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Abstract  
Coherent beam combination can be used to overcome limitations associated with the power handling capability of a single fibre laser. However, due to interference effects, the spatial intensity profile of the combined beam is directly affected by the phase of each fibre. Therefore, monitoring and control of the fibre phases is required for practical application. Here, we show that a neural network can extract this phase information from a far-field intensity profile, in a single step, hence unlocking the potential for real-time beam shaping. Further investigation shows that the neural network encoded fundamental rules associated with interference theory. 
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1. INTRODUCTION 
Fiber lasers have become increasingly popular in recent years due to their growing maximum output power [1-4]. However, reaching high-power levels is a challenge because these lasers often have a small mode field size and long propagation length, making them susceptible to nonlinear effects such as Stimulated Raman Scattering, Stimulated Brillouin Scattering, and the optical Kerr effect. While increasing the mode area can decrease the threshold for transverse mode instability, an alternative approach to enhancing the total average power is through combining multiple fibers that emit spectrally narrow co-aligned colinearly polarized beams, referred to as coherent beam combination. One major issue with this method is that changes in the relative phase of the fibers can greatly affect the resulting spatial intensity profile. Therefore, there is a strong interest in developing methods to identify and correct the phase of each fiber in real-time during operation. In practice, if the phase of each fiber can be accurately identified, a correcting signal can be sent to the phase actuator associated with each fiber, resulting in a corrected focused intensity profile.
Deep learning has been widely applied in recent years for laser optimization and laser materials processing, where it has been found to be as effective, or even more effective, than traditional modeling approaches [5-9]. One major advantage of deep learning is its computation speed, as neural network implementations typically take just tens of milliseconds per calculation. This makes it particularly useful for solving complex challenges that are difficult or impossible to describe mathematically. Neural networks are a natural choice for reconstructing phases from an intensity profile, as demonstrated in the field of coherent diffractive imaging. 

The main goal of this work [10] was to develop a method for identifying the phase profile in a fiber array by only observing the intensity profile at or near the focus. The difficulty in identifying the phase arises because measuring the intensity profile only captures the intensity of the electric field, obscuring the phase information. While it is mathematically simple to determine the resultant focused intensity profile from the known intensity and phase of each fiber, determining the intensity and phase of individual fibers from a measured intensity profile typically requires a more complex approach, such as iterative algorithms. In this work, by framing the problem of identifying the phase of each fiber as a two-dimensional phase retrieval problem, we were able to accurately find a solution in a single step using deep learning. The concept of this process is shown in Figure 1. This work builds on previous applications of deep learning for coherent beam combination [11-13].
*bm602@orc.soton.ac.uk
[image: image1.png]amplitude profile phase profile
n
0.75 /2
0.5 0
0.25 —n/2
0 -1
simulation
add on curved
phase and
propagate
towards focus
focal intensity profile
_—
- 40
neural network
- 30 trained to
transform
20 intensity into
hase
*simulated 10 P
distance 0 —_—

phase profile

/2

—n/2





Figure 1. Concept of the application of deep learning for real-time identification of fibre phases directly from a focal intensity profile in a coherent beam combination system.

2. Results and discussion

Figure 2 shows a flowchart that explains the process of neural network identification of phases, and subsequently demonstrates a potential technique for coherent beam combination and bespoke beam shaping. The process can be explained by starting at the “start here” box and following downwards to the randomly chosen phase profile (“current phase”), which is both unknown to the neural network in this flowchart process and was not used during the training process. In practice, the “current phase” would represent the phase profile that is occurring at this point of time on the experimental setup, but where this phase profile is of course unknown to the experimenter. The current phase is then propagated to the simulated focal plane and the intensity recorded. This intensity profile is used as the neural network input, which then predicts a phase profile. The “predicted phase” can then be subtracted from the “current phase”, which in practice could be achieved using phase controllers associated with each individual fibre, yielding the “subtracted phase”. At this stage, the application of bespoke beam shaping can be introduced. From the initial “start here” box, and following upwards to the “target intensity profile” and the associated “target phase profile”, it is possible to see how the addition of a custom phase to the “subtracted phase” profile can produce the bespoke phase profile and the associated bespoke intensity profile. Note the similarity between the final intensity profile and the target intensity profile. In summary, despite starting from an unknown initial phase profile (i.e. “current phase”) the application of a neural network is shown here to enable both coherent beam combination and bespoke beam shaping in a single process.
An important factor to consider is the ability to apply this technique to a larger number of fibers, such as 37 or 61 fibers. Our current approach had to consider various limitations due to computational resources, but we believe the technique can be extended to larger numbers of fibers. However, as the number of fibers increases, diffraction effects may lead to smaller features in the focal intensity profile from interference between outer fibers than from inner fibers. In our current approach, when illuminating only fibers in the outer ring of 12 fibers, the minimum fringe separation in the focal intensity profile was 20 image pixels. But, if the number of fibers increases, and additional rings of fibers are added, the interference fringes may become smaller than an image pixel, which would lower the accuracy of the phase prediction.
To overcome this challenge, there are two potential solutions. One is to decrease the size of the circles representing the fibers, thus reducing spatial resolution. In the current setup, which includes 19 fibers in a 256x256 image, the position, amplitude, and phase profile of each fiber are described using ~50x50 image pixels. If images were scaled in this way, to include more fibers, the number of image pixels used to describe each fiber would decrease, ultimately resulting in discretization effects caused by the use of integer values instead of continuous values to describe phase and intensity, and spatial discretization into pixels. The other option is to increase the size of the array to improve the spatial resolution of the focal intensity profiles. However, this would lead to a significant increase in the training time of the neural network and time required to create the training data. Furthermore, adding more fibers would lead to a more complex problem and would require additional training data pairs. Despite this, there is no apparent limit to the number of fibers that can be accommodated with this technique.
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Figure 2. Demonstration of the application of deep learning for singe-step bespoke beam shaping for coherent beam combination.

In conclusion, we have developed a method for determining the phase of nineteen fibers arranged in a hexagonal close-packed array by using the simulated focal intensity. This method has a direct application in optimizing coherent beam combination. We employed a conditional generative adversarial network to convert an image of the simulated focal intensity profile into the corresponding image of the simulated phase profile at the exit of the fiber array. By subtracting the predicted phase from the current phase, we were able to achieve a good estimate of a flat phase, which can be used for phase correction or as a foundation for customizing phase profiles, thus allowing control of the spatial intensity profile.
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