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Abstract
The paper investigates a nonlinear vibration mitigation strategy of a variable
length pendulum subjected to a harmonic external excitation. A nonlinear
absorber in a form of a tri-pendulum system is used to reduce the response
of the primary pendulum. Thus, the paper investigates a non-stationary problem
of nonlinear vibration mitigation of the primary pendulum using another nonlinear
passive pendulum absorber. Due to genuine interest in capturing the nonlinear
dynamic interaction the paper numerically studies the performance of the primary
mass and absorber, first, by constructing 2D maps in the unrestrained parametric
space, which demonstrate the qualitative behavior of the system. Then, the
surrogate optimization technique is used to tune the absorber’s parameters within
a given bounded set of parameters’ values. The optimization is conducted based
on a priory known reeling speed or acceleration/deceleration of the primary
pendulum, thereby completely removing the need for acquiring a current system
states essential for active feedback control. The obtained numerical results
validate the proposed strategy and demonstrate high performance of the nonlinear
passive absorber when it is properly tuned.
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Introduction

Various mechanisms for lifting goods, similar to cranes, have been serving humans
for thousands of years. There are currently no systems that allow cranes to
operate autonomously no matter how perfect the weather conditions are. One
of the reasons is the unpredictability of the surrounding environment, which
together with the motion of the crane and payload may result in adverse swinging
vibrations of the payload. These vibrations, if not mitigated, can lead to a collision
between the payload and the surrounding structures, increase in the hoist tension
leading to its failure, or result in the collapse of the crane itself due to unbalance.
Thus, these vibrations should be mitigated well in advance, which is a nontrivial
task for an inexperienced operator. The reason is that these vibrations occur in the
horizontal plane whereas the operator can control the motion of the payload in the
perpendicular vertical direction. This is a challenging control problem, which has
been attracting significant interest from researchers all over the world.

Cranes can be classified by the degrees of freedom they have Abdel-Rahman
et al. (2003) and typically the payload motion is modeled as a lumped-mass system
or mathematical pendulum. Depending on the crane type various control strategies
have been proposed and validated numerically and/or experimentally. Strategies
based on H∞ Alfi et al. (2015); Golovin and Palis (2019), neural network Xia and
Luan (2015); Ramli et al. (2018), nonlinear control Sun et al. (2018a, 2019); Wu
et al. (2020b), adaptive and input shaping control Qian et al. (2019); Maghsoudi
et al. (2019); Zhao and Huang (2019); Khorshid et al. (2021) optimal control Sun
et al. (2018b); Wu et al. (2020a), vision control Okubanjo et al. (2018), sliding
and saturated control Tuan and Lee (2018); Zhang et al. (2020); Aboserre and
El-Badawy (2021) PD control Zhang et al. (2019), hoisting control Miranda-
Colorado and Aguilar (2019); Yurchenko and Alevras (2014) and combination
of some of the above strategies Ramli et al. (2020); Abdullahi et al. (2020) were
investigated and presented in the literature. The review papers Hyla (2012); Ramli
et al. (2017) comprehensively cover the existing literature up to 2017, whereas the
textbook Hong and Shah (2019) published in 2019 has also a number of recent
and important references. There are other active control strategies considered,
including a mass moving along the pendulum Iourtchenko (2006); Maia et al.
(2014); Ruta et al. (2019) and passive absorbers Ibrahim (2008); Xu et al. (2019);
Sarigul-Klijn et al. (2006). Nevertheless, the development of an effective control
strategy relies on the information from various sensors essential for decision
making. However, in many practical applications these sensors are not available
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and cannot be retrofitted, moreover, they can fail leaving a crane operator to deal
with the swinging payload alone.

Recently the authors proposed to use a Pendulum Tuned Mass Damper (PTMD)
as a potential nonlinear energy absorbing mechanism similar to a Tuned Mass
Damper (TMD) Den Hartog (2013); Yurchenko (2014); Lopez et al. (2014); Li
and Zhang (2020). Typically, a TMD is implemented by adding a secondary
mass to the original oscillatory single-degree-of-freedom system with a primary
mass, where the mass and the stiffness of the TMD are selected or tuned
appropriately. In contrary, the PTMD tuning is not obvious since its dynamics
is inherently nonlinear and its response frequency depends on the response
amplitude. Moreover, the PTMD’s natural frequency depends of the pendulum
length thus cannot be selected arbitrary due to the potential spatial constraints, if
any. In Yurchenko et al. (2021) the authors studied 3 different options of using
PTMD and found that due to the unique properties of the tri-pendulum design, it
was very effective in vibration mitigation of the primary mass.

However, in Yurchenko et al. (2021) the authors studied a quasi-static case,
where the primary mass was stationary or moving very very slowly. Often a
pendulum has been used together with another mass-spring system to study
autoparametric vibrations and autoparametric absorbers Hatwal (1982); Cuvalci
and Ertas (1996); Vazquez-Gonzalez and Silva-Navarro (2008); Alevras et al.
(2014); Gumus and Ertas (2016). It should be stressed, that these studies were
focused on developing a pendulum absorber for stationary vibrating linear and
nonlinear mass-spring systems, whereas the authors of Yurchenko et al. (2021)
have been focused on application of the pendulum absorber to another pendulum.
Fuzzy control approach has been applied to a variable length pendulum in Li et al.
(2022), where in Chen and Sun (2022) a study of feedback control strategy for
5-DOF crane system.

In this paper the authors study a single-degree-of-freedom pendulum subjected
to a periodic excitation. Although such an excitation does not realistically act
on a crane’s payload, it is an important benchmark case to understand the
performance of a nonlinear absorber in the non-stationary case of variable length
of the primary mass. The authors believe that the proposed methodology, when
validated can be extended to more realistic excitations. such as impulse or ramp
unit, as well as stochastic input. The tri-pendulum nonlinear absorber, which
behaves as another pendulum with independently adjustable natural frequency
and viscous damping, is applied to the primary mass to study its effectiveness,
while the primary pendulum is being lifted up or down. The main motivation is to
understand how efficient the proposed earlier in Yurchenko et al. (2021) vibration
mitigation strategy will be on a reeling up pendulum, since it is well-known
that a classical TMD is not very effective in non-stationary cases. Moreover,
we proposed a novel tuning strategy, which is based on the reeling speed and
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Figure 1. The primary mass with the tri-pendulum absorber.

acceleration, which is known in advance as the properties of the reeling motor,
thereby completely excluding the need for any feedback control. In Section 2, the
governing equations of motion are derived using the Lagrange approach. Section 3
studies the performance of the nonlinear absorber and the behavior of the primary
mass using 2D maps, contracted in the absorber’s parameters’ space. These maps
help to qualitatively understand the dependence of the absorber performance
based on its set of parameters. Section 4 proposes to use the surrogate optimization
approach to tune the absorber based on the given winch’s velocity and acceleration
properties only, without any active control or dependence on a system’s current
state. The numerical results of the optimization within a bounded set of absorber’s
parameters are presented and discussed. The conclusions are presented in the last
section of the paper.

The governing equations of motion

The tri-pendulum Alevras and Yurchenko (2013) is a special case of the N-
pendulum with three separate arms, with lumped masses Mi placed placed at
distance hi from the centre, are separated in plane with 120o from each other
and connected to a common hub placed on a bearing to allow oscillating around
its suspension point.

Assume that the primary mass is externally excitetd, as shown in Figure 1a,
and the tri-pendulum is added to this system, creating a two-degree-of-freedom
system, as sketched in Figure 1b. These oscillations may take place when the
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primary mass is long, like a part of a wind tower, and thus the proposed study will
not cover this case. Let angles θ1 and θ2 be the inclination angles of the primary
mass m and the tri-pendulum masses Mi respectively. Then the geometrical
components of the primary mass can be expressed in the Cartesian coordinate
system as following:

x1 = Lsinθ1, y1 = Lcosθ1,

ẋ1 = L̇sinθ1 +Lθ̇1 cosθ1, ẏ1 = L̇cosθ1−Lθ̇1 sinθ1,
(1)

where L = L(t) The displacement components of each mass of the tri-pendulum
can be written as following:

z1 = Lsinθ1 +h1 sinθ2, w1 = Lcosθ1 +h1 cosθ2,

z2 = Lsinθ1 +h2 cos(θ2 +π/6), w2 = Lcosθ1−h2 sin(θ2 +π/6),
z3 = Lsinθ1−h3 cos(θ2−π/6), w3 = Lcosθ1 +h3 sin(θ2−π/6),

(2)

The kinetic energy of the system, assuming that M1 = M2 = M3 = M (for the sake
of tuning simplicity), h2 = h3 and h1 > h2:

T =
m
2
(ẋ2

1 + ẏ2
1)+

M
2
(ż2

1 + ẇ2
1 + ż2

2 + ẇ2
2 + ż2

3 + ẇ2
3) =

=
m+3M

2
(L̇2 +L2

θ̇
2
1 )+

M
2
(h2

1 +2h2
2)θ̇2

2
+

+MLθ̇1θ̇2(h1−h2)cos(θ1−θ2)+ML̇θ̇2(h1−h2)sin(θ1−θ2).

(3)

The system potential energy is:

U = (m+3M)gL(1− cosθ1)+Mg{h1[1− cosθ2]+

+h2[sin(θ2 +π/6)− sin(π/6)]−h3[sin(π/6)− sin(π/6−θ2)]}=
= (m+3M)gL(1− cosθ1)+Mg(1− cosθ2)(h1−h2).

(4)

where g is the acceleration of gravity. Then, following the Lagrange equation
derivations, the equations of motion are:

(m+3M)[L2θ̈1 +2LL̇θ̇1 +Lgsinθ1]+ML∆hθ̈2 cos(θ1−θ2)+
ML∆hθ̇ 2

2 sin(θ1−θ2)+ c1θ̇1 + c2(θ̇1− θ̇2) =−F(t)L,

M[h2
1 +2h2

2]θ̈2 +M∆h(2L̇θ̇1 cos(θ1−θ2)+Lθ̈1 cos(θ1−θ2)−
Lθ̇ 2

1 sin(θ1−θ2)+ L̈sin(θ1−θ2)+gsinθ2)+ c2(θ̇2− θ̇1) = 0,
∆h = h1−h2

(5)

where c1 and c2 are linear damping coefficients and F(t) = λ1 cos(ωt). It should
be stressed that the viscous damping in the primary mass c1 was used to avoid
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introducing other nonlinear effects due to contact, that can distort the tuned
absorber effect studied in the paper. The viscous friction in the tri-pendulum c2 can
be introduced at the hub during the design stage and can be adjusted accordingly.
Introducing the following non-dimensional parameters:

µ =
M

m+3M
, γ =

h1

h2
, η =

L
h2

, λ =
λ1

m+3M
, d1 =

c1

m+3M
, d2 =

c2

M
, (6)

the equations (5) can be written as (we neglect the term with c2 in the first
equation assuming c2/(m+3M)<< 1 for large m):



θ̈1 +µ
γ−1

η
θ̈2 cos(θ1−θ2) =−2 L̇

L θ̇1−µ
γ−1

η
θ̇ 2

2 sin(θ1−θ2)−
Ω2

1 sinθ1− d1
L2 θ̇1− λ

L cos(ωt),

θ̈2 +
η(γ−1)

γ2+2 θ̈1 cos(θ1−θ2) =−η(γ−1)
γ2+2

[
2 L̇

L θ̇1 cos(θ1−θ2)−

θ̇ 2
1 sin(θ1−θ2)+

L̈
L sin(θ1−θ2)+Ω2

1 sinθ2 +
d2η

L2(γ−1)(θ̇2− θ̇1)

]
,

Ω2
1 = g/L(t)

(7)

Rewriting equations (7) in the form:{
θ̈1 +µ

γ−1
η

θ̈2 cos(θ1−θ2) = G2(θ1, θ̇1,θ2, θ̇2,L, L̇, L̈),

θ̈2 +
η(γ−1)

γ2+2 θ̈1 cos(θ1−θ2) = G1(θ1, θ̇1,θ2, θ̇2,L, L̇, L̈),
(8)

where functions G2 = G2(θ1, θ̇1,θ2, θ̇2,L, L̇, L̈) and G1 = G1(θ1, θ̇1,θ2, θ̇2,L, L̇, L̈)
represent the right-hand sides (RHS) of the top and bottom equations in (7)
correspondingly. Let J be:

J = 1−µ
(γ−1)2

γ2 +2
cos2(θ1−θ2), (9)

one can rewrite the equation (8) as:θ̈1 =
1
J

[
G1−G2µ

γ−1
η

cos(θ1−θ2)
]
,

θ̈2 =
1
J

[
G2−G1

η(γ−1)
γ2+2 cos(θ1−θ2)

]
.

(10)

It should be stressed that the use of approximate analytical methods requires
that the RHS of (9) is proportional to a small parameter. As a result an analytical
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approach will average the nonlinear effects, practically hiding or losing some
of them partially or in full. The genuine interest of this paper is to study the
nonlinear interaction of both pendulums when their response angles are relatively
large and their behavior is truly nonlinear. Thus, it is reasonable to study such
nonlinear effects using a numerical analysis, which is appropriate to capture
various nonlinear phenomena occurs in the system. In Table 1 the parameters and
variables are presented.

From the practical point of view one of the most interesting cases is when
the primary mass is moving with a constant velocity. Thus, it is reasonable to
assume that in the case of a constant velocity the length of the pendulum will be
changing as L = L0 + vt, where L0 is the initial position of the cable, v = L̇ and
a = v̇ = 0. To understand the influence of the accelerating primary mass another
case is considered in this paper, namely, when the primary mass is being moved
with a constant acceleration and deceleration, i.e. a= L̈= const. It is worth to note

(a) v = 0.01 m/s and d2 = 0.1 m2/s. (b) v = 0.01 m/s and d2 = 0.3 m2/s.

(c) v = 0.05 m/s and d2 = 0.1 m2/s. (d) v = 0.05 m/s and d2 = 0.3 m2/s.

Figure 2. Values of κ for different v, d2 and λ = 0.1 m, ω = 1.1 rad/sec, µ = 0.03.
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Table 1. Parameters and variables of the system.

Parameters/Variables Meaning
θ1, θ2 angular position of the primary and tri-pendulum masses
m, M1, M2, M3 mass of the primary and tri-pendulum masses
h1, h2, h3 distance to the tri-pendulum masses; optimization parameters
L(t), L̇(t), L̈(t) length, velocity and acceleration of the primary mass
c1, c2, d1, d2 original and normalized viscous damping coefficients
Ω1 variable natural frequency of the primary mass
µ , γ , η non-dimensional parameters according to (6)
λ1, ω excitation amplitude and frequency
g acceleration of gravity

that M, h1, h2 and d2 are the absorber parameters, which can be tuned to minimize
the swinging of the primary mass.

Dynamic response of the primary mass with the tri-pendulum
absorber

The presented equation of motion (10) can be solved numerically, however,
because of the varying primary mass length its natural frequency will vary. In
this study it is assumed that the cable’s length varies between 1 meter and 10
meters with whether a given speed or a given acceleration. This interval identifies
the undesirable excitation frequencies range that is spreading approximately from
0.99 rad/s to 3.13 rad/s. In all the presented simulations the overall time domain
was defined by the velocity of the primary mass to go from the initial cable length
to its final position, thus the higher the cable velocity the shorter the computational
time.

Figure 2 presents four maps of the numerical results generated for ω = 1.1
rad/s, λ = 0.1 m, µ = 0.03 and zero initial conditions. The maps in the γ − h2
space are presented for three different values of the lifting up velocities and the
values of the damping coefficient d2 = 0.1 m2/s and d2 = 0.3 m2/s in the left and
the right column correspondingly.

The first row corresponds to v = 0.01 m/s, the seconds for v = 0.02 m/s.In
these maps the difference between κ = max

t
|Xwa| −max

t
|Xa| is plotted, where

Xa, Xwa are the horizontal displacements of the primary mass with and without
absorber correspondingly, which are defined according to (1). Here the values of
γ , h2 corresponding to the warm colors provide significant vibration mitigation
and the yellow region can be called as the maximum suppression region, whereas
the cold colors show that the absorber is not very effective. In fact, one can see
that in some cases the vibrations of the primary mass with the absorber can be
greater than that without the absorber, as can be seen to the right from the yellow
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Figure 3. The difference in horizontal displacement κ for γ = 3.1, v = 0.01 m/s.

region in some maps. To understand the behavior of the system near and to the
right from this region Figure 3 presents the cut at γ = 3.1 level for different
values of damping d2 as a function of h2. It can be observed that with decrease of
the damping coefficient d2 the change between the yellow and dark blue regions
becomes steeper, demonstrating the effect of the damping d2.

A typical time history of the system is presented in Figure 4, where the
parameters of the system are taken the same as in Figure 2a, but at different
points on the map. Blue color represents the primary mass response without the

(a) The case of γ = 1.3 and h2 = 0.5 m. (b) The case of γ = 2.8 and h2 = 1.2 m.

Figure 4. Time history of the primary mass horizontal displacement [m] for λ = 0.1 m, ω = 1.1
rad/sec, µ = 0.03, d2 = 0.1 m2/s, v = 0.01 m/s, different values of γ and h2.
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(a) The case of µ = 0.01. (b) The case of µ = 0.05.

Figure 5. Difference in the horizontal response of the primary mass κ for different values of µ and
λ = 0.1 m, ω = 1.1 rad/sec, d2 = 0.1 m2/s, v = 0.01 m/s.

absorber, whereas the red color represents the primary mass response with the
absorber. Vibration mitigation effect of the absorber can be seen from Figure 4a
to Figure 4b. It can be seen from Figure 4b that the response amplitude of the
primary mass with the absorber is reduced more than twice with the proper values
of the parameters. It should be stressed that higher values of these parameters
correspond to longer arms of the tri-pendulum, which may be not very practical.

(a) The case of ω = 1.5 rad/sec.

Figure 6. Difference in the horizontal response of the primary mass κ for λ = 0.1 m, d2 = 0.1,
v = 0.01 m/s.

Prepared using sagej.cls



11

Figure 5 demonstrates the influence of µ on the primary mass response for
ω = 1.1 rad/sec, λ = 0.1 m and v = 0.01 m/s. As expected, one can see that with
the increase of the absorber mass from µ = 0.01 to µ = 0.05 its effectiveness is
improved. While the maximum suppression region is gradually widening from
Figure 5a to Figure 5b, it remains in the same position with respect to the
horizontal axis. In Figure 6 one can observe an opposite trend of shrinking of
that region with its gradual shifting to the left with the increase of ω .

To provide a fair comparison of the accelerating primary mass to the previous
case it is assumed that the system will have a contact acceleration/deceleration.
Under the assumption that these two intervals of acceleration and deceleration are
equal in time, it is possible to derive the relationship between the mean velocity
of the primary mass, its acceleration and the primary pendulum length difference
between the initial and final position for the lifting-up operation:

< v >=

√
a(Lo−L f )

2
, L0 > L f , (11)

where < v >= − < L̇ > is the mean lifting-up velocity and a = L̈ is the
acceleration. This equation is used to select an acceleration value, which will
result in the same time of the lifting-up process. Figure 7 presents the map in
γ−h2 space for < v>= 0.05 m/s and the primary mass moving up with a constant
acceleration/deceleration. Numerical results have also indicated that the increase
of µ leads to higher vibration suppression, however the peak values move to the

Figure 7. Difference in the horizontal response of the primary mass κ for < v >= 0.05 m/s, µ = 0.01,
λ = 0.1 m, ω = 1.1 rad/sec and d2 = 0.1 m2/s.
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right to higher values of h2.The regions with negative effect of the absorber grow
bigger indicating again the adverse effect of the speed.

Optimization of the absorber performance

Optimization approach

As it has been demonstrated above, the tri-pendulum nonlinear absorber can
effectively mitigate the primary mass vibrations in some cases. The purpose of this
work is to implement a passive absorber, which neither requires any active control
nor embedded sensors. In this case it is believed that the excellent strategy would
be to tune the absorber parameters based on the winch operating properties, i. e.
the winch’s velocity and acceleration only. It can be done by studying the response
of the system for a given set of initial conditions, the system and excitation
parameters, and then optimizing the systems response to provide the best overall
result.

The goal is to find the tri-pendulum distances h1, h2 (within given ranges) that
minimize the mean oscillation energy of the primary mass. The objective function
is specified as follows.

First, we take the sum of the corresponding terms in the representations of the
kinetic and potential energies (3), (4) and divide them by m+3M for convenience,
deriving the normalized energy of the primary mass:

H = gL(1 − cos θ1) +
1
2

L2
θ̇

2
1 . (12)

The term with L̇2 from (3) is not included, since it relates to the energy of
ascending/descending primary mass, rather than its vibrations. Next, we consider
the mean of (12) over the time interval

[
0, t f

]
such that the boundary conditions

L(0) = L0 and L(t f ) = L f are satisfied:

1
t f

∫ t f

0

(
gL(t)(1 − cos θ1(t)) +

1
2

L2(t) θ̇
2
1 (t)

)
dt. (13)

Note also that the actual values of the external force parameters λ , ω and
initial states θ̄(0) = (θ1(0), θ̇1(0), θ2(0), θ̇2(0)) (obviously affecting the system
dynamics) may not be known in a particular setting. It is hence reasonable
to determine the objective function by averaging the mean energy (13) over
some finite grid within certain ranges of λ , ω , θ̄(0) (in Yegorov (Egorov),
the advantages of such an averaging approach are demonstrated as applied to a
somewhat different class of damping problems). It is proposed to construct the
grid from a limited number of quasi–Monte Carlo nodes. In general, quasi–Monte
Carlo grids reduce the clamping of standard Monte Carlo grids, which is critical to
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(a) Optimal values of h1 and h2. (b) The normalized energy of the primary mass.

Figure 8. The case of a constant lifting-up speed.

high-dimensional problems, and can rely on Halton, Sobol, or Faure quasi-random
number sequences Kocis and Whiten (1997); Chilan and Conway (2019).

The main idea of surrogate optimization is to work with relatively simple
interpolation or regression models built from objective function values at a limited
number of sample points and update these models iteratively Gutmann (1999);
Koziel and Leifsson (2016). Such fast computable approximations of an objective
function are called surrogates. For example, the corresponding implementation
in the MATLAB Global Optimization Toolbox MathWorks© (2022) involves
radial basis function interpolation for surrogate construction. The optimization
algorithm searches for a global extremum and alternates between two stages.
The first stage generates or updates a surrogate, while the second stage performs
global optimization via the current surrogate, using Kriging algorithm Chilan and
Conway (2019); Press et al. (2007).

For numerical simulations in this paper we take

L0 = 10 m, L f = 1 m, µ = 0.03, (14)

and set the following bounds for h1, h2:

0.1 6 h2 6 1, h2 < h1 6 1.5. (15)

Values in (15) are taken to keep the tri-pendulum of relatively reasonable size, so
that at its maximum values h2 = 1 m whereas h1 = 1.5 m. It should be stressed
that the condition h1 > h2 is imposed here to be consistent with the simulations
conducted in the previous part. In fact, h1 may in principle be smaller than h2, and
in this case the bottom equilibrium position of the tri-pendulum will be unstable
while the top equilibrium will become stable.

The mean energy (13) was averaged over a Halton quasi–Monte Carlo grid
consisting of 100 nodes in the six-dimensional cuboid given by

λ ∈ [0.05,0.1], ω ∈ [0.9,1.3],
θ̄(0) = θ̄(0) ∈ [−0.3,0.3]× [−0.3,0.3]× [−0.3,0.3]× [−0.3,0.3].

(16)
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Figure 9. The optimal values of the normalized primary mass energy as a function of the lifting
velocity averaged over λ , ω, θ̄(0) and different values of the damping coefficient d2.

The associated optimal distances h1, h2 would probably not be the best for
particular values from λ , ω , θ̄(0), but the average performance would certainly
be superior.

Numerical simulations

A set of the numerical optimizations is performed for the case of the primary
mass constant lifting-up speed, a fixed set of parameters without an averaging and
with an averaged procedure over the specified above range of parameters λ , ω ,
θ̄(0). Figure 8a demonstrates the optimal values of h1 and h2 for this two cases,
where the without-averaging case was studied for zero initial conditions, λ = 0.08,
ω = 1.1 and d2 = 0.1 m2/s. It should be stressed that one can observe peaks for
h1 parameter at every grid point. These oscillations are direct result of Kriging
interpolation, which has been selected due to its high performance and smoothing
properties.

It can be seen in Figure 8a that over the presented range of the lifting velocities,
the optimal values of h1 are almost the same, however there is some difference in
the optimal values of h2 for some values of the lifting-up velocity. For instance, the
difference in the optimal values of h2 can be observed when v = 0.02 m/s. Figure
8b demonstrates the graphs of the primary mass normalized energy as a function
of the primary mass velocity for the two cases as in Figure 8a and optimal values
of h1 and h2.

Figure 9 presents the results of the optimization for the case of the constant
lifting-up velocity and different values of the absorber damping d2. It can be
observed from Figure 9 that there is a significant difference in the results of the
normalized primary mass energy near the very slow or quasi-static values of the
lifting-up velocity.
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Next set of figures demonstrates the results of the optimization for the case
of the accelerating and decelerating primary mass according to (11). Figure 10a
demonstrates the results of the optimization for the optimal values of h1 and h2,
where h1 is suggested to remain the same However, the optimal value of h2 get
very low, around 0.2 m, when the mean speed goes above 0.06 m/s, although for
the lower values of the mean velocities the situation is different.

Figure 10b presents the results of the normalized energy of the primary mass as
a function of mean velocity for different values of the absorber damping averaged
over the range of λ , ω , θ̄(0). The lowest values are achieved around < v>= 0.015
m/s tending to the same value of normalized energy as in Figure 9 at higher values
of the mean velocity.

Conclusion

In this work, a tri-pendulum nonlinear absorber was proposed to mitigate
vibrations of the primary lumped mass pendulum. The lifting motion of the
primary mass, with either a given speed or a given acceleration/deceleration, was
accounted for by introducing a time dependent pendulum’s length. Constructed
2D maps in the γ − h2 space have shown the performance of the absorber based
on the selected values of the system’s parameters. It has been shown that the
maps have a prominent suppression region, where the vibrations of the primary
mass are mitigated substantially. However, there are regions where the vibration
suppression is not significant or the absorber has a negative effect on the primary
mass, resulting in a larger response amplitude of the latter. These investigations
have also demonstrated the following effect of the system’s parameters:

• the larger lifting velocity of the primary mass the lower the vibration
mitigation effect of the tri-pendulum absorber;

• the higher the damping of the tri-pendulum, the wider the maximum
suppression region, however, it also moves up to larger values of γ;

(a) Comparison of optimal values of h1 and h2 as a
function of the mean lifting velocities < v >.

(b) The optimal values of the normalized primary
mass energy.

Figure 10. The case of constant acceleration/deceleration of the primary mass

Prepared using sagej.cls



16 Journal Title XX(X)

• the larger mass ratio the better vibration mitigation performance of the
absorber;

• the longer the absorber arms the higher the effect of vibration mitigation

Using the surrogate optimization approach we have studied the absorber
performance within a reasonable restricted set of the absorber parameters, namely
the arms lengths. The numerical results have been obtained for a fixed set of the
initial conditions as well as by averaging over some set of these parameters. The
numerical results of the optimization have demonstrated excellent performance of
the nonlinear absorber when it is tuned. Moreover, the paper has demonstrated
the feasibility of the proposed tuning strategy, which does not require any active
control at all.
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