essentiality/disease genes spectrums 

 

Figure 5-3 The distribution of genes using LOEUF versus ESPP scores based on the 

updated Spataro et al. gene groups (90). 

 

Figure 5-3 shows that LOEUF and ESPP display the expected correlation, given the 

differing direction of the scores, although the R-square values shows that the variability in 

ESPP is explained by 38% variability of LOEUF (P = 0.00) in 11711 observations. Further 

analysis was done to explore how these scores are distributed in relation to the Spataro 

groups.  

Among 12080 aligned genes with ESPP and LOEUF scores, 11711 genes that have LOEUF 

and ESPP values after discarding NAs were retrieved. According to Abramovs et al., the 

hard cut-off in LOEUF for essential genes is 0.35 (genes scoring < 0.35 are classed as 

essential). The number of genes that scored less than 0.35 in LOEUF was 2222 genes. 
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Further, 312 out of 2222 genes were successfully classified as END (14 %), 605 as MDG 

(27%), 306 as CNM (13.8%), and the rest (999 genes) as NDNE (45%) (Table 5-3). 

 

Table 5-3 The distribution of genes which scored < 0.35 as the hard threshold of LOEUF for 

the most constrained genes 

LOEUF 

hard 

threshold 

for most 

intolerant 

genes 

Observations of genes 

which scored < 0.35  

NDNE CNM MDG END 

< 0.35 2222 999 306 605 312 

Percentage 18.5% of total matched 

data 

45% 13.8% 27% 14% 

 

 

Table 5-4 The distribution of genes scored > 0, > 1 and > 2 by ESPP 

ESPP Observations 

of genes 

scored > 0.00 

NDNE CNM MDG END 

> 

0.00 

9189 5072 1030 2370 720 

Percentage 77 % of total 

matched data 

55 % 11 % 26 % 7.8 % 

> 

1.00 

5004 2497 618 1327 565 

Percentage 41 % of total 

matched data 

50 % 12 % 27 % 11 % 

> 

2.00 

 1894 793 232 602 270 

Percentage 16 % of total 

matched data 

42 % 12 % 32 % 14 % 
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If we take zero as the cut-off of END, the number of genes scored > 0 by ESPP in this 

study’s data is 9189. The ESPP score successfully classifies 720 genes as END (7.8%), 

while 2370 were classified as MDG (26%), 1030 as CNM (11%), and 5072 as NDNE (55%) 

(Table 5-4). 

If we assume that 1 is the ESPP cut-off for candidate essential genes, the total number of 

genes scored > 1 by ESPP is 5004. Within this gene set, the Spataro classification has 565 

genes as END (11%), 1327 as MDG (27%), 618 as CNM (12%), and 2497 as NDNE (50%) 

(Table 5-4). 

If we assume that the cut-off for essential genes according to ESPP is > 2, the total number 

of genes scored > 2 by ESPP is 1894 genes. More specifically, 270 genes were classified as 

END (14%), 602 as MDG (32%), 232 as CNM (12%), and 793 as NDNE (42%) (Table 5-

4). However, a comparison of ESPP with LOEUF to identify which one is better for 

predicting END/MDG groups according to the Spataro classification was not conclusive. 

The reason could be that LOEUF defined the constraint genes as any gene that is 

haploinsufficient with pLI > 0.9, and those showing a strong depletion of pLoF variation 

(first LOEUF decile). The number of genes in this category was 2222, and surprisingly, 

most of the genes falling into the range of LOEUF < 0.35 were classified by Spataro et al. 

(90) as NDNE accounting for 45% and only 14 % assigned as END. This suggests that the 

LOEUF score might not have a linear interpretation with groups classified as per Spataro et 

al., and the NDNE class within the same groups (which this author recognises as likely to 

contain novel Mendelian genes) is in need of more investigation (Figure 5-4, Figure 5-5). 
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Figure 5-4 Percentage of genes among each gene group of Spataro et al. classification (90) 

according to the ESPP score 

 

 

Figure 5-5 Percentage of genes among each gene group of Spataro et al. classification (90) 

according to the LOEUF score. 
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5.4.4 Results of the comparison of ESPP and CoNeS on 

essentiality/disease genes spectrums 

 

 

Figure 5-6 The distribution of genes using ESPP Vs CoNeS scores based on the updated 

Spataro et al. gene groups (90). 

 

The gene-level score (CoNeS) has been designed to predict genes under strong negative 

selection and therefore, predict constrained genes. Here, this score was compared with that 

of the ESPP to investigate which might be more useful in identifying essential/disease 

genes. Figure 5-6 shows that the data of ESPP aligned better with CoNeS than LOEUF as 

the R-square value shows that the variability in ESPP is explained by 80% variability of 

CoNeS, and the significance of P < 0.00. 

Here, there is a clear negative correlation between ESPP and CoNeS, which was expected as 

constrained genes that scored low as per CoNeS are scored high as per ESPP (Figure 5-6, 5-
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4, and 5-7). However, genes within the MDG group are closer to essential genes for both 

scores. Moreover, the regression analysis between the two scores for 11711 observations 

shows that there is strong negative correlation between the two scores; R-square = 0.80 and 

P = 0.00, which means that the variation of ESPP is explained by 80% of the variation in 

CoNeS (Figure 5-6).  

 

 

Figure 5-7 Percentages of genes among each gene group of the Spataro et al. classification 

according to the CoNeS score (90).  

Among the 7251 genes classified as constrained genes (scored < 0.2 as per CoNeS), 655 

genes were classified as END (9%), 1936 as MDG (27%), 855 as CNM (~12%), and 3808 

as NDNE (~53%) (Table 5-5). 

Table 5-5 The distribution of genes that scored < 0.2 as the hard threshold of CoNeS for the 

most constrained genes 

CoNeS hard 

threshold for most 

intolerant genes 

Observations 

of genes 

scored < 0.2  

NDNE CNM MDG END 

< 0.2 7251 3808 855 1936 655 

Percentage 62% of total 

matched data 

53% 12% 27% 9% 
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There was a slight improvement when the cut-off of essentiality was increased from 0 to 1 

in classifying END and MDG genes by ESPP, and the percentage went up when the cut-off 

was set at 2. Further, the percentage of prioritised genes by ESPP and CoNeS are very close, 

which explains the strong correlation between them (Table 5-4, 5-5). Figure 5-8 

demonstrates that the distribution of ESPP and CoNeS are close, while LOEUF has a 

distinct distribution as compared to the other two scores. 

 

 

Figure 5-8 Violin charts of ESPP (A), CoNeS (B), and LOEUF (C) showing the distribution 

of genes among each score range. 

5.4.5 Results of the comparison of LOEUF and CoNeS 

The results of the regression analysis between LOEUF and CoNeS for 11711 observations 

showed that 60% of the variations in LOEUF are explained by variations in CoNeS (R-

square = 0.60, P = 0.00). Further, there is a clear positive relationship between the two 

scores as END/MDG genes fall within low score levels in both scores (Figure 5-9). 
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Figure 5-9  Results of the comparison of LOEUF and CoNeS 

 

To predict which score fits better within the Spataro et al. classification (90), genes that 

scored low in both scores among the 11711 genes were examined. As mentioned earlier, the 

genes that scored < .2 as per CoNeS are 7251 in total. More specifically, CoNeS classified 

655 as END (9%), 1936 as MDG (~27%), 855 as CNM (~12%), and 3808 as NDNE 

(~53%). 

Regarding LOEUF, the number of genes scored less than 0.35 by LOEUF were 2222 genes. 

A total of 312 genes out of 2222 were successfully classified as END (14 %), 605 as MDG 

(27%), 306 as CNM (13.8%), and the rest (999 genes) as NDNE (45%) (Table 5-6). Here, 

LOEUF showed better prediction of END genes than CoNeS and for the MDG group, there 

were no major differences (Table 5-6). 
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Table 5-6 The distribution of genes that scored < 0.35 as per LOEUF and genes that scored 

< 0.2 as per CoNeS for the most constrained genes. 

Score 

threshold 

Observations  NDNE CNM MDG END 

LOEUF < 

0.35 

2222 999 306 605 312 

Percentage 19 % of total 

matched data 

45% 13.8% 27% 14% 

CoNeS < 0.2 7251 3808 855 1936 655 

Percentage 62 % of total 

matched data 

53% 12% 27% 9% 

 

5.4.6 Results of prediction for Dominant and Recessive genes using ESPP 

The number of matched data of dominant and recessive genes with ESPP without NAs is 

9931 genes, in which 108 genes were dominant and 509 were recessive. 

Moreover, the ESPP score provides quite a clear separation for dominant genes as shown in 

Figure 5-10. Almost 60% of dominant genes fall in the range of ESPP > 1, and 85% fall 

within ESPP > 0. However 75% of recessive genes are towards NDNE genes and scored 

less than 1. The direction of the recessive genes is not quite clear, suggesting the need for 

constructing another score to prioritise recessive genes as they are easier to identify by 

utilizing data enriched with homozygosity. 
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Figure 5-10 Prediction of dominant and recessive genes using ESPP scores 

5.4.7 Results of predicting dominant and recessive genes using LOEUF 

After aligning the data of LOEUF with dominant and recessive gene lists, almost 11957 

genes were retained after exclusions of NAs. In total, there were 509 recessive genes and 

108 dominant genes as scored by LOEUF (Figure 5-11).  

Moreover, 64% of dominant genes scored < 0.8 as per LOEUF, while 27% of dominant 

genes scored between 0.8 and 1.25, the least percentage of which (9%) scored > 1.25. 

Further, 65% of recessive genes scored > 0.8 as per LOEUF, and the rest (36%) are scored < 

0.8 (Figure 5-11). Therefore, the direction of recessive and dominant genes using the 

LOEUF scores support the direction of those genes using the ESPP score—the dominant 

genes go toward essential genes as per both scores, while the recessive toward the non-

essential end.  
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Figure 5-11 Prediction of dominant and recessive genes using LOEUF scores 

5.4.8 Results of predicting dominant and recessive genes using CoNeS 

The total number of genes that aligned with the dominant and recessive genes list and had a 

CoNeS score is 10002 genes. Of these, 78% of dominant genes and 58% of recessive scored 

< 0.2 as per CoNeS, while 32% of recessive genes scored between 0.2 and 1. The 

distribution of dominant and recessive genes by CoNeS score seems different as compared 

to ESPP and LOEUF as the majority of dominant and recessive genes went in the direction 

of essential genes (Figure 5-12). The reason for this could be that most of the CoNeS data 

falls into the category of < 0.2. 
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Figure 5-12 Prediction of dominant and recessive genes using CoNeS 

 

 

Table 5-7 List of 50 candidate disease genes using ranked scores comprising genes scored high by 

ESPP and low by LOEUF and CoNeS, and that were not classified as MDG/END.  

Name Group ESPP LOEUF CoNeS ESPP

Rank 

LOEUF

Rank 

CoNeS

Rank 

SumRanks 

ANKRD17 CNM 4.612 0.062 -2.810 23 30 14 67 

SUPT5H NDNE 4.084 0.074 -2.616 61 51 30 142 

KDM2A NDNE 3.818 0.045 -2.321 88 10 65 163 

USP34 NDNE 4.281 0.091 -2.805 44 107 15 166 

XPO1 NDNE 3.752 0.051 -2.181 94 14 106 214 

SUPT6H NDNE 4.003 0.087 -2.394 73 92 52 217 

NAV1 CNM 3.204 0.08 -2.297 245 68 72 385 

TNPO1 NDNE 3.220 0.056 -2.011 236 21 169 426 

<0.2 0.2-1.0 1.0-1.8 >1.8
NDNE 3828 2113 815 139
CNM 855 303 116 27
MDG 1551 517 166 26
Rec 293 162 44 4
Dom 86 15 8 1
END 646 71 22 1

38
28

21
13

81
5

13
9

85
5

30
3

11
6

27

15
51

51
7

16
6

26

29
3

16
2

44 486 15 8 1

64
6

71 22 1

N
U

M
B

ER
 O

F 
G

EN
ES

CONES RANGE



Chapter 5 

133 

CTNND2 CNM 3.220 0.098 -2.098 184 138 135 457 

DOT1L CNM 3.220 0.118 -2.047 81 235 150 466 

AP2A2 CNM 3.220 0.108 -2.250 221 186 84 491 

CDC42BP

B 

NDNE 3.220 0.12 -2.126 120 249 123 492 

RBM25 NDNE 3.220 0.077 -1.884 165 60 274 499 

ZNF521 NDNE 3.220 0.098 -2.239 275 138 87 500 

DIP2C CNM 3.220 0.149 -2.379 26 420 55 501 

XPO7 NDNE 3.220 0.12 -2.120 170 249 125 544 

PBRM1 CNM 3.220 0.129 -2.062 103 297 146 546 

CAND1 CNM 3.220 0.101 -1.936 182 154 222 558 

BTAF1 NDNE 3.220 0.128 -2.163 173 289 112 574 

CHD5 NDNE 3.220 0.157 -2.258 39 461 82 582 

KPNB1 CNM 3.220 0.092 -1.877 199 111 281 591 

SUPT16H NDNE 3.220 0.12 -2.213 259 249 90 598 

UBAP2L NDNE 3.220 0.103 -1.953 230 163 206 599 

SETD1A NDNE 3.220 0.136 -2.194 162 343 102 607 

INO80 NDNE 3.220 0.081 -1.891 273 75 268 616 

UNC13A CNM 3.220 0.158 -2.326 111 467 63 641 

DDX46 NDNE 3.220 0.144 -2.038 106 386 159 651 

ARFGEF1 NDNE 3.220 0.143 -1.959 83 378 204 665 

IPO5 NDNE 3.220 0.122 -1.986 256 261 186 703 

PLCL2 CNM 3.220 0.088 -1.935 386 94 224 704 

SBNO1 CNM 3.220 0.081 -2.183 524 75 105 704 

IPO7 NDNE 3.220 0.106 -1.928 304 175 231 710 

DHX15 CNM 3.220 0.105 -1.781 155 170 396 721 

SMARCC2 NDNE 3.220 0.117 -1.805 159 226 360 745 

USP24 NDNE 3.220 0.147 -2.011 180 406 168 754 

PRR12 NDNE 3.220 0.051 -1.972 556 14 195 765 

U2SURP NDNE 3.220 0.077 -1.851 401 60 308 769 

KDM3B NDNE 3.220 0.06 -1.692 239 25 547 811 

HELZ NDNE 3.220 0.048 -1.846 491 11 316 818 

KSR2 CNM 3.220 0.131 -1.975 321 314 191 826 

CKAP5 NDNE 3.220 0.162 -2.002 183 496 171 850 

PTPRD CNM 3.220 0.112 -2.080 514 197 141 852 

HIPK1 CNM 3.220 0.121 -1.757 190 256 430 876 
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TRIM33 CNM 3.220 0.086 -1.932 561 87 229 877 

SAP130 NDNE 3.220 0.159 -2.288 327 476 76 879 

SF3B3 NDNE 3.220 0.178 -2.053 117 615 148 880 

TNPO2 NDNE 3.220 0.129 -1.720 108 297 481 886 

CHD9 NDNE 3.220 0.17 -2.043 204 542 153 899 

MED12L NDNE 3.220 0.184 -2.033 95 655 161 911 

RTF1 NDNE 3.023 0.122 -1.851 343 261 307 911 

 

The genes listed in Table 5-7 were ranked as candidate genes for Mendelian diseases that 

score high by ESPP and low by LOEUF and CoNeS but were not classified as END/MDG. 

Interestingly, seven out of 11 genes that were ranked as candidate genes by ESPP (Table 4-

4) are listed in this table. Here, the CNOT1 gene was excluded as it has recently been found 

to be causal. Moreover, RYR3 was ranked 146th in the list, which is considered high ranking 

among a list of almost 11711 genes. More specifically, the RYR3 gene has been investigated 

earlier, and it was shown that it might be a candidate disease gene (refer to Table 4-4). 

Below, the functions of the genes in this table are considered to identify the strength of the 

evidence that some may be disease gene candidates (Table 5-8).  

 

Table 5-8 Functions of 50 genes that were prioritised by sumRanks of ESPP, CoNeS, and LOEUF 

and not classified as END/MDG. 

Name Group ESPP Full Name Notes on gene function (OMIM) 

ANKRD17 CNM 4.612 
ANKYRIN REPEAT 

DOMAIN-

CONTAINING 

PROTEIN 17 
 

Refer to table 4-4 

SUPT5H NDNE 4.084 
SPT5 HOMOLOG, DSIF 

ELONGATION 

FACTOR SUBUNIT 
 

Refer to table 4-4 

KDM2A NDNE 3.818 lysine demethylase 2A  

 
 

Plays a role in histone demethylase 

activity (H3-K36 specific) and 
unmethylated CpG binding 
 

USP34 NDNE 4.281 Ubiquitin specific 

peptidase 34 

Refer to table 4-4 
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XPO1 NDNE 3.752 Exportin 1 CRM1 was described by Stade et al. as 

an essential nuclear export factor in 

S.cerevisiae and they suggested 

renaming it XPO1 (162). 

SUPT6H NDNE 4.003 SPT6 Homolog, 

Histone Chaperone 

and Transcription 

Elongation Factor 

Refer to table 4-4 

NAV1 CNM 3.204 Neuron navigator 1 
 

The exact function of this protein is 

not known 

TNPO1 NDNE 3.220 Transportin 1 Plays an essential role in 

atherosclerotic coronary artery disease 

(CAD) (163) 

CTNND2 CNM 3.361  catenin delta 2 
 

‘myogenic transcription factors 

regulate synapse specific transcription 

of RAPSYN protein’(164) 

DOT1L CNM 3.927 DOT1 like histone 

lysine 

methyltransferases 

Nucleosomal H3-specific 

methyltransferase (165) 

AP2A2 CNM 3.256 Adaptor related 

protein complex 2 

subunit alpha 2  

Not known 

CDC42BPB NDNE 3.603 CDC42 binding 

protein kinase beta 

CDC42BPB binds the kinase domains 

of MRCK-alpha and MRCK-beta to 

impede their catalytic function (166) 

RBM25 NDNE 3.431 RNA binding motif 

protein 25 

It works as a splicing factor RBM25 to 

control MYC activity, which plays an 

important role in acute myeloid 

leukaemia (167) 

ZNF521 NDNE 3.121 Zinc finger protein 521 Unknown function 

DIP2C CNM 4.564 Disco interacting 

protein 2 homolog C  
 

Refer to table 4-4 

XPO7 NDNE 3.415 Exportin 7 
 

Nuclear export factor with broad 

substrate apecificity 

PBRM1 CNM 3.705 Polybromo 1 Chromatin-remodelling complex (168) 

CAND1 CNM 3.363 Cullin associated and 

neddylation 

dissociated 1 

Associated with Tributyl phosphate 

TBP in nuclear extracts(163,164) 



 

136 

BTAF1 NDNE 3.393 B-TFIID TATA-box 

binding protein 

associated factor 1  

BTAF1 controls DNA-dependant 

ATPase activity that separates the TBP 

from DNA(171) 

CHD5 NDNE 4.346 Chromodomain 

helicase DNA binding 

protein 5 

Refer to table 4-4 

KPNB1 CNM 3.314 Karyopherin subunit 

beta 1 

KPNB1 regulates nuclear import in the 

interphase (172)  

SUPT16H NDNE 3.161 SPT16 homolog, 

facilitates chromatin 

remodelling subunit  

Splicing factor (173) 

UBAP2L NDNE 3.234 Ubiquitin associated 

protein 2 like 

Independent BMI1/RNF2 (Polycomb 

complex protein/E3 ubiquitin-protein 

ligase RING2 is an enzyme that is 

encoded by the RNF2 gene in humans) 

complex that inhibits INK4A/ARF, 

which are cyclin dependent kinase 

inhibitors (CKIs) (168,169,170)  

SETD1A NDNE 3.438 SET domain 

containing 1A, histone 

lysine 

methyltransferase 

This gene was found to be causal for 

two disorders: 1. Early-onset epilepsy 

with/without developmental delay 

(177); 2. Neurodevelopmental disorder 

with speech impairment and 

dysmorphic facies (178) 

INO80 NDNE 3.123 INO80 complex 

ATPase subunit 

Possible association with inherited 

immunoglobulin class-switch 

recombination deficiency pending 

confirmation (179)  

UNC13A CNM 3.668 Unc-13 homolog A 
1. There is a possible association with 

Polymorphism in amyotrophic lateral 

sclerosis  

2. Possible association with congenital 

myasthenic syndrome 

3. Possible association with a 

dyskienetic movement disorder 

associated with delayed development 

and behavioural abnormalities (180) 
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DDX46 NDNE 3.684 DEAD-box helicase 

46 

DDX46 was found to prevent cell 

growth in human colorectal cancer cell 

line (181) 

ARFGEF1 NDNE 3.915 ADP ribosylation 

factor guanine 

nucleotide exchange 

factor 1 

Unknown function 

IPO5 NDNE 3.166 Importin 5 Nuclear transport factor (182) 

PLCL2 CNM 2.966 Phospholipase C like 2 Phospholipase catalytic activity(183)  

SBNO1 CNM 2.797 Strawberry notch 

homolog 1 

Unknown function 

IPO7 NDNE 3.076 Importin 7 Unknown function 

DHX15 CNM 3.454 DEAH-box helicase 

15 

Works as a viral RNA sensor to induce 

interferon-stimulated genes (184) 

SMARCC2 NDNE 3.444 SWI/SNF related, 

matrix associated, 

actin dependent 

regulator of chromatin 

subfamily c member 2 

Coffin-Siris syndrome 8 (179,180)  

USP24 NDNE 3.368 Ubiquitin specific 

peptidase 24 

It has been associated with Parkinson’s 

disease (187)  

PRR12 NDNE 2.773 Proline rich 12 Unknown function 

U2SURP NDNE 2.941 U2 snRNP associated 

SURP domain 

containing 

Unknown function 

KDM3B NDNE 3.217 Lysine demethylase 

3B 

Diets-Jongmans syndrome (188) 

HELZ NDNE 2.832 Helicase with zinc 

finger 

Plays a significant role in RNA 

metabolism in different tissues (189) 

KSR2 CNM 3.050 Kinase suppressor of 

ras 2 

Plays a role in regulating MEKK3 and 

COT activity that is expressed mainly 

in the kidney and brain (184,185) 

CKAP5 NDNE 3.362 Cytoskeleton 

associated protein 5 

Acts as a microtubule polymerase 

(192) 

PTPRD CNM 2.809 Protein tyrosine 

phosphate receptor 

type D 

Has a role in PTPase activity against 

phosphorylated test substrate (193) 

HIPK1 CNM 3.341 Homeodomain 

interacting protein 

kinase 1 

Expression of HIPK1 found to be 

significantly increased in the breast 

cancer cell line (194) 
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TRIM33 CNM 2.770 Tripartite motif 

containing 33 

Works as ubiquitin ligase (195) 

SAP130 NDNE 3.047 Sin3A associated 

protein 130 

One of the SIN3A complexes, which 

repress transcription (196) 

SF3B3 NDNE 3.628 Splicing factor 3b 

subunit 3 

Unknown function 

TNPO2 NDNE 3.681 Transportin 2 Has a significant role to export cellular 

mRNA (197) 

CHD9 NDNE 3.302 Chromodomain 

helicase DNA binding 

protein 9 

It is a chromatine remodelling protein 

(198) 

MED12L NDNE 3.734 Mediator complex 

subunit 12L 

Nizon-Isidor syndrome (199) 

RTF1 NDNE 3.023 RTF1 homolog, 

Paf1/RNA polymerase 

II complex component 

Plays a role in gene expression 

regulation (200) 

 

Table 5-8 shows the highest ranked genes by ESPP, CoNeS, and LOEUF that were not 

classified as END/MDG and the potential clinical significance of each gene. Upon 

investigating the literature and OMIM database, it is clear that a number of genes seem to 

have nuclear functions. Those genes, therefore, have the possibility to be unrecognised 

essential genes or causal roles in disease. Here, four genes were identified that have recently 

been confirmed as causal: SETD1A was discovered as causal in 2020, and the rest in 2019 

(highlighted in red in Table 5-8). Thus, they have not been classified as MDG as per the 

Spataro et al. classification (90).  

More specifically, first, while SETD1A was classified as NDNE, it was scored high as per 

ESPP at 3.43 which indicates that this gene might be causal. Further, this gene has been 

linked with two diseases: early-onset epilepsy with/without developmental delay (177) and 

a neurodevelopmental disorder with speech impairment and dysmorphic facies (178). 

Second, SMARCC2 was also classified as NDNE and scored 3.44 as per ESPP, which 

indicates that this gene might be a candidate gene. Investigation of this gene found that it is 

causative for Coffin-Siris syndrome 8 (185). Third, KDM3B was classified as NDNE with a 

high ESPP score of 3.21, indicating that it might be a candidate gene for Mendelian 

diseases. Further, it was found to cause Diets-Jongmans syndrome (188). Last, MED12L 

was classified as NDNE and scored high as per ESPP at 3.73 which indicates that this gene 
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might be causal. The investigation of MED12L showed that this gene is the cause of Nizon-

Isidor syndrome (199). 

5.5 Discussion 

Combining genome and transcriptome sequencing data has enhanced diagnosis by the 

improved discovery of rare variants with functional effects. However, the analysis of 

transcriptome data is challenging owing to the fact it is affected by the environment, state of 

a disease, and technical variations. Therefore, identifying when an effect is genetic and the 

impact that this effect has beyond the normal population range is quite challenging. In this 

regard, Mohammadi et al. have developed a method called ANEVA, and its extension, 

ANEVA-DOT, to be able to quantify genetic variation in gene dosage in the general 

population, and to recognise genes where a patient seems to have a heterozygous variant 

with an unexpected strong effect on gene expression. This will hopefully allow single 

transcriptome comparisons to pre-existing reference data without the technical and reverse 

causation noise in total gene expression analysis (201). However, the majority of their 

analyses have been limited to only a small portion of variants that stimulate alterations in 

the transcriptome, like splice alterations and total loss of expression. In this context, a 

promising data type is allelic expression, these data quantify the paternal and maternal 

haplotype expressions of a gene (201). ‘However, a quantitative framework for interpreting 

this data type to identify rare pathogenic variants has been lacking’ (201). 

Meanwhile, GeVIR and LOEUF showed a potential to rank AR genes, as they demonstrated 

the intolerance of genes to various types of variants—missense and LoF (144). However, 

LOEUF was highly biased towards long genes compared to GeVIR. To prioritise genes 

based on the level of tolerance using both missense and LoF, produced a composite score 

was produced by combining LOEUF and GeVIR into VIRLoF, which showed a better 

performance (144). 

Moreover, the comparison of ESPP and LOEUF showed that ESPP performs better in 

prioritizing MDG using the Spataro et al. classification (90). However, regarding GeVIR 

and VIRLOF, the comparisons were not done due to unavailability of the data.  

Further, the results of testing candidate genes prioritised by ESPP using the SHGP data 

showed that genes that scored more than 2 as per ESPP were 89% MDG and 11% NDNE. 

The NDNE gene group is worth more investigation as it is likely to contain candidate genes 

for rare diseases as suggested by the integrated scores. This study had anticipated that the 
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large NDNE gene group was likely to contained undiscovered disease genes and thus, it was 

the focus of much of this investigation. For example, upon investigating genes that have 

were classified as NDNE, the ZNF219 gene was found to be causal for colobomatous 

microphthalmia (202). Other genes in SHGP data that have been classified by ESPP as 

NDNE were found to be candidate genes using autozygosity mapping; this has to be 

confirmed using GenCC. 

In the comparison of ESPP, LOEUF and CoNeS scores, the results of ESPP and LOEUF 

comparison showed quite a weak correlation. However, the performance of ESPP was quite 

similar to LOEUF in classifying essential genes, and ESPP appeared to show better 

performance in recognizing MDG genes within the Spataro groups. Here, an ESPP cut-off > 

2.00 was chosen as this threshold showed better alignment with known MDG/END genes 

(Table 5-3, Table 5-4). 

Additionally, CoNeS showed a strong negative correlation with ESPP. It is worth looking 

into this data in more depth. Further, ESPP showed better performance in classifying 

MDG/END than CoNeS (Table 5-4, Table 5-5).Regarding LOEUF and CoNeS, there was a 

positive correlation between both scores as 60% of variance in LOEUF data was explained 

by CoNeS (Table 5-6). However, CoNeS and LOEUF had similar performances in 

prioritizing MDG, while the latter was better at predicting END genes  

From the results of predicting the directions of dominant and recessive genes using ESPP, 

LOEUF and CoNeS, ESPP and LOEUF showed the same direction, which supports that 

dominant diseases go toward the essential end in both scores. However, the direction that 

these genes took as per the CoNeS score remained quite unclear. 

5.6 Conclusions 

In this chapter, ESPP performance was tested across multiple databases. The results were 

promising as two genes that were prioritised by ESPP as candidate genes for Mendelian 

diseases were found to be causal. The first gene, CNOT1, was recently shown to have a 

disease variation underlying holoprosencephaly disease in two published articles. The 

second gene, RYR3, was shown to cause intellectual disability with a de novo splice donor 

site mutation. Thus, the argument that many undiscovered rare disease variants might be 

splice variants is supported. Moreover, 15% of the genes that were classified by ESPP as 

NDNE might be candidate genes worth investigating further. Ultimately, the ESPP score 
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showed better separation of dominant genes than recessive ones—a fertile area for future 

research.  

Further, ESPP performed better in prioritising MDGs, dominant and recessive genes than 

LOEUF and CoNeS. Using the sum of ranks of the three scores for ESPP, LOEUF and 

CoNeS, the results were interesting as four genes of the 50 highest ranked NDNE/CNM 

genes have recently been found to be causal. The first gene, SETD1A has been implicated in 

two diseases: epilepsy provoked by de novo variants, and a novel neurodevelopmental 

syndrome caused by dominant de novo LoF variants (172,171). The second, SMARCC2, 

was proven to be involved in Coffin-Siris syndrome, which can be caused by three 

heterozygous variants in this gene, the majority of which are novel and proven to be de novo 

variants (185). The third is KDM3B that has been proven to cause Diets-Jongmans 

syndrome, provoked by heterozygous missense variants that have been identified in 17 

individuals (188). The fourth is MED12L that causes Nizon-Isidor syndrome by deletions 

and duplication variants (199). In this context, predicting four genes as causal from 

NDNE/CNM genes using the sumRanks of the three scores suggest that combining the three 

scores might provide better predictions of Mendelian disease genes. 
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Chapter 6 Conclusions and Future Work 

6.1 Conclusion  

The preliminary results of the systematic literature review suggest that there were no single 

gene-level scores capable of predicting Mendelian disease genes. Therefore, a combination 

of evidence on genes essentiality will help in building a model predicting genes with 

potential disease variants. However, individual genes might contain variants that do not 

cause disease. Thus, distinguishing this type of sequence variant from a deleterious one 

remains a significant challenge.  

Based on the findings, it is worth checking any suspect gene for Mendelian disorders by 

using the ESPP score, which explains the variation in the data better than other available 

gene-specific scores. Further, to improve the performance of this study’s model, validating 

ESPP score, providing better classification for the human genes with the understanding of 

gene essentiality is crucial, which is a fertile area for future studies.  

6.1.1 Update on the disease genome  

The area of disease genomics is growing rapidly with the ability to sequence the whole 

genome at a high speed and lowering costs, and the identification of faulty genes among 

thousands of sequenced genes being a necessary mission. However, despite the 

development of WES and WGS, the diagnostic rate of rare diseases is only 30% (203). 

Several obstacles prevent the increase in the rate of rare disease molecular diagnosis. Some 

of these are bioinformatics, incomplete penetrance, and non-coding variants (203). Further, 

the quality of a variant depends on the genomic region, type of variant, and depth of 

sequencing coverage. Moreover, in variant analysis, variant type is an important factor. 

Typically, the variants considered first are the coding ones; however, splicing variants and 

indels might affect both coding/non-coding regions (203). The most deleterious variants are 

LoF variants (stop-gain, frameshift, and essential splice site), but they are rare as compared 

to other types of variants. Meanwhile, missense variants might be seen in disease genes of 

healthy individuals, making their interpretation challenging. Splice variants might stimulate 

regulatory domains within mRNA—especially those regulating splicing—and might also 

impact translation (203). However, many of the in silico tools do not perform well in 

assessing variants outside the canonical splice sites. Nevertheless, recently, splicing libraries 
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have been enhancing the understanding of splicing variants, and it, thus, might be useful to 

train future splicing models. More specifically, splice, one of the most recent predictive 

tools, showed a high performance at identifying splicing. In this context, Jaganathan et al. 

predicted that cryptic splice mutations that validate at a high rate through RNA-seq are 

highly likely to be deleterious, and are a causal variant of monogenic diseases (204). 

 

While synonymous variants are usually not of interest, it has been shown that these variants 

are not always non-deleterious as they might also cause aberrant splicing either at the splice 

sites or by interrupting other splice regulatory regions (203). Therefore, undiscovered 

disease variants might be at splice sites, and this might provide an explanation of limited 

diagnosis of Mendelian disease. 

Moreover, the results of the sumRanks of ESPP, LOEUF and CoNeS showed that most of 

the highest ranked genes were NDNE, and a few had unknown functions or critical 

functions that have not been identified to cause diseases. Thus, identifying the functions of 

such genes and reclassifying most NDNE genes will help in identifying more disease genes 

in the future 

6.2 Plans for future work  

Understanding the biology of the human population depends on understanding human 

variation. Here, certain unique populations like the Saudi population—as their genomic data 

is enriched for homozygosity due to population demographics—can be utilised to guide the 

prediction of recessive disease genes by classifying genes enriched for homozygous variants 

in this population. However, this has not been possible using other population data due to 

reduced homozygosity genome-wide. Nevertheless, the high percentage of consanguineous 

marriages in the Saudi population facilitates the study of recessive genes and their role in 

disease processes. In this context, constructing a classifier to assess the tolerance of all 

genes to homozygous, and apparently deleterious, variants is worth the effort. Thus, genes 

that show high tolerance to homozygous deleterious variants without an obvious phenotypic 

consequence should be considered low priority in the hunt for recessive disease genes. 

Meanwhile, previous research examined 253 genes that contain confirmed LoF variants that 

were found to be homozygous in at least a single individual (12). These LoF-tolerant genes 

tend to have fewer PPIs, reduced conservation, and are enriched for olfactory receptor genes 

(which were excluded from subsequent analysis), and depleted for genes involved in 
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embryonic development and crucial cellular processes compared to the rest of the genome. 

The remaining 213 LoF-tolerant genes were compared to 858 known recessive-disease 

genes using a linear discriminant model based on human–macaque conservation and 

proximity to recessive disease genes in PPI networks. Here, MacArthur et al. used a sample 

of genes homozygously inactivated in the 1000 Genomes project. They considered these 

genes as LoF-tolerant, so they can be used as a comparison group, which can be utilised to 

delineate the functional properties that discriminate these genes from severe recessive 

disease genes. Further, they also found that LoF-tolerant genes have different functional 

characteristics—they are less conserved and have fewer PPI than the average genome(12), 

enabling them to generate a recessive disease gene probability score for every gene in the 

genome. Here, MacArthur et al. noted that while it is useful in prioritising candidate genes 

for follow up, they lacked the power to definitively delineate LoF-tolerant and recessive 

disease genes.  

However, the unique genetic makeup and population history of the Saudi population would 

lend significantly increased power to predict recessive genes as compared to the study by 

MacArthur et al.—which used just 185 individuals from the 1000 genomes project—due to 

the greater sample size and higher levels of homozygosity within the Saudi population.  

In a general sense, identifying likely candidate recessive disease genes and getting a better 

understanding of the landscape of deleterious and tolerated homozygous variation in the 

human population will be immensely valuable in addressing the challenges of variant 

interpretation, while improving variant classification and enhancing diagnostic yields from 

sequencing projects, both within the Saudi population and beyond. Further, considering 

patterns of homozygosity alongside detailed patient phenotyping information will provide 

valuable insights into the function of many poorly characterised recessive disease genes. 

More specifically, as shown in this study, integrating information of more gene-specific 

scores might improve the detection of Mendelian disease genes as most of the composite 

scores like VIRLOF, ISPP and CoNeS showed better performances than individual scores. 

Therefore, work is required in order to validate the derived composite ESPP score presented 

in the thesis. In particular, performing a quantitative analyses that formally assess whether 

the ESPP is more effective than other measures at predicting gene essentiality and  

diagnosing monogenic disorders.  

 



Chapter 6 

145 

 

 

 

 



  

 

Appendix A  

Scoping search approach 

1.Cochrane Library 

(“gene level” classifier) 0 result, (“gene level” score) 6 irrelevant results, (“gene level 

“approach) 6 irrelevant result, (“disease gen*”)5 irrelevant result, (gene* essentiality) 0 

results, (eliminating false-positive variants) 0 result, (gene specific filtering) 21 irrelevant 

result, (“gene-specific” filtering) 1 irrelevant result, (gene level metrics) 20 irrelevant 

results, (“next generation” sequencing) 1 irrelevant result. 

2.Prospero 

(gene level scores) 0 results; (disease genome) 0 results; (gene essentiality)0 results; (gene-

specific filtering) 0 results; (next-generation sequencing) 0 results, disease gen* 28 

irrelevant results, (eliminating false-positive variants) 0 results. 

3.The Trip (Turning Research into Practice) database 

Using PICO question and Filtering by evidence type (systematic review): 0 results. 

Using the same filter for other keywords: (“gene level” classifier) 0 results, (“gene level” 

score) 4 results. 

4.Evidence Search (NICE)  

Using filter results by secondary evidence- systematic review. 

(Using Gene specific metrics to facilitate identification of disease genes) 33 irrelevant 

systematic reviews, (“gene level” classifier) 1 irrelevant systematic review, (“gene level” 

score) 2 irrelevant systematic reviews, (“gene level “approach) 3 irrelevant systematic 

reviews,(“gene level”) 4 irrelevant systematic review, (“disease gen*”) 1 irrelevant 

systematic review, gene* essentiality, (gene* essentiality) 3 irrelevant systematic reviews, 

(eliminating false-positive variants) 13 irrelevant systematic reviews, (gene specific 

filtering) 10 irrelevant systematic reviews, (“gene-specific” filtering) 0 result, (“gene level” 

metrics) 2 irrelevant systematic reviews, (“next generation” sequencing) 30 irrelevant 

systematic reviews. 

5. EBSCOhost Platform (CINAHL, MEDLINE, SportDiscus) 

Using (Advance search in all fields: disease AND gen* AND variant AND “gene-level” 

AND priori* AND filter* AND systematic review, publication date range: not specified, 

content type: Any, Discipline: Medicine; Sciences; Statistics, Language: English, show 

only: Scholarly articles, including peer-reviewed, Exclude from results: Newspaper articles, 

Dissertations/Thesis). This filter was used to get a reasonable number of related articles. 

The result was 63 articles, which look relevant, but no systematic review was found. 1 



 

 

Meta-analysis was found about (A Meta-Analysis Strategy for Gene Prioritization Using 

Gene Expression, SNP Genotype, and eQTL Data), which is relevant but not in the same 

area. 

6. OvidSP Platform (Medline, Embase, EBM Reviews). 

Using (Advance search in all fields: disease AND gen* AND variant AND “gene-level” 

AND priori* AND filter* AND systematic review. content type: Any, Discipline: Medicine; 

Sciences; Statistics, Language: English, show only: not specified, Exclude from results: 

Newspaper articles, Dissertations/Thesis. Here, 133 results look related, but no systematic 

review was identified. 
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Abstract 

Despite the identification of many genetic variants contributing to human disease (the ‘disease genome’), 
establishing reliable molecular diagnoses remain challenging in many cases. The ability to sequence the 
genomes of patients has been transformative, but difficulty in interpretation of voluminous genetic variation 
often confounds recognition of underlying causal variants. There are numerous predictors of pathogenicity for 
individual DNA variants, but their utility is reduced because many plausibly pathogenic variants are probably 
neutral. The rapidly increasing quantity and quality of information on the properties of genes suggests that 
gene-specific information might be useful for prediction of causal variation when used alongside variant-
specific predictors of pathogenicity. The key to understanding the role of genes in disease relates in part to 
gene essentiality, which has recently been approximated, for example, by quantifying the degree of 
intolerance of individual genes to loss-of-function variation. Increasing understanding of the interplay 
between genetic recombination, selection and mutation and their relationship to gene essentiality suggests that 
gene-specific information may be useful for the interpretation of sequenced genomes. Considered alongside 
additional distinctive properties of the disease genome, such as the timing of the evolutionary emergence of 
genes and the roles of their products in protein networks, the case for using gene-specific measures to guide 
filtering of sequenced genomes seems strong. 

Key words: disease genome; gene essentiality; gene-specific filtering; next-generation sequencing 



 

 

Introduction 
 
Next-generation sequencing of exomes (the protein-coding regions of the sequence) or 

whole genomes from clinical patient samples typically yields tens of thousands of coding 

DNA variants. The volume and complexity of these data present many challenges for 

identification of underlying disease causal mutations. The diagnostic rate for rare diseases 

by whole exome sequencing is generally in the range 25–50%, varying by phenotype [1, 2]. 

Chong et al. [3] indicate that the genes underlying 50% (3152) of all known Mendelian 

phenotypes are still unknown, and many more Mendelian conditions have yet to be 

recognized. Establishment of gene–disease relationships is complicated by pleiotropy where 

genetic loci harbour multiple variants associated with multiple and sometimes distinct traits. 

Therefore, many gene–disease relationships remain poorly understood, even for single-gene 

disorders and, particularly, for common, complex diseases where multiple causal gene 

variants of small effect are difficult to recognize. 

 

Part of the difficulty with the interpretation of genome sequences arises through the large 

number of plausibly damaging variants, which are tolerated [4]. A ‘healthy’ human genome 

is estimated to contain 100 loss-of-function (LoF) variants [5]. Efforts to predict disease 

causal variation amongst sequenced genomes usually focus on the properties of individual 

DNA variants. To predict variant pathogenicity, a number of metrics have been developed, 

based on, for example, conservation scores, changes in amino acid sequence or predicted 

effect on protein function [for example, Sorting Intolerant From Tolerant (SIFT), PolyPhen 

and GERP (Genomic Evolutionary Rate Profiling)] [6–8]. Both SIFT and PolyPhen use 

sequence homology of related proteins to predict whether an amino acid change might 

damage protein function. The conservation of the specific base though evolution is 

considered through multiple sequence alignment across species. The SIFT algorithm uses 

only homology for prediction, whereas PolyPhen also considers whether an amino acid 

change occurs in an important functional or structural site in the protein. GERP considers 

evolutionary constraint at specific positions in the sequence using a maximum likelihood 

approach to compute evolutionary rates. There are also evolutionary and functional 

prediction tools such as CADD (Combined Annotation Dependent Depletion) [9], which 

integrates predictive scores from multiple annotations into one metric. 

However, many variants scored as apparently damaging by these methods are likely to be 

tolerated and firmly establishing a molecular diagnosis from a sequenced genome can be 

challenging. Therefore, the use of gene-specific measures alongside these variant-specific 

annotations has been suggested as a way to improve the ability to identify causal mutations 

[10]. 



 

 

Understanding the nature of the ‘disease genome’, which we define as the set of genes 

which contain coding variation and/or have associated non-coding regulatory variation 

contributing to disease, is important for developing strategies which best exploit gene-

specific information. The complex mechanisms underlying the creation and persistence of 

the disease genome and pathogenic variation therein are not clearly understood but depend 

substantially on interactions between genetic recombination, selection and mutation. The 

pattern of linkage disequilibrium (LD) is an outcome of these processes and may have a 

close relationship to the disease genome [11, 12]. Increased understanding of how these 

underlying processes define patterns of disease variation will go some way towards 

resolving the causes of disease in individual genomes [13]. The interplay between these 

processes and outcomes, and how they underlie disease variation in the genome, is 

fascinating and the main focus of this review. 

Selection and the disease genome 

The role of selection in shaping genomes is defined in three ways: (1) ‘Hard’ selective 

sweeps where new, advantageous, mutations are driven to fixation by positive selection, (2) 

‘Soft’ selective sweeps in which there is more gradual fixation of weakly beneficial 

variation by positive selection and (3) by negative (purifying) selection in which there is 

elimination of deleterious mutations. The relative impact of negative versus positive 

selection in shaping the human genome is uncertain [14]; however, most mutations affecting 

phenotypes must be deleterious [15]. Lohmueller et al. [16] stress the relative importance of 

negative over positive selection acting on the genome. Although selective sweeps tend to 

locally reduce genetic variation, they are not considered to be a dominant factor explaining 

patterns of variability across the genome. Variants contributing to disease most likely arise 

by random mutation and, at least for highly penetrant monogenic variants, are maintained at 

low frequencies by purifying selection [17]. However, variants involved in complex traits 

(common disorders in which a disease allele contributes only a small fraction of disease 

risk) must be subject to only extremely weak negative selection [18]. 

The efficiency of selection may be reduced under certain conditions through the 

mechanism of Hill–Robertson interference (HRI) [19–21]. Considering variants subject to 

positive selection, there may be a situation where an advantageous mutation arises and starts 

to spread through the population. However, before this mutation achieves fixation, a second 

advantageous mutation at a nearby locus emerges in an individual who lacks the first 

mutation. The two advantageous alleles are effectively in competition. Recombination 

enables the creation of haplotypes carrying both advantageous alleles, with increased fitness 



 

 

assuming it is more advantageous to carry both alleles. However, in weakly recombining 

genomic regions, this haplotype is much less likely to be generated. Therefore, the efficacy 

of selection acting on linked sites simultaneously can be reduced in the presence of limited 

recombination. 

The impact of HRI in weakly recombining genome regions can also be seen for variants 

subject to purifying selection. Hussin et al. [13] considered the impact of HRI on the 

distribution of damaging variants. If there are many sites (for example, damaging non-

synonymous variants) in a small genomic region, which has a low recombination rate, HRI 

may allow potentially deleterious variation to achieve high frequencies [15]. The impact is 

greater with an increasing number of sites subject to purifying selection. Meiotic 

recombination acts to break down this interference allowing these sites to segregate 

independently and form new haplotypes leading to reduction in the accumulation of 

damaging alleles [22]. 

Recombination and the disease genome 

During meiosis, the creation of DNA double-stranded breaks is followed by repair through 

homologous recombination. This process enables allele/haplotype shuffling with significant 

evolutionary advantage through the breakdown of associations between alleles at linked loci 

(in LD), which arise by genetic drift [22]. The close alignment between the recombination 

structure and patterns of LD enabled the recognition of the exquisite and remarkable 

mechanism, which promotes narrow, intense regions of recombination (hotspots). This 

process involves the binding of histone methyltransferase PR (positive-regulatory) domain 

containing 9 (PRDM9). This mechanism results in histone methylation before creation of a 

double-stranded break and is associated with biased gene conversion or ‘hotspot drive’ [14]. 

Selective bias in favour of the non-recombinogenic allele eventually drives the extinction of 

the recombination hotspot [23]. However, the highly evolving zinc finger domain of 

PRDM9 changes the motif it recognizes with subsequent generation of new hotspots [24]. 

Recombination may also influence the evolution of the genome through GC-biased gene 

conversion in which there is biased introduction of G and C nucleotides during mismatch 

repair following recombination [25], and also, there may be biased transmission of the 

shorter or longer allele of an insertion–deletion polymorphisms (indels) during meiosis [14]. 

However, Webster and Hurst [14] suggest there is no evidence that these indirect effects of 

variation in recombination rate across the genome impacts the efficiency of selection. 

Meiotic recombination has a significant role in determining the abundance and location of 

disease associated variation in the genome [13]. Where recombination is absent (and there is 



 

 

no mutation back to the original allele), a process termed Muller’s ratchet [22, 26] has an 

important impact. In the absence of recombination, deleterious variants arising by mutation 

cannot be eliminated because the original haplotypes that lack the mutation cannot be re-

generated. Suppressed recombination and the build-up of deleterious variation may explain 

why most Y chromosome genes are inactive [20]. Given the highly variable recombination 

rates across chromosome regions, the pattern of recombination provides insights into the 

processes underlying the distribution of disease variation across the genome. Hussin et al. 

[13] contrasted levels of potentially damaging variation in highly recombining parts of the 

genome with weakly recombining regions. They provide clear evidence that purifying 

selection removes damaging variation more efficiently in highly recombining regions. 

The possibility that recombination is itself mutagenic has been considered. It is known 

that recombination underlies sequence structural changes because of non-allelic homologous 

recombination [14], but there is limited evidence it can introduce point mutations [27, 28]. 

Schaibley et al. [27] found wide variation in mutation rates related to local GC content, but 

not to the recombination rate. Overall, the available data suggest that the recombination rate 

has limited effect on the frequency of mutation. 

Mutation and the disease genome 

Genes with high mutation rates might appear to be disease candidates simply because 

multiple patient genomes are likely to contain mutations in these genes. Variability in 

mutation rate provides a particular challenge to interpretation of sequenced genomes [28]. 

Mutations arise through copying errors during replication, spontaneous DNA changes and 

DNA instability [29]. It is known that mutation rates vary widely on different scales from 

single nucleotides through to whole chromosomes [30]. There are powerful context effects 

in which the mutation rate is influenced by adjacent nucleotides causing mutation rate 

variability of >650-fold [31]. For example, CpG dinucleotides constitute <2% of the genome 

but account for 19% of the de novo mutations [29, 32] and are the most mutable sites in the 

genome [33]. During replication, DNA mispairing is frequent with G-T and A-C mispairing 

the most common. This creates a 2-fold rate of transitions compared with transversions, 

when the opposite would be expected if all changes were equally likely [29]. There is also 

evidence for more cryptic context-independent variation with some sites appearing hyper-

mutable [34]. The sequence context of each gene is a powerful predictor of mutation rates. 

Aggarwala and Voight [35] introduce ‘substitution intolerance scores’ for genes 

demonstrating that a heptanucleotide context accounts for >81% of variability in substitution 

probabilities. They identify mutation-promoting motifs at ApT dinucleotides, CAAT and 



 

 

TACG sequences. Based on this 7-mer sequence, the substitution intolerance score 

quantifies the difference between expected and observed functional variants in a gene given 

the sequence context. 

 
LD and the disease genome 

The pattern of LD is broadly conserved among different populations [36] and known to be 

highly determined by recombination, but is also impacted by selection and mutation. 

Recombination and mutation tend to increase the diversity of haplotypes and, therefore, act 

to reduce LD locally; in contrast, selection tends to increase LD, although its effects are 

complex [37]. Remarkable alignment between the structure of the linkage map in 

centimorgans (which quantifies meiotic recombination over a few generations) and the 

‘historical’ pattern of recombination in LD maps (reflecting accumulated recombination 

over many generations) has been demonstrated [36]. The X chromosome shows an excess of 

LD reflecting either reduced recombination or, more significantly, increased selective 

pressure on the haploid X [38, 39]. Lek et al. [40] note that genes on the X chromosome are 

significantly more constrained (having fewer rare variants per gene than expected under a 

selection neutral model) compared with genes on the autosomes. 

Gibson et al. [11] and Collins [12] have shown, by constructing LD maps of individual 

genes from exome data, that there is enrichment of disease variation amongst genes with 

‘average’ levels of LD. This pattern is distinct from genes with strong LD, which are 

enriched for essential functions (e.g. phosphorylation, cell division, cellular transport and 

metabolic processes) and genes with weak LD, which are enriched for functions related to 

sensory perception and some immune functions. 

Gene essentiality and the disease genome 

Essential genes are critical for cell viability. The degree of gene essentiality is likely to have 

a direct bearing on the tolerance a gene has for damaging/disease variation. Quantifying 

gene essentiality is challenging, and the essentiality of individual genes has traditionally 

been evaluated from mouse knockout experiments for the orthologous genes. Dickerson et 

al. [41] questioned whether knockouts, which remove the protein-coding region of the gene, 

are a valid representation, as less severe changes (such as point mutations) are more typical 

with likely less damaging effects. More recently, a range of techniques, such as large-scale 

short hairpin RNA screens of diverse cell lines, ChIP-seq (chromatin immunoprecipitation-

sequencing) and computational predictions, through integration of gene expression, 



 

 

molecular alterations and pathways, have been developed [42]. CRISPR-Cas9 genome 

editing has also emerged as a technique to allow largescale studies into genome-wide 

essentiality [43, 44]. The latter approach has enabled refined determination of some of the 

distinct features of essential genes suggesting that protein interaction networks, integrated 

with gene expression or histone marks, are predictive of gene essentiality. 

The substitution intolerance score [35], in which higher scores indicate functionally 

constrained genes, is a measure correlated with essentiality. As expected, genes that were 

classed as likely to be essential or ubiquitously expressed scored highly for intolerance of 

functional variation. Genes related to keratin pathways or with olfactory functions were 

highly tolerant of functional changes, whilst OMIM disease genes had more intermediate 

tolerance (Table 1). 

Similarly, the loss intolerance probability (pLI) score, described from the ExAC data set 

of 60706 exomes [40], has been used as an approximation to gene essentiality. pLI defines 

the probability of a gene being intolerant to variation causing loss of gene function. Lek et 

al. [40] identified 3230 genes as intolerant (pLI>0.9) and 10374 as tolerant (pLI<0.1). 

Dominant 

 

Note: +, ++, +++¼relative magnitude of specific gene property. aAny damaging mutations likely to be lethal. 

disease genes were found to be enriched for LoF intolerant genes, whereas recessive disease 

genes were found to include a smaller proportion of LoF-intolerant genes. Genes found to be 

intolerant of LoF variation had almost complete absence of protein-truncating variants 

suggesting strong purifying selection. The gene-specific pLI metric is positively correlated 

with degree of interconnectivity in protein–protein networks, and the most constrained 

pathways include core biological processes (spliceosome; ribosome; proteasome 

components), whereas olfactory receptors are the least constrained. 

Table 1. Some comparative functional and sequence characteristics among gene classes 
Characteristic NDNE Complex disease genes Monogenic disease 

genes 
ENDa References 

Gene age + ++ +++ ++++ [45] 

Cellular localization of encoded 
protein 

Plasma membrane/ 
extracellular 

Plasma membrane/ 
extracellular 

Plasma membrane/ 
extracellular 

Nuclear localization [41] 

Gene expression, position in 
protein network 

Not ubiquitously 
expressed 

Not ubiquitously 
expressed, peripheral 
functions in protein 
networks 

Not ubiquitously 
expressed, peripheral 
functions in protein 
networks 

Ubiquitous expression, 
protein network hub 

[45–47] 

Degree of connectivity in protein–
protein interaction networks 

+ ++ ++ +++ [41] 

Intensity of purifying selection + +/++? +++(more for 
dominant) 

++++ [17, 48] 

Coding sequence length ++ +++? +++? + [12, 46, 
49] 

Substitution intolerance score + ? ++ +++ [35] 
Gene intolerance of rare variation + ++? ++ +++ [40] 
 



 

 

A number of studies have evaluated the relationship between gene essentiality and human 

disease. Tu et al. [46] recognized that essential genes are distinct from other ‘non-disease’ 

genes. They compared ubiquitously expressed human genes (housekeeping genes), as a 

group likely to contain many essential genes, with disease genes and other non-disease 

genes. Ubiquitously expressed genes are presumed essential for fundamental cellular 

physiology, but essential genes with more tissue-specific functions will not be included in 

this set. Essential genes might be regarded as the most severe ‘disease’ genes in that 

disruption of function is likely to be developmentally lethal. Housekeeping genes were 

found to have shorter coding sequence lengths than disease genes consistent with earlier 

evidence [49] of shorter introns, untranslated regions and coding sequences, suggesting 

selection for more compact sequences (Table 1). Interestingly, there is some evidence that 

disease genes are longer on average than other genes [12, 46] (Table 1). 

Spataro et al. [17] analysed gene properties based on roles in protein networks, rates of 

protein evolution and tests of neutrality. They identified three gene groups with distinct 

degrees of essentiality: 

i. Genes that are neither essential nor associated with disease (non-disease, non-essential 

genes, NDNE), which have the least functional relevance and are under the weakest levels 

of purifying selection. 

ii. Human disease (HD) genes, from a curated version of OMIM (hOMIM) [48], which are 

functionally relevant but less than essential non-disease (END) genes. These genes are 

under stronger and longer lasting purifying selection than NDNE genes. 

iii. END, based on orthologues of mouse essential genes from knockout experiments. These 

genes have no association with human disease because functionally relevant mutations are 

likely to have lethal consequences such as a miscarriage or early death. 

We compared two alternative representations of essentiality by evaluating pLI scores [40] 

in each of the three Spataro et al. [17] gene groups (Table 2). Although there is a significant 

trend towards higher pLI (greater intolerance of functional variation) from NDNE genes, 

HD genes through to END genes (correlation P=0.17, P<0.0001), in line with assumptions 

about essentiality, there is a wide overlap between the three groups. This suggests only 

limited consistency between the three-group classification and pLI scores as measures of 

gene essentiality. Inconsistency in classification could arise in a number of ways. For 

example, the classification of END genes, based on mouse knockouts, has been criticized 

[41], and pLI essentiality scores consider only functional variation in coding regions of the 

genome, whereas disease variation is known to extend to non-coding regulatory regions, 

particularly for complex diseases. However, integrative analysis of alternative measures of 



 

 

essentiality may form a basis for the development of models, which enhance recognition of 

disease variation. 

Mendelian or complex trait genes? 
It is known that most variants associated with complex traits are regulatory in function, and 

their target genes are difficult to ascertain requiring challenging functional investigation 

[50]. Therefore, the understanding of variation underlying complex phenotypes is far less 

complete than for monogenic disorders. Spataro et al. [17] find that genes with variants for 

Mendelian disorders, which are also associated with variation underlying complex traits 

(‘Complex-Mendelian’ genes), have higher functional relevance in protein networks and 

higher expression levels than genes associated only with complex traits. In this sense, they 

might be seen as intermediate between Mendelianonly and complex trait-only genes. 

Synthesis 

We propose a scheme representing the opposing and interacting processes, which define the 

disease and non-disease genomes (Figure 1). We assume an underlying increasing measure 

of gene essentiality in which the most essential genes are those which are required for 

survival and reproduction such that functional disruption is lethal [17, 46]. The intensity of 

recombination and selection varies across the spectrum of gene essentiality. The nature of 

the relationships between these processes is not known, but Figure 1 indicates trends 

supported by published studies. 

Genes with low essentiality tend to have high recombination rates (for example, 

quantified as centimorgans per kilobase) and are weakly impacted by selection. They have 

high haplotype diversity and correspondingly weak LD. Genes at this end of the essentiality 

scale may be more tolerant of mutation and include genes involved in sensory perception, 

such as genes encoding olfactory receptors [12, 40, 51, 52]. The high recombination rate 

may enable re-generation of less damaging haplotypes, but residual variation is presumably 

tolerated and unlikely to contribute to disease. 

Genes with high essentiality, however, tend to have low recombination rates, but the 

impact of selection is intense because, with increasing essentiality, any damaging variation 

is associated with lethality. As a result, they have limited haplotype diversity and strong LD. 

Previous studies [40, 51] have found that genes involved in DNA and RNA metabolism, 

response to DNA damage and the cell cycle may fall into this category. The most essential 

genes might be regarded as the most severe ‘disease’ genes. 



 

 

Genes which contain, or are impacted by, disease variation are suggested to occupy an 

intermediate place in this scheme. There is evidence that disease genes show intermediate 

levels of LD [12]. Genes may be exposed to recombination and selection of reduced 

intensity, which enables retention of some damaging variation associated with disease. The 

impact of HRI in reducing the efficiency of selection and Muller’s ratchet in enabling 

accumulation of damaging variation may be significant for this class of genes. Arguably 

genes impacted by variation involved in common diseases might be discriminated from 

genes involved in more severe monogenic disease through the monogenic forms being 

closer to the essential gene end of the spectrum. 

 



 

 

Table 2. Gene essentiality pLI scores [40] within gene essentiality groups [17] 
Gene 
class [17] 

Number of genes 
[17] 

Number of genes with 
pLI score 

1st quartile pLI 
score 

Median pLI 
score 

3rd quartile pLI 
score 

Mean 
pLI 
score 

NDNE 13135 12062 0.000 0.010 0.475 0.251 
HD 3275 3165 0.000 0.041 0.820 0.339 
END 1572 1509 0.022 0.704 0.991 0.554 
       

 

 

 

 

Figure 1. Outline of hypothetical relationships between gene essentiality, recombination 
(dotted line) and selection (dashed line). Deleterious variation (shaded area) is presumed to 
be depleted through recombination for ‘non-disease, non-essential’ gene groups and intense 
selection for ‘essential non-disease’ gene groups. Relatively weaker recombination and 
selection intensities may allow persistence of damaging variation for genes with associated 
disease variation. 
 
 
 

 



 

 

Discussion 

The dramatic growth in the number of human genomes sequenced (now likely to be in the 

hundreds of thousands [40]) is underpinning a developing understanding of genes with 

diseaserelated variation in their coding or regulatory regions. Increased knowledge of the 

processes that generate this variation and allow it to persist is likely to improve the 

efficiency with which patient genomes can be screened to identify the molecular basis of 

disease. The interplay of selection, recombination and mutation underlies the pattern of 

disease variation, and understanding these processes may enhance resolution of more cases 

with monogenic disease. The extent to which these processes can be informative for 

complex disease is less clear, given the extremely small effect size of the variants involved 

that have mostly been identified in large genome-wide association studies [50]. However, 

analyses of gene properties may be enhanced through consideration of additional gene 

characteristics (Table 1). Gene age was highlighted by Cai et al. [45], where age is defined 

through models of evolutionary emergence times [53]. Younger genes, for example, are 

more likely to have primate or human-specific functions contrasting with older genes, which 

have more ancient phylogenetic origins. They found that Mendelian disease genes tend to be 

a more ancient group compared with non-disease genes, whilst complex disease genes 

tended to have intermediate ages. 

Coding sequence length is reduced in genes with greater essentiality [49]. These genes are 

subject to intense selection but have reduced recombination rates (Figure 1). Where the 

outcome of selection is not lethality, the efficiency of selection may be impacted by HRI, 

and damaging variation might accumulate by Muller’s ratchet. Conceivably, the smaller 

coding sequence length in these genes reduces the target size and, therefore, the probability 

of a deleterious mutation occurring in the sequence, offsetting the impact of these processes. 

Sequence context analysis, for example, through substitution probabilities [35] may provide 

insights into differential mutation rates across genes and their interaction with other 

contributing mechanisms. 

Further distinctions include degree of connectivity of the protein product [41], position in 

the protein network [45] and cellular localization [41] (Table 1), although these may be 

more informative of the essential gene: non-essential gene categorization. 

As might be expected, broad gene categories are not independent. Genes that contain 

lethal null alleles can have nonlethal disease alleles [41] complicating efforts to categorize 

genes. The use of gene-specific measures to filter sequenced genomes to identify causal 

variation can only be successful when used alongside variant-specific analyses with 

conclusions supported by functional tests. However, there is good evidence that integrated 



 

 

models using emerging approximations for essentiality and gene-specific data on 

recombination, mutation and selection may contribute to improved molecular diagnostics in 

the analysis of patient sequence data. 

 

Key Points 

• The identification of causal disease variation from patient genome sequences is 
challenging and confounded by plausibly damaging variation, which is neutral. 

• Methods that predict whether a variant is damaging might be misleading, and recent 
studies have suggested that information about the properties of genes might improve 
molecular diagnoses. 

• There is evidence that genes that have associated disease variation have intermediate 
essentiality between the extremes of genes of low essentiality (which are tolerant of 
functional variation) and genes of high essentiality (in which functional variation may 
be lethal). 

• Gene essentiality and its relationship to variable recombination and mutation rates, 
along with variation in intensity of selection, may provide a basis for developing 
models, which improve gene-specific predictors of disease variation. 
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Abstract 

The evolution of next-generation sequencing technologies has facilitated the detection of causal genetic 
variants in diseases previously undiagnosed at a molecular level. However, in genome sequencing studies, the 
identification of disease genes among a candidate gene list is often difficult because of the large number of 
apparently damaging (but usually neutral) variants. A number of variant prioritization tools have been 
developed to help detect disease-causal sites. However, the results may be misleading as many variants scored 
as damaging by these tools are often tolerated, and there are inconsistencies in prediction results among the 
different variant-level prediction tools. Recently, studies have indicated that understanding gene properties 
might improve detection of genes liable to have associated disease variation and that this information improves 
molecular diagnostics. The purpose of this systematic review is to evaluate how understanding gene-specific 
properties might improve filtering strategies in clinical sequence data to prioritize potential disease variants. 
Improved understanding of the ‘disease genome’, which includes coding, noncoding and regulatory variation, 
might help resolve difficult cases. This review provides a comprehensive assessment of existing gene-level 
approaches, the relationships between measures of gene-pathogenicity and how use of these prediction tools 
can be developed for molecular diagnostics. 

Key words: gene-specific metrics; disease genome; gene-level scores; gene essentiality; gene-specific filtering 



 

 

 
 
 
 
Introduction  
 

The sequencing of whole genomes using next-generation sequencing (NGS) yields vast data 

sets that present significant analytical challenges for identification of disease-causal 

variants. It is known that a subset of human genes contains, or is associated with, rare and/or 

common variation that has a role in disease processes (the ‘disease genome’). However, 

recognition of causal variants among many thousands of mostly neutral variants is a huge 

challenge and a pressing problem. For example Chong et al.  [1] state that the genes 

underlying ∼50% of all Mendelian phenotypes remain unknown and many more Mendelian 

conditions are still to be described. Alongside methods for predicting the potential 

pathogenicity of individual DNA variants at least 20 gene-specific metrics (scores) have 

been developed in recent years that may help facilitate recognition of disease-causing 

variation. An example of one of these methods is residual variation intolerance score 

(RVIS) that ranks genes by whether they have more or less common functional genetic 

variation relative to the genome wide expectation [2]. A candidate pathogenic variant found 

in a gene classed as intolerant of common functional variation might be worthy of follow-up 

as a potential causal variant. Understanding the properties of the disease genome and 

integrating existing gene-specific predictors may help in clas- sifying genes based on their 

specific features to refine molecu- lar diagnosis. Pathogenicity scores for individual DNA 

variants are often inconsistent in that different methods can provide conflicting evidence on 

potential pathogenicity. The degree of redundancy in the genome makes the task of picking 

out causal variation particularly challenging. We recognize that variant prediction tools 

alone are currently not conclusive and that evidence at the gene-specific level has the 

potential to enhance the recognition of variant pathogenicity [3]. 

This systematic review considers the literature related to gene-specific scores and their 

applicability to improve filtering of genome sequence data. We set out to achieve a 

satisfactory answer to the following research question: ‘Can the use of gene- specific 

metrics facilitate the identification of disease genes in patient genomes?’  

Gene-specific metrics are frequently based on properties of genic coding regions. The extent 

to which they provide informa- tion on the tendency of a gene to have associated disease-



 

 

causal variation outside the coding region is limited. Most of the tools analyzed in this 

review, with a few exceptions, are concerned with genomic coding variation.  

Details of the methodology used in this systematic review are given in the Supplementary 

Data,Supplementary Figures 1 and 2 and Supplementary Table 1 [3-14]. 



 

 

Findings: key models 

Each of the 20 gene-specific approaches identified by the systematic review was classified 

into 1 of 3 groups according to the main focus of each method. We consider below each of 

the three groups: (i) Essentiality and conservation, (ii) Haploinsufficiency (HI) and (iii) 

Selection. Supplementary Tables 2–4 give details of the main methods and scores allocated 

into each category. 

Characteristics of essential and conserved genes 

Essential and conserved genes encode proteins that have core biological functions that are 

essential for an organism’s viability. Genes vary in their degree of essentiality and a number 

of different quantitative scores provide approximations to essentiality. These include 

predictions of the extent to which a gene is tolerant or intolerant of loss of function (LoF) 

mutations and estimation of the expected rate of de novo mutations (DNMs) [14]. 

Supplementary Table 2 outlines the key approaches in this category. The RVIS ranks genes 

by probability of carrying more, or less, functional genetic variation than expected 

highlighting genes intolerant to common functional variation [2]. Genes with positive scores 

have more common functional variation, while negative scoring genes are less tolerant 

having reduced associated common functional variation. Genes containing variation 

involved in monogenic diseases have lower RVIS scores than other genes. 

By examining the evolutionary conservation of protein sequences, Rackham et al. [16] 

developed the Evolutionary inTolerance (EvoTol) score to identify genes that are intolerant 

to mutation [15]. Because only small areas of a gene may be intolerant, for example protein-

coding domains, these subregions might be particularly important domains of essentiality 

[16]. 

EvoTol allows identification of intolerant protein subdomains alongside the identification of 

intolerant genes more generally. 

The development of NGS makes possible the identification of newly arising DNMs and 

their potential roles in rare disease. Recognition of these variants is not without difficulty 

because of errors in alignment and poorly supported variant calls. Validation by re-

sequencing and, in particular, sequencing of additional family members (often the parents of 

a patient) can help correctly resolve de novo variation that might be of disease significance. 

Such mutations are not considered to play a significant role in the pathogenesis of complex 

diseases [17]. To accurately estimate the expected rate of DNMs in a given gene, careful 
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assessment of gene mutability is required.Gene length and local sequence context are 

essential factors underlying mutation rate differences [17]. Samocha et al. calculated per-

gene probabilities of mutation that are correlated with observed counts of rare missense 

variants in the Exome Sequencing Project (ESP) data set. The Samocha et al. study extends 

a model that investigated DNMs in epileptic encephalopathy patients (Epi4K consortium) 

by considering depth of coverage (i.e. how many sequence reads were present on average 

per base) and the regional divergence in genes between humans and macaques. Significant 

numbers of genes with missense variant deficits were observed,compared to expectation 

from predicted mutation rates, suggesting strong evolutionary constraint removing variants 

by negative selection [17, 18]. The Samocha et al. [17] model utilizes exome sequence data 

to evaluate the DNM rate (DNMR) by gene set and on a single gene basis; this score is 

referred to as de novo excess (DNE). The metric is predictive of selective constraint in the 

human genome and identifies 1003 constrained genes known to cause severe human disease 

[17].It was found that constrained genes contain higher de novo LoF mutation rate than 

expected by chance [17]. 

The LoFtool measures the ratio of LoF mutations to synonymous mutations for every gene. 

The performance of the LoFtool, compared to RVIS, DNE Z-score and EvoTol, suggests 

enhanced prediction of de novo haploinsufficient disease-causing genes. The LoFtool 

represents values as intolerance percentiles; genes that are intolerant to LoF variation have 

low LoFtool percentiles [15]. The four measures of genic intolerance outlined so far were 

included by Bartha et al. [19] who described them as essentiality scores. 

In early 2016, using data from 1000 Genomes Project, Aggarwala et al. proposed the 

Substitution Intolerance Score (SIS) as a gene-level measurement of essentiality. Genes with 

high SIS scores are functionally constrained, while genes which score low are tolerant of 

functional changes in the protein that might arise through mutations in the DNA sequence 

[20]. 

Another scoring system by Gussow et al. [21] evaluates intolerance in genic subregions 

proposing that more conserved regions within a gene are expected to contain more variants 

that are pathogenic. Genes are divided into subregions and tiered by intolerance to 

functional variation.This ‘subRVIS’ score ranks regions using RVIS but with the addition of 

information on conservation. Regions intolerant to functional variation are scored low by 

the subRVIS scoring system. The method utilizes the GERP++ [22] score to evaluate 

evolutionary constraint for bases in each subregion [21]. 

The Loss Intolerance probability (pLI) score quantifies the likelihood that a gene is 

intolerant to a mutation that produces LoF in the protein product [23]. The score is derived 

using the Exome Aggregation Consortium (ExAC) database that is an extensive catalogue of 



 

 

human genetic diversity. This catalogue identifies one variant every eight bases on average 

in the exome providing a powerful filter for analysis of candidate deleterious variants in 

severe Mendelian diseases [23]. Lek et al. proposed that genes with high pLI score (pLI >= 

0.9) are most intolerant of LoF variation. Genes in this category are the most evolutionarily 

constrained. The least constrained genes (LoF tolerant) have low pLI scores (pLI < = 0.1) 

and typically contribute to the least constrained biological pathways, such as sensory 

perception, where high haplotype diversity is potentially advantageous [23]. 

It is challenging to assess the relationship between the DNMR and genes involved in 

disease. In 2017, Jiang et al. utilized available DNM data to correct for the background 

mutation rate seen as one of the main limitations of the Samocha et al. [17] model. The 

problem arises because by sequencing more individuals, more DNMs are inevitably 

observed in the same gene by chance. Therefore, in a given disease, if a DNM is related to 

pathogenesis, disease genes might be expected to contain more DNMs than predicted from 

background rates. This work includes the development of a database that describes the 

background DNMR acquired from population variation data [24]. 

Characteristics of haploinsufficient genes 

HI occurs whenever there is a missing or damaged copy of a gene leaving a single copy that 

is insufficient to maintain normal function [3]. HI is mostly caused by LoF mutations and 

results in dominant diseases. Recognition and prediction of genes that are haploinsufficient 

can facilitate the filtering of disease genome data wherever the phenotype is likely to have 

arisen through reduced levels of gene product. 

In 2010, Huang et al. [3] proposed a deletion-based HI score by identifying differences 

between HI and haplosufficient genes, aiming to better distinguish pathogenic from benign 

deletions that help in variant prioritization. The analysis develops a logarithm-of-odds 

(LOD) score to estimate the probability of a deletion causing a HI phenotype. A high LOD 

score suggests deletions are likely to be deleterious through HI and therefore potential 

candidates for causing dominant traits. The score assumes there are no statistical 

interactions between the genes [3].Previously,and to try to assess the pathogenicity of a 

deletion, clinicians considered the length of a deletion or the number of genes deleted. The 

Huang et al. [3] score provides a rational basis to classify pathogenic deletions by 

comparing deletions seen in patients with deletions in controls and calculating the fraction 

of controls with a deletion at least as deleterious as that seen in the patient. 

Distinguishing false-positive disease variants from the genuinely causal variants is crucial 

for accurate molecular diagnoses. MacArthur et al. [25] developed the RECessive (REC) 

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/advance-article-abstract/doi/10.1093/bfgp/ely033/5126507 by U

niversity of S
outham

pton user on 30 O
ctober 2018  



 

 

score for distinguishing genes involved in recessive diseases from genes that are LoF-

variation tolerant. A ‘healthy’ genome might contain 100 true LoF variants, the majority in a 

heterozygous state. Evidence suggests that the average human carries five recessive lethal 

alleles in single copy in their genome. Consequently, the majority of LoF variants are 

considered common variants.However,these variants might still have a phenotypic effect 

[25]. MacArthur et al. [25] demonstrated differences in functional and evolutionary features 

between recessive disease and LoF-tolerant genes, allowing for the development of a 

predictive model to predict recessive disease variants. 

Khurana et al. [26] developed the ‘gene position in NETworks’ (NET) indispensability 

score to investigate relationships between degree of network centrality of a gene and 

selection within biological networks. They consider a range of biological networks relating 

to phosphorylation, signaling, protein–protein interaction and regulatory and genetic 

networks. Genes that are highly connected to many biological networks are the most 

functionally significant; therefore, mutations in those genes might have serious 

consequences [26]. However, genes connected to metabolic networks were found to have an 

excess of duplicated copies through more paralogs with LoF mutations[26].This score was 

included as a predictor of haploinsufficient genes in the Hsu et al. study [5]. 

Ge et al. [27] consider gene-specific pathogenicity using the ratio of non-synonymous to 

synonymous substitution rates (dN/dS) for X-chromosome genes. Genes with unusually low 

ratios suggest intolerance to non-synonymous variation, indicating they may be susceptible 

to disease-related variation. The authors found correlation between genomic regions 

depleted for missense variation with disease-causal variants [27]. 

Steinberg et al. proposed that study biases existing in many biological networks might affect 

the ability of previous HI prediction scores to recognize the genuinely haploinsufficient 

genes. For that reason they constructed a new, unbiased, HI score, the Genome-wide 

HaploInsufficiency Score (GHIS), which replaces biological networks with co-expression 

networks [28, 29]. They compared their model with the three preexisting methods (i.e. HI 

[3], NET [26] and RVIS [2]) and demonstrated that GHIS provides a score for many genes 

not scored by other methods [28] with enhanced performance at classifying less well-studied 

genes [28]. 

Scores have been developed to recognize Mendelian genes with different modes of 

inheritance. Hsu et al. considered Mendelian disease gene characteristics according to their 

mode of inheritance. HI is an essential characteristic of Mendelian disease genes with an 

autosomal dominant (AD) mode of inheritance and sensitivity to DNMs was recognized for 

this group of genes [5]. In contrast, disease genes with autosomal recessive (AR) modes of 

inheritance tend to have more nonsynonymous variants and regulatory transcript isoforms 



 

 

[5]. However, the X-linked (XL) pattern of inheritance is associated with fewer non-

synonymous and synonymous variants [5]. Based on these findings they create a new 

approach to prioritize Mendelian disease genes based on their mode of inheritance (AD,AR 

and XL) termed Inheritance-mode Specific Pathogenicity Prioritization (ISPP) [5]. This 

score integrates preexisting genespecific prediction methods namely, HI [3], REC [25], 

RVIS [2], NET [26], DNE [17] and GDI [30] along with numerous genetic properties 

including global expression from RNA-Seq data, DNA replication time and the noncoding 

(intronic region) mutation rate [5]. 

Because the human genome contains an abundance of non-deleterious heterozygous 

variants, the identification of dominant mutations for monogenic disorders is challenging. 

Quinodoz et al. [31] created DOMINO, a method using machine learning to identify 

whether a given gene is liable to carry dominant changes. 

Inevitably, well-studied genes are over represented in most biological networks used to 

create scores that predict HI compared to less-studied genes, hence most biological 

networks are affected by study bias. Therefore, the creation of unbiased HI score becomes 

particularly important [29]. Recently, Shihab et al. produced an integrated machine learning 

approach called HIPred, merging functional annotations with genomic and evolutionary 

features to predict HI genes without study bias using data from National Institute of Health 

(NIH) Roadmap Epigenomics [32] and the Encyclopedia of DNA Elements (ENCODE) 

[33] project. The performance of this approach is considered to exceed the preexisting HI 

predictors [29]. Supplementary Table 3 outlines the key approaches in this category. 

Characteristics of genes under selection 

Genetic variants may be subject to positive selection whereby, if they are advantageous, 

they may increase in frequency. Negative selection, in contrast, acts to remove deleterious 

alleles. Scores that quantify the intensity of negative selection acting on genes provide 

insights into which genes are more likely to have variation that may have damaging 

consequences. The pattern is complex because some essential genes are not known to have 

any associated disease variation and are perhaps subject to negative selection at particularly 

high intensity [34]. 

Bustamante et al. calculate the extent and directionality of Selection operating on a given 

gene,this score referred to here as ‘Sel’. They first compared fixed sequence differences, 

both synonymous and non-synonymous,between humans in the sample and chimpanzees 

over 11.81 Mb region of aligned coding DNA. The ratio of non-synonymous to synonymous 

differences (divergence) was 23.76%. In contrast, the ratio of non-synonymous to 
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synonymous polymorphisms in the human subjects was 38.42%. This shows a significant 

excess of amino acid variation, relative to divergence, consistent with previous work stating 

that much amino acid variation in the human genome is slightly to moderately damaging 

[35]. 

Eilertson et al.[36] create a model to identify genes under natural selection with a non-

parametric approach (with no assumption of a specific population genetic model) that is 

robust to demography. This approach, called Selection Inference using Poisson Random 

Effects, utilizes polymorphism and divergence data from synonymous and non-synonymous 

sites within genes. 

The Gene-level Integrated Metric of negative Selection (GIMS) was created by combining 

two meta-analyses into a single meta analysis.The first meta-analysis combines comparative 

genomic metrics (GERP++) [22] and functional genomic metrics (Polyphen2) [37], and the 

second meta-analysis combines mutation rates (as SNPs/kb) and allele frequencies (as 

percentage rare) from the 1000 Genomes Project. Meta-analysis was achieved by combining 

those metrics into GIMS scores for 20,079 genes [38]. Because the majority of genes are 

under purifying selection, the aim was to quantify the degree of negative selection applied to 

genes. Conservation and functional scores were initially combined as ‘functional genomic 

metrics’ integrated with mutation rates and fraction of rare variants as ‘population genetic 

metrics’. The GIMS score combines these two metrics and provides a unified score per 

gene. GIMS gives a probability distribution across the entire genome in quantiles. Genes 

under negative selection are scored low by GIMS [38]. 

The Gene Damage Index (GDI) is a gene-specific score that predicts the liability of a human 

protein-coding gene to contain disease-causing mutations considering the influences of 

selection and genetic drift.In GDI,Combined Annotation Dependent Depletion (CADD) [39] 

scores are used as the variant-level damage prediction method because this method is 

efficient at distinguishing between benign and deleterious variants and is strongly dependent 

on evolutionary conservation [30].Moreover, CADD scores can assess most types of 

variants while other methods, like Poly-Phen-2 [37] and SIFT [40], can only predict 

missense variants. To construct the GDI score the cumulative predicted damage in exonic 

regions of the gene is calculated using the CADD score for each allele compared to the 

expected score for variants with similar allele frequencies. The homogenized Phred I-score 

is calculated for each metric to indicate the ranking of the targeted gene relative to all other 

genes. A low Phred score indicates a human gene with a low GDI and high Phred score 

indicates a gene susceptible to contain damaging variation. Genes with high GDI tend to be 

under less intense purifying selective pressure. A low GDI score is associated with highly 

conserved genes (including genes enriched for ribosome, chemokine signaling proteasome 



 

 

and spliceosome functions) reflecting essentiality. Such genes tend to be under stronger 

purifying selection than the median selective pressure acting on human genes [30]. 

Supplementary Table 4 outlines the key approaches in this category. 

Discussion 

Considering approaches that score genes according to essentiality and conservation,the DNE 

score offers some advantages.The main limitation of DNE is its validity only for 

interpretation of DNMs[5],but it considers more variables related to mutation rate going 

beyond sequence context compared to other methods like RVIS and Sel. These additional 

variables include consideration of sequence depth of coverage and regional divergence in 

genes between humans and macaques independently, which improve the predictive value of 

this model [17]. The DNE score has been compared to the RVIS and negative selection 

score Sel. The comparison showed that DNE and RVIS were equally effective emphasizing 

the benefits predicted from combining the two scores [17]. 

The strength of Samocha et al. model is enhanced by incorporation of the depth of coverage 

(i.e. how many sequence reads were present on average per base) and the regional 

divergence in genes between humans and macaques independently. These strengths play a 

significant role in the improvement of their predictive model. The number of rare 

synonymous variants in the ESP that comprises a relatively small sample of 6700 exomes 

[41] is shown to be highly correlated with the probability of a synonymous mutation 

determined by their model. As rare variant allele frequencies are impacted by sample size 

evaluation in larger databases such as ExAC would be of interest [41]. 

EvoTol was compared to the RVIS and the DNE scores and shown to have increased 

performance at classifying intolerant genes compared to RVIS.EvoTol was shown to be 

highly sensitive and more powerful to characterize genes with high pathogenicity [16]. 

Although there was no significant correlation between RVIS and EvoTol, the application of 

the two scores simultaneously will likely be advantageous [16]. 

Considering approaches for scoring genes for potential roles in HI phenotypes the HIPred 

approach has been evaluated against five predictors (HI Score, NET, RVIS, EvoTol and 

GHIS, Supplementary Tables 2 and 3). HIPred was found to outperform all in predicting HI 

genes [29]. Using different perspectives across the 26 disease-associated gene lists,Hsu et 

al.[5] estimate the power of several methods that predict gene pathogenicity showing a 

substantial positive correlation between HI and REC (correlation r = 0.77) while the six 

scores have a moderate relationship with each other (r = 0.46). Among these gene scores 

(DNE, GDI, HI, NET, RVIS and REC) the best predictor of disease predisposing genes was 



 

 

the REC score [5]. The performance of the ISPP score was significantly superior for 

prioritizing AR and XL disease-associated genes [5].The REC score is effective at 

predicting disease-associated genes generally but less successful in discriminating recessive 

and dominant disease genes [5]. 

DNE measures the rate of per-gene DNM while RVIS ranks human genes based on the 

strength and consistency of the purifying selection acting against functional variation. 

Analysis has shown that GDI and RVIS capture unique sets of reciprocal information from 

population genetic data [30]. In essence, RVIS reflects selective pressure while DNE is 

based on DNMR estimates; both methods do not quantitatively estimate the mutational load 

for a gene in a healthy human population. For this reason, these methods are not optimal for 

filtering genes with high mutation rates and many residual false positives might be expected. 

GDI has proved to be the most efficient approach for filtering out false-positive variants in 

genes known to contain damaging variation [30]. 

The Ge et al. XL scoring system is not limited by previous gene annotation and the dN/dS 

ratio can be calculated for any protein-coding gene. This score applies to all X-chromosome 

protein-coding genes and therefore can assess genes for multiple disease phenotypes [27]. 

Because the intra human dN/dS ratio is not specific to the X-chromosome, the analysis of 

more genomic data using dN/dS ratio is recommended for future studies to identify genes 

that may have disease variation [27]. 

The effort to improve the predictive ability of variant level scores now includes combination 

of evidence from multiple pathogenicity scores and other data. An example is the 

‘Mendelian Clinically Applicable Pathogenicity’ score [42] that uses machine learning 

classification based on existing pathogenicity scores and measures of evolutionary 

conservation. Such a combinatorial approach might usefully integrate evidence in both 

variant-level and gene-level metrics to improve predictive abilities overall [42]. 

This work aims to bring together the growing evidence that gene properties, alongside 

variant scoring systems, can play an important role in filtering disease sequence data. As 

healthy individuals can have genetic variants that lead to disruption of protein-coding genes 

(with no clinical phenotype) [25, 28, 29, 43], challenges remain to distinguish which LoF 

variants are associated with disease phenotypes from those that do not cause any functional 

disturbance [28]. Data from the 1000 Genomes Project show that on average a healthy 

person might carry 250–300 LoF SNVs [5]. 

The ACMG guidelines consider in silico predictions of whether a variant is involved in 

disease, but without specifying which or how many variant interpretation algorithms to use. 

These data can be used only as ‘supporting’ evidence for variant interpretation. There are 

difficulties with respect to validation of these methods, and there is a relatively high error 
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rate with many pathogenic variants assessed as benign by some methods and many benign 

variants assessed as pathogenic [44]. The guidelines do not currently consider gene-specific 

metrics that are the subject of this review but presumably could similarly constitute 

supporting evidence given alongside stronger independent evidence suggesting role or lack 

of role in disease. Ultimately, functional validation is optimal although is frequently not 

timely, practical or reimbursable [44, 45]. 

The understanding of human genomes is advanced through the accumulation of sequence 

data in publicly available databases. The ExAC resource provides a potent filter to aid 

recognition of pathogenic variants in severe Mendelian diseases. Using ExAC for filtering 

to remove false-positive, but plausibly pathogenic,variantsdecreases the number of 

candidate proteinaltering variants by 7-fold compared to the smaller ESP database that has 

fewer exome sequences [23]. 

Coupled with the previous evidence, another study suggests that the missense Z score that 

represents genes rather than variants adds more information than variant-specific Polyphen2 

and CADD classifications signifying that gene-level scores of constraints provide additional 

information for evaluating pathogenicity [23]. Furthermore, Huang et al. contend that 

variant-level scores (e.g. SIFT [40] and poly-phen 2 [37]) are limited by lacking the 

capability to determine, from crossspecies alignments, whether negative selection at a given 

site is acting in a recessive, additive or dominant mode [3]. 

The work proposed by Gussow et al. [21] was based on dividing the genes into subregions 

to identify exactly where the pathogenic mutations are likely to present. This study 

identified an important question: is the whole gene the correct unit by which to judge 

patterns of intolerance? Future analyses may consider refinements to gene-specific scores 

that consider within-gene regional patterns of intolerance in more detail. 

Another controversial issue is the difficulty in interpretation of benign LoF variants for 

which the nomenclature is still not unified. It is important to realize that there are overlaps 

in the interpretation of LoF variants in healthy people.In the literature, all the following 

categories represent LoF variants in healthy individuals: true variants that do not seriously 

disrupt gene function, benign LoF variation in redundant genes and nondeleterious or less-

deleterious variants that have an impact on risk of phenotype or disease [25]. 

Because each genic scoring approach considers only a specific property of genetic 

architecture, each individual score has limitations. For example (i) the REC score does not 

consider dominant disease-predisposing genes; (ii) Non-Copy Number Variation genetic 

variants were not included in HI prediction score; (iii) the NET score lacks the systematic 

comparison of different known disease-associated genes; (iv) the RVIS score does not 

consider variations in allele frequencies across different populations; (v) the DNE score has 



 

 

limited applicability for testing DNMs; and (vi) the GDI score only considers mutation 

profiles [5]. Furthermore, a major limitation of the GHIS score is that the genetic 

background in individuals is not considered, which is an important issue since genetic 

variants do not act in isolation and disturbance of individual genes within a single biological 

pathway might affect the risk of a disease [28]. Accordingly, this analysis that provides a 

comprehensive review of each prediction scheme may help establish new routes for 

prioritizing disease-causal variants. 

Many advances have been developed to assess whether a gene is tolerant or intolerant to 

common functional variation. Initially, scores were developed per gene then studies were 

published showing that dividing the gene into sub-regions might help in allocating the 

mutation accurately. At that time all scores that measure genic intolerance required disease 

knowledge,this limitation was addressed by developing a tool with no prior disease 

knowledge required, an essential step to better predict genic intolerance. 

Reviewed here is a range of well-studied gene-specific predictors with various independent 

genetic properties. It is hoped that recognizing some of the limitations of each score and 

perhaps combining evidence in both variant-specific scores and gene-wise evidence might 

enable better prediction since there is currently no single method that is reliably predictive 

of gene pathogenicity. Therefore, this hopefully might help to overcome one of the main 

challenges of 100,000 Genomes Project that is variant annotation to prioritize important 

variants from harmless neutral variants. This review is intended to highlight existing work to 

identify and explain different gene-specific pathogenicity predictors, while pointing to the 

gaps in disease gene prioritization and annotation issues to facilitate new scores and better 

prioritization of disease-causal genes. 

Key points 

• A wide range of well-established models exists that prioritize genes based on their 
associated disease variation potential. 

• Integration of these strategies to represent individual genes could have a significant 
impact on our understanding of genic properties and the recognition of disease-related 
functional variation. 

• Evaluation and comparison of these individual scores and the development of 
integrated models to enhance NGS filtering strategies in disease genomes is a fertile 
area for future studies. 
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Abstract 

The causal genetic variants underlying more than 50% of single gene (monogenic) disorders are yet to be 
discovered. Many patients with conditions likely to have a monogenic basis do not receive a confirmed 
molecular diagnosis which has potential impacts on clinical management. We have developed a gene-specific 
score, essentiality-specific pathogenicity prioritization (ESPP), to guide the recognition of genes likely to 
underlie monogenic disease variation to assist in filtering of genome sequence data. When a patient genome is 
sequenced, there are frequently several plausibly pathogenic variants identified in different genes. Recognition 
of the single gene most likely to include pathogenic variation can guide the identification of a causal variant. 
The ESPP score integrates gene-level scores which are broadly related to gene essentiality. Previous work 
towards the recognition of monogenic disease genes proposed a model with increasing gene essentiality from 
‘non-essential’ to ‘essential’ genes (for which pathogenic variation may be incompatible with survival) with 
genes liable to contain disease variation positioned between these two extremes. We demonstrate that the 
ESPP score is useful for recognizing genes with high potential for pathogenic disease-related variation. Genes 
classed as essential have particularly high scores, as do genes recently recognized as strong candidates for 
developmental disorders. Through the integration of individual gene-specific scores, which have different 
properties and assumptions, we demonstrate the utility of an essentiality-based gene score to improve sequence 
genome filtering. 

Key words: whole genome sequence; monogenic disease; gene-level metrics; disease genome; gene-
specific score; gene essentiality 
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Introduction 
 

	Monogenic diseases include those with a Mendelian pattern of inheritance in families and 

conditions arising in individuals through de novo pathogenic variants. To resolve the basis 

of these conditions at a molecular level, it is necessary to under- stand the disease phenotype 

in terms of the patient’s genotype. Where this is achieved, diagnoses can be refined and 

potential routes for improved clinical management may become available. The Online 

Mendelian Inheritance in Man (OMIM) database [1] recognizes 3790 genes underlying 

5470 Mendelian phenotypes. However, although ∼69% of all known Mendelian phenotypes 

have a resolved genetic cause, many more Mendelian conditions have yet to be 

characterized . A recent review, using data from 57 National Health Service (NHS) hospitals 

in the UK and 26 hospitals in other countries, found only a small fraction of patients with 

hereditary rare diseases receive a genetic diag- nosis [2]. Even for conditions in which the 

genetic aetiology is understood, the possibility of making a firm diagnosis may be reduced 

through the incomplete characterization of the patient phenotype or because incomplete 

genetic testing is restricted to a set of candidate genes which may not include the causal 

gene. In some cases, the molecular basis of the condition is determined for a patient only 

after as many as 16 clinic visits following an average of three misdiagnoses in a process 

which can last more than 2 years  [2].  

Recently, the 100 000 Genomes Project [3] was extended to focus on clinical care through a 

plan to sequence, over 5 years, the genomes of 5 million patients who have phenotypically 

described rare diseases and cancers.The plan involves the development of core NHS 

infrastructure, data sharing and clinical training [4]. For the success of this project and the 

advance of similar initiatives, it is critically important to further develop strategies which 

improve the interpretation of disease genome data so that causal variation can be 

distinguished from plausibly damaging, but in fact neutral, variation. 

Spataro et al. [5] identified five discrete groups of genes which, when ordered by degree 

of gene essentiality, form the basis for the model proposed by Pengelly et al. [6]. The five 

gene groups described by Spataro et al. are: non-disease and non-essential (NDNE),complex 

non-Mendelian (CNM),complexMendelian (CM), Mendelian non-complex (MNC) and 

essential non-disease (END). Essential genes are defined as genes responsible for core 

biological functions in the organism and so are required for cell survival [7]. In the 
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hypothetical model, genes which may contain disease-causal variation occupy a position of 

intermediate essentiality between the NDNE gene group (genes considered tolerant to 

functional variation) and the END gene group (genes highly intolerant to functional 

variation). The latter comprises a gene set defined through mouse knock-out experiments 

excluding human disease genes that appear in the OMIM list and genes involved in common 

diseases identified by genome-wide association studies [5]. Essential gene candidates have 

also been recognized through experiments using technologies such as CRISPR-Cas9 [8]. 

Essential genes are critical for organism survival such that damaging variation is not 

tolerated and likely to be maintained only by a selection/mutation balance. These genes 

encode certain regulators of core cellular functions, and the disruption of these pathways 

may cause fatal disease [8]. Within the wider set of essential genes,Cacheiro et al. [9] 

distinguished between cellular lethal (CL) genes,which show nearly complete concordance 

with mouse lethal genes and are essential for both a cell and an organism to survive,and 

developmental lethal (DL) genes are not essential at a cellular level, but the loss of function 

(LoF) variation may be lethal at an organism level. 

Essentiality-related scores for individual genes include measures such as the residual 

variation intolerance score (RVIS, [10]) and the probability of LoF Intolerance (pLI, [11]), 

which both quantify the tolerance of LoF variation. Other scores focus on the degree of 

conservation, such as the recessive (REC) score [12]; the position of genes in regulatory and 

other networks (for example the NET score [13]) or consider local sequence context such as 

the substitution intolerance score (SIS, [14]). Linkage disequilibrium (LD) is another factor 

related to gene essentiality as highly essential genes tend to have reduced haplotype 

diversity and therefore strong LD [6]. Groups of genes already known to have associated 

disease variation [5], include genes which may contribute only to complex disease variation 

(CNM genes), genes which contribute to both complex and monogenic variation (CM 

genes) and genes which contribute only to monogenic variation (MNC genes). Through the 

integration of different gene-level metrics, each of which is broadly related to gene 

essentiality, we develop a score that facilitates the recognition of genes most likely to 

include monogenic disease variation.  

Materials and methods 

The gene-specific scores used 

We considered the 10 gene-specific scores, for which genespecific data were made available 

by the authors, as reviewed by Alyousfi et al. [15] as the baseline data set for constructing 



 

 

and testing the essentiality-specific pathogenicity prioritization (ESPP) score. We also 

included gene-specific LD scores from LD maps in LD units (LDUs, [16]). These maps 

were constructed from data from more than 400 whole genome sequence samples from the 

Wellderly study [17]. Because of the close correlation between LDU and physical gene 

lengths, the LDU lengths of genes were corrected for physical length by regression to form 

the ‘LDU_res-fit’ scores used in the analysis. LDU scores represent the extent of LD per 

gene such that genes with high values have relatively reduced LD compared with genes with 

low values. For each of the 11 scores used, the numbers of genes obtained from the sources 

listed in Table 1 are given in Table 2. Further details on each score are provided in Table 1 

and described in depth in Alyousfi et al., [15] and the cited references. 

Constructing a combined score 

The R Studio statistics software [23], version 1.0.153—2009-2017 RStudio Inc. was used 

for the analysis. We aligned the list of 18 269 genes with essentiality-related scores from the 

studies described in Table 1. The aim was to construct an integrated score from individual 

gene-specific scores to guide the recognition of monogenic disease-causal genes.The 

majority of selected scores follow the earlier systematic review as scores broadly related to 

gene essentiality [HI, RVIS, pLI, SIS, NET, REC, DNE, gene damage index (GDI), gene-

level integrated metric of negative selection (GIMS) and genome-wide haploinsufficiency 

score (GHIS)] [15]. Accepting a broad definition of essentiality, the review categorizes 

some scores (such as RVIS, DNE, SIS and pLI) as ‘gene essentiality and conservation’ 

related; others (including HI, NET and GHIS) as ‘haploinsufficiency gene scores’ and 

GIMS as a score ‘measuring selection’. Based on the hypothetical model proposed by 

Pengelly et al.[6] and work by Bartha et al.[24] and Alyousfi et al. [15], we assume that 

haploinsufficient genes and genes strongly impacted by selection tend to be closer to the 

essential end of the spectrum. 

Where the original papers provided Ensemble Gene IDs (GIMS [21], SIS [14] and GHIS 

[20]: Table 1), the corresponding official gene symbol was substituted 

(Supplementary_data_set) enabling matching across scores. To construct the ESPP score, 

we undertook principal component analysis (PCA) to reduce the dimensionality of the data. 

Data were standardized to mean zero and SD=1 when performing the PCA. The total 

variance explained by the first principal component for 11 scores was 0.36 (Supplementary 

Table 1). As the individual contribution of three scores (GDI [19], LDU [16] and REC [12]) 

was small (<0.2), we undertook a second PCA utilizing the eight remaining scores 



 

 

 

I have higher magnitude with increasing essentiality. 

(Supplementary Table 1) for which the total variance explained was 0.48. These eight scores 

were used in the computation of the ESPP score calculated as the weighted sum of each of 

the component scores, with the weights given in the second column of Supplementary Table 

1 using the following equation: HI × 0.291+DNE × 0.357+RVIS ×−0.349+NET × 0.273+pLI 

× 0.353+GIMS × −0.397+GHIS × 0.361+SIS × 0.423. We computed Spearman correlations 

Table 1. Description of 11 essentiality-related scores 
Essentiality measures Score magnitudea Score characteristics Score data References 

DNE: gene constraint score-de 
novo excess 

I Measures constraint for each gene using a mutation 
model quantifying the difference between observed 
and expected number of missense variants 

Data on 18 860 genes in 
Supplementary Table 4 of 
Hsu et al. [18] 

[13, 18] 

GDI D Mutational damage by gene in a healthy population 
(genes susceptible to damage are less likely to 
underlie monogenic disease) 

Data on 18 860 genes in 
Supplementary Table 4 of 
Hsu et al. [18] 

[19, 18] 

GHIS I Haploinsufficiency prediction using gene co-
expression and genetic variation in large sequence 
data sets (using a support vector machine) 

Data on 19 701 genes in 
Supplementary Table 3 of 
Steinberg et al. [20] 

[20] 

GIMS D Variants in genes under strong negative selection 
likely to be damaging (lower GIMS: stronger 
negative selection). Integrates genomic and 
population genetic metrics 

Data for 20 080 genes in Table 
S1, of Sampson 
et al., [21] 

[21] 

HI: deletion-based 
haploinsufficiency score 

I Haploinsufficient genes contrasted with 
haplosufficient genes from non-pathogenic 
copy-number variants. Combines biological 
properties (genomic, evolutionary, 
functional and network) 

Data for 18 860 genes in 
Supplementary Table 4 of 
Hsu et al., [18] 

[22, 18] 

LDU (LDU_Res-fit) D Gene-specific measure of LD (LD units) corrected, 
by linear regression, for gene size. Low LDU score: 
strong LD, genes which may be under increased 
selection 

Data on 18 269 genes: 
Supplementary Data from 
Vergara-Lope et al. [16] 

[16, 17] 

NET: gene position in networks 
indispensability score 

I Quantifies gene centrality and indispensability in 
protein–protein interaction and regulatory networks 
to assess gene importance 

Data for 18 860 genes in 
Supplementary Table 4 of 
Hsu et al. [18] 

[13, 18] 

pLI I Probability that a gene is intolerant to a LoF mutation: 
contrasts the observed number of rare variants per 
gene to the expected number under a selection 
neutral, sequence-context-based mutational model 

Data for 18 226 genes in 
Supplementary Table 13 of 
Lek et al., [11] 

[11] 

REC: recessive score D Linear discriminant model based on human–macaque 
conservation and adjacency to recessive disease genes 
in a protein–protein interaction network. Classifies 
genes into LoF tolerant and recessive classes 

Data for 18 860 genes in 
Supplementary Table 4 of 
Hsu et al. [18] 

[12, 18] 

RVIS D Evaluates which genes have more, or less, common 
functional variation than expected, given their level 
of apparently neutral variation. Contrasts the 
number of common missense and truncating 
variants against all protein-coding variants in a 
gene 

Data for 18 860 genes in 
Supplementary Table 4 of 
Hsu et al. [18] 

[10, 18] 

SIS I Quantifies the difference between expected and 
observed number of functional variants in a gene. 
Considers that the probability a nucleotide substitution 
occurs at a genomic site depends on 
the nucleotides flanking the site 

Data available for 16 387 genes 
in Supplementary 3, Table 15 of 
Aggarwala 
et al., [14] 

[14] 

aDecreasing (D) and increasing (I) is the direction of the score value such that scores with D have smaller magnitude with increasing essentiality and scores with 



 

 

(Supplementary Table 2) to measure the strength and direction of association between the 

eight component scores and the combined ESPP score. 

Gene classification 

We considered the distribution of ESPP scores within different gene groups. Spataro et al. 

[5] listed 17 982 genes in their Supplementary Table 2 within NDNE, CNM, CM, MNC and 

 

that have at least one score but were not categorized by Spataro et al. [5]). 

END categories (Table 2). Because the CM group is relatively small and the focus of this 

analysis is the recognition of genes implicated in monogenic disease, we combined the 

genes in the CM and MNC gene groups into a single group: Mendelian disease genes 

(MDGs). This gene group was further revised to include additional genes implicated in 

monogenic conditions using an updated list from the OMIM database: https://www.omi 

m.org/static/omim/data/genemap2.txt [1]. The combined set of genes known to be involved 

in monogenic disorders comprises 4440 genes. Around 300 new rare disease phenotypes are 

added to OMIM every year and, with the increasing use of genome sequencing, numerous 

new disease genes are recognized annually [1]. For the ESPP score, we considered the 

distribution of scores in relation to these four gene groups (Supplementary Table 3 and 

Figures 1 and 2). 

We also considered the set of 82 genes identified by Cacheiro et al. [9] as strong 

candidates for developmental disorders. This is a sub-set of 163 genes classed as potentially 

Table 2. Numbers of genes with essentiality score assigned to each group (means of  
untransformed scores in brackets) 
Essentiality 
measure 

NDNE CNM MDGa END Genes with score 
but no gene 
group 

Totals of genes 
assigned to groups 

Gene totals 
(Spataro et al. 
[5] and OMIM 
[1] 
classification) 

10 627 1732 4440 969 0 17 768 

DNE 10 482 (0.621) 1730 (0.880) 3769 (1.025) 968 (1.651) 463 (0.564) 16 949 
GDI 10 482 (192.264) 1730 (85.421) 3769 

(124.199) 
968 (189.183) 463 (2487.181) 16 949 

GHIS 8971 (0.522) 1557 (0.527) 3448 (0.532) 938 (0.566) 0 14 914 
GIMS 10 177 (0.525) 1722 (0.463) 3722 (0.433) 958 (0.322) 371 (0.507) 16 579 
HI 10 482 (0.183) 1730 (0.262) 3769 (0.304) 968 (0.411) 463 (0.118) 16 949 
LDU 
NET 

10 627 (−0.008) 
10 482 (0.447) 

1732 (0.237) 
1730 (0.557) 

3836 
(−0.034) 
3769 (0.639) 

969 (−0.238) 
968 (0.733) 

1104 (0.041) 
463 (0.334) 

17 164 16 
949 

pLI 9956 (0.253) 1687 (0.360) 3674 (0.318) 941 (0.579) 356 (0.262) 16 258 
REC 10 482 (0.098) 1730 (0.147) 3769 (0.232) 968 (0.200) 463 (0.059) 16 949 
RVIS 10 482 (0.091) 1730 (−0.051) 3769 

(−0.188) 
968 (−0.389) 463 (0.160) 16 949 

SIS 
ESPP (from 
eight scores—
excluding GDI, 
LDU, REC) 

9007 (−0.093) 
7076 (0.620) 

1516 (0.077) 
1330 (0.884) 

3174 (0.189) 
2914 (1.003) 

805 (0.619) 
760 (1.641) 

0 
0 

14 502 
12 080 

aMDG combining CM and MNC genes from [5] and the updated OMIM list. Groups comprise NDNE, CNM, MDG, END and genes with a score but no gene group (genes 
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developmentally lethal in their Supplementary Table 7. These comprise genes that are 

highly intolerant to loss-of-function variation (pLI>0.9) [11] or having gnomAD’s 

observed/expected LoF scores with upper bound <0.35 (https://gnomad.broadinstitute.org/) 

or with a high haploinsufficiency score (HI) [22] and not currently associated with human 

disease by OMIM [1],Orphanet [25] or the Developmental Disorder Genotype-Phenotype 

Database (DDG2P) [26]. The gene sub-set is genes known to have de novo variants in the 

100 000 genomes undiagnosed cases with intellectual disability (47 genes), Deciphering 

Developmental Disorders [27] cases with variants of uncertain significance in undiagnosed 

children (44 genes) and 14 genes from the Centre for Mendelian Genomics. The latter 

Mendelian candidate genes include Tier 1 genes, which have mutations identified in 

multiple kindreds, fall within a linkage peak, or are associated with phenotypes recapitulated 

in a model organism, or Tier 2 genes which are strong candidates but mutations are only 

known in one kindred [9]. Accounting for overlaps, this is a set of 82 genes (Cacheiro et al., 

[9]: their Figure 4). 

Results 

A total of 17,768 genes are classified into the four gene groups (Table 2). Considering each 

of the 11 gene-specific essentiality measures listed in Table 1, individual untransformed 

scores were available for between 14 502 and 17 164 of these genes depending on the score 

considered. The mean of the scores for each essentiality measure and gene group is given in 

Table 2, and considering differences in score direction (Table 1) shows trends mostly 

consistent with the model of increasing essentiality with the NDNE group appearing least 

essential and the END group the most essential. 

The results of the PCA of 11 scores (Supplementary Table 1) show relatively minor 

weightings for GDI (0.013),LDU (0.055) and REC (0.187). PCA provides an orthogonal 

transformation of variables, which may be initially correlated and generates linearly 

uncorrelated variables; therefore,close correlations between the sub-sets of scores 

(Supplementary Table 2) reduce the independent contribution of some scores justifying the 

dimensionality reduction. We therefore excluded the GDI, LDU and REC scores and 

undertook PCA using the remaining eight variables (Supplementary Table 1), a model 

which explains a higher proportion of the variance. The ESPP score derived from a linear 

combination of first principal component weightings (Supplementary Table 1, the combined 

variance explained is 0.48) with the highest weighting applied to SIS (0.42, [14]) and the 

lowest to the NET score (0.27, [13], Supplementary Table 2) gives the results of the 

Spearman correlation analysis for the eight scores and combined ESPP. Correlations are 



 

 

relatively high throughout and the correlation structure appears to be captured well by the 

combined ESPP score, which shows a higher correlation than any other scores with DNE, 

HI and pLI and high correlations with other variables. 

Figures 1 and 2 show the breakdown of ESPP scores within a score range with respect to 

each gene group. There is wide overlap between groups indicating that the properties of 

genes explained by the scores cannot definitively allow genes to be placed into the 

categories. However, the gene groups are categorized according to current understanding; 

hence, unrecognized monogenic genes are mis-classified and there is incomplete 

understanding of human essential genes. Figure 1 shows the proportion of genes in each 

category within an ESPP score range. There is clear separation between the peaks for 

NDNE and END genes. Genes with large ESPP scores (exceeding 2) include an excess of 

END genes (34% of essential genes have ESPP > 2) and ESPP scores of 3 or greater are 

enriched for monogenic disease genes including 6% of MDG genes and 8% of END genes 

compared with NDNE and CNM gene groups (1.3 and 2.5%, respectively). In general 

(Supplementary Table 3), 63% of genes with ESPP > 3 are MDG/END and the proportion 

increases to 82% for ESPP > 4. High ESPP scores are strongly indicative of genes at the 

monogenic disease/essential end of the spectrum. 

 

Figure 1. The percentage of genes in each group with ESPP scores from the least essential 
(NDNE, CNM, MDG to END) genes. Also, included are DL genes from Cacheiro et al. 
[9]. Most genes fall within the ESPP score 1–3 range and most genes with ESPP scores 
greater than 3 are essential genes. 
 



 

 

A total of 141 of the 163 DL genes identified by Cacheiro et al. [9] have ESPP scores and 

70 of the 82 genes (a sub-set of the 141 DL genes) which are recognized as particularly 

strong candidates for developmental disorders have ESPP scores (Supplementary Table 3, 

identified as ‘DL candidate’ in Figure 1): 12 of these genes are in the CNM group, 22 in the 

END group, 1 in the MDG group and 35 are NDNE. The distribution of ESPP scores for 

these genes (Figure 1) is highly skewed towards ESPP > 2 in line with expectation that most 

are strong candidate genes for monogenic disease. 

Discussion 

The ability to sequence whole genomes is driving a transformation in medicine. However, 

firmly establishing a molecular diagnosis from genome sequences remains difficult in many 

cases. As many aspects of gene function are poorly understood and genes may have 

overlapping functions and a high degree of redundancy, the challenges remain even for 

highly penetrant monogenic diseases. While scores which are intended to predict the 

pathogenicity of individual DNA variants are widely used to help interpret genome 

variation, gene-specific measures are less frequently considered. Here, we integrate several 

quantitative scores which relate to human genes and broadly reflect the degree of gene 

essentiality. The scores span diverse properties and gene characteristics including degree of 

intolerance of genes to functional variation, the position of genes in gene interaction 

networks and the local sequence context of a gene. The ESPP integrated gene score is 

related to the gene essentiality framework proposed by Pengelly et al. [6] in which 

monogenic disease genes occupy a position of intermediate essentiality between non-

essential and essential genes. Despite individual gene metrics covering a diversity of gene 

properties, the correlations between scores are relatively high (Supplementary Table 2). By 

integrating the available gene-level predictors, we establish a simple model to prioritize the 

recognition of monogenic disease genes. The combined ESPP score is intended to integrate 

all scores into a single model, which explains a higher proportion of the variance 

(0.45,Supplementary Table 1) than any individual score. 

The PCA of the eight scores that contribute most to the predicted variance (Supplementary 

Table 1) shows that the NET score has the smallest weighting. This score was developed 

from genome-wide population genomic data and information on biological networks which 

preceded the completion of the 1000 Genomes Project [13]. In contrast, the SIS score, 

which has a high overall contribution, is more recent and used data from 1000 Genomes 



 

 

Project. Improved understanding as larger numbers of genomes are sequenced is likely to 

greatly improve the recognition of gene properties relevant to monogenic disease in the 

coming years. 

 

Cacheiro et al. [9] based on the ESPP score. 

Along with the impact of variability in quality and completeness of individual gene-

specific scores, a further difficulty in the interpretation of ESPP scores arises from the 

incomplete understanding of the gene groups. Recognition of new genes, which have not yet 

been assigned to the group of genes already known to be involved in monogenic disorders, 

is the rationale behind this study; so inevitably, genes existing in the gene group 

classification (Table 2) are expected to include mis-assignments. The expectation is that 

around 50% of genes involved in monogenic diseases have not yet been discovered and so 

 

 

 
Figure 2. Boxplots representing the median of each group of genes starting from the least 
essential (NDNE, CNM, MDG to the most essential which is END) and DL from 
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are currently assigned to gene groups other than MDG; however, with the current rate of  

advance,the discovery rate for monogenic disease genes seems likely to plateau soon. 

Another challenge is the difficulty in recognizing essential genes, given that the inactivation 

of an essential gene is fatal; therefore, the recognition of these genes in humans can only be 

achieved indirectly through homology or, more recently [28], through techniques such as 

CRISPR-cas9. 

Cacheiro et al. [9] consider a sub-division of essential genes through their cross-species 

gene classification termed ‘FUll Spectrum of Intolerance to Loss-of-function variation’ 

(FUSIL). The classification recognizes two classes of essential genes after integrating 

human, mouse and CRISPR-Cas9 screening data: CL genes essential for a cell and an 

organism to survive and DL genes not essential at cellular level but where LoF is lethal at 

the organism level. FUSIL also includes distinct sets of sub-viable and viable genes 

determined from LoF mice experiments [9]. Their analysis supports the Pengelly et al. [6] 

model which is based on disease gene having intermediate essentiality. Their 

comprehensively characterized set of developmental candidate genes includes 91% which 

have ESPP > 1 (Figure 1). 

Genes currently classed as NDNE, but with particularly high ESPP scores, are plausible 

monogenic disease candidates. Supplementary Table 3 shows that scores of ESPP > 3 are 

indicative of potential monogenic or essential genes.A total of 63%ofgenes with a score of 

at least 3 are currently classed as MDG or END. Furthermore, 82% of genes with ESPP > 4 

are MDG/END. Table 3 shows 11 genes currently assigned to these two categories which 

have ESPP > 4. They include candidate essential genes currently classified as NDNE (for 

example SUPT6H, FRY) and genes which are known to contain CNM variation but have 

properties which suggest that they are also candidate monogenic disease genes (for example 

RYR3, DIP2C). 

The complexity of disease-gene relationships and the diversity of gene properties limit the 

ability of individual and integrated scores to fully discriminate certain gene classes. For 

example, MacArthur et al. [12] developed their gene score based on human–macaque 

conservation and proximity to known recessive genes in protein interaction networks. 

Although their score, which describes the probability of a gene containing 

 
Table 3. Genes with ESPP score>4 not assigned to MDG or END groups 
Gene Group ESPP score Full name Notes on gene function (OMIM) 
ANKRD17 CNM 4.612 Ankyrin Repeat Domain 17 May mediate immune responses to bacteria and viruses 

DIP2C CNM 4.564 Disco Interacting Protein 2 Homologue C May be involved in transcription factor binding 
RYR3 CNM 4.039 Ryanodine Receptor 3 Involved in Ca(2+) signalling in neurons in the central 

nervous system 



 

 

 

recessive variation,provides a degree of separation between loss of function tolerant and 

recessive genes, there is a substantial overlap. These scores do however provide useful 

information to rank potential candidates in a genome filtering context. Furthermore, with the 

continued and dramatic rise in the number of genomes sequenced,a greater understanding of 

gene properties and functions is likely to improve the recognition of genes likely to contain 

monogenic disease variation. Given a sequenced genome for which there are several 

potential functional candidate variants in different genes access to the available ESPP scores 

provides a basis for ranking candidates objectively.For example,genes with ESPP scores of 

two or greater appear particularly interesting in this context. To improve the performance of 

the model, an effort to integrate additional genomic and functional gene properties [11, 29] 

alongside improving gene classification given developing knowledge would be a 

worthwhile basis for future studies. 

Key Points 
• Integration of gene-specific scores that are related to gene essentiality helps the 

understanding of genic properties and the recognition of disease-related functional 
variation. 

• The ESPP score is produced to enhance filtering strategies in sequenced disease 
genomes. 

• The identification and characterization of essential genes is a fertile area for future 
studies to improve disease-gene discovery. 

• An apparently pathogenic variant in a gene with a high ESPP score is a candidate disease 
variant worthy of follow-up. Genes with ESPP scores > 4 are likely to be essential or 
candidates for monogenic disease variation. 

PLXNA1 NDNE 4.848 Plexin A1 Involved in cortico-motoneuronal connections underlying 
manual dexterity 

CNOT1 NDNE 4.359 CCR4-NOT Transcription Complex 
Subunit 1 

May be involved in transcriptional regulation 

CHD5 NDNE 4.346 Cadherin 5 CDH5/beta-catenin signalling appears to control endothelial 
survival 

USP34 NDNE 4.281 Ubiquitin Specific Peptidase 34 May rescue ubiquitinated proteins from proteasomal 
degradation 

FRY NDNE 4.200 FRY Microtubule Binding Protein Involved in structural integrity of mitotic centrosomes and 
maintenance of spindle bipolarity 

SUPT5H NDNE 4.084 SPT5 Homologue, DSIF Elongation 
Factor Subunit 

May control key aspects of neuronal development 

PCDH17 NDNE 4.035 Protocadherin 17 May be involved in synaptic function in the central nervous 
system 

SUPT6H NDNE 4.003 SPT6 Homologue, Histone Chaperone 
And Transcription Elongation Factor 

May regulate transcription through establishment or 
maintenance of chromatin structure 
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