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Abstract

This paper proposes a functional coefficient quantile regression model with heterogeneous
and time-varying regression coefficients and factor loadings. Estimation of the model co-
efficients is done in two stages. First, we estimate the unobserved common factors from a
linear factor model with exogenous covariates. Second, we plug-in an affine transformation
of the estimated common factors to obtain the functional coefficient quantile regression
model. The quantile parameter estimators are consistent and asymptotically normal. The
application of this model to the quantile process of a cross-section of U.S. firms’ excess
returns confirms the predictive ability of firm-specific covariates and the good performance
of the local estimator of the heterogeneous and time-varying quantile coefficients.
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1 Introduction

In a series of influential papers, Bai and Ng (2002) and Bai (2003, 2009) developed a general

methodology for explaining economic and financial variables by a few common factors. Factor

models allow for a drastic reduction of the cross-sectional dimension of a panel while providing

a flexible way to summarize information from large data sets, see Pesaran (2006). In the

literature on factor models it is common to assume a vector of constant factor loadings. This

assumption is, however, rather restrictive. To the best of our knowledge, Eichler et al. (2011) is

the first study to use time-varying loadings in a dynamic model with non-stationary time series.

Bates et al. (2013) is another influential analysis that contributes to the idea of smooth changes

in factor loadings. Su and Wang (2017) propose a local version of the principal component

method using smoothly changing loadings, while Pelger and Xiong (2019) allow them to be

state-dependent. In this setting the unobserved factor structure is thus allowed to vary over

time.

Another area of major interest in recent years is the study of the quantile process. Quantile

regression (QR) has been studied extensively in both theoretical and empirical studies; see

Koenker and Bassett (1978), Portnoy (1991), Chaudhuri et al. (1997), Koenker and Machado

(1999), He and Zhu (2003), Koenker and Xiao (2006). This work has been recently extended

to accommodate the presence of dynamics in the quantile coefficients, see Wei and He (2006)

and Kim (2007). A more general approach that also allows for dynamics in the quantile

parameters is based on nonparametric and semiparametric estimation methods for dynamic

smooth coefficient models, see De Gooijer and Zerom (2003), Yu and Lu (2004), Horowitz and

Lee (2005), and more recently, Cai and Xu (2008) and Cai and Xiao (2012). Building on this

work, recent contributions by Ando and Bai (2020), Chen, Dolado, and Gonzalo (2021) and Ma,

Linton, and Gao (2021) have extended quantile regression models to incorporate unobserved

common factors. These models consider heterogeneous quantile effects that introduce much

flexibility to the specification of factor models by capturing the presence of heterogeneity in

the effect of observable covariates and unobserved factors at different quantiles.

The current paper combines both approaches by considering a factor model with a time-

varying factor loadings structure in a quantile heterogeneity framework with varying coeffi-

cients. The idea is to propose a flexible panel data model that is general enough to encompass

unobserved heterogeneity arising from unobserved factors and quantile-indexed responses to-

gether in a dynamic setting. This is done in two stages. First, we propose a factor model for

the mean process that includes observable regressors and unobservable factors. This model

allows for heterogeneity across individuals and dynamics in the regression coefficients. By

doing so, we extend standard factor model specifications that assume slope homogeneity in

the observable regressors as in Bai (2003, 2009) and slope heterogeneity as in Song (2013) and

Ando and Bai (2015). As a salient feature, the model also entertains dynamics in the factor

loadings. Second, we extend the model to describe the quantile process. The slope coeffi-
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cients associated to the observable regressors in the quantile model face three different types

of variation: heterogeneity across quantiles, individuals, and over time. The factor loadings

accommodate heterogeneity across individuals and over time.

Estimation of the model coefficients (quantile factors, quantile regression coefficients and

factor loadings) is done in two stages. In the first stage, we estimate the unobservable common

factors from a linear factor model with exogenous covariates. We adapt the principal com-

ponent analysis introduced in Bai (2009) to a local setting using kernel estimation methods

(see also Su and Wang (2017)) to simultaneously estimate the local common factors, factor

loadings and slope coefficients associated to the observable regressors. In contrast to Su and

Wang (2017), our model also accommodates the presence of observable regressors. In order to

estimate the quantile common factors a fundamental assumption in our modelling framework

is that these quantities are quantile-specific affine transformations of the factors obtained from

the mean process in the first stage. In this regard, our model specification lies between the

approximate factor models that only consider mean-shifting factors to describe quantile ef-

fects and the idiosyncratic quantile factor models in which the factors are estimated separately

for each quantile using an iterative procedure, see Ando and Bai (2020), Chen, Dolado, and

Gonzalo (2021) and Ma, Linton, and Gao (2021). By doing so, our quantile factors become

observable covariates in the quantile process studied in the second stage.

The estimation of the parameters in our model relies on the nonparametric quantile es-

timation method for dynamic smooth coefficients introduced in Cai and Xu (2008) and the

semiparametric approach proposed in Cai and Xiao (2012) for models with partially varying

coefficients. Our proposed methodology is also framed within the recent literature on QR

models with an unobserved factor structure. Harding and Lamarche (2014) propose a quantile

common correlated effects estimator for homogeneous panel data with endogenous regressors.

The authors assume a parametric approach and time-invariant factor loadings, where the way

of recovering the latent factors is different from ours.

Inclusion of estimated quantities in regression models may affect the asymptotic distribution

of the parameter estimates, see Pagan (1984). This observation is essential in our context,

characterized by a quantile factor model with estimated factors. In principle, the inclusion

of such covariates into the quantile model has effects on the asymptotic distribution of the

quantile parameter estimates. We show that this is not the case under standard panel data

assumptions, that is, if both N and T diverge to infinity such that Th/
√
N →∞, with h→ 0

a bandwidth parameter. We derive the asymptotic distribution of the regression parameter

estimates associated to the observable covariates for the mean and quantile models, and of the

estimated factors and quantile factor loadings.

A Monte Carlo simulation exercise studies the finite-sample performance (bias and mean

square error) of two estimators of the slope coefficients that are based on our two-stage pro-

cedure. The first estimator considers time-varying factor loadings using the local estimation
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procedure developed in this paper. In this case we estimate individual-specific coefficients for

all t = 1, 2, ..., T . The second estimator considers a model with time-invariant loadings. In this

case we do not impose the time-varying local estimation procedure and estimate, instead, a

unique set of parameters for all t. This global factor estimator uses Ando and Bai (2015) itera-

tive process. The simulation exercise confirms the consistency of our local two-stage estimation

procedure and provide empirical support to our methodology for estimating heterogeneous and

time-varying quantile regression coefficients and factor loadings.

This novel quantile factor model is applied to explain the distributional risk premia for

a cross-section of excess returns. To do this, we fit the model to different quantiles of the

distribution for a cross-section of annual U.S. firms’ asset returns. We consider firm-specific

covariates as pricing factors and allow for the presence of two unobserved factors.1

The remainder of the paper proceeds as follows. In Section 2, we introduce the time-

varying quantile factor model. Section 3 describes the estimation procedure based on local

principal components and QR. Section 4 introduces the asymptotic properties of the parameter

estimators. Section 5 presents a Monte Carlo simulation exercise to evaluate the performance

in finite samples of our estimation procedure, in particular, we focus on bias and mean square

error. Section 6 illustrates the suitability of the quantile factor model with exogenous covariates

in an empirical asset pricing framework. Section 7 provides concluding remarks. An appendix

contains the mathematical proofs of the main results of the study. Tables and figures are

collected as a second appendix.

Notation. Let [T ] ≡ {1, 2, ..., T} and [N ] = {1, 2, ..., N} be the sets of time periods and

individuals indices, respectively. The Frobenius norm is defined as ‖A‖ = [tr(AA′)]1/2 with tr

denoting the trace of a matrix and A′ the transpose of A.

2 Time-varying quantile factor models

2.1 Identification of the quantile factors and factor loadings

Let Yit be an outcome variable of interest and Xit = (X1,it, ..., Xd,it) be a vector of d observable

covariates, including a constant. Similarly, Fτt = (Fτ,t1, . . . , Fτ,tR) is the vector of unobservable

common quantile factors indexed by τ where, for simplicity, R is assumed to be equal across

τ ∈ (0, 1). We consider the following quantile process conditional on Xit and Fτt, given by

Qτ (Yit|Xit, Fτt) = Xitβτ,it + FτtΛτ,it, (1)

1It is prevalent in this literature to fix the number of unobserved common factors, see Bai (2009), Song
(2013), and Ando and Bai (2015). Alternatively, information criteria and rank minimization are used in Ando
and Bai (2020) and Chen, Dolado, and Gonzalo (2021), to determine the number of factors at each quantile
while uncovering the quantile factors individually.
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for a given τ ∈ (0, 1), with βτ,it = βτ,i(ut), where ut = t/T is the vector of quantile slope

coefficients associated to the observable regressors. Similarly, Λτ,it = (λτ1,it, . . . , λτR,it)
′, with

λτj,it = λτj,i(ut), are the loadings associated to the quantile factors Fτt. Here the factors

are assumed to be τ -specific. Both βτ,it and Λτ,it are assumed continuously differentiable

smooth functions, see Robinson (1989) and Cai (2007) for similar assumptions in a model with

observable covariates.

We impose the following assumption for the identification of the quantile factors.

Assumption A.1.

i) Let

E (Yit|Xit, Ft) = Xitβit + FtΛit, (2)

with βit the slope coefficients for the conditional mean process; Ft = (Ft1, . . . , FtR) the vector

of common factors affecting the conditional mean, and Λit the associated factor loadings.

ii) The quantile common factors satisfy

Fτt = Ft + sτt, (3)

with sτt = [sτ,1t, . . . , sτ,Rt] for all t ∈ [T ].

Assumption A.1 ii) implies that the quantile factors are location shifts of the vector of

factors for the mean process. Under A.1, we can identify the quantile factors and the quantile

factor loadings from the following quantile regression model:

Qτ (Yit|Xit, Ft) = aτ,it +Xitβτ,it + FtΛτ,it, (4)

with aτ,it = sτtΛτ,it. Identification of the quantile parameters is possible if we condition on

the vector Xit and Ft. The additional component aτ,it determines that the constant in (1)

cannot be identified unless additional assumptions are imposed. In particular, identification of

sτ,tr is possible if there is no constant in the quantile regression models indexed by τ ∈ (0, 1).

Alternatively, we may impose Qτ (sτt | Ft) = 0 in assumption A.1. This additional constraint

allows for the identification of the constant in model (4) from the parameter vector βτ,it. Note

however that this is not required for the estimation of the other parameters which is the main

interest of the paper.

The next section discusses a suitable estimation strategy for obtaining consistent estimates

of the model parameters. The parameters of interest are {βit,Λit, Ft} for the mean regression

equation in A.1, and {βτ,it,Λτ,it, Fτt} for the QR model (4).
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2.2 Estimation

In this section we consider local versions of principal components analysis to devise an iter-

ative procedure for estimating the model parameters of the mean process (2). To do this,

we adapt the estimation procedures in Bai (2009), Song (2013) and Ando and Bai (2015) for

the estimation of βit, Λit and Ft. The parameters βτ,it and Λτ,it of the quantile factor model

with observable regressors are estimated using QR methods applied to a local kernel version of

model (18) in which the unknown common factors have been replaced by consistent estimates.

2.2.1 Estimation of slope coefficients and common factors

In order to estimate the parameters of model (2), we apply local principal components as in Su

and Wang (2017). In contrast to these authors we consider a factor model that also includes

observable regressors.

In order to estimate the slope coefficients βit and Λit we need a panel data structure with

large N and T that guarantee the consistency of the common factors and factor loadings,

respectively. To do this, we extend the iterative estimation procedure in Song (2013) and

Ando and Bai (2015) to accommodate dynamics in the β and Λ coefficients, until we reach

convergence. For s ∈ [T ] fixed, we consider the Taylor expansion of the vector βit about βis

for ut close to us such that

βit = βis +
m∑
q=1

β
(q)
is

q!
(ut − us)q + o(|ut − us|m), (5)

with β
(q)
is high-order derivatives of the functional parameter βit evaluated at us. For simplicity,

we consider the local approximation of order zero given by βis such that the remaining terms

in the approximation are in the error term. Similarly, we replace Λit by Λis such that we

estimate the model

Yit = Xitβis + FtΛis + eit, (6)

with eit an error term that includes the high-order approximation terms of the model parame-

ters. The parameters of model (6) are estimated from minimizing the following local weighted

least squares problem:

min
{{βis}Ni=1,{Λis}

N
i=1,{Ft}

T
t=1}

N∑
i=1

T∑
t=1

(Yit −Xitβis − FtΛis)2 k

(
ut − us
h

)
, (7)

where k(·) is a kernel smoothing function. The solution to this problem can be obtained

applying local principal component analysis (LPCA). To do this, we multiply both sides of

expression (6) by k
1/2
h,ts, with kh,ts = k

(
ut−us
h

)
, see Su and Wang (2017) for a similar estimation
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strategy. We obtain

k
1/2
h,tsYit = k

1/2
h,tsXitβis + k

1/2
h,tsFtΛis + k

1/2
h,tseit. (8)

Now, define Y
(s)
it = k

1/2
h,tsYit such that Y

(s)
i =

(
Y

(s)
i1 , ..., Y

(s)
iT

)′
is a T × 1 vector and Y (s) =(

Y
(s)

1 , ..., Y
(s)
N

)
is a T×N matrix. Similarly, letX

(s)
l,it = k

1/2
h,tsXl,it such thatX

(s)
l,i =

(
X

(s)
l,i1, ..., X

(s)
l,iT

)′
,

for l = 1, . . . , d, with X
(s)
i =

(
X

(s)
1,i , ..., X

(s)
d,i

)
. Similarly, e

(s)
it = k

1/2
h,tseit such that e

(s)
i =(

e
(s)
i1 , ..., e

(s)
iT

)′
is a T ×1 vector. Let F

(s)
t = k

1/2
h,tsFt such that F (s) = (F

(s)
1 , . . . , F

(s)
T )′ is a T ×R

matrix and Λs = (Λ1s, . . . ,ΛNs) be a R ×N matrix. For each individual in the cross section,

equation (8) in vector form is

Y
(s)
i = X

(s)
i βis + F (s)Λis + e

(s)
i . (9)

In this setting, for a fixed s ∈ [T ], the minimization problem (7) becomes

min
{βis,F (s),Λis}

tr

[
N∑
i=1

(
Y

(s)∗
i − F (s)Λis

)(
Y

(s)∗
i − F (s)Λis

)′ ]
, (10)

with tr denoting the trace of the matrix and Y
(s)∗
i = Y

(s)
i − X

(s)
i βis. For parameter iden-

tification, we impose restrictions F (s)′F (s)/T = IR and ΛsΛ
′
s = diagonal matrix, with Λs =

(Λ1s, . . . ,ΛNs) a R × N matrix. This objective function is a locally weighted version of the

least square estimator in Bai (2009).

Applying the procedure developed by these authors, we can estimate βis and F (s) using

an iterative estimation procedure. This approach decomposes the original estimation problem

into two steps: the estimation of the individual coefficients given common factors, and the

estimation of the common factors given individual coefficients. We maintain their assumption

that the number of factors R is known. The extension to an unknown number of factors under

heterogeneous regression coefficients is cumbersome and beyond the scope of this paper. Thus

when the number of unobserved factors is known, Bai (2009) proposes a tractable solution to

the estimation problem by concentrating out the factor loadings from the objective function

(10). Following this procedure, we assume that the factor loadings Λis satisfy a relationship

of the form Λis = (F (s)′F (s))−1F (s)′Ŷ
(s)∗
i , with Ŷ

(s)∗
i = Y

(s)
i −X(s)

i β̂is and β̂is an estimate of

the vector of slope coefficients for fixed s ∈ [T ]. Then, replacing this expression into (10), the

objective function is

min
{βis,F (s),Λis}

{
N∑
i=1

Y
(s)∗′
i Y

(s)∗
i − 1

T
tr

[
F (s)′

(
N∑
i=1

Ŷ
(s)∗
i Ŷ

(s)∗′
i

)
F (s)

]}
. (11)
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Therefore, the problem of interest becomes

max
{βis,F (s)}

tr

[
F (s)′

(
N∑
i=1

Ŷ
(s)∗
i Ŷ

(s)∗′
i

)
F (s)

]
. (12)

The estimators {β̂is, F̂ (s)} should simultaneously solve a system of nonlinear equations

β̂is = (X
(s)′
i M

F̂ (s)X
(s)
i )−1X

(s)′
i M

F̂ (s)Y
(s)
i (13)

with M
F̂ (s) = IT − F̂ (s)

(
F̂ (s)′F̂ (s)

)−1
F̂ (s)′, and

[
1

NT

N∑
i=1

Ŷ
(s)∗
i Ŷ

(s)∗′
i

]
F̂ (s) = F̂ (s)V

(s)
NT , (14)

where V
(s)
NT is a diagonal matrix with the R largest eigenvalues of (NT )−1Ŷ (s)∗Ŷ (s)∗′, and the

estimated transformed factors F̂ (s) are interpreted as the
√
T times eigenvectors corresponding

to the R largest eigenvalues of the T × T matrix Ŷ (s)∗Ŷ (s)∗′, arranged in descending order.

The actual estimation procedure can be implemented by iterating each of the two steps in

(13) and (14) until convergence. The unknown factor loadings are obtained as

Λ̂is =
1

T
F̂ (s)′Ŷ

(s)∗
i . (15)

The estimation above involves only local data points, i.e. locally weighted in a neighbourhood

of s ∈ {1, . . . , T}, and hence, the local estimates of βis and Λis converge to the true parameters

at
√
Th rate. In contrast, the methodology developed in Ando and Bai (2015) obtains global

estimators that converge under slope heterogeneity at
√
T for each i = 1, . . . , N . Under the

assumption of slope homogeneity, Bai (2009) obtains estimators of the true slope parameters

that converge at
√
NT . The next step is to derive a consistent estimator of the common factors

Ft. We propose an estimator of the common factors from the minimization of the following

least squares problem:

min
{{Ft}Tt=1}

N∑
i=1

T∑
t=1

(
Ŷ ∗it − FtΛ̂it

)2
, (16)

with Ŷ ∗it = Yit−Xitβ̂it, where β̂it is obtained from the above iterative estimation procedure for

each s ∈ [T ]. The solution to this problem is

F̂ ′t =

(
N∑
i=1

Λ̂itΛ̂
′
it

)−1 N∑
i=1

Λ̂itŶ
∗
it . (17)
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2.2.2 Estimation of time-varying quantile factor loadings

In what follows, we propose a procedure to estimate the parameters of the quantile process

(18). The unobserved quantile common factors are replaced by estimates of Ft obtained from

the conditional mean regression model, such that the regression of interest is

Qτ (Yit|Xit, Ft) ≈ aτ,it +Xitβτ,it + F̂tΛ
∗
τ,it, (18)

with Λ∗τ,it = [H(t)]−1Λτ,it and H(t) a rotation matrix characterizing the common factors; aτ,it =

s∗τtΛ
∗
τ,it, with s∗τt = sτtH

(t). More compactly, consider the following regression model. Let

Yit = Ẑitθτ,it + wτ,it, (19)

be the feasible counterpart of Yit = Zitθτ,it + ετ,it, with Qτ (ετ,it |Xit, Ft) = 0. Here we are

using the notation Zit = [Xit Ft] (note that X already contains a constant) and Ẑit = [Xit F̂t],

and also wτ,it = ετ,it − (F̂t − FtH(t))Λ∗τ,it.

Estimation of the model parameters follows by adapting the nonparametric approach for

dynamic quantile processes in Cai and Xu (2008). These authors consider a polynomial ap-

proximation of the parameters θτ,it ≡ θτ,i(ut) about us given by θ̃τ,is and defined as

θτ,is =

aτ,is +

q∑
j=1

a
(j)
τ,is(ut − us)

j

 βτ,is +

q∑
j=1

β
(j)
τ,is(ut − us)

j

′ Λ∗τ,is +

q∑
j=1

Λ
∗(j)
τ,is (ut − us)j

′′ ,
with Λ∗τ,is+

q∑
j=1

Λ
(∗j)
τ,is (ut−us)j the local approximation of the rotated factor loadings Λ∗τ,it. Note

that a
(j)
τ,is, β

(j)
τ,is and Λ

∗(j)
τ,is are the derivatives of order j of the respective functional coefficients.

As in Cai and Xu (2008) we disregard in the following deviations the approximation error from

using a polynomial Taylor expansion of order q, see Fan and Gijbels (1996) for the suitability

of this method and, in particular, the advantages of the local linear approximation.

The parameters of model (19) can be estimated from the following local objective function:

min
{θτ,is}

1

T

T∑
t=1

ρτ

(
Yit − Ẑitθτ,is

)
k

(
ut − us
h̃

)
, (20)

where ρτ (·) = ·[τ − 1(· < 0)] is the check function of Koenker and Bassett (1978) and 1(·) is

an indicator function that takes a value of one if the argument is true and zero otherwise; h̃ is

a suitable bandwidth parameter for the quantile estimation problem.

Estimation of the quantile parameters is obtained from the first order conditions of the

optimization problem (20). Estimation of the common factors for the quantile process is also

possible in a quantile model (1) without intercept. In this case, by invoking Assumption
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A.1, we plug-in the factors estimated from the mean regression equation (6) and estimate the

quantile factors as

F̂τt = F̂t + ŝ∗τt, (21)

with ŝ∗τt = âτt[Λ̂
∗
τ,t]
−1, where âτt is obtained from (20) and [Λ̂∗τ,t]

−1 is a N × R generalized

inverse matrix of the R×N matrix Λ̂∗τ,t obtained from the elements Λ̂∗τ,it ≈ Λ∗τ,is+
q∑
j=1

Λ
∗(j)
τ,is (ut−

us)
j , with ≈ denoting a Taylor approximation of order q. The matrix [Λ̂∗τ,t]

−1 satisfies that

Λ̂∗τ,t[Λ̂
∗
τ,t]
−1 = IR.

2.3 Determining the number of factors

In the previous analysis, we assume that the number of factors, R, is known. In the simulations

and the empirical application we fix the number of factors to R = 2, following the framework

in Galvao et al. (2018) and Galvao, Montes-Rojas and Olmo (2019). In practice, however, it

is an important question to determine R from the data.

Different information criteria type models have been applied to select the number of factors,

although not for our specific panel data model with N and T dimensions that combines both

mean- and quantile-based model specifications. The former determines the type of objective

function that will be used in the information criterion. The latter determines how the penalty

factor is constructed as a function of N , T and R. Following Sun and Wang (2017) or in Casas

et al. (2021) AIC or BIC can be applied to the mean-based factor model, where we can use

the objective value function that is minimized to obtain the parameters, including the factors

and the factor loadings. Ando and Bai (2020) propose a model for selecting the number of

factors where the check objective function from QR is used in a AIC or BIC framework, and

it also combines both dimensions in the criteria.

3 Asymptotic properties of the estimators

This section presents the asymptotic properties of the proposed estimators for the model pa-

rameters - including the common factors - for processes (6) and (19). There are three unique

features of the current problem that pose challenges to the econometric theory. First, the

proposed estimators of the common factors and beta coefficients do not have a closed-form

expression. These quantities are obtained from solving a set of equations to be satisfied simul-

taneously by βit and F
(s)
t . Second, the unobserved common factors are treated as parameters

to be estimated, and thus the number of parameters grows with T . Finally, each pair (i, t),

with i ∈ [N ] and t ∈ [T ], has its own slope coefficient βit and factor loading Λit such that the

number of parameters grows with N and T .

Our goal in the remaining of the section is to derive the asymptotic distribution of the

quantile parameter estimates of model (19). Our results build on the nonparametric quantile
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estimation methodology for dynamic smooth coefficient models introduced in Cai and Xu

(2008). Our model is also closely related to the recent contribution of Ando and Bai (2020).

The salient feature of our model compared to Ando and Bai (2020) is that the quantile common

factors are treated as estimated regressors that are obtained from the mean model (2).

3.1 Assumptions

We first state the following notations and assumptions. Let εt = (ε1t, . . . , εNt) be the error

of the mean regression model in Assumption A.1. Then, we denote γN (s, t) = N−1E[ε′sεt],

γN,F (s, t) = N−1E[F ′sε
′
sεt], γN,FF (s, t) = N−1E[F ′sε

′
s×εtFt], and ξst = N−1[ε′sεt−E[ε′sεt]]. De-

fine ωNT,1(s) = h1/2√
NT

∑N
i=1

∑T
t=1 kh,tsF

′
tεitΛ

′
is, and ωNT,2(r, s) = h1/2√

NT

∑T
t=1

∑N
i=1 kh,ts (F ′tεitεis − E[F ′tεitεis]).

Let C <∞ denote a positive constant that may vary from case to case.

Assumption A.2. (Error terms and common factors). The error terms and common factors

satisfy

i) E[εit|Xit, Ft] = 0 and E[|εi,t|8] <∞ for all i and t in [T ];

ii) max1≤t≤T E‖Ft‖8 <∞ and E[F ′tFt] = ΣF > 0 for some R×R matrix ΣF .

iii) max1≤t≤T
∑T

s=1 |Cov(Ft,mFt,n, Fs,mFs,n)| ≤ C for m,n = 1, . . . , R, where Ft,m denotes

the mth element of Ft.

iv) max1≤t≤T
∑T

s=1 ‖γ(s, t)‖ ≤ C and max1≤s≤T
∑T

t=1 ‖γ(s, t)‖ ≤ C for γ = γN , γN,F and

γN,FF .

v) max1≤s,t≤T E|N1/2ξst|4 ≤ C and max1≤s,t≤T E‖N−1/2Λsε
′
t‖4 ≤ C.

vi) ωNT,1(r) = OP (1) and maxsE‖ωNT,2(r, s)‖2 ≤ C for each r.

Assumption A.3. (Factor Loadings). The factor loading matrix Λis satisfies that

i) N−1ΛsΛ
′
s = ΣΛs +O(N−1/2) as N →∞, where ΣΛs is an R×R diagonal matrix.

ii) Vs is the diagonal matrix consisting of the eigenvalues of Σ
1/2
Λs

ΣFΣ
1/2
Λs

and satisfies that

infs∈[T ] vrs > 0 for all diagonal elements (v1s, ..., vRs).

iii) N−1/2Λ′sεt
d→ N(0,Γst) for each s, t, where Γst = limN→∞N

−1
∑N

i=1

∑N
j=1 ΛisΛ

′
jsE[εitεjt].

iv)
√
h√
T

∑T
t=1 F

(s)′
t ε

(s)
it =

√
h√
T

∑T
t=1 kh,tsF

′
tεit

d→ N(0,Ωis), where

Ωis = limT→∞

[
h
T

∑T
t=1 k

2
h,tsE[F ′tFtε

2
it] + 2h

T

∑T−1
t=1

∑T
t̃=t+1 kh,tskh,t̃sE[F ′tFt̃εitεit̃]

]
.

Assumption A.4. (Explanatory Variables). The vector of observable covariates satisfies
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i) E‖X(s)
it ‖4 < C.

ii) The d× d matrix 1
TX

(s)′
i MF (s)H(s)X

(s)
i is positive definite.

iii) Let A
(s)
i = 1

TX
(s)′
i MF (s)X

(s)
i , B

(s)
i = (ΛisΛ

′
is) ⊗ IT , C

(s)
i = 1√

T
Λ′is ⊗ (X

(s)′
i MF (s)). For

each s ∈ [T ], let A(s) be the collection of F (s) such that A(s) = {F (s) : F (s)′F (s)/T = IR}.
Then, we assume that

inf
F (s)∈A(s)

D(F (s)) is positive definite,

with D(F (s)) = 1
N

N∑
i=1
Di(F

(s)), where Di(F
(s)) = B

(s)
i − C

(s)′
i A

(s)−
i C

(s)
i and A

(s)−
i is the

generalized inverse of A
(s)
i .

iv) lim
T→∞

T−1
T∑
q=1

kh,qsE[H(s)′F ′qXiq] = O(1), for s = 1, . . . , T . (H(s) is a rotation matrix

characterizing the factors defined above.)

Assumption A.5. (i) The kernel function k : R→ R+ is a symmetric continuously differen-

tiable probability density function with compact support [−1, 1], (ii) As (N,T ) → ∞, h → 0,

Th2 →∞, Nh2 →∞, Th/N → 0, and Th/N1/2 →∞.

Assumption A.6. (Central Limit). As T →∞, h→ 0, and Th→∞,
√
h√
T
X

(s)′
i MF (s)H(s)ε

(s)
i

d→ N(0,Σεi),

with Σεi = lim
T→∞

h
T

T∑
t=1

T∑
τ=1

kh,tskh,τsE
[
X ′itMF

(s)
t H

(s)
t
εitεiτMF

(s)
τ H

(s)
τ
Xiτ

]
.

These assumptions are standard in factor models. A.2 and A.3 mainly impose moment

conditions in the error terms, factors, factor loadings, and their interactions, see, e.g., Bai and

Ng (2002), Bai (2003, 2009). The main difference, and in line with Su and Wang (2017), is that

we require E[FtF
′
t ] = ΣF in A.2(ii) and N−1ΛsΛ

′
s = ΣΛs + O(N−1/2) in A.3(i). Assumptions

A.2(iii)-(v) restrict the time and cross-sectional dependence for the idiosyncratic errors εit and

the weak dependence between factors and errors, which are in the same spirit as Bai (2003,

2009) and Su and Wang (2017). A.2(vi) is a kernel-weighted version of Assumptions F.1-F.2 in

Bai (2003). Following the recent literature on factor models, we assume that E[FtF
′
t ] is homo-

geneous over t. This assumption is made for convenience to facilitate the asymptotic results.

Assumption A.3(iii) allows for factor loadings to be time-varying and Assumption A.3(iv) is

a kernel weighted version of Assumption F in Bai (2003). Both parts are used to establish

the asymptotic normality of our local principal components estimators. We extend the as-

sumptions in Su and Wang (2017) by incorporating a set of assumptions in A.4 specific to the
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observable regressors. Assumption A.4 (i)-(iii) impose the boundedness of moments and the

regressors are assumed to exhibit sufficient variation such that the coefficients βit are identifi-

able. Identification also requires that the observed regressors do not exhibit multicollinearity

with the unobservable common factors Ft. Condition (iii) in the assumption guarantees the

unique minimizer of the estimation objective function. The notation D(F ) is used to empha-

size that the entire term is a function of F. Assumption A.5 states conditions on the rates of

convergence that guarantee the consistency and asymptotic normality of the kernel estimators.

A.6 simplifies the proofs and is imposed, for example, in Ando and Bai (2015). More primitive

conditions to obtain the asymptotic properties of these objects can be found in Song (2013)

for a global factor model.

We consider now each cross-sectional observation separately, such that Zt denotes Zit for

each i = 1, . . . , N . Let fy|Z(·|·) be the conditional density of Yit given Zit. Let Ω = E[ZtZ
′
t] and

Ω∗ = E[ZtZ
′
tfy|z(Qy(τ |Zt))], and define µj =

∫
ujK(u)du and νj =

∫
ujK2(u)du. The relevant

bandwidth parameter for the quantile problem is h̃ such that k
h̃

(
ut−us
h̃

)
= 1

h̃
K
(
ut−us
h̃

)
.

Assumption B.1. βir, Λir, βτ,ir and Λτ,ir are (m+ 1)−th order continuously differentiable in

a neighbourhood of ur for any ur = r/T . Further, fy|z(y) is bounded and satisfies the Lipschitz

condition.

Assumption B.2. For each i = 1, . . . , N , E[||Zit||2(2+δ)] < ∞ for some δ > 0, where Zit =

{Xit, Ft}. Furthermore, Ω and Ω∗ are positive definite and continuous in a neighbourhood of

u0. These functions and their inverse functions are uniformly bounded.

Assumption B.3. For each i = 1, . . . , N , the process {Xit, Ft, εit} is strictly stationary

α−mixing, with mixing coefficients δi(s) satisfying max1≤i≤N δi(s) ≤ Cδ(s) such that δ(s) =

O(s−ξ) with ξ = (2 + δ)(1 + δ)/δ.

Assumption B.4. The bandwidth parameter h̃ satisfies h̃ → 0, T h̃ → ∞, T h̃
N → 0, and

T 1/2−δ/4h̃δ/δ
∗−1/2−δ/4 = O(1), for δ∗ > δ.

This set of assumptions is found in Cai (2007) and Cai and Xu (2008). The main difference

with respect to the latter authors is the assumption (T h̃)/N → 0 that allows us to remove the

effect of estimating the common factors Ft from the asymptotic distribution of the quantile pa-

rameter estimates. A similar assumption is also found in A.4 for the mean process. Under this

set of additional assumptions, we obtain the asymptotic distribution of the quantile parameter

estimates of βτ,it and Λ∗τ,it, for i ∈ [N ] and t ∈ [T ]. This result shows that the estimation of

the common factors Ft does not have an effect on the asymptotic distribution of the quantile

parameter estimates.
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3.2 Propositions

With these assumptions in place we are ready to derive the asymptotic results. We derive first

the uniform consistency of the parameter estimators associated to the observable regressors.

Proposition 1. Under Assumptions A.2-A.6 and B.1, it follows that

max
{i∈[N ],s∈[T ]}

||β̂it − βit|| = oP (1), as N,T →∞. (22)

The proof of this result, in the appendix, follows from extending the results in Song (2013)

and Ando and Bai (2015) to the presence of time-varying slope coefficients. The uniform

consistency of these coefficients allows us to extend the results in Su and Wang (2017) from

a pure factor model specification to our setting. The following result shows the asymptotic

normality of F̂
(s)
t to a rotation of the true factors F

(s)
t .

Proposition 2. Under Assumptions A.2-A.6and B.1, for each s, t = 1, . . . , T , we have

√
Nk
−1/2
h,ts

(
F̂

(s)
t − F

(s)
t H(s)

)
d→ N(0, V −1

s QsΓstQ
′
sV
−1
s ), as N →∞, (23)

where H(s) = (N−1ΛsΛ
′
s)(T

−1F (s)′F (s))[V
(s)
NT ]−1; V

(s)
NT denotes the R × R diagonal matrix of

the first R largest eigenvalues of (NT )−1Y (s)∗Y (s)∗′, Vs is the diagonal matrix consisting of the

eigenvalues of Σ
1/2
Λs

ΣFΣ
1/2
Λs

in descending order; Γs is the corresponding normalized eigenvector

matrix such that Γ′sΓs = IR, and Qs = V
1/2
s Γ−1

s Σ
−1/2
Λs

.

In particular, the consistency of the local factors F̂
(s)
t to F

(s)
t H(s) allows us to derive the asymp-

totic distribution of the slope parameter estimators associated to the observable regressors.

Proposition 3. Under Assumptions A.2-A.6 and B.1, for any fixed pair (i, t) with i = 1, . . . , N

and t = 1, . . . , T , the vector β̂it obtained from expression (13) satisfies

√
Th(β̂it − βit)

d→ N(0,Σβit), (24)

with Σβit =
(
S

(t)
ii − L

(t)′
ii

)−1
Σεi

(
S

(t)
ii − L

(t)′
ii

)−1
, where Sii and Lii are matrices defined in the

Appendix.

The proof of this result follows from extending the results in Song (2013) and Ando and

Bai (2015) to the presence of time-varying slope coefficients. Similarly, we show that the

asymptotic distribution of the factor loading estimates is unaffected by including a set of

observable covariates Xit with time-varying parameters βit that vary smoothly over time.

More formally,
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Proposition 4. Under Assumptions A.2-A.6 and B.1, for each s, t = 1, . . . , T , we have

√
Th(Λ̂is − [H(s)]−1Λis)

d→ N(0, [Q′s]
−1Ωis[Qs]

−1), (25)

with Ωis = lim
T→∞

[
h
T

T∑
q=1

k2
h,qsE(FqF

′
qε

2
iq) + 2h

T

T−1∑
q=1

T∑
t=q+1

kh,qskh,tsE(FqF
′
tεiqεit)

]
.

These results allow us to show the
√
N−consistency of the common factors estimated in

(17).

Proposition 5. Under Assumptions A.2-A.6 and B.1, as N →∞, the estimator (17) of the

common factors satisfies √
N
(
F̂t − FtH(t)

)
d→ N(0,ΣFt), (26)

with ΣFt = [Σ−1
Λt
Q−1
t ]′ Γtt Σ−1

Λt
Q−1
t , where Γtt = 1

N lim
N→∞

N∑
i=1

N∑
j=1

ΛitΛ
′
jtE[εitεjt].

Proposition 6. Under Assumptions A.1-A.6 and B.1-B.4, as N,T →∞, the estimator θ̂τ,is =

[âτ,is β̂
′
τ,is Λ̂∗′τ,is]

′ of θτ,is = [aτ,is β
′
τ,is Λ∗′τ,is]

′ obtained from the minimization problem (20)

satisfies that

√
T h̃

(
θ̂τ,is − θτ,is −

h̃(q+1)

(q + 1)!
θ

(q+1)
is + oP (h̃q+1)

)
d→ N(0,Στ ), (27)

with θ
(q+1)
is =

[
a

(q+1)
τ,is µq+1

(
β

(q+1)
τ,is µq+1

)′ (
Λ
∗(q+1)
τ,is µq+1

)′]′
and

Στ = τ(1− τ)ν0 [Ω∗]−1 Ω [Ω∗]−1.

This result shows that the the bias of the estimator of the quantile parameters decreases as

one takes higher order local polynomial expansions of the functional coefficients in (19).

Inference for this model is based on bootstrap implementation for panel data models with

time-dependent data. Standard errors are estimated using bootstrap by resampling only from

cross-sectional units with replacement as in Kapetanios (2008) and Galvao and Montes-Rojas

(2015). See also Galvao, Parker and Xiao (2021) for a recent study that discussed the assump-

tions for asymptotic validity of the bootstrap in a similar framework.

The following section explores the finite-sample performance of our two-stage estimation

procedure.

4 Monte Carlo study

Our Monte Carlo design is a variation of the Monte Carlo exercises proposed in Bai (2009),

Harding and Lamarche (2014), and Su and Wang (2017). We are interested in showing the
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consistency of the parameter estimators under the presence of time-varying factor loadings.

Consider the following data generating process with R = 2 unknown factors:

Yit = β0 + β1Xit + Λit,1F1t + Λit,2F2t + (1 + φXit + γ1F1t + γ2F2t) εit. (28)

In this model as well as in the empirical application below we assume a set of common factors

that is constant across quantiles. For this exercise the parameter of interest is the marginal

effect on the conditional quantile, which corresponds to β1(τ) = β1 + φQε(τ). The parameter

φ thus determines if there is heterogeneity across quantiles. For φ = 0 we have a location-

shift model while for φ 6= 0 we have a location-scale shift model. The parameters γ1 and γ2

determine whether the factors also have an effect on the scale that may potentially contaminate

the estimators of the quantile marginal effects. We consider two distributions for the error term

εit, Gaussian and standardized chi-squared with 1 degree of freedom. For all models we fix

β0 = 0 and β1 = 1, and we consider different scenarios with φ ∈ {0, 0.1} and (γ1, γ2) ∈
{(0, 0), (0.1, 0.1)}. For simplicity, we consider Xit ∼ IID N(0, 1).

We generate the factors, j = 1, 2, with the following model

Fj,t = ρfFj,t−1 + ηj,t, ηj,t = ρηηj,t−1 + ej,t, (29)

where we assume for all cases that ejt are standard Gaussian independent random variables

for i = 1, . . . , N , t = −49, . . . , 0, . . . , T and j = 1, 2. The common parameters are assumed

ρf = 0.90, ρη = 0.25 as in Harding and Lamarche (2014).

The time-varying factor loadings models for the common factors are DGP 1: Λit,j ∼
IID N(0, 1) for j = 1, 2; and DGP 2: Λit,j = Λi,j ∼ IID N(0, 1) for j = 1, 2. DGP 1

thus have factor loadings that vary across t and i while DGP 2 only varies across individuals.

We study the finite-sample performance of two estimators of the slope parameters β1. First,

an estimator that considers time-varying factor loadings using the local estimation procedure

developed in this paper, and denoted as β̂1. In this case we are in fact estimating individual-

specific coefficients (β0,it, β1,it and Λit,j for j = 1, 2) for all t = 1, 2, ..., T . This estimator

is thus the most demanding one. We will refer to this model as the local factor estimator.

Second, we consider a model with time-invariant loadings, that is denoted as β̃1. Here, we do

not impose the time-varying local estimation procedure and, instead, we estimate a unique set

of parameters (β0, β1 and Λi,j for j = 1, 2) for all t. The latter estimator will be referred to as

the global factor estimator. In all cases we consider a fixed bandwidth of h = h̃ = 1.

In order to evaluate the performance of our estimators and for comparability purposes,

we study bias and mean squared error (MSE) by comparing the estimates with the β1(τ)

parameter defined above. For the local factor estimator we compute the sample average across

i and t of β1,it for every simulation. For the global factor estimator we compute the sample

average across i.
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The sample size of the different simulation experiments is comprised by all possible com-

binations of N,T = {20, 50, 100}. The number of Monte Carlo experiments is 200 in every

case. Tables 1 and 2 report the simulation exercise results for the case with φ = γ1 = γ2 = 0

for DGP1 and DGP2, respectively. In this case all coefficients should be estimating the same

value of 1 for all quantiles. Table 3 and 4 report the simulation exercise results for the case

with φ = 0.1, γ1 = γ2 = 0 for DGP1 and DGP2, respectively; Tables 5 and 6 study the case

given by φ = γ1 = γ2 = 0.1 for DGP1 and DGP2, respectively. Importantly, the last two cases

generate heterogeneity across quantiles such that the coefficient estimates are different across

quantiles.

First, note that there is no clear pattern for bias reduction when T orN increases leaving the

other dimension constant. However, bias monotonically reduces when both N and T increase.

There is, however, a mean square error (MSE) reduction when either N or T increases. These

results provide empirical evidence on the consistency of the parameter estimators above as T

and N increase. Second, the time-varying local estimator exhibits a larger MSE value than the

global factor estimator. This result is expected as the local estimator is more demanding and

uses fewer observations to estimate the parameters. In contrast, the estimator offers additional

flexibility as we can estimate time-varying coefficients. The ratios of the MSE performance

of the two estimators are similar across specifications. Third, those simulation scenarios are

given by an error term εit following a chi-squared distribution show differences across quantiles

for both estimators. One unexpected feature is that the MSE performance of τ = 0.25 is

worse than that of τ = 0.75 for the local estimator. This may be the result of the estimated

factors absorbing a more substantial portion of the variance in the quantile location with more

probability mass.

5 Empirical Application

This section applies the above model to an empirical asset pricing context. In contrast to

standard asset pricing models, we explore the distributional risk premia by fitting the above

models to different quantiles of the distribution of excess returns. We are interested in assessing

the effect of including unobserved local factors with time-varying factor loadings in standard

asset pricing specifications. The methodology developed above also allows us to estimate

dynamic parameter estimates measuring the sensitivity of the quantile process of excess returns

to a set of idiosyncratic firm-specific factors that are combined with Fama-French, see Fama

and French (1993), three-factor model.

5.1 Data

The set of firm-specific covariates Xit is obtained from a panel of U.S. firms and obtained from

Compustat Industrial dataset. The sample consists of annual CRSP/Compustat data from the
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years 1970 through 2011. Following standard practice, we exclude financial firms (SIC codes

6000-6999), regulated utilities (SIC codes 4900-4999), and non-profit organizations (SIC codes

greater than or equal to 9000). We omit firm-years with a missing or negative value for fixed

assets and sales, with a missing or less than ten million 1983 dollar book value of total assets,

and with growth rates of fixed assets, sales, and the book value of total assets greater than

100%.2

We consider the following list of firm characteristics: MB denotes firms’ market-to-book

ratio; LNTA denotes the log of the firm’s asset size; EBITTA denotes earnings before interest

and taxes as a proportion of total assets; MDR denotes the market debt ratio, defined as the

book value of debt over the market value of assets; and DEPTA denotes depreciation as

a proportion of total assets. The set of covariates is completed by the following observable

pricing factors taken from Kenneth French website. The common pricing factors are MKTRF,

SMB and HML. The factor MKTRF is defined as a value-weighted average market portfolio

return net of the risk-free asset. The risk-free rate is proxied by daily returns on the U.S.

three-month Treasury bill. The factor SMB is a small-minus-big portfolio constructed as the

difference between the returns on diversified portfolios of small and large asset size. The

factor HML is high-minus-low portfolio constructed as the difference between the returns on

diversified portfolios of high and small book-to-market equity. The firms’ excess returns are

the annual excess return on assets computed over the annual interest rate offered by one-month

U.S. Treasury bills.

The final sample includes a balanced panel of 297 firms with 42 years of data.

5.2 Empirical models

In a similar spirit to Giovannetti (2013), Galvao et al. (2018) and Galvao, Montes-Rojas, and

Olmo (2019), we propose a quantile process for modelling the distribution of excess returns.

The objective of this study is to show if an empirical pricing strategy based on firm-specific

variables coupled with unobserved quantile factors with time-varying loadings is able to explain

the cross-section of excess returns on a set of U.S. firms. As a byproduct, we also study if this

model adds predictive ability to the standard Fama-French three-factor model. The pricing

factors of our baseline model are firm-specific financial ratios, see Kogan and Papanikolau

(2013) for a discussion of empirical asset pricing models using firm-specific variables. This

approach has recently gained support due to the strong evidence of the co-movement in stock

returns of firms with similar characteristics that is unrelated to their exposures to the market

portfolio.

2Although there is no consensus in the literature on the length of the time dimension; we acknowledge that
the time dimension selection criteria might favor larger and more mature companies, which may lead to the
results being valid only for large and mature companies. However, the average estimated effects from our sample
are in line with the consensus in the literature, and thus, the results could be applied to all companies. The log
of total assets is the only variable that is not a ratio, and is deflated to the 1983 dollar with the consumer price
index obtained from the Bureau of Labor Statistics.
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Our baseline model is

Qτ (Yit | Xit, Fτ,it) = Xitβτ,it + Fτ,itΛτ,it, i = 1, . . . , n, t = 1, . . . , T, (30)

with τ ∈ (0, 1) and R = 2. We assume that the unobserved common factors for the quan-

tile model are location shift transformations of the estimates of the mean factors F1t and

F2t. The shifts defining the quantile factors are captured by the values of the dynamic in-

tercepts aτ,it of the different quantile models. We estimate two versions of this model for

τ ∈ {0.10, 0.25, 0.50, 0.75, 0.90}. A first version considers global factors and uses the method-

ology proposed in Ando and Bai (2015) to estimate the factors, Ft, which are then used

to estimate the set of parameters (βτ ,Λτ,i). The second version considers local factors and

uses the methodology developed above to estimate the time-varying parameters (βτ,it,Λτ,it).

Note that the loadings associated to the observable covariates do not only vary over time but

also across individuals. We consider two models. Model 1 uses only firm-specific covariates,

X = [MBR,EBITTA,MB,DEPTA,LNTA]. Model 2 augments the above model by MK-

TRF, SMB, and HML. Standard errors are estimated using bootstrap by resampling only from

cross-sectional units with replacement as in Kapetanios (2008) and Galvao and Montes-Rojas

(2015) using 100 replications. In all cases the bandwidth parameter is set to 10. The results

are reported in Tables 7-10.

The results are an extension of the findings in Galvao et al. (2018). In this case, we

incorporate the presence of unobserved common factors. Firm-specific covariates are statis-

tically significant in all models, and the model parameter estimates are similar across the

different specifications of the empirical asset pricing model reported in Tables 7-10. The es-

timates reported for the model with local factors are averages across time and individuals of

the parameter estimates of βit for i = 1, . . . , N and t = 1, . . . , T .

Our empirical asset pricing model uncovers a positive exposure of firms’ excess returns

to the market-to-book ratio (MDR) and the log of asset size (LNTA) and negative exposure

to the market debt ratio (MB) and depreciation as a proportion of total assets (DEPTA).

Earnings before interest and taxes as a proportion of total assets (EBITTA) has a positive

effect on low quantiles and turns negative for τ = 0.5 and beyond. The quantile parameter

estimates are monotonically increasing on τ ∈ (0, 1) for LNTA and monotonically decreasing

for DEPTA. All the coefficients are statistically significant at 5% significance levels. Tables

7-8 report the baseline case in expression (30) given by firm-specific covariates, Tables 9-10

report the pricing model augmented with Fama-French three-factor model. The results are also

similar across specifications and estimation methods. However, the magnitude of the model

parameters changes significantly between the global and local factor estimation methods.

The pricing model with local factors provides similar insights to the model with unobserved

global factors but has the additional advantage of offering the possibility of studying the

dynamics of the loadings βτ,it associated to each observable covariate. These dynamics are
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reported in Figures 1-2, corresponding to the local factor model with the augmented set of

covariates in Table 10. Importantly, the model also allows the possibility of studying the

dynamics of the unobserved common factor loadings Λτ,it, nevertheless, we do not report

these values as an interpretation of the results is difficult due to the lack of interpretation of

the common factor estimates. Each panel reports five lines that reflect the dynamics of the

parameters βτ,t over time. These estimates are constructed as the cross-sectional average of

βτ,it for each t and the standard errors are calculated by bootstrap. The results show how the

exposure of the excess returns to some covariates and factor models have evolved over time.

The figures show that there was little variation in the average effects, and they are all within

the 95% confidence interval of each other. One limitation in the analysis is that the time

dimension (T = 42) does not allow us to obtain a finer set of local estimates.

6 Conclusion

This paper proposes a functional coefficient quantile regression model with time-varying factor

loadings. Estimation of the quantile factors and factor loadings is done in two stages. First, we

estimate the unobserved common factors from a linear factor model with exogenous covariates.

In the second stage, we plug-in an affine transformation of the estimates of the common factors

to obtain the quantile version of the factor model. This model requires both the number of

individuals and the number of periods to grow to infinity. The number of individuals needs

to diverge for the consistent estimation of the common factors in the first stage. Also, to

consistently estimate the quantile factor loadings the number of time periods needs to diverge

as well. As a byproduct, our model can capture dynamics and heterogeneity across individuals

in both the quantile slope coefficients and the quantile factor loadings. The introduction of

time-varying coefficients adds flexibility to standard factor model specifications that assume

slope homogeneity as in Bai (2003, 2009) and slope heterogeneity as in Ando and Bai (2015).

The model also extends the recent partial linear model of Su and Wang (2017) by considering

the quantile process and including the presence of exogenous regressors.

This model specification is applied in an empirical application to explain the distribution

of the excess returns for a cross-section of asset returns in the U.S. In contrast to standard

asset pricing formulations, we consider firm-specific covariates as pricing factors and allow

for the presence of two unobserved factors. The model provides satisfactory estimates of the

sensitivity of the excess return to the pricing variables under both global (Ando and Bai (2015))

and local factor models. The main contribution of our methodology is to be able to estimate

the dynamics of the slope coefficients (betas) for each asset and over time. By doing so, we

can track the dynamic exposure of assets’ excess returns to the different financial ratios acting

as pricing variables.
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Appendix

Proof of Proposition 1. The proof of this proposition follows from an application of the results

in Song (2013) and Ando and Bai (2015) to local principal components. The main difference

is that we are considering local approximations using the kernels. Define Y
(s)
it = k

1/2
h,tsYit such

that Y
(s)
i =

(
Y

(s)
i1 , ..., Y

(s)
iT

)′
is a T × 1 vector and Y (s) =

(
Y

(s)
1 , ..., Y

(s)
N

)
is a T × N matrix.

Let X
(s)
l,it = k

1/2
h,tsXl,it such that X

(s)
i =

(
X

(s)
1,i , ..., X

(s)
d,i

)
and X

(s)
l,i =

(
X

(s)
l,i1, ..., X

(s)
l,iT

)′
and

ε
(s)
it = k

1/2
h,tsεit such that ε

(s)
i =

(
ε

(s)
i1 , ..., ε

(s)
iT

)′
is a T × 1 vector. Similarly, e

(s)
it = k

1/2
h,tseit such

that e
(s)
i =

(
e

(s)
i1 , ..., e

(s)
iT

)′
is a T×1 vector. Let F

(s)
t = k

1/2
h,tsFt such that F (s) = (F

(s)
1 , . . . , F

(s)
T )′

is a T ×R matrix and Λs = (Λ1s, . . . ,ΛNs) be a R×N matrix.

For each individual in the cross section, equation (6) in vector form is

Y
(s)
i = X

(s)
i βis + F (s)Λis + e

(s)
i ,

and the OLS estimator of βis is

β̂is = (X
(s)′
i M

F̂ (s)X
(s)
i )−1X

(s)′
i M

F̂ (s)Y
(s)
i , (A.1)

such that

β̂is − βis =

(
X

(s)′
i M

F̂ (s)X
(s)
i

T

)−1
X

(s)′
i M

F̂ (s)

T

[
F (s)Λis + e

(s)
i

]
.

Then, under assumptions A.2 and A.4, it follows that
X

(s)′
i M

F̂ (s)X
(s)
i

T is positive definite. Now,

using a similar decomposition to Proposition 1 of Song (2013), we have

1

T
X

(s)′
i M

F̂ (s)F
(s)Λis =

1

T

 1

N

N∑
q=1

L
(s)
iq,T

(
β̂is − βis

)+ op(1),

where L
(s)
iq,T = aiq

X
(s)′
i M

F̂ (s)X
(s)
q

T and aiq = Λ′is

(
ΛsΛ′s
N

)−1
Λqs. Thus,

β̂is − βis =
[
S

(s)
iT

]−1

 1

NT

N∑
q=1

L
(s)
iq,T

(
β̂is − βis

)
+

1

T
X

(s)′
i M

F̂ (s)e
(s)
i

+ op(1),

with S
(s)
iT =

X
(s)′
i M

F̂ (s)X
(s)
i

T . Then,(
S

(s)
iT −

1

NT
L

(s)
iT

)
(β̂is − βis) =

1

T
X

(s)′
i M

F̂ (s)e
(s)
i + op(1),
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such that

β̂is − βis =

(
S

(s)
iT −

1

NT
L

(s)
iT

)−1 1

T
X

(s)′
i M

F̂ (s)e
(s)
i + op(1).

Now, the quantities S
(s)
iT and L

(s)
iT satisfy that

S
(s)
iT

p→ S
(s)
ii ≡ lim

T→∞

1

T

T∑
t=1

kh,tsE
[
X ′itMF

(s)
t H

(s)
t
Xit

]
and

1

NT
L

(s)
iT

p→ L
(s)
ii ≡ lim

T→∞

1

NT

T∑
t=1

N∑
q=1

kh,tsaiqE
[
X ′itMF

(s)
t H

(s)
t
Xit

]
,

such that 1
NT L

(s)
iT

p→ L
(s)
ii as N,T →∞.

Furthermore, note that eit = εit + dit + oP

(
|t−s|
T

)m
, with εit the errors of the mean regression

model in assumption A.1, and dit = Xit

m∑
q=1

β
(q)
is
q! ( t−sT )q +Ft

m∑
q=1

Λ
(q)
is
q! ( t−sT )q, for any fixed s, t ∈ [T ].

Therefore,

β̂is − βis =
(
S

(s)
ii − L

(s)
ii

)−1 1

T
X

(s)′
i M

F̂ (s)ε
(s)
i + oP (1), as T →∞. (A.2)

Now, taking the maximum over i ∈ [N ] and s ∈ [T ], we obtain

max
{i∈[N ],s∈[T ]}

||β̂is − βis|| ≤ max
{i∈[N ],s∈[T ]}

||
(
S

(s)
ii − L

(s)
ii

)−1
|| max
{i∈[N ],s∈[T ]}

|| 1
T
X

(s)′
i M

F̂ (s)ε
(s)
i ||. (A.3)

Finally, noting that max
{i∈[N ],s∈[T ]}

||
(
S

(s)
ii − L

(s)
ii

)−1
|| = O(1) and max

{i∈[N ],s∈[T ]}
|| 1TX

(s)′
i M

F̂ (s)ε
(s)
i || =

oP (1) as T →∞, the result in the proposition follows.

Proof of Proposition 2. Let Ŷ
(s)∗
i = Y

(s)
i −X(s)

i β̂is and Ŷ (s)∗ = [Ŷ
(s)∗

1 , . . . , Ŷ
(s)∗
N ] be defined as

in the text and define also Y
(s)∗
i = Y

(s)
i −X

(s)
i βis. It follows from (14) that (NT )−1F̂ (s)Ŷ (s)∗Ŷ (s)∗′ =

F̂ (s)V̂
(s)
NT . Note also that Ŷ

(s)∗
t = F

(s)
t Λs+e

(s)
t −X

(s)
tβ , withX

(s)
tβ = [X

(s)
1t (β̂1s−β1s), . . . , X

(s)
Nt(β̂Ns−

βNs)] a 1×N vector.

Then,

F̂
(s)
t − F

(s)
t H(s) =

 1

NT

T∑
q=1

F̂ (s)
q Ŷ (s)∗

q Ŷ (s)∗′
q

 [V̂
(s)
NT ]−1 − F (s)

t H(s)

=

 1

NT

T∑
q=1

F̂ (s)
q

[
F (s)
q Λs + e(s)

q −X
(s)
qβ

] [
F

(s)
t Λs + e

(s)
t −X

(s)
qβ

]′ [V̂
(s)
NT ]−1 − F (s)

t H(s).
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This expression can be decomposed as

=

 1

NT

T∑
q=1

F̂ (s)
q

[
F (s)
q Λs + e(s)

q

] [
F

(s)
t Λs + e

(s)
t

]′ [V̂
(s)
NT ]−1 − F (s)

t H(s) (A.4)

−

 1

NT

T∑
q=1

F̂ (s)
q

[
F (s)
q Λs + e(s)

q

]
X

(s)′
qβ

 [V̂
(s)
NT ]−1 (A.5)

−

 1

NT

T∑
q=1

F̂ (s)
q X

(s)
qβ

[
F

(s)
t Λs + e

(s)
t

]′ [V̂
(s)
NT ]−1 (A.6)

+

 1

NT

T∑
q=1

F̂ (s)
q X

(s)
qβ X

(s)′
qβ

 [V̂
(s)
NT ]−1. (A.7)

Theorem 3.1 in Su and Wang (2017) shows that expression (A.4) multiplied by
√
Nk
−1/2
h,ts con-

verges in distribution toN(0, V −1
s QsΓstQ

′
sV
−1
s ), whereH(s) = (N−1ΛsΛ

′
s)(T

−1F (s)′F (s))[V
(s)
NT ]−1;

Vs is the diagonal matrix consisting of the eigenvalues of Σ
1/2
Λs

ΣFΣ
1/2
Λs

in descending order;

Γs is the corresponding normalized eigenvector matrix such that Γ′sΓs = IR, and Qs =

V
1/2
s Γ−1

s Σ
−1/2
Λs

.

To complete the proof we need to show that the remaining terms multiplied by
√
Nk
−1/2
h,ts are

oP (1) as N,T →∞, with h→ 0. First, we show that V̂
(s)
NT

p→ Vs as N,T →∞. To do this, we

decompose the elements of the matrix V̂
(s)
NT given by 1

NT Ŷ
(s)∗
i Ŷ

(s)∗′
j for i, j = 1, . . . , N . More

formally,

1

NT
Ŷ

(s)∗
i Ŷ

(s)∗′
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1

NT
[Y

(s)∗
i −X(s)

i (β̂is − βis)][Y (s)∗
j −X(s)

j (β̂js − βjs)]′

=
1

NT
Y

(s)∗
i Y

(s)∗′
j − 1

NT
X

(s)
i (β̂is − βis)Y (s)∗′

j − 1

NT
Y

(s)∗
i (β̂js − βjs)′X(s)′

j

+
1

NT
X

(s)
i (β̂is − βis)(β̂js − βjs)′X(s)′

j = A1 +A2 +A3 +A4.

From Proposition 1, it follows that max
{i∈[N ],s∈[T ]}

||β̂it − βit|| = oP (1), as T →∞. Then, Aj → 0,

for j = 2, 3, 4, as N,T → ∞, such that V̂
(s)
NT = V

(s)
NT + oP (1), with V

(s)
NT = 1

NT Y
(s)∗
i Y

(s)∗′
j as

defined in the text below equation (14). Then, it follows that V̂
(s)
NT = Vs + oP (1). Therefore,

using Assumption A.3 (ii) we have infs∈[T ] Vs > 0. Then, we need to prove that

√
Nk
−1/2
h,ts

 1

NT

T∑
q=1

F̂ (s)
q

[
F (s)
q Λs + e(s)

q

]
X

(s)′
qβ

 = oP (1). (A.8)
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Note also that eit = εit + dit + oP

(
|t−s|
T

)m
, where dit = Xit

T

m∑
q=1

β
(q)
is
q! (t− s)q + Ft

T

m∑
q=1

Λ
(q)
is
q! (t− s)q,

for any fixed s, t ∈ [T ]. Then, the expression on the left hand side of (A.8) satisfies that

1√
N

 1

T

T∑
q=1

F̂ (s)
q k

−1/2
h,ts kh,qs [FqΛs + εq]X

′
qβ

+
1√
N

 1

T

T∑
q=1

F̂ (s)
q k

−1/2
h,ts kh,qs [FqΛs + dq]X

′
qβ

+oP (1).

(A.9)

Now, noting that Xqβ = oP (1), for q = 1, . . . , T , and applying the law of large numbers with

N,T →∞, we obtain condition (A.8).

Applying the same arguments to expressions (A.6) and (A.7), we obtain the consistency of the

local factors to rotated versions of F
(s)
t given by H(s) = (N−1ΛsΛ

′
s)(T

−1F (s)′F (s))(V
(s)
NT )−1.

Proof of Proposition 3. The proof of this proposition follows from the proof of Proposition 1

and the application of the results in Song (2013) and Ando and Bai (2015) to local principal

components. For each individual in the cross section, equation (6) in vector form is

Y
(s)
i = X

(s)
i βis + F (s)Λis + e

(s)
i ,

and the OLS estimator of βis is

β̂is = (X
(s)′
i M

F̂ (s)X
(s)
i )−1X

(s)′
i M

F̂ (s)Y
(s)
i , (A.10)

such that

√
Th
(
β̂is − βis

)
=

(
X

(s)′
i M

F̂ (s)X
(s)
i

T

)−1
X

(s)′
i M

F̂ (s)

T

[√
ThF (s)Λis +

√
The

(s)
i

]
.

Applying the results in the proof of Proposition 1, we have

√
Th
(
β̂is − βis

)
=
[
S

(s)
iT

]−1

 1

N

N∑
q=1

L
(s)
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√
Th
(
β̂is − βis

)
+

√
h√
T
X

(s)′
i M

F̂ (s)e
(s)
i

 .
We are interested in the asymptotic distribution of the entire vector β̂s = (β̂1s, . . . , β̂Ns)

′. The

above equation implies, stacking over i,

√
Th(β̂s − βs) =

[
S

(s)
T

]−1
[

1

N
L

(s)
T

√
Th(β̂s − βs) +
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T
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]
,
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with S
(s)
T and L

(s)
T block-diagonal matrices with elements S

(s)
iT and L

(s)
iT . Then,(

S
(s)
T −

1

N
L

(s)
T

)√
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)−1
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F̂ (s)ε
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given that eit = εit + dit + oP

(
|t−s|
T

)m
. Furthermore, from Proposition 2, we have that

F̂ (s) = F (s)H(s) + oP (1). Then, M
F̂ (s) = IT − F (s)H(s)(H

(s)′H(s)

T )−1H(s)′F (s)′ + oP (1) = IT −
(F (s)H(s))(F (s)H(s))′

T + oP (1) = MF (s)H(s) + oP (1), with H(s) an orthogonal rotation matrix and
F (s)′F (s)

T = IR. Therefore,
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Now, using Assumption A.6,
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X
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with Σεi = lim
T→∞

h
T

T∑
t=1

T∑
τ=1

kh,tskh,τsE
[
X ′itMF

(s)
t H

(s)
t
εitεiτMF

(s)
τ H

(s)
τ
Xiτ

]
.

Furthermore, each block S
(s)
iT and L

(s)
iT satisfies that S

(s)
iT

p→ S
(s)
ii and 1

NL
(s)
iT

p→ L
(s)
ii . Then,

stacking over all the individuals, we define S(s) and L(s) block-diagonal matrices, such that it

follows that √
Th(β̂s − βs)

d→ N(0,Σβs),

with Σβs =
(
S(s) − L(s)′)−1

Σε

(
S(s) − L(s)′)−1

.

Proof of Proposition 4. The proof of this result follows closely the proof of Theorem 3.2 in

Su and Wang (2017). It follows from (15) that Λ̂is = T−1F̂ (s)′Ŷ
(s)∗
i . Then, replacing in this

expression, we obtain

Λ̂is = T−1F̂ (s)′[Y
(s)∗
i −X(s)

i (β̂is − βis)]. (A.12)

Operating with this expression, we obtain

Λ̂is = T−1F̂ (s)′Y
(s)∗
i − T−1F̂ (s)′X

(s)
i (β̂is − βis), (A.13)

with T−1F̂ (s)′Y
(s)∗
i = [H(s)]−1Λis + T−1H(s)′F (s)′ε

(s)
i + oP ((Th)−1/2). Under assumption A.3

iii),
√

h
T F

(s)′ε
(s)
i

d→ N(0,Ωis), with
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Ωis = lim
T→∞

[
h
T

T∑
q=1

k2
h,qsE(FqF

′
qε

2
iq) + 2h

T

T−1∑
q=1

T∑
t=q+1

kh,qskh,tsE(FqF
′
tεiqεit)

]
. Then,√

h
TH

(s)′F (s)′ε
(s)
i

d→ N(0, [Q′s]
−1Ωis[Qs]

−1).

It remains to see that T−1F̂ (s)′X
(s)
i (β̂is − βis) = oP ((Th)−1/2) as T → ∞. Using expression

(A.11), and multiplying by
√
Th, this expression can be rearranged as

√
h√
T

T∑
q=1

F̂ (s)′
q X

(s)
iq (β̂iq − βiq) = T−1

T∑
q=1

F̂ (s)′
q X

(s)
iq

√
Th(β̂iq − βiq)

= T−1
T∑
q=1

F̂ (s)′
q X

(s)
iq

[(
S

(s)
iT −

1

N
L

(s)
iT

)−1
√
h√
T
X(s)′
q M

F̂
(s)
q
ε(s)
q + oP (1)

]
.

Therefore, the right hand side of the expression is equal to

(
S

(s)
iT −

1

N
L

(s)
iT

)−1
T−1

T∑
q=1

F̂ (s)′
q X

(s)
iq

√
h√
T
X(s)′
q M

F̂
(s)
q
ε(s)
q + T−1

T∑
q=1

F̂ (s)′
q X

(s)
iq oP (1)

 .
Under assumption A.4 iv), T−1

T∑
q=1

F̂
(s)′
q X

(s)
iq

p→ lim
T→∞

T−1
T∑
q=1

kh,qsE[H(s)′F ′qXiq] = O(1). This

implies that T−1
T∑
q=1

F̂
(s)′
q X

(s)
iq oP (1) = oP (1). Furthermore, S

(s)
iT −

1
NL

(s)
iT

p→ S
(s)
ii −L

(s)
ii . Now we

need to show that T−1
T∑
q=1

F̂
(s)′
q X

(s)
iq

√
h√
T
X

(s)′
q M

F̂
(s)
q
ε

(s)
q = oP (1). To show this, from A.6, it fol-

lows that
√
h√
T
X

(s)′
q M

F̂
(s)
q
ε

(s)
q = zq+oP

(√
h√
T

)
, with zq a zero-mean normal random variable with

variance Σεi . Then, applying the law of large numbers and the law of iterated expectations to

T−1
T∑
q=1

F̂
(s)′
q X

(s)
iq zq, it follows that T−1

T∑
q=1

F̂
(s)′
q X

(s)
iq zq

p→ lim
T→∞

T−1
T∑
q=1

kh,qsE[F ′qXiqE[εiq | Fq, Xiq]].

Finally, by assumption A.2 i), this quantity converges to zero in probability.

Proof of Proposition 5. For convenience, we reproduce the analytical expression of the estima-

tors:

F̂ ′t =

(
N∑
i=1

Λ̂itΛ̂
′
it

)−1 N∑
i=1

Λ̂itŶ
∗
it = S−1

Λ̂,t

1

N

N∑
i=1

Λ̂it

(
Yit −Xitβ̂it

)
, (A.14)

where S
Λ̂,t

= N−1
∑N

i=1 Λ̂itΛ̂
′
it. Then, replacing in the expression, we obtain

F̂ ′t = S−1

Λ̂,t

1

N

N∑
i=1

Λ̂itY
∗
it − S−1

Λ̂,t

1

N

N∑
i=1

Λ̂it

[
Xit(β̂it − βit)

]
≡ F̂a,t + F̂b,t. (A.15)
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The first term F̂a,t has been analyzed in Su and Wang (2017) and satisfies that

F̂a,t −H(t)′F ′t = S−1

Λ̂,t
[H(t)]−1 1

N

N∑
i=1

Λitεit + op
(
N−1

)
.

Under assumption A3 i) S
Λ̂,t

= ΣΛs +O(N−1/2) as N →∞, where ΣΛs is an R ×R diagonal

matrix. Under assumption A.3 ii) it holds thatN−1/2Λ′sεt
d→ N(0,Γst) for each s, t, where Γst =

limN→∞N
−1
∑N

i=1

∑N
j=1 ΛisΛ

′
jsE[εitεjt]. Then,

√
N(F̂a,t −H(t)′F ′t) converges in distribution

to N(0,ΣFt), with ΣFt = [Σ−1
Λt
Q−1
t ]′ Γtt [Σ−1

Λt
Q−1
t ]. Now, it remains to see that

√
NF̂b,t

d→ 0 as

N → 0. To show this, note that

√
NF̂b,t = S−1

Λ̂,t

1√
N

N∑
i=1

Λ̂itXit(β̂it − βit) (A.16)

= S−1

Λ̂,t

1√
N

N∑
i=1

Λ̂itXit

(
S

(t)
iT −

1

N
L

(t)
iT

)−1 1

T
X(t)′M

F̂ (t)ε
(t) + oP (1). (A.17)

By the law of large numbers, we have 1
TX

(t)′M
F̂ (t)ε

(t) p→ lim
T→∞

T∑
τ=1

kh,τtE[X ′tMF
(t)
τ H(t)εt]. Then,

applying the law of iterated expectations, under assumption A.2 (i), it follows that 1
TX

(t)′M
F̂ (t)εt =

oP (1) as T → ∞. Furthermore, noting that S
Λ̂,t

= ΣΛs + O(N−1/2) as N → ∞ and

S
(s)
iT −

1
NL

(s)
iT

p→ S
(s)
ii − L

(s)
ii , we obtain the desired result.

Proof of Proposition 6. This proof is based on Theorem 1 of Cai and Xu (2008). The main

difference is that we replace the observable covariates Xt by estimated common factors F̂t such

that the quantile factor model of interest is

Yit = Ẑitθτ,it + wτ,it, (A.18)

with wτ,it = ετ,it − (F̂t − FtH(t))Λ∗τ,it.

Following Cai and Xu (2008), we consider a local polynomial expansion of the quantile pa-

rameters θτ,it by θ̃τ,it. To simplify the proof, we consider a local linear approximation such

that θ̃τ,it =

[(
aτ,is + a

(1)
τ,is(ut − us)

) (
βτ,is + β

(1)
τ,is(ut − us)

)′ (
Λτ,is + Λ

(1)
τ,is(ut − us)

)′]′
, that

can be reparametrized as θ̃τ,it =
[
(α0 + α1(ut − us)) (η0 + η1(ut − us))′ (ξ0 + ξ1(ut − us))′

]′
,

and minimize the following local objective function:

T∑
t=1

ρτ

(
Yit − Ẑitθ̃τ,it

)
kh

(
ut − us
h̃

)
.
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Let Ω̂ = 1
T

T∑
t=1
ZtZ

′
tkh̃

(
ut−u
h̃

)
and Ω̂∗ = 1

T

T∑
t=1

1(Ŷit−δT<Yit<Ŷit+δT )
2T ZtZ

′
tkh̃

(
ut−u
h̃

)
, for some δT →

0 as T → ∞; 1(·) is an indicator function and Ŷit is the prediction of the quantile model

evaluated at u. These sample covariance matrices are consistent estimators of Ω and Ω∗

defined above. Furthermore, let U
th̃

= (ut − us)/h̃, Ẑ∗it = [1Xit F̂t Uth XitUth F̂tUth], wτ,it =

Yit− Ẑitθ̃τ,it, and D = diag(I1+d+R, h̃I1+d+R), with I1+d+R as the identity matrix of dimension

1 + d+R, and let

γit =
√
T h̃ D [α0 − aτ,is (η0 − β(0)

τ,is)
′ (ξ0 − Λ∗τ,is)

′ α1 − a(1)
τ,is (η1 − β(1)

τ,is)
′ (ξ1 − Λ

∗(1)′
τ,is )′].

The above minimization problem can be rewritten as

T∑
t=1

ρτ

(
wτ,it −

1√
T h̃

Ẑ∗itγit

)
kh
(
U
th̃

)
. (A.19)

Using the same steps as in Cai and Xu (2008), we derive a local Bahadur representation of γ̂it

such that

γ̂it =
[Ω̂∗]−1√
T h̃

T∑
t=1

Ψτ (wτ,it)Ẑ
∗
itkh̃

(
U
th̃

)
+ oP (1),

with Ψτ (x) = τ − 1(x < 0). Now, after simple algebra, we decompose this expression in four

terms as

[Ω̂∗]−1√
T h̃

T∑
t=1

Ψτ (ετ,it)Z
∗
itkh̃

(
U
th̃

)
(A.20)

+
[Ω̂∗]−1√
T h̃

T∑
t=1

Ψτ (ετ,it)
(
Ẑ∗it − Z∗it

)
k
h̃

(
U
th̃

)
(A.21)

+
[Ω̂∗]−1√
T h̃

T∑
t=1

(Ψτ (wτ,it)−Ψτ (ετ,it))
(
Ẑ∗it − Z∗it

)
k
h̃

(
U
th̃

)
(A.22)

+
[Ω̂∗]−1√
T h̃

T∑
t=1

(Ψτ (wτ,it)−Ψτ (ετ,it))Z
∗
itkh̃

(
U
th̃

)
. (A.23)

Under assumptions B.1-B.4, Cai and Xu (2008) show that expression (A.20) converges in

distribution to N(0,Στ ), with Στ = τ(1− τ)ν0 [Ω∗]−1 Ω [Ω∗]−1. In particular, to compute the

asymptotic variance we rely on the α−mixing condition B3 that limits the amount of serial

dependence. More specifically,

∞∑
s=−∞

E
[
(τ − 1(yit ≤ τ | Zit))(τ − 1(yi,t+s ≤ τ | Zi,t+s))ZitZ ′i,t+s

]
=
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τ(1− τ)E[ZitZ
′
it]− 2τ2

∞∑
s=1

E
[
ZitZ

′
i,t+s

]
+

2
∞∑
s=1

E
[
1(yit ≤ τ | Zit)1(yi,t+s ≤ τ | Zi,t+s)ZitZ ′i,t+s

]
.

The last term can be expressed as

2
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E
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ZitZ
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E
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.

Now, noting that E
[
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]
=

E
[
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]
the above expression is

2
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E
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E
[
ZitZ

′
i,t+s

]
.

Furthermore, applying Cauchy-Schwarz inequality to the first term, we have

∞∑
s=1

E
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)
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∞∑
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E
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E
[
ZitZ

′
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.

Finally, using the α−mixing condition on {Zit, εit} in B3, we obtain

∞∑
s=1

E
[
1(yit ≤ τ | Zit)1(yi,t+s ≤ τ | Zi,t+s)− τ2

]2 → 0

and
∑∞

s=1E
[
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<∞. Therefore,

∞∑
s=−∞

E
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∞∑
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E
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′
i,t+s

]
= τ(1− τ)Ω. (A.24)

The same derivations apply to Ω∗ such that expression (A.20) converges to τ(1−τ)ν0 [Ω∗]−1 Ω [Ω∗]−1.
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For expression (A.21), we note that

[Ω̂∗]−1√
T h̃

T∑
t=1

Ψτ (ετ,it)
(
Ẑ∗it − Z∗it

)
k
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(
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0 0 (F̂t − FtH(t)) 0 0 (F̂t − FtH(t))U

th̃

]
kh
(
U
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)
,

with 0 denoting a 1 × d vector. Now, using Proposition 5, F̂t − FtH
(t) = Op

(
N−1/2

)
, as

N →∞. Define ft =
√
N(F̂t − FtH(t)). Then,

[Ω̂∗]−1

√
N
√
T h̃

T∑
t=1

Ψτ (εit)
[
0 0 ft 0 0 ftUth̃

]
k
h̃

(
U
th̃

)
,

that converges to zero in probability as N,T →∞. To show this, consider the element

[Ω̂∗]−1

√
N
√
T h̃

T∑
t=1

k
h̃

(
U
th̃

)
Ψτ (εit)ft =

√
T h̃

N

[Ω∗]−1

T h̃

T∑
t=1

k
h̃

(
U
th̃

)
Ψτ (εit)ft + oP (1).

Under the law of large numbers, it follows that 1

T h̃

T∑
t=1
k
h̃

(
U
th̃

)
Ψτ (εit)ft = OP (1). Then, the

above expression converges to zero if T h̃
N → 0.

Now, the consistency of F̂t to FtH
(t), asN →∞, implies that Ẑ∗it−Z∗it = oP (1) and wτ,it−ετ,it =

oP (1). Then, expressions (A.22) and (A.23) converge to zero in probability, and the asymptotic

result in Proposition 6 follows.
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Table 1: Monte Carlo simulations, φ = γ1 = γ2 = 0

Bias MSE
τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75

N T β̂1 β̃1 β̂1 β̃1 β̂1 β̃1 β̂1 β̃1 β̂1 β̃1 β̂1 β̃1
εit ∼ N(0, 1), DGP 1

20 20 -0.0360 0.0010 -0.0261 0.0055 -0.0303 0.0046 0.3681 0.0252 0.3527 0.0167 0.4850 0.0216
20 50 -0.0129 0.0003 -0.0154 -0.0007 -0.0142 0.0028 0.1010 0.0070 0.0994 0.0050 0.0943 0.0084
20 100 0.0060 0.0015 0.0145 0.0031 0.0141 0.0042 0.0333 0.0047 0.0376 0.0028 0.0283 0.0036
50 20 0.0088 -0.0098 0.0188 -0.0088 0.0184 -0.0080 0.1536 0.0125 0.1787 0.0083 0.1469 0.0099
50 50 -0.0140 -0.0012 -0.0148 0.0003 -0.0133 0.0009 0.0508 0.0034 0.0527 0.0027 0.0501 0.0036
50 100 0.0064 0.0012 0.0015 0.0004 0.0050 0.0020 0.0132 0.0016 0.0128 0.0011 0.0126 0.0011
100 20 0.0064 -0.0021 0.0065 0.0005 0.0135 0.0047 0.1263 0.0050 0.1027 0.0034 0.0936 0.0065
100 50 -0.0045 -0.0016 -0.0094 -0.0029 -0.0149 -0.0005 0.0184 0.0016 0.0168 0.0012 0.0191 0.0016
100 100 -0.0072 -0.0026 -0.0042 -0.0022 -0.0076 0.0005 0.0082 0.0008 0.0074 0.0005 0.0067 0.0007

εit ∼ N(0, 1), DGP 2
20 20 -0.0177 0.0170 -0.0071 0.0141 -0.0080 0.0110 0.4007 0.0262 0.4420 0.0196 0.4676 0.0257
20 50 0.0330 -0.0013 0.0170 0.0035 0.0213 0.0108 0.1544 0.0077 0.1150 0.0049 0.1060 0.0070
20 100 0.0186 -0.0022 0.0125 0.0001 -0.0049 -0.0004 0.0906 0.0034 0.0987 0.0026 0.0486 0.0035
50 20 0.0351 -0.0015 0.0175 0.0030 0.0104 0.0031 0.1322 0.0095 0.1392 0.0071 0.1422 0.0103
50 50 0.0216 0.0017 0.0249 0.0022 0.0246 0.0030 0.0462 0.0031 0.0511 0.0024 0.0577 0.0032
50 100 0.0075 0.0002 0.0073 -0.0001 0.0106 0.0040 0.0147 0.0018 0.0144 0.0012 0.0156 0.0014
100 20 0.0173 -0.0034 0.0085 -0.0007 -0.0055 -0.0006 0.1131 0.0057 0.0972 0.0035 0.0797 0.0054
100 50 -0.0131 -0.0007 -0.0150 0.0032 -0.0137 -0.0004 0.0206 0.0014 0.0225 0.0010 0.0174 0.0017
100 100 0.0065 0.0017 0.0073 0.0026 0.0045 0.0002 0.0049 0.0007 0.0044 0.0005 0.0044 0.0007

Table 2: Monte Carlo simulations, φ = γ1 = γ2 = 0

Bias MSE
τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75

N T β̂1 β̃1 β̂1 β̃1 β̂1 β̃1 β̂1 β̃1 β̂1 β̃1 β̂1 β̃1
εit ∼ χ2

1, DGP 1
20 20 -0.0295 0.0037 0.0182 0.0035 -0.0122 -0.0058 1.4004 0.0168 0.6702 0.0135 0.3696 0.0231
20 50 -0.0111 -0.0018 -0.0007 0.0015 0.0007 0.0070 0.0826 0.0054 0.0732 0.0040 0.0784 0.0055
20 100 0.0191 -0.0022 0.0262 -0.0014 0.0370 -0.0026 0.0482 0.0027 0.0505 0.0018 0.0336 0.0026
50 20 0.0293 0.0019 0.0209 0.0015 0.0218 -0.0008 0.2709 0.0068 0.2654 0.0049 0.2623 0.0061
50 50 -0.0081 0.0057 -0.0105 0.0033 -0.0085 0.0064 0.0346 0.0023 0.0377 0.0015 0.0362 0.0023
50 100 0.0151 0.0018 0.0101 0.0020 0.0028 0.0016 0.0116 0.0010 0.0112 0.0007 0.0121 0.0010
100 20 -0.0317 -0.0033 -0.0334 0.0003 -0.0302 0.0001 0.1769 0.0040 0.1805 0.0029 0.1825 0.0036
100 50 0.0097 -0.0013 0.0041 -0.0003 -0.0072 0.0022 0.0280 0.0011 0.0283 0.0007 0.0223 0.0012
100 100 0.0056 0.0009 0.0043 0.0004 -0.0015 -0.0003 0.0061 0.0005 0.0062 0.0004 0.0099 0.0005

εit ∼ χ2
1, DGP 2

20 20 -0.0475 -0.0031 -0.0207 0.0029 0.0249 0.0077 0.3110 0.0225 0.3397 0.0154 0.4451 0.0216
20 50 0.0179 0.0084 0.0194 0.0045 0.0231 -0.0006 0.0832 0.0058 0.0959 0.0035 0.0938 0.0059
20 100 -0.0006 -0.0013 -0.0032 -0.0015 0.0004 0.0002 0.0353 0.0026 0.0354 0.0017 0.0510 0.0028
50 20 -0.0243 -0.0105 -0.0253 -0.0032 -0.0134 -0.0006 0.2504 0.0091 0.2696 0.0056 0.2395 0.0071
50 50 0.0063 -0.0015 -0.0034 0.0022 -0.0042 0.0028 0.0309 0.0025 0.0533 0.0016 0.0438 0.0023
50 100 -0.0170 0.0005 -0.0135 0.0001 -0.0105 0.0005 0.0116 0.0010 0.0116 0.0009 0.0148 0.0010
100 20 0.0009 0.0034 -0.0026 0.0028 0.0026 -0.0021 0.0983 0.0031 0.1261 0.0029 0.0895 0.0039
100 50 -0.0695 -0.0036 -0.0159 -0.0016 -0.0106 -0.0037 0.7384 0.0012 0.0121 0.0008 0.0129 0.0011
100 100 0.0005 -0.0014 -0.0001 0.0004 0.0000 -0.0018 0.0081 0.0007 0.0083 0.0004 0.0075 0.0005

Table 3: Monte Carlo simulations, φ = 0.1, γ1 = γ2 = 0

Bias MSE
τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75

N T β̂1 β̃1 β̂1 β̃1 β̂1 β̃1 β̂1 β̃1 β̂1 β̃1 β̂1 β̃1

εit ∼ N(0, 1), DGP 1
20 20 0.0098 0.0354 -0.0505 -0.0026 -0.0753 -0.0374 0.4408 0.0318 0.4566 0.0237 0.3714 0.0249
20 50 0.0397 0.0138 -0.0184 -0.0103 -0.0889 -0.0349 0.3219 0.0282 0.3170 0.0245 0.3828 0.0269
20 100 0.0756 0.0213 0.0041 0.0004 -0.1157 -0.0244 0.3268 0.0234 0.2997 0.0154 0.2746 0.0287
50 20 0.0613 0.0321 0.0245 -0.0075 -0.0311 -0.0414 0.3470 0.0243 0.3390 0.0154 0.3849 0.0280
50 50 0.0786 0.0296 0.0126 0.0028 -0.0669 -0.0243 0.0681 0.0078 0.0752 0.0056 0.0947 0.0087
50 100 0.0681 0.0251 -0.0022 -0.0014 -0.0694 -0.0248 0.0681 0.0099 0.0732 0.0055 0.0809 0.0088
100 20 0.0619 0.0333 -0.0177 0.0023 -0.0873 -0.0357 0.0815 0.0092 0.0869 0.0071 0.1002 0.0148
100 50 0.0754 0.0286 0.0179 0.0029 -0.0540 -0.0249 0.0803 0.0087 0.1104 0.0061 0.1222 0.0132
100 100 0.0652 0.0247 -0.0015 0.0005 -0.0686 -0.0217 0.0308 0.0038 0.0255 0.0029 0.9163 0.0042

εit ∼ N(0, 1), DGP 2
20 20 0.0716 0.0354 0.0367 -0.0040 -0.0595 -0.0401 0.0400 0.0048 0.0405 0.0026 0.0485 0.0048
20 50 0.0724 0.0337 0.0068 -0.0004 -0.0640 -0.0339 0.0322 0.0057 0.0357 0.0038 0.0585 0.0098
20 100 0.0408 0.0295 -0.0284 0.0020 -0.0888 -0.0254 0.0342 0.0059 0.0383 0.0043 0.0545 0.0094
50 20 0.0851 0.0246 0.0153 -0.0047 -0.0892 -0.0392 0.1974 0.0099 0.1305 0.0078 0.1730 0.0123
50 50 0.1059 0.0276 0.0018 0.0022 -0.0604 -0.0245 0.3655 0.0096 0.3506 0.0072 0.3184 0.0131
50 100 0.0662 0.0223 -0.0022 -0.0004 -0.0713 -0.0244 0.3033 0.0096 0.1910 0.0084 0.1797 0.0165
100 20 0.1031 0.0393 0.0330 0.0082 -0.0347 -0.0217 0.4136 0.0112 0.3090 0.0081 0.5705 0.0161
100 50 0.0584 0.0252 0.0062 -0.0024 -0.0609 -0.0323 0.0403 0.0043 0.0323 0.0025 0.0425 0.0044
100 100 0.0618 0.0224 -0.0053 -0.0020 -0.0719 -0.0244 0.3769 0.0039 0.1005 0.0020 0.0638 0.0034
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Table 4: Monte Carlo simulations, φ = 0.1, γ1 = γ2 = 0

Bias MSE
τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75

N T β̂1 β̃1 β̂1 β̃1 β̂1 β̃1 β̂1 β̃1 β̂1 β̃1 β̂1 β̃1
εit ∼ N(0, 1), DGP 1

20 20 0.0098 0.0354 -0.0505 -0.0026 -0.0753 -0.0374 0.4408 0.0318 0.4566 0.0237 0.3714 0.0249
20 50 0.0397 0.0138 -0.0184 -0.0103 -0.0889 -0.0349 0.3219 0.0282 0.3170 0.0245 0.3828 0.0269
20 100 0.0756 0.0213 0.0041 0.0004 -0.1157 -0.0244 0.3268 0.0234 0.2997 0.0154 0.2746 0.0287
50 20 0.0613 0.0321 0.0245 -0.0075 -0.0311 -0.0414 0.3470 0.0243 0.3390 0.0154 0.3849 0.0280
50 50 0.0786 0.0296 0.0126 0.0028 -0.0669 -0.0243 0.0681 0.0078 0.0752 0.0056 0.0947 0.0087
50 100 0.0681 0.0251 -0.0022 -0.0014 -0.0694 -0.0248 0.0681 0.0099 0.0732 0.0055 0.0809 0.0088
100 20 0.0619 0.0333 -0.0177 0.0023 -0.0873 -0.0357 0.0815 0.0092 0.0869 0.0071 0.1002 0.0148
100 50 0.0754 0.0286 0.0179 0.0029 -0.0540 -0.0249 0.0803 0.0087 0.1104 0.0061 0.1222 0.0132
100 100 0.0652 0.0247 -0.0015 0.0005 -0.0686 -0.0217 0.0308 0.0038 0.0255 0.0029 0.9163 0.0042

εit ∼ N(0, 1), DGP 2
20 20 0.0716 0.0354 0.0367 -0.0040 -0.0595 -0.0401 0.0400 0.0048 0.0405 0.0026 0.0485 0.0048
20 50 0.0724 0.0337 0.0068 -0.0004 -0.0640 -0.0339 0.0322 0.0057 0.0357 0.0038 0.0585 0.0098
20 100 0.0408 0.0295 -0.0284 0.0020 -0.0888 -0.0254 0.0342 0.0059 0.0383 0.0043 0.0545 0.0094
50 20 0.0851 0.0246 0.0153 -0.0047 -0.0892 -0.0392 0.1974 0.0099 0.1305 0.0078 0.1730 0.0123
50 50 0.1059 0.0276 0.0018 0.0022 -0.0604 -0.0245 0.3655 0.0096 0.3506 0.0072 0.3184 0.0131
50 100 0.0662 0.0223 -0.0022 -0.0004 -0.0713 -0.0244 0.3033 0.0096 0.1910 0.0084 0.1797 0.0165
100 20 0.1031 0.0393 0.0330 0.0082 -0.0347 -0.0217 0.4136 0.0112 0.3090 0.0081 0.5705 0.0161
100 50 0.0584 0.0252 0.0062 -0.0024 -0.0609 -0.0323 0.0403 0.0043 0.0323 0.0025 0.0425 0.0044
100 100 0.0618 0.0224 -0.0053 -0.0020 -0.0719 -0.0244 0.3769 0.0039 0.1005 0.0020 0.0638 0.0034

Table 5: Monte Carlo simulations, φ = γ1 = γ2 = 0.1

Bias MSE
τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75

N T β̂1 β̃1 β̂1 β̃1 β̂1 β̃1 β̂1 β̃1 β̂1 β̃1 β̂1 β̃1
εit ∼ N(0, 1), DGP 1

20 20 0.0483 0.0088 0.0094 -0.0183 -0.0527 -0.0551 0.3497 0.0299 0.2694 0.0211 0.2821 0.0318
20 50 0.0827 0.0287 0.0023 -0.0030 -0.0732 -0.0261 0.1266 0.0076 0.0815 0.0063 0.0807 0.0088
20 100 0.0618 0.0194 -0.0002 -0.0020 -0.0663 -0.0253 0.0274 0.0041 0.0255 0.0026 0.0310 0.0042
50 20 0.0811 0.0357 0.0242 0.0039 -0.0502 -0.0242 0.1440 0.0115 0.1806 0.0094 0.1830 0.0105
50 50 0.0826 0.0264 0.0112 -0.0014 -0.0441 -0.0246 0.0875 0.0036 0.0307 0.0023 0.0290 0.0040
50 100 0.0600 0.0221 -0.0138 0.0005 -0.0815 -0.0255 0.0164 0.0018 0.0122 0.0008 0.0184 0.0020
100 20 0.0421 0.0452 -0.0164 0.0091 -0.0853 -0.0313 0.1163 0.0086 0.1127 0.0042 0.1156 0.0073
100 50 0.0521 0.0289 -0.0099 -0.0008 -0.0766 -0.0294 0.0412 0.0025 0.0391 0.0014 0.0326 0.0023
100 100 0.0543 0.0234 -0.0084 -0.0031 -0.0742 -0.0247 0.0110 0.0012 0.0069 0.0006 0.0130 0.0013

εit ∼ N(0, 1), DGP 2
20 20 0.0958 0.0361 0.0328 0.0070 -0.0296 -0.0261 0.4316 0.0276 0.3980 0.0188 0.4147 0.0214
20 50 0.0790 0.0259 0.0268 0.0008 -0.0236 -0.0396 0.1781 0.0076 0.1971 0.0056 0.2013 0.0095
20 100 0.0707 0.0256 -0.0089 0.0018 -0.0798 -0.0226 0.0328 0.0047 0.0293 0.0032 0.0366 0.0046
50 20 0.0762 0.0406 0.0172 -0.0045 -0.0512 -0.0331 0.1733 0.0102 0.1624 0.0077 0.1668 0.0116
50 50 0.0737 0.0275 0.0001 0.0031 -0.0760 -0.0262 0.0432 0.0038 0.0378 0.0023 0.0415 0.0039
50 100 0.0692 0.0290 0.0030 0.0006 -0.0703 -0.0267 0.0167 0.0024 0.0128 0.0010 0.0186 0.0022
100 20 0.1016 0.0305 0.0331 -0.0009 -0.0368 -0.0331 0.0970 0.0049 0.0828 0.0032 0.0836 0.0058
100 50 0.0788 0.0293 0.0022 0.0010 -0.0643 -0.0244 0.0300 0.0027 0.0225 0.0012 0.0243 0.0023
100 100 0.0737 0.0255 0.0072 -0.0004 -0.0639 -0.0257 0.0137 0.0015 0.0060 0.0006 0.0095 0.0015

Table 6: Monte Carlo simulations, φ = γ1 = γ2 = .1

Bias MSE
τ = .25 τ = .5 τ = .75 τ = .25 τ = .5 τ = .75

N T β̂1 β̃1 β̂1 β̃1 β̂1 β̃1 β̂1 β̃1 β̂1 β̃1 β̂1 β̃1
εit ∼ χ2

1, DGP 1
20 20 0.0422 -0.0353 0.0128 -0.0521 -0.0868 -0.0820 0.3387 0.0231 0.3161 0.0165 0.4824 0.0279
20 50 -0.0466 -0.0535 -0.0635 -0.0480 -0.1576 -0.0929 0.1308 0.0099 0.0978 0.0078 0.0985 0.0141
20 100 0.0261 -0.0543 -0.0133 -0.0427 -0.0964 -0.0855 0.1126 0.0065 0.1181 0.0038 0.1278 0.0094
50 20 -0.0159 -0.0457 -0.0348 -0.0522 -0.1200 -0.0991 0.2613 0.0109 0.5243 0.0082 0.5611 0.0180
50 50 -0.0196 -0.0534 -0.0512 -0.0436 -0.1536 -0.0860 0.0425 0.0053 0.0471 0.0035 0.0631 0.0095
50 100 -0.0069 -0.0584 -0.0291 -0.0446 -0.1145 -0.0801 0.0118 0.0047 0.1143 0.0027 0.1316 0.0075
100 20 -0.0214 -0.0425 -0.0495 -0.0436 -0.1318 -0.0915 0.0501 0.0061 0.0577 0.0046 0.0855 0.0124
100 50 -0.0180 -0.0583 -0.0493 -0.0481 -0.1304 -0.0865 0.0200 0.0048 0.0203 0.0032 0.0341 0.0086
100 100 -0.0074 -0.0572 -0.0503 -0.0478 -0.1382 -0.0870 0.0057 0.0039 0.0080 0.0027 0.0246 0.0082

εit ∼ χ2
1, DGP 2

20 20 0.0015 -0.0512 -0.0190 -0.0390 -0.0332 -0.0811 0.3054 0.0252 0.2958 0.0131 3.1877 0.0237
20 50 -0.0190 -0.0497 -0.0488 -0.0368 -0.1300 -0.0793 0.0638 0.0085 0.0603 0.0059 0.0724 0.0120
20 100 0.0069 -0.0551 -0.0139 -0.0417 -0.1105 -0.0849 0.0442 0.0054 0.0573 0.0035 0.0479 0.0097
50 20 0.0010 -0.0484 -0.0333 -0.0397 -0.1631 -0.0857 0.1740 0.0115 0.1684 0.0075 0.1699 0.0153
50 50 -0.0277 -0.0575 -0.0600 -0.0425 -0.1505 -0.0849 0.0334 0.0060 0.0444 0.0033 0.0680 0.0094
50 100 -0.0254 -0.0658 -0.0647 -0.0485 -0.1521 -0.0870 0.0136 0.0057 0.0208 0.0032 0.0402 0.0086
100 20 -0.0374 -0.0458 -0.0648 -0.0451 -0.1398 -0.0925 0.1174 0.0065 0.1255 0.0052 0.1347 0.0129
100 50 -0.0172 -0.0549 -0.0482 -0.0443 -0.1424 -0.0872 0.0163 0.0042 0.0178 0.0029 0.0382 0.0088
100 100 -0.0056 -0.0580 -0.0398 -0.0460 -0.1230 -0.0838 0.0060 0.0039 0.0081 0.0025 0.0213 0.0075
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Table 7: Model 1. Firm-specific quantile regression model with R = 2 unobserved factors.
Global factors with fixed loadings. Standard errors are in brackets.

0.10 0.25 0.50 0.75 0.90

CONST -8.912 -7.582 -5.427 -6.313 -4.827
(1.661) (1.100) (0.925) (1.112) (1.847)

MDR 2.963 2.447 2.412 2.603 3.067
(0.379) (0.219) (0.189) (0.206) (0.321)

EBITTA 0.806 0.211 -0.040 -0.193 -0.519
(0.388) (0.251) (0.264) (0.288) (0.475)

MB -0.053 -0.118 -0.174 -0.123 0.006
(0.058) (0.046) (0.045) (0.055) (0.076)

DEPTA -4.647 -4.734 -5.820 -7.949 -10.123
(2.178) (1.515) (1.314) (1.646) (2.515)

LNTA 0.397 0.359 0.275 0.344 0.278
(0.086) (0.056) (0.046) (0.057) (0.098)

Table 8: Model 1. Firm-specific quantile regression model with R = 2 unobserved factors.
Local factors with with time-varying factor loadings. Standard errors are in brackets.

0.10 0.25 0.50 0.75 0.90

CONST -6.688 -4.522 -3.422 -1.886 -0.582
(0.921) (0.672) (0.606) (0.721) (1.119)

MBR 2.514 2.185 2.344 2.605 2.869
(0.185) (0.138) (0.153) (0.201) (0.293)

EBITTA 0.830 0.129 -0.122 -0.410 -0.454
(0.346) (0.234) (0.233) (0.277) (0.390)

MB -0.024 -0.105 -0.116 -0.079 -0.005
(0.063) (0.046) (0.041) (0.045) (0.076)

DEPTA -3.722 -5.923 -6.927 -8.828 -11.270
(1.818) (1.190) (1.131) (1.515) (2.445)

LNTA 0.276 0.199 0.163 0.108 0.061
(0.045) (0.033) (0.030) (0.036) (0.056)
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Table 9: Model 2. Quantile regression model with R = 2 unobserved global factors with fixed
loadings. The model considers firm-specific covariates and Fama-French three factor model.
Standard errors are in brackets.

0.10 0.25 0.50 0.75 0.90

CONST -8.582 -5.759 -4.869 -4.649 -6.279
(1.420) (0.919) (0.729) (1.000) (1.981)

MBR 2.386 2.095 2.093 2.330 2.640
(0.325) (0.198) (0.180) (0.214) (0.307)

MB -0.129 -0.259 -0.391 -0.530 -0.260
(0.355) (0.218) (0.243) (0.255) (0.418)

EBITTA -0.039 -0.112 -0.171 -0.072 0.027
(0.059) (0.045) (0.042) (0.053) (0.082)

DEPTA -3.545 -4.978 -6.824 -7.539 -8.431
(1.982) (1.494) (1.382) (1.577) (2.596)

LNTA 0.405 0.278 0.256 0.265 0.356
(0.075) (0.047) (0.039) (0.054) (0.104)

MKTRF -0.510 -0.520 -0.615 -0.620 -0.620
0.062 0.048 0.043 0.057 0.094

SMB -0.840 -0.787 -0.740 -0.767 -0.797
0.107 0.074 0.063 0.070 0.123

HML -0.182 -0.189 -0.215 -0.212 -0.192
0.089 0.058 0.055 0.062 0.104
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Table 10: Model 2: Quantile regression model with R = 2 unobserved local factors with time-
varying factor loadings. The model considers firm-specific covariates and Fama-French three
factor model. Standard errors are in brackets.

0.10 0.25 0.50 0.75 0.90

CONST -4.938 -3.503 -2.407 -1.710 -1.325
(0.788) (0.631) (0.548) (0.628) (1.021)

MBR 2.319 1.988 2.020 2.222 2.267
(0.173) (0.135) (0.145) (0.170) (0.303)

MB 0.081 -0.339 -0.478 -0.790 -0.511
(0.327) (0.224) (0.221) (0.238) (0.385)

EBITTA -0.067 -0.127 -0.122 -0.065 0.026
(0.055) (0.038) (0.037) (0.045) (0.079)

DEPTA -4.456 -6.037 -7.709 -9.996 -11.785
(1.927) (1.422) (1.211) (1.556) (2.256)

LNTA 0.202 0.159 0.124 0.106 0.104
(0.037) (0.030) (0.026) (0.030) (0.049)

MKTRF -0.516 -0.546 -0.588 -0.612 -0.636
0.070 0.051 0.049 0.065 0.100

SMB -0.724 -0.705 -0.716 -0.736 -0.677
0.121 0.095 0.077 0.086 0.135

HML -0.195 -0.221 -0.237 -0.231 -0.240
0.090 0.059 0.061 0.076 0.126
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Figure 1: Model 2: Dynamics of βτ,t
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Notes: 0.10 (blue), 0.25 (red), 0.50 (black), 0.75 (brown), and 0.90 (green) quantile coefficients with 95%
confidence interval calculated with 200 bootstrap replications.

RTNi,t+1 = αi + βit,MDRMDRi,t + βit,EBITTAEBITTAi,t + βit,MBMBi,t + βit,DEPTADEPTAi,t +
βit,LNTALNTAi,t + βit,MKTRFMKTRFi,t + βit,SMBSMBi,t + βit,HMLHMLi,t + εi,t+1.
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Figure 2: Model 2 continued.
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Notes: 0.10 (blue), 0.25 (red), 0.50 (black), 0.75 (brown), and 0.90 (green) quantile coefficients with 95%
confidence interval calculated with 200 bootstrap replications.

RTNi,t+1 = αi + βit,MDRMDRi,t + βit,EBITTAEBITTAi,t + βit,MBMBi,t + βit,DEPTADEPTAi,t +
βit,LNTALNTAi,t + βit,MKTRFMKTRFi,t + βit,SMBSMBi,t + βit,HMLHMLi,t + εi,t+1.
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