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ABSTRACT
This paper proposes a functional coefficient quantile regression 
model with heterogeneous and time-varying regression coeffi-
cients and factor loadings. Estimation of the model coefficients is 
done in two stages. First, we estimate the unobserved common 
factors from a linear factor model with exogenous covariates. 
Second, we plug-in an affine transformation of the estimated com-
mon factors to obtain the functional coefficient quantile regression 
model. The quantile parameter estimators are consistent and 
asymptotically normal. The application of this model to the quantile 
process of a cross-section of U.S. firms’ excess returns confirms the 
predictive ability of firm-specific covariates and the good perfor-
mance of the local estimator of the heterogeneous and time- 
varying quantile coefficients.
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1. Introduction

In a series of influential papers, Bai and Ng (2002) and Bai (2003, 2009) developed 
a general methodology for explaining economic and financial variables by a few common 
factors. Factor models allow for a drastic reduction of the cross-sectional dimension of 
a panel while providing a flexible way to summarize information from large data sets, see 
Pesaran (2006). In the literature on factor models it is common to assume a vector of 
constant factor loadings. This assumption is, however, rather restrictive. To the best of 
our knowledge, Eichler et al. (2011) is the first study to use time-varying loadings in 
a dynamic model with non-stationary time series. Bates et al. (2013) is another influential 
analysis that contributes to the idea of smooth changes in factor loadings. Su and Wang 
(2017) propose a local version of the principal component method using smoothly 
changing loadings, while Pelger and Xiong (2019) allow them to be state-dependent. In 
this setting the unobserved factor structure is thus allowed to vary over time.

Another area of major interest in recent years is the study of the quantile process. 
Quantile regression (QR) has been studied extensively in both theoretical and empirical 
studies; see Koenker and Bassett (1978), Portnoy (1991), Chaudhuri et al. (1997), 
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Koenker and Machado (1999), He and Zhu (2003), Koenker and Xiao (2006). This work 
has been recently extended to accommodate the presence of dynamics in the quantile 
coefficients, see Wei and He (2006) and Kim (2007). A more general approach that also 
allows for dynamics in the quantile parameters is based on nonparametric and semipara-
metric estimation methods for dynamic smooth coefficient models, see De Gooijer and 
Zerom (2003), Yu and Lu (2004), Horowitz and Lee (2005), and more recently, Cai and 
Xu (2008) and Cai and Xiao (2012). Building on this work, recent contributions by Ando 
and Bai (2020), Chen et al. (2021) and Ma et al. (2021) have extended quantile regression 
models to incorporate unobserved common factors. These models consider heteroge-
neous quantile effects that introduce much flexibility to the specification of factor models 
by capturing the presence of heterogeneity in the effect of observable covariates and 
unobserved factors at different quantiles.

The current paper combines both approaches by considering a factor model with 
a time-varying factor loadings structure in a quantile heterogeneity framework with 
varying coefficients. The idea is to propose a flexible panel data model that is general 
enough to encompass unobserved heterogeneity arising from unobserved factors and 
quantile-indexed responses together in a dynamic setting. This is done in two stages. 
First, we propose a factor model for the mean process that includes observable regressors 
and unobservable factors. This model allows for heterogeneity across individuals and 
dynamics in the regression coefficients. By doing so, we extend standard factor model 
specifications that assume slope homogeneity in the observable regressors as in Bai (2003,  
2009) and slope heterogeneity as in Song (2013) and Ando and Bai (2015). As a salient 
feature, the model also entertains dynamics in the factor loadings. Second, we extend the 
model to describe the quantile process. The slope coefficients associated with the 
observable regressors in the quantile model face three different types of variation: 
heterogeneity across quantiles, individuals, and over time. The factor loadings accom-
modate heterogeneity across individuals and over time. Estimation of the model coeffi-
cients (quantile factors, quantile regression coefficients and factor loadings) is done in 
two stages. In the first stage, we estimate the unobservable common factors from a linear 
factor model with exogenous covariates. We adapt the principal component analysis 
introduced in Bai (2009) to a local setting using kernel estimation methods (see also Su 
and Wang (2017)) to simultaneously estimate the local common factors, factor loadings 
and slope coefficients associated with the observable regressors. In contrast to Su and 
Wang (2017), our model also accommodates the presence of observable regressors. In 
order to estimate the quantile common factors a fundamental assumption in our 
modelling framework is that these quantities are quantile-specific affine transformations 
of the factors obtained from the mean process in the first stage. In this regard, our model 
specification lies between the approximate factor models that only consider mean- 
shifting factors to describe quantile effects and the idiosyncratic quantile factor models 
in which the factors are estimated separately for each quantile using an iterative proce-
dure, see Ando and Bai (2020), Chen et al. (2021) and Ma et al. (2021). By doing so, our 
quantile factors become observable covariates in the quantile process studied in 
the second stage.

The estimation of the parameters in our model relies on the nonparametric quantile 
estimation method for dynamic smooth coefficients introduced in Cai and Xu (2008) and 
the semiparametric approach proposed in Cai and Xiao (2012) for models with partially 
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varying coefficients. Our proposed methodology is also framed within the recent litera-
ture on QR models with an unobserved factor structure. Harding and Lamarche (2014) 
propose a quantile common correlated effects estimator for homogeneous panel data 
with endogenous regressors. The authors assume a parametric approach and time- 
invariant factor loadings, where the way of recovering the latent factors is different 
from ours.

Inclusion of estimated quantities in regression models may affect the asymptotic 
distribution of the parameter estimates, see Pagan (1984). This observation is essential 
in our context, characterized by a quantile factor model with estimated factors. In 
principle, the inclusion of such covariates into the quantile model has effects on the 
asymptotic distribution of the quantile parameter estimates. We show that this is not the 
case under standard panel data assumptions, that is, if both N and T diverge to infinity 
such that Th=

ffiffiffiffi
N
p
!1, with h! 0 a bandwidth parameter. We derive the asymptotic 

distribution of the regression parameter estimates associated to the observable covariates 
for the mean and quantile models, and of the estimated factors and quantile factor 
loadings.

A Monte Carlo simulation exercise studies the finite-sample performance (bias and 
mean square error) of two estimators of the slope coefficients that are based on our two- 
stage procedure. The first estimator considers time-varying factor loadings using the 
local estimation procedure developed in this paper. In this case we estimate individual- 
specific coefficients for all t ¼ 1; 2; . . . ;T. The second estimator considers a model with 
time-invariant loadings. In this case we do not impose the time-varying local estimation 
procedure and estimate, instead, a unique set of parameters for all t. This global factor 
estimator uses Ando and Bai (2015) iterative process. The simulation exercise confirms 
the consistency of our local two-stage estimation procedure and provides empirical 
support to our methodology for estimating heterogeneous and time-varying quantile 
regression coefficients and factor loadings.

This novel quantile factor model is applied to explain the distributional risk premia for 
a cross-section of excess returns. To do this, we fit the model to different quantiles of the 
distribution for a cross-section of annual U.S. firms’ asset returns. We consider firm- 
specific covariates as pricing factors and allow for the presence of two unobserved 
factors.1

The remainder of the paper proceeds as follows. In Section 2, we introduce the time- 
varying quantile factor model. Section 3 describes the estimation procedure based on 
local principal components and QR. Section 4 introduces the asymptotic properties of the 
parameter estimators. Section 5 presents a Monte Carlo simulation exercise to evaluate 
the performance in finite samples of our estimation procedure, in particular, we focus on 
bias and mean square error. Section 6 illustrates the suitability of the quantile factor 
model with exogenous covariates in an empirical asset pricing framework. Section 7 
provides concluding remarks. An Appendix contains the mathematical proofs of the 
main results of the study. Tables and figures are collected as a second Appendix.

1It is prevalent in this literature to fix the number of unobserved common factors, see Bai (2009), Song (2013), and Ando 
and Bai (2015). Alternatively, information criteria and rank minimization are used in Ando and Bai (2020) and Chen et al. 
(2021), to determine the number of factors at each quantile while uncovering the quantile factors individually.
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Notation. Let T½ �; 1; 2; . . . ;Tf g and N½ � ¼ 1; 2; . . . ;Nf g be the sets of time periods 
and individual indices, respectively. The Frobenius norm is defined as k A k¼
½trðAA0Þ�1=2 with tr denoting the trace of a matrix and A0 the transpose of A.

2. Time-varying quantile factor models

2.1. Identification of the quantile factors and factor loadings

Let Yit be an outcome variable of interest and Xit ¼ X1;it; . . . ;Xd;it
� �

be a vector of d 
observable covariates, including a constant. Similarly, Fτt ¼ ðFτ;t1; . . . ; Fτ;tRÞ is the vector 
of unobservable common quantile factors indexed by τ where, for simplicity, R is 
assumed to be equal across τ 2 ð0; 1Þ. We consider the following quantile process 
conditional on Xit and Fτt , given by 

Qτ YitjXit; Fτtð Þ ¼ Xitβτ;it þ FτtΛτ;it; (1) 

for a given τ 2 ð0; 1Þ, where βτ;it ¼ βτ;iðutÞ, with ut ¼ t=T , is the vector of quantile slope 
coefficients associated to the observable regressors. Similarly, Λτ;it ¼ ðλτ1;it; . . . ; λτR;itÞ

0, 
with λτj;it ¼ λτj;iðutÞ, are the loadings associated to the quantile factors Fτt . Here the 
factors are assumed to be τ-specific. Both βτ;it and Λτ;it are assumed continuously 
differentiable smooth functions, see Cai (2007) for similar assumptions in a model 
with observable covariates.

We impose the following assumption for the identification of the quantile factors.

Assumption A.1
iÞ The conditional mean model satisfies  

E YitjXit; Ftð Þ ¼ Xitβit þ FtΛit; (2) 

with βit the slope coefficients for the conditional mean process; Ft ¼ ðFt1; . . . ; FtRÞ the 
vector of common factors affecting the conditional mean, and Λit the associated factor 
loadings.

iiÞ The quantile common factors satisfy 

Fτt ¼ Ft þ sτt; (3) 

with sτt ¼ ½sτ;1t; . . . ; sτ;Rt� for all t 2 ½T�.

Assumption A.1 ii) implies that the quantile factors are location shifts of the vector of 
factors for the mean process. Under A.1, we can identify the quantile factors and the 
quantile factor loadings from the following quantile regression model: 

Qτ YitjXit; Ftð Þ ¼ aτ;it þ Xitβτ;it þ FtΛτ;it; (4) 

with aτ;it ¼ sτtΛτ;it . Identification of the quantile parameters is possible if we condition 
on the vector Xit and Ft . The additional component aτ;it determines that the constant in 
(1) cannot be identified unless additional assumptions are imposed. In particular, 
identification of sτ;tr is possible if there is no constant in the quantile regression models 

4 A. ATAK ET AL.



indexed by τ 2 ð0; 1Þ. Alternatively, we may impose Qτðsτt j FtÞ ¼ 0 in assumption A.1. 
This additional constraint allows for the identification of the constant in model (4) from 
the parameter vector βτ;it . Note however that this is not required for the estimation of the 
other parameters which is the main interest of the paper.

The next section discusses a suitable estimation strategy for obtaining consistent 
estimates of the model parameters. The parameters of interest are βit;Λit; Ft

� �
for the 

mean regression equation in A.1, and βτ;it;Λτ;it; Fτt

n o
for the QR model (4).

2.2. Estimation

In this section we consider local versions of principal components analysis to devise an 
iterative procedure for estimating the model parameters of the mean process (2). To do 
this, we adopt the estimation procedures in Bai (2009), Song (2013) and Ando and Bai 
(2015) for the estimation of βit , Λit and Ft . The parameters βτ;it and Λτ;it of the quantile 
factor model with observable regressors are estimated using QR methods applied to 
a local kernel version of model (18) in which the unknown common factors have been 
replaced by consistent estimates.

2.2.1. Estimation of slope coefficients and common factors
In order to estimate the parameters of model (2), we apply local principal components as 
in Su and Wang (2017). In contrast to these authors we consider a factor model that also 
includes observable regressors.

In order to estimate the slope coefficients βit and Λit we need a panel data structure 
with large N and T that guarantee the consistency of the common factors and factor 
loadings, respectively. To do this, we extend the iterative estimation procedure in Song 
(2013) and Ando and Bai (2015) to accommodate dynamics in the β and Λ coefficients, 
until we reach convergence. For s 2 ½T� fixed, we consider the Taylor expansion of the 
vector βit about βis for ut close to us such that 

βit ¼ βis þ
X

q¼1

m βðqÞis
q!
ðut � usÞ

q
þ oðjut � usj

m
Þ; (5) 

with βðqÞis high-order derivatives of the functional parameter βit evaluated at us. For 
simplicity, we consider the local approximation of order zero given by βis such that the 
remaining terms in the approximation are in the error term. Similarly, we replace Λit by 
Λis such that we estimate the model 

Yit ¼ Xitβis þ FtΛis þ eit; (6) 

with eit an error term that includes the high-order approximation terms of the model 
parameters. The parameters of model (6) are estimated from minimizing the following 
local weighted least squares problem: 

min
βisf g

N

i¼1
; Λisf g

N
i¼1; Ftf g

T
t¼1

� �

XN

i¼1

XT

t¼1
Yit � Xitβis � FtΛis
� �2k

ut � us

h

� �
; (7) 
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where kð�Þ is a kernel smoothing function. The solution to this problem can be obtained 
applying local principal component analysis (LPCA). To do this, we multiply both sides 
of expression (6) by k1=2

h;ts, with kh;ts ¼ k ut � us
h

� �
, see Su and Wang (2017) for a similar 

estimation strategy. We obtain 

k1=2
h;tsYit ¼ k1=2

h;tsXitβis þ k1=2
h;tsFtΛis þ k1=2

h;tseit: (8) 

Now, define Y sð Þ
it ¼ k1=2

h;tsYit such that Y sð Þ
i ¼ Y sð Þ

i1 ; . . . ;Y sð Þ
iT

� �0
is a T � 1 vector and Y sð Þ ¼

Y sð Þ
1 ; . . . ;Y sð Þ

N

� �
is a T � N matrix. Similarly, let X sð Þ

l;it ¼ k1=2
h;tsXl;it such that 

X sð Þ
l;i ¼ X sð Þ

l;i1; . . . ;X sð Þ
l;iT

� �0
, for l ¼ 1; . . . ; d, with X sð Þ

i ¼ X sð Þ
1;i ; . . . ;X sð Þ

d;i

� �
. Similarly, e sð Þ

it ¼

k1=2
h;tseit such that e sð Þ

i ¼ e sð Þ
i1 ; . . . ; e sð Þ

iT

� �0
is a T � 1 vector. Let F sð Þ

t ¼ k1=2
h;tsFt such that FðsÞ ¼

ðF sð Þ
1 ; . . . ; F sð Þ

T Þ
0 is a T � R matrix and Λs ¼ ðΛ1s; . . . ;ΛNsÞ be a R� N matrix. For each 

individual in the cross section, Equation 8 in vector form is 

Y sð Þ
i ¼ X sð Þ

i βis þ F sð ÞΛis þ e sð Þ
i : (9) 

In this setting, for a fixed s 2 ½T�, the minimization problem (7) becomes 

min
fβis;F sð Þ;Λisg

tr
X

i¼1

N

Y sð Þ�
i � F sð ÞΛis

� �
Y sð Þ�

i � F sð ÞΛis

� �0
" #

; (10) 

with tr denoting the trace of the matrix and YðsÞ�i ¼ YðsÞi � X sð Þ
i βis. For parameter identi-

fication, we impose restrictions F sð Þ0F sð Þ=T ¼ IR and ΛsΛ0s ¼ diagonal matrix, with Λs ¼

ðΛ1s; . . . ;ΛNsÞ a R� N matrix. This objective function is a locally weighted version of the 
least square estimator in Bai (2009).

Applying the procedure developed by these authors, we can estimate βis and F sð Þ using 
an iterative estimation procedure. This approach decomposes the original estimation 
problem into two steps: the estimation of the individual coefficients given common 
factors, and the estimation of the common factors given individual coefficients. We 
maintain their assumption that the number of factors R is known. The extension to an 
unknown number of factors under heterogeneous regression coefficients is cumbersome 
and beyond the scope of this paper. Thus when the number of unobserved factors is 
known, Bai (2009) proposes a tractable solution to the estimation problem by concen-
trating out the factor loadings from the objective function (10). Following this procedure, 
we assume that the factor loadings Λis satisfy a relationship of the form 
Λis ¼ ðFðsÞ

0

FðsÞÞ� 1FðsÞ
0

ŶðsÞ�i , with bYðsÞ�i ¼ YðsÞi � X sð Þ
i
bβis and bβis an estimate of the vector 

of slope coefficients for fixed s 2 ½T�. Then, replacing this expression into (10), the 
objective function is 

min
fβis;F sð Þ;Λisg

X

i¼1

N

Y sð Þ�0
i Y sð Þ�

i �
1
T

tr FðsÞ
0 X

i¼1

N
bYðsÞ�i

bYðsÞ�
0

i

 !

FðsÞ
" #( )

: (11) 

Therefore, the problem of interest becomes 
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max
fβis;FðsÞg

tr FðsÞ
0 X

i¼1

N
bYðsÞ�i

bYðsÞ�
0

i

 !

FðsÞ
" #

: (12) 

The estimators fbβis;
bFðsÞg should simultaneously solve a system of nonlinear equations 

bβis ¼ ðX
ðsÞ0
i M

bF
ðsÞXðsÞi Þ

� 1XðsÞ
0

i M
bF
ðsÞYðsÞi (13) 

with M
bF
ðsÞ ¼ IT � bFðsÞ bF

ðsÞ0
bF
ðsÞ

� �� 1
bFðsÞ

0

, and 

1
NT

X

i¼1

N
bYðsÞ�i

bYðsÞ�
0

i

" #

bFðsÞ ¼ bFðsÞVðsÞNT ; (14) 

where VðsÞNT is a diagonal matrix with the R largest eigenvalues of ðNTÞ� 1bYðsÞ�bYðsÞ�0 , and 
the estimated transformed factors bFðsÞ are interpreted as the 

ffiffiffiffi
T
p

times eigenvectors 
corresponding to the R largest eigenvalues of the T � T matrix bYðsÞ�bYðsÞ�0 , arranged in 
descending order.

The actual estimation procedure can be implemented by iterating each of the two steps 
in (13) and (14) until convergence. The unknown factor loadings are obtained as 

bΛis ¼
1
T
bFðsÞ

0
bYðsÞ�i : (15) 

The estimation above involves only local data points, i.e., locally weighted in 
a neighbourhood of s 2 f1; . . . ;Tg, and hence, the local estimates of βis and Λis converge 
to the true parameters at 

ffiffiffiffiffiffi
Th
p

rate. In contrast, the methodology developed in Ando and 
Bai (2015) obtains global estimators that converge under slope heterogeneity at 

ffiffiffiffi
T
p

for 
each i ¼ 1; . . . ;N. Under the assumption of slope homogeneity, Bai (2009) obtains 
estimators of the true slope parameters that converge at 

ffiffiffiffiffiffiffi
NT
p

. The next step is to derive 
a consistent estimator of the common factors Ft. We propose an estimator of the 
common factors from the minimization of the following least squares problem: 

min
Ftf g

T
t¼1f g

XN

i¼1

XT

t¼1

bY�it � FtbΛit

� �2
; (16) 

with bY�it ¼ Yit � Xitbβit , where bβit is obtained from the above iterative estimation proce-
dure for each s 2 ½T�. The solution to this problem is 

bF0t ¼
XN

i¼1

bΛitbΛ0it

 !� 1
XN

i¼1

bΛitbY�it: (17) 

2.2.2. Estimation of time-varying quantile factor loadings
In what follows, we propose a procedure to estimate the parameters of the quantile 
process (18). The unobserved quantile common factors are replaced by estimates of Ft 
obtained from the conditional mean regression model, such that the regression of 
interest is 
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Qτ YitjXit; Ftð Þ � aτ;it þ Xitβτ;it þ
bFtΛ�τ;it; (18) 

with Λ�τ;it ¼ ½H tð Þ�
� 1Λτ;it and H tð Þ a rotation matrix characterizing the common factors; 

aτ;it ¼ s�τtΛ
�
τ;it , with s�τt ¼ sτtH tð Þ. More compactly, consider the following regression 

model. Let 

Yit ¼ bZitθτ;it þ wτ;it; (19) 

be the feasible counterpart of Yit ¼ Zitθτ;it þ ετ;it , with Qτ ετ;it jXit; Ft
� �

¼ 0. Here we are 
using the notation Zit ¼ ½Xit Ft� (note that X already contains a constant) and 
bZit ¼ ½Xit bFt�, and also wτ;it ¼ ετ;it � ðbFt � FtH tð ÞÞΛ�τ;it .

Estimation of the model parameters follows by adapting the nonparametric approach 
for dynamic quantile processes in Cai and Xu (2008). These authors consider a polynomial 
approximation of the parameters θτ;it;θτ;iðutÞ about us given by eθτ;is and defined as 

θτ;is ¼ aτ;is þ
X

j¼1

q

aðjÞτ;isðut � usÞ
j

 !

βτ;is þ
X

j¼1

q

βðjÞτ;isðut � usÞ
j

 !0

Λ�τ;is þ
X

j¼1

q

Λ�ðjÞτ;is ðut � usÞ
j

 !0" #0

;

with Λ�τ;is þ
P

j¼1

q
Λð�jÞτ;is ðut � usÞ

j the local approximation of the rotated factor loadings Λ�τ;it . 

Note that aðjÞτ;is, βðjÞτ;is and Λ�ðjÞτ;is are the derivatives of order j of the respective functional 
coefficients. As in Cai and Xu (2008) we disregard in the following derivations the 
approximation error from using a polynomial Taylor expansion of order q, see Fan 
and Gijbels (1996) for the suitability of this method and, in particular, the advantages of 
the local linear approximation.

The parameters of model (19) can be estimated from the following local objective 
function: 

min
fθτ;isg

1
T

XT

t¼1
ρτ Yit � bZitθτ;is

� �
k

ut � us
eh

� �

; (20) 

where ρτð�Þ ¼ �½τ � 1ð�< 0Þ� is the check function of Koenker and Bassett (1978) and 1ð�Þ
is an indicator function that takes a value of one if the argument is true and zero 
otherwise; eh is a suitable bandwidth parameter for the quantile estimation problem.

Estimation of the quantile parameters is obtained from the first-order conditions of 
the optimization problem (20). Estimation of the common factors for the quantile 
process is also possible in a quantile model (1) without intercept. In this case, by invoking 
Assumption A.1, we plug-in the factors estimated from the mean regression in 
Equation 6 and estimate the quantile factors as 

bFτt ¼ bFt þbs�τt; (21) 

with bs�τt ¼ baτt½bΛ�τ;t�
� 1, where baτt is obtained from (20) and ½bΛ�τ;t�

� 1 is a N � R generalized 
inverse matrix of the R� N matrix bΛ�τ;t obtained from the elements 
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bΛ�τ;it � Λ�τ;is þ
P

j¼1

q
Λ�ðjÞτ;is ðut � usÞ

j, with � denoting a Taylor approximation of order q. 

The matrix ½bΛ�τ;t�
� 1 satisfies that bΛ�τ;t½bΛ�τ;t�

� 1
¼ IR.

2.3. Determining the number of factors

In the previous analysis, we assume that the number of factors, R, is known. In the 
simulations and the empirical application we fix the number of factors to R ¼ 2, follow-
ing the framework in Galvao et al. (2018) and Galvao et al. (2019). In practice, however, it 
is an important question to determine R from the data.

Different information criteria type models have been applied to select the number of 
factors, although not for our specific panel data model, with N and T dimensions, that 
combines both mean- and quantile-based model specifications. The former determines 
the type of objective function that will be used in the information criterion. The latter 
determines how the penalty factor is constructed as a function of N, T and R. Following 
Su and Wang (2017) or in Casas et al. (2021) AIC or BIC can be applied to the mean- 
based factor model, where we can use the objective value function that is minimized to 
obtain the parameters, including the factors and the factor loadings. Ando and Bai (2020) 
propose a model for selecting the number of factors where the check objective function 
from QR is used in an AIC or BIC framework, and it also combines both dimensions in 
the criteria.

3. Asymptotic properties of the estimators

This section presents the asymptotic properties of the proposed estimators for the model 
parameters – including the common factors – for processes (6) and (19). There are three 
unique features of the current problem that pose challenges to the econometric theory. 
First, the proposed estimators of the common factors and beta coefficients do not have 
a closed-form expression. These quantities are obtained by solving a set of equations to be 
satisfied simultaneously by βit and FðsÞt . Second, the unobserved common factors are 
treated as parameters to be estimated, and thus the number of parameters grows with T. 
Finally, each pair ði; tÞ, with i 2 ½N� and t 2 ½T�, has its own slope coefficient βit and 
factor loading Λit such that the number of parameters grows with N and T.

Our goal in the remaining of the section is to derive the asymptotic distribution of the 
quantile parameter estimates of model (19). Our results build on the nonparametric 
quantile estimation methodology for dynamic smooth coefficient models introduced in 
Cai and Xu (2008). Our model is also closely related to the recent contribution of Ando 
and Bai (2020). The salient feature of our model compared to Ando and Bai (2020) is that 
the quantile common factors are treated as estimated regressors that are obtained from 
the mean model (2).

3.1. Assumptions

We first state the following notations and assumptions. Let εt ¼ ðε1t; . . . ; εNtÞ be the error 
of the mean regression model in Assumption A.1. Then, we denote γNðs; tÞ ¼ N � 1E½ε0sεt�, 
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γN;Fðs; tÞ ¼ N � 1E½F0sε0sεt�, γN;FFðs; tÞ ¼ N � 1E½F0sε0s � εtFt�, and �st ¼ N � 1½ε0sεt � E½ε0sεt��. 

Define ωNT;1ðsÞ ¼ h1=2
ffiffiffiffiffi
NT
p

PN
i¼1
PT

t¼1 kh;tsF0tεitΛ0is, and ωNT;2ðr; sÞ ¼ h1=2
ffiffiffiffiffi
NT
p

PT
t¼1
PN

i¼1 

kh;ts F0tεitεis � E½F0tεitεis�
� �

. Let C<1 denote a positive constant that may vary from case 
to case.

Assumption A.2. (Error terms and common factors). The error terms and common 
factors satisfy

(i) E½εitjXit; Ft� ¼ 0 and E½jεi;tj
8
�<1 for all i and t in ½T�;

(ii) max1�t�T E k Ftk
8 <1 and E½F0tFt� ¼ �F > 0 for some R� R matrix �F .

(iii) max1�t�T
PT

s¼1 jCovðFt;mFt;n; Fs;mFs;nÞj � C for m; n ¼ 1; . . . ;R, where Ft;m 

denotes the mth element of Ft .
(iv) max1�t�T

PT
s¼1 k γðs; tÞ k� C and max1�s�T

PT
t¼1 k γðs; tÞ k� C for γ ¼

γN ; γN;F and γN;FF .
(v) max1�s;t�T EjN1=2�stj

4
� C and max1�s;t�T E k N � 1=2Λsε0tk4 � C.

(vi) ωNT;1ðrÞ ¼ OPð1Þ and maxs E k ωNT;2ðr; sÞk2 � C for each r.

Assumption A.3. (Factor Loadings). The factor loading matrix Λis satisfies that

(i) N � 1ΛsΛ0s ¼ �Λs þ OðN � 1=2Þ as N !1, where �Λs is an R� R diagonal matrix.
(ii) Vs is the diagonal matrix consisting of the eigenvalues of �1=2

Λs
�F�

1=2
Λs 

and satisfies 
that inf s2½T� vrs > 0 for all diagonal elements ðv1s; . . . ; vRsÞ.

(iii) N � 1=2Λ0sεt!
d Nð0; ΓstÞ for each s; t, where 

Γst ¼ limN!1N � 1PN
i¼1
PN

j¼1 ΛisΛ0jsE½εitεjt�.

(iv)
ffiffi
h
p

ffiffiffi
T
p
PT

t¼1 FðsÞ
0

t εðsÞit ¼
ffiffi
h
p

ffiffiffi
T
p
PT

t¼1 kh;tsF0tεit!
d Nð0;ΩisÞ, where 

Ωis ¼ limT!1
h
T

XT

t¼1
k2

h;tsE½F
0
tFtε2

it� þ
2h
T

XT� 1

t¼1

XT
~t¼tþ1

kh;tskh;~tsE½F0tF~tεitεi~t�

� �

:

Assumption A.4. (Explanatory Variables). The vector of observable covariates satisfies 

(i) E k XðsÞit k
4 <C:

(ii) The d � d matrix 1
T XðsÞ

0

i MFðsÞHðsÞX
ðsÞ
i is positive definite.

(iii) Let AðsÞi ¼
1
T XðsÞ

0

i MFðsÞX
ðsÞ
i , BðsÞi ¼ ðΛisΛ0isÞ � IT , CðsÞi ¼

1ffiffiffi
T
p Λ0is � ðX

ðsÞ0
i MFðsÞ Þ. For 

each s 2 ½T�, let AðsÞ be the collection of FðsÞ such that 
AðsÞ ¼ fFðsÞ : FðsÞ

0

FðsÞ=T ¼ IRg. Then, we assume that 

inf
FðsÞ2AðsÞ

DðFðsÞÞ is positive definite;

with DðFðsÞÞ ¼ 1
N
P

i¼1

N
DiðFðsÞÞ, where DiðFðsÞÞ ¼ BðsÞi � CðsÞ

0

i AðsÞ�i CðsÞi and AðsÞ�i is 
the generalized inverse of AðsÞi .
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(iv) lim
T!1

T� 1 P

q¼1

T
kh;qsE½HðsÞ

0

F0qXiq� ¼ Oð1Þ, for s ¼ 1; . . . ;T. (HðsÞ is a rotation matrix  

characterizing the factors defined above.)

Assumption A.5. (i) The kernel function k : R ! Rþ is a symmetric continuously 
differentiable probability density function with compact support ½� 1; 1�, (ii) As 
ðN;TÞ ! 1, h! 0, Th2 !1, Nh2 !1, Th=N ! 0, and Th=N1=2 !1.

Assumption A.6. (Central Limit). As T !1, h! 0, and Th!1;
ffiffiffi
h
p

ffiffiffiffi
T
p XðsÞ

0

i MFðsÞHðsÞε
ðsÞ
i !

d Nð0;�εiÞ;

with �εi ¼ lim
T!1

h
T
P

t¼1

T P

τ¼1

T
kh;tskh;τs E X0itMFðsÞt HðsÞt

εitεiτMFðsÞτ HðsÞτ
Xiτ

h i
.

These assumptions are standard in factor models. A.2 and A.3 mainly impose moment 
conditions in the error terms, factors, factor loadings, and their interactions, see, e.g., Bai 
and Ng (2002), Bai (2003, 2009). The main difference, and in line with Su and Wang 
(2017), is that we require E½FtF0t� ¼ �F in A.2(ii) and N � 1ΛsΛ0s ¼ �Λs þ OðN � 1=2Þ in 
A.3(i). Assumptions A.2(iii)-(v) restrict the time and cross-sectional dependence for the 
idiosyncratic errors εit and the weak dependence between factors and errors, which are in 
the same spirit as Bai (2003, 2009) and Su and Wang (2017). A.2(vi) is a kernel-weighted 
version of Assumptions F.1-F.2 in Bai (2003). Following the recent literature on factor 
models, we assume that E½FtF0t� is homogeneous over t. This assumption is made for 
convenience to facilitate the asymptotic results. Assumption A.3(iii) allows for factor 
loadings to be time-varying and Assumption A.3(iv) is a kernel weighted version of 
Assumption F in Bai (2003). Both parts are used to establish the asymptotic normality of 
our local principal components estimators. We extend the assumptions in Su and Wang 
(2017) by incorporating a set of assumptions in A.4 specific to the observable regressors. 
Assumption A.4 (i)-(iii) impose the boundedness of moments and the regressors are 
assumed to exhibit sufficient variation such that the coefficients βit are identifiable. 
Identification also requires that the observed regressors do not exhibit multicollinearity 
with the unobservable common factors Ft . Condition (iii) in the assumption guarantees 
the unique minimizer of the estimation objective function. The notation DðFÞ is used to 
emphasize that the entire term is a function of F. Assumption A.5 states conditions on the 
rates of convergence that guarantee the consistency and asymptotic normality of the 
kernel estimators. A.6 simplifies the proofs and is imposed, for example, in Ando and Bai 
(2015). More primitive conditions to obtain the asymptotic properties of these objects 
can be found in Song (2013) for a global factor model.

We consider now each cross-sectional observation separately, such that Zt denotes Zit 
for each i ¼ 1; . . . ;N. Let fyjZð�j�Þ be the conditional density of Yit given Zit. Let Ω ¼

E½ZtZ0t� and Ω� ¼ E½ZtZ0tfyjzðQyðτjZtÞÞ�, and define μj ¼

ð

ujKðuÞdu and νj ¼

ð

ujK2ðuÞdu. 

The relevant bandwidth parameter for the quantile problem is eh such 

that keh
ut � us

eh

� �

¼ 1
eh

K ut � us

eh

� �

.
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Assumption B.1. βir, Λir, βτ;ir and Λτ;ir are ðmþ 1Þ � th order continuously differenti-
able in a neighbourhood of ur for any ur ¼ r=T. Further, fyjzðyÞ is bounded and satisfies 
the Lipschitz condition.

Assumption B.2. For each i ¼ 1; . . . ;N, E½jjZitjj
2ð2þδÞ

�<1 for some δ > 0, where 
Zit ¼ fXit; Ftg. Furthermore, Ω and Ω� are positive definite and continuous in 
a neighbourhood of u0. These functions and their inverse functions are uniformly 
bounded.

Assumption B.3. For each i ¼ 1; . . . ;N, the process fXit; Ft; εitg is strictly stationary 
α � mixing, with mixing coefficients δiðsÞ satisfying max1�i�N δiðsÞ � CδðsÞ such that 
δðsÞ ¼ Oðs� �Þ with � ¼ ð2þ δÞð1þ δÞ=δ.

Assumption B.4. The bandwidth parameter eh satisfies eh! 0, Teh!1, Teh
N ! 0, and 

T1=2� δ=4ehδ=δ�� 1=2� δ=4 ¼ Oð1Þ, for δ� > δ.

This set of assumptions is found in Cai (2007) and Cai and Xu (2008). The main 
difference with respect to the latter authors is the assumption ðTehÞ=N ! 0 that allows us 
to remove the effect of estimating the common factors Ft from the asymptotic distribu-
tion of the quantile parameter estimates. A similar assumption is also found in A.4 for the 
mean process. Under this set of additional assumptions, we obtain the asymptotic 
distribution of the quantile parameter estimates of βτ;it and Λ�τ;it , for i 2 ½N� and 
t 2 ½T�. This result shows that the estimation of the common factors Ft does not have 
an effect on the asymptotic distribution of the quantile parameter estimates.

3.2. Propositions

With these assumptions in place we are ready to derive the asymptotic results. We derive 
first the uniform consistency of the parameter estimators associated to the observable 
regressors.

Proposition 1. Under Assumptions A.2-A.6 and B.1, it follows that  

max
fi2½N�;s2½T�g

jjbβit � βitjj ¼ oPð1Þ; as N;T !1: (22) 

The proof of this result, in the Appendix, follows from extending the results in Song 
(2013) and Ando and Bai (2015) to the presence of time-varying slope coefficients. The 
uniform consistency of these coefficients allows us to extend the results in Su and Wang 
(2017) from a pure factor model specification to our setting. The following result shows 
the asymptotic normality of bFðsÞt to a rotation of the true factors FðsÞt .
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Proposition 2. Under Assumptions A.2-A.6 and B.1, for each s; t ¼ 1; . . . ;T, we have  

ffiffiffiffi
N
p

k� 1=2
h;ts

bFðsÞt � FðsÞt HðsÞ
� �

!
d Nð0;V � 1

s QsΓstQ0sV
� 1
s Þ; asN !1; (23) 

where HðsÞ ¼ ðN � 1ΛsΛ0sÞðT � 1FðsÞ
0

FðsÞÞ½VðsÞNT �
� 1; VðsÞNT denotes the R� R diagonal matrix of 

the first R largest eigenvalues of ðNTÞ� 1YðsÞ�YðsÞ�0 , Vs is the diagonal matrix consisting of 
the eigenvalues of �1=2

Λs
�F�

1=2
Λs 

in descending order; Γs is the corresponding normalized 

eigenvector matrix such that Γ0sΓs ¼ IR, and Qs ¼ V1=2
s Γ� 1

s �
� 1=2
Λs

.
In particular, the consistency of the local factors bFðsÞt to FðsÞt HðsÞ allows us to derive the 

asymptotic distribution of the slope parameter estimators associated to the observable 
regressors.

Proposition 3. Under Assumptions A.2-A.6 and B.1, for any fixed pair ði; tÞ with i ¼
1; . . . ;N and t ¼ 1; . . . ;T, the vector bβit obtained from expression (13) satisfies  

ffiffiffiffiffiffi
Th
p
ðbβit � βitÞ!

d Nð0;�βit
Þ; (24) 

with �βit
¼ SðtÞii � LðtÞ

0

ii

� �� 1
�εi SðtÞii � LðtÞ

0

ii

� �� 1
, where Sii and Lii are matrices defined in 

the Appendix.
The proof of this result follows from extending the results in Song (2013) and Ando 

and Bai (2015) to the presence of time-varying slope coefficients. Similarly, we show that 
the asymptotic distribution of the factor loading estimates is unaffected by including a set 
of observable covariates Xit with time-varying parameters βit that vary smoothly over 
time. More formally,

Proposition 4. Under Assumptions A.2-A.6 and B.1, for each s; t ¼ 1; . . . ;T, we have  

ffiffiffiffiffiffi
Th
p
ðbΛis � ½HðsÞ�� 1ΛisÞ!

d Nð0; ½Q0s�
� 1Ωis½Qs�

� 1
Þ; (25) 

with Ωis ¼ lim
T!1

h
T
P

q¼1

T
k2

h;qsEðFqF0qε2
iqÞ þ

2h
T
P

q¼1

T� 1 P

t¼qþ1

T
kh;qskh;tsEðFqF0tεiqεitÞ

" #

.

These results allow us to show the 
ffiffiffiffi
N
p
� consistency of the common factors estimated 

in (17).

Proposition 5. Under Assumptions A.2-A.6 and B.1, as N !1; the estimator (17) of 
the common factors satisfies  

ffiffiffiffi
N
p

bFt � FtHðtÞ
� �

!
d Nð0;�FtÞ; (26) 

with �Ft ¼ ½�
� 1
Λt

Q� 1
t �
0 Γtt �� 1

Λt
Q� 1

t , where Γtt ¼
1
N lim

N!1

P

i¼1

N P

j¼1

N
ΛitΛ0jtE½εitεjt�.
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Proposition 6. Under Assumptions A.1-A.6 and B.1-B.4, as N;T !1; the estimator 
bθτ;is ¼ ½baτ;is bβ0τ;is bΛ

�0

τ;is�
0 of θτ;is ¼ ½aτ;is β0τ;is Λ�0τ;is�

0 obtained from the minimization problem 
(20) satisfies that  

ffiffiffiffiffiffi

Teh
q

bθτ;is � θτ;is �
eh
ðqþ1Þ

ðqþ 1Þ!
θðqþ1Þ

is þ oPðeh
qþ1
Þ

 !

!
d Nð0;�τÞ; (27) 

with θðqþ1Þ
is ¼ aðqþ1Þ

τ;is μqþ1 βðqþ1Þ
τ;is μqþ1

� �0
Λ�ðqþ1Þ

τ;is μqþ1

� �0h i0
and  

�τ ¼ τð1 � τÞν0 ½Ω��� 1 Ω ½Ω��� 1
:

This result shows that the bias of the estimator of the quantile parameters decreases as 
one takes higher order local polynomial expansions of the functional coefficients in (19).

Inference for this model is based on bootstrap implementation for panel data models 
with time-dependent data. Standard errors are estimated using bootstrap by resampling 
only from cross-sectional units with replacement as in Kapetanios (2008) and Galvao and 
Montes-Rojas (2015). See also Galvao et al. (2021) for a recent study that discusses the 
assumptions for asymptotic validity of the bootstrap in a similar framework.

The following section explores the finite-sample performance of our two-stage esti-
mation procedure.

4. Monte Carlo study

Our Monte Carlo design is a variation of the Monte Carlo exercises proposed in Bai 
(2009), Harding and Lamarche (2014), and Su and Wang (2017). We are interested in 
showing the consistency of the parameter estimators under the presence of time-varying 
factor loadings.

Consider the following data generating process with R ¼ 2 unknown factors: 

Yit ¼ β0 þ β1Xit þ Λit;1F1t þ Λit;2F2t þ 1þ �Xit þ γ1F1t þ γ2F2t
� �

εit: (28) 

In this model as well as in the empirical application below we assume a set of common 
factors that is constant across quantiles. For this exercise the parameter of interest is the 
marginal effect on the conditional quantile, which corresponds to β1ðτÞ ¼ β1 þ �QεðτÞ. 
The parameter � thus determines if there is heterogeneity across quantiles. For � ¼ 0 we 
have a location-shift model while for ��0 we have a location-scale shift model. The 
parameters γ1 and γ2 determine whether the factors also have an effect on the scale that 
may potentially contaminate the estimators of the quantile marginal effects. We consider 
two distributions for the error term εit , Gaussian and standardized chi-squared with 1 
degree of freedom. For all models we fix β0 ¼ 0 and β1 ¼ 1, and we consider different 
scenarios with � 2 f0; 0:1g and ðγ1; γ2Þ 2 fð0; 0Þ; ð0:1; 0:1Þg. For simplicity, we con-
sider Xit,IID Nð0; 1Þ.

We generate the factors, j ¼ 1; 2, with the following model 

Fj;t ¼ ρf Fj;t� 1 þ ηj;t; ηj;t ¼ ρηηj;t� 1 þ ej;t; (29) 
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where we assume for all cases that ejt are standard Gaussian independent random 
variables for i ¼ 1; . . . ;N, t ¼ � 49; . . . ; 0; . . . ;T and j ¼ 1; 2. The common parameters 
are assumed ρf ¼ 0:90; ρη ¼ 0:25 as in Harding and Lamarche (2014).

The time-varying factor loadings models for the common factors are DGP 1: 
Λit;j,IID Nð0; 1Þ for j ¼ 1; 2; and DGP 2: Λit;j ¼ Λi;j,IID Nð0; 1Þ for j ¼ 1; 2. DGP 1 
thus have factor loadings that vary across t and i while DGP 2 only varies across 
individuals.

We study the finite-sample performance of two estimators of the slope parameters β1. 
First, an estimator that considers time-varying factor loadings using the local estimation 
procedure developed in this paper, and denoted as bβ1. In this case we are in fact 
estimating individual-specific coefficients (β0;it, β1;it and Λit;j for j ¼ 1; 2) for all 
t ¼ 1; 2; . . . ;T. This estimator is thus the most demanding one. We will refer to this 
model as the local factor estimator. Second, we consider a model with time-invariant 
loadings, that is denoted as eβ1. Here, we do not impose the time-varying local estimation 
procedure and, instead, we estimate a unique set of parameters (β0, β1 and Λi;j for 
j ¼ 1; 2) for all t. The latter estimator will be referred to as the global factor estimator. 
In all cases we consider a fixed bandwidth of h ¼ ~h ¼ 1.

In order to evaluate the performance of our estimators and for comparability pur-
poses, we study bias and mean squared error (MSE) by comparing the estimates with the 
β1ðτÞ parameter defined above. For the local factor estimator we compute the sample 
average across i and t of β1;it for every simulation. For the global factor estimator we 
compute the sample average across i.

The sample size of the different simulation experiments comprises all possible com-
binations of N;T ¼ f20; 50; 100g. The number of Monte Carlo experiments is 200 in 
every case. Tables 1 and 2 report the simulation exercise results for the case with � ¼
γ1 ¼ γ2 ¼ 0 for DGP1 and DGP2, respectively. In this case all coefficients should be 
estimating the same value of 1 for all quantiles. Tables 3 and 4 report the simulation 
exercise results for the case with � ¼ 0:1; γ1 ¼ γ2 ¼ 0 for DGP1 and DGP2, respectively; 
Tables 5 and 6 study the case given by � ¼ γ1 ¼ γ2 ¼ 0:1 for DGP1 and DGP2, 
respectively. Importantly, the last two cases generate heterogeneity across quantiles 
such that the coefficient estimates are different across quantiles.

First, note that there is no clear pattern for bias reduction when T or N increases 
leaving the other dimension constant. However, bias monotonically reduces when both 
N and T increase. There is, however, a mean square error (MSE) reduction when either N 
or T increases. These results provide empirical evidence on the consistency of the 
parameter estimators above as T and N increase. Second, the time-varying local estimator 
exhibits a larger MSE value than the global factor estimator. This result is expected as the 
local estimator is more demanding and uses fewer observations to estimate the para-
meters. In contrast, the estimator offers additional flexibility as we can estimate time- 
varying coefficients. The ratios of the MSE performance of the two estimators are similar 
across specifications. Third, those simulation scenarios are given by an error term εit 
following a chi-squared distribution show differences across quantiles for both estima-
tors. One unexpected feature is that the MSE performance of τ ¼ 0:25 is worse than that 
of τ ¼ 0:75 for the local estimator. This may be the result of the estimated factors 
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absorbing a more substantial portion of the variance in the quantile location with more 
probability mass.

5. Empirical application

This section applies the above model to an empirical asset pricing context. In contrast 
to standard asset pricing models, we explore the distributional risk premia by fitting 
the above models to different quantiles of the distribution of excess returns. We are 
interested in assessing the effect of including unobserved local factors with time- 
varying factor loadings in standard asset pricing specifications. The methodology 
developed above also allows us to estimate dynamic parameter estimates measuring 
the sensitivity of the quantile process of excess returns to a set of idiosyncratic firm- 
specific factors that are combined with Fama and French (1993) three-factor model.

5.1. Data

The set of firm-specific covariates Xit is obtained from a panel of U.S. firms and obtained 
from Compustat Industrial dataset. The sample consists of annual CRSP/Compustat data 
from the years 1970 through 2011. Following standard practice, we exclude financial 
firms (SIC codes 6000–6999), regulated utilities (SIC codes 4900–4999), and non-profit 
organizations (SIC codes greater than or equal to 9000). We omit firm-years with 
a missing or negative value for fixed assets and sales, with a missing or less than 
ten million 1983 dollar book value of total assets, and with growth rates of fixed assets, 
sales, and the book value of total assets greater than 100%.2

We consider the following list of firm characteristics: MB denotes firms’ market- 
to-book ratio; LNTA denotes the log of the firm’s asset size; EBITTA denotes 
earnings before interest and taxes as a proportion of total assets; MDR denotes 
the market debt ratio, defined as the book value of debt over the market value of 
assets; and DEPTA denotes depreciation as a proportion of total assets. The set of 
covariates is completed by the following observable pricing factors taken from 
Kenneth French website. The common pricing factors are MKTRF, SMB and 
HML. The factor MKTRF is defined as a value-weighted average market portfolio 
return net of the risk-free asset. The risk-free rate is proxied by daily returns on the 
U.S. three-month Treasury bill. The factor SMB is a small-minus-big portfolio 
constructed as the difference between the returns on diversified portfolios of small 
and large asset size. The factor HML is high-minus-low portfolio constructed as the 
difference between the returns on diversified portfolios of high and small book-to- 
market equity. The firms’ excess returns are the annual excess return on assets 
computed over the annual interest rate offered by one-month U.S. Treasury bills.

The final sample includes a balanced panel of 297 firms with 2 years of data.

2Although there is no consensus in the literature on the length of the time dimension; we acknowledge that the time 
dimension selection criteria might favor larger and more mature companies, which may lead to the results being valid 
only for large and mature companies. However, the average estimated effects from our sample are in line with the 
consensus in the literature, and thus, the results could be applied to all companies. The log of total assets is the only 
variable that is not a ratio, and is deflated to the 1983 dollar with the consumer price index obtained from the Bureau of 
Labor Statistics.
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5.2. Empirical models

In a similar spirit to Giovannetti (2013), Galvao et al. (2018) and Galvao et al. (2019), we 
propose a quantile process for modelling the distribution of excess returns. The objective 
of this study is to show if an empirical pricing strategy based on firm-specific variables 
coupled with unobserved quantile factors with time-varying loadings is able to explain 
the cross-section of excess returns on a set of U.S. firms. As a byproduct, we also study if 
this model adds predictive ability to the standard Fama-French three-factor model. The 
pricing factors of our baseline model are firm-specific financial ratios, see Kogan and 
Papanikolaou (2013) for a discussion of empirical asset pricing models using firm- 
specific variables. This approach has recently gained support due to the strong evidence 
of the co-movement in stock returns of firms with similar characteristics that is unrelated 
to their exposures to the market portfolio.

Our baseline model is 

Qτ Yit j Xit; Fτ;it
� �

¼ Xitβτ;it þ Fτ;itΛτ;it; i ¼ 1; . . . ; n; t ¼ 1; . . . ;T; (30) 

with τ 2 ð0; 1Þ and R ¼ 2. We assume that the unobserved common factors for the 
quantile model are location shift transformations of the estimates of the mean factors F1t 
and F2t . The shifts defining the quantile factors are captured by the values of the dynamic 
intercepts aτ;it of the different quantile models. We estimate two versions of this model 
for τ 2 f0:10; 0:25; 0:50; 0:75; 0:90g. A first version considers global factors and uses the 
methodology proposed in Ando and Bai (2015) to estimate the factors, Ft , which are then 
used to estimate the set of parameters ðβτ;Λτ;iÞ. The second version considers local 
factors and uses the methodology developed above to estimate the time-varying para-
meters ðβτ;it;Λτ;itÞ. Note that the loadings associated to the observable covariates do not 
only vary over time but also across individuals. We consider two models. Model 1 uses 
only firm-specific covariates, X ¼ ½MBR;EBITTA;MB;DEPTA; LNTA�. Model 2 aug-
ments the above model by MKTRF, SMB, and HML. Standard errors are estimated 
using bootstrap by resampling only from cross-sectional units with replacement as in 
Kapetanios (2008) and Galvao and Montes-Rojas (2015) using 100 replications. In all 
cases the bandwidth parameter is set to 10. The results are reported in Tables 7–10.

The results are an extension of the findings in Galvao et al. (2018). In this case, we 
incorporate the presence of unobserved common factors. Firm-specific covariates are 

Table 7. Model 1. Firm-specific quantile regression model with R ¼ 2 unobserved 
factors. Global factors with fixed loadings. Standard errors are in brackets.

0.10 0.25 0.50 0.75 0.90

CONST −8.912 −7.582 −5.427 −6.313 −4.827
(1.661) (1.100) (0.925) (1.112) (1.847)

MDR 2.963 2.447 2.412 2.603 3.067
(0.379) (0.219) (0.189) (0.206) (0.321)

EBITTA 0.806 0.211 −0.040 −0.193 −0.519
(0.388) (0.251) (0.264) (0.288) (0.475)

MB −0.053 −0.118 −0.174 −0.123 0.006
(0.058) (0.046) (0.045) (0.055) (0.076)

DEPTA −4.647 −4.734 −5.820 −7.949 −10.123
(2.178) (1.515) (1.314) (1.646) (2.515)

LNTA 0.397 0.359 0.275 0.344 0.278
(0.086) (0.056) (0.046) (0.057) (0.098)
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statistically significant in all models, and the model parameter estimates are similar 
across the different specifications of the empirical asset pricing model reported in 
Tables 7–10. The estimates reported for the model with local factors are averages across 
time and individuals of the parameter estimates of βit for i ¼ 1; . . . ;N and t ¼ 1; . . . ;T.

Our empirical asset pricing model uncovers a positive exposure of firms’ excess 
returns to the market-to-book ratio (MDR) and the log of asset size (LNTA) and negative 
exposure to the market debt ratio (MB) and depreciation as a proportion of total assets 
(DEPTA). Earnings before interest and taxes as a proportion of total assets (EBITTA) 
have a positive effect on low quantiles and turn negative for τ ¼ 0:5 and beyond. The 
quantile parameter estimates are monotonically increasing on τ 2 ð0; 1Þ for LNTA and 
monotonically decreasing for DEPTA. All the coefficients are statistically significant at 
5% significance levels. Tables 7–8 report the baseline case in expression (30) given by 
firm-specific covariates, Tables 9–10 report the pricing model augmented with Fama- 
French three-factor model. The results are also similar across specifications and 

Table 8. Model 1. Firm-specific quantile regression model with R ¼ 2 unobserved 
factors. Local factors with time-varying factor loadings. Standard errors are in brackets.

0.10 0.25 0.50 0.75 0.90

CONST −6.688 −4.522 −3.422 −1.886 −0.582
(0.921) (0.672) (0.606) (0.721) (1.119)

MBR 2.514 2.185 2.344 2.605 2.869
(0.185) (0.138) (0.153) (0.201) (0.293)

EBITTA 0.830 0.129 −0.122 −0.410 −0.454
(0.346) (0.234) (0.233) (0.277) (0.390)

MB −0.024 −0.105 −0.116 −0.079 −0.005
(0.063) (0.046) (0.041) (0.045) (0.076)

DEPTA −3.722 −5.923 −6.927 −8.828 −11.270
(1.818) (1.190) (1.131) (1.515) (2.445)

LNTA 0.276 0.199 0.163 0.108 0.061
(0.045) (0.033) (0.030) (0.036) (0.056)

Table 9. Model 2. Quantile regression model with R ¼ 2 unobserved global factors 
with fixed loadings. The model considers firm-specific covariates and Fama-French 
three-factor model. Standard errors are in brackets.

0.10 0.25 0.50 0.75 0.90

CONST −8.582 −5.759 −4.869 −4.649 −6.279
(1.420) (0.919) (0.729) (1.000) (1.981)

MBR 2.386 2.095 2.093 2.330 2.640
(0.325) (0.198) (0.180) (0.214) (0.307)

MB −0.129 −0.259 −0.391 −0.530 −0.260
(0.355) (0.218) (0.243) (0.255) (0.418)

EBITTA −0.039 −0.112 −0.171 −0.072 0.027
(0.059) (0.045) (0.042) (0.053) (0.082)

DEPTA −3.545 −4.978 −6.824 −7.539 −8.431
(1.982) (1.494) (1.382) (1.577) (2.596)

LNTA 0.405 0.278 0.256 0.265 0.356
(0.075) (0.047) (0.039) (0.054) (0.104)

MKTRF −0.510 −0.520 −0.615 −0.620 −0.620
0.062 0.048 0.043 0.057 0.094

SMB −0.840 −0.787 −0.740 −0.767 −0.797
0.107 0.074 0.063 0.070 0.123

HML −0.182 −0.189 −0.215 −0.212 −0.192
0.089 0.058 0.055 0.062 0.104
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Figure 1. Model 2: Dynamics of βτ;t . 0.10 (blue), 0.25 (red), 0.50 (black), 0.75 (brown), and 0.90 (green) 
quantile coefficients with 95% confidence interval calculated with 200 bootstrap 

replications.
RTNi;tþ1αi þ βit;MDRMDRi;t þ βit;EBITTAEBITTAi;t þ βit;MBMBi;t þ βit;DEPTADEPTAi;tþ
βit;LNTALNTAi;t þ βit;MKTRFMKTRFi;t þ βit;SMBSMBi;t þ βit;HMLHMLi;t þ εi;tþ1

Table 10. Model 2: Quantile regression model with R ¼ 2 unobserved local factors with 
time-varying factor loadings. The model considers firm-specific covariates and Fama- 
French three-factor model. Standard errors are in brackets.

0.10 0.25 0.50 0.75 0.90

CONST −4.938 −3.503 −2.407 −1.710 −1.325
(0.788) (0.631) (0.548) (0.628) (1.021)

MBR 2.319 1.988 2.020 2.222 2.267
(0.173) (0.135) (0.145) (0.170) (0.303)

MB 0.081 −0.339 −0.478 −0.790 −0.511
(0.327) (0.224) (0.221) (0.238) (0.385)

EBITTA −0.067 −0.127 −0.122 −0.065 0.026
(0.055) (0.038) (0.037) (0.045) (0.079)

DEPTA −4.456 −6.037 −7.709 −9.996 −11.785
(1.927) (1.422) (1.211) (1.556) (2.256)

LNTA 0.202 0.159 0.124 0.106 0.104
(0.037) (0.030) (0.026) (0.030) (0.049)

MKTRF −0.516 −0.546 −0.588 −0.612 −0.636
0.070 0.051 0.049 0.065 0.100

SMB −0.724 −0.705 −0.716 −0.736 −0.677
0.121 0.095 0.077 0.086 0.135

HML −0.195 −0.221 −0.237 −0.231 −0.240
0.090 0.059 0.061 0.076 0.126
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estimation methods. However, the magnitude of the model parameters changes signifi-
cantly between the global and local factor estimation methods.

The pricing model with local factors provides similar insights to the model with 
unobserved global factors but has the additional advantage of offering the possibility of 
studying the dynamics of the loadings βτ;it associated to each observable covariate. These 
dynamics are reported in Figures 1–2, corresponding to the local factor model with the 
augmented set of covariates in Table 10. Importantly, the model also allows the possibi-
lity of studying the dynamics of the unobserved common factor loadings Λτ;it , never-
theless, we do not report these values as an interpretation of the results is difficult due to 
the lack of interpretation of the common factor estimates. Each panel reports five lines 
that reflect the dynamics of the parameters βτ;t over time. These estimates are constructed 
as the cross-sectional average of βτ;it for each t and the standard errors are calculated by 
bootstrap. The results show how the exposure of the excess returns to some covariates 
and factor models have evolved over time. The figures show that there was little variation 
in the average effects, and they are all within the 95% confidence interval of each other. 
One limitation in the analysis is that the time dimension (T ¼ 42) does not allow us to 
obtain a finer set of local estimates.

Figure 2. Model 2 continued. Notes: 0.10 (blue), 0.25 (red), 0.50 (black), 0.75 (brown), and 0.90 (green) 
quantile coefficients with 95% confidence interval calculated with 200 bootstrap replications. 
RTNi;tþ1αi þ βit;MDRMDRi;t þ βit;EBITTAEBITTAi;t þ βit;MBMBi;t þ βit;DEPTADEPTAi;tþ

βit;LNTALNTAi;t þ βit;MKTRFMKTRFi;t þ βit;SMBSMBi;t þ βit;HMLHMLi;t þ εi;tþ1
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6. Conclusion

This paper proposes a functional coefficient quantile regression model with time- 
varying factor loadings. Estimation of the quantile factors and factor loadings is done 
in two stages. First, we estimate the unobserved common factors from a linear factor 
mean-based model with exogenous covariates. In the second stage, we plug-in an 
affine transformation of the estimates of the common factors to obtain the quantile 
version of the factor model. This model requires both the number of individuals and 
the number of periods to grow to infinity. The number of individuals needs to diverge 
for the consistent estimation of the common factors in the first stage. Also, to 
consistently estimate the quantile factor loadings the number of time periods needs 
to diverge as well. As a byproduct, our model can capture dynamics and heterogeneity 
across individuals in both the quantile slope coefficients and the quantile factor 
loadings. The introduction of time-varying coefficients adds flexibility to standard 
factor model specifications that assume slope homogeneity as in Bai (2003, 2009) and 
slope heterogeneity as in Ando and Bai (2015). The model also extends the recent 
partial linear model of Su and Wang (2017) by considering the quantile process and 
including the presence of exogenous regressors.

This model specification is applied in an empirical application to explain the distribu-
tion of the excess returns for a cross-section of asset returns in the U.S. In contrast to 
standard asset pricing formulations, we consider firm-specific covariates as pricing 
factors and allow for the presence of two unobserved factors. The model provides 
satisfactory estimates of the sensitivity of the excess return to the pricing variables 
under both global (Ando & Bai, 2015) and local factor models. The main contribution 
of our methodology is to be able to estimate the dynamics of the slope coefficients (betas) 
for each asset and over time. By doing so, we can track the dynamic exposure of assets’ 
excess returns to the different financial ratios acting as pricing variables.
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Appendix

Proof of Proposition 1. The proof of this proposition follows from an application of the 
results in Song (2013) and Ando and Ando and Bai (2015) to local principal components. 
The main difference is that we are considering local approximations using the kernels. 
Define Y sð Þ

it ¼ k1=2
h;tsYit such that Y sð Þ

i ¼ Y sð Þ
i1 ; . . . ;Y sð Þ

iT

� �0
is a T � 1 vector and Y sð Þ ¼

Y sð Þ
1 ; . . . ;Y sð Þ

N

� �
is a T � N matrix. Let X sð Þ

l;it ¼ k1=2
h;tsXl;it such that X sð Þ

i ¼ X sð Þ
1;i ; . . . ;X sð Þ

d;i

� �

and X sð Þ
l;i ¼ X sð Þ

l;i1; . . . ;X sð Þ
l;iT

� �0
and ε sð Þ

it ¼ k1=2
h;tsεit such that ε sð Þ

i ¼ ε sð Þ
i1 ; . . . ; ε sð Þ

iT

� �0
is a T � 1 

vector. Similarly, e sð Þ
it ¼ k1=2

h;tseit such that e sð Þ
i ¼ e sð Þ

i1 ; . . . ; e sð Þ
iT

� �0
is a T � 1 vector. Let 

F sð Þ
t ¼ k1=2

h;tsFt such that FðsÞ ¼ ðF sð Þ
1 ; . . . ; F sð Þ

T Þ
0 is a T � R matrix and Λs ¼ ðΛ1s; . . . ;ΛNsÞ

be a R� N matrix.

For each individual in the cross section, Equation 6 in vector form is 

Y sð Þ
i ¼ X sð Þ

i βis þ F sð ÞΛis þ e sð Þ
i ;

and the OLS estimator of βis is 

bβis ¼ ðX
ðsÞ0
i M

bF
ðsÞXðsÞi Þ

� 1XðsÞ
0

i M
bF
ðsÞYðsÞi ; (A:1) 

such that 

bβis � βis ¼
XðsÞ

0

i M
bF
ðsÞXðsÞi

T

0

B
@

1

C
A

� 1
XðsÞ

0

i M
bF
ðsÞ

T
FðsÞΛis þ e sð Þ

i

h i
:

Then, under assumptions A.2 and A.4, it follows that 
XðsÞ

0

i M
bF
ðsÞX

ðsÞ
i

T is positive definite. Now, using 
a similar decomposition to Proposition 1 of Song (2013), we have

1 

1
T

XðsÞ
0

i M
bF
ðsÞFðsÞΛis ¼

1
T

1
N

X

q¼1

N

LðsÞiq;T
bβis � βis

� �
 !

þ opð1Þ;

where LðsÞiq;T ¼ aiq

XðsÞ
0

i M
bF
ðsÞX

ðsÞ
q

T and aiq ¼ Λ0is
ΛsΛ0s

N

� �� 1
Λqs. Thus, 
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bβis � βis ¼ SðsÞiT

h i� 1 1
NT
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Now, the quantities SðsÞiT and LðsÞiT satisfy that 
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such that 1
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LðsÞii as N;T !1.

Furthermore, note that eit ¼ εit þ dit þ oP
jt� sj

T

� �m
, with εit the errors of the mean regression 

model in assumption A.1, and dit ¼ Xit
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Therefore, 
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i M
bF
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Now, taking the maximum over i 2 ½N� and s 2 ½T�, we obtain 
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fi2½N�;s2½T�g

jjbβis � βisjj � max
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1
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Finally, noting that max
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i M
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as T !1, the result in the proposition follows.

Proof of Proposition 2. Let bYðsÞ�i ¼ YðsÞi � XðsÞi
bβis and bYðsÞ� ¼ ½bYðsÞ�1 ; . . . ; bYðsÞ�N � be 

defined as in the text and define also YðsÞ�i ¼ YðsÞi � XðsÞi βis. It follows from (14) that 
ðNTÞ� 1bFðsÞbYðsÞ�bYðsÞ�0 ¼ bFðsÞbVðsÞNT . Note also that bYðsÞ�t ¼ FðsÞt Λs þ eðsÞt � XðsÞtβ , with XðsÞtβ ¼

½XðsÞ1t ð
bβ1s � β1sÞ; . . . ;XðsÞNt ð

bβNs � βNsÞ� a 1� N vector.

Then, 
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bFðsÞt � FðsÞt HðsÞ ¼
1

NT

X

q¼1

T
bFðsÞq
bYðsÞ�q

bYðsÞ�
0

q

 !

½bVðsÞNT �
� 1
� FðsÞt HðsÞ

¼
1

NT

X

q¼1

T
bFðsÞq FðsÞq Λs þ eðsÞq � XðsÞqβ

h i
FðsÞt Λs þ eðsÞt � XðsÞqβ

h i0
 !

½bVðsÞNT �
� 1
� FðsÞt HðsÞ:

This expression can be decomposed as 

¼
1

NT

X

q¼1

T
bFðsÞq FðsÞq Λs þ eðsÞq

h i
FðsÞt Λs þ eðsÞt

h i0
 !

½bVðsÞNT �
� 1
� FðsÞt HðsÞ (A:4) 

�
1

NT

X

q¼1

T
bFðsÞq FðsÞq Λs þ eðsÞq

h i
XðsÞ

0

qβ

 !

½bVðsÞNT�
� 1 (A:5) 

�
1

NT

X

q¼1

T
bFðsÞq XðsÞqβ FðsÞt Λs þ eðsÞt

h i0
 !

½bVðsÞNT �
� 1 (A:6) 

þ
1

NT

X

q¼1

T
bFðsÞq XðsÞqβ XðsÞ

0

qβ

 !

½bVðsÞNT�
� 1
: (A:7) 

Theorem 3.1 in Su and Wang (2017) shows that expression (A.4) multiplied by 
ffiffiffiffi
N
p

k� 1=2
h;ts converges 

in distribution to Nð0;V � 1
s QsΓstQ0sV � 1

s Þ, where HðsÞ ¼ ðN� 1ΛsΛ0sÞðT� 1FðsÞ
0

FðsÞÞ½VðsÞNT�
� 1; Vs is the 

diagonal matrix consisting of the eigenvalues of �
1=2
Λs

�F�
1=2
Λs 

in descending order; Γs is the 
corresponding normalized eigenvector matrix such that Γ0sΓs ¼ IR, and Qs ¼ V1=2

s Γ� 1
s �

� 1=2
Λs

.
To complete the proof we need to show that the remaining terms multiplied by 

ffiffiffiffi
N
p

k� 1=2
h;ts are 

oPð1Þ as N;T !1, with h! 0. First, we show that bVðsÞNT!
p

Vs as N;T !1. To do this, we 
decompose the elements of the matrix bVðsÞNT given by 1

NT
bYðsÞ�i

bYðsÞ�
0

j for i; j ¼ 1; . . . ;N. More 
formally,

1 

1
NT

bYðsÞ�i
bYðsÞ�

0

j ¼
1

NT
½YðsÞ�i � XðsÞi ð

bβis � βisÞ�½Y
ðsÞ�
j � XðsÞj ð

bβjs � βjsÞ�
0

þ
1

NT
XðsÞi ð

bβis � βisÞð
bβjs � βjsÞ

0XðsÞ
0

j ¼ A1 þ A2 þ A3 þ A4:

¼
1

NT
YðsÞ�i YðsÞ�

0

j �
1

NT
XðsÞi ð

bβis � βisÞY
ðsÞ�0
j �

1
NT

YðsÞ�i ð
bβjs � βjsÞ

0XðsÞ
0

j 

From Proposition 1, it follows that max
fi2½N�;s2½T�g

jjbβit � βitjj ¼ oPð1Þ, as T !1. Then, Aj ! 0, for 

j ¼ 2; 3; 4, as N;T !1, such that bVðsÞNT ¼ VðsÞNT þ oPð1Þ, with VðsÞNT ¼
1

NT YðsÞ�i YðsÞ�
0

j as defined in the 

text below Equation 14. Then, it follows that bVðsÞNT ¼ Vs þ oPð1Þ. Therefore, using Assumption A.3 
(ii) we have inf s2½T� Vs > 0. Then, we need to prove that 

ffiffiffiffi
N
p

k� 1=2
h;ts

1
NT

X

q¼1

T
bFðsÞq FðsÞq Λs þ eðsÞq

h i
XðsÞ

0

qβ

 !

¼ oPð1Þ: (A:8) 
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Note also that eit ¼ εit þ dit þ oP
jt� sj

T

� �m
, where dit ¼

Xit
T
P

q¼1

m βðqÞis
q!
ðt � sÞq þ Ft

T
P

q¼1

m ΛðqÞis
q!
ðt � sÞq, for any 

fixed s; t 2 ½T�. Then, the expression on the left hand side of (A.8) satisfies that 

1
ffiffiffiffi
N
p

1
T

X

q¼1

T
bFðsÞq k� 1=2

h;ts kh;qs FqΛs þ εq
� �

X0qβ

 !

þ
1
ffiffiffiffi
N
p

1
T

X

q¼1

T
bFðsÞq k� 1=2

h;ts kh;qs FqΛs þ dq
� �

X0qβ

 !

þ oPð1Þ:

(A:9) 

Now, noting that Xqβ ¼ oPð1Þ, for q ¼ 1; . . . ;T, and applying the law of large numbers with 
N;T !1, we obtain condition (A.8).

Applying the same arguments to expressions (A.6) and (A.7), we obtain the consistency of the 
local factors to rotated versions of FðsÞt given by HðsÞ ¼ ðN � 1ΛsΛ0sÞðT� 1FðsÞ

0

FðsÞÞðVðsÞNTÞ
� 1.

Proof of Proposition 3. The proof of this proposition follows from the proof of 
Proposition 1 and the application of the results in Song (2013) and Ando and Bai 
(2015) to local principal components. For each individual in the cross section, 
Equation 6 in vector form is 

Y sð Þ
i ¼ X sð Þ

i βis þ F sð ÞΛis þ e sð Þ
i ;

and the OLS estimator of βis is 

bβis ¼ ðX
ðsÞ0
i M

bF
ðsÞXðsÞi Þ

� 1XðsÞ
0

i M
bF
ðsÞYðsÞi ; (A:10) 

such that 

ffiffiffiffiffiffi
Th
p

bβis � βis

� �
¼

XðsÞ
0

i M
bF
ðsÞXðsÞi

T

0

B
@

1

C
A

� 1
XðsÞ

0

i M
bF
ðsÞ

T
ffiffiffiffiffiffi
Th
p

FðsÞΛis þ
ffiffiffiffiffiffi
Th
p

e sð Þ
i

h i
:

Applying the results in the proof of Proposition 1, we have 

ffiffiffiffiffiffi
Th
p

bβis � βis

� �
¼ SðsÞiT

h i� 1 1
N

X

q¼1

N

LðsÞiq;T

ffiffiffiffiffiffi
Th
p

bβis � βis

� �
þ

ffiffiffi
h
p

ffiffiffiffi
T
p XðsÞ

0

i M
bF
ðsÞeðsÞi

" #

:

We are interested in the asymptotic distribution of the entire vector bβs ¼ ð
bβ1s; . . . ;bβNsÞ

0. The above 
equation implies, stacking over i 

ffiffiffiffiffiffi
Th
p
ðbβs � βsÞ ¼ SðsÞT

h i� 1 1
N

LðsÞT

ffiffiffiffiffiffi
Th
p
ðbβs � βsÞ þ

ffiffiffi
h
p

ffiffiffiffi
T
p XðsÞ

0

M
bF
ðsÞeðsÞ

" #

;

with SðsÞT and LðsÞT block-diagonal matrices with elements SðsÞiT and LðsÞiT . Then, 

SðsÞT �
1
N

LðsÞT

� �
ffiffiffiffiffiffi
Th
p
ðbβs � βsÞ ¼

ffiffiffi
h
p

ffiffiffiffi
T
p XðsÞ

0

M
bF
ðsÞeðsÞ;

such that 

JOURNAL OF APPLIED ECONOMICS 33



ffiffiffiffiffiffi
Th
p
ðbβs � βsÞ ¼ SðsÞT �

1
N

LðsÞT

� �� 1 ffiffiffi
h
p

ffiffiffiffi
T
p XðsÞ

0

M
bF
ðsÞεðsÞ þ oPð1Þ; (A:11) 

given that eit ¼ εit þ dit þ oP
jt� sj

T

� �m
. Furthermore, from Proposition 2, we have that 

bFðsÞ ¼ FðsÞHðsÞ þ oPð1Þ. Then, 
M
bF
ðsÞ ¼ IT � FðsÞHðsÞðHðsÞ

0HðsÞ
T Þ

� 1HðsÞ
0

FðsÞ
0

þ oPð1Þ ¼ IT �
ðFðsÞHðsÞÞðFðsÞHðsÞÞ0

T þ oPð1Þ ¼ MFðsÞHðsÞ þ oPð1Þ

, with HðsÞ an orthogonal rotation matrix and FðsÞ0FðsÞ
T ¼ IR. Therefore, 

ffiffiffi
h
p

ffiffiffiffi
T
p XðsÞ

0

i M
bF
ðsÞeðsÞi ¼

ffiffiffi
h
p

ffiffiffiffi
T
p XðsÞ

0

i MFðsÞHðsÞε
ðsÞ
i þ oPð1Þ:

Now, using Assumption A.6, 

ffiffiffi
h
p

ffiffiffiffi
T
p XðsÞ

0

i MFðsÞHðsÞε
ðsÞ
i !

d Nð0;�εiÞ;

with �εi ¼ lim
T!1

h
T
P

t¼1

T P

τ¼1

T
kh;tskh;τs E X0itMFðsÞt HðsÞt

εitεiτMFðsÞτ HðsÞτ
Xiτ

h i
.

Furthermore, each block SðsÞiT and LðsÞiT satisfies that SðsÞiT !
p

SðsÞii and 1
N LðsÞiT !

p
LðsÞii . Then, stacking 

over all the individuals, we define SðsÞ and LðsÞ block-diagonal matrices, such that it follows that 

ffiffiffiffiffiffi
Th
p
ðbβs � βsÞ!

d Nð0;�βs
Þ;

with �βs
¼ SðsÞ � LðsÞ

0
� �� 1

�ε SðsÞ � LðsÞ
0

� �� 1
.                                                                         □

Proof of Proposition 4. The proof of this result follows closely the proof of Theorem 3.2 
in Su and Wang (2017). It follows from (15) that bΛis ¼ T � 1bFðsÞ

0
bYðsÞ�i . Then, replacing in 

this expression, we obtain 

Λ̂is ¼ T � 1F̂ðsÞ
0

½YðsÞ�i � XðsÞi ðβ̂is � βisÞ�: (A:12) 

Operating with this expression, we obtain 

bΛis ¼ T� 1bFðsÞ
0

YðsÞ�i � T� 1bFðsÞ
0

XðsÞi ð
bβis � βisÞ; (A:13) 

with T� 1bFðsÞ
0

YðsÞ�i ¼ ½HðsÞ�� 1Λis þ T� 1HðsÞ
0

FðsÞ
0

εðsÞi þ oPððThÞ� 1=2
Þ. Under assumption A.3 iii), 

ffiffiffi
h
T

q

FðsÞ
0

εðsÞi !
d Nð0;ΩisÞ, with

Ωis ¼ lim
T!1

h
T
P

q¼1

T
k2

h;qsEðFqF0qε2
iqÞ þ

2h
T
P

q¼1

T� 1 P

t¼qþ1

T
kh;qskh;tsEðFqF0tεiqεitÞ

" #

. Then, 

ffiffiffiffi
h
T

r

HðsÞ
0

FðsÞ
0

εðsÞi !
d Nð0; ½Q0s�

� 1Ωis½Qs�
� 1
Þ:

It remains to see that T� 1bFðsÞ
0

XðsÞi ð
bβis � βisÞ ¼ oPððThÞ� 1=2

Þ as T !1. Using expression (A.11), 
and multiplying by 

ffiffiffiffiffiffi
Th
p

, this expression can be rearranged as 
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ffiffiffi
h
p

ffiffiffiffi
T
p

X

q¼1

T
bFðsÞ

0

q XðsÞiq ð
bβiq � βiqÞ ¼ T� 1

X

q¼1

T
bFðsÞ

0

q XðsÞiq

ffiffiffiffiffiffi
Th
p
ðbβiq � βiqÞ

¼ T� 1
X

q¼1

T
bFðsÞ

0

q XðsÞiq SðsÞiT �
1
N

LðsÞiT

� �� 1 ffiffiffi
h
p

ffiffiffiffi
T
p XðsÞ

0

q MbFðsÞq
εðsÞq þ oPð1Þ

" #

:

Therefore, the right hand side of the expression is equal to 

SðsÞiT �
1
N

LðsÞiT

� �� 1

T� 1
X

q¼1

T
bFðsÞ

0

q XðsÞiq

ffiffiffi
h
p

ffiffiffiffi
T
p XðsÞ

0

q MbFðsÞq
εðsÞq þ T� 1

X

q¼1

T
bFðsÞ

0

q XðsÞiq oPð1Þ

" #

:

Under assumption A.4 iv), T� 1 P

q¼1

T
bFðsÞ

0

q XðsÞiq !
p

lim
T!1

T� 1 P

q¼1

T
kh;qsE½HðsÞ

0

F0qXiq� ¼ Oð1Þ. This implies 

that T� 1 P

q¼1

T
bFðsÞ

0

q XðsÞiq oPð1Þ ¼ oPð1Þ. Furthermore, SðsÞiT �
1
N LðsÞiT !

p
SðsÞii � LðsÞii . Now we need to show 

that T� 1 P

q¼1

T
bFðsÞ

0

q XðsÞiq

ffiffi
h
p

ffiffiffi
T
p XðsÞ

0

q MbFðsÞq
εðsÞq ¼ oPð1Þ. To show this, from A.6, it follows that 

ffiffi
h
p

ffiffiffi
T
p XðsÞ

0

q MbFðsÞq
εðsÞq ¼ zq þ oP

ffiffi
h
p

ffiffiffi
T
p

� �
, with zq a zero-mean normal random variable with variance �εi . 

Then, applying the law of large numbers and the law of iterated expectations to T� 1 P

q¼1

T
bFðsÞ

0

q XðsÞiq zq, 

it follows that T� 1 P

q¼1

T
bFðsÞ

0

q XðsÞiq zq!
p

lim
T!1

T� 1 P

q¼1

T
kh;qsE½F0qXiqE½εiq j Fq;Xiq��. Finally, by assumption 

A.2 i), this quantity converges to zero in probability.

Proof of Proposition 5. For convenience, we reproduce the analytical expression of the 
estimators: 

bF0t ¼
XN

i¼1

bΛitbΛ0it

 !� 1
XN

i¼1

bΛitbY�it ¼ S� 1
bΛ;t

1
N

XN

i¼1

bΛit Yit � Xitbβit

� �
; (A:14) 

where SbΛ;t ¼ N � 1PN
i¼1
bΛitbΛ0it . Then, replacing in the expression, we obtain 

bF0t ¼ S� 1
bΛ;t

1
N

XN

i¼1

bΛitY�it � S� 1
bΛ;t

1
N

XN

i¼1

bΛit Xitðbβit � βitÞ
h i

;bFa;t þ bFb;t: (A:15) 

The first term bFa;t has been analyzed in Su and Wang (2017) and satisfies that 

bFa;t � H tð Þ0F0t ¼ S� 1
bΛ;t
½H tð Þ�

� 1 1
N

XN

i¼1
Λitεit þ op N� 1� �

:

Under assumption A3 i) SbΛ;t ¼ �Λs þ OðN� 1=2Þ as N !1, where �Λs is an R� R diagonal 

matrix. Under assumption A.3 ii) it holds that N � 1=2Λ0sεt!
d Nð0; ΓstÞ for each s; t, where 

Γst ¼ limN!1 N � 1PN
i¼1
PN

j¼1 ΛisΛ0jsE½εitεjt�. Then, 
ffiffiffiffi
N
p
ðbFa;t � H tð Þ0F0tÞ converges in distribution 

to Nð0;�FtÞ, with �Ft ¼ ½�
� 1
Λt

Q� 1
t �
0 Γtt ½�

� 1
Λt

Q� 1
t �. Now, it remains to see that 

ffiffiffiffi
N
p

bFb;t!
d 0 as 

N ! 0. To show this, note that 
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ffiffiffiffi
N
p

bFb;t ¼ S� 1
bΛ;t

1
ffiffiffiffi
N
p

XN

i¼1

bΛitXitðbβit � βitÞ (A:16) 

¼ S� 1
bΛ;t

1
ffiffiffiffi
N
p

XN

i¼1

bΛitXit SðtÞiT �
1
N

LðtÞiT

� �� 1 1
T

XðtÞ
0

M
bF
ðtÞ εðtÞ þ oPð1Þ: (A:17) 

By the law of large numbers, we have 1
T XðtÞ

0

M
bF
ðtÞ εðtÞ !

p
lim

T!1

P

τ¼1

T
kh;τtE½X0tMFðtÞτ HðtÞ εt�. Then, applying 

the law of iterated expectations, under assumption A.2 (i), it follows that 1
T XðtÞ

0

M
bF
ðtÞ εt ¼ oPð1Þ as 

T !1. Furthermore, noting that SbΛ;t ¼ �Λs þ OðN� 1=2Þ as N !1 and 

SðsÞiT �
1
N LðsÞiT !

p
SðsÞii � LðsÞii , we obtain the desired result.                                                             □

Proof of Proposition 6. This proof is based on Theorem 1 of Cai and Xu (2008). The 
main difference is that we replace the observable covariates Xt by estimated common 
factors bFt such that the quantile factor model of interest is 

Yit ¼ bZit θτ;it þ wτ;it; (A:18) 

with wτ;it ¼ ετ;it � ðbFt � FtH tð ÞÞΛ�τ;it.
Following Cai and Xu (2008), we consider a local polynomial expansion of the quantile 

parameters θτ;it by eθτ;it . To simplify the proof, we consider a local linear approximation such 

that eθτ;it ¼ aτ;is þ að1Þτ;isðut � usÞ
� �

βτ;is þ βð1Þτ;isðut � usÞ
� �0

Λτ;is þ Λð1Þτ;isðut � usÞ
� �0h i0

, that can be 

reparametrized as eθτ;it ¼ α0 þ α1ðut � usÞð Þ η0 þ η1ðut � usÞ
� �0

�0 þ �1ðut � usÞð Þ
0

h i0
, and mini-

mize the following local objective function: 

XT

t¼1
ρτ Yit � bZiteθτ;it

� �
kh

ut � us

eh

� �

:

Let bΩ ¼ 1
T
P

t¼1

T
ZtZ0tkeh

ut � u
eh

� �

and bΩ� ¼ 1
T
P

t¼1

T
1ðbYit � δT <Yit <bYitþδTÞ

2T ZtZ0tkeh
ut � u
eh

� �

, for some δT ! 0 as 

T !1; 1ð�Þ is an indicator function and bYit is the prediction of the quantile model evaluated at u. 
These sample covariance matrices are consistent estimators of Ω and Ω� defined above. 
Furthermore, let U

teh
¼ ðut � usÞ=eh, bZ�it ¼ ½1 Xit bFt Uth XitUth bFtUth�, 

wτ;it ¼ Yit � bZiteθτ;it , and D ¼ diagðI1þdþR;ehI1þdþRÞ, with I1þdþR as the identity matrix of dimen-
sion 1þ d þ R, and let 

γit ¼

ffiffiffiffiffiffi

Teh
q

D ½α0 � aτ;is ðη0 � βð0Þτ;isÞ
0
ð�0 � Λ�τ;isÞ

0 α1 � að1Þτ;is ðη1 � βð1Þτ;isÞ
0
ð�1 � Λ�ð1Þ

0

τ;is Þ
0
�:

The above minimization problem can be rewritten as 

XT

t¼1
ρτ wτ;it �

1
ffiffiffiffiffiffi
Teh

p bZ�itγit

 !

kh U
teh

� �
: (A:19) 

Using the same steps as in Cai and Xu (2008), we derive a local Bahadur representation of bγit such 
that 
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bγit ¼
½bΩ
�
�
� 1

ffiffiffiffiffiffi
Teh

p
X

t¼1

T

Ψτðwτ;itÞbZ�itkeh U
teh

� �
þ oPð1Þ

with ΨτðxÞ ¼ τ � 1ðx< 0Þ. Now, after simple algebra, we decompose this expression in four terms 
as 

½bΩ
�
�
� 1

ffiffiffiffiffiffi
Teh

p
X

t¼1

T

Ψτðετ;itÞZ�itkeh U
teh

� �
(A:20) 

þ
½bΩ
�
�
� 1

ffiffiffiffiffiffi
Teh

p
X

t¼1

T

Ψτðετ;itÞ bZ�it � Z�it
� �

keh U
teh

� �
(A:21) 

þ
½bΩ
�
�
� 1

ffiffiffiffiffiffi
Teh

p
X

t¼1

T

Ψτðwτ;itÞ � Ψτðετ;itÞ
� �

bZ�it � Z�it
� �

keh U
teh

� �
(A:22) 

þ
½bΩ
�
�
� 1

ffiffiffiffiffiffi
Teh

p
X

t¼1

T

Ψτðwτ;itÞ � Ψτðετ;itÞ
� �

Z�itkeh U
teh

� �
: (A:23) 

Under assumptions B.1-B.4, Cai and Xu (2008) show that expression (A.20) converges in dis-
tribution to Nð0;�τÞ, with �τ ¼ τð1 � τÞν0 ½Ω��� 1 Ω ½Ω��� 1. In particular, to compute the asymp-
totic variance we rely on the α � mixing condition B3 that limits the amount of serial dependence. 
More specifically, 

X1

s¼� 1
E ðτ � 1ðyit � τ j ZitÞÞðτ � 1ðyi;tþs � τ j Zi;tþsÞÞZitZ0i;tþs

h i
¼

τð1 � τÞE½ZitZ0it� � 2τ2
X1

s¼1
E ZitZ0i;tþs

h i
þ

2
X1

s¼1
E 1ðyit � τ j ZitÞ1ðyi;tþs � τ j Zi;tþsÞZitZ0i;tþs

h i
:

The last term can be expressed as

2
X1

s¼1
E 1ðyit � τ j ZitÞ1ðyi;tþs � τ j Zi;tþsÞ � τ2� �

ZitZ0i;tþs

h i
þ 2τ2

X1

s¼1
E ZitZ0i;tþs

h i
:

Now, noting that E 1ðyit � τ j ZitÞ1ðyi;tþs � τ j Zi;tþsÞ � τ2 j Zit
� �

¼

E 1ðyit � τ j ZitÞ1ðyi;tþs � τ j Zi;tþsÞ � τ2� �

the above expression is

2
X1

s¼1
E 1ðyit � τ j ZitÞ1ðyi;tþs � τ j Zi;tþsÞ � τ2� �� �

E ZitZ0i;tþs

h i
þ 2τ2

X1

s¼1
E ZitZ0i;tþs

h i
:

Furthermore, applying Cauchy-Schwarz inequality to the first term, we have 
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X1

s¼1
E 1ðyit � τ j ZitÞ1ðyi;tþs � τ j Zi;tþsÞ � τ2� �

ZitZ0i;tþs

h i2
�

X1

s¼1
E 1ðyit � τ j ZitÞ1ðyi;tþs � τ j Zi;tþsÞ � τ2� �2X

1

s¼1
E ZitZ0i;tþs

h i2
:

Finally, using the α � mixing condition on fZit; εitg in B3, we obtain 

X1

s¼1
E 1ðyit � τ j ZitÞ1ðyi;tþs � τ j Zi;tþsÞ � τ2� �2

! 0 

and 
P1

s¼1 E ZitZ0i;tþs

h i2
<1. Therefore, 

X1

s¼� 1
E ðτ � 1ðyit � τ j ZitÞÞðτ � 1ðyi;tþs � τ j Zi;tþsÞÞZitZ0i;tþs

h i
¼

τð1 � τÞE½ZitZ0it� � 2τ2
X1

s¼1
E ZitZ0i;tþs

h i
þ 2τ2

X1

s¼1
E ZitZ0i;tþs

h i
¼ τð1 � τÞΩ: (A:24) 

The same derivations apply to Ω� such that expression (A.20) converges to 
τð1 � τÞν0 ½Ω��� 1 Ω ½Ω��� 1.

For expression (A.21), we note that 

½bΩ
�
�
� 1

ffiffiffiffiffiffi
Teh

p
X

t¼1

T

Ψτðετ;itÞ bZ�it � Z�it
� �

keh U
teh

� �

¼
½bΩ
�
�
� 1

ffiffiffiffiffiffi
Teh

p
X

t¼1

T

Ψτðετ;itÞ 0 0 ðbFt � FtHðtÞÞ 0 0 ðbFt � FtHðtÞÞUteh

h i
kh U

teh

� �
;

with 0 denoting a 1� d vector. Now, using Proposition 5, bFt � FtHðtÞ ¼ Op N� 1=2
� �

, as N !1. 
Define ft ¼

ffiffiffiffi
N
p
ðbFt � FtHðtÞÞ. Then, 

½bΩ
�
�
� 1

ffiffiffiffi
N
p ffiffiffiffiffiffi

Teh
p

X

t¼1

T

ΨτðεitÞ 0 0 ft 0 0 ftUteh

h i
keh U

teh

� �
;

that converges to zero in probability as N;T !1. To show this, consider the element 

½bΩ
�
�
� 1

ffiffiffiffi
N
p ffiffiffiffiffiffi

Teh
p

X

t¼1

T

keh U
teh

� �
ΨτðεitÞft ¼

ffiffiffiffiffiffi

Teh
N

s

½Ω��� 1

Teh

X

t¼1

T

keh U
teh

� �
ΨτðεitÞft þ oPð1Þ:

Under the law of large numbers, it follows that 1
Teh

P

t¼1

T
keh U

teh

� �
ΨτðεitÞft ¼ OPð1Þ. Then, the above 

expression converges to zero if Teh
N ! 0.

Now, the consistency of bFt to FtHðtÞ, as N !1, implies that bZ�it � Z�it ¼ oPð1Þ and 
wτ;it � ετ;it ¼ oPð1Þ. Then, expressions (A.22) and (A.23) converge to zero in probability, and 
the asymptotic result in Proposition 6 follows.                                                                        □
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