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ABSTRACT ARTICLE HISTORY
This paper proposes a functional coefficient quantile regression Received 22 February 2022
model with heterogeneous and time-varying regression coeffi- Accepted 1 January 2023

cients and factor loadings. Estimation of the model coefficients is KEYWORDS

done in two stages. First, we estimate the unobserved common Quantile factor model; time-
factors from a linear factor model with exogenous covariates. varying factor loadings;
Second, we plug-in an affine transformation of the estimated com- partially linear regression
mon factors to obtain the functional coefficient quantile regression model; panel data
model. The quantile parameter estimators are consistent and

asymptotically normal. The application of this model to the quantile

process of a cross-section of U.S. firms' excess returns confirms the

predictive ability of firm-specific covariates and the good perfor-

mance of the local estimator of the heterogeneous and time-

varying quantile coefficients.

1. Introduction

In a series of influential papers, Bai and Ng (2002) and Bai (2003, 2009) developed
a general methodology for explaining economic and financial variables by a few common
factors. Factor models allow for a drastic reduction of the cross-sectional dimension of
a panel while providing a flexible way to summarize information from large data sets, see
Pesaran (2006). In the literature on factor models it is common to assume a vector of
constant factor loadings. This assumption is, however, rather restrictive. To the best of
our knowledge, Eichler et al. (2011) is the first study to use time-varying loadings in
a dynamic model with non-stationary time series. Bates et al. (2013) is another influential
analysis that contributes to the idea of smooth changes in factor loadings. Su and Wang
(2017) propose a local version of the principal component method using smoothly
changing loadings, while Pelger and Xiong (2019) allow them to be state-dependent. In
this setting the unobserved factor structure is thus allowed to vary over time.

Another area of major interest in recent years is the study of the quantile process.
Quantile regression (QR) has been studied extensively in both theoretical and empirical
studies; see Koenker and Bassett (1978), Portnoy (1991), Chaudhuri et al. (1997),
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Koenker and Machado (1999), He and Zhu (2003), Koenker and Xiao (2006). This work
has been recently extended to accommodate the presence of dynamics in the quantile
coefficients, see Wei and He (2006) and Kim (2007). A more general approach that also
allows for dynamics in the quantile parameters is based on nonparametric and semipara-
metric estimation methods for dynamic smooth coefficient models, see De Gooijer and
Zerom (2003), Yu and Lu (2004), Horowitz and Lee (2005), and more recently, Cai and
Xu (2008) and Cai and Xiao (2012). Building on this work, recent contributions by Ando
and Bai (2020), Chen et al. (2021) and Ma et al. (2021) have extended quantile regression
models to incorporate unobserved common factors. These models consider heteroge-
neous quantile effects that introduce much flexibility to the specification of factor models
by capturing the presence of heterogeneity in the effect of observable covariates and
unobserved factors at different quantiles.

The current paper combines both approaches by considering a factor model with
a time-varying factor loadings structure in a quantile heterogeneity framework with
varying coefficients. The idea is to propose a flexible panel data model that is general
enough to encompass unobserved heterogeneity arising from unobserved factors and
quantile-indexed responses together in a dynamic setting. This is done in two stages.
First, we propose a factor model for the mean process that includes observable regressors
and unobservable factors. This model allows for heterogeneity across individuals and
dynamics in the regression coefficients. By doing so, we extend standard factor model
specifications that assume slope homogeneity in the observable regressors as in Bai (2003,
2009) and slope heterogeneity as in Song (2013) and Ando and Bai (2015). As a salient
feature, the model also entertains dynamics in the factor loadings. Second, we extend the
model to describe the quantile process. The slope coefficients associated with the
observable regressors in the quantile model face three different types of variation:
heterogeneity across quantiles, individuals, and over time. The factor loadings accom-
modate heterogeneity across individuals and over time. Estimation of the model coeffi-
cients (quantile factors, quantile regression coefficients and factor loadings) is done in
two stages. In the first stage, we estimate the unobservable common factors from a linear
factor model with exogenous covariates. We adapt the principal component analysis
introduced in Bai (2009) to a local setting using kernel estimation methods (see also Su
and Wang (2017)) to simultaneously estimate the local common factors, factor loadings
and slope coefficients associated with the observable regressors. In contrast to Su and
Wang (2017), our model also accommodates the presence of observable regressors. In
order to estimate the quantile common factors a fundamental assumption in our
modelling framework is that these quantities are quantile-specific affine transformations
of the factors obtained from the mean process in the first stage. In this regard, our model
specification lies between the approximate factor models that only consider mean-
shifting factors to describe quantile effects and the idiosyncratic quantile factor models
in which the factors are estimated separately for each quantile using an iterative proce-
dure, see Ando and Bai (2020), Chen et al. (2021) and Ma et al. (2021). By doing so, our
quantile factors become observable covariates in the quantile process studied in
the second stage.

The estimation of the parameters in our model relies on the nonparametric quantile
estimation method for dynamic smooth coefficients introduced in Cai and Xu (2008) and
the semiparametric approach proposed in Cai and Xiao (2012) for models with partially
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varying coefficients. Our proposed methodology is also framed within the recent litera-
ture on QR models with an unobserved factor structure. Harding and Lamarche (2014)
propose a quantile common correlated effects estimator for homogeneous panel data
with endogenous regressors. The authors assume a parametric approach and time-
invariant factor loadings, where the way of recovering the latent factors is different
from ours.

Inclusion of estimated quantities in regression models may affect the asymptotic
distribution of the parameter estimates, see Pagan (1984). This observation is essential
in our context, characterized by a quantile factor model with estimated factors. In
principle, the inclusion of such covariates into the quantile model has effects on the
asymptotic distribution of the quantile parameter estimates. We show that this is not the
case under standard panel data assumptions, that is, if both N and T diverge to infinity
such that Th/v/N — oo, with h — 0 a bandwidth parameter. We derive the asymptotic
distribution of the regression parameter estimates associated to the observable covariates
for the mean and quantile models, and of the estimated factors and quantile factor
loadings.

A Monte Carlo simulation exercise studies the finite-sample performance (bias and
mean square error) of two estimators of the slope coefficients that are based on our two-
stage procedure. The first estimator considers time-varying factor loadings using the
local estimation procedure developed in this paper. In this case we estimate individual-
specific coefficients for all t = 1,2, ..., T. The second estimator considers a model with
time-invariant loadings. In this case we do not impose the time-varying local estimation
procedure and estimate, instead, a unique set of parameters for all ¢. This global factor
estimator uses Ando and Bai (2015) iterative process. The simulation exercise confirms
the consistency of our local two-stage estimation procedure and provides empirical
support to our methodology for estimating heterogeneous and time-varying quantile
regression coefficients and factor loadings.

This novel quantile factor model is applied to explain the distributional risk premia for
a cross-section of excess returns. To do this, we fit the model to different quantiles of the
distribution for a cross-section of annual U.S. firms’ asset returns. We consider firm-
specific covariates as pricing factors and allow for the presence of two unobserved
factors.’

The remainder of the paper proceeds as follows. In Section 2, we introduce the time-
varying quantile factor model. Section 3 describes the estimation procedure based on
local principal components and QR. Section 4 introduces the asymptotic properties of the
parameter estimators. Section 5 presents a Monte Carlo simulation exercise to evaluate
the performance in finite samples of our estimation procedure, in particular, we focus on
bias and mean square error. Section 6 illustrates the suitability of the quantile factor
model with exogenous covariates in an empirical asset pricing framework. Section 7
provides concluding remarks. An Appendix contains the mathematical proofs of the
main results of the study. Tables and figures are collected as a second Appendix.

Itis prevalent in this literature to fix the number of unobserved common factors, see Bai (2009), Song (2013), and Ando
and Bai (2015). Alternatively, information criteria and rank minimization are used in Ando and Bai (2020) and Chen et al.
(2021), to determine the number of factors at each quantile while uncovering the quantile factors individually.
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Notation. Let [T]={1,2,...,T} and [N] = {1,2,...,N} be the sets of time periods
and individual indices, respectively. The Frobenius norm is defined as || A |=
[tr(AA")]"/? with tr denoting the trace of a matrix and A’ the transpose of A.

2. Time-varying quantile factor models
2.1. Identification of the quantile factors and factor loadings

Let Y;; be an outcome variable of interest and Xj;; = (XW, e ,Xd,it) be a vector of d
observable covariates, including a constant. Similarly, F;; = (Fy 41, ..., F; ) is the vector
of unobservable common quantile factors indexed by 7 where, for simplicity, R is
assumed to be equal across 7 € (0,1). We consider the following quantile process
conditional on Xj; and F,, given by

Q:(Yi|Xit, Frt) = Xitﬂ”'t + FrArit, (1)

foragiven 7 € (0, 1), where 8 B.i(ut), with u, = t/T , is the vector of quantile slope

T,it =
coefficients associated to the observable regressors. Similarly, A;;; = (As1 e, - - - ,)LTR’it),,
with Ay = Arji(u;), are the loadings associated to the quantile factors F,. Here the

factors are assumed to be 7-specific. Both ., and A;; are assumed continuously

T,it
differentiable smooth functions, see Cai (2007) for similar assumptions in a model
with observable covariates.

We impose the following assumption for the identification of the quantile factors.

Assumption A.1
i) The conditional mean model satisfies

E(Yy|Xit, Fi) = Xuf3;, + Fil\ir, (2)

with §,, the slope coefficients for the conditional mean process; F; = (F, ..., Fir) the
vector of common factors affecting the conditional mean, and A; the associated factor
loadings.

ii) The quantile common factors satisfy

FTt:Ft+STt7 (3)

with sy = [s;14, ..., Srre) forall t € [T).

Assumption A.l ii) implies that the quantile factors are location shifts of the vector of
factors for the mean process. Under A.1, we can identify the quantile factors and the
quantile factor loadings from the following quantile regression model:

Q: (Y| Xit, Fr) = arjie + Xit/—’)”'t + FiAq i, (4)

with a; s = sy, ;. Identification of the quantile parameters is possible if we condition
on the vector X;; and F;. The additional component a, ;; determines that the constant in
(1) cannot be identified unless additional assumptions are imposed. In particular,
identification of s, is possible if there is no constant in the quantile regression models
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indexed by 7 € (0, 1). Alternatively, we may impose Q. (s | F;) = 0 in assumption A.1.
This additional constraint allows for the identification of the constant in model (4) from
the parameter vector _ ;.. Note however that this is not required for the estimation of the
other parameters which is the main interest of the paper.

The next section discusses a suitable estimation strategy for obtaining consistent

estimates of the model parameters. The parameters of interest are {ﬁit,A,-t, F,} for the

mean regression equation in A.1, and {/3 Az, Fn} for the QR model (4).

T,it?

2.2. Estimation

In this section we consider local versions of principal components analysis to devise an
iterative procedure for estimating the model parameters of the mean process (2). To do
this, we adopt the estimation procedures in Bai (2009), Song (2013) and Ando and Bai
(2015) for the estimation of 8, A;; and F;. The parameters f3,,, and A, of the quantile
factor model with observable regressors are estimated using QR methods applied to
a local kernel version of model (18) in which the unknown common factors have been
replaced by consistent estimates.

2.2.1. Estimation of slope coefficients and common factors

In order to estimate the parameters of model (2), we apply local principal components as
in Su and Wang (2017). In contrast to these authors we consider a factor model that also
includes observable regressors.

In order to estimate the slope coefficients 3, and A;; we need a panel data structure
with large N and T that guarantee the consistency of the common factors and factor
loadings, respectively. To do this, we extend the iterative estimation procedure in Song
(2013) and Ando and Bai (2015) to accommodate dynamics in the  and A coefficients,
until we reach convergence. For s € [T] fixed, we consider the Taylor expansion of the
vector f3;, about f,. for u; close to u, such that

mZﬁ“ = )+ ol — "), ®
with [ng) high-order derivatives of the functional parameter f3,, evaluated at u,. For
simplicity, we consider the local approximation of order zero given by 3, such that the

remaining terms in the approximation are in the error term. Similarly, we replace A;; by
Ajs such that we estimate the model

Yi = XiPs + Fil\is + eir, (6)

with e; an error term that includes the high-order approximation terms of the model
parameters. The parameters of model (6) are estimated from minimizing the following
local weighted least squares problem:

N T
min Z z (Yit 1tﬂ,s Ft zs) k(ut ; us)7 (7)

{{ﬁxs}, I{Axs}z 1{Fz}, 1} i=1 t=1
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where k(-) is a kernel smoothing function. The solution to this problem can be obtained

applying local principal component analysis (LPCA). To do this, we multiply both sides

of expression (6) by k,l/ é, with kp s = k(%), see Su and Wang (2017) for a similar

estimation strategy. We obtain
kl /2 712 1/2 1/2
h, tsYt kh tsX”ﬁis + khﬁtstAiS + kh,tseit' (8)
!/
Now, define Y = kl/ ,Yi; such that Y; 6 = (Yi<f), e Yf?) isa T x 1vectorand Y® =

(Yl(s),...,Yﬁ)) is a T xN matrix. Similarly, let Xl(lt k}ll/tle’it such that
() _

Xl(j.) = (Xl(st)p lzT) for =1,...,d, with X\¥ = (Xisg,... Xg?) Similarly, e’ =
k;;/ Zey such that el¥) = (e,(f), el ) isa T x 1vector. Let F*) = k,l/ ZF, such that F¥) =

(Fﬁs), . ,F(TS>)/ isa T x R matrix and A; = (Ays, ..., Ans) be a R X N matrix. For each
individual in the cross section, Equation 8 in vector form is

Y = X9B, + FOA, + €. 9)

1

In this setting, for a fixed s € [T], the minimization problem (7) becomes

N !
min  tr Z(Y}‘)* — F<S)A,-S) (Y}”* - F(S)Ais) : (10)
{ﬁis 7F<S) 7Ais} i=1
with tr denoting the trace of the matrix and Y* = Y — Xx"B. . For parameter identi-
fication, we impose restrictions FG) / T = Iz and A, A’ = d1agonal matrix, with A, =
(Ays, - .., Ans) @ R X N matrix. This objective function is a locally weighted version of the

least square estimator in Bai (2009).

Applying the procedure developed by these authors, we can estimate 8, and F* using
an iterative estimation procedure. This approach decomposes the original estimation
problem into two steps: the estimation of the individual coefficients given common
factors, and the estimation of the common factors given individual coefficients. We
maintain their assumption that the number of factors R is known. The extension to an
unknown number of factors under heterogeneous regression coefficients is cumbersome
and beyond the scope of this paper. Thus when the number of unobserved factors is
known, Bai (2009) proposes a tractable solution to the estimation problem by concen-
trating out the factor loadings from the objective function (10). Following this procedure,
we assume that the factor loadings A; satisfy a relationship of the form
A = (FOFOTIEO' Y with ¥9* = v — st)ﬁis and ., an estimate of the vector
of slope coefficients for fixed s € [T]. Then, replacing this expression into (10), the
objective function is

N
_ TP (s)
{/3151,]1}1)1]/\:5}{2 Y tr [ (Z Y Y ) 1 } (11)

Therefore, the problem of interest becomes
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N
{;nzpix trl (Z? ¥ > )1. (12)

The estimators {f,, 1?(5)} should simultaneously solve a system of nonlinear equations

B = (st)/M/; x9)x m (13)
, -1
with My = Iy — F© (1?“) F(S)> FY, and
F
1 o |~ ~
IR = BV, (14)
NT 5

where VI(\,% is a diagonal matrix with the R largest eigenvalues of (NT) ™" YY)+ and

the estimated transformed factors F(®) are interpreted as the VT times eigenvectors

corresponding to the R largest eigenvalues of the T x T matrix YOy @+ arranged in
descending order.

The actual estimation procedure can be implemented by iterating each of the two steps
in (13) and (14) until convergence. The unknown factor loadings are obtained as

A= 2P0 (15)
is T i

The estimation above involves only local data points, i.e., locally weighted in
a neighbourhood of s € {1, ..., T}, and hence, the local estimates of 8,, and A;; converge
to the true parameters at \/Th rate. In contrast, the methodology developed in Ando and
Bai (2015) obtains global estimators that converge under slope heterogeneity at v/T for
each i=1,...,N. Under the assumption of slope homogeneity, Bai (2009) obtains
estimators of the true slope parameters that converge at v/NT. The next step is to derive
a consistent estimator of the common factors F;. We propose an estimator of the
common factors from the minimization of the following least squares problem:

min i i ( FtXit)z, (16)
—1

{{Ft}t 1} t=1

with 17; = Yy — Xit3;,» where [31.[ is obtained from the above iterative estimation proce-
dure for each s € [T]. The solution to this problem is

N -1 N L
= ZA”A; ZA” pa (17)
i=1

2.2.2. Estimation of time-varying quantile factor loadings

In what follows, we propose a procedure to estimate the parameters of the quantile
process (18). The unobserved quantile common factors are replaced by estimates of F;
obtained from the conditional mean regression model, such that the regression of
interest is



8 A. ATAK ET AL.

QT(Yit‘Xitv Ft) R Ari + Xz’tﬂ + FtAi ity (18)

T,it

with A7, = [H ]7'A,;; and H® a rotation matrix characterizing the common factors;
Arjt = S, AT 4 with s7, = = s,HY. More compactly, consider the following regression
model. Let

Yie = Zis0ris + weis, (19)

be the feasible counterpart of Yj; = Z;0, ;s + &, i1, with Q; (sT_,,'t | X, Ft) = 0. Here we are
using the notation Z; = [Xi F;|] (note that X already contains a constant) and
Ziy = [Xit Fy], and also wy ; = &, — (F; — )AT i

Estimation of the model parameters follows by adaptlng the nonparametric approach
for dynamic quantile processes in Cai and Xu (2008). These authors consider a polynomial
approximation of the parameters 6, ;=0, ;(u;) about u; given by 8, ;; and defined as

GT-iSZ |:<aTl$+Zar1s - ) (ﬁ115+2ﬁ715 - 5j> < TIS+ZATIS ):|7

a .
with AT+ > Ai*fs)( — u,Y the local approximation of the rotated factor loadings ALy
=

TlS

Note that agls, [39 ' and ATS’S are the derivatives of order j of the respective functional

coefficients. As in Cai and Xu (2008) we disregard in the following derivations the
approximation error from using a polynomial Taylor expansion of order g, see Fan
and Gijbels (1996) for the suitability of this method and, in particular, the advantages of
the local linear approximation.

The parameters of model (19) can be estimated from the following local objective
function:

mln T Z P‘r ( it Zzter 15) (ut % us) 9 (20)

{6r.is}

where p_(-) = -[t — 1(- <0)] is the check function of Koenker and Bassett (1978) and 1(-)
is an indicator function that takes a value of one if the argument is true and zero

otherwise;  is a suitable bandwidth parameter for the quantile estimation problem.

Estimation of the quantile parameters is obtained from the first-order conditions of
the optimization problem (20). Estimation of the common factors for the quantile
process is also possible in a quantile model (1) without intercept. In this case, by invoking
Assumption A.1, we plug-in the factors estimated from the mean regression in
Equation 6 and estimate the quantile factors as

/F\Tt Zﬁt‘F?;p (21)

withs¥, = Zl\ﬂ[/Al;t]_ , where @y, is obtained from (20) and [A »: isa N x R generalized

inverse matrix of the R X N matrix ATJ obtained from the elements
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Tis i(fs)(ut — u,Y, with ~ denoting a Taylor approximation of order .

N q
ALy R AL+ A
=1

o~

The matrix [A*

T,t]fl satisfies that Z’T‘_’t[z;"t]’l = Ix.

2.3. Determining the number of factors

In the previous analysis, we assume that the number of factors, R, is known. In the
simulations and the empirical application we fix the number of factors to R = 2, follow-
ing the framework in Galvao et al. (2018) and Galvao et al. (2019). In practice, however, it
is an important question to determine R from the data.

Different information criteria type models have been applied to select the number of
factors, although not for our specific panel data model, with N and T dimensions, that
combines both mean- and quantile-based model specifications. The former determines
the type of objective function that will be used in the information criterion. The latter
determines how the penalty factor is constructed as a function of N, T and R. Following
Su and Wang (2017) or in Casas et al. (2021) AIC or BIC can be applied to the mean-
based factor model, where we can use the objective value function that is minimized to
obtain the parameters, including the factors and the factor loadings. Ando and Bai (2020)
propose a model for selecting the number of factors where the check objective function
from QR is used in an AIC or BIC framework, and it also combines both dimensions in
the criteria.

3. Asymptotic properties of the estimators

This section presents the asymptotic properties of the proposed estimators for the model
parameters - including the common factors — for processes (6) and (19). There are three
unique features of the current problem that pose challenges to the econometric theory.
First, the proposed estimators of the common factors and beta coefficients do not have
a closed-form expression. These quantities are obtained by solving a set of equations to be
satisfied simultaneously by 8, and Ft(s). Second, the unobserved common factors are
treated as parameters to be estimated, and thus the number of parameters grows with T.
Finally, each pair (i,t), with i € [N] and t € [T], has its own slope coefficient 8, and
factor loading A; such that the number of parameters grows with N and T.

Our goal in the remaining of the section is to derive the asymptotic distribution of the
quantile parameter estimates of model (19). Our results build on the nonparametric
quantile estimation methodology for dynamic smooth coefficient models introduced in
Cai and Xu (2008). Our model is also closely related to the recent contribution of Ando
and Bai (2020). The salient feature of our model compared to Ando and Bai (2020) is that
the quantile common factors are treated as estimated regressors that are obtained from
the mean model (2).

3.1. Assumptions

We first state the following notations and assumptions. Let &, = (ey, . . ., &xt) be the error
of the mean regression model in Assumption A.1. Then, we denote yy (s, t) = N 'E[ele],
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Ynp(s,t) = NT'E[Fieled], yy pp(s,t) = N'E[Fle; x &F], and & = N~'[ele; — E[elel]].
Define  wnri(s) = hl/z ZI S ksFleadl,  and  wyra(r,s) = hl/z Zt DA

K ss (Fge,-te,-s — E[Fﬁs,ts,s]). Let C < oo denote a positive constant that may Vary from case
to case.

Assumption A.2. (Error terms and common factors). The error terms and common
factors satisfy

(i) Elei|Xis, F,] = 0 and E[|&;4|*] < oo for all i and ¢ in [T];

(ii) max,<i<r E || F;||® < oo and E[F|F,] = ¥r>0 for some R x R matrix 2.

(i) maxj<i<r Zstl |Cov(FmFin, FsmFsn)| < C for m,n=1,...,R, where F,,
denotes the m"" element of F,.

(iv) maxicicr Yoy [ p(s,1) [€ € and  maxicocr S [ p(s,1) | C for y =
YN YN E and VN FE*

(v) maxj<s i< E|N'2¢4[* < C and max,<g,<7 E || N72A¢E* < C.

(vi) wnr.1(r) = Op(1) and max; E || wnra(r,s)||* < C for each r.

Assumption A.3. (Factor Loadings). The factor loading matrix A; satisfies that

(i) NT'AA! = %), + O(N72) as N — oo, where ¥, is an R x R diagonal matrix.
(i) V;is the diagonal matrix consisting of the eigenvalues of E}\/ Y FEX ? and satisfies
that infc |7y v, >0 for all diagonal elements (v, ... , V).

(iii) N‘l/zAgs, 4 N(0, ) for each s, t, where
Iy = limNW N— PIARD DAY/ W E[e,teﬂ]
(iv) Zt F lt \/—Zt L ki sFreir —>N(0 Qjs), where

) h T 2h
'Qis = hmT_,oo |:?Z kh fs F’Ftslt Z Zt 1 kh tskh is [F F; Eztszt]

Assumption A.4. (Explanatory Variables). The vector of observable covariates satisfies

M E|| x|t <cC.
(ii) The d x d matrix }st) M (S>X§S) is positive definite.
(iii) Let A =1 X% M, X", Bf% = (AAy) @ Ir, CF = L AL @ (X My). For
each se[T], let A® be the collection of F such that

©) = {FO) : FO'FO /T = Iy}. Then, we assume that

inf D(F")) is positive definite,
FOleA®

with D(F¥) = NZD( ) where Dy(F9) =BY — YA and AV is

the generalized i inverse of A
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(iv) hm T! Z ki gsE[H' F/ Xiq) = O(1), fors =1,..., T. (H" is a rotation matrix

charactenzmg the factors defined above.)

Assumption A.5. (i) The kernel function k: R — R" is a symmetric continuously
differentiable probability density function with compact support [—1,1], (ii) As
(N,T) — oo, h — 0, Th* — 00, Nh* — oo, Th/N — 0, and Th/N'/? — .

Assumption A.6. (Central Limit). As T — oo, h — 0, and Th — oo,

\/E / d
—X}s) Mo g 5,@ —N(0,%,,),

VT
with Es, = l1m T Z Z kh tskh s E|:X M S”E’TMFT)HE”X”} .

T—o0 " =1 7=

These assumptions are standard in factor models. A.2 and A.3 mainly impose moment
conditions in the error terms, factors, factor loadings, and their interactions, see, e.g., Bai
and Ng (2002), Bai (2003, 2009). The main difference, and in line with Su and Wang
(2017), is that we require E[F,F;] = f in A.2(ii) and N 'AAL =3, + O(N~'?) in
A.3(i). Assumptions A.2(iii)-(v) restrict the time and cross-sectional dependence for the
idiosyncratic errors ¢;; and the weak dependence between factors and errors, which are in
the same spirit as Bai (2003, 2009) and Su and Wang (2017). A.2(vi) is a kernel-weighted
version of Assumptions F.1-F.2 in Bai (2003). Following the recent literature on factor
models, we assume that E[F,F;] is homogeneous over t. This assumption is made for
convenience to facilitate the asymptotic results. Assumption A.3(iii) allows for factor
loadings to be time-varying and Assumption A.3(iv) is a kernel weighted version of
Assumption F in Bai (2003). Both parts are used to establish the asymptotic normality of
our local principal components estimators. We extend the assumptions in Su and Wang
(2017) by incorporating a set of assumptions in A.4 specific to the observable regressors.
Assumption A.4 (i)-(iii) impose the boundedness of moments and the regressors are
assumed to exhibit sufficient variation such that the coefficients B, are identifiable.
Identification also requires that the observed regressors do not exhibit multicollinearity
with the unobservable common factors F;. Condition (iii) in the assumption guarantees
the unique minimizer of the estimation objective function. The notation D(F) is used to
emphasize that the entire term is a function of F. Assumption A.5 states conditions on the
rates of convergence that guarantee the consistency and asymptotic normality of the
kernel estimators. A.6 simplifies the proofs and is imposed, for example, in Ando and Bai
(2015). More primitive conditions to obtain the asymptotic properties of these objects
can be found in Song (2013) for a global factor model.

We consider now each cross-sectional observation separately, such that Z, denotes Z;
for each i =1,...,N. Let f,5(-|-) be the conditional density of Y given Z;. Let Q =

E[Z,Z}) and Q" = E[Z:Zf,|.(Q)(7|Z,))], and define y; = Jqu(u)du andv; = Jquz(u)du.

The relevant bandwidth parameter for the quantile problem is h such

that k~ <M) =1K (M) .
h\ h h h
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Assumption B.1. S, , A;, [31’” and A, ;, are (m + 1) — th order continuously differenti-
able in a neighbourhood of u, for any u, = r/T. Further, f,.(y) is bounded and satisfies
the Lipschitz condition.

Assumption B.2. For each i=1,...,N, E[||Zy|**™] <o for some 6>0, where
Ziy = {Xi, F;}. Furthermore, Q and Q are positive definite and continuous in

a neighbourhood of uy. These functions and their inverse functions are uniformly
bounded.

Assumption B.3. For each i =1,...,N, the process {Xj, Fy, &} is strictly stationary
a — mixing, with mixing coefficients §;(s) satisfying max;<;<y 8;(s) < C3(s) such that
8(s) = O(s¢) with &€ = (2 + 8)(1 + §) /4.

Assumption B.4. The bandwidth parameter I satisfies h — 0, Th — 00, Th — 0, and
T1/2—6/4z6/6*—1/2—6/4 _ O(l), for 8*>6.

This set of assumptions is found in Cai (2007) and Cai and Xu (2008). The main
difference with respect to the latter authors is the assumption (Th)/N — 0 that allows us
to remove the effect of estimating the common factors F, from the asymptotic distribu-
tion of the quantile parameter estimates. A similar assumption is also found in A.4 for the
mean process. Under this set of additional assumptions, we obtain the asymptotic
distribution of the quantile parameter estimates of ., and A, for i € [N] and
t € [T]. This result shows that the estimation of the common factors F; does not have
an effect on the asymptotic distribution of the quantile parameter estimates.

T,it?

3.2. Propositions

With these assumptions in place we are ready to derive the asymptotic results. We derive
first the uniform consistency of the parameter estimators associated to the observable
regressors.

Proposition 1. Under Assumptions A.2-A.6 and B.1, it follows that

|l = 1 N, T . 22
{ic T]}Hﬁzt ﬁzt“ OP( )7 asiN, I — 00 ( )

The proof of this result, in the Appendix, follows from extending the results in Song
(2013) and Ando and Bai (2015) to the presence of time-varying slope coefficients. The
uniform consistency of these coefficients allows us to extend the results in Su and Wang
(2017) from a pure factor model specification to our setting. The following result shows
the asymptotic normality of F ) to a rotation of the true factors F; )
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Proposition 2. Under Assumptions A.2-A.6 and B.1, for each s,t =1,..., T, we have
\/_kh is/z( F§S)H(S)) i N(07 VsilQSFsthV;l)a asN — oo, (23)

where H®) = (N“1A,AN) (TS FO)VE ™ VL denotes the R x R diagonal matrix of
the first R largest eigenvalues of (NT) ' Y&*Y ¥, V is the diagonal matrix consisting of
the eigenvalues of EI/ZE 21/2 in descending order; I's is the corresponding normalized
eigenvector matrix such that I'T's = Ig, and Qs = VI/ZF 12(\1/2

In particular, the consistency of the local factors F ' to F; JH®) allows us to derive the
asymptotic distribution of the slope parameter estimators associated to the observable
regressors.

Proposition 3. Under Assumptions A.2-A.6 and B.1, for any fixed pair (i,t) with i =
L Nandt=1,...,T, the vector Bit obtained from expression (13) satisfies

\/T_h(ﬁit - ﬁit) i) N(07 EI%)? (24)

with ¥ = (ng) - LE;)’) lEsi (SE;) - L,(it)’) 1, where S;; and L;; are matrices defined in
the Appendix.

The proof of this result follows from extending the results in Song (2013) and Ando
and Bai (2015) to the presence of time-varying slope coefficients. Similarly, we show that
the asymptotic distribution of the factor loading estimates is unaffected by including a set
of observable covariates X;; with time-varying parameters §, that vary smoothly over
time. More formally,

Proposition 4. Under Assumptions A.2-A.6 and B.1, for each s,t =1,..., T, we have

VTh(A; — [H9] ' A) 5 N(0, [Q] 7' QulQ] ), (25)

T-1 T
with Qs = Thjn [ Z k? as (FqF;eizq) +% Yo > kngsknsE(FiFeigeir) | -

q=1 t=q+1

These results allow us to show the /N — consistency of the common factors estimated
in (17).

Proposition 5. Under Assumptions A.2-A.6 and B.1, as N — oo, the estimator (17) of
the common factors satisfies

VN (Trt - F,H<t)) 4 N(0,5,), (26)

with EF[ = [EZ[I Q;l}/ Ftt EXLI Q;l, where Ftt = % Z Z At [sztsjt]-
X j=1j=
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Proposition 6. Under Assumptions A.1-A.6 and B.1-B.4, as N, T — oo, the estimator
5711»5 = [Ars ﬁr,is Z’T‘:is]/ of Oris = [ars ﬂ’w.s Aj:is]/ obtained from the minimization problem
(20) satisfies that

[~ pat ~q+1\ 4
Th (97,,»5 — 0,4 — I 69 + op(h” )) SN(0,%,), (27)

i !
with 00 = o (B V) (A2 ) | and
S =1(1—1)w [0 Qo]

This result shows that the bias of the estimator of the quantile parameters decreases as
one takes higher order local polynomial expansions of the functional coefficients in (19).

Inference for this model is based on bootstrap implementation for panel data models
with time-dependent data. Standard errors are estimated using bootstrap by resampling
only from cross-sectional units with replacement as in Kapetanios (2008) and Galvao and
Montes-Rojas (2015). See also Galvao et al. (2021) for a recent study that discusses the
assumptions for asymptotic validity of the bootstrap in a similar framework.

The following section explores the finite-sample performance of our two-stage esti-
mation procedure.

4, Monte Carlo study

Our Monte Carlo design is a variation of the Monte Carlo exercises proposed in Bai
(2009), Harding and Lamarche (2014), and Su and Wang (2017). We are interested in
showing the consistency of the parameter estimators under the presence of time-varying
factor loadings.

Consider the following data generating process with R = 2 unknown factors:

Yie = By + B Xit + Air 1 Fiy + Aig 2 Foy + (1 + ¢Xir + y, Fie + Yzet)fit- (28)

In this model as well as in the empirical application below we assume a set of common
factors that is constant across quantiles. For this exercise the parameter of interest is the
marginal effect on the conditional quantile, which corresponds to 3, (7) = f8; + ¢Q:(1).
The parameter ¢ thus determines if there is heterogeneity across quantiles. For ¢ = 0 we
have a location-shift model while for ¢#0 we have a location-scale shift model. The
parameters y; and y, determine whether the factors also have an effect on the scale that
may potentially contaminate the estimators of the quantile marginal effects. We consider
two distributions for the error term ¢;;, Gaussian and standardized chi-squared with 1
degree of freedom. For all models we fix 8, = 0 and 3, = 1, and we consider different
scenarios with ¢ € {0,0.1} and (y,,y,) € {(0,0),(0.1,0.1)}. For simplicity, we con-
sider X;;~IID N(0,1).
We generate the factors, j = 1, 2, with the following model

Fjy = PfFJ}t*I T Uiy = Pyllie—1 + €jts (29)
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where we assume for all cases that ej; are standard Gaussian independent random
variables fori=1,...,N,t=—49,...,0,...,T and j = 1,2. The common parameters
are assumed pr = 0.90, Py = 0.25 as in Harding and Lamarche (2014).

The time-varying factor loadings models for the common factors are DGP 1:
Airj~IID N(0,1) for j = 1,2; and DGP 2: A;;j = A;j~IID N(0,1) for j = 1,2. DGP 1
thus have factor loadings that vary across ¢t and i while DGP 2 only varies across
individuals.

We study the finite-sample performance of two estimators of the slope parameters f3;.
First, an estimator that considers time-varying factor loadings using the local estimation

procedure developed in this paper, and denoted as El. In this case we are in fact
estimating individual-specific coefficients (B, B,; and Ay; for j=1,2) for all
t=1,2,...,T. This estimator is thus the most demanding one. We will refer to this
model as the local factor estimator. Second, we consider a model with time-invariant

loadings, that is denoted as El. Here, we do not impose the time-varying local estimation
procedure and, instead, we estimate a unique set of parameters (B,, B, and A;; for
j=1,2) for all t. The latter estimator will be referred to as the global factor estimator.

In all cases we consider a fixed bandwidth of h = h = 1.

In order to evaluate the performance of our estimators and for comparability pur-
poses, we study bias and mean squared error (MSE) by comparing the estimates with the
B, () parameter defined above. For the local factor estimator we compute the sample
average across i and t of 3, ,, for every simulation. For the global factor estimator we

compute the sample average across i.

The sample size of the different simulation experiments comprises all possible com-
binations of N, T = {20,50,100}. The number of Monte Carlo experiments is 200 in
every case. Tables 1 and 2 report the simulation exercise results for the case with ¢ =
y, = ¥y, = 0 for DGP1 and DGP2, respectively. In this case all coefficients should be
estimating the same value of 1 for all quantiles. Tables 3 and 4 report the simulation
exercise results for the case with ¢ = 0.1, y, = y, = 0 for DGP1 and DGP2, respectively;
Tables 5 and 6 study the case given by ¢ =y, =y, = 0.1 for DGP1 and DGP2,
respectively. Importantly, the last two cases generate heterogeneity across quantiles
such that the coefficient estimates are different across quantiles.

First, note that there is no clear pattern for bias reduction when T or N increases
leaving the other dimension constant. However, bias monotonically reduces when both
N and T increase. There is, however, a mean square error (MSE) reduction when either N
or T increases. These results provide empirical evidence on the consistency of the
parameter estimators above as T and N increase. Second, the time-varying local estimator
exhibits a larger MSE value than the global factor estimator. This result is expected as the
local estimator is more demanding and uses fewer observations to estimate the para-
meters. In contrast, the estimator offers additional flexibility as we can estimate time-
varying coefficients. The ratios of the MSE performance of the two estimators are similar
across specifications. Third, those simulation scenarios are given by an error term ¢;
following a chi-squared distribution show differences across quantiles for both estima-
tors. One unexpected feature is that the MSE performance of 7 = 0.25 is worse than that
of 7=0.75 for the local estimator. This may be the result of the estimated factors
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absorbing a more substantial portion of the variance in the quantile location with more
probability mass.

5. Empirical application

This section applies the above model to an empirical asset pricing context. In contrast
to standard asset pricing models, we explore the distributional risk premia by fitting
the above models to different quantiles of the distribution of excess returns. We are
interested in assessing the effect of including unobserved local factors with time-
varying factor loadings in standard asset pricing specifications. The methodology
developed above also allows us to estimate dynamic parameter estimates measuring
the sensitivity of the quantile process of excess returns to a set of idiosyncratic firm-
specific factors that are combined with Fama and French (1993) three-factor model.

5.1. Data

The set of firm-specific covariates X is obtained from a panel of U.S. firms and obtained
from Compustat Industrial dataset. The sample consists of annual CRSP/Compustat data
from the years 1970 through 2011. Following standard practice, we exclude financial
firms (SIC codes 6000-6999), regulated utilities (SIC codes 4900-4999), and non-profit
organizations (SIC codes greater than or equal to 9000). We omit firm-years with
a missing or negative value for fixed assets and sales, with a missing or less than
ten million 1983 dollar book value of total assets, and with growth rates of fixed assets,
sales, and the book value of total assets greater than 100%.2

We consider the following list of firm characteristics: MB denotes firms’ market-
to-book ratio; LNTA denotes the log of the firm’s asset size; EBITTA denotes
earnings before interest and taxes as a proportion of total assets; MDR denotes
the market debt ratio, defined as the book value of debt over the market value of
assets; and DEPTA denotes depreciation as a proportion of total assets. The set of
covariates is completed by the following observable pricing factors taken from
Kenneth French website. The common pricing factors are MKTRF, SMB and
HML. The factor MKTRF is defined as a value-weighted average market portfolio
return net of the risk-free asset. The risk-free rate is proxied by daily returns on the
U.S. three-month Treasury bill. The factor SMB is a small-minus-big portfolio
constructed as the difference between the returns on diversified portfolios of small
and large asset size. The factor HML is high-minus-low portfolio constructed as the
difference between the returns on diversified portfolios of high and small book-to-
market equity. The firms’ excess returns are the annual excess return on assets
computed over the annual interest rate offered by one-month U.S. Treasury bills.

The final sample includes a balanced panel of 297 firms with 2 years of data.

2Although there is no consensus in the literature on the length of the time dimension; we acknowledge that the time
dimension selection criteria might favor larger and more mature companies, which may lead to the results being valid
only for large and mature companies. However, the average estimated effects from our sample are in line with the
consensus in the literature, and thus, the results could be applied to all companies. The log of total assets is the only
variable that is not a ratio, and is deflated to the 1983 dollar with the consumer price index obtained from the Bureau of
Labor Statistics.
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5.2. Empirical models

In a similar spirit to Giovannetti (2013), Galvao et al. (2018) and Galvao et al. (2019), we
propose a quantile process for modelling the distribution of excess returns. The objective
of this study is to show if an empirical pricing strategy based on firm-specific variables
coupled with unobserved quantile factors with time-varying loadings is able to explain
the cross-section of excess returns on a set of U.S. firms. As a byproduct, we also study if
this model adds predictive ability to the standard Fama-French three-factor model. The
pricing factors of our baseline model are firm-specific financial ratios, see Kogan and
Papanikolaou (2013) for a discussion of empirical asset pricing models using firm-
specific variables. This approach has recently gained support due to the strong evidence
of the co-movement in stock returns of firms with similar characteristics that is unrelated
to their exposures to the market portfolio.
Our baseline model is

QT(Yit ‘ Xitap‘[,it) = Xit/STJ't + FT,itAT,ity i= 17 ) t= 17 ) T7 (30)

with 7 € (0,1) and R = 2. We assume that the unobserved common factors for the
quantile model are location shift transformations of the estimates of the mean factors Fj,
and Fy;. The shifts defining the quantile factors are captured by the values of the dynamic
intercepts a, i of the different quantile models. We estimate two versions of this model
for 7 € {0.10,0.25,0.50,0.75,0.90}. A first version considers global factors and uses the
methodology proposed in Ando and Bai (2015) to estimate the factors, F;, which are then
used to estimate the set of parameters (8 ,A.;). The second version considers local
factors and uses the methodology developed above to estimate the time-varying para-
meters (B, Ar ). Note that the loadings associated to the observable covariates do not

only vary over time but also across individuals. We consider two models. Model 1 uses
only firm-specific covariates, X = [MBR, EBITTA, MB, DEPTA, LNTA]. Model 2 aug-
ments the above model by MKTRF, SMB, and HML. Standard errors are estimated
using bootstrap by resampling only from cross-sectional units with replacement as in
Kapetanios (2008) and Galvao and Montes-Rojas (2015) using 100 replications. In all
cases the bandwidth parameter is set to 10. The results are reported in Tables 7-10.
The results are an extension of the findings in Galvao et al. (2018). In this case, we
incorporate the presence of unobserved common factors. Firm-specific covariates are

Table 7. Model 1. Firm-specific quantile regression model with R = 2 unobserved
factors. Global factors with fixed loadings. Standard errors are in brackets.

0.10 0.25 0.50 0.75 0.90
CONST -8.912 —7.582 —5.427 -6.313 —4.827
(1.661) (1.100) (0.925) (1.112) (1.847)
MDR 2.963 2.447 2412 2.603 3.067
(0.379) (0.219) (0.189) (0.206) (0.321)
EBITTA 0.806 0.211 -0.040 -0.193 -0.519
(0.388) (0.251) (0.264) (0.288) (0.475)
MB -0.053 -0.118 -0.174 -0.123 0.006
(0.058) (0.046) (0.045) (0.055) (0.076)
DEPTA —4.647 —4.734 -5.820 —7.949 -10.123
(2.178) (1.515) (1.314) (1.646) (2.515)
LNTA 0.397 0.359 0.275 0.344 0.278

(0.086) (0.056) (0.046) (0.057) (0.098)
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Table 8. Model 1. Firm-specific quantile regression model with R = 2 unobserved
factors. Local factors with time-varying factor loadings. Standard errors are in brackets.

0.10 0.25 0.50 0.75 0.90
CONST -6.688 —-4.522 -3.422 -1.886 -0.582
(0.921) (0.672) (0.606) (0.721) (1.119)
MBR 2.514 2.185 2.344 2.605 2.869
(0.185) (0.138) (0.153) (0.201) (0.293)
EBITTA 0.830 0.129 -0.122 -0.410 -0.454
(0.346) (0.234) (0.233) (0.277) (0.390)
MB —-0.024 -0.105 -0.116 -0.079 —0.005
(0.063) (0.046) (0.041) (0.045) (0.076)
DEPTA -3.722 -5.923 -6.927 -8.828 -11.270
(1.818) (1.190) (1.131) (1.515) (2.445)
LNTA 0.276 0.199 0.163 0.108 0.061
(0.045) (0.033) (0.030) (0.036) (0.056)

Table 9. Model 2. Quantile regression model with R = 2 unobserved global factors
with fixed loadings. The model considers firm-specific covariates and Fama-French
three-factor model. Standard errors are in brackets.

0.10 0.25 0.50 0.75 0.90
CONST —-8.582 -5.759 —4.869 —4.649 —-6.279
(1.420) (0.919) (0.729) (1.000) (1.981)
MBR 2.386 2.095 2.093 2.330 2.640
(0.325) (0.198) (0.180) (0.214) (0.307)
MB -0.129 -0.259 —-0.391 -0.530 -0.260
(0.355) (0.218) (0.243) (0.255) (0.418)
EBITTA -0.039 -0.112 -0.171 -0.072 0.027
(0.059) (0.045) (0.042) (0.053) (0.082)
DEPTA —-3.545 —4.978 —-6.824 —-7.539 —-8.431
(1.982) (1.494) (1.382) (1.577) (2.596)
LNTA 0.405 0.278 0.256 0.265 0.356
(0.075) (0.047) (0.039) (0.054) (0.104)
MKTRF -0.510 -0.520 -0.615 -0.620 -0.620
0.062 0.048 0.043 0.057 0.094
SMB —-0.840 -0.787 -0.740 -0.767 -0.797
0.107 0.074 0.063 0.070 0.123
HML -0.182 -0.189 -0.215 -0.212 -0.192
0.089 0.058 0.055 0.062 0.104

statistically significant in all models, and the model parameter estimates are similar
across the different specifications of the empirical asset pricing model reported in
Tables 7-10. The estimates reported for the model with local factors are averages across
time and individuals of the parameter estimates of 8, fori=1,...,Nandt=1,...,T.

Our empirical asset pricing model uncovers a positive exposure of firms’ excess
returns to the market-to-book ratio (MDR) and the log of asset size (LNTA) and negative
exposure to the market debt ratio (MB) and depreciation as a proportion of total assets
(DEPTA). Earnings before interest and taxes as a proportion of total assets (EBITTA)
have a positive effect on low quantiles and turn negative for 7 = 0.5 and beyond. The
quantile parameter estimates are monotonically increasing on 7 € (0, 1) for LNTA and
monotonically decreasing for DEPTA. All the coefficients are statistically significant at
5% significance levels. Tables 7-8 report the baseline case in expression (30) given by
firm-specific covariates, Tables 9-10 report the pricing model augmented with Fama-
French three-factor model. The results are also similar across specifications and
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Table 10. Model 2: Quantile regression model with R = 2 unobserved local factors with
time-varying factor loadings. The model considers firm-specific covariates and Fama-
French three-factor model. Standard errors are in brackets.

0.10 0.25 0.50 0.75 0.90
CONST —4.938 -3.503 —2.407 -1.710 -1.325
(0.788) (0.631) (0.548) (0.628) (1.021)
MBR 2.319 1.988 2.020 2.222 2.267
(0.173) (0.135) (0.145) (0.170) (0.303)
MB 0.081 -0.339 -0.478 -0.790 -0.511
(0.327) (0.224) (0.221) (0.238) (0.385)
EBITTA —-0.067 -0.127 -0.122 —-0.065 0.026
(0.055) (0.038) (0.037) (0.045) (0.079)
DEPTA —4.456 —-6.037 -7.709 —-9.996 -11.785
(1.927) (1.422) (1.211) (1.556) (2.256)
LNTA 0.202 0.159 0.124 0.106 0.104
(0.037) (0.030) (0.026) (0.030) (0.049)
MKTRF -0.516 —-0.546 —-0.588 -0.612 —-0.636
0.070 0.051 0.049 0.065 0.100
SMB -0.724 -0.705 -0.716 -0.736 -0.677
0.121 0.095 0.077 0.086 0.135
HML -0.195 —-0.221 -0.237 —-0.231 —0.240
0.090 0.059 0.061 0.076 0.126

MDR EBITTA

25

1970 1980 1990 2000 2010 1970 1980 1990 2000 2010

MB DEPTA

1970 1980 1990 2000 2010 1970 1980 1990 2000 2010
YEAR YEAR

Figure 1. Model 2: Dynamics of ;. 0.10 (blue), 0.25 (red), 0.50 (black), 0.75 (brown), and 0.90 (green)
quantile coefficients with 95% confidence interval calculated with 200 bootstrap
TN; t110 + Bie morMDRi ¢ + B £5irraEBITTAi ¢ + Bie meMBit + Bie pepraDEPTA; 1+

R
replications.
P Bit .ntaLNTA; ¢ + Bie mkrreMKTRF ¢ + By smgSMBie + Bi s HMLi ¢ + & 41
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Figure 2. Model 2 continued. Notes: 0.10 (blue), 0.25 (red), 0.50 (black), 0.75 (brown), and 0.90 (green)
quantile coefficients with 95% confidence interval calculated with 200 bootstrap replications.
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estimation methods. However, the magnitude of the model parameters changes signifi-
cantly between the global and local factor estimation methods.

The pricing model with local factors provides similar insights to the model with
unobserved global factors but has the additional advantage of offering the possibility of
studying the dynamics of the loadings 8, ;, associated to each observable covariate. These
dynamics are reported in Figures 1-2, corresponding to the local factor model with the
augmented set of covariates in Table 10. Importantly, the model also allows the possibi-
lity of studying the dynamics of the unobserved common factor loadings A, ;, never-
theless, we do not report these values as an interpretation of the results is difficult due to
the lack of interpretation of the common factor estimates. Each panel reports five lines
that reflect the dynamics of the parameters 3, over time. These estimates are constructed

as the cross-sectional average of 5_.. for each t and the standard errors are calculated by

T,it
bootstrap. The results show how the exposure of the excess returns to some covariates
and factor models have evolved over time. The figures show that there was little variation
in the average effects, and they are all within the 95% confidence interval of each other.
One limitation in the analysis is that the time dimension (T = 42) does not allow us to

obtain a finer set of local estimates.
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6. Conclusion

This paper proposes a functional coefficient quantile regression model with time-
varying factor loadings. Estimation of the quantile factors and factor loadings is done
in two stages. First, we estimate the unobserved common factors from a linear factor
mean-based model with exogenous covariates. In the second stage, we plug-in an
affine transformation of the estimates of the common factors to obtain the quantile
version of the factor model. This model requires both the number of individuals and
the number of periods to grow to infinity. The number of individuals needs to diverge
for the consistent estimation of the common factors in the first stage. Also, to
consistently estimate the quantile factor loadings the number of time periods needs
to diverge as well. As a byproduct, our model can capture dynamics and heterogeneity
across individuals in both the quantile slope coefficients and the quantile factor
loadings. The introduction of time-varying coefficients adds flexibility to standard
factor model specifications that assume slope homogeneity as in Bai (2003, 2009) and
slope heterogeneity as in Ando and Bai (2015). The model also extends the recent
partial linear model of Su and Wang (2017) by considering the quantile process and
including the presence of exogenous regressors.

This model specification is applied in an empirical application to explain the distribu-
tion of the excess returns for a cross-section of asset returns in the U.S. In contrast to
standard asset pricing formulations, we consider firm-specific covariates as pricing
factors and allow for the presence of two unobserved factors. The model provides
satisfactory estimates of the sensitivity of the excess return to the pricing variables
under both global (Ando & Bai, 2015) and local factor models. The main contribution
of our methodology is to be able to estimate the dynamics of the slope coefficients (betas)
for each asset and over time. By doing so, we can track the dynamic exposure of assets’
excess returns to the different financial ratios acting as pricing variables.
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Appendix

Proof of Proposition 1. The proof of this proposition follows from an application of the
results in Song (2013) and Ando and Ando and Bai (2015) to local principal components.
The maln dlfference is that we are c0n51der1ng local approximations using the kernels
Define Y = k;l/th such that Y; () = Yl(ls), oo Yfé)s is a T x 1 vector and Y

it

(Yl(s), ceey Yﬁ) isa T x N matrix. Let X®) = k/?

Lit = Thyts

X i+ such that Xi(s) = (Xﬁ) e ,X{g)

! !
and Xl(? = (X;Sl)l, . ,XZ(SI)T> and s§:> = kh,/tssit such that sfs) = (e,(f), . s(.ST)) isaT x1

1
/
vector. Slmllarly, ,t = k elt such that e() (egf), . ,eE?) is a T x 1 vector. Let
kl/th such that F© (F{S), .. ,FTS Y'isa T x R matrix and A, = (A, ..., Ag)

be a R x N matrix.

For each individual in the cross section, Equation 6 in vector form is

Y(s) — XES)ﬁis + F<S)Ais + e(S)

1 [

and the OLS estimator of 3 is

B, = (xY M;S)X,?S))*‘XES) M YY), (A1)
such that
, -1
3 X7 MoX?\ X M © ©
ﬁzsiﬁis: T T |:F Ai5+eii|'
X!
Then, under assumptions A.2 and A.4, it follows that ——EF—— is positive definite. Now, using
a similar decomposition to Proposition 1 of Song (2013), we have
1

1 (s) 1/1& ) (5
?Xis ]\/I;(SJF(S)A,»S == (NZ .;‘T (/31.5 — ﬁis) + 0,(1),
X My XY

where qu)T aiq 775 and a;; = A] (A A ) Ags. Thus,

[S~)
N
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-1 1 N ~ 1 i
ﬁts ﬂzs - |: 1T1| |:WZL£;?T (ﬁis _ﬂis) +7"X1(5) M?”e,(s) + op(l),
q=1
st)’ Myx¥
with SI(ST) = x Then
) L o
(Sl(; NT zT)(ﬂzs Ist) - fxzs MP\'( +0 (1)
such that
©) 1
(s) (s)
ﬁr: ﬁts - ( iT _WIQT) TX A/I;:( +Op( )

Now, the quantities SEST> and Lf;) satisfy that

T
p
S(S) SE Z hits { ()Xit:|

and

1 by | J.N
NTLSST) — L= 11m N—ZZ htsig [ F(S)HES)X”}’

such that LY 219 asN, T — .
Furthermore, note that eir = & +diy + oP(

) , with e,t the errors of the mean regression

m_ Na)
model in assumption A.1, and d; = X;; ﬂq ()T + F, "‘q 1 for any fixed s,t € [T].
p T g T Yy
q=1 q=1
Therefore,
Bo—Bo= (s~ Lﬁj)) TX,“) Mwel + 0p(1), asT — oc. (A2)
F

Now, taking the maximum over i € [N] and s € [T], we obtain

-1 1 /
max (B~ Bl < max (ST -00) U max XMl )
{ie T F

{i€[N] i€[N],se[T]}

-1 /
Finally, noting that max || (SE? — LE?) [|=0(1)and max || %X,@ Ms>£§s>\| = op(1)
{ie[N],se[T]} {i€[N],se[T]} F

as T — oo, the result in the proposition follows.

1

defined as in the text and define also Yi(s>* = Yi(s) — X;s)[S,.s. It follows from (14) that
(NT) "FOYE+ Y@+ = ) \A/I(j% Note also that ?t(s)* = Ft(S>A5 + egs) — x¥, with XE;) =

1B
[Xli (ﬁls - ﬁls)7 et 7XI\;t (ﬁNs - ﬁNs)] a 1 X N vector.

Then,

Proof of Proposition 2. Let Y* =y fX.(S)BiS and YO = ¥ . Y] be
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(s) ?{gs)* ?q(s)*’) [V;\;;q]fl _ FES)H(S)

~ 1
B~ (43R

q=1

(NTZF(S) [FOA+ el = xG] [FA + e - x5 ) [V - 9RO,

This expression can be decomposed as

ITA S s/’\s— s
o e e [ O T

1 "\ sy o
- (WZ © [F§S>As+eg>}xy>>[v§j;] ! (A.5)

q=1
LN 50693 [ AT
- (52 x0) [Ft As+et} Vo) (A.6)
q=1
1 AN
S s
q=1

Theorem 3.1 in Suand Wang (2017) shows that expressmn (A.4) multiplied by VN kh t/ converges
in distribution to N(0, V. 'Q[¢Q.V:!), where H®) = (N"'AAL)(T'F®) F<5>)[V(S)] ; Vi is the
diagonal matrix consisting of the eigenvalues of EX ZEFEX ®in descending order; I's is the
corresponding normalized eigenvector matrix such that I''T’s = Iy, and Q; = Vl/ ZF Iy 12

To complete the proof we need to show that the remammg terms multiplied by \/ﬁkk i
op(1) as N, T — oo, with h — 0. First, we show that VNT*) Vs as N, T — oo. To do this, we
decompose the elements of the matrix VNT given by YU Y(S> for i,j=1,...,N. More

formally,
1

L 5050 _ Ly _ 503 ©) (3 '
ﬁyi Y] NT[Y i (ﬁls ﬁls)“ X (ﬂ ﬂ]s)]

+_X(S)(ﬁis _ﬁis)(:B]s ﬁ]s) Al +A2 + Az + Ay

_ ()% (5)¥ © 3 o« 1 S ®)
NTYI Y] NTXl (ﬁzs_ﬁzs)Y] _ﬁYz (ﬁ]s_lB]s)/‘Xj

From Proposition 1, it follows that [ma Hﬂ,t B:l| = 0p(1), as T — oo. Then, A; — 0, for
{i[N

j=2,3,4,as N, T — o0, such that VNT = VI(\,)T + 0p(1), with V;\?T — Ly yO" a5 defined in the

NT i j
text below Equation 14. Then, it follows that V! ST = V; + op(1). Therefore, using Assumption A.3
(ii) we have infyc7) Vi>0. Then, we need to prove that

T
h§5/2< Z (s { FO)A, +e<s>}xéﬁ>> = op(1). (A.8)
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m m
Note also that e;; = &;; + diy + op (@) , where d;; = XT Z (t —s)I 4k Z (t — ), for any

fixed s, t € [T]. Then, the expression on the left hand side of (A.8) satisfies that

T T
( Z h[lg/zkhqs FA +5q}X/ > ( Z h}s/zkhqs FA +d] > +0p(1)

(A.9)

Now, noting that X3 = op(1), for g =1,..., T, and applying the law of large numbers with
N, T — oo, we obtain condition (A.8).
Applymg the same arguments to expressions (A.6) and (A.7), we obtain the con51stency of the
local factors to rotated versions of F( 9 given by H®) = (N"'A,A)(T~'F¢ 50 )(V(5>)

Proof of Proposition 3. The proof of this proposition follows from the proof of
Proposition 1 and the application of the results in Song (2013) and Ando and Bai
(2015) to local principal components. For each individual in the cross section,
Equation 6 in vector form is

Y(s) _ Xl’(S)ﬁis + F(s)AiS + e(s)

1 [

and the OLS estimator of 3, is
B, = (xY M;S)X,-(S))_IXI-(S) M Y®, (A.10)

such that

/ -1 ’
X Mox\  x My .
x - [\/ThF<S>A,-S+\/The,. }

\/ﬁ(ﬁa - /31‘5) =

Applying the results in the proof of Proposition 1, we have

%%

F

\/ﬁ(/ﬁ\is _ﬁis> = [ zT:| [ ZquT (ﬂ,s /3,5) +—X,(S M)e<s)}

We are interested in the asymptotic distribution of the entire vector B, = (B,., - - ., By;) - The above
equation implies, stacking over i

Jﬁ(&—ﬁs):[s?}l[%ﬂsr (B, - ﬁ)+%X<SM? }

with S(T> and L ) block- diagonal matrices with elements s . and L . Then,

s 1 s Y —m \/E s) s

such that
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N

VG, - ) = (8 - 14 )_lf

VT

given that e,,—e,t—}—d,t—}—oP(“TS‘) . Furthermore, from Proposition 2, we have that

F® = FOH® + op(1). Then,
9 HON— v © HO)(FO HEO Y
]\/[?S) =Ir— F(s)H(s)(w) 2 (O (O op(1) = Iy — w_,_ 0p(1) = My o + op(1)
, with H) an orthogonal rotation matrix and i TF = Ig. Therefore,
Vh oy Vh oy
WXI(S> MF\(s)eES) = WXI(S> MF (s ) € ( ) + Op( )

Now, using Assumption A.6,

Vh

' d
ﬁxﬁ Moo = N(0, %),
with ¥, = hm n 7 Z Z ke g5k zs E[X M O sltslTMF(s)H(s)X‘ }
t=11=
Furthermore, each block s ¢ and L e ) satisfies that S<S — S and 1 L f LY. Then, stacking

over all the individuals, we define S®) and L) block-diagonal matrlces, such that it follows that

VTh(B, - B) 5 N(0, %),

-1

7 -1 7
with T = (89 = 16) m, (s - 1) 0

Proof of Proposition 4. The proof of this result follows closely the proof of Theorem 3.2
in Su and Wang (2017). It follows from (15) that A,s =T 1FV'Y ( . Then, replacing in
this expression, we obtain

A = TV — X7 (B — ). (A12)
Operating with this expression, we obtain
'5 =T 1F<S) (S)* Tﬁlﬁ(S)’Xi(S) (Eis - /")is)’ (A-13)

with T~ 1F Y = [HO) Ay + T’IH(S)/F(SYSES) + 0p((Th)""/?). Under assumption A.3 iii),
\/ FO'e N(o Qj), with
T

T-1
Qi = Thm [ Z k7 " (FqF’qgiz) 2k Z E kngskn s E(F4F,€iqeit) | . Then,

\/EH@ O 4 N(0, [Q) 7 Q™).

It remains to see that T‘IIAJ(SyXfS) (ﬁis -B) = oP((Th)71/2) as T — oo. Using expression (A.11),
and multiplying by v/ Th, this expression can be rearranged as
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Therefore, the right hand side of the expression is equal to

-1 T
(50 21) [T”Z?;”’Xf?@ {1 S o)

q=1

T
Under assumpt10n Adiv), T™! Z Fq ) 2, hm T! Z ki gsE[H' J'F 7 Xiq) = O(1). This implies

"1

=
that 7! F 5> p(1) = op(1). Furthermore, S() L() S() — LY. Now we need to show
iT 1!
=
that T! Z F Xi, \‘;__X<S) 20 q> =op(l). To show this, from A.6, it follows that
q
vh X S) 551) =z;+op (ﬁ) with z; a zero-mean normal random variable with variance X,,.
T PR
Then, applying the law of large numbers and the law of iterated expectations to T~ Zr F{(;) qus) Zg
=
: R ), P ol , . .
it follows that T }° Fy’ X;,'zg — Thngo T 3" kngsE[F XigEleig | Fy, Xig]]. Finally, by assumption
q=1 - q=1

A.2 1), this quantity converges to zero in probability.

Proof of Proposition 5. For convenience, we reproduce the analytical expression of the
estimators:

-1 N N
- ~ PO (R AN
F; = (E AitA;t> E Ay = S/,{ltﬁ E At ( it — ltﬁzt) (A.14)

where S;\\,t = N'S°N A,A),. Then, replacing in the expression, we obtain

.-,\

N AzNZA” it AtNZAw[ it(Bi ﬂit)}zﬁmt'f'ﬁb,t- (A.15)

The first term E,t has been analyzed in Su and Wang (2017) and satisfies that
Fo,—HYF == ZA,ts,t +0,(N71).

Under assumption A3 i) S~ =¥, + O(N ~1/2) as N — oo, where X, is an R x R diagonal
matrix. Under assumptron A3 ii) it holds that N~ 1/ZA’e,—>N(0 I'y) for each s,t, where
I'y = limy_o N7! Zi:l Zj:l A,SAJSE[s,ts]t]. Then, VN (Fa,z 20k F}) converges in distribution

to N(0,%p,), with X, = [S;'Q; ") I'y [£;'Q;!]. Now, it remains to see that VNEy, %0 as
N — 0. To show this, note that
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~ IR . SN
VNFyy =52 == > MaXa(By = By) (A.16)
’ i=1
Ly 0 1,0} 1
Y o /\4 . t__ t 1 (t)' (t)
=S N;A”X“<Sﬁ NLiT) X Mawe® + 0p(1). (A.17)

By the law of large numbers, we have %X(t)/m,)e 2, hm Z kn ot E[X{M 0, &]- Then, applying
F

(1)
AOO,[ H

the law of iterated expectations, under assumption A.2 (i), it follows that %Xm M.ye = op(1) as
F
T — oco.  Furthermore, noting that SX =¥, +ON"?) as N-—oo and

SI(ST) — ﬁLfsT) 2, S,(f ) Lf,), we obtain the desired result. a

Proof of Proposition 6. This proof is based on Theorem 1 of Cai and Xu (2008). The
main difference is that we replace the observable covariates X; by estimated common

factors F; such that the quantile factor model of interest is
Yi=2Zy Ori +weis, (A.18)
Wlth Writ = Erit — (ﬁt — FtH(t))A;it.

Following Cai and Xu (2008), we consider a local polynomial expansion of the quantile
parameters 0. ; by 0,;. To simplify the proof, we consider a local linear approximation such

that Fém-t = [(um + a;li)s(ut — u3)> (ﬁw + ,BSIZ)S(ut - us)), (Ar,is + Ai_li)s(ut - us))/} ,, that can be

~ !
reparametrized as 0, ; = [(cxo + oy (ur — uy)) (170 + 7y (u — us)), (& + & (uy — us))'} , and mini-
mize the following local objective function:
us)

T
=~ u
ZPT(YU - Ziter‘it) kh< L
t=1
= I — = I 1(’}; —6r<Y; <;‘+6) —
Let Q = %Z ZiZ ke~ “;“ and Q* = %Z%Z,Zﬁkﬂv % , for some 67 — 0 as

T — o0; ( ) is an indicator function and /};t is the prediction of the quantile model evaluated at u.
These sample covariance matrices are consistent estimators of Q and QF defined above.

Furthermore, let UtZ = (u — us)/ﬁ, Z*t =1 X 13[ Usw XUy, EUM},

Wit = Yip — Z;é,,it, and D = diag(I14 41, ZIH,HR), with I 4. as the identity matrix of dimen-
sion 1 +d + R, and let

Yie = \/ED [“0 — Oris (’7 _ﬁrzs) (‘50 - Tls) a1 — a‘E’l)S (’7 ﬁrzs) (51 ‘rzs )]

The above minimization problem can be rewritten as

i <Wﬂt \/T7 ztyzt>kh< m) (A.19)

Using the same steps as in Cai and Xu (2008), we derive a local Bahadur representation of y,, such
that
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a7’ S () Zie (U= + 0p(1)

h=
' Th =1

with ¥;(x) = 7 — 1(x <0). Now, after simple algebra, we decompose this expression in four terms
as

~%_—1
%Z‘P )ik (U-) (A.20)
~%_—1 T ®
- % > V(&) (ZZZ - ZZ?) kg(Utg) (A.21)
+ %i(‘l’f(wr,n) — Vo(erir)) (Z*t - Zz*t) kZ(Ut;) (A.22)
_,_Q T (‘{’T(Wr,if) _‘{’T(sT’it))Z ke~ ( th) (A.23)

Th =1

Under assumptions B.1-B.4, Cai and Xu (2008) show that expression (A.20) converges in dis-
tribution to N(0, X ), with X, = 7(1 — 7)o [2*] " ©Q [2]"". In particular, to compute the asymp-
totic variance we rely on the @ — mixing condition B3 that limits the amount of serial dependence.
More specifically,

o0

Z E[(T — 1y < 7| Zip))(7 — l(yi,t+s <7 Zi,t+5))Z1tZ1 t+si| =

S§=—00

o1 - DEZZ,] — 2y E|ZuZ),.] +

s=1

o0

2> E[100 £ 71 Zi\iess < 7| Zios) ZuZiyy.
s=1

The last term can be expressed as

o0
2> E[(100 < 71 Z)10iass < 71 Ziass) = ) ZaZly ] + 27 ZE[ Wi
s=1
Now, noting that E[l@it ST Z)Wigys < T| Zigys) — 72 Z,»t] =

E[l()/it ST Zi)1ipas < 7| Zigss) — TZ]

the above expression is

oo o0
ZZE[(I()’# <t ‘ Zit)l()’i,tJrs <t ‘ Zi,t+s) - TZ)] [ 1tZ, t+s} + 277 ZE[ 1tZ, t+s}‘
s=1

s=

—

Furthermore, applying Cauchy-Schwarz inequality to the first term, we have
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°O 2
ZE{(I()’# <t | Zit)l()’i,t+s <t | Zi,t+s) - Tz)Zth, t+s} <

s=1

o0

[o.¢]
2
ZED()’!I<T|Zzt)1()/zt+s§7|zlt+s -7 ZE[ th,HS} .

s=1 s=1
Finally, using the & — mixing condition on {Z, ¢;} in B3, we obtain

= 2
E[l()’it <7 Zit)l()’i,t+s <7 Zi,t+s) - TZ] —0

s=1

2
and Y F [ wZ; HJ < 00. Therefore,

00
> E[(r =100 < 71 Zi)(r = 101ass < 7| Zuars) ZuZir| =
$=—00
1(1 - 1)E[Z4Z))) — 222 ZE[ WZig] +27 ZE[ WZig] = (1= D0, (A.24)

s=1 s=1

The same derivations apply to QF such that expression (A.20) converges to
(1= 1) Q] Q [QF] !
For expression (A.21), we note that

= 2w (7 5)i5 (1)

t=1

—

/\ —

Th

==

/\* -1

T
R {o 0(F —FH) 00 (F - FtH<‘>)U~} ki (U~),
7= th th
with 0 denoting a 1 x d vector. Now, using Proposition 5, F, — FHY = 0,(N7/?), as N — cc.
Define f; = VN(F, — F,H?). Then,

~x_—1

(@]

fﬁZ‘F o 00 0V (V).

that converges to zero in probability as N, T — oo. To show this, consider the element

v WZ (V=) Welen)fs = \/%%;k;(um) ¥e(e)f; + op(1).

T
Under the law of large numbers, it follows that <> k~h'(Ut~h~) Y. (ei)fy = Op(1). Then, the above
~ Th =1

expression converges to zero if A%h — 0. R
Now, the consistency of F; to F,H"), as N — co, implies that Z; — Z} = op(1) and
Writ — €rit = 0p(1). Then, expressions (A.22) and (A.23) converge to zero in probability, and

the asymptotic result in Proposition 6 follows. m
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